
i

Development and Evaluation of a Holistic, Cloud-driven and
Microservices-based Architecture for Automated Semantic

Annotation of Web Documents

Oluwasegun Adedokun Adedugbe

Staffordshire University

A Doctoral Thesis submitted in partial fulfilment of the
requirements of Staffordshire University for the degree of Doctor

of Philosophy

August 2019

ii

Abstract

The Semantic Web is based on the concept of representing information on the web such that

computers can both understand and process them. This implies defining context for web

information to give them a well-defined meaning. Semantic Annotation defines the process of

adding annotation data to web information for the much-needed context. However, despite

several solutions and techniques for semantic annotation, it is still faced with challenges which

have hindered the growth of the semantic web. With recent significant technological

innovations such as Cloud Computing, Internet of Things as well as Mobile Computing and

their various integrations with semantic technologies to proffer solutions in IT, little has been

done towards leveraging these technologies to address semantic annotation challenges. Hence,

this research investigates leveraging cloud computing paradigm to address some semantic

annotation challenges, with focus on an automated system for providing semantic annotation

as a service. Firstly, considering the current disparate nature observable with most semantic

annotation solutions, a holistic perspective to semantic annotation is proposed based on a set

of requirements. Then, a capability assessment towards the feasibility of leveraging cloud

computing is conducted which produces a Cloud Computing Capability Model for Holistic

Semantic Annotation. Furthermore, an investigation into application deployment patterns in

the cloud and how they relate to holistic semantic annotation was conducted. A set of

determinant factors that define different patterns for application deployment in the cloud were

identified and these resulted into the development of a Cloud Computing Maturity Model and

the conceptualisation of a “Cloud-Driven” development methodology for holistic semantic

annotation in the cloud. Some key components of the “Cloud-Driven” concept include

Microservices, Operating System-Level Virtualisation and Orchestration. With the role

Microservices Software Architectural Patterns play towards developing solutions that can fully

maximise cloud computing benefits; CloudSea: a holistic, cloud-driven and microservices-

based architecture for automated semantic annotation of web documents is proposed as a novel

approach to semantic annotation. The architecture draws from the theory of “Design Patterns”

in Software Engineering towards its design and development which subsequently resulted into

the development of twelve Design Patterns and a Pattern Language for Holistic Semantic

Annotation, based on the CloudSea architectural design. As proof-of-concept, a prototype

implementation for CloudSea was developed and deployed in the cloud based on the “Cloud-

Driven” methodology and a functionality evaluation was carried out on it. A comparative

iii

evaluation of the CloudSea architecture was also conducted in relation to current semantic

annotation solutions; both proposed in academic literature and existing as industry solutions.

In addition, to evaluate the proposed Cloud Computing Maturity Model for Holistic Semantic

Annotation, an experimental evaluation of the model was conducted by developing and

deploying six instances of the prototype and deploying them differently, based on the patterns

described in the model. This empirical investigation was implemented by testing the instances

for performance through series of API load tests and results obtained confirmed the validity of

both the “Cloud-Driven” methodology and the entire model.

Keywords: Semantic Web, Semantic Annotation, Holistic Semantic Annotation, Cloud

Computing, Cloud Computing Capability Model, Cloud Computing Maturity Model, Cloud-

Driven, CloudSea, Microservices, Design Patterns.

iv

Acknowledgements

Firstly, I will like to give God thanks for His many blessings and the opportunity to have

embarked on this academic journey as well as the grace to bring it to completion. Father in

Heaven may your name be praised forever, Amen.

Sincere gratitude goes to my principal supervisor Professor Elhadj Benkhelifa for his immense

contribution to the success of this work. Your support, encouragement and advice are so

priceless. I also wish to express my sincere appreciation to my second supervisor Dr. Russell

Campion for his continued support in diverse ways all through this journey. I wish to express

my gratitude as well to the authorities at Staffordshire University for the scholarship I received

towards tuition for the entire period of my PhD studies. Many thanks!

Furthermore, I wish to thank my family; my darling wife for all her support and ‘holding forth’

while I pursued this degree – thanks sweetheart, I appreciate it all! Thanks to my sweet mother

for all her prayers and words of encouragement. You’re such a wonderful mummy! Thanks to

my lovely daughter; Michelle and dear son; Jayden. Thanks to my dear sisters, brother, sisters-

in-law and brothers-in-law for all their support and encouragement. Thanks to my Parents-in-

law for their support, encouragement and prayers.

Thanks to my family at large, to friends and well-wishers too numerous to mention in every

way you have offered some support!

v

Dedication

This is dedicated to my late Father; Prince Johnson Adedapo Adedugbe who passed on to glory

on 22nd September 2018, less than a year to the completion of my PhD studies. His desire for

me to obtain this degree is beyond what my words can describe, and he so much looked forward

to celebrating its completion with me but that was not meant to be.

Your passion for quality education and decency of lifestyle are great values that I will always

remember and appreciate. Thanks for being such a great daddy, Dad.

vi

List of Publications

Conferences:

Adedugbe, O., Benkhelifa, E. and Campion, R., 2017, October. Towards Cloud Driven
Semantic Annotation. In 2017 IEEE/ACS 14th International Conference on Computer Systems
and Applications (AICCSA) (pp. 1378-1384). IEEE.

Adedugbe, O., Benkhelifa, E. and Campion, R., 2018, October. A Cloud-Driven Framework
for a Holistic Approach to Semantic Annotation. In 2018 Fifth International Conference on
Social Networks Analysis, Management and Security (SNAMS) (pp. 128-134). IEEE.

Benkhelifa, E., Rowe, E., Kinmond, R., Adedugbe, O.A. and Welsh, T., 2014, August.
Exploiting Social Networks for the Prediction of Social and Civil Unrest: A Cloud-Based
Framework. In 2014 International Conference on Future Internet of Things and Cloud (pp.
565-572). IEEE.

Journals:

Adedugbe, O., Benkhelifa, E. and Campion, R., Jayawickrama, U., 2019. Leveraging Cloud
Computing for the Semantic Web: Review and Trends. Soft Computing Journal (Submitted)

