28 research outputs found

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Droid Jacket: sistema de monitorização móvel de uma equipa

    Get PDF
    Mestrado em Engenharia dos Computadores e TelemáticaOs profissionais de emergência lidam no seu quotidiano com situações de perigo, agindo muitas vezes sob pressão, expondo-se a níveis de stress e fadiga por períodos extensos, causando um impacto negativo nas suas vidas e saúde. Neste contexto, a utilização de novas soluções a partir de tecnologias vestíveis, redes de sensores e dispositivos móveis cria a oportunidade de oferecer um acompanhamento mais próximo, com o objectivo de detectar situações de perigo e dar suporte a equipas de profissionais de emergência médica em campo. No entanto, existem muito poucas soluções voltadas para a utilização sinérgica destas tecnologias emergentes que dêem suporte integrado a monitorização de uma equipa. Nesta dissertação propomos uma arquitectura conceptual de software (TeamMonitor) para agregação, análise e disseminação de informação direccionada para a monitorização de equipas na acção. Team Monitor e sustentada na noção de nós de coordenação centrais, que são responsáveis pela recolha de dados de diferentes fontes (ex.: vários profissionais de emergência) e subsequente fluxos de trabalho para análise, incluindo processamento básico de dados (ex.: execução de detectores de alarmes de sinal biológico) e troca eficiente de dados com clientes externos. O nó central dissocia a rede de tecnologias de informação da rede de fornecimento de dados. O suporte é dado pela camada de aquisição de sinal biológico e de análise que nós desenvolvemos, o módulo BIOSal. De modo a ilustrar a viabilidade do TeamMonitor, nós implementámos um sistema como prova do conceito, o Droid Jacket, onde o nó central da TeamMonitor e instanciado num dispositivo móvel com Android. Droid Jacket permite monitorizar até quatro Vital Jacket (uma tecnologia vestível para a monitorização de uma pessoa), fornecendo tanto o suporte para a troca e ficiente dos sinais agregados para clientes externos, como a detec ção precoce de potenciais alarmes a partir do processamento em tempo real dos dados adquiridos. Ao contr ario de outras abordagens comuns, nós consideramos as capacidades de processamento do dispositivo móvel para estação base. Nós implementámos um algoritmo simples de detecção do complexo QRS da onda cardíaca e de arritmias no Droid Jacket, a partir do electrocardiograma adquirido pelas unidades com o Vital Jacket vestido. Droid Jacket demonstra que a incorporação de dispositivos móveis num cenáario de monitorização de uma equipa é uma opção razoável, e o conceito pode ser estendido e adaptado a cenários mais realistas como a monitorização de bombeiros.First responders deal in their daily lives with danger, working under pressure, exposing themselves to stress and fatigue for extended periods, which has a negative impact on their lives and health. In this context, using new solutions based on wearable technologies, sensor networks and mobile devices raises the opportunity to provide closer monitoring, aiming at detecting hazard conditions and supporting rst responder teams in the eld. However, very few solutions exist addressing such synergistic use of these emergent technologies to support integrated team monitoring. In this dissertation we propose a conceptual software architecture (TeamMonitor) for information aggregation, analysis and dissemination towards eld-action teams monitoring. TeamMonitor is supported in the notion of central coordination nodes that are responsible for data aggregation from multiple sources (e.g.: several rst responders professionals) and subsequent analysis work ows, including basic data processing (e.g.: running biosignal alarms detectors) and data stream relay to external clients. The central node decouples the IT network from the data providers network. This support is provided by a biosignal acquisition and analysis framework we developed, the BIOSal module. To illustrate TeamMonitor feasibility, we implemented a proof-ofconcept application, the DroidJacket, in which the TeamMonitor central node is instantiated in an Android mobile device. DroidJacket is able to monitor up to four VitalJacket R devices (a wearable garment for individual monitoring) providing both the support to relay the aggregated signals data to remote clients and an early detection of potential alarms based on real-time processing of the acquired data. Unlike other common approaches, we rely on the mobile device processing capabilities for the base-station. We implemented a basic algorithm for heart wave QRS complex and arrhythmia detection in DroidJacket, using the electrocardiogram acquired from the VitalJacket units. DroidJacket demonstrates that incorporating mobile devices in the team monitoring scenario is a reasonable option nowadays and the concept can be extended and adapted to more realistic scenarios like re ghter monitoring

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Molecular phylogeny of horseshoe crab using mitochondrial Cox1 gene as a benchmark sequence

    Get PDF
    An effort to assess the utility of 650 bp Cytochrome C oxidase subunit I (DNA barcode) gene in delineating the members horseshoe crabs (Family: xiphosura) with closely related sister taxa was made. A total of 33 sequences were extracted from National Center for Biotechnological Information (NCBI) which include horseshoe crabs, beetles, common crabs and scorpion sequences. Constructed phylogram showed beetles are closely related with horseshoe crabs than common crabs. Scorpion spp were distantly related to xiphosurans. Phylogram and observed genetic distance (GD) date were also revealed that Limulus polyphemus was closely related with Tachypleus tridentatus than with T.gigas. Carcinoscorpius rotundicauda was distantly related with L.polyphemus. The observed mean Genetic Distance (GD) value was higher in 3rd codon position in all the selected group of organisms. Among the horseshoe crabs high GC content was observed in L.polyphemus (38.32%) and lowest was observed in T.tridentatus (32.35%). We conclude that COI sequencing (barcoding) could be used in identifying and delineating evolutionary relatedness with closely related specie

    Crab and cockle shells as heterogeneous catalysts in the production of biodiesel

    Get PDF
    In the present study, the waste crab and cockle shells were utilized as source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shells are calcium carbonate which transformed into calcium oxide upon activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be catalyst amount, 5 wt.% and methanol/oil mass ratio, 0.5:1. The waste catalysts perform equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to five times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity

    Mixed signal VLSI circuit implementation of the cortical microcircuit models

    Get PDF
    This thesis proposes a novel set of generic and compact biologically plausible VLSI (Very Large Scale Integration) neural circuits, suitable for implementing a parallel VLSI network that closely resembles the function of a small-scale neocortical network. The proposed circuits include a cortical neuron, two different long-term plastic synapses and four different short-term plastic synapses. These circuits operate in accelerated-time, where the time scale of neural responses is approximately three to four orders of magnitude faster than the biological-time scale of the neuronal activities, providing higher computational throughput in computing neural dynamics. Further, a novel biological-time cortical neuron circuit with similar dynamics as of the accelerated-time neuron is proposed to demonstrate the feasibility of migrating accelerated-time circuits into biological-time circuits. The fabricated accelerated-time VLSI neuron circuit is capable of replicating distinct firing patterns such as regular spiking, fast spiking, chattering and intrinsic bursting, by tuning two external voltages. It reproduces biologically plausible action potentials. This neuron circuit is compact and enables implementation of many neurons in a single silicon chip. The circuit consumes extremely low energy per spike (8pJ). Incorporating this neuron circuit in a neural network facilitates diverse non-linear neuron responses, which is an important aspect in neural processing. Two of the proposed long term plastic synapse circuits include spike-time dependent plasticity (STDP) synapse, and dopamine modulated STDP synapse. The short-term plastic synapses include excitatory depressing, inhibitory facilitating, inhibitory depressing, and excitatory facilitating synapses. Many neural parameters of short- and long- term synapses can be modified independently using externally controlled tuning voltages to obtain distinct synaptic properties. Having diverse synaptic dynamics in a network facilitates richer network behaviours such as learning, memory, stability and dynamic gain control, inherent in a biological neural network. To prove the concept in VLSI, different combinations of these accelerated-time neural circuits are fabricated in three integrated circuits (ICs) using a standard 0.35 µm CMOS technology. Using first two ICs, functions of cortical neuron and STDP synapses have been experimentally verified. The third IC, the Cortical Neural Layer (CNL) Chip is designed and fabricated to facilitate cortical network emulations. This IC implements neural circuits with a similar composition to the cortical layer of the neocortex. The CNL chip comprises 120 cortical neurons and 7 560 synapses. Many of these CNL chips can be combined together to form a six-layered VLSI neocortical network to validate the network dynamics and to perform neural processing of small-scale cortical networks. The proposed neuromorphic systems can be used as a simulation acceleration platform to explore the processing principles of biological brains and also move towards realising low power, real-time intelligent computing devices and control systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore