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ABSTRACT

Towards Effective Masquerade Attack Detection

Malek Ben Salem

Data theft has been the main goal of the cybercrime community for many years, and

more and more so as the cybercrime community gets more motivated by financial gain

establishing a thriving underground economy. Masquerade attacks are a common security

problem that is a consequence of identity theft and that is generally motivated by data theft.

Such attacks are characterized by a system user illegitimately posing as another legitimate

user.

Prevention-focused solutions such as access control solutions and Data Loss Prevention

tools have failed in preventing these attacks, making detection not a mere desideratum, but

rather a necessity. Detecting masqueraders, however, is very hard. Prior work has focused

on user command modeling to identify abnormal behavior indicative of impersonation.

These approaches suffered from high miss and false positive rates. None of these approaches

could be packaged into an easily-deployable, privacy-preserving, and effective masquerade

attack detector.

In this thesis, I present a machine learning-based technique using a set of novel features

that aim to reveal user intent. I hypothesize that each individual user knows his or her own

file system well enough to search in a limited, targeted, and unique fashion in order to find

information germane to their current task. Masqueraders, on the other hand, are not likely

to know the file system and layout of another user’s desktop, and would likely search more

extensively and broadly in a manner that is different from that of the victim user being

impersonated. Based on this assumption, I model a user’s search behavior and monitor

deviations from it that could indicate fraudulent behavior. I identify user search events

using a taxonomy of Windows applications, DLLs, and user commands. The taxonomy

abstracts the user commands and actions and enriches them with contextual information.



Experimental results show that modeling search behavior reliably detects all simulated

masquerade activity with a very low false positive rate of 1.12%, far better than any previ-

ously published results. The limited set of features used for search behavior modeling also

results in considerable performance gains over the same modeling techniques that use larger

sets of features, both during sensor training and deployment.

While an anomaly- or profiling-based detection approach, such as the one used in the

user search profiling sensor, has the advantage of detecting unknown attacks and fraudulent

masquerade behaviors, it suffers from a relatively high number of false positives and remains

potentially vulnerable to mimicry attacks. To further improve the accuracy of the user

search profiling approach, I supplement it with a trap-based detection approach. I monitor

user actions directed at decoy documents embedded in the user’s local file system. The

decoy documents, which contain enticing information to the attacker, are known to the

legitimate user of the system, and therefore should not be touched by him or her. Access

to these decoy files, therefore, should highly suggest the presence of a masquerader. A

decoy document access sensor detects any action that requires loading the decoy document

into memory such as reading the document, copying it, or zipping it. I conducted human

subject studies to investigate the deployment-related properties of decoy documents and to

determine how decoys should be strategically deployed in a file system in order to maximize

their masquerade detection ability. Our user study results show that effective deployment

of decoys allows for the detection of all masquerade activity within ten minutes of its onset

at most.

I use the decoy access sensor as an oracle for the user search profiling sensor. If abnormal

search behavior is detected, I hypothesize that suspicious activity is taking place and validate

the hypothesis by checking for accesses to decoy documents. Combining the two sensors

and detection techniques reduces the false positive rate to 0.77%, and hardens the sensor

against mimicry attacks. The overall sensor has very limited resource requirements (40 KB)

and does not introduce any noticeable delay to the user when performing its monitoring

actions.

Finally, I seek to expand the search behavior profiling technique to detect, not only

malicious masqueraders, but any other system users. I propose a diversified and personalized



user behavior profiling approach to improve the accuracy of user behavior models. The

ultimate goal is to augment existing computer security features such as passwords with user

behavior models, as behavior information is not readily available to be stolen and its use

could substantially raise the bar for malefactors seeking to perpetrate masquerade attacks.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

According to the 2010 e-crime watch survey [CERT, 2010]1 conducted by the Computer

Emergency Response Team (CERT), 35% of the 523 security executives and law enforcement

officials surveyed experienced unauthorized access and use of their information, systems, and

networks. This type of intrusions, known as a masquerade attacks, was second in the top

five list of electronic crimes perpetrated by outsiders after virus, worms and other malicious

code attacks. Knowing that the authors of the survey report defined an outsider as ‘someone

who has never had authorized access to an organization’s systems or networks’, we know

that the 35% number is just an underestimation of the scale of masquerade attacks, as these

types of attacks may be performed by former employees, service providers, or contractors.

Also, according to the same survey, 31% of insiders who commited electronic crimes used

password crackers or sniffers, 39% compromised an account, while only 35% used their own

account to commit the electronic crime. These numbers are validated by Richardson in the

2008 CSI Computer Crime & Security Survey [Richardson, 2008] and by Randazzo et al. in

their insider threat study of illicit cyber activity in the banking and finance sector [Randazzo

et al., 2005]1. The authors concluded that the most important driver for such attacks is

financial gain.

Masquerade attacks can occur in several different ways. In general terms, a masquerader

1Note that it is very difficult to get representative data from such surveys due to the limited number of

responses. Note also that many cybercrimes go unreported, and that affected organizations usually choose

not to report them due to the expected negative impact on their reputation and image.
1
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may get access to a legitimate user’s account either by stealing a victim’s credentials through

password sniffing and cracking tools, or through a break-in and installation of a rootkit or

keylogger. In either case, the user’s identity is illegitimately acquired. Another case is

obtaining the credentials through a social engineering attack, or by taking advantage of a

user’s misplaced trust when he or she leaves his or her terminal open and logged in allowing

any nearby co-worker to pose as a masquerader. In the first two cases, the identity thief

must log in with the victim’s credentials and begin issuing commands within the bounds of

one user session, while in the latter the masquerader’s activity could take place at any time

within the user session. Victims range from ordinary individuals to regular employees and

senior company executives, who are the subjects of highly-targeted attacks.

Symantec’s 2010 Internet security threat report highlighted that targeted attacks di-

rected at large enterprises and governmental organizations, as well as small businesses

(SMBs), and individuals, are evolving to be a leading cause of data breaches. The report

indicated that data breaches caused by outsiders ‘resulted in an average of over 260,000

identities exposed per breach, far more than any other cause’. An example of such tar-

geted attacks is Hydraq, the malware that attempts to steal intellectual property from large

corporations [Symantec, 2010]. The 2010 e-crime watch survey [CERT, 2010] also reports

that 22% of the respondents experienced Intellectual Property (IP) theft, and 20% reported

Personally Identifiable Information (PII) theft, showing the extent of data theft attacks.

Traditional perimeter security technologies such as access controls had little effect in pre-

venting masquerade attacks. Passwords can be easily sniffed or cracked by the numerous

password crackers readily available through the web such as L0phtcrack. Biometric solu-

tions, whether using fingerprint, iris, or face recognition, can all be easily defeated [Lane

and Lordan, 2005].

Data Loss Prevention (DLP) tools [Verdasys, 2011; Vontu, 2009; Edge, 2011], which

were designed to prevent data theft as their name suggests, are not effective in preventing

information leakage, which constitutes the objective of most masquerade attacks. Such tools

typically focus on detecting exfiltration rather than all information (mis-)use. Furthermore,

in order for these tools to work, the organization using them has to locate the data that

has to be protected. The 2010 Verizon Data Breach Investigations Report [Baker et al.,
2
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2010] shows that 90% of the data breaches involved data that the organization did not know

existed on the compromised asset.

Moreover, DLP tools work through simple rules defined by the user. Discovered data

that matches these rules are tagged as confidential. So, these tools are effective only when

the defined rules are accurate and comprehensive. For many types of sensitive data, it is

difficult to define such rules. For example, while it may be easy to implement rules that

discover data containing credit card or social security numbers, it is difficult to capture

information that contains intellectual property using a few simple rules.

The failure of such systems in preventing masquerade attacks attempting to steal in-

formation calls for the use of monitoring, detection, and mitigation technologies in order

to counter masquerade attacks motivated by data theft. According to Verizon’s 2010 Data

Breach report, 70% of data breaches were caused by external agents, i.e. outsiders to the

victim organization. One interesting finding of this report is that discovering the breach

took months in 63% of cases, with 61% of the breaches discovered by a third party. Another

surprising fact is that 85% of the data theft incidents were not the result of highly-difficult

attacks. This further demonstrates the lack of detection mechanisms within the compro-

mised organizations and the need to deploy more monitoring and detection systems. The

report also indicates that most of data breaches result from default, stolen, or weak creden-

tials. Therefore, some mechanisms are needed for distinguishing the legitimate user actions

from actions performed by masqueraders once the user is logged in, and for detecting rel-

atively simple attacks with very low latency, so that the incurred costs to victims can be

limited.

A major consequence of masquerade attacks that are motivated by data theft is Identity

(ID) fraud. The Forbes magazine [Greenberg, 2010] reported that in 2009 alone, 11.2 million

consumers were affected by fraud incidents in USA alone, causing $54 billion in ID fraud

costs.

In this thesis, I propose a sensor that detects masquerade attacks where stealing data is

the objective. The sensor, which is designed for deployment on personal computers, is highly

efficient and effective, and is able to detect such attacks with very low latency, allowing the

victim to react promptly to the attack, by potentially preventing the data theft, limiting its
3
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scope, quickly tracing the source of the attack, and potentially identifying the malefactor

potentially.

When monitoring systems to mitigate these attacks, one can collect audit data at the

host level, the network level, or both. As the observables at the network level are more

distant from the individual user, attributing a network-level event to a specific user is hard.

This suggests the need for host-based monitoring.

Unfortunately, many of the state-of-the-art defenses against masquerade attacks operate

at the network-layer [GraniteEdge Enterprise Security Platform, 2011; Appliance, 2011;

Lancope, 2011], and therefore severely suffer from the difficulty of attribution of malicious

activity and difficulty to collect evidence that could be used against the attacker. Detectors

that operate at the host level focus on forensics analysis and attribution after an attack has

occurred using techniques such as sophisticated auditing [Verdasys, 2011; PacketMotion,

2011; Oakley, 2011]. They suffer from a high operational cost caused by the amount of

logging needed and from the upfront costs incurred before deployment. As a matter of

fact, these detectors require an extensive amount of expert knowledge in order to specify

the rules and policies to be checked by the detector. An effective light-weight masquerade

attack detector needs to use anomaly detection as a detection mechanism instead.

1.1 Definitions

Before presenting the hypothesis and the threat model taken in this work, I need to define

some key terms:

• A masquerader is an attacker who succeeds in obtaining a legitimate user’s identity

and impersonates another user for illegitimate purposes. Credit card fraudsters are

perhaps the best example of masqueraders. Once a bank customer’s commercial

identity is stolen (e.g. his or her credit card or account information), a masquerader

presents those credentials for the malicious purpose of using the victim’s credit line

to steal money.

• A masquerade attack is a class of attacks, in which a user of a system illegitimately

poses as, or assumes the identity of another legitimate user. Masquerade attacks are
4
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extremely serious, especially when sensitive information gets stolen that can ruin the

reputation of an enterprise or make it lose its intellectual advantage over competitors.

• A traitor is an insider, i.e. a legitimate user within an organization, who has been

granted access to systems and information resources, but whose actions are counter to

policy, and whose goal is to negatively affect confidentiality, integrity, or availability

of some information asset or system [Maybury et al., 2005]. The traitor uses his or

her legitimate credentials when perpetrating his or her malicious actions

Note that a disgruntled insider employee may act as a traitor and a masquerader after

stealing the identity of a coworker.

1.2 Objectives

My goal in this work is therefore to design and develop a light-weight, privacy-preserving,

host-based anomaly detector, that effectively detects masquerade attacks and collects re-

lated evidence at a low operational cost. Here, I establish a set of objectives that the

masquerade attack detector has to meet in order to enable effective masquerade detection

and detector deployment:

1. Achieve high accuracy: Intrusion Detection Systems (IDS) sensors are typically

tuned to minimize false alerts by being less stringent about what is considered mali-

cious. However, it is extremely important for the masquerade attack sensor to detect

all masquerade attacks. When prevention is not possible, detection becomes impor-

tant, so that vulnerabilities in the system can be remedied, and potential extra steps

can be performed in order to limit the information leakage. It is also desirable to limit

the number of false positives in order to lower the level of annoyance to the legitimate

user.

2. Have low operational costs: A key criteria for any IDS sensor is its operational

cost [Lee et al., 2002]. The sensor should have a low runtime overhead during training,

and especially during detection. Moreover, the sensor should have a small footprint
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and low storage requirements for saving audit data and evidence of masquerade at-

tacks.

3. Detect the onset of a masquerade attack: Most data theft attacks get detected

after the attack has been completed by third parties or by reviewing the logs. Not

only do I aim to perform online detection of these attacks, my goal is also to detect

the onset of the attack, i.e. detect the attack at its very early stages, with very low

latency, only minutes after its beginning.

4. Support user privacy: Anomaly detectors aiming at detecting masquerade attacks

cannot rely on modeling program behavior [Forrest et al., 1996]. Instead, they have to

model user behavior. Privacy, then, emerges as an issue, which has to be addressed.

A sensor that monitors user’s actions and violates user privacy would probably not

be widely adopted. A masquerade attack detector has to be able to build and apply

user models without sharing any data collected about the user. This can be achieved

through one-class modeling techniques, so no data sharing is required.

5. Collect evidence: According to the 2010 e-crime watch survey [CERT, 2010], 35%

of the respondents reported that intrusions were not referred for legal action due to

lack of evidence deemed sufficient to prosecute, while 29% of them stated the inability

to identify the individual(s) committing the intrusion as the reason for not taking any

legal action. A masquerade attack detector becomes more valuable if it can collect

evidence against the attacker, and not just detect the occurrence of an attack, so that

the attack can be referred for legal action, therefore deterring other attackers from

committing the same crime.

1.3 Hypotheses

In this work, I aim to verify the following hypotheses:
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1. Profiling classes of user activities improves masquerade detection accuracy as it reflects

malicious intent through monitoring of search activities.

2. Profiling classes of user activities lowers the operational costs of the detector.

3. Combining user behavior profiling with baiting improves detection accuracy, enables

the early detection of masquerade attacks, and hardens the masquerade detector

against mimicry attacks.

1.4 Threat Model

Masqueraders impersonate legitimate users after stealing their credentials when they access

a system. When presenting the stolen credentials, the masquerader is then a legitimate

user with the same access rights as the victim user. To that extent, masquerade attacks

represent one type of insider attacks. However, masquerade attacks can be characterized

by the low amount of knowledge the attacker has about the victim’s system and policies

in place. In this work, I focus on outside masqueraders and assume that the attacker has

little knowledge about the single-user system under attack. In particular, I assume that

the attacker does not know the structure of the local file system and whether the system

is baited or not. I do not focus on whether an access by some user is authorized since

I assume that the masquerader does not attempt to escalate the privileges of the stolen

identity, rather the masquerader simply accesses whatever the victim can access.

My objective is to detect data theft attempts performed by masqueraders on single-user

systems. It can also be expanded to detect “need-to-know”policy violations perpetrated by

traitors on multi-user systems. Note that such violations may also be due to an innocent

mistake by a legitimate user.

Masquerade attacks can be characterized by the amount of knowledge a user has about

the system and policies in place as well as by the intent of the user’s actions. Figure 1.1

is a notional figure that shows the relationship between each type of attacker, his or her

knowledge about the attacked system, and the intent of his or her actions.

I assume that the adversary knows that his or her activity on the victim’s system is

monitored. In all cases, I assume that the attacker can access the assets to be protected
7
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Figure 1.1: Malicious Intent and System Knowledge for different Types of Attackers

from inside the system via trusted access or system compromise. Therefore, I do not focus

on monitoring access attempts to the system. The protected assets could range from PII

information (e.g. customer records and employee personal data), to user credentials, to IP

files, and other sensitive data (e.g. financial records) stored on the target system. I do not

address the case of traitors that have full administrator privileges and full knowledge of the

system in multi-user systems such as file servers.

1.5 Contributions

The contributions of this work include scientific contributions and technical contributions.

1.5.1 Scientific Contributions

• Classes of different user activities on information systems that can be used to accu-

rately model user behavior on these systems and to characterize fraudulent behavior,

such as masquerader behavior.

• A taxonomy of Windows applications and DLLs: The taxonomy elicits the

classes of user activities. It is used to abstract and enrich the meaning of user activities

performed on the host system. This abstraction enables the reduction of features
8
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used for user behavior profiling, and therefore a significant decrease in computational

complexity.

• A small set of search-related features used for effective masquerade attack detec-

tion: The limited number of these features reduces the amount of sampling required

to collect training data. Reducing the high-dimensional modeling space to a low-

dimensional one allows for the improvement of both accuracy and performance over

prior approaches. I shall use standard machine learning techniques to evaluate the

performance of a system composed of these features. Other work has evaluated alter-

native algorithms. My focus in this work is on the features that are modeled. The

best masquerade attack detection accuracy was achieved using a modern ML algo-

rithm, Support Vector Machines (SVMs). SVM models are easy to update, providing

an efficient deployable host monitoring system. I shall use one-class SVM (ocSVM)

models in this work.

• Real-time monitoring of user search behavior in order to detect the onset of a mas-

querader attack.

• An empirical evaluation and measurement of how effectively these classes of user

activities can be used in modeling distinctive user behavior and detecting fraudulent

behavior.

• A personalized and diversified user behavior profiling approach using the defined

classes of user activities for improved model accuracy and generalizabiliy.

• A Windows dataset [Ben-Salem, b] collected specifically to study the masquer-

ade attack detection problem: Real-world data collection poses an important

challenge in the security field. Insider and masquerader attack data collection poses

even a greater challenge. Very few organizations acknowledge such breaches because

of liability concerns and potential implications on their market value. This caused the

scarcity of real-world datasets that could be used to study insider and masquerader

attacks. Moreover, user studies conducted to collect such data lacked rigor in their de-

sign and execution. The collected dataset consists of normal user data collected from
9
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a homogeneous user group of 18 individuals as well as simulated masquerader data

from 40 different individuals. The dataset, collected on Windows XP machines, is

the first publicly available dataset for masquerade attack detection since the Schonlau

dataset [Schonlau, 2001], which is rather suitable for the study of author identification

problems, instead of masquerade attacks.

• An integrated approach for masquerade attack detection that combines user

behavior profiling with a baiting approach that makes use of highly-crafted and well-

placed decoy documents to bait attackers. The approach improves detection accuracy

over prior techniques and is less vulnerable to mimicry attacks.

• A set of best practices and recommendations related to the strategic deployment of

decoy documents on local file system for an effective detection of masquerade attacks.

• A prescription for conducting human subject studies applied to a computer

security problems: Following this prescription enables the correct design and execution

of these user studies and increases the power of the experiment and the generalizability

of its results.

1.5.2 Technical Contributions

• A host-sensor that implements the integrated detection approach and collects potential

evidence that could be used to identify the attacker. The sensor monitors a user’s

search activity and accesses to decoy documents with embedded HMAC tags when

loaded in memory. The sensor reliably detects masquerade attacks with a very low

false positive rate, a very low latency, a small minimal footprint, and low operational

costs.

1.6 Thesis Outline

The rest of this thesis is organized as follows:

• I start by reviewing prior work related to the topics addressed in this dissertation

in Chapter 2. The prior work discussed is related to user behavior profiling, the use
10
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of honeypots and trap-based techniques for intrusion detection, and the application

of diversity in the field. I also discuss work related to mimicry attacks on anomaly

detectors, and review various techniques for feature selection, software-based tamper-

resistance, and inductive multi-task learning.

• A novel user search behavior profiling technique is introduced in Chapter 3, where

I also discuss the masquerade detection accuracy and performance improvements

achieved by this profiling technique.

• In Chapter 4, I evaluate different decoy document properties. I identify and rank

the decoy properties that are most important for masquerade attack detection. I

also demonstrate that decoy documents can be effectively used for masquerade attack

detection without interference with normal user activities.

• Chapter 5 evaluates the impact of diversifying intrusion detection approaches. I ex-

perimentally demonstrate how user search behavior profiling can be combined with

monitoring accesses to decoy documents to form a very accurate masquerade detection

approach. Furthermore, I show that combining the two techniques can be used as a

defense mechanism against mimicry attacks targeting the user behavior profiling sen-

sor. In this chapter, I also present the architecture of the masquerade attack detector,

which implements the search profiling and decoy access monitoring techniques, and

measure its footprint and operational costs.

• Chapter 6 presents an approach for personalizing and diversifying user behavior mod-

els. I show that feature diversity improves the accuracy of user models and reduces

their vulnerability to mimicry attacks.

• The thesis concludes with Chapter 7, where I summarize the contributions of this

work and present directions for future work, both immediate and long-term
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Chapter 2

Related Work

In this chapter, I present the literature related to the main areas of this thesis. I start by

discussing various approaches to masquerade and insider threat detection in Section 2.1.

In Section 2.2, I review how the concept of diversity has been applied in the field of in-

formation and system security. I apply the same concept in this work by diversifying

masquerade attack detection techniques and model features for profiling user behavior. I

present various feature selection methods in Section 2.3. In Chapter 6, I apply a novel

inductive-leaning based feature selection method to select the best discriminating features

while customizing the features per user model, therefore diversifying the user models. Var-

ious inductive leaning methods are presented in Section 2.4. In Section 2.5, I present the

types of mimicry attacks against anomaly-based intrusion detection systems, and I discuss

in Chapter 5, how the masquerade attack sensor that is proposed in this dissertation can

be hardened against such attacks. Finally, I conclude the chapter with Section 2.6, by dis-

cussing tamper-resistant software techniques. I show how the masquerade attack detection

sensor is protected from shutdown and tampering by the attacker using a self-monitoring

infrastructure that is integral to the sensor.

2.1 Masquerade and Insider Attack Detection

The insider attack detection research, and particularly the masquerade attack detection

research work is primarily focused on various methods of profiling user actions and the
13
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systems they use. Much of the work reports on studies describing various audit sources

and algorithms to profile users that are tested on simulated masquerade attack data, while

distinguishing between network-level and host-level detection systems. Most of this work

is specific to masquerade attack detection, although some work is reported on trap-based

defenses aimed to the traitor detection problem using honeypots and honeytokens. An

extensive literature exists reporting on approaches that profile user behavior as a means of

detecting insider attacks, and identifying data theft in particular.

There are two main categories of user behavior profiling: (1) profiling based on biomet-

rics such as keystroke dynamics, voice, gait, and speaking rhythm or diction [Gunetti and

Picardi, 2005; Maiorana et al., 2011], and (2) profiling based on user goals in performing

computer commands, where profiling user command sequences is a dominant approach. Be-

havioral biometrics-based profiling approaches have limitations when dealing with changes

in keystroke behavior, for instance, due to a broken arm or hand for example. Similarly,

the user may exhibit different keystroke dynamics in different environments, such as when

using a laptop at a desk or on his or her lap. Other behavioral biometric techniques face

similar challenges.

The user behavior modeling approach presented in this work considers the means of

estimating or inferring the intent of a series of user commands and profiling the users

behavior on that basis and falls within the second category. In this section, I present user

profiling approaches that fall under the same category 1. .

2.1.1 Host-based User Profiling

One approach reported in the literature is to profile users by the commands they issue [Davi-

son and Hirsh, 1998]. In the general case of computer user profiling, the entire audit source

can include information from a variety of sources:

• Command line calls issued by users

• System call monitoring for unusual application use and events

• Database and file access monitoring

1A thorough survey of this work was published in [Ben-Salem et al., 2008].
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• Organization policy management rules and compliance logs

The type of analysis used is primarily the modeling of statistical features, such as the

frequency of events, the duration of events, the co-occurrence of multiple events combined

through logical operators, and the sequence or transition of events. However, most of

this work failed to reveal or clarify the user’s intent when issuing commands. The focus

is primarily on accurately detecting change or unusual command sequences. I begin by

presenting the work whose primary focus is command sequence modeling, which can be

classified as either two-class or one-class modeling techniques.

Two-Class Modeling of Unix Shell Commands: Ju and Vardi proposed a hybrid

high-order Markov chain model [Ju and Vardi, 2001] . A Markov chain is a discrete-time

stochastic process. The authors aimed at identifying a ‘signature behavior’ for a particular

user, based on the command sequences that the user executed. In order to overcome the

high-dimensionality that is inherent in high-order Markov chains, they used a ‘mixture

transition distribution’ (MTD) approach to model the transition probabilities from one

command to another. When the test data contains many commands unobserved in the

training data, a Markov model is not usable. Here, a simple independence model with

probabilities estimated from a contingency table of users versus commands may be more

appropriate. The authors used a method that automatically toggled between a Markov

model and an independence model generated from a multinomial random distribution as

needed, depending on whether the test data was ‘usual’ (i.e. previously seen commands),

or ‘unusual’ (i.e. Never-Before-Seen Commands or NBSCs).

Schonlau et al. applied six masquerade detection methods to a dataset of ‘truncated’

UNIX shell commands for 70 users [Schonlau et al., 2001] collected using the UNIX acct

auditing mechanism. Each user had 15,000 commands collected over a period of time

ranging between a few days and several months. 50 users were randomly chosen to serve as

intrusion targets. The other 20 users were used as simulated masqueraders. The first 5000

commands for each of the 50 users were left intact or clean, the next 10,000 commands were

randomly injected with 100-command blocks issued by the 20 masquerade users. When

commands are grouped into blocks of 100 commands each, the block is either ‘clean’, or

‘dirty’ (i.e. all 100 commands were originated by a masquerader) [Schonlau, 2001]. The
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complete dataset and more information about it can be found at http://www.schonlau.

net. The objective of their experiments was to accurately detect the ‘dirty’ blocks and

classify them as masquerader blocks. This dataset was widely used by several authors that

investigated different detection methods and has served as the standard benchmark dataset

for this line of research. It is important to note that this dataset does not constitute ground

truth masquerade data, but rather simulates impersonation.