vii

Table of Contents

Abstract .. ii

Acknowledgements ... iv

Dedication .. v

List of Publications.. vi
Table of Contents ... vii

List of Figures ... xiv

List of Tables .. xvii

List of Abbreviations ... xix

Chapter 1: Introduction .. 21

1.1 Research Motivation .. 21

1.2 Research Aim and Objectives .. 23

1.3 Research Hypothesis .. 24

1.4 Research Methodology ... 24

1.4.1 Design Science Research in Information Systems.. 24

1.4.2 Philosophical Ground of DSR .. 26

1.4.3 DSR Three and Four-Cycle Views ... 27

1.4.4 DSR Process Model .. 29

1.4.5 DSR Cognitive Stages... 34

1.4.6 DSR Knowledge Contribution Framework .. 35

1.5 Research Contributions to Knowledge ... 36

1.6 Thesis Structure .. 37

Chapter 2: Literature Review ... 41

2.1 The Semantic Web ... 41

2.1.1 Supporting Technologies .. 42

2.1.2 Challenges of the Semantic Web .. 44

2.1.2.1 Execution-Related Challenges .. 44

2.1.2.2 Implementation-Related Challenges ... 45

2.1.2.3 General Challenges ... 45

2.2 Semantic Annotation .. 46

2.2.1 Manual Annotation ... 48

2.2.2 Semi-Automatic Annotation ... 49

2.2.3 Automatic Annotation ... 50

viii

2.2.4 The Role of Ontologies ... 52

2.3 Schema.org Markup .. 56

2.4 Cloud Computing ... 58

2.4.1 Cloud Computing Delivery Models ... 58

2.4.2 Cloud Computing Deployment Models ... 59

2.4.3 Cloud Computing Essential Characteristics... 60

2.4.4 Cloud Computing Benefits .. 61

2.4.5 Cloud Computing Issues .. 62

2.5 Semantic Web and Cloud Computing ... 62

2.5.1 Leveraging Semantic Technologies for Cloud Computing 62

2.5.1.1 Cloud Interoperability and Portability .. 63

2.5.1.2 Discovery, Selection and Utilisation of Cloud Services 64

2.5.1.3 Cloud Security .. 65

2.5.1.4 Description of Cloud Resources and Services .. 66

2.5.2 Leveraging Cloud Computing for the Semantic Web .. 67

2.6 Chapter Summary .. 71

Chapter 3: Towards a Holistic Semantic Annotation Solution .. 72

3.1 The Holistic Perspective to Semantic Annotation.. 72

3.2 Requirements for the Holistic Perspective .. 75

3.2.1 Preparatory Phase Requirements .. 77

3.2.1.1 Concept Extraction ... 78

3.2.1.2 Ontology Population ... 80

3.2.1.3 Ontology Selection ... 81

3.2.1.4 Ontology Mapping .. 82

3.2.1.5 Annotation Data Storage .. 84

3.2.2 Annotation Phase Requirements ... 85

3.2.2.1 Annotation On-the-fly .. 86

3.2.2.2 Annotation Data Reuse ... 86

3.2.2.3 Annotation Data Sharing .. 87

3.2.3 Maintenance Phase Requirements .. 87

3.2.3.1 Annotation Data Auto-Update .. 87

3.2.3.2 Ontology Auto-Update ... 88

3.2.3.3 Annotation Data Optimisation .. 88

3.2.3.4 Annotation Data Colocation ... 89

3.2.4 Holistic Requirements Summary .. 90

ix

3.3 Cloud Computing Mechanisms for Holistic Semantic Annotation 91

3.3.1 Cloud Infrastructure Mechanisms ... 92

3.3.1.1 Resource Clustering .. 92

3.3.1.2 Resource Replication .. 93

3.3.1.3 Failover System .. 93

3.3.1.4 Geotagging.. 94

3.3.2 Specialised Cloud Mechanisms .. 95

3.3.2.1 Automated Scaling ... 95

3.3.2.2 Cloud Usage Monitoring .. 96

3.3.2.3 Load Balancing ... 97

3.3.2.4 Cloud Workload Scheduling .. 98

3.3.3 Cloud Management Mechanisms .. 99

3.3.3.1 Billing Management System .. 99

3.3.3.2 SLA Management System .. 100

3.3.3.3 Resource Management System ... 101

3.3.4 Cloud Security Mechanisms ... 101

3.3.4.1 Attribute-Based Access Control ... 101

3.3.4.2 Digital Certification .. 102

3.3.4.3 Digital Signature ... 102

3.3.4.4 Identity and Access Management ... 103

3.4 Cloud Computing Capability Model for Holistic Semantic Annotation 103

3.5 Chapter Summary .. 106

Chapter 4: Cloud Computing Maturity Model for Holistic Semantic Annotation 107

4.1 Software Architectural Patterns .. 107

4.1.1 Microservices Software Architecture .. 109

4.1.2 Benefits of Microservices .. 111

4.1.3 Drawbacks of Microservices.. 113

4.1.4 Monolithic / N-Tier vs. Microservices ... 114

4.1.5 SOA vs. Microservices .. 116

4.2 Virtualisation Patterns ... 119

4.2.1 Hypervisor-Level Virtualisation .. 120

4.2.2 Operating System-Level Virtualisation ... 122

4.3 Containerisation and Microservices .. 124

4.4 Container Orchestration Technology .. 126

4.5 Continuous Integration Mechanism .. 127

x

4.6 Cloud Computing Maturity Levels for Holistic Semantic Annotation 129

4.6.1 Cloud-Based Monolithic Maturity Level ... 130

4.6.2 Cloud-Based Microservices Maturity Level .. 131

4.6.3 Cloud-Optimised Maturity Level ... 131

4.6.4 Cloud-Native Maturity Level ... 133

4.6.5 Enhanced Cloud-Native: Cloud-Driven Maturity Level.................................. 134

4.7 The Proposed Maturity Model .. 136

4.8 Software Architectural Layers for CloudSea .. 138

4.8.1 The User Interface Layer ... 139

4.8.2 The API Gateway Layer .. 140

4.8.3 The Application Logic Layer ... 141

4.8.4 The Data Access Layer .. 141

4.8.5 The Persistence Layer .. 142

4.9 Chapter Summary .. 143

Chapter 5: CloudSea – Holistic, Cloud-driven and Microservices-based Semantic
Annotation Architecture ... 144

5.1 Design Rationale for CloudSea ... 144

5.2 Design Patterns Engineering for CloudSea ... 148

5.2.1 Pattern Identification Phase ... 148

5.2.2 Pattern Authoring Phase .. 150

5.2.3 Pattern Application Phase .. 154

5.3 Design Pattern Language for CloudSea .. 154

5.4 CloudSea Microservices-based Design Patterns ... 157

5.4.1 The Service Microservices-Based Design Patterns for CloudSea 158

5.4.1.1 Concept Extraction Design Pattern ... 158

5.4.1.2 Ontology Population Design Pattern .. 160

5.4.1.3 Ontology Selection Design Pattern ... 162

5.4.1.4 Ontology Mapping Design Pattern ... 163

5.4.1.5 Annotation Data Storage Design Pattern .. 165

5.4.1.6 Annotation On-The-Fly Design Pattern ... 166

5.4.1.7 Annotation Data Reuse Design Pattern .. 167

5.4.1.8 Annotation Data Sharing Design Pattern.. 169

5.4.1.9 Annotation Data Auto-Update Design Pattern ... 170

5.4.1.10 Ontology Auto-Update Design Pattern ... 171

5.4.1.11 Annotation Data Optimisation Design Pattern ... 172

xi

5.4.1.12 Service Colocation Design Pattern ... 174

5.4.2 The Experience Microservices .. 175

5.4.2.1 The User Interface Design Pattern .. 175

5.4.2.2 The User Management Design Pattern ... 176

5.4.3 The Inter-Process Communication: Apache Kafka ... 178

5.4.4 Service Discovery .. 180

5.5 CloudSea: The Proposed Holistic, Cloud-Driven, Microservices-Based Architecture
for Automated Semantic Annotation of Web Documents ... 181

5.5 Chapter Summary .. 185

Chapter 6: Prototype Implementation .. 186

6.1 Requirements ... 186

6.1.1 Software Requirements .. 186

6.1.2 Platform Requirements .. 187

6.2 The Development Environment .. 187

6.3 Enabling Technologies .. 188

6.3.1 Laravel Framework .. 188

6.3.2 The Frontend Tools .. 189

6.3.3 Redis .. 189

6.3.4 JavaScript Object-Notation (JSON) ... 189

6.4 The Annotation API .. 189

6.5 The Deployment Environment .. 192

6.5.1 Amazon AWS .. 193

6.5.2 Prototype Containerisation... 194

6.5.3 Installing, Configuring and Running an Orchestration Platform: Kubernetes 195

6.5.3.1 The Kubernetes Nodes .. 197

6.5.3.2 The Kubernetes Namespaces .. 200

6.5.3.3 The Kubernetes Deployments .. 201

6.5.3.4 The Kubernetes Pods .. 204

6.5.4 Installing, Configuring and Running Prometheus + Grafana for Monitoring . 205

6.5.5 Installing, Configuring and Running the ELK Stack for Logging................... 206

6.7 Chapter Summary .. 207

Chapter 7: Research Evaluation ... 209

7.1 Functionality Evaluation .. 209

7.1.1 API Status Check .. 209

7.1.2 Annotation API Functionality ... 210

xii

7.2 Comparative Evaluation .. 215

7.3 Experimental Evaluation ... 218

7.3.1 Non-Cloud Monolithic Maturity Level ... 223

7.3.1.1 Scenario 1 ... 223

7.3.1.2 Scenario 2 ... 224

7.3.1.3 Analysis .. 225

7.3.2 Non-Cloud Microservices Maturity Level .. 226

7.3.2.1 Scenario 1 ... 226

7.3.2.2 Scenario 2 ... 227

7.3.2.3 Comparative Analysis... 228

7.3.3 Cloud-Based Monolithic Maturity Level .. 228

7.3.3.1 Scenario 1 ... 229

7.3.3.2 Scenario 2 ... 230

7.3.3.3 Comparative Analysis... 231

7.3.4 Cloud-Based Microservices Maturity Level ... 231

7.3.4.1 Scenario 1 ... 232

7.3.4.2 Scenario 2 ... 232

7.3.4.3 Scenario 3 ... 233

7.3.4.4 Comparative Analysis... 234

7.3.5 Cloud-Optimised Maturity Level .. 234

7.3.5.1 Scenario 1 ... 235

7.3.5.2 Scenario 2 ... 236

7.3.5.3 Scenario 3 ... 237

7.3.5.4 Scenario 4 ... 238

7.3.5.5 Comparative Analysis... 238

7.3.6 Cloud-Driven Maturity Level ... 239

7.3.6.1 Scenario 1 ... 239

7.3.6.2 Scenario 2 ... 240

7.3.6.3 Scenario 3 ... 241

7.3.6.4 Scenario 4 ... 242

7.3.6.5 Scenario 5 ... 243

7.3.6.6 Comparative Analysis... 243

7.3.7 Experimental Evaluation Summary .. 244

7.4 – Chapter Summary .. 247

Chapter 8: Conclusions and Recommendations... 248

xiii

8.1 Research Summary ... 248

8.2 Research Contributions .. 250

8.2.1 Semantic Web and Cloud Computing State-of-the-Art 250

8.2.2 A Holistic Semantic Annotation Requirements Specification 250

8.2.3 A Cloud Capability Model for Holistic Semantic Annotation........................ 250

8.2.4 A Cloud Maturity Model for Holistic Semantic Annotation 251

8.2.5 Design Patterns and Pattern Language for Cloud-Driven, Holistic Semantic
Annotation .. 251

8.2.6 CloudSea: A Holistic, Cloud-driven and Microservices-based Architecture for
Automated Semantic Annotation of Web Documents ... 252

8.3 Research Limitations .. 252

8.4 Recommendations for Future Research ... 252

References .. 254

Appendix A Cloud-Based Web App Deployment Notes .. 290

Appendix B Web GUI for Prototype Implementation .. 293

Appendix C CloudSea Annotation API Endpoint... 296

Appendix D Sample Load Test System Logs ... 299

D.1 Sample Load Test System Log for Cloud-Driven API .. 299

D.2 Sample Load Test System Log for Cloud-Optimised API 301

xiv

List of Figures
Figure 1. 1 - Levels of Research in Information Systems and DSR Role ... 25
Figure 1. 2 – The Four-Cycle View of DSR ... 28
Figure 1. 3 – DSR Process Model ... 30
Figure 1. 4 – DSR Cognitive Stages. .. 35
Figure 1. 5 - DSR Knowledge Contribution Framework. ... 36
Figure 1. 6 – Thesis Structure ... 40

Figure 2. 1 – The Semantic Web Technology Stack ... 42
Figure 2. 2 – A Summary of Semantic Web Challenges .. 46
Figure 2. 3 – An Example Web Document Semantic Annotation .. 48
Figure 2. 4 – A Visual Representation of an Ontology ... 53
Figure 2. 5 – Classification of Ontology Engineering Activities .. 54
Figure 2. 6 – Phases of Ontology Engineering ... 55
Figure 2. 7 – A Sample Property Table from Schema.org Vocabulary .. 57
Figure 2. 8 – An Example of Schema.org Markup using RDFa ... 57
Figure 2. 9 - Agility-Oriented Semantic Model for Cloud Services ... 63
Figure 2. 10 – A Search Model over Encrypted Data in Cloud. ... 66

Figure 3. 1 – Communication Stream between Web, Annotation and Ontology Servers 74
Figure 3. 2 – From Disparate to Holistic Perspective for Semantic Annotation 75
Figure 3. 3 – Holistic Semantic Annotation Requirements and Phases .. 77
Figure 3. 4 – Generic Approach to Concept Extraction for Semantic Annotation 78
Figure 3. 5 – Ontology Population Process ... 81
Figure 3. 6 – Leveraging Cloud Computing for Holistic Semantic Annotation (High Level) 90
Figure 3. 7 – A Failover System for Cloud Computing Services ... 94
Figure 3. 8 – Automated Scaling Mechanism ... 95
Figure 3. 9 – Horizontal Pod Autoscaling in a Kubernetes Cluster .. 96
Figure 3. 10 – Cloud Usage Monitoring in Kubernetes using Prometheus & Grafana 97
Figure 3. 11 – Load Balancing in Cloud Computing .. 98
Figure 3. 12 – Cloud Capability Model for Holistic Semantic Annotation .. 105

xv

Figure 4. 1 – A Simplistic Example of Microservices Software Architecture 109
Figure 4. 2 – Monolithic / N-Tier Architecture vs. Microservices Architecture 114
Figure 4. 3 - Service Oriented Architecture (SOA) vs. Microservices Architecture 117
Figure 4. 4 – Hypervisor-Level Virtualisation .. 121
Figure 4. 5 – Operating-System Level Virtualisation Architecture .. 122
Figure 4. 6 – Polyglot Programming for Microservices ... 125
Figure 4. 7 – Simplistic View of Container Orchestration Cloud Environment 127
Figure 4. 8 – Continuous Integration Mechanism for Holistic Semantic Annotation 129
Figure 4. 9 – Cloud-Based Monolithic Maturity Level for Holistic Semantic Annotation 131
Figure 4. 10 – Cloud-Based Microservices Maturity Level for Holistic Semantic Annotation 131
Figure 4. 11 – Cloud-Optimised Maturity Level for Holistic Semantic Annotation 133
Figure 4. 12 – Cloud-Native Maturity Level for Holistic Semantic Annotation 134
Figure 4. 13 – Cloud-Driven Maturity Level for Holistic Semantic Annotation 136
Figure 4. 14 – Cloud Computing Maturity Model for Holistic Semantic Annotation 137
Figure 4. 15 – Software Architectural Layers for CloudSea ... 139
Figure 4. 16 – API Gateway Implementation for Microservices .. 140
Figure 4. 17 – Data Access Layer with Connectivity to Multiple Databases 142

Figure 5. 1 - Amazon AWS Cloud Design Patterns.. 146
Figure 5. 2 - User Roles for Design Patterns Engineering .. 148
Figure 5. 3 - Holistic Semantic Annotation Pattern Language ... 156
Figure 5. 4 – Concept Extraction Design Pattern Flowchart .. 160
Figure 5. 5 – Ontology Population Design Pattern Flowchart .. 161
Figure 5. 6 – Ontology Selection Design Pattern Flowchart .. 163
Figure 5. 7 – Ontology Mapping Design Pattern Flowchart ... 164
Figure 5. 8 – Annotation Data Storage Design Pattern Flowchart .. 166
Figure 5. 9 – Annotation On-the-Fly Design Pattern Flowchart ... 167
Figure 5. 10 – Annotation Data Reuse Design Pattern Flowchart .. 168
Figure 5. 11 – Annotation Data Sharing Design Pattern Flowchart ... 170
Figure 5. 12 – Annotation Data Auto-Update Design Pattern Flowchart ... 171
Figure 5. 13 – Ontology Auto-Update Design Pattern Flowchart .. 172
Figure 5. 14 – Annotation Data Optimisation Design Pattern Flowchart ... 173
Figure 5. 15 – Service Co-locator Design Pattern Flowchart ... 175
Figure 5. 16 - Apache Kafka Pub-Sub for Microservices Inter-Process Communication 178
Figure 5. 17 – CloudSea: Holistic, Cloud-driven and Microservices-based Architecture for Automated
Semantic Annotation ... 182
Figure 5. 18 – Process Flow for CloudSea Architecture ... 184

xvi

Figure 6. 1 – User Perspective for CloudSea Semantic Annotation Process 191
Figure 6. 2 – Automated Semantic Annotation using CloudSea API ... 192
Figure 6. 3 – Market Share for Top Cloud Service Providers .. 193
Figure 6. 4 – Amazon AWS account running EC2 instances for CloudSea 194
Figure 6. 5 – Screen shot of the Dockerfile for CloudSea Frontend Microservice 195
Figure 6. 6 – Container Orchestration Engines Popularity ... 197
Figure 6. 7 – Architecture of CloudSea Kubernetes Cluster ... 199
Figure 6. 8 – Screenshot of CloudSea Kubernetes Master and Worker Nodes 199
Figure 6. 9 – Screenshot of CloudSea Kubernetes Master and Worker Nodes from CLI 200
Figure 6. 10 – Real time CPU & Memory Usage of CloudSea Kubernetes Nodes 200
Figure 6. 11 - Screenshot of CloudSea Kubernetes Kube-System Namespace Pods 201
Figure 6. 12 – Screenshot of CloudSea Kubernetes Deployments by Namespaces 202
Figure 6. 13 – List of Pods within CloudSea Default Namespace .. 204
Figure 6. 14 – List of Pods under ‘kube-system’ namespace of CloudSea Kubernetes...................... 205
Figure 6. 15 – Monitoring Metrics for ‘kube-ingress’ Namespace via Grafana 206
Figure 6. 16 – Kibana Log Aggregation Sample Data for CloudSea Kubernetes cluster 207

Figure 7. 1 – API Status Check for CloudSea API endpoint .. 210
Figure 7. 2 – A sample web document source code before API call insertion 211
Figure 7. 3 – Web page with the API call and specification for content to be annotated 212
Figure 7. 4 – A screenshot of the semantically annotated web document using the API 212
Figure 7. 5 – A screenshot of the web document with some annotation types toggled off................. 213
Figure 7. 6 – Configuration for auto-scaling a microservice when CPU utilisation hits 80% 214
Figure 7. 7 – Auto-Scaling for Annotation Microservice through OS-level Virtualisation 215
Figure 7. 8 - Average Response Time and Error Rate for Non-Cloud Monolithic Scenario 1 224
Figure 7. 9 - Average Response Time and Error Rate for Non-Cloud Monolithic Scenario 2 225
Figure 7. 10 - Average Response Time and Error Rate for Non-Cloud Microservices Scenario 1 227
Figure 7. 11 - Average Response Time and Error Rates for Non-Cloud Microservices Scenario 2 .. 228
Figure 7. 12 - Average Response Time and Error Rate for Cloud-Based Monolithic Scenario 1 230
Figure 7. 13 - Average Response Time and Error Rate for Cloud-Based Monolithic Scenario 2 231
Figure 7. 14 – Average Response Time and Error Rate for Cloud-Based Microservices Scenario 1 232
Figure 7. 15 – Average Response Time and Error Rate for Cloud-Based Microservices Scenario 2 233
Figure 7. 16 – Average Response Time and Error Rate for Cloud-Based Microservices Scenario 3 234
Figure 7. 17 - Average Response Time and Error Rate for Cloud-Optimised Scenario 1 236
Figure 7. 18 - Average Response Time and Error Rates for Cloud-Optimised Scenario 2 237
Figure 7. 19 - Average Response Time and Error Rate for Cloud-Optimised Scenario 3 237
Figure 7. 20 - Average Response Time and Error Rates for Cloud-Optimised Scenario 4 238
Figure 7. 21 - Average Response Time and Error Rates for Cloud-Driven Scenario 1 240
Figure 7. 22 - Average Response Time and Error Rates for Cloud-Driven Scenario 2 241
Figure 7. 23 - Average Response Time and Error Rates for Cloud-Driven Scenario 3 242
Figure 7. 24 – Average Response Time and Error Rates for Cloud-Driven Scenario 4 242
Figure 7. 25 - Average Response Time & Error Rates for Cloud-Driven Scenario 5 243

xvii

List of Tables
Table 1. 1 - Design Science Research Perspective ... 27
Table 1. 2 - Types of Research Outputs for DSR. .. 31
Table 1. 3 – Design Science Research Evaluation Methods ... 32
Table 1. 4 – DSR Process Steps and Research Corresponding Chapters .. 33

Table 2. 1 – Common Manual Semantic Annotation Tools .. 49
Table 2. 2 – Common Semi-Automatic Semantic Annotation Tools ... 50
Table 2. 3 – Classification for Semantic Annotation Methods ... 51
Table 2. 4 - Summary of research projects on leveraging cloud computing for semantic-based
applications ... 70

Table 3. 1 – Holistic Semantic Annotation Requirements .. 76
Table 3. 2 – Comparison of Ontology Mapping and Ontology Merging .. 83
Table 3. 3 - Comparison of Monolithic and Decoupled Annotation Data Storage Mechanisms 85
Table 3. 4 - Mapping Cloud Computing Mechanisms with Holistic Semantic Annotation
Requirements .. 104

Table 4. 1 – Microservices Key Principles Across Literature .. 111
Table 4. 2 – Comparison of Monolithic / N-Tier and Microservices Software Architectures 115
Table 4. 3 - Comparison of SOA and Microservices Software Architectures 118
Table 4. 4 – Comparison of Hypervisor-Level and OS-Level Virtualisation 123
Table 4. 5 – Determinant Factors for Holistic Semantic Annotation Deployment in the Cloud 129
Table 4. 6 – Components for CloudSea Software Architectural Layers ... 143

Table 5. 1 - Survey of the use of Design Patterns across different IT domains 147
Table 5. 2 - Identified Design Patterns for Holistic Semantic Annotation ... 149
Table 5. 3 - Design Patterns Structure across Literature in Computing .. 151
Table 5. 4 – Mapping of CloudSea Design Patterns to Microservices ... 158
Table 5. 5 - CloudSea Data Distribution based on Pub-Sub Messaging ... 179

Table 6. 1 – System Specification of EC2 Instances for CloudSea Kubernetes Cluster 193

xviii

Table 7. 1 – Summary Comparison of CloudSea with Existing Systems ... 217
Table 7. 2 – Load Tests Configuration for Experimental Evaluation ... 220
Table 7. 3 – Common 400/500 Error Codes for Web Server Responses .. 222
Table 7. 4 – Scenario 1 Results for Non-Cloud Monolithic ... 223
Table 7. 5 - Scenario 2 Results for Non-Cloud Monolithic .. 225
Table 7. 6 - Scenario 1 Results for Non-Cloud Microservices ... 226
Table 7. 7 - Scenario 2 Results for Non-Cloud Microservices ... 227
Table 7. 8 - Virtual Host Specification for Cloud-Based Monolithic ... 229
Table 7. 9 - Scenario 1 Results for Cloud-Based Monolithic ... 229
Table 7. 10 - Scenario 2 Results for Cloud-Based Monolithic ... 230
Table 7. 11 – Scenario 1 Results for Cloud-Based Microservices .. 232
Table 7. 12 – Scenario 2 Results for Cloud-Based Microservices .. 233
Table 7. 13 – Scenario 3 Results for Cloud-Based Microservices .. 233
Table 7. 14 – CloudSea Kubernetes Cluster Summary Overview .. 235
Table 7. 15 - Scenario 1 Results for Cloud-Optimised ... 235
Table 7. 16 - Scenario 2 Results for Cloud-Optimised ... 236
Table 7. 17 - Scenario 3 Results for Cloud-Optimised ... 237
Table 7. 18 - Scenario 4 Results for Cloud-Optimised ... 238
Table 7. 19 - Scenario 1 Results for Cloud-Driven ... 240
Table 7. 20 - Scenario 2 Results for Cloud-Driven ... 240
Table 7. 21 - Scenario 3 Results for Cloud-Driven ... 241
Table 7. 22 - Scenario 4 Results for Cloud-Driven ... 242
Table 7. 23 - Scenario 5 Results for Cloud-Driven ... 243
Table 7. 24 – Summary Results from the Experimental Evaluation ... 246

xix

List of Abbreviations
ABAC Attribute-Based Access Control
API Application Programming Interface
ASMOV Automated Semantic Matching of Ontologies with Verification
CPU Central Processing Unit
CREAM Creating Metadata
CRF Conditional Random Fields
C-PANKOW Context-driven Pattern-based Annotation through Knowledge on the Web
CSP Cloud Service Provider
CSS Cascading Style Sheets
DDD Domain Driven Design
DL Description Logic
DSR Design Science Research
ESB Enterprise Service Bus
FOAM Framework for Ontology Alignment and Mapping
GATE General Architecture for Text Engineering
GDPR General Data Protection Regulation
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HVM Hardware-assisted Virtual Machine
IBM International Business Machines
IA Intelligent Agents
IAM Identity and Access Management
IER Information Extraction and Retrieval
IoT Internet of Things
IRPS Inter-Cloud Resource Provisioning System
IT Information Technology
JAPE Java Annotation Pattern Engine
JSON JavaScript Object Notation
JSON-LD JSON for Linked Data
KIM Knowledge and Information Management
LDAP Lightweight Directory Access Protocol
NCBO National Center for Biomedical Ontology
NER Named Entity Recognition
NLP Natural Language Processing
OS Operating System
OUL Ontology Update Language
OWL Web Ontology Language
PDO PHP Data Objects
PHP PreHypertext Processor
QOM Quick Ontology Mapping
QoS Quality of Service
RDF Resource Description Framework
RDFa Resource Description Framework in Attributes
RDFS Resource Description Framework Schema
REST Representational State Transfer
RSS Really Simple Syndication
SLA Service Level Agreement
SNOMED-CT Systematised Nomenclature of Medicine – Clinical Terms
SOA Service Oriented Architecture
SPARQL Sparql Protocol and RDF Query Language

xx

SSL Secure Sockets Layer
SVM Support Vector Machine
SQL Structured Query Language
TDD Test Driven Design
TPM Trusted Platform Module
UI User Interface
UML Unified Modelling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
VMM Virtual Machine Monitor
W3C World Wide Web Consortium
WSDL Web Services Description Language
XML eXtensible Markup Language
YAML Yet Another Markup Language

21

Chapter 1: Introduction

This chapter introduces the investigation into a cloud-driven solution for automated semantic

annotation of documents on the Web and describes the research motivation. The aim and

objectives of the research are explained as well as the research hypothesis. Furthermore, it

presents the methodology adopted and research contributions to the body of knowledge. The

chapter concludes with an outline for the structure of the thesis.

1.1 Research Motivation

The pre-web era of the Internet was mainly managed by service providers who facilitated data

sharing across the Internet through computer internet interfaces for users. However, this

approach gave rise to issues around content control, user behaviour and service interoperability

thereby creating the need for adopting a more open platform. This facilitated the emergence of

the World Wide Web in 1989 (Bratt, 2008); a facility which has come a very long way since

then to become an integral part of the society today. The first version of the Web, commonly

referred to as Web 1.0 started off as a “Static Web” with web documents being purely

informational and “read-only” in nature. It was a document-centric web and focused on the

creation of static websites via interlinked, hypertext documents containing information that

could be accessed, searched and read by web users, over the Internet (Sheth & Thirunarayan,

2012). The static nature of the web then meant it offered little functionality in terms of

interaction with, and contribution to content (Getting, 2007). Web 1.0 documents were also

created using static HTML which often required frequent updating. Users had no influence or

contribution in content creation, neither could they interact much with content. The major

protocols or standards used for creating websites and content were HTTP, HTML and URL

(Prasad et al., 2013).

Efforts in addressing these challenges facilitated the emergence of a Web 2.0, commonly

referred to as the “Social Web” based on the dimension of interactivity and interconnectedness

that it brought to the environment. With Web 2.0, the static nature of websites began to

disappear as user-generated content became a prominent feature; facilitated by web

technologies such as blogs, wikis, podcasts, RSS feeds, online web services and social

networking (Prabhu., 2017). Websites became web applications; with the ability for end users

to contribute and modify content. Interactions with other web users greatly enhanced the

overall experience and fostered effective information collection and sharing (Kollmann et al.,

2016). Some practical examples of features it enhanced include e-commerce; the ability to buy

22

and sell online, e-learning; the ability to obtain an academic degree from a remote institution

via online lessons, teaching and examination, e-tourism; the ability to book a flight and make

hotel reservations online for a holiday trip and several others across health, education, finance,

entertainment and all other industry sectors.

Furthermore, with advancements in other areas of Information and Communications

Technology; such as Internet of Things, Cloud Computing and Mobile Computing, the amount

of information on the web grew very drastically. Peer research statistics by Marr (2018) and

sponsored by Forbes suggested that 90% of data on the Web was only added within the last 2

years. Likewise, research by Gunelius (2014) and published by ACI Group stated that every

sixty seconds; over 72 hours of video content is uploaded to YouTube; over 4 million search

queries are executed on Google and over 2.5 million content shares are made on Facebook.

While these massive amounts of data make the web a more resourceful environment, it comes

with an “Information Processing” challenge. With lots of data available to users to read,

process, manage and utilise in diverse ways, it poses a challenge, as identifying and managing

relevant data for an activity becomes cumbersome. Fensel (2011) classified these challenges

as follows:

• Information Finding; which refers to issues with information searches that are

predominantly keyword-based (Tate, 2018). Examples include issues with synonyms

such as study/learn; issues with homonyms such as Jaguar (automobile) / Jaguar

(animal); issues with spelling mistakes and variants such as Virtualisation /

Virtualization.

• Information Extraction; which refers to issues with standardising methods for

extracting information from web documents considering their usually unstructured

nature as well as differences in formats and syntaxes (Kollmann et al., 2016).

• Information Representation; which refers to issues with being able to define context for

data on the web in order to prevent misrepresentation (Sanchiz et al., 2017).

• Information Interpretation; which refers to the subjective interpretation of data based

on user’s understanding for various reasons (Sanchiz et al., 2017).

• Information Combination; which refers to issues with the disparate nature of web

documents which prevents aggregating information from different sources together as

a single piece (Zannettou et al., 2019).

23

The semantic web which is also referred to as Web 3.0 is designed to address the “Information

Processing” challenge of humans with Web 2.0. This is because the semantic web defines one

in which information processing is done by machines and not humans. So, the cumbersome

task of processing massive amounts of data from various sources that humans experience with

Web 2.0 is conducted by machines in Web 3.0. This is facilitated by means of adding machine-

readable and hence, processable annotation data to documents on the web. The schema and

format (such as RDF) for the annotation data is derived from ontologies; which are readable

and understandable by machines; explaining why they can process them as well.

However, the evolvement of this “Semantic Web” has been faced with challenges as well which

includes automated processes for annotating web documents with the required annotation data;

a process known as “Semantic Annotation”. Hence, the motivation for this research is to

investigate semantic web challenges and more specifically, the automation challenge for

semantic annotation in a bid to address the challenge and greatly foster the emergence of the

“Semantic Web” – which has been elusive, or at best very slowly. This would involve exploring

the use of software engineering concepts such as “Design Patterns” and “Microservices” as

underpinning theories for developing a cloud computing solution to address the automation

challenge of semantic annotation.

1.2 Research Aim and Objectives

Based on the motivation described in Section 1.1, the aim of this research is to design, develop

and evaluate a holistic, cloud-driven and microservices-based architecture for automated

semantic annotation of web documents. The objectives for achieving the aim are as follows:

1. To conduct a comprehensive literature review of both semantic web technologies and

cloud computing paradigm, with a critical analysis of the state-of-the-art and beyond.

2. To investigate, identify and propose a set of requirements towards addressing

automated semantic annotation challenges.

3. To conduct a feasibility study of leveraging cloud computing for an automated semantic

annotation process.

4. To explore the use of software engineering concepts such as “Design Patterns” and

“Microservices” as underpinning theories for developing a cloud computing solution to

address automated semantic annotation challenges.

5. To propose and develop an architecture for automated semantic annotation based on

the requirements identified earlier.

24

6. To validate the proposed architecture using a prototype implementation.

7. To evaluate the proposed architecture as well as the prototype implementation

8. To provide recommendations for further research in the area

1.3 Research Hypothesis

The hypothesis that forms the basis for this research is as follows: Cloud Computing can be

fully leveraged as a paradigm to address the automation challenge of providing machine-

understandable contextual data for semantically annotating documents on the web.

1.4 Research Methodology

Research can be referred to as a set of activities which contribute to a better understanding of

an existing reality, comprising of a set of various behaviours of defined entities which

researchers with common interests find engaging (Vaishnavi et al., 2017). Hanid (2014)

defined research as the process of investigating which is systematic in nature by means of

examining resources to extend the existing scope of knowledge within a domain. Furthermore,

research can be characterised as a process that involves a systematic and controlled approach,

distinguishable from gaining experience, which is usually an uncontrolled activity (Cohen &

Manion, 1994). Research provides empirical results which requires validation by external

entities (Vaishnavi et al., 2017). Research differs from reasoning in that the latter can operate

in an abstract world that is highly separated from the reality. However, unlike experience and

reasoning, research can be viewed as self-correcting; providing a rigorous testing with public

access to the methods and results obtained for validation. Research techniques and

methodologies are activities which researchers consider to be important and appropriate in

understanding a research domain (Hevner & Chatterjee, 2010). Different means and methods

are employed in information systems to conduct research and develop knowledge. Developing

the understanding for an information systems domain being researched is positivist in nature

as it allows the prediction of behaviour in relation to features or aspects of a phenomenon

(Vaishnavi et al., 2017).

1.4.1 Design Science Research in Information Systems

Design Science Research (DSR) is a research methodology in Information Systems (IS) and

describes techniques for generating novel constructs for solving problems or addressing

challenges across various industry sectors and contributing to theories within the application

domain (Hanid 2014). DSR can also be viewed as a methodology that aims to explore new

25

solutions and alternatives to solving problems; explaining the exploratory process and

improving the problem-solving processes for specific purposes (Thornhill et al., 2009). Over

the years, the methodology has become well established in the field of IS (Drechsler & Hevner,

2016; Iivari, 2010). DSR focuses on developing valid knowledge to support organisational

problem-solving within a given field. The support can be direct, indirect or instrumental. Aken

(2004) noted that the mission of DSR is to develop scientific knowledge to support the design

of novel and innovative artefacts by professionals and to emphasise its knowledge-orientation;

in which focus is on developing new knowledge that will facilitate actions, such as design

rather than on design itself.

Gregor & Hevner (2013) also noted that in IS context, DSR concerns the development of a

wide range of socio-technical artefacts, such as decision support systems, modelling tools,

methods for IS evaluation, IS modification interventions and governance strategies.

Furthermore, they noted that DSR has evolved to become a crucial and reliable research model

in Information Systems based on its unique features. These includes the fact that it is focused

on proffering solutions and its nature for the outcome of a research problem. In line with that,

Iivari (2010) proposed twelve theses and three levels of research which can be defined for

Information Systems with the potential role of DSR for each of the levels. This is illustrated by

Figure 1.1.

Figure 1. 1 - Levels of Research in Information Systems and DSR Role (Adapted From: Iivari, 2010)

26

According to Kuechler & Vaishnavi (2012), the common understanding of DSR in IS (DSRIS)

is continually evolving as a process of acquiring knowledge through design principles and

practices. Currently, the discussion is on what is to be built and the approach used in building

it, that is, the DSRIS artefact and methodology. They further noted that the relationship of

DSRIS to theory is forming a crucial part of the current discussion about DSR paradigm in the

context of IS. Peffers et al. (2007) also emphasised the role DSR currently plays in IS towards

developing and managing IS solutions and technologies as well as embodying goals and

creativity which facilitates the creation of valid artefacts, hence, becoming pivotal to how IS

researchers and practitioners apply, evaluate, create or improve various IS solutions and

technological artefacts. The artefacts comprise of systems which are created with the aim of

supporting management activities, decision-making processes, analysis and the operations of

an organisation.

1.4.2 Philosophical Ground of DSR

Peffers et al. (2007) noted that information system researchers started developing interest in

DSR in the early 1990s. This research methodology differed from other paradigms in terms of

theory building, testing and interpretive research. To distinguish between research in design

science, natural sciences and social sciences, Peffers et al. (2007) remarked that DSR attempts

to create solutions, objects or models that serve human purposes. In that period, various

researchers introduced DSR to the IS community. Some researchers advocated for integrating

systems development with the research process through an approach that facilitates the

development of theories and systems, supported with appropriate experiments (Nunamaker et

al., 1990). It was further stated that DSR could effectively enhance the practicality of

information systems research through the method of handling challenges experienced by IS

practitioners.

Hanid (2014) noted that any process of knowledge creation starts with a substantive field of

inquiry, commonly referred to as philosophy. In a philosophical inquiry, theories, facts and

alternatives in the ideals are brought together and assessed in the creation and legitimisation of

knowledge. In addition, there are a series of philosophical approaches to thinking, which are

commonly divided into interpretivism, realism, positivism, critical theory, phenomenology,

and hermeneutics (Scotland, 2012). The selection of a research strategy and methods for

research activities depends on its philosophical stance. However, Hanid (2014) noted that such

divisions did not distinguish another research paradigm centred toward practical problem

27

solving, which is Design Science Research (DSR). Table 1.1 presents a comparison of DSR

with some other well-known research perspectives.

Table 1. 1 - Design Science Research Perspective (Vaishnavi et al., 2017)
 Basic Belief

Research Perspectives
Positivist Interpretive Design

Ontology A single knowable and
probabilistic reality

The construction of
multiple realities in a
social manner.

Multiple realities with
contextually situated
alternative world-states.
Socio-technologically
enabled.

Epistemology Objective; dispassionate.
Detached observer of
truth

Subjective, i.e. values
and knowledge emerge
from the researcher-
participant interaction.

Knowing through
making: objectively
constrained construction
within a context. Iterative
circumscription reveals
meaning.

Methodology Observational in nature
with quantitative and
statistical measures

Participation;
qualitative.
Hermeneutical,
dialectical.

Developmental in nature
with an impact
measurement of artefact
on compound systems

Axiology Truth: universal and
beautiful; prediction

Understanding: situated
and description

Control; creation;
progress (i.e.
improvement);
understanding

From Table 1.1, it can be observed that DSR offers a multi-dimensional perspective from both

the ontological and epistemological beliefs. The methodological belief is also developmental

in nature which is well suited for Information Systems domain. Furthermore, from the

Axiological belief, DSR provides control of the environment while offering improvements for

the research process. These provide a basis for the adoption of DSR as a philosophical stance

in this research as it constitutes an appropriate match considering the pragmatic nature of the

research objectives.

1.4.3 DSR Three and Four-Cycle Views

Drechsler & Hevner (2016) evaluated a widely cited model visualisation of the DSR paradigm

called the Hevner’s three cycle view of DSR, which comprises of rigour, design and relevance

cycles as comprehensively conceptualising the major perspectives of a DSR project. The cycles

represent a series of activities which are closely related and can be described as follows;

28

• The relevance cycle provides a set of requirements based on the investigation domain

for the research and integrates research outputs into environment field testing.

• The rigor cycle provides grounding theories and methods along with domain experience

and expertise from the foundations of knowledge base into the research and adds new

knowledge generated by the research to the increasing knowledge base.

• The central design cycle focuses on implementing the research methodology and

accompanying activities to produce and evaluate a set of research outputs.

However, Drechsler & Hevner (2016) noted that the model lacks a key dynamic perspective

on how DSR projects relate to the organisational context in which it is embedded. Due to the

strong links to a real-world problem or situation, the researcher is not necessarily controlling

the DSR project’s speed, unlike in other research paradigms. For example, rapidly changing

environmental conditions may require quick and short design cycles to maintain artefact utility.

In effect, quick design cycles may leave only limited opportunities to draw on and grow

extensive theoretical knowledge bases in the rigor cycle (Drechsler & Hevner 2016). Based on

these, a four-cycle view was proposed, which adds “Change and Impact” as a fourth view to

the cycle. This is presented in Figure 1.2.

Figure 1. 2 – The Four-Cycle View of DSR (Adapted From: Drechsler & Hevner, 2016)

This research is in line with the four-cycle view proposed by Drechsler & Hevner (2016) and

the context for each of the views in this research is as follows:

29

• Relevance Cycle: From the critical review of existing literature and identification of

research gaps, this research proposes a set of requirements for the contextual domain;

which is automated semantic annotation.

• Rigour Cycle: Based on the DSR methodology, this research investigates and employs

software engineering concepts as underpinning theories, alongside the existing body of

knowledge to develop new domain knowledge in the form of research artefacts and in

accordance with research output types in DSR. These include Design Patterns and

Microservices.

• Central Design Cycle: From the underpinning theories employed in the Rigour Cycle,

this research implements DSR methodology to apply the theories within series of

research activities towards producing research outputs.

• Change and Impact Cycle: This research considers the dynamic context that impacts

research artefacts. Such contexts include societal and organisational systems from the

external environment which influence research activities and outputs. Regarding this,

outputs from the research are geared towards portability and interoperability to facilitate

the needed flexibility that emanates from the external environment. Furthermore, the

outputs foster standardisation within the domain which enhances a seamless integration

and synchronisation with these external factors.

The identification of these cycles in a research study distinguishes DSR from other research

paradigms (Hevner, 2007). Furthermore, advancements in the study and application of DSR

topics introduces new dimensions for DSR processes to cope with dynamic and time-related

aspects in research. The sources of such dynamics often lie in the wider environment outside

the artefacts’ immediate application context and therefore outside the three cycles of the

original model. The new four-cycle view elevates the dynamic issues to the same level as

refining the artefact in the design cycle or ensuring a research contribution in the rigor cycle.

1.4.4 DSR Process Model

The model of a DSR follows a multiplicity of described variants according to how they are

practiced. The DSR process model utilised in this research was adapted by Vaishnavi et al.

(2017) from a process model developed by Takeda et al. (1990). While the different phases

present in both models appear to be similar, it is worth noting that activities carried out in each

model are totally different from each other. Differences arise from the contribution of novel

knowledge which is required to be the focal point in DSR. There are several key areas in a DSR

30

model. Figure 1.3 presents the DSR process model adapted for this research and the application

of each process step follows.

Figure 1. 3 – DSR Process Model (Adapted from Vaishnavi et al., 2017)

Awareness of Problem

This step requires an understanding of the domain and identification of a problem (or problems)

to be solved. The understanding and identification process can be carried out in diverse ways.

Multiple sources may result to an awareness of research problems that are of interest to a

researcher. The sources may comprise of new and emerging developments in a specific

industry or identifying the problems within a specified discipline. In this case, a secondary

research through the critical review of existing literature was utilised. Upon completion of the

critical review, an analysis of research findings based on identified gaps was conducted which

provided a comprehensive awareness of the problem. This is detailed in Chapter 2.

Suggestion

Suggestion is also a crucial step within the DSR model. After a comprehension of the domain

and review of the state-of-the-art, it becomes imperative to propose a solution or solutions. For

31

this research, the step suggested addressing the challenge of automated semantic annotation

holistically. The holistic perspective also necessitated the identification of requirements for its

facilitation. While most of the requirements came from research findings, a few were novel;

having been conceptualised from an analysis of research findings and the adoption of a multi-

disciplinary approach to implementing the model. Furthermore, the suggestion step included

the proposal of leveraging cloud computing paradigm for the holistic semantic annotation

which was conducted through a feasibility study and resulted in a cloud computing capability

model for holistic semantic annotation. This step is detailed in Chapter 3.

