143 research outputs found

    Past, Present, Future: A Comprehensive Exploration of AI Use Cases in the UMBRELLA IoT Testbed

    Full text link
    UMBRELLA is a large-scale, open-access Internet of Things (IoT) ecosystem incorporating over 200 multi-sensor multi-wireless nodes, 20 collaborative robots, and edge-intelligence-enabled devices. This paper provides a guide to the implemented and prospective artificial intelligence (AI) capabilities of UMBRELLA in real-world IoT systems. Four existing UMBRELLA applications are presented in detail: 1) An automated streetlight monitoring for detecting issues and triggering maintenance alerts; 2) A Digital twin of building environments providing enhanced air quality sensing with reduced cost; 3) A large-scale Federated Learning framework for reducing communication overhead; and 4) An intrusion detection for containerised applications identifying malicious activities. Additionally, the potential of UMBRELLA is outlined for future smart city and multi-robot crowdsensing applications enhanced by semantic communications and multi-agent planning. Finally, to realise the above use-cases we discuss the need for a tailored MLOps platform to automate UMBRELLA model pipelines and establish trust.Comment: 6 pgaes, 4 figures. This work has been accepted by PerCom TrustSense workshop 202

    Cybersecurity of Industrial Cyber-Physical Systems: A Review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the "physics" data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the "security by obscurity" principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.Comment: 32 pages, 10 figure

    A Survey on (mobile) wireless sensor network experimentation testbeds

    Get PDF
    International audienceWith the development of new technologies, these last years have witnessed the emergence of a new paradigm: the Internet of Things (IoT) and of the physical world. We are now able to communicate and interact with our surrounding environ- ment through the use of multiple tiny sensors, RFID technologies or small wireless robots. This allows a set of new applications and usages to be envisioned ranging from logistic and traceability purposes to emergency and rescue operations going through the monitoring of volcanos or forest fires. However, all this comes with several technical and scientific issues like how to ensure the reliability of wireless communications in disturbed environments, how to manage efficiently the low resources (energy, memory, etc) or how to set a safe and sustainable maintenance. All these issues are addressed by researchers all around the world but solutions designed for IoT need to face real experimentations to be validated. To ease such experimentations for IoT, several experimental testbeds have been deployed offering diverse and heterogeneous services and tools. This article studies the different requirements and features such facilities should offer and survey the different experimental facilities currently available for the community, the different hardware used (as sensors and robots) and the scope of their services. We expect this survey assist a potential user to easily choose the one to use regarding his own needs. Finally, we identify existing gaps and difficulties and investigate new directions for such facilities

    Enabling seamless communication over several IoT messaging protocols in OpenFlow network

    Get PDF
    The most prominent protocols for data transfer in internet of things (IoT) are message queuing telemetry transport (MQTT) and constrained application protocol (CoAP). The existing clients from both sides are unable to communicate directly because of the packet’s header structure difference in application and transport layer. In response, this paper aims to develop a bidirectional conversion server used to translate the specified messaging protocol interchangeably in the OpenFlow network and transmit the converted packet from both sides. The conversion server integrated the MQTT subscriber and CoAP POST object for converting the MQTT message into CoAP data. Similarly, the CoAP-MQTT translation was processed by CoAP GET and MQTT publisher object. The research was evaluated by analysing the round trip time (RTT) value, conversion delay, and power consumption. The RTT value for MQTT-CoAP required 0.5 s while the CoAP-MQTT was accumulated in 0.1 s for single-packet transmission. In addition, the SDN controller and the conversion server only consumed less than 1% central processing unit (CPU) usage during the experiment. The result indicated that the proposed conversion server could handle the translation even though there was an overwhelming request from the clients