One detection method explored by Schonlau, called ‘uniqueness’ relies on the fact that

half of the commands in the training data are unique (i.e used by one user only), and many

more are unpopular amongst the users (i.e. used only by a few users). The second method

investigated was the Bayes one-step Markov approach. It was based on one-step transitions

from one command to the next. The approach, originally proposed by DuMouchel [Du-

mouchel, 1999], uses a Bayes factor statistic to test the null hypothesis that the observed

one-step command transition probabilities were consistent with the historical transition

matrix. The two hypotheses modeled were the null hypothesis, which assumed that the

observed transitions probabilities stem from the historical transition matrix, and the alter-

native hypothesis which assumed that they were generated from a Dirichlet distribution.

Schonlau et al. also applied a hybrid multi-step Markov method similar to the one intro-

duced by Ju and Vardi [Ju and Vardi, 2001], and a fourth method, called the ‘compression’

method. The latter was based on the premise that test data appended to historical training

data compressed more readily when the test data stemmed from the very same user rather

than from a masquerader. They applied the method to the Schonlau dataset using the

UNIX tool ‘compress’ which implements a modified version of the Lempel-Ziv algorithm.

IPAM (Incremental Probabilistic Action Modeling), was another method applied to the

same dataset. The method is based on one-step command transition probabilities estimated

from the training data, and was first introduced by Davidson and Hirsch to build an adaptive

command line interface [Davison and Hirsh, 1998; Davison and Hirsh, 1997]. The transition

probabilities were continuously updated following an exponential decay scheme with the

arrival of a new command.

Lane and Brodley proposed a sequence-match approach, where upon the arrival of each

new command, a similarity measure between the most 10 recent commands and a user’s
16
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profile is computed [Lane and Brodley, 1997]. A user’s profile consists of all 10-command

sequences that the user has issued in the past. For the Schonlau dataset, the initial user

profiles are therefore made up of 4991 command sequences. The number of matches in a

command-by-command comparison of two command sequences constitutes the similarity

measure. The matches are weighted and adjacent matches are assigned a higher weight.

With each new command, the test sequence of the last 10 commands is therefore scored

against all 4991 command sequences available in the user’s profile. The maximum of all

scores computed is then assigned to the test command sequence. As these scores are noisy,

and since the masquerade data in the Schonlau data comes in blocks of 100 commands, the

last 100 scores are averaged out. The average score is compared to a threshold that varies

by user model. If the score is lower than the threshold, the 100-command block is classified

as a masquerade block.

Maxion and Townsend applied a näıve Bayes classifier, which had been widely used in

text classification tasks, to the same dataset [Maxion and Townsend, 2002]. They provided

a thorough and detailed investigation of classification errors of the classifier in a separate

paper [Maxion and Townsend, 2004], highlighting why some masquerade victims were more

vulnerable than others, and why some masqueraders were more successful than others.

Killourhy and Maxion also investigated a shortcoming of the näıve Bayes classifier when

dealing with NBSCs [Killourhy and Maxion, 2008].

Seo and Cha experimented with combinations of sequence-based SVM kernels including

the K-gram kernel and the string kernel with some success. They managed to increase the

classification accuracy compared to the widely used RBF kernel with relatively high false

positive rates [Seo and Cha, 2007].

Table 2.1 presents the estimated accuracy of the two-class based modeling methods

which are all based on a supervised training methodology whereby data is labeled as ‘self’

or ‘non-self’ (with True Positive rates displayed rather than True Negatives). Performance

is shown to range from 1.3% - 10.4% False Positive rates, with a False Negative rate ranging

from 2.6% to 73.2% (alternatively, True Positive rates from 26.8% to 97.4%). Clearly, these

results are far from ideal.
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The Schonlau data used is a mixture of command sequences from different users. The

classifiers produced in these studies essentially identify a specific user from a set of known

users who provided training data. Furthermore, mixing data from multiple users to train

classifiers to detect masqueraders is complicated and fraught with problems. Besides poten-

tial privacy threats, requiring the mixture of data from multiple users requires substantial

retraining of classifiers as users join and leave an organization.

One-Class Modeling of Unix Shell Commands: In a real-world setting, it is prob-

ably more appropriate to use a one-class based anomaly detection training approach. Wang

and Stolfo experimented with one-class based training methods using a näıve Bayes classi-

fier and a Support Vector Machine (SVM) model of user commands to detect masqueraders

[Wang and Stolfo, 2003]. The authors also investigated SVMs using binary features and

frequency-based features. The one-class SVM algorithm using binary features performed

best among four one-class training algorithms. It also performed better than most of the

two-class algorithms listed in Table 2.1, except the two-class multinomial näıve Bayes al-

gorithm with updating. In summary, Wang and Stolfo’s experiment confirmed that, for

masquerade attack detection, one-class training is as effective as two-class training.

Szymanski and Zhang proposed recursively mining the sequence of commands by finding

frequent patterns, encoding them with unique symbols, and rewriting the sequence using

this new coding [Szymanski and Zhang, 2004]. A signature was then generated for each user

using the first 5000 user commands. The process stopped when no new dominant patterns

in the transformed input could be discovered. They used a one-class SVM classifier for

masquerade detection. The authors used an individual intrusion detection approach with

4 features (the number of dominant patterns in levels 1 and 2, and the number of distinct

dominant patterns in levels 1 and 2), as well as a ‘communal’ intrusion detection approach,

where they added new features, such as the number of users sharing each dominant pattern

in a block. Again, the latter approach demands mixing user data and may not be ideal or

easily implemented in a real-world setting.

Dash et al. developed user profiles from command sequences [Dash et al., 2005]. Thir-

teen temporal features were used to check the consistency of patterns of commands within a

given temporal sequence. Probabilities were calculated for movements of commands within
18
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Table 2.1: Summary of Accuracy Performance of Two-Class Anomaly Detectors Using the

Schonlau Dataset

Method True Pos. (%) False Pos. (%)

Uniqueness 39.4 1.4

[Schonlau et al., 2001]

Bayes one-step Markov 69.3 6.7

[Schonlau et al., 2001]

Hybrid multi-step Markov 49.3 3.2

[Schonlau et al., 2001]

Compression 34.2 5.0

[Schonlau et al., 2001]

IPAM 41.1 2.7

[Davison and Hirsh, 1998]

[Davison and Hirsh, 1997; Schonlau et al., 2001]

Sequence Match 26.8 3.7

[Lane and Brodley, 1997; Schonlau et al., 2001]

Näıve Bayes (with updating) 61.5 1.3

[Maxion and Townsend, 2002]

Näıve Bayes (without updating) 66.2 4.6

[Maxion and Townsend, 2002]

SVM with K-gram kernel 89.6 10.4

[Seo and Cha, 2007]

SVM with string kernel 97.4 2.6

[Seo and Cha, 2007]

a sequence in a predefined reordering between commands. The authors achieved a detection

rate of 76%, but did not report a false positive rate.

Coull et al. [Coull et al., 2001] modified the Smith-Waterman local alignment algorithm

and developed the semi-global alignment method, which uses a scoring system that rewards

the alignment of commands in a test segment. The bioinformatics-inspired method, how-
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ever, does not necessarily penalize the misalignment of large portions of the signature of the

user. The authors enhanced it and presented a sequence alignment method using a binary

scoring and a signature updating scheme to cope with concept drift [Coull and Szymanski,

2008]. The computational complexity of the sequence alignment algorithm is O(m ∗ n)

where where m is the length of the sequence of audit data gathered from the normal user

and n is the length of the test sequence.

Yung chose experiment with a probabilistic method, called the self-consistent näıve

Bayes classifier [Yung, 2004]. The method is a combination of the näıve Bayes classifier and

the Expectation-Maximization (EM) algorithm. The new classifier is not forced to make

a binary decision for each new block of commands, i.e. a decision whether the block is

a masquerade block or not. Rather, it assigns a score that indicates the probability of a

masquerader block. Moreover, it can change scores of earlier blocks as well as later blocks

of commands.

Oka et al. attempted to capture the dynamic behavior of a user that appears in a

command sequence by correlating not only connected events, but also events that are not

adjacent to each other while appearing within a certain distance (non-connected events).

They developed the layered networks approach based on the Eigen Co-occurrence Matrix

(ECM) [Oka et al., 2004b; Oka et al., 2004a]. The ECM method extracts the causal relation-

ships embedded in sequences of commands, where a co-occurrence means the relationship

between every two commands within an interval of sequences of data. This type of rela-

tionship cannot be represented by frequency histograms nor through n-grams. While this

method provided relatively good accuracy results compared to all other one-class model-

ing techniques, it is computationally intensive. It takes 22.15 seconds to classify a single

command sequence as normal or anomalous.

The disadvantage of the last three methods lies in their lack of scalability due to their

high computational cost. The size of the user profile grows linearly in the former two

and exponentially in the latter with each command used by the user for the first time.

Model training and update time as well as command sequence test time grows accordingly.

Furthermore, such approaches would be even harder to apply in an operational environment,

particularly when using other operating systems such as Windows, where the number of
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unique applications, processes, and user actions is orders of magnitude higher than the

number of commands in Unix.

The detection results achieved by the one-class modeling techniques using the Schonlau

dataset are summarized in Table 2.2.

Table 2.2: Summary of Accuracy Performance of One-Class Anomaly Detectors Using the

Schonlau Dataset

Method True Pos. (%) False Pos. (%)

Recursive Data Mining 63 7

[Szymanski and Zhang, 2004]

one-class SVM using binary features 72.7 6.3

[Wang and Stolfo, 2003; Ben-Salem and Stolfo, 2010]

Semi-Global Alignment 75.8 7.7

[Coull et al., 2001]

Sequence Alignment (with Updating) 68.6 1.9

[Coull and Szymanski, 2008]

Eigen Co-occurrence Matrix 72.3 2.5

[Oka et al., 2004b; Oka et al., 2004a]

Näıve Bayes + EM 75.0 1.3

[Yung, 2004]

Other Modeling Techniques and Analyses of Unix Shell Commands: Tan and

Maxion investigated which detector window size would enable the best detection results [Tan

and Maxion, 2001]. They uncovered that the best detector window size was dependent on

the size of the minimal foreign sequence in test data, which is not determinable a priori. A

foreign sequence is one that is not contained in the alphabet set of the training data, but

each of its individual symbols is. A minimal foreign sequence is a foreign sequence that

contains within it no smaller foreign sequences.

It was shown that the Schonlau dataset was not appropriate for the masquerade detec-

tion task. Maxion listed several reasons [Maxion and Townsend, 2004]. First, the data was

gathered over varied periods for different users (from several days to several months), and
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the number of login sessions varied by user. Second, the source of data is not clear. One

does not know whether the users perform the same jobs or are widely spread across different

job functions. Moreover, in acct, the audit mechanism used to collect the data, commands

are not logged in the order in which they are typed, but rather when the application ends.

Hence the methods applied that focus on strict sequence analysis may be faulty.

In order to alleviate some of the problems encountered with the Schonlau dataset, Max-

ion applied näıve Bayes classifier to the Greenberg dataset, a user command dataset enriched

with flags and arguments [Maxion, 2003]. He compared the performance of the classifier

on the Greenberg dataset by using enriched commands and truncated commands. The hit

rate achieved using the enriched command data was more than 15% higher than with the

truncated data. However, the false positive rate was approximately 21% higher as well.

Nevertheless, when plotting the ROC curves for both datasets, the one for enriched data

runs above the ROC curve for truncated data, showing that a better detection performance

can be achieved using the user commands enriched with flags and arguments.

As noted, several types of attributes and statistical features can be used for modeling

a user’s actions. Ye et al. studied the attributes of data for intrusion detection [Ye et al.,

2001]. The attributes studied included the occurrence of individual events (audit events,

system calls, user commands), the frequency of individual events (e.g. number of consecutive

password failures), the duration of individual events (CPU time of a command, duration of a

connection), and combinations of events, as well as the frequency histograms or distributions

of multiple events, and the sequence or transition of events. The goal was to find out whether

the frequency property was sufficient for masquerader detection, and if so whether there

was a single event, at a given time, that is sufficient for detecting a masquerader. Five

probabilistic techniques were investigated on system call data: a decision tree, Hotelling’s

T 2 test, the chi-square test, the multivariate test, and the Markov chain. The dataset used

was made up of 250 auditable security-relevant events collected by the Solaris Basic Security

Module (BSM) and 15 simulated intrusions on the background of normal activities. The

investigation confirmed the importance of both the frequency property, and the ordering

property of events.

User Behavior and Program Profiling by Monitoring System Call Activity:
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Nguyen et al. investigated whether monitoring system call activity is effective in detect-

ing insider threats [Nguyen et al., 2003]. Their results showed that profiling program system

call activity could be effective in detecting buffer overflow attacks. They also showed that

user file access patterns varied from day to day, and hypothesized that such patterns would

not be effective in insider threat detection. The authors did not evaluate their hypothesis.

Counter to their conjecture, I show that file access volume can be used, in conjunction with

file system search-related features, in building accurate and masquerade classifiers.

User Profiling in Windows Environments: Less research work has been applied

to Windows environments compared to work done for the Unix environment. Much of the

difference lies in the auditing methods available on each platform. Linux apparently has

cleaner auditing mechanisms (acct, BSM, etc.), whereas Windows has a plethora of system

actions that can be captured by various monitoring subsystems.

Shavlik et al. presented a prototype anomaly detection system that created statistical

profiles of users running Windows 2000 [Shavlik and Shavlik, 2004]. Their algorithm mea-

sured more than two-hundred Windows 2000 properties every second, and created about

1500 features from the measurements. The system assigned weights to the 1500 features in

order to accurately characterize the particular behavior of each user. Every user, therefore,

is assigned his or her own set of feature weights as his or her unique signature. Following

training, each second all of the features ‘vote’ as to whether an intrusion has occurred. The

weighted votes ‘for’ and ‘against’ an intrusion were compared, and if there were enough

evidence, an alarm would be raised.

Li and Manikopoulos explored modeling user profiles trained with SVMs using audit

data from a Windows environment gathered over a year [Ling and Manikopoulos, 2004].

They modeled the sequence of windows and processes over time in a manner similar to

what a process sensor would see. They simulated attack data by mixing data between

legitimate user sessions, and reported some success at modeling the user profiles. Their

approach suffered from high false positive rates though.

In most of the approaches surveyed above, either user command data or system calls

data were used. User command data fail to capture window behavior and do not include

commands executed inside a script, whereas system call data are not particularly human-
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readable, nor easily attributed to direct user action. On the other hand, process table data

includes window behavior and anything running in a script, and can easily be interpreted

when read by a human. Moreover, window tracing provides information at a level of gran-

ularity somewhere between the levels of a command line and a system call, while most of

the system noise can be filtered out (a formidable challenge when tracing Windows), which

makes it a good candidate for user profiling. This lead Goldring to collect user data con-

sisting of successive window titles with process information (from the process table) for a

group of users over two years [Goldring, 2003]. The combination of data sources allowed

the use of the process tree structure to filter out system noise. However, it complicated the

feature selection task. The proposed system reduced the stream of data to a single feature

vector that consisted of a mixture of different feature types per session. A record was gen-

erated each time a new window was opened including information about the window title,

and all contents in a window title’s bar. Besides that, the window’s process and parent

process IDs were saved. The window titles’ data allowed one to distinguish between the

operating system’s programs such as Control Panel and Find Files, which would not be

distinguishable from inspecting the process table alone. Goldring reported no performance

results, but rather presented a proof-of-concept system.

2.1.2 Network-Based User Profiling

When an insider accesses information that they do not need to know, one may have good

evidence of an insider attack. A system for detecting insiders who violate need-to-know

policies, called ELICIT, was developed by Maloof and Stephens [Maloof and Stephens,

2007]. The focus of their work was on detecting activities, such as searching, browsing,

downloading, and printing, by monitoring the use of sensitive search terms, printing to a

non-local printer, anomalous browsing activity, and retrieving documents outside of one’s

social network. Five malicious insider scenarios were tested, that represented need-to-know

violations. Contextual information about the user identity, past activity, and the activity

of peers in the organization or in a social network were incorporated when building the

models. HTTP, SMB, SMTP, and FTP traffic was collected from within a corporate intranet

network for over 13 months, but no inbound or outbound traffic was gathered. In order to
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identify the information deemed outside the scope of an insider’s duties, a social network was

computed for each insider based on the people in their department, whom they e-mailed,

and with whom they worked on projects. A Bayesian network for ranking the insider threats

was developed using 76 detectors. Subject matter experts defined the thresholds for these

detectors, at which an alarm gets set. A single threat score was computed for each user

based on the alerts from these detectors.

Caputo et al. studied differences in user behavior when gathering information for ma-

licious vs. benign purposes [Caputo et al., 2009a]. They conducted experiments in a com-

mercial setting with 50 human subject study participants, and found that malicious users

broke their information gathering activities into more separate sessions than the benign

users, and downloaded large amounts of data indiscriminately.

Identifying specific users from observable network events consumed considerable effort.

Event attribution proved to be a major challenge: 83% of events initially had no attribution,

and 28.6% of them remained un-attributed, even after the use of two off-line methods to

determine the originator of a particular event. The evaluation of the system used scenarios

that were executed over a short period of time, less than one day. However, attacks by

insiders who violate need-to-know policy usually occur over days, months, and even decades,

such as in the case of Robert Hanssen. Therefore, it is important to evaluate the ELICIT

system using other scenarios that occur over longer periods of time.

2.1.3 Honeypots and Deception Techniques

Honeypots are information system resources that are designed to attract malicious users.

Honeypots have been widely deployed in De-Militarized Zones (DMZs) to trap attempts to

penetrate an organization’s network carried out by external attackers. Their typical use is

for early warning and slowing down or stopping automated attacks from external sources,

and for capturing new exploits and gathering information on new threats emerging from

outside the organization.

Spitzner presented several ways to adapt the use of honeypots to the insider attack

detection problem [Spitzner, 2003]. Since insiders probably know what information they

are after, and in many cases, where that information is to be found, and how it could be
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accessed, he recommended implanting honeytokens with perceived value in the network or

in the intranet search engine. He defined a honeytoken as ‘information that the user is not

authorized to have or information that is inappropriate’ [Spitzner, 2003]. This information

could then direct the insider to the more advanced honeypot that could be used to discern

whether the insider’s intention was malicious or not, a decision that may be determined by

inspecting the insider’s interaction with the honeypot. In order to reach such interaction

that can be used to gather information, it is important to ensure that the honeypot looks

realistic to the insider.

Decoy files, or ‘honeyfiles’, were further developed by Yuill et al. [Yuill et al., 2004;

Yuill et al., 2006]. The authors created a system that allowed users to select files from the

user space on a network file server, and change them into decoy files. Illegitimate accesses to

the honeyfiles could then be monitored by consulting a record that associated the honeyfile

with the legitimate userid.

Bowen et al. extended the notion of a decoy document system, and developed an auto-

mated system for generating decoy documents [Bowen et al., 2009b; Bowen and Hershkop,

2009]. The system generated files from different templates with various themes, including a

health-related information theme, a financial account theme, and a tax return theme. They

also proposed several decoy properties as general guidelines for the design and deployment

of decoys, such as the decoy’s conspicuousness, believability, enticingness to the adversary,

as well as the decoy’s non-interference with the the defender’s regular activities.

Cohen et al. developed a ‘framework for deception’ [Cohen et al., 2001]. In their

study of deception techniques, they identified factors affecting the nature of deceptions

and listed requirements for the success of any deception operation. They also presented a

cognitive model for higher-level deception. Although they did not conduct any experiments

or user studies, they recommended evaluating the effectiveness of deception techniques

against systems combining both people and computers.

Honeypots and baiting techniques suffer from certain shortcomings. First, the attacker

may not ever use or interact with the honeypot or honeytoken, especially if their identity is

known to or discovered by the insider. Moreover, if an attacker discovers the honeypot or

the bait, he or she can possibly inject bogus or false information to complicate detection.
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2.1.4 Integrated Approaches

Among the first integrated systems was the one presented by Maybury et al. [Maybury et

al., 2005]. The integrated system used honeypots, network-level sensors for traffic profiling

to monitor scanning, downloads, and inside connections, and ‘Structured Analysis’, a real-

time and top-down structural analysis tool using the models of insiders and pre-attack

indicators to infer the malicious intent of an insider. Moreover, several data sources were

used in addition to auditing of cyber assets. Physical security logs, such as employee badge

readers, were also integrated to keep track of the location of a user. The program funding

this effort apparently ended prematurely. Insufficient test and evaluations were performed

on an approach that seemed quite promising.

2.1.5 Search Behavior Profiling

Search behavior has been recently studied in the context of web usage mining. Most litera-

ture focused on the behavior of a user after a web search engine returned a list of potentially

sponsored search results, i.e. the focus was on user behavior when browsing and retrieving

the search query results [O’Brien and Keane, 2007; Attenberg et al., 2009]. However, a few

studies investigated user behavior prior to the submission of a search query. Baeza-Yates et

al. analyzed web queries and modeled keywords, query and session lengths, as well as click

and query refinement patterns [Baeza-Yates et al., 2005]. Kamvar and Baluja noted how

the device used to submit a web search query influenced the user’s search behavior [Kamvar

and Baluja, 2006]. They showed that, when using a wireless device, users tended to have

directed search goals with specific URLs and short sessions with a few queries. However,

when using desktops, searchers engaged in undirected exploration.

2.2 Redundancy and Diversity in Security

Diversity is an approach that has been widely used in fault-tolerant and self-healing sys-

tems [Kelly, 1982; Kelly and Avizienis, 1983; Avizienis, 1995]. Kelly and Avizienis advo-

cated n-version programming and claimed that it would improve system robustness if the n

programs were mutually independent. Knight and Leveson, however, showed that design di-
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versity had a limited effect on robustness [Knight and Leveson, 1986], as developers tended

to make the same errors in their designs and code. The results of n different approaches

are thus not independent of each other, because students are trained in similar ways with

similar techniques.

Littlewood and Strigini were among the first researchers to apply the concept of diver-

sity to computer security [Littlewood and Strigini, 2004]. Motivated by the application of

models of diversity in system and process design and by the work on formal probability

modeling of reliability and safety [Mitra et al., 2002], the authors studied the roles and

limits of redundancy and diversity in intrusion detection systems. They suggested that

model diversity could be utilized to build anomaly-based IDS systems that could provide

more coverage to intrusion attacks. They argued for a formal mathematical approach to

estimating the effectiveness of both approaches and for a metric for measuring the indepen-

dence of various intrusion detection systems (IDSs) by category of attack rather than by

some average mixture of attacks.

Gashi et al. [Gashi et al., 2009] studied the actual gains in detection rates that could

be obtained through the use of diverse or different off-the-shelf anti-virus engines. They

showed that when using two anti-virus engines only, almost a third of the engine pairs

performed better than the best individual engine.

Tan and Maxion studied the anomaly space of various sequence-based anomaly detec-

tors when presented with a ‘foreign sequence’, i.e. a never-before-seen-sequence of events,

as an anomaly [Tan and Maxion, 2005]. They showed that the anomaly spaces of these

anomaly detectors are highly overlapping, which limited or prevented any potential detec-

tion accuracy gains that could be achieved by combining several anomaly detectors into one

classifier.

Bloomfield and Littlewood argued that that general diversity was not enough. They

advocated the three-legged stool approach, where each approach had to use a a very different

technique and perspective from the others [Bloomfield and Littlewood, 2003].

Despite the increasing recognition of the value of diversity of sensors in intrusion detec-

tion, no experiments have been conducted to measure the effectiveness of the use of detectors

with diverse detection techniques (e.g. behavior profiling and trap-based detection) as ad-
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vocated by Bloomfield and Littlewood[Bloomfield and Littlewood, 2003]. Furthermore, this

concept of diversity has not yet been applied to models used in anomaly detectors. I con-

jecture that diversity in user models through the selection of different features for different

users could enable modeling the unique behavior of specific users. Moreover, it could bring

additional performance gains to the sensor.

2.3 Feature Selection

There has been extensive work on feature selection approaches. Feature selection methods

can be categorized in two ways: as filter or as wrapper methods [Kohavi and John, 1997].

The former methods do not take into account the effects of the selected features on the

accuracy performance of the modeling algorithm. The latter overcome this shortcoming by

searching through the space of feature subsets while estimating the accuracy of the modeling

algorithm. This, obviously, comes with a higher computational complexity.

Guyon and Elisseeff surveyed variable and feature selection methods [Guyon and Elis-

seeff, 2003]. Due to the lack of a benchmark between the various feature selection methods,

the authors recommended the use of a linear prediction technique, such as a linear SVM,

when tackling a new problem, and then selecting features using two different methods: a

variable ranking method that uses a correlation coefficient or mutual information, and a

nested subset selection method with multiplicative updates.

Bi et al. proposed an approach for dimensionality reduction using sparse support vector

machines [Bi et al., 2003]. The approach benefits from the variable selection capability

inherent in sparse linear SVM, as well as non-linear induction. The results achieved by this

approach maintained or improved generalizability and outperformed SVMs trained with the

full set of features or the features selected by correlation ranking.

The problem of feature selection or dimensionality reduction is more challenging in an

unsupervised learning setting, as the features discarded could have a negative impact on the

accuracy of the modeling algorithm. Globerson and Tishby proposed extracting approx-

imate sufficient statistics for one variable about another from the co-occurrence matrix.

The method is used for dimensionality reduction in unsupervised learning [Globerson and
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Tishby, 2003].

Grafting is an incremental feature selection approach that operates iteratively to opti-

mize a gradient-based heuristic used to select the most likely feature to improve a model’s

accuracy. This gradient descent-based algorithm proposed by Perkins et al. works as an

integral part of the model training or learning, which makes it efficient [Perkins et al., 2003].

It scales linearly with the number of feature vectors and quadratically with the number of

features.

Torkkola presented a feature extraction method that maximizes the non-parametric esti-

mate of mutual information between features and class labels without using any simplifying

assumptions about the densities of the classes [Torkkola, 2003]. This dimensionality reduc-

tion approach falls under the feature transform methods (as opposed to feature selection

methods), and therefore is more computationally intensive. However, the author showed

that it is computationally usable with training datasets with tens of thousands of samples.