Development

This phase involves the actual development of an artefact or a set of artefacts for the identified

problem(s). The artefact is developed to provide specified solutions and meet its objectives.

DSR artefacts can belong to any of the output categories listed in Table 1.2.

Table 1. 2 - Types of Research Outputs for DSR. (Vaishnavi et al., 2017)

 Output Description
1 Constructs The conceptual vocabulary of a domain
2 Models Sets of propositions or statements expressing relationships between

constructs
3 Frameworks Real or conceptual guides to serve as support or guide
4 Architectures High level structures of systems
5 Design Principles Core principles and concepts to guide design
6 Methods Procedures for implementing tasks
7 Instantiations Situated implementations in certain environments that do or do not

operationalise constructs, models, methods, and other abstract artefacts;
in the latter case such knowledge remains tacit.

8 Design Theories A prescriptive set of statements on how to do something to achieve a
certain objective. A theory usually includes other abstract artefacts such
as constructs, models, frameworks, architectures, design principles and
methods.

They can also include innovations for other fields, and they can be technical or informational

in nature. The development of new explanatory theories, innovative design as well as

development models and implementation processes or methods are all valid forms of artefact

with DSR. An artefact’s functionality and architecture for its creation are also valid outputs

(March & Storey, 2008). This research has several outputs for the ‘Development’ step, and

these are presented across Chapters 3 to 6.

32

Evaluation

An evaluation phase is part of the DSR methodology activities. Since design artefacts are very

fundamental to a DSR methodology, the evaluation phase needs to be both rigorous and

appropriately implemented, providing a basis for demonstrating that an artefact meets its aim

and objectives. This involves observing its capability to solve problems based on a set of

requirements, by drawing comparisons between the requirements specification and results

obtained. Within DSR, a design artefact is required to contain knowledge relating to the domain

where the artefact is expected to function (Gregor & Hevner, 2013). The available evaluation

methods in DSR are presented in Table 1.3. This research utilises all the described methods

over the course of the evaluation processes. These can be found in Chapter 7.

Table 1. 3 – Design Science Research Evaluation Methods
Evaluation Method Description
Observational The monitoring of the artefact within native environments to

observe its outputs.
Analytical The demonstration of the qualities of the artefact and how it is fit

for use, as intended.
Experimental The execution of an experiment on the artefact within a

controlled environment, and possibly with some dummy data.
Testing The execution of the different interfaces of artefacts to detect

errors and functionality issues.
Descriptive Construction of an informed argument for the artefact’s usability

based on information from knowledge base. Development of
scenarios too for artefact’s usability.

Conclusion

The last step of the model is the ‘Conclusion’ which defines the overall position of the research

and how it has met the stated aim and objectives, based on its outputs, with adequate

information and knowledge on disciplinary culture. It communicates the identified problem, its

significance, utility, design rigour, relevant audience, artefact and novelty (Offermann et al.,

2009). This phase should also provide recommendations for further research in the area. This

is in line with the Vaishnavi et al. (2017) DSR methodology.

However, the Peffers et al. (2007) DSR methodology concludes with a ‘Communication’ phase

which is concerned with publishing research findings. For this research, the “Conclusion” and

“Communication” are integrated into the final phase of the research process. While the

‘Conclusion’ is detailed in Chapter 8, ‘Communication’ cuts across Chapters 2 to 8. Table 1.4

33

presents a summary of the DSR model adoption in this research in terms of the process steps

and corresponding chapters.

Table 1. 4 – DSR Process Steps and Research Corresponding Chapters
DSR Process Model Steps Corresponding Chapter(s) Outputs

Awareness of Problem Chapter 2 Gaps Analysis from the

investigation and review of

problem area domains

Suggestion Chapter 3 Proposal of a holistic

perspective and requirements

specification for it, including

novel requirements

Cloud Computing Capability

Model for Holistic Semantic

Annotation

Chapter 4 Cloud Computing Maturity

Model for Holistic Semantic

Annotation

Chapter 5 Design Patterns and Pattern

Language for Holistic

Semantic Annotation

Holistic, Cloud-driven and

Microservices-based

Architecture for Automated

Semantic Annotation of Web

Documents

Development Chapter 6 Description of implementation

approach, techniques and

supporting technologies.

Evaluation Chapter 7 Functional Evaluation of

prototype implementation

Comparative Evaluation for

any developed artefacts such as

models and architectures

34

Experimental Evaluation for

any implementations for

performance measurement

Conclusion Chapter 8 Research Summaries

Research Contributions

Recommendations for future

work in the domain

Communication Chapters 2 to 8 Research Thesis

Publications

1.4.5 DSR Cognitive Stages

According to Vaishnavi et al. (2017), the DSR process model comprises of three cognitive

stages; Abduction, Deduction and Reflection. The “Suggestion” phase of the DSR process

corresponds to the Abduction cognitive stage whereby researchers utilise a research-driven

approach to proffer technical solutions based on new or existing knowledge from a problem

area. The Development and Evaluation phases of DSR correspond to the Deduction cognitive

stage, in which an implementation; either partial or full is evaluated based on a set of pre-

defined requirements. The Evaluation results to making deductions which are either in line

with the initial hypothesis or not. If they are, these are further utilised in the next stage of the

cognitive process; Reflection. On the other hand, if they are not, the deductions still constitute

knowledge as “Circumscriptions”. The Conclusion phase corresponds to the Reflection or

Abstraction cognitive stage which indicates the end of a research cycle with adequate reflection

and communication of new knowledge; referred to as Design Science Knowledge in this

context. This stage is very crucial as it forms the basis upon which one can understand the

entire DSR process. The means of communicating the knowledge can be through a research

thesis, publications, conferences, workshops, seminars and lots more. The DSR process model

by Peffers et al. (2007) implicitly identifies these cognitive stages as well in its description of

the DSR methodology phases. Figure 1.4 illustrates the cognitive stages and their

corresponding mappings within the DSR phases.

35

Figure 1. 4 – DSR Cognitive Stages. (Adapted from: Vaishnavi et al., 2017)

1.4.6 DSR Knowledge Contribution Framework

DSR requires its outputs to be contributions to the body of knowledge within a domain. Gregor

& Hevner (2013) identified four major types of knowledge contribution in DSR. These are

Invention, Improvement, Adaptation and Routine Design. Invention refers to knowledge

contribution based on inventing new knowledge or providing solutions to a new problem area

within a domain. Improvement refers to the development of new knowledge or solutions to a

well-known problem area. The Adaptation type of knowledge refers to an innovative utilisation

of known knowledge or solutions to address a new problem area. This might involve adapting

concepts from other disciplines to provide a multi-disciplinary solution in a domain. Lastly,

the Routine Design is based on utilising existing knowledge or solutions for well-known

problem areas. Vaishnavi et al. (2017) noted that a single DSR has the capability of utilising

more than one of the types of knowledge. Figure 1.5 presents the knowledge contribution

framework for DSR adapted from Gregor & Hevner (2013).

36

Figure 1. 5 - DSR Knowledge Contribution Framework. (Adapted from: Gregor & Hevner, 2013)

Based on the DSR Knowledge Contribution Framework in Figure 1.5, the contributions to

knowledge from this research fall under the “Improvement” category by means of developing

significant new knowledge and solutions for known challenges with automated semantic

annotation and the overall evolvement of a semantic web.

1.5 Research Contributions to Knowledge

The contributions to knowledge from this research are as follows:

1. A comprehensive literature review on semantic web technologies and cloud computing

paradigm, including the interaction types between both.

2. The proposal of a holistic approach to addressing automated semantic annotation

challenges with an identification of a set of requirements and additional novel

requirements to facilitate a holistic semantic annotation process.

3. The development of a Cloud Computing Capability Model for Holistic Semantic

Annotation which assesses and defines cloud computing mechanisms for facilitating a

holistic semantic annotation process.

37

4. The development of a Cloud Computing Maturity Model for Holistic Semantic

Annotation which provides maturity levels for holistic semantic annotation solution

deployment in the cloud based on a set of well evaluated metrics.

5. Design Patterns and Pattern Language for Cloud-Driven, Holistic Semantic Annotation

which details technical solutions towards meeting the holistic semantic annotation

requirements.

6. The development of CloudSea: A Microservices-Based Architecture for Cloud-Driven,

Holistic Semantic Annotation which provides a full-fledged software architecture

design for holistic semantic annotation.

7. The development of a prototype for CloudSea as proof-of-concept.

8. Functional and Comparative Evaluation of CloudSea.

9. The development of multiple CloudSea prototypes based on different software

architectural patterns as well as different application deployment patterns in the cloud.