    Real-Time Waveform Prototyping

    Get PDF
    Mobile Netzwerke der fünften Generation zeichen sich aus durch vielfältigen Anforderungen und Einsatzszenarien. Drei unterschiedliche Anwendungsfälle sind hierbei besonders relevant: 1) Industrie-Applikationen fordern Echtzeitfunkübertragungen mit besonders niedrigen Ausfallraten. 2) Internet-of-things-Anwendungen erfordern die Anbindung einer Vielzahl von verteilten Sensoren. 3) Die Datenraten für Anwendung wie z.B. der Übermittlung von Videoinhalten sind massiv gestiegen. Diese zum Teil gegensätzlichen Erwartungen veranlassen Forscher und Ingenieure dazu, neue Konzepte und Technologien für zukünftige drahtlose Kommunikationssysteme in Betracht zu ziehen. Ziel ist es, aus einer Vielzahl neuer Ideen vielversprechende Kandidatentechnologien zu identifizieren und zu entscheiden, welche für die Umsetzung in zukünftige Produkte geeignet sind. Die Herausforderungen, diese Anforderungen zu erreichen, liegen jedoch jenseits der Möglichkeiten, die eine einzelne Verarbeitungsschicht in einem drahtlosen Netzwerk bieten kann. Daher müssen mehrere Forschungsbereiche Forschungsideen gemeinsam nutzen. Diese Arbeit beschreibt daher eine Plattform als Basis für zukünftige experimentelle Erforschung von drahtlosen Netzwerken unter reellen Bedingungen. Es werden folgende drei Aspekte näher vorgestellt: Zunächst erfolgt ein Überblick über moderne Prototypen und Testbed-Lösungen, die auf großes Interesse, Nachfrage, aber auch Förderungsmöglichkeiten stoßen. Allerdings ist der Entwicklungsaufwand nicht unerheblich und richtet sich stark nach den gewählten Eigenschaften der Plattform. Der Auswahlprozess ist jedoch aufgrund der Menge der verfügbaren Optionen und ihrer jeweiligen (versteckten) Implikationen komplex. Daher wird ein Leitfaden anhand verschiedener Beispiele vorgestellt, mit dem Ziel Erwartungen im Vergleich zu den für den Prototyp erforderlichen Aufwänden zu bewerten. Zweitens wird ein flexibler, aber echtzeitfähiger Signalprozessor eingeführt, der auf einer software-programmierbaren Funkplattform läuft. Der Prozessor ermöglicht die Rekonfiguration wichtiger Parameter der physikalischen Schicht während der Laufzeit, um eine Vielzahl moderner Wellenformen zu erzeugen. Es werden vier Parametereinstellungen 'LLC', 'WiFi', 'eMBB' und 'IoT' vorgestellt, um die Anforderungen der verschiedenen drahtlosen Anwendungen widerzuspiegeln. Diese werden dann zur Evaluierung der die in dieser Arbeit vorgestellte Implementierung herangezogen. Drittens wird durch die Einführung einer generischen Testinfrastruktur die Einbeziehung externer Partner aus der Ferne ermöglicht. Das Testfeld kann hier für verschiedenste Experimente flexibel auf die Anforderungen drahtloser Technologien zugeschnitten werden. Mit Hilfe der Testinfrastruktur wird die Leistung des vorgestellten Transceivers hinsichtlich Latenz, erreichbarem Durchsatz und Paketfehlerraten bewertet. Die öffentliche Demonstration eines taktilen Internet-Prototypen, unter Verwendung von Roboterarmen in einer Mehrbenutzerumgebung, konnte erfolgreich durchgeführt und bei mehreren Gelegenheiten präsentiert werden.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part listThe demand to achieve higher data rates for the Enhanced Mobile Broadband scenario and novel fifth generation use cases like Ultra-Reliable Low-Latency and Massive Machine-type Communications drive researchers and engineers to consider new concepts and technologies for future wireless communication systems. The goal is to identify promising candidate technologies among a vast number of new ideas and to decide, which are suitable for implementation in future products. However, the challenges to achieve those demands are beyond the capabilities a single processing layer in a wireless network can offer. Therefore, several research domains have to collaboratively exploit research ideas. This thesis presents a platform to provide a base for future applied research on wireless networks. Firstly, by giving an overview of state-of-the-art prototypes and testbed solutions. Secondly by introducing a flexible, yet real-time physical layer signal processor running on a software defined radio platform. The processor enables reconfiguring important parameters of the physical layer during run-time in order to create a multitude of modern waveforms. Thirdly, by introducing a generic test infrastructure, which can be tailored to prototype diverse wireless technology and which is remotely accessible in order to invite new ideas by third parties. Using the test infrastructure, the performance of the flexible transceiver is evaluated regarding latency, achievable throughput and packet error rates.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part lis

    Cybersecurity of industrial cyber-physical systems: a review

    Get PDF
    Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the “physics” data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the “security by obscurity” principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition. Although there are existing surveys in this context, very little is mentioned regarding the outputs of these reports. While these reports show that the most exploited vulnerabilities occur due to weak boundary protection, these vulnerabilities also occur due to limited or ill defined security policies. However, current literature focuses on intrusion detection systems (IDS), network traffic analysis (NTA) methods, or anomaly detection techniques. Hence, finding a solution for the problems mentioned in these reports is relatively hard. We bridge this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. Finally, we identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions

    Design and Evaluation of Compression, Classification and Localization Schemes for Various IoT Applications

    Get PDF
    Nowadays we are surrounded by a huge number of objects able to communicate, read information such as temperature, light or humidity, and infer new information through ex- changing data. These kinds of objects are not limited to high-tech devices, such as desktop PC, laptop, new generation mobile phone, i.e. smart phone, and others with high capabilities, but also include commonly used object, such as ID cards, driver license, clocks, etc. that can made smart by allowing them to communicate. Thus, the analog world of just a few years ago is becoming the a digital world of the Inter- net of Things (IoT), where the information from a single object can be retrieved from the Internet. The IoT paradigm opens several architectural challenges, including self-organization, self-managing, self-deployment of the smart objects, as well as the problem of how to minimize the usage of the limited resources of each device. The concept of IoT covers a lot of communication paradigms such as WiFi, Radio Frequency Identification (RFID), and Wireless Sensor Network (WSN). Each paradigm can be thought of as an IoT island where each device can communicate directly with other devices. The thesis is divided in sections in order to cover each problem mentioned above. The first step is to understand the possibility to infer new knowledge from the deployed device in a scenario. For this reason, the research is focused on the web semantic, web 3.0, to assign a semantic meaning to each thing inside the architecture. The sole semantic concept is unusable to infer new information from the data gathered; in fact, it is necessary to organize the data through a hierarchical form defined by an Ontology. Through the exploitation of the Ontology, it is possible to apply semantic engine reasoners to infer new knowledge about the network. The second step of the dissertation deals with the minimization of the usage of every node in a WSN. The main purpose of each node is to collect environmental data and to exchange hem with other nodes. To minimize battery consumption, it is necessary to limit the radio usage. Therefore, we implemented Razor, a new lightweight algorithm which is expected to improve data compression and classification by leveraging on the advantages offered by data mining methods for optimizing communications and by enhancing information transmission to simplify data classification. Data compression is performed studying the well-know Vector Quantization (VQ) theory in order to create the codebooks necessary for signal compression. At the same time, it is requested to give a semantic meaning to un- known signals. In this way, the codebook feature is able not only to compress the signals, but also to classify unknown signals. Razor is compared with both state-of-the-art compression and signal classification techniques for WSN . The third part of the thesis covers the concept of smart object applied to Robotic research. A critical issue is how a robot can localize and retrieve smart objects in a real scenario without any prior knowledge. In order to achieve the objectives, it is possible to exploit the smart object concept and localize them through RSSI measurements. After the localization phase, the robot can exploit its own camera to retrieve the objects. Several filtering algorithms are developed in order to mitigate the multi–path issue due to the wireless communication channel and to achieve a better distance estimation through the RSSI measurement. The last part of the dissertation deals with the design and the development of a Cognitive Network (CN) testbed using off the shelf devices. The device type is chosen considering the cost, usability, configurability, mobility and possibility to modify the Operating System (OS) source code. Thus, the best choice is to select some devices based on Linux kernel as Android OS. The feature to modify the Operating System is required to extract the TCP/IP protocol stack parameters for the CN paradigm. It is necessary to monitor the network status in real-time and to modify the critical parameters in order to improve some performance, such as bandwidth consumption, number of hops to exchange the data, and throughput

    A method to benchmark the balance resilience of robots

    Get PDF
    Robots that work in unstructured scenarios are often subjected to collisions with the environment or external agents. Accordingly, recently, researchers focused on designing robust and resilient systems. This work presents a framework that quantitatively assesses the balancing resilience of self-stabilizing robots subjected to external perturbations. Our proposed framework consists of a set of novel Performance Indicators (PIs), experimental protocols for the reliable and repeatable measurement of the PIs, and a novel testbed to execute the protocols. The design of the testbed, the control structure, the post-processing software, and all the documentation related to the performance indicators and protocols are provided as open-source material so that other institutions can replicate the system. As an example of the application of our method, we report a set of experimental tests on a two-wheeled humanoid robot, with an experimental campaign of more than 1100 tests. The investigation demonstrates high repeatability and efficacy in executing reliable and precise perturbations

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business
    • …
    corecore