Ranking variables for feature selection can be based on different criteria. Rakotoma-

monjy presented some of these criteria using SVMs, showing that the derivative of the weight

vector criterion performed consistently well over all tested datasets [Rakotomamonjy, 2003].

Most feature selection methods are dependent on the target machine. Stoppoiglia et

al. proposed a simple variable ranking approach for feature selection that is intuitive and

independent of the target machine [Stoppiglia et al., 2003]. The filter method works using

the orthogonalization and mutual information between features. It can also be applied to

select computed kernels such as wavelets or radial basis functions.

2.4 Inductive Multi-task Learning

Jebara and Jaakola developed a Maximum Entropy Discrimination (MED) framework to

solve log-sigmoid problems, which they enhanced later to solve SVMs problems, sparse

SVMs, and multi-task SVMs [Jebara and Jaakkola, 2000]. The framework is a generalization

of support vector machines, as it returns a distribution of parameter models P (θ) rather

than a single parameter value θ, where the expected value of the discriminant under this

distribution agrees with the labeling [Jebara, 2004]. These MED solutions can be further
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augmented to represent join densities over parameters of several classifiers and feature and

kernel selection configurations, rather than parameters of a single classifier. For example, by

modifying the discriminant with a binary feature selection switch vector s = [s1, s2, ..., sD],

where si ∈ {0, 1}, i ∈ [1..D], and D is the number of features, we can learn the SVM model

while selecting the best discriminating features for the model. The framework provides an

iterative quadratic programming implementation and uses some tight bounds for improved

runtime efficiency.

Jacob and Bach investigated clustered multi-task learning using a convex formula-

tion [Jacob et al., 2004]. They showed that multi-task learning could improve classifier

accuracy when few training points are available. However, their results also showed, that

with large samples of data, the use of the multi-task learning approach would no be longer

useful.

Finally, Baxter argued that the average error of M tasks could potentially decrease

inversely with M [Baxter, 2000], while Ben-David and Schuller presented generalization

guarantees for each individual task for classifiers that are closely related and share a common

structure [Ben-david and Schuller, 2003].

2.5 Dealing with Mimicry Attacks

Tan et al. [Tan et al., 2002] identified two mechanisms for performing mimicry attacks:

1. Contaminating the learning and/or model update process by inserting attack data

into normal user data

2. Intertwining attacks with normal user activity so that the attacks go undetected. This

is also known as an evasion attack.

Wagner and Soto investigated the types of mimicry attacks against host-based intrusion

detection systems [Wagner and Soto, 2002]. They adopted the generally-accepted assump-

tion that the attacker knows how the system works and which IDS algorithm is being used,

as the system’s source code can be easily reverse-engineered. They distinguished six types

of evasion attacks, assuming that the attack consisted in feeding a malicious sequence of

commands or system calls to the IDS:
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1. The lip under the radar attack: The attacker avoids causing any change to the ob-

servable behavior of the application, i.e. they do not launch any processes that the

legitimate user would not normally run. They use already running processes only, and

at the same rate as the victim user.

2. The be patient attack: The attacker waits for the time when the malicious sequence

is accepted.

3. The be patient, but make your own luck attack: This is similar to the previous attack,

but forces the application or IDS into a specific execution path in order to speed up

the acceptance of the malicious sequence.

4. The replace system call parameters attack: As its name suggests, this attack consists

in replacing the arguments in a system call in order to achieve a malicious goal.

5. The insert no-ops attack: This attack creates variants of the malicious sequence,

which may be more likely to get accepted.

6. The generate equivalent attacks attack: The authors present a few examples of this

type of attack, such as the substitution of the read() system call with a call to mmap()

followed by a memory access. Another equivalent attack can be achieved by forking

the IDS and splitting the malicious sequence between the two IDS processes.

In this thesis, I propose diversifying user models and combining orthogonal detection

techniques to protect against evasion attacks.

2.6 Tamper-Resistant Software Techniques

A few software-based solutions for verifiable code execution and for code attestation were

proposed. Code attestation is a technique, by which a remote party, the verifier, also known

as the ‘challenger,’ can verify the authenticity of the code running on a particular host, the

‘attestor.’ It is typically implemented through a set of measurements performed on the

attesting host and sent to the verifier. The verifier then validates these measurements and

the state of the system indicated by them.
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One among the first tamper-resistant software techniques, Genuinity achieves code at-

testation through the use of a subroutine in the program that calculates the checksum of

the memory space and sends it to the “verifier [Kennell and Jamieson, 2003].” The tech-

nique assumes the existence of a virtually-paged architecture and low-level CPU counters,

making it usable in machines with high-end CPUs only. Seshadri et al. extended Genuinity,

and proposed SWATT, another SoftWare-based ATTestation technique to verify the mem-

ory contents of embedded devices [Seshadri et al., 2004]. Later, Seshadri et al. presented

Pioneer, a software-based protocol to enable verifiable code execution on untrusted legacy

systems which lack secure co-processors and virtualization support [Seshadri et al., 2005].

Although the goal of these solutions is tamper-proofing software, i.e. preventing the

unauthorized use of software, they could presumably be easily modified to detect unautho-

rized attempts to disable or shutdown the software. However, they all require the presence

of a third party which can execute code for verification, on top of their extremely high

computational cost. In this thesis, I use embedded self-monitoring monitors to protect the

proposed detection against tampering attacks.
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Chapter 3

User Search Behavior Profiling

A common approach to counter masquerade attacks is to apply machine learning (ML)

algorithms that produce classifiers, which identify suspicious behaviors that are potentially

indicative malfeasance of an impostor. Previous work has focused on auditing and modeling

sequences of user commands including work on enriching command sequences with infor-

mation about arguments of commands [Schonlau et al., 2001; Maxion and Townsend, 2002;

Wang and Stolfo, 2003].

I extend prior work on modeling user command sequences for masquerade detection,

and propose a novel approach to profile a user’s search behavior by auditing search-related

applications and accesses to index files, such as the index file of the Google Desktop Search

application. Prior techniques for masquerade attack detection, as reviewed in Chapter 2,

suffer from low accuracy and/or a high computational cost. This is somewhat expected, as

modeling user behavior in general implies a very high-dimensional feature space. In order

to improve the accuracy of the user models, one needs to identify ways for dimensionality

reduction that apply to all user models.

One possible approach, is to identify specific user behaviors that could be used to classify

user activities as legitimate or fraudulent. By focusing on these specific behaviors, or limited

aspects of user behavior, I was able to reduce the dimensionality of the feature space. Search

behavior is particularly promising to monitor.

I conjecture that a masquerader is unlikely to have the depth of knowledge of the victim’s

machine (files, locations of important directories, available applications, etc.), nor is he or
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she likely to know the victim’s search behavior when the victim uses his or her own system.

This complicates the masquerader’s task to mimic the user. Hence, a masquerader would

likely first engage in information gathering and search activities before initiating any specific

actions. On the other hand, a legitimate user will search within an environment they have

created. For example, he or she would search for a file within a specific directory. A

programmer, for instance, may search for a symbol within a specific source code file. Since

the attacker has little to no knowledge of that environment, that lack of knowledge will be

revealed by the masquerader’s abnormal search behavior.

It is this key assumption that I rely upon in order to detect a masquerader. I do not

focus on whether an access by some user is authorized since I assume that the masquerader

does not attempt to escalate the privileges of the stolen identity. Rather, the masquerader

simply accesses whatever the victim can access. My focus is rather on monitoring a user’s

behavior in real time to determine whether current user actions are consistent with the

user’s historical behavior, primarily focused on his or her unique search behavior.

While it is very difficult to gather ground truth to test my hypothesis, my experiments

aim to provide evidence that monitoring search behavior and information gathering activ-

ities makes a very useful profiling technique to identify impersonators. In this chapter, I

demonstrate that this conjecture is backed up with real user studies. I monitored eighteen

users for four days on average and collected more than 10 GBytes of computer user data,

which I analyzed and modeled. More specifically, I modeled user search behavior in Win-

dows and tested my modeling approach using a dataset collected at Columbia University,

which I claim is more suitable for evaluating masquerade attack detection methods. The

results show that indeed normal users display different search behaviors, and that search

behavior is an effective tool to detect masqueraders.

The contributions of this work include:

• A small set of search-related features used for effective masquerade attack de-

tection: The limited number of features reduces the amount of sampling required

to collect training data. Reducing the high-dimensional modeling space to a low-

dimensional one allows for the improvement of both accuracy and performance.

• A Windows dataset [Ben-Salem, b] collected specifically to study the masquer-
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ade attack detection problem as opposed to the author identification problem:

The dataset consists of normal user data collected from a homogeneous user group

of 18 individuals as well as simulated masquerader data from 40 different individuals.

The dataset is the first publicly available dataset for masquerade attack detection

since the Schonlau dataset [Schonlau, 2001].

The following section expands on the objective and the approach taken in this work. In

Section 3.2, I present the methodology followed while designing and conducting the human

subject studies to validate our modeling and detection approach. Then I describe the

dataset gathered at Columbia University to study masquerade attack detection techniques

in Section 3.3. This dataset is referred to as the RUU dataset. Section 3.4 shows how the

malicious intent of a masquerader, whose objective is to steal information, has a significant

effect on his or her search behavior. In section 3.5, I discuss experiments conducted by

modeling search behavior using the RUU dataset. Section 3.6 presents experiments using

the Schonlau dataset for completeness. Section 3.7 discusses the computational performance

of the proposed modeling and detection approach. Finally, Section 3.8 concludes the chapter

by summarizing our results and contributions, and discussing directions for future work 1.

3.1 User Profiling Approach

When dealing with the masquerader attack detection problem, it is important to remember

that the attacker has already obtained credentials to access a system. When presenting the

stolen credentials, the attacker is then a legitimate user with the same access rights as the

victim user. Ideally, monitoring a user’s actions after being granted access is required in

order to detect such attacks. Furthermore, if we can infer or estimate the user’s intent, we

may be able to predict whether the actions of a user are malicious or not more accurately.

Much of the prior work on modeling users and profiling their behavior was purely syn-

tactic, as there was no discernible means to extract the semantics of user-initiated events,

other than implicitly through a set of pre-defined rules or specifications as in the case of

1Portions of this chapter have been published in [Ben-Salem and Stolfo, 2011c] and [Ben-Salem and

Stolfo, 2011b].
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ELICIT [Maloof and Stephens, 2007]. In this work, I am focused on a specific set of com-

mands and actions issued by users that I posit tease out the user’s intent. For instance,

search should be an interesting behavior to monitor since it indicates that the user lacks in-

formation they are seeking. Although user search behavior has been studied in the context

of web usage mining [Baeza-Yates et al., 2005; O’Brien and Keane, 2007], it has not been

used in the context of intrusion detection.

I propose an approach to profile a user’s behavior, and particularly his or her search

behavior, based on a ‘taxonomy’ of Windows applications, DLLs and user commands. The

taxonomy abstracts the audit data and enriches the meaning of a user’s profile, thus re-

flecting the type of activity that the user is performing on the computer. User commands

and applications that perform similar types of actions are grouped together in one category

making profiled user actions more abstract and meaningful. Commands or user actions are

thus assigned a type or a class, and classes of user activity are modeled rather than individ-

ual user actions. I use the taxonomy to readily identify and model search behavior, which

is manifested through a variety of system-level and application-specific search functions.

In the following subsections, I present the application and command taxonomy that I

have developed for the Windows environment and the machine learning algorithm that I

use for learning user behavior and building individual user models.

3.1.1 User Command and Application Taxonomy

I abstract the set of Windows applications, Dynamic Link Libraries (DLLs), and Microsoft

Disk Operating System (MS-DOS) commands into a taxonomy of application and command

categories as presented in Figure 3.1. In particular, I am interested in identifying the specific

set of commands that reveal the user’s intent to search. Once these commands are identified,

I can extract features representing such behavior while auditing the user’s behavior.

While the focus of this work is on profiling and monitoring a user’s search behavior,

there are other behaviors that are interesting to monitor. For example, remote access

to other systems and the communication or egress of large amounts of data to remote

systems may be an indication of illegal copying or distribution of sensitive information.

Once again, the taxonomy defined allows a system to automatically audit and model a
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whole class of commands and application functions that represent the movement or copying

of data. Similarly the transfer of large amounts of data to a peripheral device such as

a USB drive or a printer is equally interesting to monitor. Another, perhaps more goal-

oriented behavior, is the development of new rootkits or installation of malware, if the

commands deal with compiling and executing files presumably containing code. One could

also monitor the case of changes made to the configuration and settings of security-related

applications such as an anti-virus engine, followed by the installation of new software. These

behaviors are all examples of user activities that could reveal the malicious intent of an

attacker. The taxonomy could be very useful in profiling and detecting such behaviors with

a low operational cost. However, in this thesis, I focus on profiling user search behavior.

Monitoring other user behaviors that could indicate fraudulent masquerade activity will be

the subject of my future work.

Figure 3.1: Taxonomy of Windows applications

The taxonomy includes 22 different categories or classes: Browsing, Communications,

Database Access, Development and Coding, Editing, File Conversion or Compression, File

System Management, Games, Application Installation, Media, Networking, Security, Soft-
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ware Management and Licensing, Web Hosting, Information Gathering, Data Mining and

Modeling, Desktop Configuration, Learning Applications, I/O Peripherals, System Man-

agement, Organization and Project Management, and Other Applications, such as mathe-

matical and scientific applications. The Information Gathering or Search category includes

commands such as find and applications such as Google Desktop Search.

Most categories were further classified into sub-categories. Each group of commands

or class of user activity is further divided into sub-classes. For example, Communications

includes E-mail, Instant Messaging, and Video Chat as subclasses. Similarly, I/O peripherals

includes Printer, Scanner, USB Drive, DVD Drive, etc., while a Networking-activity can be

a File Transfer, a Remote Desktop Access, or a Bluetooth Connection for instance. Certain

categories do not require more granularity, however, such as the Desktop Configuration or

Software Licensing category.

I use one-class support vector machines to learn user search behavior. SVMs achieved

the best accuracy results when applied to the masquerade attack detection problem. SVM

models are easy to update, providing an efficient deployable host monitoring system. Below,

I describe how one-class SVMs work.

3.1.2 One-Class Support Vector Machines

SVMs are linear classifiers used for classification and regression. They are known as maximal

margin classifiers rather than probabilistic classifiers. Schölkopf et al. proposed a way to

adapt SVMs to the one-class classification task [Schölkopf et al., 2001]. The one-class

SVM algorithm uses examples from one class only for training. Just like in multi-class

classification tasks, it maps input data into a high-dimensional feature space using a kernel

function, such as the linear, polynomial, or Radial Basis Function (RBF) kernel. The origin

is treated as the only example from another class. The algorithm then finds the hyper-

plane that provides the maximum margin separating the training data from the origin

in an iterative manner. The kernel function is defined as: k(x, y) = (Φ(x).Φ(y)),where

x, y ∈ X, X is the training dataset, and Φ is the feature mapping to a high-dimensional

space X → F . Note that SVMs are suitable for block-by-block incremental learning. As

user behavior changes and new data is acquired, updating SVM models is straightforward
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and efficient. With each incremental step, prior data may be expunged and the support

vectors computed from that data are retained and used to compute a new update model

using the new data [Vapnik, 1999]. Syed at.al [Syed et al., 1999] have shown that these

preserved support vectors represent a ‘succinct and sufficient set’ for handling concept drift.

Also the use of a one-class modeling approach means that I do not need to define a priori

what masquerader behavior looks like. I model normal user behavior only. I can preserve

the privacy of the user when building user models, as I do not need to intermix data from

multiple user for building models of normal and attacker behavior.

3.1.3 RUU Dataset

As I have noted, most prior masquerade attack detection techniques were tested using the

Schonlau dataset, where ‘intrusions’ are not really intrusions, but rather random excerpts

from other users’ shell histories. Such simulation of intrusions does not allow us to test the

conjecture that the intent of a malicious attacker will be manifested in the attacker’s search

behavior.

In order to address these shortcomings, I gathered user data and simulated masquerader

data by conducting a user study under IRB approval 2. I refer to this data as the RUU

(Are You You?) dataset. To gather this data, a host sensor that could audit user activity

and capture the data of interest was developed. In the following sections, I describe the

user studies designed to collect the RUU dataset and the host sensor used to collect it.

3.2 User Study Methodology

The first step in designing a user study is to state the hypothesis as well as the null hy-

pothesis. The user study is designed to explore the null hypothesis, and may lead to its

rejection. I designed two human subject studies. The goal of the first study is to show that

the intent of a masquerader can be manifested in his or her file system search behavior. The

experimental hypothesis states that if the intent of the masquerader is malicious, then they

2Human subject studies of insider threat and masquerade detection are approved at Columbia University

under Human Subjects protocol IRB-AAAC4240 presented in Appendix D.
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will engage in a significant search activity on the victim’s system. The null hypothesis states

that the manipulation of the masquerader’s intent does not have any significant effect on

the masquerader’s search behavior. In other words, the observed significant effect on search

activity that gets observed during the experiment can be attributed to the manipulation of

the masquerader’s intent, and cannot be the result of pure chance.

3.2.1 Experimental Variables

Stating the experimental hypotheses also requires identifying the experimental variables:

the independent variable, the dependent variable(s), and any confounding variables. The

independent variable is the one variable that gets manipulated by the researcher, while all

others are kept constant. A dependent variable is directly and tightly dependent on the

independent variable. It is an observed behavioral feature to be measured by the researcher

during the experiment.

I hypothesize that user search behavior is a behavioral feature that is impacted by

the user’s intent. If a masquerader is looking to steal information, his or her intent will

be manifested in his or her search behavior through the volume of the search activities

performed by the masquerader. The goal is to confirm this conjecture and to show that

the attacker’s search behavior is different from a normal user’s search behavior, and that

monitoring search behavior could be used for the detection of a masquerader’s attack.

So the masquerader’s intent constitutes the independent variable in our experiment,

and the search behavior of the masquerader (his or her search volume in particular) is a

dependent variable. Confounding variables are usually random variables that could affect

the observed behavioral feature, namely search, such as problems with the experimental

equipment or skill level. These variables are to be minimized or mitigated when designing

the human subject study. I discuss the approach taken to limit the effect of confounding

variables in subsections 3.2.3 and 3.2.4 .

The question then is how can the attacker’s intent be manipulated in this user study?

This is by no means a simple task. However, it can be achieved by crafting different and

detailed scenario narratives that are handed to the participants in the experiment.
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3.2.2 Scenario Narratives and Control Groups

When dealing with human experimental design for cyber-security studies, the scenario nar-

ratives should give the experiment participants detailed background information about the

attack and the attacker’s motives. This enables the participants to play the role of the

attacker described in the experiment, and assume their intent.

I developed a very specific attack scenario that described the masquerader’s motives

and the surrounding conditions of the attack. The masquerade attack scenario had to be:

• Representative of masquerade attacks, i.e. generalizable: When conducting a

cyber-security-related user study, it is very expensive to test all attack variants both in

effort and time. Testing each attack variant requires recruiting an additional number

of human subjects to participate in the experiment. Therefore, it is very important

that the scenario narrative used in the study is descriptive and representative of the

attack under study.

• Conforming to the threat model: Gathering quality data that can be effectively

used for empirically testing the experimental hypothesis requires that the scenario

narrative used in the human subject study accurately reflects the threat model.

• Easily executable in a user study: This means, for instance, that the execution

of the masquerader scenario had to be time-limited. Not specifying a time limit for

the attack adds a lot of uncontrolled variability to the experiments. Furthermore, it

makes the experiments costly both in participant’s and researcher’s time.

• Detailed: The scenario narrative should be as detailed as possible. Answers to

anticipated questions that could be posed by the participants should be included.

Giving the answers to these questions to the participants in advance reduces the needs

for asking such questions, and therefore limits the verbal communication between the

researcher and the study participant. Furthermore, it ensures that all participants

receive the same instructions, therefore minimizing the participant’s bias.

In our masquerade attack scenario, the masquerader gets an opportunity to access a

coworker’s computer during a 15-minute lunch break, while the coworker leaves the office
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and stays logged in to his or her computer. I strove to ensure that the task of the user

study participants was goal-oriented, thus revealing the malicious intent of the attacker.

One may argue that simulating a masquerade attack is not appropriate, and that it

is hard for an innocent student to act as a masquerader. I argue that, if the scenario of

the experiment is well-written, and with very clear instructions, the participants in the

experiment will follow the instructions. To this extent, the reader is referred to the very

well-known Milgram experiment, which shows how subjects generally obey an authority

figure and blindly follow instructions, even when they contradict their own values and

ethics [Milgram, 1974].

Despite Milgram’s findings, I was concerned about the use of role-playing in this ex-

periment. I wanted to ensure the validity of any experiment findings by making sure that

the study participants took the scenarios seriously enough. I followed Caputo et al.’s ap-

proach [Caputo et al., 2009a], and developed a post-study questionnaire, where I asked

participants about their experiences during the experiment. I asked them whether the sce-

nario narrative affected the way in which they performed their task. Eighty per cent of

the malicious masqueraders answered positively, and 70% indicated that they acted very

differently from their normal behavior. One participant indicated that he was extremely

nervous while searching for a colleague’s personal information. Another mentioned that she

felt the urgency to perform the task quickly before her “colleague” showed up. A third

participant indicated that he tried to hide the monitor with his body, so that no one can

see what he was doing. Many cleared the browser’s cache and/or shell command history

in order to cover their activity. These are some of the pieces of evidence showing that the

study participants took their tasks seriously.

Besides the ‘malicious attacker’ scenario, I developed a ‘benign masquerader’ scenario,

and a ‘neutral’ scenario for control purposes. All three scenarios are described below.

Malicious Scenario: The participants in this first scenario were asked to perform a

specific task, which consisted of finding any information that could be used for financial gain

from a coworker’s desktop computer. The participants had access to a coworker’s computer

for 15 minutes while he or she left out for lunch. An attacker can gain access to the

victim’s system in a different way, for instance remotely if they know the access credentials.
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Regardless of the access method, I am interested in the attacker’s behavior after they access

the victim’s computer. The scenario clearly described the financial difficulties that the user

was going through and the personal problems he or she was having with the coworker. In

particular, the malicious user believed that the coworker had been undeservingly promoted

instead of him or her, making any PII information theft or financial damage to his or her

colleague, that they might engage into, justifiable to him or her. The task was goal-specific

in order to capture the intent of the users. The participants in this scenario knew that

all of their actions were being monitored. While they were encouraged to find relevant

information for their task, they were also urged to hide their masquerade activity. It is also

important to mention that they were not specifically asked to search the file system

in the scenario, i.e. some users could decide to look into the computer owner’s e-mail,

which constitutes another approach for information gathering, instead of searching files.

After completing the task, the participants filled a questionnaire about their experience and

behavior during the task, and how different it was from their own normal search behavior.

Most participants indicated that they tried to leave the desktop in the same state that

they accessed it in, including the same list of recently opened documents. Many avoided

using desktop search tools and opted for manually exploring the contents of the file systems

by traversing directories of interest. Some participants also cleared the browser’s cache

and history. Others interleaved search and information gathering actions with normal user

actions that should not raise any suspicions, such as checking a news website.

Benign Scenario: Similar to the previous scenario, the participants in this scenario

acted as employees in a specific organization. While their coworker left out for a 15-minute

lunch break and stayed logged in to his or her computer, their own computer experienced

a hard drive failure. Because they had to finish working on an urgent team project, which

they had to provide an update on during a meeting occurring later in the afternoon, they

did not hesitate to use the coworker’s computer to finish working on the project.

Neutral Scenario: The participants in this scenario too had a coworker leave for 15

minutes to have lunch while staying logged in to his or her desktop computer. However, the

participants in this scenario had no compelling reason to access the coworker’s computer.

They were left to freely choose whether they wanted to access their coworker’s desktop. I ob-
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served the behaviors of the participants, and whether they decided to access the coworker’s

computer. In particular, I observed what they did if they decided to access it. The partic-

ipants had also to describe what they did and explain their decision after completing the

experiment.

These scenarios are the means to manipulate the intent of the attacker. Therefore, I

strove to keep all variables constant including the duration of the experiment, the type of

relationship between the attacker and the victim, etc.. I used each scenario to collect data for

a control group against which I compare the results achieved using the ‘malicious attacker’

scenario. The choice of 15 minutes in all scenarios was driven by research findings from

an insider threat study conducted in an actual commercial setting [Caputo et al., 2009b;

Caputo et al., 2009a]. The researchers studied the differences between malicious and benign

user behaviors and found that malicious users engaged in bursts of frantic behavior that

were shorter than 15 minutes by copying large amounts of text indiscriminately for example.

Table 3.1 summarizes and compares the controlled experimental variables across all

three scenario narratives.

Table 3.1: Comparison between Experimental Variables in all User Study Scenarios

Experimental Variable Value Same/Different

Scope Local File System Same

of Colleague’s Computer

Environmental Constraints IDS Lab Computer Same

Desktop Configuration Same Recent Documents Same

and Applications

Relationship to Victim Coworker Same

Time Constraints 15 minutes Same

Intent Malicious, Benign, or Neutral Different

or Neutral
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3.2.3 Sampling Procedures for Higher Experiment Sensitivity

In order to increase the sensitivity of our experiment, I must reduce uncontrolled variability.

This in turn requires controlling user bias, which makes up the largest source of error

variance in user study experiments [Keppel, 2004]. In behavioral sciences, there are three

different techniques or sampling procedures used to reduce subject variability and user

bias. The first and preferred technique is the use of the same subject in all ‘treatment

conditions’ of the experiment, that is, in all three scenarios. This procedure cannot be used

in our experiment as it undermines the assumption that masqueraders are not familiar with

the file system under attack. Using the same subjects in different treatment conditions of

the experiment means that they will be exposed to the file system more than once. This

implies that, in the second and third treatment condition or scenario, the subjects have

prior knowledge about the file system, which violates the assumptions made in the threat

model. Recall that the threat model assumes that the masquerade attacker is not familiar

with the victim’s file system.

The second approach, and probably the most obvious approach, is to select a homo-

geneous group of subjects, i.e. subjects with similar characteristics that are relevant to

the experiment, such as their familiarity with the use of computers, their ability to search

for information in a file system, and their acuity or sense of cyber-security. Finally, the

third approach for reducing subject variability is the use of several small subject sets with

characteristics that are highly homogeneous within one set, but widely varying between

sets.

I have chosen the second approach, and selected subjects who were all students at the

Computer Science department of Columbia University, so that they have comparable skills.

This should minimize the variability between subjects with respect to their familiarity with

computer usage, and how to search a desktop in order to steal information, or how to

perform a data theft attack without being detected, which in turn limits the confounds and

bias in the results of this user study.

I was concerned, nonetheless, that there still could be some variety of ages, experience

levels, and access to technology even within this set of participants. In order to evaluate

the extent of this variety, I asked the participants in a post-study questionnaire about their
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familiarity with desktop search tools, with various operating systems, and with Linux shell

commands. Their answers indicated that everyone was very familiar with the use of desktop

search tools, although experience levels with user shell commands varied: Two participants,

out of sixty, rarely used shell commands for search. I estimated that this lack of familiarity

with shell commands would not significantly affect our results, as our experiments were

conducted on a Windows system, and not on a Linux/Unix system, where typically certain

shell commands are used for information gathering.

3.2.4 Reducing Confounds and Bias

Besides reducing subject variability, I strove to reduce the experimental treatment vari-

ability by presenting each user study participant with the same experiment conditions. In

particular, I used the same desktop and file system in all experiments. I also ensured that

the desktop accessed by the subjects looked the same to each participant. In particular, I

cleaned up the list of recently accessed documents, and opened Microsoft Office documents

before the beginning of each experiment, and automated the data collection and uploading

to a file server, so that the user data collected for one study participant does not reside on

the desktop used in the experiment and does not bias the results of the experiment. Finally,

I strove to limit the number for unanalyzed control factors. For example, I ensured that all

the experiments were run by the same research assistant.

The need to clean up and standardize the list of recently opened documents was revealed

through the answers of study participants to the post-experiment questionnaire. When

asked about their strategy for finding relevant information, a few participants indicated that

they started by checking out the list of recent documents. This underlines the importance of

running a pilot experiment before conducting the entire human subject study, as well as the

importance of designing a questionnaire with the objective of identifying additional sources

of variability and ensuring that the participants performed the experiment correctly. These

questionnaires revealed an important detail that was missing in our scenario narratives,

namely the name of the victim colleague. Study participants indicated that this piece of

information would have helped them in their search for PII. This detail that was missing

in the pilot experiment, was later added when conducting the full human subject study.
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3.2.5 Power Analysis and Sample Size Estimation

Power analysis is an important step in designing a user study, which usually gets neglected

by many researchers working on cyber-security user studies. An experiment’s power is an

indication of how statistically significant its results may be, and it varies normally between

0.5 and 0.9. The higher the power, the more statistically significant the results are. I have

to determine the desired power of the experiment, in order to calculate the required number

of samples, or human subjects, needed for each experimental condition of the user study.

Obviously, reaching a higher power value requires a higher number of samples.

The adequate sample size for the experiment depends on several parameters:

• Form of the experiment: The number of independent variables manipulated in

the experiment and the number experimental conditions drive the number of subjects

needed for the user study. The more treatment conditions analyzed, the higher the

number of participants needed in the experiment.

• Hypothesis to be tested and the null hypothesis: This requires identifying the

desired effect size w2 that the researcher wishes to detect. The effect-size measure is

a measure of the size of an effect in the overall population, regardless of the specific

details of the human subject study.

• Desired power: Achieving a higher power value for the experiment results requires

a higher number of samples. A power of about 0.8 seems to be reasonable for human

behavioral experiments [Keppel, 2004].

The sample size n needs to be large enough, so that the experiment can produce a

reasonable accuracy, i.e. limit the sampling errors. Using a larger sample size may only

add to the recruiting costs without adding more accuracy.

3.2.5.1 Calculating the Effect Size

There are several effect size measures such as Hedges’ g, Cohen’s f2, and w2 . Some of

these measures estimate the effect size for the sample rather than the population. Others are

biased and tend to overestimate the effect size. I use the w2 effect size, which is considered

a rather unbiased effect size measure for populations, and not for samples only.
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I measure the population effect size w2 of this feature by calculating the standardized

difference between means of measured features within the populations of each scenario. The

standardized difference takes into account the variability of the feature from one user to

another.

The effect size is measured as follows:

w2 =
µ1 − µ2
σ12

(3.1)

where µ1 is the mean of a feature f in scenario 1 (e.g. the malicious scenario), µ2 is the

mean of feature f for users in scenario 2 (e.g. the benign scenario), and σ12 is the standard

deviation based on both user populations of the two scenarios. Considering the sample sizes

s1 and s2 of the two populations or groups, then σ12 can be defined:

σ12 =

√
SS1 + SS2
df1 + df2

(3.2)

where df1 and df2 are the degrees of freedom in both populations 1 and 2 respectively, i.e,

dfi = si − 1 where i ∈ {1, 2} and SSi is defined as

SSi =

si∑
j=1

y2i,j (3.3)

where yi,j is the value of feature f for user j in population i.

3.2.5.2 Estimating the Sample Size

Once the effect size has been estimated and the desired power value determined, the required

sample size n can be calculated as follows:

n = φ2
1− w2

w2
(3.4)

where φ is known as the non-centrality parameter.

The non-centrality parameter φ indicates to which extent the user study provides evi-

dence for differences among the two population means. It can be extracted from the power

function charts developed by Pearson and Hartley based on the desired power [Pearson and

Hartley, 1951]. Using the right sample size is important for reaching the desired power of

the experiment (usually between 0.5 and 0.9). However, increasing the sample size to reach
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very high power values beyond 0.9 may be very costly, as it becomes much harder to reach

power values beyond that value.

3.3 Data Collection

After describing the human subject study methodology and the data collection planning

phases, I discuss in this section how I conducted the user study, and present the RUU

dataset that I collected during that process. I start by describing the host sensor developed

to collect this dataset.

3.3.1 Host Sensor

We have developed a host sensor for Windows platforms that monitors all registry-based

activity, process creation and destruction, window GUI and file accesses, as well as DLL

libraries’ activity. It gathers various process-related data items including process name and

ID, the process path, the parent of the process, the type of process action (e.g. type of

registry access, process creation, process destruction, window title change, etc.), the process

command arguments, action flags (success or failure), and registry activity results. A time

stamp was also recorded for each audit record. The Windows sensor uses a low-level system

driver, DLL registration mechanisms, and a process table hook to monitor process activity.

3.3.2 Required Sample Size

It was hard to accurately predict the effect size of the different search-related features prior

to conducting the human subject study, as there were no published results from similar

studies. For instance, I could not predict how many more files would be touched by a

masquerader as opposed to a user conducting his or her regular activities. So I made

some assumptions in order to roughly estimate the required number of participants in the

user study. It turned out that I needed more than 17.7 participants in order to achieve

an 88% probability of achieving a significant result, assuming that the number of files

touched by a masquerader would double on average (which was indeed validated by our

experiments). Based on this guideline, I had eighteen students participate in the ‘normal
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user’ data collection exercise, and forty students participate in the ‘capture-the-flag’ exercise

for masquerader data collection.

3.3.3 Collecting Normal User Data

Eighteen computer science students installed the Windows host sensor on their personal

computers. The host sensor collected the data described in the previous subsection and

uploaded it to a server, after the students had the chance to review the data and the

upload. The students agreed to share their data with the research community. This unique

dataset with a size of more than 10 GBytes is available for download after signing a usage

license agreement. The data collected for each student spanned 4 days on average. An

average of more than 500,000 records per user were collected over this time period.

3.3.4 Collecting Simulated Masquerader Data

To obtain masquerader data, I recorded the activity of forty students who posed as masquer-

aders by participating in a ‘capture the flag’ exercise and following the malicious attacker

scenario of the human subject study described in Section 3.2.2. Recall that in order to

ensure the validity of the experiment and the resulting data, I controlled the ‘user’s intent.’

A total of sixty computer science students were randomly selected to participate in the

exercise from a list of volunteers. The participants were randomly assigned to one of three

groups. All participants had unlimited access to the same file system of a lab computer for

15 minutes each. None of the users had access to this file system before, which was designed

to look very realistic and to include potentially interesting patent applications, personally

identifiable information, as well as account credentials. The file system had more than

100,000 files indexed by desktop search tools installed on the system, and totaling a size of

more than 70 GBytes. The files were copied from a modern Windows XP machine routinely

used in a university research environment. They were created over a period of 5 years. The

file system included at least 80 files containing personal information that could be used for

identity theft or financial gain. The contents of certain personal files were sanitized, so

that no personal information was leaked. I also installed applications that typical computer

science students would have on their own machines, such as programming APIs, media
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players, etc., together with code projects, games, music, and video files. The goal was to

make this machine look similar to the ones that the normal users in our experiment were

using. Special care was taken to make sure that the desktop appeared in the same state

to all participants in the experiment. The study participants were asked not to share any

information about the experiment with others until the data collection exercise was com-

pleted. The objective was to limit user bias due to influence from other participants in the

experiments. While simulating masquerader attacks in the lab is not ideal, it was the best

available option. None of the students who shared their normal usage data were willing to

lend their computers in order to run masquerade attack experiments on them.

3.4 User Study Experiment

The objective of this experiment is to explore the validity of the conjecture that a masquer-

ader’s intent has a significant effect on his or her search behavior. I extracted three features

from the data collected in the user study after experimenting with several features such as

the frequencies of different types of user actions and application events, the total size of

touched files in bytes, the number of search windows and search window touches, etc.. The

three selected features are:

1. The number of files touched during an epoch of two minutes

2. The number of automated search-related actions initiated by the masquerader within

two minutes

3. The percentage of manual search actions during the same epoch

Automated search actions are search actions launched using a desktop search tool such

as Google Desktop Search. Manual search actions are file system navigation or exploration

activities. I display the distribution of these features for the malicious, benign, and neu-

tral scenario participants of the user study in Figures 3.2, 3.3, and 3.4. The experiment

demonstrates that the manipulation of the user intent has demonstrated a significant effect

on user search behavior.
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Figures 3.2, 3.3, and 3.4 are box-and-whisker plots where the horizontal line in the

middle of each of the boxes in these plots corresponds to the median value of the displayed

feature. Fifty per cent of the data falls within this box, while the top and bottom quartiles

(25% of the data) of the data are represented by the whisker lines above and below this

box. Data points whose value is above 1.5 times the upper quartile or lower than 1.5 times

the lower quartile are considered outliers and are represented as small crosses. The short

horizontal lines above and below the box represent the maximum and minimum data values

excluding outliers.

Figure 3.2 depicts the distribution of the number of accesses to all files residing on the

file system per a 2-minute epoch. It is clear that the average number of file touches amongst

the malicious scenario group is much higher than in the other two groups. The z-test with

means of 140, 40, and 35 decoy touches for the three respective groups rejects the null

hypothesis at the 99% confidence level (p ≤ 0.01).

Figure 3.2: Distribution of File Touches across the three User Study Groups
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Figure 3.3 shows the distribution of search-related queries to the registries and accesses

to search-related DLLs and applications for the different groups in the human subject study.

The average number of search-related records in the first group is comparable to that in the

other groups, which might be unexpected. However, this could be explained by the fact that

the participants in the first group were penalized if their illegal masquerade activities were

discovered, which explains why most of them decided to refrain from using desktop search

tools to find relevant information. However, Figure 3.4 reflects the extensive information

exploration and gathering activities conducted by the participants in the first group.

Figure 3.3: Distribution of Search-related Actions across the three User Study Groups

In the latter figure, one can clearly notice that the percentage of user actions related to

navigating through the file system, in order to explore its contents, is much more significant

in the first group. The participants in the second group did not have the intention to steal

any information, which is why they did not engage in file system exploration activities.

Most of them only tried to access the work file they had to review in order to finish working

on their presentation. The percentage of file system navigation activities is minimal, except
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Figure 3.4: Distribution of the Percentage of File System Navigation User Actions across

the three User Study Groups

for the outlier points, indicating that this group was focused on probably editing the work

file and on the task to be completed. While most of the participants in the third scenario

decided not to access the coworker’s computer, some of them did urged by their curiosity,

as indicated in the participants’ answers to our post-experiment questionnaire. Figure 3.4

shows that for this group, the users explored the directories in the file system in order to

satisfy their curiosity.

Finally, Figure 3.5 shows how the number of personal files accessed by masqueraders

varies by user study scenario. The results of this user study provide evidence that search

behavior is significantly affected by a masquerader’s intent. Very few PII files were accessed

by participants in the benign and neutral scenarios. The question that I attempt to an-

swer next is: Can we model normal user search behavior and use it to detect malicious

masqueraders?
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Figure 3.5: The personal files accessed by masqueraders

3.5 RUU Experiment

In order to evaluate our conjecture that search behavior modeling can provide a means for

detecting malicious masqueraders, I use the normal user data to build user search behavior

models. I then use the simulated masquerader data gathered for the participants in the

‘malicious’ scenario of our user study to test these user models. Here I describe the modeling

approach, the experimental methodology, and the results achieved in this experiment.

3.5.1 Modeling

I devised a taxonomy of Windows applications and DLLs in order to identify and capture

search and information gathering applications, as well as file system navigation user actions.

The taxonomy can be used to identify other user behaviors that are interesting to monitor,

such as networking-, communications-, or printing-related user activities. However, in the

context of this chapter, I use it to identify search- and file system navigation-related activ-

ities only. I will discuss it in further details in Chapter 6. Monitoring other user behaviors
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will be the subject of future work. The use of the taxonomy abstracts the user actions and

helps reveal the user’s intent.

I grouped the data into 2-minute quanta of user activity, and I counted all events

corresponding to each type of activity within each of the 2-minute epochs. I also explored

other features such as the size of files touched and the number of processes running or

launched during this epoch among other features. Eventually, a total of three features were

selected for each of the 2-minute epochs. Each of the features is related to some aspect

of the user’s search or information gathering and information access behavior. The three

features that provided the best accuracy results in our experiments are:

1. Number of automated search-related events: Specific sections of the Windows reg-

istry, specific DLL’s, access to specific index files, and specific programs, particularly

desktop search tools, are correlated with system searching. Within the 2-minute

epoch, I model all search-related activity.

2. Number of file touches: Any file fetch, read, write, or copy action causes the requested

file to be loaded into memory. I count the number of times files are touched and loaded

into memory by any process within each 2-minute epoch.

3. Percentage of file system navigation user actions: Not all search is performed using

a desktop search tool. Navigating through the file system to explore its contents is

also a form of user search. I model all manual search or file system navigation user

activity occurring during the 2-minute epoch.

To identify the automated and manual search applications and user activities, I referred

to our Windows applications taxonomy. The chosen features are simple search features

that characterize search volume and velocity to test our hypothesis. While no single feature

could be used to achieve high detection rates, the combination of the three features could

be very effective. More complex search features that describe user search patterns could be

extracted. Such features include, but are not limited to search terms and specific directory

traversals. Evaluation of these features is the subject of my future work.
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3.5.2 Experimental Methodology

For each of the 18 normal users, the first 80% of their data was used for training a one-class

SVM model. The user’s test data and the masquerader data were kept separate. After the

baseline models were computed, the same features used in the model were extracted for

the test data after dividing them into 2-minute quanta of user activity. The models were

tested against these features, and an empirically identified threshold was used to determine

whether the user activity during the two-minute period was normal or abnormal. If the user

activity was performed by the normal user, but was classified as abnormal by the ocSVM

model, a false positive was recorded.

3.5.3 Detection Accuracy Evaluation

For evaluation purposes, I conducted two experiments. In the first one, I used one-class

SVM models using the three features listed in Section 3.5.1. In the second experiment, I

used the frequency of applications and processes within the 2-minute epoch as features for

the ocSVM models. This is the modeling approach that achieved results comparable to

those achieved by the näıve Bayes approach when applied to the Schonlau dataset [Wang

and Stolfo, 2003], even though it is a one-class modeling approach, i.e. it uses less data for

training the user models.

3.5.3.1 Accuracy Results

Using the search-behavior modeling approach, 100% of the two-minute quanta that included

masquerader activity were detected as abnormal, while 1.1% of the ones with legitimate user

activity were flagged as not conforming to the user’s normal behavior. The results achieved

are displayed in Table 3.2. The false positive (FP) rate is significantly reduced compared

to the application frequency-based modeling approach, while a perfect detection rate is

achieved. These results substantially outperform the results reported in prior work (see

Chapter 2).

Monitoring file access and fetching patterns turned out to be the most effective feature

in these models. Consider the case where a user types ‘Notepad’ in the search field in order

to launch that application. Such frequent user searches are typically cached and do not
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Table 3.2: Experimental results of ocSVM modeling approaches using search-behavior re-

lated features and application frequency features

Method True Pos. (%) False Pos. (%)

Search-behavior ocSVM 100 1.1

App.-freq. ocSVM 90.2 42.1

require accessing many files on the system. Note that if the attacker follows a different

strategy to steal information, and decides to copy whole directories in the file system to

a USB drive for later investigation, instead of identifying files of interest during one user

session, then the ‘file touches’ feature will reflect that behavior.

A typical means to visualize the performance of any classification algorithm is the Re-

ceiver Operating Characteristic (ROC) curve, which plots the sensitivity against 1- speci-

ficity. The specificity is defined as nTN
nTN+nFP

and the sensitivity is defined as nTP
nTP+nFN

where

nTN , nFP , nTP , nFN are the numbers of true negatives, false positives, true positives, and

false negatives respectively. A true positive is a masquerade activity that has been correctly

identified as so by the classifier. A false positive is a normal user’s activity that was mis-

classified as a masquerader’s. Similarly a true negative is a normal user’s activity that the

detector classifies as normal, and a false negative is a masquerade activity that the classifier

fails to detect, the latter being perhaps the worst case of failure.

Since each user has his or her own model with his or her own detection threshold, it

is not possible to build a single ROC curve for each modeling approach. However, we can

compare the ROC curves for individual user models using the two modeling approaches

investigated. One way to compare the ROC curves is to compare the Area Under Curve

(AUC) values. The AUC, also known as the ROC score, is the integral of the ROC curve,

i.e. it is a measure of the area under the ROC curve. It reflects the accuracy of the detection

method or classifier used. The higher the AUC is, the better the overall accuracy of the

classifier.

Figure 3.6 displays the AUC scores for all user models. The search behavior modeling

approach outperforms the application frequency based modeling approach for each user

model. The average AUC score achieved for all ROC curves when modeling search behav-
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ior is 0.98, whereas the average AUC score for the application frequency-based models is

0.63. The bad performance of the application frequency-based modeling approach can be

explained by the high-dimensional feature vectors used in this modeling approach. This

suggests that a lot more data may be needed for training.

Figure 3.6: AUC Scores By User for the Search Behavior and Application Frequency-Based

Modeling Approaches using one-class Support Vector Machines

Figure 3.7 depicts the number of ROC curves having AUC scores higher than a certain

value for both modeling approaches. Note that for 12 user search behavior models, the AUC

score is equal to 1 indicating a perfect detection rate and the absence of any false positives.

The RUU dataset consists of user data with varying amounts of data for different users.

The amount of search behavior information varied from user to user. False positives were

higher for users who contributed less data in general and less search-related data in par-

ticular, such as users 11 and 14, than for those for whom a large amount of such data

was collected. For a 100% detection rate, the FP rate scored by these user models ranged

between 11% and 15%, which proves the need for more training data for these users, in

order to improve the performance of the classifiers.

In summary, the significant accuracy improvement achieved can be explained by the
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Figure 3.7: The number of user models with AUC values greater than the value displayed

on the x-axis for the search behavior and the application frequency modeling approaches

using one-class SVMs. (The upper-left point shows 18 user models with AUC scores greater

than 0.5)

fact that features used for modeling are good discriminators between normal user behavior

and fraudulent behavior. Masqueraders were focused on a clear objective, namely finding

information that could be used for financial gain, and by the tight link between the mas-

querader’s intent and his or her search behavior, as demonstrated through the user study

described in section 3.4. Despite the simplicity of the search features used, which charac-

terize search volume and velocity only, I was able to reliably detect malicious masqueraders

trying to steal information. Note that many masqueraders indicated in the post-experiment

questionnaires that their strategy for finding relevant information started by quickly scan-

ning the most recently opened documents, or the list of bookmarks. However, they still

engaged in a wider search activity eventually when these sources proved fruitless.
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3.6 Schonlau Data Experiment

The results achieved by profiling user search behavior require careful thought when con-

sidering the prior results of techniques that model sequences of user commands from the

Schonlau dataset. It is difficult to compare my results with the results presented in Ta-

bles 2.1 and 2.2 which were evaluated using the Schonlau dataset. Recall that the Schonlau

dataset is not a ‘true’ masquerader dataset, since its ‘intrusions’ or ‘masquerade’ com-

mand blocks are just sequences of commands generated by randomly selected normal users.

Moreover, information gathering and search activities of the users are not significant in this

dataset as can be deduced from Figure 3.8. Furthermore, the Schonlau dataset does not

include any timestamps, so temporal statistics cannot be extracted.

However, for completeness, I model specific user behaviors such as search, and test

classifiers based on this modeling approach against the Schonlau dataset. To do so, I assign

user commands to command categories, thus abstracting the user actions and identifying

the specific user behaviors to be modeled. Therefore, I focus on the analysis of types or

categories of user commands, rather than on simple user commands.

To accomplish the goal of accurately modeling user behavior I developed a taxonomy of

Linux commands similar to the one I created for Windows applications and DLLs. The tax-

onomy is displayed in Figure 3.9. I conducted an experiment where I followed the methodol-

ogy described in prior work of Schonlau et al. [Schonlau et al., 2001] and Wang&Stolfo [Wang

and Stolfo, 2003]. In this experiment, I measured the accuracy of one-class SVM models

using frequencies of simple commands per command block as features, and I compared the

performance of ocSVM models using frequencies of command categories or specific behav-

iors (per the command taxonomy) as features. I also used the same one-class modeling

technique with binary feature vectors. The features indicate the presence or absence of a

specific simple user command or command category within a 100-command block.

I used the first 5000 commands of a user as positives examples for training the model. No

negative examples were used for training. Then I tested the classifier using the remaining

10,000 commands of the user, which may have injected command blocks from other users

under a probability distribution as described in [Schonlau, 2001].

Table 3.3 summarizes the results achieved by the one-class SVM classifiers. The results
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Figure 3.8: The Distribution of Commands across Various Categories in the Schonlau

Dataset

show that the performance of one-class SVMs using command categories per the taxonomy

is essentially the same as the performance of ocSVM that uses simple commands. This

demonstrates that the information that is lost by compressing the different user shell com-

mands into a few categories does not affect the masquerade detection ability significantly.

In section 3.7, I show how modeling search behavior by using the taxonomy of commands

and applications reduces computational complexity, both for training and for testing the

classifier. This is possible thanks to the smaller number of features used for modeling, which

reduces the amount of sampled data required for training, as the data becomes less sparse

in the new feature space.
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Figure 3.9: Taxonomy of Linux and Unix Commands

3.7 Performance Evaluation

3.7.1 Computational Complexity

Our experiment can be divided into four main steps that cover building and testing the

classifiers:

1. Identifying the features to be used for modeling

2. Extracting the features to build the training and testing vectors

3. Building a ocSVM model for each normal user

4. Testing each user model against the test data

I discuss the computational complexity of each of these steps for one user model.

Let o be the total number of raw observations in the input data. I use this data to

compute and output the training vectors xi ∈ Rn, i = 1, ..., l and testing vectors xj ∈
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Table 3.3: ocSVM Schonlau Experimental Results

Method True Pos. (%) False Pos. (%)

ocSVM with simple commands 98.7 66.47

(frequency-based model)

ocSVM with taxonomy 94.8 60.68

(frequency-based model)

ocSVM with simple commands 99.13 66.8

(binary model)

ocSVM with taxonomy 86.58 56.9

(binary model)

Rn, j = 1, ...,m for each user u, where n is the number of features used for modeling.

When using the application frequency features, this step requires reading all training

data (about 0.8 of all observations o) in order to get the list of unique applications in the

dataset. This step can be merged with the feature extraction step, but it would require

more resources, as the feature vectors would have to remain in memory for updates and

additions of more features. I chose to run this step in advance for simplicity. This step is not

required for the search behavior profiling approach, as all features are known in advance.

In the feature extraction step, all input data is read once, grouping the observations

that fall within the same epoch. n features are computed and output for each epoch. This

operation has a time complexity of O(o+ n× (l +m)).

Chang and Lin [Chang and Lin, 2001] show that the computational complexity of the

training step for one-class SVM model is O(n × l)×#Iterations if most columns of Q are

cached during the iterations required; Q is an l×l semi-definite matrix, Qij ≡ yiyjK(xi, xj);

K(xi, xj) ≡ φ(xi)
Tφ(xj) is the kernel; each kernel evaluation is O(n); and the iterations

referred to here are the iterations needed by the ocSVM algorithm to determine the optimal

supporting vectors.

The computational complexity of the testing step is O(n×m) as the kernel evaluation

for each testing vector yj is O(n). I experimentally validate the complexity analysis in the

next section to determine whether the performance both in terms of accuracy and speed of
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detection has improved using the proposed search behavior modeling approach.

3.7.2 Performance Results

I ran the experiments on a regular desktop with a 2.66 GHz Intel Xeon Dual Core processor

and 24 GB of memory on a Windows 7 platform. I measure the average running time of

each step of the experiment over ten runs. The results are recorded in table 3.4. As I

point out in the previous subsection, the very first step is not executed in the proposed

search behavior modeling approach. This step takes more than 8 minutes when using the

application frequency modeling approach. The running time of the feature extraction step

shows that the number of raw observations in the raw data dominates the time complexity

for this step. Note that the RUU dataset contains more than 10 million records of data.

