2,245 research outputs found

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    A Proposed Approach to Mechatronics Design and Implementation Education-Oriented Methodology

    Get PDF
    Mechatronics engineer is expected to design engineering systems with synergy and integration toward constrains like higher performance, speed, precision, efficiency, lower costs and functionality. The key element in success of a mechatronics engineering education-program, and correspondingly, Mechatronics engineering graduates, is directly related to a well-structured mechatronic system design course and the applied structural design methodology. Guidelines for structural design methodology and tools for the development process of mechatronic products, that can be applied in educational process is highly required. This paper proposes mechatronics systems design education-oriented methodology, which aims to integrate multidisciplinary knowledge, in various stages through the design process and development of mechatronics product. The proposed mechatronics design methodology is described, discussed and applied with the help of example student final year graduation project; design and implementation of mechatronics mobile robotic guidance system in the from of smart wheelchair- Mechatronics Motawif, to help and support people with disabilities and special needs to perform specific predetermined tasks, particularly, performing Al Omrah and motion around holy Kaba, Makka. Keywords: Mechatronics, Design methodology, Parallel design, Synergistic integration, Modeling/ Simulation, Prototyping, Mobile robot, Motawif

    Modeling of ultrasonic processes utilizing a generic software framework

    Get PDF
    Modeling of ultrasonic processes is typically characterized by a high degree of complexity. Different domains and size scales must be regarded, so that it is rather difficult to build up a single detailed overall model. Developing partial models is a common approach to overcome this difficulty. In this paper a generic but simple software framework is presented which allows to coupe arbitrary partial models by slave modules with well-defined interfaces and a master module for coordination. Two examples are given to present the developed framework. The first one is the parameterization of a load model for ultrasonically-induced cavitation. The piezoelectric oscillator, its mounting, and the process load are described individually by partial models. These partial models then are coupled using the framework. The load model is composed of spring-damper-elements which are parameterized by experimental results. In the second example, the ideal mounting position for an oscillator utilized in ultrasonic assisted machining of stone is determined. Partial models for the ultrasonic oscillator, its mounting, the simplified contact process, and the workpiece's material characteristics are presented. For both applications input and output variables are defined to meet the requirements of the framework's interface.DF

    Engineering Method and Tool for the Complete Virtual Commissioning of Robotic Cells

    Get PDF
    Intelligent robotic manufacturing cells must adapt to ever-varying operating conditions, developing autonomously optimal manufacturing strategies to achieve the best quality and overall productivity. Intelligent and cognitive behaviors are realized by using distributed controllers, in which complex control logics must interact and process a wide variety of input/output signals. In particular, programmable logic controllers (PLCs) and robot controllers must be coordinated and integrated. Then, there is the need to simulate the robotic cells’ behavior for performance verification and optimization by evaluating the effects of both PLC and robot control codes. In this context, this work proposes a method, and its implementation into an integrated tool, to exploit the potential of ABB RobotStudio software as a virtual prototyping platform for robotic cells, in which real robots control codes are executed on a virtual controller and integrated with Beckhoff PLC environment. For this purpose, a PLC Smart Component was conceived as an extension of RobotStudio functionalities to exchange signals with a TwinCAT instance. The new module allows the virtual commissioning of a complete robotic cell to be performed, assessing the control logics effects on the overall productivity. The solution is demonstrated on a robotic assembly cell, showing its feasibility and effectiveness in optimizing the final performance

    Systems Engineering for Cyber-Physical Products

    Get PDF
    International audienceThis paper will present how the Dassault Systèmes PLM solution introduces a new paradigm to address the systems engineering challenges of developing cyber-physical systems. V6 unified modeling architecture has extensive support for cross discipline systems engineering based tools, enabling a collaborative Platform and Model Based Engineering environment

    Conceiving a Digital Twin for a Flexible Manufacturing System

    Get PDF
    Digitization and virtualization represent key factors in the era of Industry 4.0. Digital twins (DT) can certainly contribute to increasing the efficiency of various productive sectors as they can contribute to monitoring, managing, and improvement of a product or process throughout its life cycle. Although several works deal with DTs, there are gaps regarding the use of this technology when a Flexible Manufacturing System (FMS) is used. Existing work, for the most part, is concerned with simulating the progress of manufacturing without providing key production data in real-time. Still, most of the solutions presented in the literature are relatively expensive and may be difficult to implement in most companies, due to their complexity. In this work, the digital twin of an FMS is conceived. The specific module of an ERP (Enterprise Resources Planning) system is used to digitize the physical entity. Production data is entered according to tryouts performed in the FMS. Sensors installed in the main components of the FMS, CNC (computer numerical control) lathe, robotic arm, and pallet conveyor send information in real-time to the digital entity. The results show that simulations using the digital twin present very satisfactory results compared to the physical entity. In time, information such as production rate, queue management, feedstock, equipment, and pallet status can be easily accessed by operators and managers at any time during the production process, confirming the MES (manufacture execution system) efficiency. The low-cost hardware and software used in this work showed its feasibility. The DT created represents the initial step towards designing a metaverse solution for the manufacturing unit in question, which should operate in the near future as a smart and autonomous factory model.Thanks are due to Elkartek 2022 project LANVERSO, and in some sections (simulations) to Basque government university group IT 1573-22

    Development of a knee prosthesis powered by electro-hydrostatic actuation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore