389 research outputs found

    Development and Evaluation of a Holistic, Cloud-driven and Microservices-based Architecture for Automated Semantic Annotation of Web Documents

    Get PDF
    The Semantic Web is based on the concept of representing information on the web such that computers can both understand and process them. This implies defining context for web information to give them a well-defined meaning. Semantic Annotation defines the process of adding annotation data to web information for the much-needed context. However, despite several solutions and techniques for semantic annotation, it is still faced with challenges which have hindered the growth of the semantic web. With recent significant technological innovations such as Cloud Computing, Internet of Things as well as Mobile Computing and their various integrations with semantic technologies to proffer solutions in IT, little has been done towards leveraging these technologies to address semantic annotation challenges. Hence, this research investigates leveraging cloud computing paradigm to address some semantic annotation challenges, with focus on an automated system for providing semantic annotation as a service. Firstly, considering the current disparate nature observable with most semantic annotation solutions, a holistic perspective to semantic annotation is proposed based on a set of requirements. Then, a capability assessment towards the feasibility of leveraging cloud computing is conducted which produces a Cloud Computing Capability Model for Holistic Semantic Annotation. Furthermore, an investigation into application deployment patterns in the cloud and how they relate to holistic semantic annotation was conducted. A set of determinant factors that define different patterns for application deployment in the cloud were identified and these resulted into the development of a Cloud Computing Maturity Model and the conceptualisation of a “Cloud-Driven” development methodology for holistic semantic annotation in the cloud. Some key components of the “Cloud-Driven” concept include Microservices, Operating System-Level Virtualisation and Orchestration. With the role Microservices Software Architectural Patterns play towards developing solutions that can fully maximise cloud computing benefits; CloudSea: a holistic, cloud-driven and microservices-based architecture for automated semantic annotation of web documents is proposed as a novel approach to semantic annotation. The architecture draws from the theory of “Design Patterns” in Software Engineering towards its design and development which subsequently resulted into the development of twelve Design Patterns and a Pattern Language for Holistic Semantic Annotation, based on the CloudSea architectural design. As proof-of-concept, a prototype implementation for CloudSea was developed and deployed in the cloud based on the “Cloud-Driven” methodology and a functionality evaluation was carried out on it. A comparative evaluation of the CloudSea architecture was also conducted in relation to current semantic annotation solutions; both proposed in academic literature and existing as industry solutions. In addition, to evaluate the proposed Cloud Computing Maturity Model for Holistic Semantic Annotation, an experimental evaluation of the model was conducted by developing and deploying six instances of the prototype and deploying them differently, based on the patterns described in the model. This empirical investigation was implemented by testing the instances for performance through series of API load tests and results obtained confirmed the validity of both the “Cloud-Driven” methodology and the entire model

    Development and Evaluation of a Holistic, Cloud-driven and Microservices-based Architecture for Automated Semantic Annotation of Web Documents

    Get PDF
    The Semantic Web is based on the concept of representing information on the web such that computers can both understand and process them. This implies defining context for web information to give them a well-defined meaning. Semantic Annotation defines the process of adding annotation data to web information for the much-needed context. However, despite several solutions and techniques for semantic annotation, it is still faced with challenges which have hindered the growth of the semantic web. With recent significant technological innovations such as Cloud Computing, Internet of Things as well as Mobile Computing and their various integrations with semantic technologies to proffer solutions in IT, little has been done towards leveraging these technologies to address semantic annotation challenges. Hence, this research investigates leveraging cloud computing paradigm to address some semantic annotation challenges, with focus on an automated system for providing semantic annotation as a service. Firstly, considering the current disparate nature observable with most semantic annotation solutions, a holistic perspective to semantic annotation is proposed based on a set of requirements. Then, a capability assessment towards the feasibility of leveraging cloud computing is conducted which produces a Cloud Computing Capability Model for Holistic Semantic Annotation. Furthermore, an investigation into application deployment patterns in the cloud and how they relate to holistic semantic annotation was conducted. A set of determinant factors that define different patterns for application deployment in the cloud were identified and these resulted into the development of a Cloud Computing Maturity Model and the conceptualisation of a “Cloud-Driven” development methodology for holistic semantic annotation in the cloud. Some key components of the “Cloud-Driven” concept include Microservices, Operating System-Level Virtualisation and Orchestration. With the role Microservices Software Architectural Patterns play towards developing solutions that can fully maximise cloud computing benefits; CloudSea: a holistic, cloud-driven and microservices-based architecture for automated semantic annotation of web documents is proposed as a novel approach to semantic annotation. The architecture draws from the theory of “Design Patterns” in Software Engineering towards its design and development which subsequently resulted into the development of twelve Design Patterns and a Pattern Language for Holistic Semantic Annotation, based on the CloudSea architectural design. As proof-of-concept, a prototype implementation for CloudSea was developed and deployed in the cloud based on the “Cloud-Driven” methodology and a functionality evaluation was carried out on it. A comparative evaluation of the CloudSea architecture was also conducted in relation to current semantic annotation solutions; both proposed in academic literature and existing as industry solutions. In addition, to evaluate the proposed Cloud Computing Maturity Model for Holistic Semantic Annotation, an experimental evaluation of the model was conducted by developing and deploying six instances of the prototype and deploying them differently, based on the patterns described in the model. This empirical investigation was implemented by testing the instances for performance through series of API load tests and results obtained confirmed the validity of both the “Cloud-Driven” methodology and the entire model

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Interoperabilnost uslužnog računarstva pomoću aplikacijskih programskih sučelja

    Get PDF
    Cloud computing paradigm is accepted by an increasing number of organizations due to significant financial savings. On the other hand, there are some issues that hinder cloud adoption. One of the most important problems is the vendor lock-in and lack of interoperability as its outcome. The ability to move data and application from one cloud offer to another and to use resources of multiple clouds is very important for cloud consumers.The focus of this dissertation is on the interoperability of commercial providers of platform as a service. This cloud model was chosen due to many incompatibilities among vendors and lack of the existing solutions. The main aim of the dissertation is to identify and address interoperability issues of platform as a service. Automated data migration between different providers of platform as a service is also an objective of this study.The dissertation has the following main contributions: first, the detailed ontology of resources and remote API operations of providers of platform as a service was developed. This ontology was used to semantically annotate web services that connect to providers remote APIs and define mappings between PaaS providers. A tool that uses defined semantic web services and AI planning technique to detect and try to resolve found interoperability problems was developed. The automated migration of data between providers of platform as a service is presented. Finally, a methodology for the detection of platform interoperability problems was proposed and evaluated in use cases.Zbog mogućnosti financijskih ušteda, sve veći broj poslovnih organizacija razmatra korištenje ili već koristi uslužno računarstvo. Međutim, postoje i problemi koji otežavaju primjenu ove nove paradigme. Jedan od najznačajnih problema je zaključavanje korisnika od strane pružatelja usluge i nedostatak interoperabilnosti. Za korisnike je jako važna mogućnost migracije podataka i aplikacija s jednog oblaka na drugi, te korištenje resursa od više pružatelja usluga.Fokus ove disertacije je interoperabilnost komercijalnih pružatelja platforme kao usluge. Ovaj model uslužnog računarstva je odabran zbog nekompatibilnosti različitih pružatelja usluge i nepostojanja postojećih rješenja. Glavni cilj disertacije je identifikacija i rješavanje problema interoperabilnosti platforme kao usluge. Automatizirana migracija podataka između različitih pružatelja platforme kao usluge je također jedan od ciljeva ovog istraživanja.Znanstveni doprinos ove disertacije je sljedeći: Najprije je razvijena detaljna ontologija resursa i operacija iz aplikacijskih programskih sučelja pružatelja platforme kao usluge. Spomenuta ontologija se koristi za semantičko označavanje web servisa koji pozivaju udaljene operacije aplikacijskih programskih sučelja pružatelja usluga, a sama ontologija definira i mapiranja između pružatelja platforme kao usluge. Također je razvijen alat koji otkriva i pokušava riješiti probleme interoperabilnosti korištenjem semantičkih web servisa i tehnika AI planiranja. Prikazana je i arhitektura za automatiziranu migraciju podataka između različitih pružatelja platforme kao usluge. Na kraju je predložena metodologija za otkrivanje problema interoperabilnosti koja je evaluirana pomoću slučajeva korištenja

    Interoperabilnost uslužnog računarstva pomoću aplikacijskih programskih sučelja

    Get PDF
    Cloud computing paradigm is accepted by an increasing number of organizations due to significant financial savings. On the other hand, there are some issues that hinder cloud adoption. One of the most important problems is the vendor lock-in and lack of interoperability as its outcome. The ability to move data and application from one cloud offer to another and to use resources of multiple clouds is very important for cloud consumers.The focus of this dissertation is on the interoperability of commercial providers of platform as a service. This cloud model was chosen due to many incompatibilities among vendors and lack of the existing solutions. The main aim of the dissertation is to identify and address interoperability issues of platform as a service. Automated data migration between different providers of platform as a service is also an objective of this study.The dissertation has the following main contributions: first, the detailed ontology of resources and remote API operations of providers of platform as a service was developed. This ontology was used to semantically annotate web services that connect to providers remote APIs and define mappings between PaaS providers. A tool that uses defined semantic web services and AI planning technique to detect and try to resolve found interoperability problems was developed. The automated migration of data between providers of platform as a service is presented. Finally, a methodology for the detection of platform interoperability problems was proposed and evaluated in use cases.Zbog mogućnosti financijskih ušteda, sve veći broj poslovnih organizacija razmatra korištenje ili već koristi uslužno računarstvo. Međutim, postoje i problemi koji otežavaju primjenu ove nove paradigme. Jedan od najznačajnih problema je zaključavanje korisnika od strane pružatelja usluge i nedostatak interoperabilnosti. Za korisnike je jako važna mogućnost migracije podataka i aplikacija s jednog oblaka na drugi, te korištenje resursa od više pružatelja usluga.Fokus ove disertacije je interoperabilnost komercijalnih pružatelja platforme kao usluge. Ovaj model uslužnog računarstva je odabran zbog nekompatibilnosti različitih pružatelja usluge i nepostojanja postojećih rješenja. Glavni cilj disertacije je identifikacija i rješavanje problema interoperabilnosti platforme kao usluge. Automatizirana migracija podataka između različitih pružatelja platforme kao usluge je također jedan od ciljeva ovog istraživanja.Znanstveni doprinos ove disertacije je sljedeći: Najprije je razvijena detaljna ontologija resursa i operacija iz aplikacijskih programskih sučelja pružatelja platforme kao usluge. Spomenuta ontologija se koristi za semantičko označavanje web servisa koji pozivaju udaljene operacije aplikacijskih programskih sučelja pružatelja usluga, a sama ontologija definira i mapiranja između pružatelja platforme kao usluge. Također je razvijen alat koji otkriva i pokušava riješiti probleme interoperabilnosti korištenjem semantičkih web servisa i tehnika AI planiranja. Prikazana je i arhitektura za automatiziranu migraciju podataka između različitih pružatelja platforme kao usluge. Na kraju je predložena metodologija za otkrivanje problema interoperabilnosti koja je evaluirana pomoću slučajeva korištenja

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Nanoinformatics: a new area of research in nanomedicine

    Get PDF
    Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and ?omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings

    Nanoinformatics: a new area of research in nanomedicine

    Get PDF
    pre-printAbstract: Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and -omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Strategies for image visualisation and browsing

    Get PDF
    PhDThe exploration of large information spaces has remained a challenging task even though the proliferation of database management systems and the state-of-the art retrieval algorithms is becoming pervasive. Signi cant research attention in the multimedia domain is focused on nding automatic algorithms for organising digital image collections into meaningful structures and providing high-semantic image indices. On the other hand, utilisation of graphical and interactive methods from information visualisation domain, provide promising direction for creating e cient user-oriented systems for image management. Methods such as exploratory browsing and query, as well as intuitive visual overviews of image collection, can assist the users in nding patterns and developing the understanding of structures and content in complex image data-sets. The focus of the thesis is combining the features of automatic data processing algorithms with information visualisation. The rst part of this thesis focuses on the layout method for displaying the collection of images indexed by low-level visual descriptors. The proposed solution generates graphical overview of the data-set as a combination of similarity based visualisation and random layout approach. Second part of the thesis deals with problem of visualisation and exploration for hierarchical organisation of images. Due to the absence of the semantic information, images are considered the only source of high-level information. The content preview and display of hierarchical structure are combined in order to support image retrieval. In addition to this, novel exploration and navigation methods are proposed to enable the user to nd the way through database structure and retrieve the content. On the other hand, semantic information is available in cases where automatic or semi-automatic image classi ers are employed. The automatic annotation of image items provides what is referred to as higher-level information. This type of information is a cornerstone of multi-concept visualisation framework which is developed as a third part of this thesis. This solution enables dynamic generation of user-queries by combining semantic concepts, supported by content overview and information ltering. Comparative analysis and user tests, performed for the evaluation of the proposed solutions, focus on the ways information visualisation a ects the image content exploration and retrieval; how e cient and comfortable are the users when using di erent interaction methods and the ways users seek for information through di erent types of database organisation
    corecore