The training and testing vectors are sparse, since only a limited number of the 1169

different applications could conceivably run simultaneously within a two-minute epoch. This

explains why the 389.7 ratio of features does not apply to the running time of the training

and testing steps, even though these running times depend on the number of features n.

While one might argue that, in an operational system, testing time is more important

than training time, I remind the reader that a model update has the same computational

complexity as model training. For the latter, the use of a very small number of features as

in our proposed approach clearly provides significant advantages.

All of these differences in running time culminate in a total performance gain of 74%

when using the search behavior model versus the application frequency model typical of

prior work. This computational performance gain coupled with improved accuracy could

prove to be a critical advantage when deploying the sensor in an operational environment

if a system design includes automated responses to limit damage caused by an attacker.

3.8 Conclusion

3.8.1 Chapter Summary

In this chapter, I showed that user search behavior can be used to reveal the malicious intent

of a masquerader. I used a modeling approach that aims to capture the intent of a user
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Table 3.4: Performance comparison of ocSVM modeling approaches using search behavior-

related features and application frequency features

Step ocSVM app. freq. ocSVM search-beh.

Identifying Features (min) 8.5 0

Extracting Features (min) 48.2 17.2

Training (min) 9.5 0.5

Testing (min) 3.1 0.5

Total (min) (Rounded) 69 18

more accurately based on the insight that a masquerader is likely to perform untargeted and

widespread search. Recall that I conjecture that user search behavior is a strong indicator

of a user’s true identity. I modeled search behavior of the legitimate user with three simple

features, and detected anomalies deviating from that normal search behavior.

The use of search behavior profiling for masquerade attack detection permits limiting the

range and scope of the profiles computed about a user. This limits potentially large sources

of error in predicting user behavior that would be likely in a far more general setting. Prior

work modeling user commands shows very high false positive rates with moderate true posi-

tive rates. User search behavior modeling produces far better accuracy. With the use of the

RUU dataset [Ben-Salem, b], a more suitable dataset for the masquerade detection problem,

I achieved the best results reported in literature to date: 100% masquerade detection rate

with 1.1% of false positives only.

In an operational monitoring system, the use of a small set of features limits the system

resources needed by the detector, and allows for real-time masquerade attack detection.

Note that the average size of a user model is about 8 KB when the search-behavior modeling

approach is used. That model size grows to more than 3 MB if an application and command

frequency modeling approach is used. Furthermore, it can be easily deployed as profiling in

a low-dimensional space reduces the amount of sampling required: An average of four days

of training data was enough to train the models and build effective detectors.
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3.8.2 Future Research

In my future work, I will explore more complex search features that describe user search

patterns. Such features include, but are not limited to search query contents, parameters

used, and specific directory traversals that could improve accuracy results and extend them

to other masquerade attack scenarios. Other potential features to model include the use of

bookmarks and most recently opened documents, which could also be used by masquerade

attackers as a starting point for their search. The models reported here are primarily

volumetric statistics characterizing search volume and velocity.

My focus in this work was on monitoring a user’s search behavior in real time to deter-

mine whether current user actions are consistent with the user’s historical behavior. Note

that, while the list of search applications and commands may have to be updated occasion-

ally (just like an Anti-Virus needs periodic signature updates) for best detection results,

most of the search-related activity would be manifested in accesses to search index files and

regular user files on the system.

Monitoring other user behaviors, such as the ones discussed in Section 3.1.1 will be

the subject of future work. A masquerader could choose to copy data to a USB drive for

later examination. They may choose to access the victim computer remotely and ex-filtrate

data over the network. They could even try to evade the monitoring system by renaming

DLLs and applications so that they are assigned to a different category per our applications

taxonomy, other than the search or information gathering category. I could easily use the

application taxonomy to monitor these specific behaviors in case the attacker resorts to

such strategies. As noted in section 3.5.3.1, the ‘file touches’ feature already captures some

aspect of this behavior. The applications taxonomy could be used to extract ‘Networking’-,

‘Communications’- and I/O-related features to be included in the user model, so that such

masquerade behavior gets detected easily.
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Chapter 4

Evaluation of Decoy Document

Properties

In the previous chapter, I investigated how user search behavior profiling can be used for

masquerade detection. Another approach for detecting masqueraders is the use of baits

such as honeynets and honeypots. Honeypots are information system resources designed

to attract malicious users. They have been widely deployed in DMZs to trap attempts by

external attackers to penetrate an organization’s network. Some researchers proposed the

use of honeyfiles, a type of honeypot, to detect malicious insider activity [Bowen et al.,

2009b]. They introduced the concept of perfectly believable decoys and proposed several

properties to guide the design and deployment of decoys, namely:

1. Believability: The attacker will not use the bait information if it does not appear

authentic to the attacker.

2. Enticingness: No attack detection will be possible if the attacker does not access the

bait information because it does not look attractive enough.

3. Conspicuousness: Decoys should be easily located or retrieved in order to maximize

the likelihood that an attacker takes the bait.

4. Detectability: If the access to the bait asset is not detectable than the deployment of

the decoys is useless.
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5. Variability: Decoys should not be easily identifiable to an attacker due to some shared

invariant.

6. Non-interference: Decoys should not interfere with the legitimate user’s normal activ-

ity. Non-interference is defined as the likelihood that legitimate users access the real

documents after decoys are introduced [Bowen et al., 2009b].

7. Differentiability: Legitimate users should be able to easily distinguish decoy docu-

ments from authentic documents, which has a direct effect on non-interference.

8. Shelf-life: Decoys may have a limited time period during which they are effective.

While all of the above are important decoy properties, it can be difficult to design and

deploy decoy documents that would optimize these properties, which in turn would assure

effective detection of a masquerade attack. One has to find the right trade-offs between

these properties in order to use them effectively. Such trade-offs may vary depending on

the type of attack.

For example, while believability is a very important property of decoys when used for

detecting insider attacks that aim to exfiltrate sensitive information, it becomes of a lesser

importance when the decoys are aimed at detecting masquerade attacks. In the case of an

insider attack, the attacker already has legitimate access to the system where the sensitive

information assets are located. Access to such assets does not necessarily constitute evidence

of malicious intent or activity. However, subsequent exfiltration and use of such information

does. If the attacker identifies the decoy document as bogus, then they would not use

the information contained in that document, which is why the believability of the decoy

document is important. In the case of a masquerade attack, the mere access to the decoy

document does constitute evidence of an attack as the masquerader is not a legitimate user

of the system, and therefore should not be accessing any assets residing on that system.

Whether the masquerader finds the decoy document believable or not, after having accessed

it, is irrelevant to the detection of the attack, since the evidence of the malicious activity

has been already established 1.

1This work was published in [Ben-Salem and Stolfo, 2011a].
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4.1 Trap-based Masquerader Detection Approach

4.1.1 Trap-based Decoys

The trap-based technique used by our sensor relies on trap-based decoys [Bowen et al.,

2009b] that contain ‘bait information’ such as online banking logins, social security numbers,

and web-based email account credentials. Users can download such decoy files from the

Decoy Document Distributor (D3) [Bowen and Hershkop, 2009], an automated service that

offers several types of decoy documents such as tax return forms, medical records, credit

card statements, e-bay receipts, etc. The decoy documents carry a keyed-Hash Message

Authentication Code (HMAC) [Krawczyk et al., 1997] embedded in the header section

of the document, and visible if the document is opened using a hex editor only. The

HMAC is computed over a file’s contents using a key unique to the user, and is hidden

in the header section of the file. For instance, the use of the full version of the SHA1

cryptographic function in combination with a secret key to tag the decoy documents with

an HMAC tag prevents the attacker from distinguishing the embedded HMAC from a

random function [Kim et al., 2006]. It is this marker or HMAC tag that our sensor uses to

detect access to a decoy document. An example of a decoy document with an embedded

HMAC is shown in Figure 4.1. In the next section, I describe how the sensor makes use of

this marker.

Besides the embedded HMAC tag, the decoy files carry a visible marker that is used to

prove data leakage through screen-capture in case the masquerader manages to exfiltrate

data without being detected. This marker is a string generated from a regular expression

that is unique to the legitimate user. They also have a beacon that signals a remote website

upon the opening of the decoy document. This can be disabled if we suspect that the

attacker might notice that the beacon document is phoning this remote website. Noticing

this informs the attacker that his or her activity has been discovered.

We have architected a Decoy Documents Access (DDA) sensor and designed decoy

documents in such a way that a sophisticated attacker with more knowledge and higher

capabilities, in particular an inside attacker, would not be able to escape detection if they

touched a decoy document. A sophisticated attacker with wide resources would not be able
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to distinguish the HMAC tags of decoy documents from random functions. Both types of

attackers, i.e. the sophisticated outsider or the malicious insider, would have to know that

the system under attack is baited. The detection of this class of attack is beyond the scope

of this thesis. Here, I devise user studies for attackers, who have no knowledge whether the

system is baited or not, with the objective of investigating the decoy deployment properties.

Figure 4.1: HMAC Embedded in the OCP Properties Section of a PDF Document

4.1.2 Decoy Documents Access Sensor

The DDA sensor detects malicious activity by monitoring user actions directed at HMAC-

embedded decoy documents, since any action directed towards a decoy document is sug-

gestive of malicious activity [Ben-Salem, a]. When a decoy document is accessed by any

application or process, the host sensor initiates a verification function. This function is re-

sponsible for distinguishing between decoys and normal documents by computing a HMAC

for that document and comparing it to the one embedded within the document. If the

two HMACs match, the document is deemed a decoy and an alert is triggered; otherwise,

the document is deemed normal and no action is taken. The DDA sensor alerts when de-

coy documents are being read, copied, or zipped. The sensor was built for the Windows

XP platform and relies on hooks placed in the Windows Service Table. The hooking is

performed by injecting code into the address space of the processes, and by replacing the
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address of the file open system call which is present in the kernel (.dll) library of windows.

This code injection guarantees that our code will be executed first, and post processing it

will call the actual system call. This approach also enables the configuration of the list of

processes that should be hooked into or should be excluded from hooking into.

4.2 Human Subject Study 1

4.2.1 Experiment Design

My first human subject study aims to measure decoy document accesses performed by the

legitimate users of the system, which can be considered as false positives. I seek to answer

two questions through this study:

1. Does the number of decoy files planted in a file system have an impact on their non-

interference with the legitimate user’s normal activities?

2. What are the best locations for planting decoys on a file system, so as to minimize

their non-interference?

To answer these questions, I designed an experiment where I controlled the number of de-

coy documents n planted in a file system. I followed the same prescription outlined in

Section 3.2. I postulate that non-interference is a variable that is dependent on the number

of decoy documents n. I do not measure non-interference as a probability. However, I

measure the average number of decoy accesses per one week of computer usage. To that

extent, I asked four user groups of thirteen computer science students each, to plant ten,

twenty, thirty, or forty decoy documents generated by D3 on their own file systems. The

fifty-two students downloaded a total of 1300 decoy documents from D3. I encouraged the

participants in the user study to carefully consider where to place the decoy files and how

to name them by taking into account the desired properties of such documents, particu-

larly enticingness, conspicuousness and non-interference [Bowen et al., 2009b]. Recall that

the objective, when placing such decoy files, is to maximize the likelihood that a potential

masquerader will get detected when he or she illegitimately accesses the victim’s computer,

while minimizing the likelihood that the legitimate user accidentally accesses these docu-
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ments due to confusion or interference with his or her normal activity. For instance, the user

can choose file names that are easily recognizable as decoy by him or her, while remaining

enticing to the adversary. The file name could, for example, include the name of a person

who is outside the social network of the user. For instance, one participant renamed a decoy

file to TaxReturnSylvia.pdf, while he did not file any tax returns jointly with Sylvia, nor

did he know anyone with that name. Carefully selecting the file names would make the file

easily recognizable as a decoy file by the legitimate user, but could make it intriguing for

the attacker.

The participants in the user study, who installed the DDA sensor before downloading

the decoy documents, agreed to share their data. The experiment lasted for about seven

days on average, during which access to decoy files was monitored. The data collected by

the DDA sensor was uploaded to a central server for analysis.

4.2.2 Experiment Findings

At the end of the human subject study, the participants reported the directories under

which they placed the downloaded decoy files. I have summarized the results of these

reports and selected the 40 directories with the highest number of placed decoys. These

directories are shown in a directory tree in Figure 4.4. The ranking of these file locations

is shown in Appendix C. Subdirectories under the My Documents and Desktop directories

seemed to be the most popular choices by the participants. In the following, I summarize

the main findings of this study.

4.2.2.1 Interference Increases Super-Linearly with More Decoy Files:

Recall that non-interference is defined as the likelihood of the legitimate user accessing

the authentic files after installing the decoy files. Decoy files planted on a file system for

masquerade detection are not supposed to be accessed by the legitimate user. They are

placed there in order to entice attackers to open and use them. Any accidental accesses

to decoy files by the legitimate user of the system, i.e. accesses that are not caused by an

attacker gaining access to the file system, are considered false positives. I have ignored all

alerts issued within the first hour of the students installing the decoy documents on their
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systems. This gives the participants an opportunity to decide where to place the decoy

documents and how to rename them, based on the recommendations given to them in the

user study description. Table 4.1 presents the number of false positives and shows that it

grows super-linearly with the number of decoy files planted in the file system. The higher

the number of decoy files placed in the file system, the higher the likelihood of a legitimate

user accidentally accessing one of these decoy files, thus, the lower the non-interference of

these decoy files with the normal activities of the legitimate user. While a more longitudinal

study is needed to investigate the relationship between the number of decoys planted and

their impact on non-interference, our preliminary results show that interference increases

super-linearly with the number of decoys planted.

Table 4.1: Number of Decoys and Decoy Touches

Number of Placed Number of Participants Number of Decoy

Decoys in Experiment Accesses

10 13 2

20 13 6

30 13 9

40 13 24

4.2.2.2 Distribution of False Positives:

Figure 4.2 is a box-and-whisker plot of the decoy file accesses by the legitimate users for

the four different values of decoys planted in the file system. The figure shows that for the

case of ten decoys, only one false positive was recorded for any single user, whereas that

number reaches up to nine false positives-point when 40 decoys are placed in the file system.

Although the ”‘nine false positives”’ data point is considered an outlier in this figure, more

than 50% of the users who placed 40 decoy documents in their file systems did accidentally

access at least one decoy file and experienced some level of interference with their normal

activities. As the figure shows, not only does the likelihood of interference for each user

grow with the number of decoy documents placed in the file system, but the amount of

interference for each affected user increases super-linearly as well.
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Figure 4.2: Distribution of the Number of Decoy Document Accesses by Legitimate Users

4.2.2.3 Placement of Decoy Files:

Figure 4.3 shows the number of false positives by decoy location. The specific directory

locations are listed in Appendix C.

The number of false positives varies widely by decoy document path or location. It is

noteworthy that fifteen of the top 40 decoy file locations only were accidentally accessed by

the legitimate users. Many decoy files were never accessed by these users, demonstrating

that non-interference of the decoy documents varies by the chosen decoy placement in the file

system. While the ideal decoy placement that minimizes interference should be customized

by the user based on his or her file system access habits, it seems that certain locations

should be avoided such as the high traffic locations or locations that get automatically

scanned by applications installed on the system.

The highest number of false positives are due to accesses to decoy files placed in location

number 14, i.e. under the Downloads directory. While eight of the nine false positives in this

location were triggered by a single user, the results show that decoy files in this location can

introduce a high level of interference. This is not surprising knowing that most browsers save

downloaded files in the Downloads directory by default, thus forcing a lot of user activity
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and traffic on files in this directory.

4.2.2.4 Differentiability to the User is not Enough:

The second decoy file location that exhibited a high number of false positives according to

Figure 4.3 is the My Music directory. These false positives can be accidentally triggered by

the legitimate users when manually browsing the directory, but they are more likely to be

triggered by media players that are scanning the directory in order to discover recently added

music files. Even though this scanning for media files is initiated by the user who knows

exactly which files are decoy files, the media player or application performing a thorough

scan cannot identify these decoy files, and therefore will access them in an attempt to

identify whether they are indeed music or video files.

I will further investigate the decoy placement strategies in the next section, where I will

show that decoy placement, and consequently decoy conspicuousness, is also tightly linked

with the ability to detect masqueraders.

Figure 4.3: Accidental False Positive Decoy Document Accessed by Legitimate Users by

Decoy Location

79



CHAPTER 4. EVALUATION OF DECOY DOCUMENT PROPERTIES

4.3 User Study 2

4.3.1 Experiment Design

In this experiment, I investigate two decoy deployment-related properties, namely enticing-

ness and conspicuousness. Evaluating the design-related properties such as believability,

particularly as it pertains to the contents of the decoy document, is not very relevant to

the masquerade attack problem. Recall that I detect access to the decoy files before the

attacker sees the contents of the file. I ensure variability by tagging all files on the system

with a pseudo-random HMAC tag. Detectability can be ensured through the use of the

DDA sensor, by the protection of the sensor, and the protection of the HMAC key (used to

compute the HMAC tags of the decoy files) from any tampering attempts. Note that any

attempt to modify the HMAC tag by the attacker requires access to the decoy file and its

loading into memory, which triggers an alert by the DDA sensor.

I seek to answer the following questions through this experiment:

1. How many decoy documents are needed to detect, with a high probability, masquer-

aders looking to steal information?

2. Where are decoy documents most likely to trap masquerade attackers, i.e. in which

directories should one place the decoys in order to maximize the likelihood of catching

a masquerader, while not interfering with the legitimate user’s normal activities?

3. What is the number of decoy documents that leads to the best trade-off between

masquerade detection while not interfering with the legitimate user’s activities?

4. To what extent do decoy file accesses reveal a masquerader’s malicious intent?

4.3.2 Experimental Set-Up

I conducted a set of experiments where I simulated masquerader attacks, as described in

Section 3.3.4. I installed the DDA sensor on the lab computer used in the human subject

study, and planted n decoy files in the local file system. I monitored when and where the

masqueraders accessed these decoy files. Table 4.2 shows how I varied the number of decoy
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documents n for the four experiments. Each experiment involved ten participants acting as

masqueraders.

In order to reduce experimenter bias when placing these decoy documents, I have sur-

veyed 52 computer science students as to where they would place decoy documents on their

file systems. The directory trees, shown in Figures 4.4, 4.5, 4.6 and 4.7, indicate where I

placed the decoy documents for each experiment. Recall that these decoy locations have

been selected based on the reports collected from the fifty-two student participants in the

first human subject study.

The number of decoy documents n is the independent variable that I control in this user

study. The number of decoy file touches is the dependent variable on the number of decoys

n planted in the file system.

The file system used in our lab had more than 100,000 files indexed by desktop search

tools installed on the system, and totaling a size of more than 70 GBytes. The file system

included at least eighty files containing personal information that could be used for identity

theft or financial gain. The contents of certain personal files were sanitized, so that no

personal information was leaked.

Table 4.2: Total Number of Decoy Alerts by Experiment

Experiment Number of Placed Decoys Number of Decoy Alerts

1 40 96

2 30 90

3 20 71

4 10 56

Before conducting the experiments, I ensured that all non-decoy documents on the file

system were tagged with a random tag, that is indistinguishable from the HMAC tag of the

decoy documents. This was done so that a more knowledgeable attacker cannot distinguish

the decoy files from the normal files by editing them through a hex editor and looking for

the HMAC tag within the document. This ensures the fifth desirable property of decoy

documents, namely that they are not easily distinguishable as decoys to the attacker.

Besides tagging the real non-decoy files, I have indexed all the decoy files using the
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available desktop search tools on the system. Recall that the DDA sensor issues an alert

if the contents of the decoy file are read or if the file gets loaded into memory. Therefore,

indexing the decoy files during the deployment phase can reduce potential false positive

alerts that might be issued by the DDA sensor during the experiments. The goal is to

have more reliable and accurate results, where the sensor alerts are truly caused by the

masquerader’s activity, and not by desktop search tools suddenly scanning the decoy files.
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4.3.3 Experiment Findings

In the following section, I list the major findings of this human subject study.

4.3.3.1 The Use of Decoys is Effective:

The main purpose of the use of decoy files is to detect masquerade attacks. While non-

interference with legitimate users’ activities is desirable, decoys would be useless if they

fail to attract masqueraders by being enticing and conspicuous. The results displayed in

Figure 4.8 suggest that at least one access to a decoy document was detected by the DDA

sensor for every masquerader, regardless of the number of decoys planted in the file system.

This finding shows that well-placed decoys can be very effective for masquerade detection.

When combined with other intrusion detection techniques, they could potentially provide

even more effective and accurate detectors.

4.3.3.2 Recommended Number of Decoys:

Figure 4.8 shows the distribution of the number of decoy file accesses by attackers in the four

experiments by the number of decoy files placed in the file system. One could clearly see that

the average number of touched decoys (horizontal line within each box) is comparable in

the case of 20, 30, and 40 decoys. Whereas it is slightly lower (5.6 touches) when 10 decoys

are planted in the file system. Considering Figures 4.2 and 4.8 then, one can conclude that

the use of twenty decoy documents provides the best trade-off between detection capability

and non-interference. Although the minimum number of touched decoys jumps from 1 or 2

to 5 in the case of 40 planted decoys, this high number could be attributed to the location

of the planted decoys and not merely to the higher number of decoys. This can be clearly

seen in Figures 4.12 and 4.13 which show the conspicuousness of decoy files 33 and 37 for

instance. I will elaborate on this point in the following subsection.

4.3.3.3 High Number of Decoy Accesses is Indicative of Attacker’s Malicious

Intent:

The question is how many of these decoy file accesses are caused by the masquerader’s

malicious activity. To answer this question, I conducted an experiment with three groups
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Figure 4.8: Distribution of the Number of Decoy Document Accesses

of ten participants each. Each group was given a different scenario to execute: a ‘malicious

attacker’ scenario, a ‘benign masquerader’ scenario, or a ‘neutral’ scenario. The scenarios

are described in Appendix A. In all three scenarios, I placed 30 decoys in the file system

of the lab computer that served as the participant’s coworker’s computer. The benign and

malicious scenarios can provide a baseline to compare the decoy touches of a malicious

masquerader to. Figure 4.9 shows the distribution of decoy touches by scenario. One can

clearly see that the number of decoy touches is very low in the benign and neutral scenarios

when compared to the malicious scenario. For the following mean decoy touch values, the

p-value of the statistical z-test is lower than p=0.001: 9 decoy touches in the malicious case,

0.05 touches in the benign case and 0 touches in the neutral case).

4.3.3.4 The Use of Decoys is Efficient:

According to the results shown in Figure 4.10, seventeen attackers were detected during the

first minute of their masquerade activity, while another ten were detected during the second

minute after accessing the victim’s computer. All masqueraders were detected within ten

minutes of their accessing the system under attack. Figure 4.10 also shows that for attackers

31-40, who participated in experiment 4 with 10 planted decoy documents only, the average
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Figure 4.9: Distribution of the Number of Decoy Document Accesses by Scenario

period of undetected masquerade activity (3.6 minutes) is much longer, than for attackers

1-10 (1.3 minutes), 11-20 (1.6 minutes), and 21-30 (1.2 minutes).

Attackers 1 and 14 recorded the longest times of undetected masquerade activity. These

attackers had a different strategy for finding personal information. One attacker was mostly

after information related to the victim’s online banking activity, rather than after informa-

tion that existed locally on the file system. The attacker, therefore did not navigate or

search the My Documents directory, where most decoys were located. Not surprisingly, the

first decoy that the masquerader hit was decoy number 16, located under Internet Explorer’s

Favorites directory. Attacker 14, on the other hand, suspected that no important informa-

tion would be stored under the user’s file system, but rather under the administrator’s file

system, which is why he or she hit a single decoy document, namely decoy number 8 (see

Appendix C for the exact decoy location). Note that attacker 1 took part in the first exper-

iment where 40 decoys were planted, and attacker 14 participated in experiment 2, where

30 decoys were used. So even with a larger number of decoys, the attackers managed to
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escape detection for 10 minutes, which suggests the need for a well thought-out placement

of decoys that covers all potential attacker strategies for locating and stealing information.

Consider the null hypothesis that all masquerade activity within a 10-minute time win-

dow gets missed with at least 10% probability. Based on the observed results, we can reject

this hypothesis at the 2% significance level with a p-value=0.0148. In other words, we can

claim that with a 98% probability, the probability of detecting a masquerader within 10

minutes of his or her activity on the victim’s system is at least 90%.

Figure 4.10: Detection Time by User

4.3.3.5 Decoy Placement is Important:

The objective is to identify the decoy document locations that would be less interfering with

the normal activity of the legitimate user, while being conspicuous to potential attackers.

While the experiments have not been conducted on the same system, and the decoy file

locations vary by normal user (customized for his or her own non-interfering use of the

system), I argue that the cumulative results do provide ground for comparison, as I have
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Figure 4.11: Decoy File First Touches

monitored the use for about seven days on average for each user, for a total of 52 users.

Figure 4.12 shows the number of accesses to each decoy file by experiment. Note that

the first ten decoy documents were present during all four experiments, whereas the decoys

31-40, for instance were in place during the last experiment only. This explains the falling

blue line in Figure 4.12, which depicts the maximum number of potential attackers accessing

these decoys, knowing that there were ten masqueraders in each experiment.

The number of decoy file accesses varies widely by file location. Again, the file locations

are available in Appendix C. Some files were accessed more than 25 times, while others,

namely nine out of the forty decoy files, have never been touched by any attacker. This

underlines the importance of decoy placement in highly conspicuous locations.

Considering figures 4.12 and 4.2 for instance, one can notice that the decoy placed in

location 18 was touched by 28 masqueraders. Decoys placed in the same location by the

participants in the first user study were not touched by the legitimate users and did not

trigger any false positives. On the other hand, decoys placed in locations 19, 23, 25, and

31 for instance caused several false positives without catching any masquerader. The two

figures clearly show that the location of the decoy document plays an important role in its

detection capability and non-interference with normal user activities. While the locations

that yield the least interference depend on the legitimate user’s file system access patterns,

there is clearly room for placing decoys under directories, so that high detection rates can
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be achieved with very low interference rates.

