3,455 research outputs found

    A Survey: Data Leakage Detection Techniques

    Get PDF
    Data is an important property of various organizations and it is intellectual property of organization. Every organization includes sensitive data as customer information, financial data, data of patient, personal credit card data and other information based on the kinds of management, institute or industry. For the areas like this, leakage of information is the crucial problem that the organization has to face, that poses high cost if information leakage is done. All the more definitely, information leakage is characterize as the intentional exposure of individual or any sort of information to unapproved outsiders. When the important information is goes to unapproved hands or moves towards unauthorized destination. This will prompts the direct and indirect loss of particular industry in terms of cost and time. The information leakage is outcomes in vulnerability or its modification. So information can be protected by the outsider leakages. To solve this issue there must be an efficient and effective system to avoid and protect authorized information. From not so long many methods have been implemented to solve same type of problems that are analyzed here in this survey.  This paper analyzes little latest techniques and proposed novel Sampling algorithm based data leakage detection techniques

    Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data

    Get PDF
    Recent years have seen the rise of more sophisticated attacks including advanced persistent threats (APTs) which pose severe risks to organizations and governments by targeting confidential proprietary information. Additionally, new malware strains are appearing at a higher rate than ever before. Since many of these malware are designed to evade existing security products, traditional defenses deployed by most enterprises today, e.g., anti-virus, firewalls, intrusion detection systems, often fail at detecting infections at an early stage. We address the problem of detecting early-stage infection in an enterprise setting by proposing a new framework based on belief propagation inspired from graph theory. Belief propagation can be used either with "seeds" of compromised hosts or malicious domains (provided by the enterprise security operation center -- SOC) or without any seeds. In the latter case we develop a detector of C&C communication particularly tailored to enterprises which can detect a stealthy compromise of only a single host communicating with the C&C server. We demonstrate that our techniques perform well on detecting enterprise infections. We achieve high accuracy with low false detection and false negative rates on two months of anonymized DNS logs released by Los Alamos National Lab (LANL), which include APT infection attacks simulated by LANL domain experts. We also apply our algorithms to 38TB of real-world web proxy logs collected at the border of a large enterprise. Through careful manual investigation in collaboration with the enterprise SOC, we show that our techniques identified hundreds of malicious domains overlooked by state-of-the-art security products

    Malware Target Recognition via Static Heuristics

    Get PDF
    Organizations increasingly rely on the confidentiality, integrity and availability of their information and communications technologies to conduct effective business operations while maintaining their competitive edge. Exploitation of these networks via the introduction of undetected malware ultimately degrades their competitive edge, while taking advantage of limited network visibility and the high cost of analyzing massive numbers of programs. This article introduces the novel Malware Target Recognition (MaTR) system which combines the decision tree machine learning algorithm with static heuristic features for malware detection. By focusing on contextually important static heuristic features, this research demonstrates superior detection results. Experimental results on large sample datasets demonstrate near ideal malware detection performance (99.9+% accuracy) with low false positive (8.73e-4) and false negative rates (8.03e-4) at the same point on the performance curve. Test results against a set of publicly unknown malware, including potential advanced competitor tools, show MaTR’s superior detection rate (99%) versus the union of detections from three commercial antivirus products (60%). The resulting model is a fine granularity sensor with potential to dramatically augment cyberspace situation awareness

    Reducing normative conflicts in information security

    Get PDF
    Security weaknesses often stem from users trying to comply with social expectations rather than following security procedures. Such normative conflicts between security policies and social norms are therefore undesirable from a security perspective. It has been argued that system developers have a "meta-task responsibility", meaning that they have a moral obligation to enable the users of the system they design to cope adequately with their responsibilities. Depending on the situation, this could mean forcing the user to make an "ethical" choice, by "designing out" conflicts. In this paper, we ask the question to what extent it is possible to detect such potential normative conflicts in the design phase of security-sensitive systems, using qualitative research in combination with so-called system models. We then envision how security design might proactively reduce conflict by (a) designing out conflict where possible in the development of policies and systems, and (b) responding to residual and emergent conflict through organisational processes. The approach proposed in this paper is a so-called subcultural approach, where security policies are designed to be culturally sympathetic. Where normative conflicts either cannot be avoided or emerge later, the organisational processes are used to engage with subcultures to encourage communally-mediated control

    A STATE OF THE ART SURVEY ON POLYMORPHIC MALWARE ANALYSIS AND DETECTION TECHNIQUES

    Get PDF
    Nowadays, systems are under serious security threats caused by malicious software, commonly known as malware. Such malwares are sophisticatedly created with advanced techniques that make them hard to analyse and detect, thus causing a lot of damages. Polymorphism is one of the advanced techniques by which malware change their identity on each time they attack. This paper presents a detailed systematic and critical review that explores the available literature, and outlines the research efforts that have been made in relation to polymorphic malware analysis and their detection

    The Multiple Facets of Software Diversity: Recent Developments in Year 2000 and Beyond

    Get PDF
    Early experiments with software diversity in the mid 1970's investigated N-version programming and recovery blocks to increase the reliability of embedded systems. Four decades later, the literature about software diversity has expanded in multiple directions: goals (fault-tolerance, security, software engineering); means (managed or automated diversity) and analytical studies (quantification of diversity and its impact). Our paper contributes to the field of software diversity as the first paper that adopts an inclusive vision of the area, with an emphasis on the most recent advances in the field. This survey includes classical work about design and data diversity for fault tolerance, as well as the cybersecurity literature that investigates randomization at different system levels. It broadens this standard scope of diversity, to include the study and exploitation of natural diversity and the management of diverse software products. Our survey includes the most recent works, with an emphasis from 2000 to present. The targeted audience is researchers and practitioners in one of the surveyed fields, who miss the big picture of software diversity. Assembling the multiple facets of this fascinating topic sheds a new light on the field
    • …
    corecore