Figure 4.12: Number of Decoy Document Accesses

4.3.3.6 Conspicuousness Comes First:

In order to understand how effective each decoy file was in catching masqueraders, I have

ranked the decoy files based on the probability of an attacker accessing them in Figure 4.13.

Recall that an access in this case refers to viewing, editing, copying, zipping, or moving

the decoy file. Considering Figure 4.13 and the table in Appendix C, the top three decoy

files that are most likely to be accessed by an attacker reside on the Desktop. These three

files reside respectively in the Important, Notes and Insurance directories. The first file is a

payment receipt. The second file includes a budget plan, and the third file is a copy of test

results from a medical lab. Other decoys with contents similar to the contents of decoy 18,

such as decoys 4 and 5 which constitute payment receipts also, did not achieve the same

detection capability as decoy 37. This leads us to the conclusion, that conspicuousness is

more important than enticingness. Although the attackers were mostly after information

with financial value, they were more likely to access files with health-related information,

which were highly conspicuous (located on the desktop), than other decoys with more
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relevant information to their objective, i.e. finance-related information.

Figure 4.13: Probability of an Attacker Opening a Decoy File

4.4 Discussion and Recommendations

We have shown in Chapter 3, that the masqueraders in our human subject study tended to

search the file system manually, i.e. by navigating the file system, rather than automatically

through the use of a desktop search tool. Figure 4.14 depicts the distribution of decoy

document accessed by the search method. It shows that about 88% of decoy document

touches resulted from a manual search of the file system that led the masquerader to come

across the decoy and take the bait by accessing it. Only 12% of the decoy touches were the

result of a search query submitted by the masquerader to a desktop search tool. Although

this finding is somewhat not expected, it reinforces the importance of the conspicuousness

of decoy files.

Although different users may have different patterns of accesses to authentic files depend-

ing on what they use their computer for, they are not expected to access decoys differently.

For instance, a novelist or a technical writer may have a different file access pattern than
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Figure 4.14: Decoy File Touch Distribution By Search Method

someone who writes music, makes videos, or runs large statistical analyses. However, these

users are not necessarily more or less likely to access self-planted decoys than others. The

results are not expected to vary based on the user’s file access pattern as long as the decoys

are strategically placed by the user according to the guidelines and best practices described

in this chapter. However, I note that the threat model I considered focused on attackers

looking to steal PII information. If a computer is used for business for instance, it may

contain intellectual property information or other highly confidential files, besides PII in-

formation. The optimal number of decoys required in this case may slightly change in order

to effectively cover the various types of files and directories that a masquerader might be

interested in stealing information from.

Below, I list a few recommendations related to the deployment of decoy documents for

effective masquerade attack detection based on the findings of the human subject studies.
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4.4.1 Recommendation 1

While, the detectability property of the decoy documents is the most important property,

the second user study has shown how important the conspicuousness property is. The latter

is even more important than the enticingness property, as revealed by the user study.

I recommend considering the following ranking of decoy properties when designing and

deploying decoy documents for masquerade attack detection. The ranking is based on

decreasing importance of the decoy properties.

1. Detectability

2. Conspicuousness

3. Enticingness

4. Non-Interference and Differentiability

5. Believability

The importance of the variability property varies by attacker sophistication. Similarly,

the importance of the decoy shelf-life depends on the deployment environment.

4.4.2 Recommendation 2

While the number of false positives varies widely by user and by decoy document location,

overall less than 1 false positive per user per week was recorded on average. This is a very

encouraging number, but it could be reduced even further with more intelligent placement

of the decoy documents. For example, the decoy files placed under the My Pictures and My

Music directories could be accessed by applications scanning the file system for picture or

music files respectively. Such accesses are not deliberate accesses by the legitimate user and

could be avoided, if the decoy files were placed under directories that do not get scanned

by such applications by default.
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4.5 Conclusion

4.5.1 Chapter Summary

In this chapter, I presented an experimental evaluation of the different deployment-related

properties of decoy documents. I also made a few recommendations based on the find-

ings from my experiments. These recommendations should guide the deployment of decoy

documents for effective masquerade attack detection. By way of summary, I presented:

• a host-sensor that detects access to decoy documents when loaded in memory using

stealthy HMACs embedded in the decoy documents,

• a measurement of how effective decoys can be in detecting masquerade activity,

• an investigation of the trade-offs between deployment properties of decoy documents

when applied to the masquerade attack detection problem through human subject

studies, and

• a set of recommendations for the effective use of decoy documents for masquerade

attack detection.

4.5.2 Future Work

In my future work, I will repeat the human subject studies in different environments other

than universities, in order to determine to what extent my results are generalizable.

I will also evaluate other decoy document properties, including the believability of doc-

uments. Furthermore, I will investigate the decoy document properties for masquerade

attacks perpetrated through the installation of rootkits and malware such as Torpig. Fi-

nally, I will study how attacker behavior changes based on the attacker’s knowledge about

the monitoring mechanisms running on the victim’s system and the perception of risk and

expected financial gain.
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Chapter 5

Diversifying Detection Approaches

In this chapter, I investigate the combination of search behavior anomaly detection with

the monitoring of trap-based decoy files. I evaluate the effect of the combined detection

approach on detection accuracy. I postulate that this provides stronger evidence of malfea-

sance, and therefore improves the detector’s accuracy. Not only would a masquerader not

know the file system, they would also not know the detailed contents of that file system

especially if there are well placed traps that they cannot avoid. I conjecture that detecting

abnormal search operations performed prior to an unsuspecting user opening a decoy file

will corroborate the suspicion that the user is indeed impersonating another victim user.

Furthermore, an accidental opening of a decoy file by a legitimate user might be recognized

as an accident if the search behavior is not deemed abnormal. In other words, detecting

abnormal search and decoy traps together may make a very effective masquerade detection

system 1.

5.1 Introduction

In the previous chapter, I studied the placement of decoy files in order to maximize the

detection probability and speed of fraudulent activity on a local file system. Monitoring

decoy files alone however, may not provide enough evidence for fraudulent activity. A

legitimate user may accidentally access a decoy file, or a masquerader may be able to

1Portions of this chapter were published in [Bowen et al., 2009a].
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escape detection if the decoy files are not well-placed on the file system. Several measures

can be taken to maximize the likelihood that an adversary stumbles upon the decoy file,

such as increasing the conspicuousness and enticingness of the file [Bowen et al., 2009b;

Ben-Salem and Stolfo, 2011a]. However, the risk that an intrusion goes unnoticed or does

not get detected quickly enough still exists. Moreover, if the adversary knows that the

system is baited, he or she may be more careful with accessing decoy files. For these

reasons, I propose to supplement monitoring access to decoy files on a host with profiling

user behavior in order to get more coverage for suspicious activity that could be indicative

of a masquerade attack.

On the other hand, anomaly detectors suffer from low accuracy, and particularly from

high false positive rates. Combining several base classifiers into one ensemble classifier

should aid in overcoming this shortcoming. Each classifier uses a different modeling algo-

rithm to profile user behavior. Base models can be aggregated by learning from labeled

data or by achieving consensus among the individual models. The ensemble methods out-

put collectively one classification label that reflects the meta-learning from these models or

the consensus amongst them.

Techniques for creating ensemble classifiers using multiple diverse classifiers have been

studied extensively [Chawla et al., 2001; Dzeroski and Zenko, 2002; Dietterich, 2000; Domin-

gos, 2000]. The objective of using such ensemble methods is to improve robustness and

classification accuracy over single-model methods. Improvement in classification accuracy,

however, can be achieved only if the base models are mutually independent. This conditional

independence assumption may not always hold true though.

In the absence of the independence condition, how effective are these ensemble anomaly

detectors, i.e. how effective is model diversity? Tan and Maxion studied the effects of

using diverse anomaly detection algorithms on detector performance [Tan and Maxion,

2005]. They investigated how various sequence-based anomaly detectors dealt with a spe-

cific anomaly, namely a ‘foreign’ sequence, i.e. a sequence that has never been seen during

the training phase of the detection algorithm. Their results showed that limited perfor-

mance/anomaly coverage gains can be achieved by combining various anomaly detection

algorithms. The anomaly coverage gains are mostly seen at the edges of the anomaly space.
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This indicates that such gains are highly dependent on the characteristics of the detected

anomaly and on the parameter settings of the anomaly detector. Furthermore, these limited

gains may not justify the additional classifier training and deployment cost and performance

overhead that are likely introduced through the combination of different classifiers.

Moreover, if the anomaly space of various classifiers is mostly overlapping, the ensemble

method does not offer any additional protection mechanism against evasion attacks. Note

that anomaly detectors are subject to mimicry attacks, where the attacker tries to mimic

the legitimate user’s behavior. In this case, the attacker’s activities will not be detected as

abnormal, and consequently the attacker can escape detection. If the different classifiers

have highly overlapping anomaly spaces, then, when mimicking normal user behavior to

successfully evade detection by one classifier, an attacker is likely to escape detection by the

other classifiers. Combining different classifiers in this case does not constitute a defense

mechanism against mimicry attacks.

To overcome the limitations of model diversity, I propose diversifying the detection

techniques. I combine the following two detection techniques for the purpose of detecting

masquerade attacks: (1) the user search behavior profiling technique presented in

Chapter 3, and (2) the baiting technique presented in Chapter 4, where access to decoy

documents is monitored. Decoys files are strategically placed by the legitimate user in his

or her own file system. The user is not supposed to touch these files after installing them

on his or her system. Any access to these decoy documents is then considered indicative of

masquerade activity and triggers an alert.

The two detection techniques are orthogonal. Recall that I conjectured that, if a

masquerade attack takes place, it can be manifested in both data streams that are monitored

and modeled by the individual detection techniques, namely user search behavior on the

victim’s system, and touches to decoy documents. Despite this, the two data streams remain

relatively independent in the absence of masquerade attacks. Based on this conjecture, I

show that combining the two techniques can be used to improve the accuracy results of

a masquerade attack detector. The search behavior profiling approach alone achieved a

100% detection rate with a 1.12% FP rate [Ben-Salem and Stolfo, 2011b]. My objective

is to substantially reduce this FP rate, without significanlty affecting the true positive or
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detection rate. I also show that the combination of the two techniques can be used as a

defense mechanism against evasion attacks targeted at any user behavior anomaly detector.

5.2 Motivation and Approach

In systems, the concept of diversity is applied to system design, process, as well as argu-

ment diversity. Similarly, in anomaly detection, diversity can be applied along different

dimensions listed below:

1. Diversity in the design of IDSs, thus providing reliability when sensors are subject to

the same software/system attack.

2. Diversity in modeling algorithms, as some algorithms are more suitable for certain

user profiles and behaviors than others. For example, support vector machines, while

making very effective classifiers in the general case, may not make the best classifier

in the case of a user whose behavior is closest to the ‘average’ user behavior as has

been demonstrated in our prior work [Ben-Salem and Stolfo, 2010].

3. Diversity of features used by one modeling algorithm in order to accurately model the

unique and distinct user behavior.

4. Diversity of data streams and events used for modeling by the anomaly detector.

‘Algorithmic diversity’ does not necessarily improve detection accuracy due to the highly

overlapping anomaly spaces [Tan and Maxion, 2005]. However, combining diverse and

orthogonal detection technique may provide such improvements.

5.2.1 Detection Approach

A sensor was developed to detect data theft attempts performed by masqueraders on single-

user systems. The sensor may be expanded to detect ‘need-to-know’ policy violations per-

petrated by traitors on multi-user systems, such as file servers. We refer to this sensor as the

RUU (Are You You?) sensor. The RUU sensor is composed of two sensors. The first sensor

is the User Search Behavior (USB) sensor which uses the modeling approach described in
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Chapter 3. As its name indicates, this sensor profiles user search behavior, and detects any

abnormal search activity. The second sensor is the Decoy Documents Access (DDA) sensor

described in Chapter 4, which monitors any access to the decoy documents embedded in the

file system. It acts as an oracle to the USB sensor. The sensor also includes a monitoring

infrastructure, which I describe in Section 5.5.1. The monitoring infrastructure ensures that

the sensor does not get tampered with.

The integrated RUU sensor provides three mitigation strategies when it suspects mali-

cious masquerade activity. These strategies can be selectively implemented depending on

the confidence level of the sensor that malicious activity is taking place:

1. Sending an alert message to a remote server

2. Displaying a set of challenge-response questions that the user must correctly respond

to: The answers to these questions are given by the owner of the system during the

installation of the sensor.

3. Stealthily recording audio and taking a picture, if a webcam is available: The data

will be kept on the system and could be used as evidence against the malefactor if a

masquerade attack did indeed take place.

Here I describe how each component of the RUU sensor works, and how the USB and

DDA sensors are integrated in order to detect masquerade attacks.

5.2.1.1 USB Sensor

The USB sensor implements the modeling and detection approaches described in Chapter 3.

It detects abnormal user search behavior after profiling user actions and forming a baseline

of search behavior. Then, it detects abnormal search behaviors that exhibit large deviations

from the baseline. Such deviations signal a potential masquerade attack.

The sensor builds a one-class Support Vector Machine model that profiles the user’s

search behavior. Vectors with three search-related features are extracted for each two

minute quantum of user activity. Recall that the three search behavior-related features

described in Section 3.5.1 are:
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1. The number of automated search-related events

2. The number of file touches

3. The percentage of file system navigation user actions

I identify two thresholds per user model which I use to classify the observed user search

activity as normal, abnormal, or non-identifiable. The first threshold thr1 is determined

empirically, so that the miss rate or false negative rate is minimized. A second threshold thr2

is also set to minimize the FP rate. During the detection phase, I continuously monitor user

search activity, and extract a feature vector v every two minutes. I measure the deviation

d between current user behavior (as capture in vector v) and the historical user behavior

as defined by the user model u. The distance d is compared to thr1 and to thr2 in order

to determine whether there is enough evidence for masquerade activity. Further details are

given in Section 5.2.1.3 .

5.2.1.2 Monitoring Access to Decoy Documents

I use the decoy documents described in Section 4.1.1 and downloaded from the Decoy

Document Distributor (D3) [Bowen and Hershkop, 2009] to bait the masquerader. Recall

that the DDA sensor detects when decoy documents are being read, copied, or zipped by

validating the HMAC tag embedded in the header section of the file.

During the deployment of the decoy documents, the user can take certain actions to

increase the conspicuousness and the enticingness of these decoys. For instance, the user

can strategically place them in the file system so that they are easy to spot. Furthermore,

the user can protect them using passwords to increase their enticement. They can also

carefully choose the file names so that they are easily recognizable as decoys for him or

her, while remaining enticing for the adversary. For instance, the file name could include

the name of a person who is outside the social network of the user. This would make the

file easily recognizable as a decoy file for the user, but could make it intriguing for the

attacker. Also, during deployment, the user tags all non-decoy documents on the file with

a random tag, that is indistinguishable from the HMAC tag of the decoy document. This

is done so that a more knowledgeable attacker cannot distinguish the decoy files from the
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normal files by editing them using a hex editor and looking for the HMAC tag within the

document. Moreover, file indexing during the deployment phase can reduce potential false

positive alerts. False positives may arise when the user submits search requests that would

require indexing processes to access the decoy files.

Other actions can also be taken to reduce the interference of these decoys with the

user’s normal activities and to minimize false alerts by the sensor that are not related to

masquerade activities. I already presented some recommendations and best practices for

maximizing the effectiveness of decoy documents in detecting masquerade activity based on

the human subject studies presented in the previous chapter.

5.2.1.3 Integrated Masquerade Detection Approach

I use the DDA sensor as an oracle for the USB sensor. I explained in Section 5.2.1.1 that

two detection thresholds are defined for each user search model thr1 and thr2. Recall that

thr1 is set, so as to minimize the miss rate or false negative rate. If the user behavior

captured in feature vector v is similar enough to the user model u which captures the user’s

historical behavior, then the user behavior should be deemed normal. In other words, if

the distance d between the v and user model u is smaller than thr1, then no masquerade

activity is suspected, and no alert is generated. If, on the other hand, feature vector u

exhibits a highly abnormal search, i.e. if d > thr2, then an alert is generated. However,

if thr1 < d ≤ thr2, then the USB sensor checks whether any excessive access to decoy

documents has been recorded by the DDA sensor. If so, then an alert is generated and

the right mitigation strategy is initiated. Otherwise, the user search activity is not deemed

suspicious enough. Figure 5.1 describes the overall decision process related to masquerade

alert generation using the two sensors.

5.3 Experimental Evaluation

5.3.1 Dataset

Recall that I use the RUU dataset which consists of both normal user data and simulated

masquerader data. The normal user data has been collected for 18 users over a period of one
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Figure 5.1: Alert Generation Decision Process

week on average, while simulated masquerader data has been collected for 40 masqueraders.

To gather the latter dataset, I ran four experiments as detailed in Chapters 3 and 4. I started

with 40 decoy files in the first experiment and randomly selected 10 participants from the

volunteers to act as masqueraders. In the second experiment, I reduced the number of

decoy files to 30, all located in the top 30 most popular locations selected by the normal

user population. Similarly, the third and fourth experiments included 20 and 10 decoy files

respectively.

5.3.2 Experimental Setup

I use 80% of the data to train one-class SVM models using the three search-related features.

I used the LibSVM tool kit to build the models [Chang and Lin, ]. I build a linear decoy

access classifier for each user, which checks the history of accidental accesses of the user to

the decoy documents on his or her file system. Based on this historical behavior, I select

a threshold, beyond which access to decoy documents is considered excessive or suspicious,

in other words indicative of masquerade acivity. These models are also developed for each
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individual user by using 80% of the decoy access data. The remainder of the user data, as

well as the simulated masquerader data, are used for testing the user models.

5.3.3 Detection Accuracy

I ran an experiment where I supplemented the one-class user search behavior models with a

linear classifier based on decoy file accesses, as described in Section 5.2.1.3 and Figure 5.1.

Table 5.1 shows that using this combined or integrated approach achieves a 99.94% detection

rate or TP rate with a 0.77% FP rate. The TP rate is almost equivalent to that achieved by

the search profiling approach only, while the FP rate is 36% lower. The FP rate translates

to one false positive every 260 minutes, or every 4 hours and 20 minutes, as opposed to one

false positive every 180 minutes or 3 hours.

Table 5.1: Experimental Results of the Search Profiling and Integrated Modeling Ap-

proaches using 2-minute Quanta for Feature Vector Extraction

Method True Pos. (%) False Pos. (%)

Search Profiling 100 1.12

Combined Approach 99.94 0.77

I can further reduce the frequency of false positives to one every 51
2 hours approximately

(338 minutes), if I use the same modeling approach over 5-minute quanta. This is derived

from the 1.48 false positives recorded every 5*100=500 minutes, as reported in Table 5.2.

While this is still a relatively high frequency of false positives, it can be even further reduced

if I increase the look-ahead time window where I check for decoy accesses. Recall that I

postulated that detecting a high-volume search followed by a decoy file access corroborates

the suspicion that the user is impersonating another victim user. In the current modeling

scheme using 2-minute (or 5-minute) time epochs, I account for decoy accesses that happen

simultaneously with abnormal search actions only. If I use a lookahead window to check

for potentially imminent decoy file accesses, I can improve the accuracy performance even

further.

To compare the individual classifiers for each user using the two detection schemes, I

build a ROC curve for each classifier and calculate the corresponding AUC score for each.
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Table 5.2: Experimental Results of the Search Profiling and Integrated Modeling Ap-

proaches using 5-minute Quanta for Feature Vector Extraction

Method True Pos. (%) False Pos. (%)

Search Profiling 100 2.38

Combined Approach 100 1.48

Figure 5.2 displays the AUC scores achieved by both detection approaches by user model.

The results show that each user model using the combined detection approach achieves a

higher or equal AUC score, i.e. equal or better accuracy results than the user model based

on the search profiling approach alone. The best accuracy improvements are achieved for

users 5, 11, 13 and 14. These user models scored the top four FP rates amongst all user

models based on search profiling alone. For these specific users, the FP reduction rates

ranged between 33% and 67% when using the combined detection approach. This confirms

the efficacy of using this combined approach to limit the number of false positives and

improve the accuracy of the masquerade attack detector.

Figure 5.3 depicts the relationship between the frequency of the occurrence of false alerts

and the length of the modeling epoch. The figure shows that the longer the modeling epoch,

the lower the frequency of false alerts issued by the masquerade detector for 100% detection

rates.

5.4 Defending Against Evasion Attacks

Any anomaly-based intrusion detection system (AIDS) is subject to mimicry attacks. Tan

et al. [Tan et al., 2002] identified two mechanisms for performing mimicry attacks: (1)

contaminating the learning and/or model update process by inserting attack data into

normal user data, and (2) intertwining attacks with normal user activity so that the attacks

go undetected, which is also known as an evasion attack. I assume that the classifier

training process has not been subject to a poisoning or data contamination attack, and

focus the analysis here on evasion attacks. Wagner and Soto listed six types of evasion

attacks against host-based intrusion detection systems using a malicious sequence of user
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(a) Modeling Using Feature Vectors per 2-minute

Quanta

(b) Modeling Using Feature Vectors per 5-minute

Quanta

(c) Modeling Using Feature Vectors per 15-minute

Quanta

Figure 5.2: AUC Comparison By User Model for the Search Profiling and Integrated De-

tection Approaches

commands or system calls as previously noted in Section 2.5. Most of these attacks do not

apply to the RUU sensor, as I model only frequencies of user activities and not sequences

of user commands. Below I discuss whether the RUU sensor is vulnerable to these attacks.

1. The lip under the radar attack: The attacker avoids causing any change to the observ-

able behavior of the application, i.e. he or she does not launch any processes that the

legitimate user would not normally run. The attacker uses already running processes

only, and at the same rate, as the victim user. This is equivalent to the ‘slow-and-low’
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Figure 5.3: False Alert Frequency By Modeling Epoch Length

attack. When trying to evade the RUU sensor, the attacker would then have to refrain

from engaging in any large-scale search activities. He or she would also have to access

files at a slow rate, so that his or her activity goes undetected. Consequently, it would

take them longer to find any interesting or relevant information that could be stolen.

Although masquerade activity in this case would take much longer, the adversary is

still very likely to access decoy files. Based on the human subject studies described

in Chapter 4, every attacker who accessed the victim’s system was detected within 10

minutes, regardless of his or her search behavior. The user study results demonstrated

that 90% of masqueraders could be detected by monitoing decoy files accesses alone

with 98% confidence as noted in Chapter 4.

2. The be patient attack: The attacker waits for the time when the malicious sequence

is accepted. The RUU sensor does not implement sequence-based modeling, and,

therefore, is not vulnerable to this type of attack.

3. The be patient, but make your own luck attack: The same argument applied to the

previous attack is valid also for this attack.

4. The replace system call parameters attack: This is also not applicable to the RUU

sensor as the detection approach does not rely on monitoring system calls.
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5. The insert no-ops attack: Since the features used by the USB sensor are based on

frequencies of certain user-initiated activities and processes rather than on modeling

sequences of system calls, inserting does not have a significant impact on the RUU

sensor, and can potentially only slow down user activities. An extreme case of this

could turn into a slow-and-low attack, which I discussed under the first type of evasion

attacks.

6. The generate equivalent attacks attack: An attacker might decide to load the entire

search index file at once into memory and directly read it instead of searching for files

using the desktop search tool user interface. This would reduce the number of user

search actions detected by the RUU sensor, and may impact its ability to detect the

attacker’s fraudulent activity if relying on modeling search behavior only. Again in

this case, monitoring accesses to decoy files becomes more significant in detecting the

attacker’s activity.

I conjectured that combining the baiting technique with the user search behavior pro-

filing technique serves as a defense mechanism against mimicry attacks, or evasion attacks

in particular. I assume that user models and training data were not contaminated with

masquerader data during the model training or update phases. In order to validate my

conjecture, one would ideally have a masquerader mimic a legitimate user’s behavior. How-

ever, when simulating masquerade attacks as described in the ‘capture-the-flag’ exercise, it

was extremely difficult to make the volunteers participating in the user study mimic the

behavior of a specific user. To evaluate my conjecture though, I reviewed all search be-

havior models and identified the user who had the most similar search behavior to that

exhibited by masquerade attackers. To identify this user, I measured the similarity between

the legitimate user behavior and masquerade behavior by applying the probability product

kernel to the distribution of their feature vectors [Jebara et al., 2004]. User 13 showed the

closest behavior to that of masqueraders as can be seen from Figure 5.4. This figure depicts

the distribution of the three search-related features for user 13, and for all masqueraders

combined. I can support my conjecture by reviewing the results achieved by this user’s

model in Figure 5.2, which are indeed significantly better than the results achieved using
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the search behavior modeling technique alone, particularly when I extend the monitoring

and modeling window to 15 minutes.

Figure 5.2(c) clearly shows how all attacks are detected for user 13 when using the

combined detection approach, while a high number of false positives are still recorded if

only the search profiling approach is used.

One might expect that hardening the detector against mimicry attacks could drive

higher FP rates. The experimental results show the opposite effect. Figure 5.5 helps in

understanding how this can be achieved. When using the search profiling approach only,

the circular point above the threshold line in Figure 5.5(a) triggers a false positive. If I use

a lower threshold beyond which search behavior is considered suspicious as in Figure 5.5(b),

I can widen the anomaly space for the detector. This in turn means that the adversary

has to work harder in order to faithfully mimic the legitimate user’s behavior. However,

this alone may introduce false positives. By combining search profiling with the baiting

technique, I can use a second threshold for the highly abnormal search behavior, beyond

which a 100% TP rate is achieved. For points that fall in the ‘ambiguous’ space between

the two thresholds, the access to decoy information can be used to inform the classification

decision. The key to this process is the use of decoy documents that are strategically placed,

highly-enticing and conspicuous in the file system, so that the attacker is very likely to touch

them. The ‘capture the-flag’ exercise showed that all masqueraders did indeed touch at least

one of the placed decoy files as reported in Figure 4.10.

5.5 Sensor Architecture

In Sections 5.2 and 5.3 of this chapter, I discussed how I combine the USB and DDA

sensors into one classifier, the RUU sensor, which makes a single classification decision. In

this Section, I present the remaining components of the RUU sensor. The full host sensor

is shown in Figure 5.6. Besides the USB and DDA sensors, one of the main components of

the RUU sensor is its integrated monitoring infrastructure,which serves for the detection of

any tampering attempts.
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(a) Feature Vectors for User 13

(b) Feature Vectors for Masquerade Attackers

Figure 5.4: Feature Vectors for User 13 and Masquerade Attackers
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(a) Search Profiling Classifier Example

(b) Search Profiling and Baiting Classifier Example

Figure 5.5: Anomaly Space for the Search Profiling and the Combined Approach Classifiers

5.5.1 Sensor Monitoring Infrastructure

Research shows that host sensors are increasingly being disabled by malware [Llet, February

9 2005], and could similarly be disabled by masqueraders. In order to prevent, or at least

detect any tampering attempts directed against the RUU sensor, I implemented a set of self-

monitoring monitors that monitor the critical processes of both sensors. The monitors can

be shutdown only using a unique random sequence that is accessible only to the legitimate
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Figure 5.6: Architecture of the RUU Masquerade Attack Sensor

user of the system, on which the host sensor is running. Any attempt to shutdown the

sensor or one of the monitors not according to the right shutdown sequence results in an

alert and is highly indicative of potential malicious activity on the system.

Several solutions for tamper-proofing software exist as noted in Section 2.6. They are

designed to prevent the unauthorized use of software, but they could presumably be easily

modified to detect unauthorized attempts to disable or shutdown the software. However,

they all require the presence of a third party that can execute code for verification. More-

over, they are computationally expensive, and if used with the RUU sensor, they could

significantly slow it down to the point where it becomes vulnerable to overload attacks. In

my work, I seek to protect the sensor from being illegitimately disabled, without necessarily

having to rely on a third party for monitoring. To that extent, I use a novel approach

based on a set of self-monitoring monitors and inspired by the mechanisms used in safety

devices for nuclear weapons [Laboratories, 1992; Plummer and Greenwood, 1998], which

were designed to prevent the unauthorized launch of such weapons.

Given that adversaries may be aware of system monitoring, special care must be taken
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to prevent the sensor from being shut down or to detect when it gets shut down. To that

extent, a random directed cycle of n monitors, x1 through xn protects the RUU sensor as

proposed by Chinchani et al. [Chinchani and Upadhyaya, 2003] and Stolfo et al. [Stolfo et

al., 2009]. The directed cycle of monitors is created based on a seed known only to the

owner of the system. It defines a unique shutdown sequence that must be followed in order

to shut down the sensor without any alerts.

Let xi be the monitor watching the critical process of the sensor, where 1 ≤ i ≤ n. If

an attacker attempts to shut down the critical process, xi will issue an alert. Monitor xi is

itself monitored by xj as defined by the directed cycle of monitors, where 1 ≤ j ≤ n, and

i 6= j. So if xi is shutdown by the attacker, xj issues an alert. Therefore the attacker has

to know the entire shutdown sequence in order to be able to shutdown the sensor and all

monitors without getting detected. The attacker has a 1
n! probability of guessing the right

shutdown sequence. So the higher the number of monitors n, the less likely the sensor may

be shutdown without any alert.

In order to prevent an attacker from identifying the right shutdown sequence by observ-

ing inter-process traffic, each monitor pings all other n−1 monitors periodically. Moreover,

all monitors ‘monitor’ the sensor’s critical processes as shown in Figure 5.7, while only

one would actually issue an alert if the sensor is shut down. The threat model assumes

that the time span between process pings is less than the time needed by the attacker to

shut down two processes. In my future work, I will extend the monitoring infrastructure

in order to protect the sensor’s logs, the user behavior model, and the files containing col-

lected evidence. More important, this monitoring infrastructure should be pushed down to

the hardware level in order to prevent any highly-privileged user from shutting down all

monitoring processes at once.

5.6 Sensor Operational Costs

The host sensor performs tasks similar to anti-virus programs. In evaluating the perfor-

mance of the sensor, I use overhead comparisons of anti-virus programs as a benchmark,

since the task of comparing an HMAC code is not substantially different from testing for
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Figure 5.7: Sensor Monitoring Infrastructure

an embedded virus signature. With regard to the resource consumption of the sensor, the

components of the sensor use an average 40 KB of memory during testing, a negligible

amount compared to Symantec’s anti-virus. The additional file access time introduced by

the sensor is unnoticeable when opening or writing document files. It averages 26 ms per

file. Based on these numbers, I assert that the sensor has a negligible performance impact

to the system and user experience.

This overhead can be further reduced. Note that there is a fundamental difference

between the task of detecting malware and that of detecting decoy activity. Anti-virus pro-
115



CHAPTER 5. DIVERSIFYING DETECTION APPROACHES

grams are designed to quarantine and prevent the execution of malicious software whenever

any process is initiated. In decoy detection, the objective is merely to trigger an alert when

a decoy file is loaded into memory. Thus, the decoy detection does not need to serialize

execution. For example, it may be executed asynchronously and in parallel by running on

multiple cores, which would reduce the file access delay even further.

5.7 Characteristics of the RUU Sensor

The architectural decisions made during the design phase of the sensor enabled certain

properties and characteristics.

1. High Accuracy, Fast Training, and Low Operational Costs: The use of a

limited number of features by focusing on search behavior helps in constraining the

problem and thus improving detection rates. It also induces a lower runtime overhead,

requires limited system resources, and allows for real-time detection. Furthermore, it

speeds up deployment as profiling in a low-dimensional space reduces the amount of

sampling required to train the detector.

2. Efficient Model Updates to handle Concept Drift: SVMs are suitable for block-

by-block incremental learning. With the advent of new data and the potential need

for updating the model in order to deal with concept drift, SVMs do not have to

be retrained with the whole set of new and old data. Instead, it is sufficient to use

the most recent data for re-training in addition to the support vectors identified in

the old SVM model [Vapnik, 1999; Syed et al., 1999]. This in turn makes the use of

meta-learning techniques using several models easier. The use of such techniques may

be necessary for handling concept drift. Therefore, the choice of SVMs for building

user models helps in satisfying both the low operational costs and the adjustment

to new behavior requirements. Moreover, they enable one-class modeling, another

critical feature of the sensor.

3. Privacy-Preservation: The use of data from multiple users to train classifiers for

masquerade attack detection is complicated and introduces potential privacy threats.
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Furthermore, requiring the mixture of data from multiple users necessitates substantial

retraining of classifiers as users join and leave an organization. The application of

one-class modeling avoids such problems and preserves user privacy, besides reducing

training time.

4. High Accuracy and Protection Against Mimicry Attacks: The perfect detec-

tion rate with a very low FP rate can be attributed to the combination of two comple-

mentary detection techniques. The motivation for user behavior profiling comes from

the fact that user behavior is not readily available for stealing and use (assuming the

historical information profiled is kept secret). The use of an anomaly detector applied

to user behavior, however, may trigger a large amount of false positives, something

that most anomaly detectors suffer from. On the other hand, trap-based techniques

are known for their very low false positive rates. The correlation of search behavior

anomaly detection with trap-based decoy files provides stronger evidence of malfea-

sance, and therefore improves the detector’s accuracy. Furthermore, this combination

of two orthogonal techniques hardens the sensor against mimicry attacks.

5. Tamper-Resistance: The implementation of the self-monitoring monitors protects

the sensor from being disabled by issuing an alert to a remote system or several

systems. It can also protect the collected evidence in case of masquerade attacks as

well as the logs and the user model.

5.8 Conclusion

5.8.1 Chapter Summary

In this chapter, I presented a privacy-preserving sensor for effective and efficient masquerade

attack detection. The sensor has a very high accuracy with very low operational costs, and

was able to detect all masquerade attacks at their onset. It implements a user search profiling

technique with a baiting technique that uses decoy documents embedded in the victim’s

file system. By combining these two orthogonal detection techniques, false positives were

reduced by 36% over the search profiling approach alone. A 99.94% masquerade detection
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rate was achieved with only 0.77% of false positives, the best results ever reported in the

literature.

5.8.2 Future Work

In my future work, I will extend the monitoring infrastructure of the sensor in order to

protect the sensor’s logs, the user behavior model, and the files containing collected evidence.

Protecting the user model is extremely important, and the lack thereof exposes the user

behavior to the threat of being stolen just like other credentials can be. If an attacker

steals a user model, they could craft a mimicry attack against the sensor by poisoning and

contaminating the model.

Another improvement to the sensor involves running the HMAC validation function of

the sensor when opening files in parallel with other code, so that delays are minimized for

the user.

Finally, I also plan on upgrading the sensor, so that it makes use of user feedback for

user model updates. Abnormal user search events, especially those that culminate in an

access to a decoy document, are a cause for concern. A challenge to the user, such as asking

one or a number of personalized questions, may establish whether a masquerade attack

is occurring. If the user answers the challenge questions, the sensor will assume that the

abnormal user search events are indicative of a user behavior change, and will update the

user model accordingly.
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Chapter 6

Personalized Diversified User

Models

User behavior profiling has been the preferred approach taken in most prior work for de-

tecting masquerade attacks. Various techniques have been used to build user models that

reflect that behavior. However, despite the increasing recognition of the value of diversity

in intrusion and anomaly detection, this concept has not been applied to user models, to

our knowledge, yet. The same modeling technique and the same features are generally used

to build user models. Even detection thresholds may not be user-dependent in many user

models.

User behavior naturally varies for each user. I conjecture that each user has a very

personal way of using his or her computer, and believe that no single model can capture the

inherent vagaries of human behavior. I also posit that diversity in user models through the

selection of different features for different users, not only could enable modeling the unique

behavior of specific users, but could also bring additional detection accuracy gains to the

anomaly detector. I aim to automatically learn a distinct user’s behavior, much like a credit

card customer’s distinct buying patterns. To achieve this goal, I propose diversifying the

features used to build user models. Furthermore, I propose personalizing these features and

customizing them to the behavior of the user in order to accurately model individual and

unique user behavior.
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To that extent, I propose an approach to profile a user’s behavior based on the ‘taxon-

omy’ of Windows applications and user commands presented in Section 3.1.1. Recall that

the taxonomy abstracts the audit data and enriches the meaning of a user’s profile, thus

reflecting the type of activity that the user is performing on the computer. User commands

and applications that perform similar types of actions are grouped together in one category

making profiled user actions more abstract and meaningful. Commands are thus assigned a

type or a class, and classes of user activity are modeled rather than individual user actions.

Furthermore, I use a maximum entropy discrimination approach to determine the classes

of user activity that should be monitored for each user. This approach, which I describe in

the following Section, provides a formal basis for comparing user models and for identifying

the best ‘separating’ or discriminative features to diversify user models.

6.1 Modeling Approach

I postulate that each computer user has their personal way of using his or her computer. For

instance, the activities that the user performs on his or her computer, such as programming,

editing a file, or playing a game, and how frequently he or she engages in those activities, may

be tightly related to his or her job description, or his or her personal preferences. Moreover,

the frequency and speed at which the user emits commands or uses certain applications

may be related to his or her proficiency with those commands or programs. Furthermore,

he or she may have certain habits such as checking e-mail at the beginning of a user session

or checking the online news early in the morning or late in the evening for example.

I use the Windows applications taxonomy to profile user behaviors, since it can readily

identify and model specific computer user activities. The user activity abstraction enabled

by the taxonomy also reduces the number of features extracted to profile user activities,

and therefore decreases computational complexity.

I am interested in all different classes of user activity, and particularly those that reveal

the user’s computer usage habits. For instance, one interesting behavior that I monitor is

user search behavior, as already presented in Chapter 3. Other examples of user behaviors

that I monitor include browsing behavior, networking, and remote access behavior. Again
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the taxonomy allows a system to automatically audit and model a whole class of commands

and application functions corresponding to a specific type of user activity.

Note that modeling classes of user activities, in lieu of modeling the use of specific

applications, eliminates the artificats of the dataset, caused by the collection of data from

different systems. Suppose user A has the Firefox browser installed on their computer,

while user B installed Google Chrome. If I model the use of each browser, then the resulting

classifier can easily identify that the presented data belongs to a different user. Therefore,

it is imperative to model the type of user activity, rather than the application used, in

order to build reliable user models for masquerade detection.

In the following subsection, I describe the feature vectors used for training the user

models.

6.1.1 Feature Vectors

I audit and model the volume and frequency of user activities within epochs or time quanta

of fixed length, assuming that other users will exhibit a different behavior from the legitimate

user. A total of 22 features, displayed in Table 6.1 are therefore extracted for each epoch.

I hypothesize that this could characterize certain users, as some users might start their

session with checking their e-mails, others might prefer to check their online newspaper,

while yet others may prefer to plunge into work as soon as they power their computers on.

6.1.2 Diversified User Behavior Profiling

In the general case of feature selection, select the best predictive features for a classifier

serves two purposes: (1) improving the accuracy of the classifier, and (2) reducing the

computational cost caused by the high-dimensionality of the original feature space. Max-

ion pointed out that most prior profiling approaches apply the same features to all user

models [Maxion, 2005]. I posit that diversifying features by selecting the best features for

a specific user model independently from all other user models improves the overall aggre-

gated accuracy of all classifiers. Furthermore, diversifying the model features also hardens

the classifier against mimicry attacks. Now, an adversary has to identify the specific features

modeled for the individual victim before being able to launch a mimicry attack successfully.
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Feature Number Feature Description

1 Browsing

2 Communications

3 Database Access

4 Desktop Configuration

5 Development

6 Editing

7 File Compression

8 File System Management

9 Games

10 Installation

11 IO Peripherals

12 Learning

13 Media

14 Modeling

15 Networking

16 Organization

17 Other

18 Search

19 Security

20 Software Management

21 System Management

22 Web Hosting

Table 6.1: Features Extracted for Building User Models

I therefore increase the costs of launching such attacks against a wide set of users.

I apply this concept of diversified modeling to support vector machines (SVMs), which

have been shown to achieve the best accuracy results when used for user behavior profil-

ing [Seo and Cha, 2007; Ben-Salem et al., 2008]. The choice of SVMs was suitable for online
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learning due to their adequacy for block-by-block incremental learning: With the advent

of new data and the potential need for updating the model in order to deal with concept

drift, SVMs do not have to be retrained with the whole set of new and old data. Instead,

it is sufficient to use the most recent data for re-training in addition to the support vectors

identified in the old SVM model [Vapnik, 1999; Syed et al., 1999].

To implement the concept of diversified modeling, I use the maximum entropy discrim-

ination framework. In the following subsections, I briefly introduce this framework, and

explain how I use it to apply the diversified modeling approach.

6.1.2.1 Maximum Entropy Discrimination Framework

Jebara and Jaakola developed a Maximum Entropy Discrimination (MED) framework for

support vector machines and large-margin linear classifiers, which they later extended to

sparse SVMs and to multi-task SVMs [Jebara and Jaakkola, 2000].

Solving a regular quadratic convex problem returns a SVM model Θ = {θ, b}. The MED

framework can be used to return a distribution of parameter models P (θ) in lieu of a single

parameter value θ, such that the expected value of the discriminant under this distribution

matches the labeling of the feature vectors [Jebara, 2004]. The framework can therefore be

considered as a generalization of support vector machines.

As the developers of the framework note, one can augment the discriminant with a

feature selection switch vector s, which becomes a part of the more complex model Θ =

{θ, b, s} [Jebara, 2004]. The switch vector represents weights corresponding to the features

used to train the model. If the weight is equal to zero, then the corresponding feature is

not included in the model and can be discarded from the input data. I use these augmented

models to select the best features for the user models. This is done for each user model

independently from the remainder of user models.

The model returned by the MED framework can be further augmented to include joint

densities over parameters of several classifiers and feature and kernel selection configura-

tions, rather than parameters of a single classifier only [Jebara, 2011]. This constitutes the

multi-task learning variant of the framework. Instead of learning each classifier or task

independently, one can pool all tasks and corresponding data together to form one global
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prediction problem and learn a single classifier for all of them.

Although the models are conditionally independent given the data, the model represen-

tation used makes them dependent otherwise. Observing the data with the latent shared

parameter s introduces such dependencies among the multiple tasks or classifiers. For exam-

ple, in the simple case of multi-task learning with two models (Θ1 → D1 → s← D2 ← Θ2),

observing the data D1 and D2 links the two user models Θ1 and Θ1 unless the shared fea-

ture binary switch s is also observed. This shared classifiers or shared models setup may be

particularly beneficial in the case of a limited number of training examples for each task.

6.1.2.2 Feature Selection

I use the MED framework in order to select the best features for the user models. I

apply the MED’s feature selection capability in two different ways. The first is to select

the best features for individual user models independently. I call this the independent

learning technique, which results in the diversified modeling approach, as the selected

features for each classifier vary from one user model to another. In the second approach,

I present the MED framework with training data from all the users, i.e. for all classifiers

or tasks, and use it to select the best features for all user models. The MED framework

returns one global solution for all user models where the same features get selected for

all classifiers. I call this the multi-task learning, or more accurately in this case, the

meta-learning approach, since no additional samples are made available to the learner.

Meta-learning improves accuracy through the inter-dependencies between the binary tasks,

and not through additional data samples.

To apply the MED framework, I build a Gram matrix G, whose entries are given by the

kernel function evaluated over all pairs of data points G (x, x̄) =
∑D

d=1 ŝ (d) kd (x, x̄), where

kd (x, x̄) = x (d) ∗ x̄ (d) is the scalar product of the d’th dimension of the input data needed

for feature selection. The MED framework will return the optimal weighted combination of

features ŝ.
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6.1.3 Personalized User Behavior Profiling

As explained above, I count the frequencies of user actions corresponding to certain classes

of user activity, within a time window w of fixed length. The average length of a user session

varies from one user to another, and the speed at which they emit user commands and work

with applications also varies.

Therefore, an epoch or time window w of length l may be appropriate for user A, but

could yield poor results when used in building a model for user B, whose average session is

much longer than that of user A for example. In order to improve the accuracy of the user

models, I define a user-specific epoch length. The selected features using the diversified

profiling approach are then extracted within these epochs of length wu for each user u. I

call this the personalized modeling approach, as wu is personalized or customized for

each user.

I use a metric called the Mahalanobis distance to determine the epoch length wu. The

distance is defined as MD(x) =
√

(x−mx)′C−1x (x−mx) where x is the feature vector

whose elements are the frequencies of commands and applications with the time window.

The vector mx is the mean vector of frequencies of commands for all the training set. Cx

is the covariance matrix for x. The metric is used to measure the similarity between an

unknown sample set and a target distribution. It takes into account the correlations of the

data set, as opposed to the Euclidean distance. The distance is computed for consecutive

windows using window sizes of various lengths. The best window size wu is selected for each

user u, such that the mean of all distances is minimized after five-fold cross-validation.

6.2 Experimental Setup

To evaluate personalized diversified modeling, I use the portion of the RUU dataset that was

collected for normal computer usage behavior profiling. I implement the MED framework

in Matlab. I follow the approach taken by the authors of the framework, and solve the MED

problem by exploiting a convenient upper bound on logistic-quadratic functions. This effec-

tively turns them into regular quadratic functions, which in turn allows for the application

of standard quadratic programming to solve the MED problem. I used the Mosek software
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package to solve the convex quadratic optimization problem and find the best MED solu-

tion [MOSEK, 2009]. I also interleave bounding the logistic-quadratic function with finding

the support vector machine solution, thus iteratively maximizing the objective function.To

initialize my program, I use white Gaussian priors with zero mean and identity covariance

for user models, and I initialize the binary feature switch vector with Bernoulli priors. The

algorithm used is described in detail in [Jebara, 2011] together with all the optimizations

used.

I start by setting the regularizers α = 0 and C = 1, then I increase both parameters

iteratively until the error is minimized on a cross validation set. C is the regularizer that

bounds the Lagrange multipliers from above in the non-separable classification case, while

α is a regularizer that corresponds to the level of sparsity, and where higher values of α

indicate sparser feature selection. I explore multiple values of C for the independent learner

and multiple values of C and α for the multi-task learner. The final values of C and α

were determined by five-fold cross-validation on held out data and then tested against a

previously unseen data set. To speedup my algorithm, I warm-start each iteration and seed

the SVM solver with a solution from the previous iteration, or from a previous final solution

of the algorithm that converged for a smaller setting of C or α.

6.2.1 Experimental Methodology

I ran three experiments to evaluate the diversified personalized modeling approach. For

each of the eighteen users, I build three user models. For the first user model, parame-

ters and features were selected for each user model independently from all other models.

For the second user model, I pooled all data for all users to select the best features and

model parameters for all users. In this multi-task feature selection exercise, I converted the

problem (and dataset) into eighteen binary ‘one-versus-all-others’ classification problems.

Here, instead of training SVMs on each binary classification, I estimate a feature selection

configuration for the aggregate dataset and have all eighteen SVM models share the same

configuration. This turns the task into a meta-learning problem. All resulting models share

a common feature selection vector s. Therefore the same features are selected and have the

same weights for all user models. Finally, in the third model, I use independent model train-
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ing and feature selection, however with personalized epoch lengths for feature extraction,

as explained in the previous section.

Once the baseline models were computed, they were tested on previously unseen data,

and a threshold was used to determine whether the user activity was deemed as self or non-

self, i.e. performed by a different user. If the user activity was performed by the normal

user, but was classified as performed by some other user by the SVM model, a false positive

was recorded.

6.3 Experimental Results

6.3.1 Diversified Modeling Results

In Figure 6.1, I plot the weights of the twenty-two features (extracted for 10-minute epochs)

in the resulting user models for the feature selection SVMs with α = 24 and after optimizing

over the regularization parameter C for all eighteen user models. As can be seen in the

figure, many feature weights are equal to 0, making the corresponding features ineffective

when classifying user activity as self, or non-self. Most importantly, one can clearly see that

user models for different users emphasize different features. This shows that user activities

vary by user. For example, for user 7, one can conclude that their use of Media applications

makes them relatively distinguishable from other users, while for user 8, their Networking

behavior seems to provide that advantage more than any other behavior.

One can also notice that some features are consistently not good predictors of user behav-

ior, such as features 3, 8, 12, 16, 19, 20 and 22. These features correspond to the Database

Access, File System Management, Learning, Organization, Security, Software Management,

and Web Hosting activities respectively. Note also that the Games feature weight is max-

imized for user 8 and nullified for all other users, confirming my conjecture that different

users use their computers for different purposes, even though the dataset was collected from

a homogeneous group of graduate computer science students.

The feature weights optimized for the multi-task learning approach with a common

feature configuration for all SVM user models are displayed in Figure 6.2. Recall, that

this feature selection method chooses a sparse subset of the twenty-two features that are
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(a) Feature Weights for User Models 1-3 (b) Feature Weights for User Models 4-6

(c) Feature Weights for User Models 7-9 (d) Feature Weights for User Models 10-12

(e) Feature Weights for User Models 13-15 (f) Feature Weights for User Models 16-18

Figure 6.1: Feature Weights by User Model for α=24 and 10-minute long Epochs Using the

Independent Learning Approach
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consistently good at predicting the label for the 18 different tasks or classes. One can notice

that features 3, 8, 12, 16, 19, 20, and 22 are discarded, while the remainder of the features

are retained with different weights.

Figure 6.2: Feature Weights for Multi-Task Learning Approach

Figure 6.3 depicts the AUC scores for the diversified modeling approach optimized over

the feature selection level α. The figure also shows the AUC scores for the traditional SVM

approach, i.e. with no feature selection, and for the meta-learning (or multi-task learning)

with a common feature weight configuration as displayed in Figure 6.2.

The results show that diversifying the features per user model improves the accuracy

of the resulting classifier, when compared to the multi-task learning approach and the

traditional SVMs. While the classification accuracy of these models is not very high, I

stress that I only use a very limited set of features. The user models are also simple and

only based on user activity volumetrics. I do not model any sequences of activities, nor do

I take timing information into account. However, regardless of the overall accuracy of these

models, the results do demonstrate that diversifying the features per user model achieves
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(a) AUC Scores for User Models 1-6

(b) AUC Scores for User Models 7-12

(c) AUC Scores for User Models 13-18

Figure 6.3: AUC Scores by User Model for the Traditional, Diversified and Multitask Mod-

eling Approaches
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better classification accuracy overall.

In my future experiments, I will use a more extensive set of features. In particular, I

will extract features that measure user activities in a more detailed manner by using the

subcategories of Windows applications, in lieu of the higher-level categories. Furthermore, I

will use timing information to model when certain activities are performed by users. I expect

the use of these features to improve the accuracy of the models overall, regardless of the

machine learning approach used, while confirming the advantage of the diversified modeling

approach. In the following subsection, I investigate whether the results of the diversified

modeling approach can be improved upon by customizing the epoch length, which is used

for extracting feature vectors, to individual user activity patterns.

6.3.2 Personalized Modeling Results

Diversified modeling achieves even better accuracy results when the epoch length, for which

I extract feature vectors, is customized by user. I measure the variability of user activities

for various epoch lengths: 5, 10, 20, and 30 minutes, and select the epoch length that yields

the smallest average Mahalanobis distance computed per Section 6.1.3. I use that epoch

length for extracting feature vectors to build the model for the corresponding user. Once

the feature vectors are extracted, I apply the diversified modeling approach and test the

user models using the same feature weights determined in Section 6.3.1. I call this approach

personalized diversified modeling. Figure 6.4 demonstrates that personalizing the epoch

length improves the accuracy of the resulting classifier. Note that for users 5, 14, and 18,

the diversified model and personalized diversified model achieve the same accuracy, since a

10-minute epoch length was determined as most appropriate for these users. Recall that the

diversified user models presented in Section 6.3.1 are built based on 10-minute long epochs.

6.4 Conclusion

6.4.1 Chapter Summary

In this chapter, I present a new approach for diversifying and personalizing computer user

models, with the objective of profiling unique and personal user behavior. I hypothesize
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Figure 6.4: AUC Scores by User Model for the Diversified and Personalized Diversified

Modeling Approaches

that each user has a unique way of using their computer, a footprint, that is distinguishable

from the behavior of any other computer user. I present a modeling approach that aims to

profile this personal user behavior using a taxonomy of Windows applications, DLLs, and

MS-DOS commands. The taxonomy captures the types of activities that a user performs

on a computer, abstracts them, and enriches the meaning of user activities performed

on the host system. More importantly, the use of the taxonomy significantly reduces

the dimensionality of the feature space, and thereby reduces the complexity of the

computation.

I use the maximum entropy discrimination framework to identify the best discriminative

features for each model, thus diversifying the user models. I further personalize these

models based on the lengths of user sessions and the speed at which users emit commands.

The results show that the personalized diversified modeling approach improves classifier

accuracy. Furthermore, by diversifying the features used and personalizing the user models,
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I make the anomaly detector based on these models less vulnerable to mimicry attacks. The

adversary is now less likely to know the exact features being modeled for the victim user.

While the models I use are built using a very small set of simple features which limits the

accuracy of the resulting classifier, I expect these results to improve when I expand the set

of features and model user activities in more granularity. My plan for further improvements

is briefly explained in the following subsection.

6.4.2 Future Work

My ultimate objective is to build more secure and dependable systems that (de)-authenticate

legitimate users by their behavior, rather than exclusively by their possibly stolen creden-

tials. In my future work, I will continue exploring new features that could be used for

profiling user behavior, so that user models can reflect a user’s truly unique behavior. In

particular, I will account for the time of the day and the time elapsed since the start of a

user session when a user action is performed. Including this information, when building a

user model, helps in capturing individual user habits, such as checking e-mail at the begin-

ning of a user session, etc. I will also refine the user models by adding more granularity to

the classes of user activities. The taxonomy of Windows applications can be further lever-

aged in this regard, so that I model user command sub-categories or sub-classes instead of

modeling the command high-level categories.
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Chapter 7

Conclusion

Masquerade attacks resulting in identity theft are a serious computer security problem.

This dissertation introduced a novel approach for detecting masquerade attacks that are

motivated by data theft. As the focus of this thesis has been on effective and efficient

masquerade attack detection, there are several interesting directions for future work. In

the following sections, I review the results, contributions, and limitations of this work, and

propose several directions for future work.

7.1 Thesis Summary

In this thesis, I presented a set of light-weight effective sensors for masquerade attack de-

tection. In doing so, I introduced new ideas and approaches for maximizing the efficiency

and effectiveness of the sensors. I demonstrated that masquerade attacks that are moti-

vated by data theft can be detected reliably, efficiently, and with very low latency. Prior

work on masquerade detection focused on profiling sequences of user commands. Sequence-

based modeling of user command data may not be very scalable considering the poten-

tially unbounded number of possible commands or applications to be modeled especially

in Windows-based environments. Scalability becomes a challenge particularly in multi-user

environments or computationally limited devices.

Access control mechanisms failed in preventing masquerade attacks. Consequently, user

behavior profiling becomes important in detecting these attacks. One advantage of using this
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approach for masquerade attack detection is the fact that behavior is not readily available

for stealing and use, unlike any user credentials, assuming that the historical information

profiled is kept secret.

I presented an efficient search-behavior modeling technique specifically developed for

masquerade attack detection. I showed that search volume is correlated with masquerade

activity. A legitimate user of a system should be familiar with the files on the system and

where they are located. Any search for specific files is likely to be targeted and limited.

Whereas, a masquerader, who gets access to the victim’s system illegitimately, and who is

not familiar with that environment, is likely to engage in widespread and untargeted search

and in an information gathering exercise before launching any attack.

While I did not conduct a human psychological study to show that the real intent

could be established by profiling user behavior, I approximated this kind of user study by

conducting a set of user experiments following an established scientific protocol to provide

evidence that monitoring search behavior works well in identifying malicious masqueraders.

My results showed that user search behavior profiling can detect masquerade attacks reliably

with low FP rates and a very low latency. The question of whether the true intent of a user

is established is beyond the scope of this work.

I developed an anomaly-based intrusion detection system using one-class SVM models

trained with vectors using three search-related features to profile users’ search behaviors.

Modeling specific classes of commands and user-initiated events, as opposed to modeling all

classes of commands and events, provided significant operational improvements in detection

performance over prior work. Moreover, reducing feature space dimensionality allowed for

building accurate classifiers, with four days-worth of training data only, thanks to the limited

amount of sampling required. In an operational monitoring system, this also minimizes

the system resources needed by the detector, and allows for real-time masquerade attack

detection. Furthermore, it improves the generalizability of the classifier and enables its quick

deployment, besides reducing its operational costs and footprint. Recall that the average

user model size is about 8 KB when the search-behavior modeling approach is used. That

model size grows to more than 3 MB if an application and command frequency modeling

approach is used.
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One of the important strengths of this approach is that detection happens within two

minutes of the malicious activity, thus limiting the harm that the attacker can do. The

victim can immediately take steps to limit the damage when the attack is detected, by

changing his or her online banking passwords or canceling his or her credit cards. If the at-

tack remains undetected for a long time, it is more likely that information gets compromised

and potentially used for monetary gain by the attacker.

My approach is generalizable as it does not specify what bad behavior looks like. Instead,

I model normal behavior only and detect deviations from that behavior. The use of one-

class modeling approach preserves the privacy of the users. A sensor that monitors user’s

actions and violates user privacy would probably not be widely adopted. A masquerade

attack detector has to be able to build and apply user models without sharing any data

collected about the user. This can be achieved using one-class modeling techniques, so no

data sharing is required.

The user search profiling approach achieved a 100% detection rate and with a 1.12%

FP rate, i.e. one false positive every three hours on average. In order to reduce the

frequency of false positives and improve the user experience, wihout negatively affecting

the detection capability of the masquerade detector, I monitored accesses to decoy files

that are strategically placed by the user on his or her own file system. Once the decoys

containing ‘bait information’ are in place, the legitimate users of the system are supposed

to avoid any access to the decoys. Any decoy file access, then, suggests that a masquerader

is trying to access highly enticing information. I note that using this approach alone, I was

able to detect all masqueraders within 10 minutes of launching their attacks. Thirty-five per

cent of masqueraders were detected during the very first minute of their frauduent activity.

I used the access patterns to decoy files as an oracle to validate the alerts issued by

the search behavior profiling sensor, since the correlation of abnormal search behavior with

decoy file touches should provide stronger evidence of malfeasance, and therefore improve

the detector’s accuracy.

Besides detecting masqueraders, placing monitorable decoy files on the system has a

deterrence effect that may not be easily measurable, but that definitely plays a role in

preventing potential masquerade activity by risk-averse attackers.
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Combining the two orthogonal techniques also serves as a defense mechanism against

mimicry attacks. Anomaly detection-based techniques are vulnerable to evasion attacks. If

a sophisticated adversary attempts to evade the search behavior sensor by mimicking the

victim’s behavior, he or she is likely to get trapped, as he or she does not know where the

decoys were placed.

I proposed a masquerade attack sensor that integrates the two complementary and

orthogonal techniques that aim to detect evasive adversaries. The diversity of detection

techniques can increase the likelihood of detection of malicious activity and dramatically

reduces the number of false positives associated with a malicious event, typically a challenge

for any anomaly detection system. My results confirmed the improvement in detection

accuracy: the overall FP rate was reduced to 0.77%, while all masquerade attacks were

being detected.

The sensor has a negligible performance overhead. Empirical tests show that the sensor

uses 40 KB of memory only, a negligible overhead compared to Anti-Virus tools for instance.

The detection capabilities of this light-weight host sensor can be further leveraged when

combined with other network-level sensors to cover other insider threat models [Bowen et

al., 2009a].

7.2 Contributions

In summary, the main contributions of this dissertation include the following:

• Taxonomies of Windows applications, DLLs and Linux/Unix user commands that

elicit classes of user activities on information systems. These classes of user activi-

ties can be used to accurately model user behavior, characterize fraudulent behavior,

and tease out the intent of malicious users. Abstracting the user commands and ac-

tions and modeling the classes of user behaviors (as opposed to modeling simple user

commands) enables the reduction of features used for user behavior profiling, and

introduces significant gains in computational complexity.

• A set of search-related features whose limited number reduces the amount of sampling

required to collect training data. Reducing the set of features required for profiling
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user behavior enables improved detector accuracy and significant performance gains

over prior user profiling techniques.

• A set of guidelines for conducting user studies applied to cyber-security that

assists researchers in designing and executing generalizable and powerful computer

security-related experiments involving human subjects.

• A real-world Windows dataset made available to the research community for the

study and evaluation of novel masquerade attack detection approaches. The dataset

consists of normal user data collected from a homogeneous user group of 18 individuals

and simulated masquerader data from 40 different individuals. The dataset is the first

publicly available dataset for masquerade attack detection since the Schonlau dataset.

The Schonlau dataset, unlike the RUU dataset, does not include any masquerader

data, and was rather used for the study of author identification problems.

• A set of guidelines, best practices, and recommendations related to the strategic

deployment of decoy documents on local file systems for an effective detection of

masquerade attacks, based on an empirical evaluation of how effective decoys can be

in detecting masquerade attacks.

• A privacy-preserving masquerade attack detection approach based on the integration

of two orthogonal detection techniques: user search behavior profiling and monitor-

ing access to highly-crafted and well-placed decoy documents used to bait attackers.

The approach improves detection accuracy over prior techniques, is less vulnerable to

mimicry attacks, and provides stronger evidence of fraudulent activity.

• A light-weight, privacy-preserving, tamper-resistant host-sensor that detects the onset

of masquerade attacks within two minutes of fraudulent activity. The host sensor

implements the two orthogonal detection techniques and collects potential evidence

that could be used to identify the attacker. The sensor reliably detects masquerade

attacks with a very low false positive rate, a very small footprint, and low operational

costs.
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• A diversified and personalized user behavior profiling approach for improved classifier

accuracy and higher user model generalizabiliy.

7.3 Limitations

While the proposed masquerade attack detector offers high accuracy and low detection

latency, we recognize a few limitations for certain attack scenarios. For instance, the sensor,

just like any anomaly-based IDS is subject to a training data poisoning attack, albeit to a

much more limited extent. A training data poisoning attack is an attack whereby the

adversary injects malicious data into the dataset that is used for training the classifier and

building the user model. It leads the machine learning or statistical algorithm used to learn

the wrong model, therefore, eventually classifying potentially fraudulent activity as normal,

and failing to detect masquerade attacks.

The user search behavior profiling sensor is vulnerable to such an attack if the adversary

manages to induce high-volume search activity into the data that is used to train the sensor.

When the detector is deployed, the search behavior profiling sensor may fail to properly

classify extensive file system search by the attacker as abnormal. However, the attacker is

still very likely to access decoy documents, which will be detected by the DDA sensor. This

makes the masquerade attack detector less vulnerable to training data poisoning attacks,

but not completely immune to them.

In Section 5.2.1 I mentioned the possibility of enhancing the detector and adapting it to

multi-user environments. Consider a file server within an enterprise’s network. The detector

can develop user models for all users that have access to the file server, and use them to

detect need-to-know policy violations. In this setting, if an adversary gets access to several

user credentials belonging to different users of the file server, then he or she can impersonate

many users when conducting their attack. He or she can ‘divide’ their fraudulent activity

between different sessions for various victims. By doing so, the attacker may manage to

stay under the radar during each user session by limiting his or her information gathering

activity to normal user search activity levels. However, by aggregating all the information

gathered during the different user sessions, the adversary may be successful in his or her
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attack. The same result may be achieved if the masquerader colludes with several malicious

insiders.

7.4 Future Work

7.4.1 Immediate Future Work

In the concluding section of each chapter, I presented several short-term and medium-term

extensions to the masquerade attack detector presented in this work. Here I review some

of the main extensions discussed in the previous chapters.

In most cases, the attacker’s objective is to steal data that could be used for financial gain

from home users or enterprise users, such as financial credentials or intellectual property.

When developing and evaluating the sensor, the objective was to detect masquerade at-

tacks with the purpose of stealing sensitive and confidential data perpetrated by individuals

illegitimately. Many of these attacks resulted in fraud incidents, which affected 11.2 million

consumers in the United States in 2009 according to a Forbes report, causing $54 billion in

ID fraud costs [Greenberg, 2010].

However, many identity theft incidents are caused by malware installed on the victim’s

computer systems. In 2009, researchers, who have monitored the Torpig botnet, affirmed

that within the span of 10 days only, Torpig obtained the credentials of 8,310 accounts at 410

different institutions [Stone-Gross et al., 2009]. Enterprise users have also been targeted by

different malware such as Confickr/Downadup [Higgins, 2009]. I expect the sensor proposed

here to detect data theft attacks caused by such malware, based on the malware’s file

touch, file system navigation, and decoy access patterns, just like human masqueraders get

detected. However, this has to be validated with a new set of experiments, including human

subject studies to study the strategic decoy placement for such threat models.

An interesting problem to study is how to calibrate the modeling and detection frequency

to reduce the detector’s false positive rate with its false negative rate. False negatives in

this context, i.e. an undetected masquerader, are far more dangerous than an annoying

false positive. A thorough evaluation of the right model checking and alerting frequency in

light of average search times on a file system inter alia, is the subject of my future research.
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One critical enhancement is the protection of the user model from unauthorized changes.

The user model on the user’s system has to be adequately secured and monitored, just

like the sensor itself, in order to prevent the attacker from modifying the user model and

launching a mimicry attack based on the new model.

Another important enhancement to the sensor, is the integration of user feedback in

model update operations. User feedback is important for distinguishing whether any surge

in false alerts is the result of a real attack or merely a consequence of a change in normal

user behavior.

Finally, I seek to generalize the detection techniques used in this sensor to other com-

puting platforms such as Mac OS.

7.4.2 Long-term Future Work

In the long-run, I envision several directions that my research work can take. In this work,

my objective is to detect data theft attempts performed by masqueraders on single-user

systems. One interesting direction, it to enhance the sensor to detect ‘need-to-know’ policy

violations perpetrated by traitors on multi-user systems.

In the threat model, I assumed that the attacker has no knowledge whether the victim’s

system is baited or not. One interesting line of work is the study of attacker behavior and

his or her perception of risk and expected gain if the adversary knows that the system under

attack is baited.

The development of adaptive behavioral sensors that could be generated online when

fraudulent behavior is suspected, based on abnormal search patterns, will also be the subject

of future work. One could adaptively change the location of the decoy files based on the

file system navigation patterns of the attacker, or change the results that get returned by a

desktop search tool to include decoys generated in real-time.

I pointed out in Chapter 1 that the observables at the network level are more distant

from a distinct user, as attributing a network level event to a distinct user is hard. Detecting

masqueraders from network-level data alone remains a challenge. However, network-level

events are valuable in detecting malicious or unusual activities such as massive download-

ing of information that an insider does not have a need to know, or the dissemination
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of information outside the organization’s network. Integrating the RUU host sensor with

network-level sensors may allow for more accurate detection and a wider coverage of attacks.

Finally, I plan on extending the combined detection approach from a local file system

setting to a Cloud setting. The Cloud is intended to be as transparent to the user as a local

file system, and experimental results suggest that the approach proposed here may allow

for the detection of illegal data accesses and industrial espionage attacks from insiders in

the Cloud as well.

Ultimately, I hope the that work presented in this thesis eventually enables the develop-

ment of highly accurate masquerade attack detectors for human masqueraders and rootkits

as well, potentially integrated with anti-virus engines. I also hope that it will eventually

help in the adoption of behavioral models as another factor in user authentication, in order

to harden existing access control mechanisms.
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Appendix A

User Study Scenarios

A.1 Malicious Scenario

You have been going through rough financial times lately. You have lost all of your invest-

ments in the stock market, after going through loss after loss. You had an accident two

months ago and your brand new car has been totaled. That car has not even been paid for.

You have only put a small down-payment. You have been charging up your credit cards just

to pay your monthly bills. Debts have been accumulating and your monthly salary hardly

covers 70% of your living expenses and monthly bills. You really have to do something, or

otherwise you will be facing bankruptcy.

You have been sharing your office with your co-worker ‘John Smith’ for the last three

months. John has been getting on your nerves for the last several months. Although you

know that you have been working harder than him, he has received a better appraisal than

yours, and has been promoted recently. He’s your supervisor’s favorite even though he does

not deserve it.

You do recall that your office-mate once mentioned that he can’t remember all of his user

IDs and passwords, whether they are for e-mail accounts or for online-banking accounts,

etc. That is why he stores them all on his computer. You know also that he uses his

work laptop for personal business. He takes care of his personal business during work

hours anyway. So you have been recently thinking that, if you can get the passwords to

his financial accounts, you can get yourself some money. You may also find some valuable
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PII information (Personally Identifiable Information) that could be very valuable. This can

solve all of your financial problems. After all, your officemate is in a much better financial

position. Stealing a few thousand dollars from his bank account is not going to make him

bankrupt. But if you don’t do that, you will be facing bankruptcy.

Yesterday, and after reviewing your bills and notices for payment, you have made your

decision. You will give this a try. Today, during lunch hour, your office mate left the office

during and left his laptop on. He is driving to a near-by fast food restaurant to buy lunch.

So you know that he will not be back before at least 15 minutes. It may take him even

longer. This is really your chance. Your financial problems will be soon over, and you can

start enjoying your life again, if you manage not to get caught. You just need to make sure

that your unauthorized access does not get detected.

P.S.: All of your actions will be monitored for later investigation.

A.2 Benign Scenario

You have been working for company ABC for one year. You have been sharing your office

with your co-worker ‘John Smith’ for the last three months. Today, during lunch hour,

‘John’ left the office and left his laptop on. He is driving to a near-by fast food restaurant

to buy lunch. So you know that he will not be back before at least 15 minutes. It may take

him even longer than that.

Your machine has suddenly stopped working. You have a meeting this afternoon with

representatives of an important client and you need to give them an update on the yield

improvement project, which you have been working on with John. The report that you will

be presenting to the client reps is not ready yet. Now you can get access to your colleague’s

machine for 15 minutes. Think about what you will do and do it. Please indicate your

choice. If you decide to take a look at his laptop, please describe what you did, (e.g. just

browsing, sending e-mail, searching for specific information), and for how long you did it.

In 15 minutes, you will answer a questionnaire, and describe exactly what you did.

P.S.: All of your actions will be monitored for later investigation.
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A.3 Neutral Scenario

You have been working for company ABC for one year. You have been sharing your office

with your co-worker ‘John Smith’ for the last three months. Today, during lunch hour,

your office mate left the office and left his laptop on. He is driving to a near-by fast food

restaurant to buy lunch. So you know that he will not be back before at least 15 minutes.

It may take him even longer than that.

You have the option of using his laptop for whatever purpose, or you can decide to do

something else.

If you decide to take a look at his laptop, please note what you did. In 15 minutes, you

will answer a questionnaire, and describe exactly what you did.

P.S.: All of your actions will be monitored for later investigation.
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Appendix B

Post-Experiment Questionnaire

1. Which scenario have you been given (Please circle the right choice)?

a) Scenario 1

b) Scenario 2

c) Scenario 3

2. Please indicate date and time of the experiment.

3. Please describe what you did during the 15 minutes:

4. Please indicate why you did so:

5. Please list relevant documents (with respect to the task performed) that you were

able to find:

Filename Path

6. What’s you major?
151



APPENDIX B. POST-EXPERIMENT QUESTIONNAIRE

7. What program are you in?

a) Undergraduate

b) Masters

c) PhD

d) Other. Please specify: .

8. How would you rate your knowledge of Linux?

a) No Knowledge

b) Basic knowledge

c) Moderate knowledge

d) Deep knowledge

e) Expert

9. Which operating system do you have running on your personal computer(s)? (Select

all that apply)

a) Linux .. Please specify:

b) Windows XP

c) Windows Vista

d) Mac OS

e) Other .. Please specify:

10. How familiar are you with Linux commands?

a) Unfamiliar

b) Somewhat unfamiliar

c) Neutral

d) Familiar

e) Very familiar
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11. How many years/months of experience do you have using Linux/Unix commands?

(Years or months)

12. How many years/months of experience do you have using MS-DOS commands? (Years

or months)

13. How often do you use user commands to search for information in a Linux environ-

ment?

a) Never

b) Rarely

c) Monthly

d) Weekly

e) Daily

14. How often do you use Google Desktop Search on your personal computer?

a) Never

b) Rarely

c) Monthly

d) Weekly

e) Daily

15. How often do you use other Desktop Search tools on your personal computer?

a) Never

b) Rarely

c) Monthly

d) Weekly

e) Daily
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16. Did you feel that there was enough background information for you to perform the

task effectively?

a) No, needed a lot more information

b) No, needed a bit more information

c) Just right

d) Yes, a bit more information might have helped

e) Yes, plenty of information was provided

17. Did you feel that you had enough time to complete the task?

a) No, needed a lot more time

b) No, needed a bit more time

c) Just right

d) Yes, a bit more time might have helped

e) Yes, plenty of time was provided

18. What time period do you think would have been more appropriate to perform this

task?

19. What would you have done differently (if anything) if you had more time to perform

the task?

20. What would you have done differently (of anything) if you had less time to perform

the task?

21. Did the scenario narrative affect the way in which you performed the task?

a) Yes

b) No

22. If you were to perform the same task without the assigned narrative (i.e. you have

access to someone else’s computer, not necessarily your office mate, or someone you

know, and not necessarily limited to 15 minutes), would there be any differences in

your approach?
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a) Yes

b) No

If yes, please explain:

23. How do you feel you were performing the task compared to your own normal behavior?

a) Very differently

b) Somewhat differently

c) Neutral

d) Somewhat similar

e) Very similar

24. Which portions of the task differed from your own normal methodology?

25. Did anything else influence your decision to use a certain approach to complete the

task?

a) Yes

b) No

If yes, please list:

26. If you wanted to prevent others from discovering the purpose of your task, what would

you do?

27. If you wanted to prevent others from discovering the purpose of your task, would you

have performed the task incrementally (e.g. on different days)?

a) Yes

b) No

If yes, how?
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Appendix C

Decoy File Placement
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Table C.1: Decoy Document Placement
Decoy File Number Directory where Decoy was Placed

1 C:\Documents and Settings\username \My Documents\
Personal\Shopping\

2 C:\Documents and Settings\username\My Documents\Taxes\
3 C:\
4 F:\
5 C:\Documents and Settings\username\My Documents\Receipts\
6 C:\Documents and Settings\username\Desktop\
7 C:\Documents and Settings\username\My Documents\Financial\

Bank Statements\
8 C:\Documents and Settings\Administrator\
9 C:\Documents and Settings\username\My Documents\
10 C:\Documents and Settings\username\My Documents\Financial\
11 C:\Documents and Settings\username\My Documents\Private\
12 C:\Documents and Settings\username\My Documents\Personal\
13 C:\Documents and Settings\username\My Documents\Private\

Medical

14 C:\Documents and Settings\username\My Documents\Downloads\
15 C:\Documents and Settings\username\My Documents\Financial\

Lost Card\
16 C:\Documents and Settings\username\My Documents\Financial\

Disputes\
17 C:\Documents and Settings\username\My Documents\

onn\bills and all\eBay\
18 C:\Documents and Settings\username\Desktop\Important\
19 C:\Program Files\License \
20 C:\Windows\Temp\
21 C:\Documents and Settings\username\My Documents\Personal\

Visa Applications\
22 C:\Documents and Settings\username\My Documents\Private Vacation \
23 C:\Windows\
24 C:\Documents and Settings\username\My Documents\Confidential\
25 C:\Documents and Settings\username\Cookies\
26 C:\Documents and Settings\username\Favorites\
27 C:\Documents and Settings\username\workspace\
28 C:\Documents and Settings\username\My Documents\Investments\
29 C:\Documents and Settings\username\My Documents\Resume\
30 C:\Documents and Settings\username\Desktop\My Journal\
31 C:\Backup\
32 C:\Documents and Settings\username\My Pictures\
33 C:\Documents and Settings\username\Desktop\Notes\
34 C:\Documents and Settings\username\My Documents\Confidential\

Employee Evaluations\
35 C:\Documents and Settings\username\Recent\
36 C:\Documents and Settings\username\Start Menu\
37 C:\Documents and Settings\username\Desktop\Insurance\
38 C:\Documents and Settings\username\Local Settings\
39 C:\Documents and Settings\username\My Documents\401K\
40 C:\Documents and Settings\username\My Documents\Mortgage\
41 C:\Documents and Settings\username\My Music\
42 C:\Documents and Settings\username\My Documents\Miscellaneous\158
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Appendix D

IRB Human Subjects Study

Description Data Sheet

Table D.1: Columbia University Human Subjects Study Description Data Sheet
Protocol IRBAAAC4240(Y1M00)

Protocol Status Approved

Effective Date 05/28/2007

Initial Expiration Date 05/27/2009

Originating Department COMPUTER SCIENCE (167)

Submitting To Morningside

Title Insider Threat/Masquerader Detection

Sponsor Protocol Version#

Abbreviated title Insider Threat Detection

IRB of record Columbia University Morningside

IRB number used

Affiliated Institutions Standard Columbia Submission

Protocol Begin Date 05/01/2007

Initial Protocol End Date 11/30/2009

Principal Investigator Salvatore Stolfo (167)

Study Description The study will assess proposed statistical features used to represent the

behavior of a typical computer user and to use said features to

model a specific user’s actions.

We seek to augment typical computer security features (such as user names

and passwords or pins) with behavior information to authenticate a user

and prevent unwanted harmful actions.
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