10. Experimental Evaluation of the Cloud Computing Maturity Model for Holistic

Semantic Annotation based on the multiple CloudSea prototypes.

11. The provision of detailed recommendations towards further research in the area.

1.6 Thesis Structure

The thesis is organised into eight chapters and a summary for each one is presented as follows:

Chapter 1: Introduction

This chapter introduces the research, which includes a background and motivation, research

aim and objectives, research questions and contributions to knowledge. It also includes the

methodology adopted for the research which is based on the Design Science Research (DSR)

paradigm. The chapter concludes with a breakdown of the thesis structure and a summary for

each chapter.

Chapter 2: Literature Review

This chapter investigates the domains of semantic web technologies and cloud computing

paradigm, with a comprehensive review of their state-of-the-art as well as how they integrate

to proffer IT solutions. Furthermore, the chapter analyses findings from research to identify

challenges with the evolution of a semantic web.

38

Chapter 3: Requirements for a Holistic Semantic Annotation Process

This chapter proposes a holistic perspective to automated semantic annotation based on

findings from Chapter 2. Furthermore, requirements for the holistic perspective are identified

from literature and additional novel requirements were proposed. The chapter goes on to

evaluate the feasibility of leveraging cloud computing for holistic semantic annotation and

proposes a cloud computing capability model for holistic semantic annotation based on the

evaluation.

Chapter 4: Cloud Computing Maturity Model for Holistic Semantic Annotation

This chapter investigates different application deployment patterns in the cloud with respect to

holistic semantic annotation. The defining metrics for different patterns of cloud application

deployments were identified and critically evaluated. Based on the metrics, different

deployment patterns for holistic semantic annotation in the cloud were proposed as maturity

levels. The different patterns constitute a cloud computing maturity model for holistic semantic

annotation; as a guide towards maximising cloud computing benefits for holistic semantic

annotation. Based on the highest maturity level within the model, ‘CloudSea: Cloud-Driven

Semantic Annotation’ was proffered.

Chapter 5: Design Patterns for Holistic, Microservices-Based CloudSea

This chapter developed twelve design patterns and a pattern language for holistic semantic

annotation based on the set of requirements identified in Chapter 2. These patterns are

facilitated by microservices software architectural pattern and constitute technical solutions for

the holistic semantic annotation requirements. Furthermore, they constitute re-usable

knowledge for the solutions they proffer in line with Design Patterns paradigm. The chapter

goes on to propose CloudSea; A Holistic, Cloud-Driven and Microservices-Based Architecture

for Automated Semantic Annotation of Web Documents as a full-fledged software architecture

implementable and deployable in the cloud for automated, web-scale semantic annotation.

Chapter 6: CloudSea Prototype Implementation

This chapter provides implementation steps and techniques for the developed CloudSea

prototype, with details regarding supporting technologies for its development and deployment

in the cloud.

39

Chapter 7: Research Evaluation

This chapter is in three phases, as follows:

• It provides a functionality evaluation for CloudSea prototype described in Chapter 6;

describing its features and how it delivers automated semantic annotation with

capabilities for large-scale utilisation.

• It provides a comparative evaluation for CloudSea Architecture proposed in Chapter 5;

with a detailed comparison and qualitative evaluation against existing semantic

annotation solutions presented in the literature review chapter.

• It provides experimental evaluation for the multiple CloudSea prototypes implemented

based on the differences in their software architectural pattern and their deployment

patterns. This evaluated the Cloud Computing Maturity Model for holistic semantic

annotation proposed in Chapter 4.

Chapter 8: Conclusion and Recommendations

This chapter summarises the research outcomes and provides recommendations for future work

in the area. Figure 1.6 further illustrates the structure of the thesis.

40

Figure 1. 6 – Thesis Structure

41

Chapter 2: Literature Review

This chapter aims to review and examine existing literature in the domains of semantic web

technologies and cloud computing; with a view to critically analyse the state-of-the-art for both

domains as well as their integrations in various dimensions. Findings from the review and

subsequent analysis would be described as well, in line with how they provide some insights

and direction for the subsequent chapters.

2.1 The Semantic Web

The Semantic Web also commonly referred to as Web 3.0 ushered in an extension of web via

expression of content not only using natural language, but by other means that provide

comprehension, interpretation and usability abilities to software agents (Ye et al., 2015). This

makes finding, sharing and aggregating information from multiple sources easier, laying

groundwork for the evolution of what is called “The Data Web” - the publishing of structured

data records to the web to enable remote reusability and querying (Khalili et al., 2016). With

Web 3.0, data integration and interoperability of applications achieved a new level, providing

interlinked open access to data as web pages and creating the path towards a full semantic web

(Verspoor et al., 2015). As a result, web documents can become context-aware using annotation

data, for various processing and management capabilities, facilitated by intelligent agents

(Rudman & Bruwer, 2016). These intelligent agents are software programs designed to enable

collection of information according to user interactions on the web, in order to perform

automated tasks for users. This is facilitated via languages that offer information description

that machines, and intelligent agents can understand (Ye et al., 2015).

The semantic web concept can also be perceived as involving the provision of a general

framework that adds a semantic layer to the web for facilitating and allowing machines to read,

understand and interpret web content (Bourgonje et al., 2016; Gutierrez et al., 2019). The aim

of this is to enable data sharing and reuse across diverse applications and systems. The thought

behind its emergence is the conversion of structured and semi-structured web documents into

a ‘web of data’ that allows expression of basic semantics in a way machines can process and

understand (Ye et al., 2015). The machine-readable data can be produced through the creation

of schema comprising of marked and interlinked characteristics such as defined terms,

properties and formal relationships of web documents by developers (Gutierrez et al., 2019).

Furthermore, the creation of such a schema creates the need for a semantic structure

determining the attachment of these characteristics to certain instances, and the representation

42

of statements collected in a formal set of relationships known as ontology (Akgun & Ayvaz,

2018). An ontology provides the definition for the rules of representation and the establishment

of relationship hierarchies (Narula et al., 2018). This allows for the contextualisation of data

points by linked data through the supply of additional information on data, thereby making

provision for easy comprehension of information by machines (Giri, 2011; Halford et al.,

2013). Several technologies play a role in facilitating the semantic web in diverse ways.

Semantic technologies refer to a set of programming languages and standards with common

exchange protocols and data formats to support a web of data across several domains,

employing formal semantics to provide context for digital documents (Coronado et al., 2015).

While some are generic to information systems, others are quite specific for the semantic web.

Figure 2.1 presents the semantic web technology stack.

Figure 2. 1 – The Semantic Web Technology Stack (Adapted from: Gezer & Bergweiler, 2016)

2.1.1 Supporting Technologies

A wide range of technologies and standards constitute the semantic web technology stack as

represented in Figure 2.1. These are utilised for varying functionalities across the

implementation of a semantic web and can be described as follows:

• The Unicode and URI Layers define standards for recognising semantic web objects

and confirming the use of international character sets for data representation (Alam et

al., 2015).

43

• The XML (eXtensible Markup Language) Layer which also comprises of namespaces

and XML Schema helps in integrating semantic web and XML-based standards. XML

is responsible for the provision of surface syntax applicable to structured documents

without imposing semantic constraints on what the documents stand for (Ye et al.,

2015). XML Schema focuses on the schema for XML documents; defining a strict

structure for elements contained within them.

• RDF is a simple data model for referring to objects and their relationships. It facilitates

the portability of annotation data across multiple platforms. XML and RDF

technologies complement each other in building an intelligent web (Gutierrez et al.,

2019). The RDF (Resource Description Framework) layer alongside RDFS (Resource

Description Framework Schema) and RDFa (Resource Description Framework with

attributes) facilitates the schematic and syntactic definition of vocabularies to be

referenced by Uniform Resource Identifiers (Ye et al., 2015). The resources, semantic

relations, links and services are also defined in this layer. It makes provision for a

directed graph formalisation, with nodes representing resources and arcs representing

properties.

• RDFS represents a vocabulary to describe properties and classes of RDF resources,

including semantics for generalisation-hierarchies of such properties and classes at

various abstraction levels (Ye et al., 2015).

• The Ontology Layer is based on the description of concepts, properties and relations

within ontologies. It also outlines the traits between various concepts which helps in

vocabulary evolution (Basu, 2019, Wang et al., 2015). OWL (Web Ontology Language)

is a prominent standard on this layer and it offers a description of roles for ontological

components and how they relate with one another.

• RIF (Rule Interchange Format) is for rule exchanges within the web while SPARQL is

a recursive acronym for Sparkle Protocol and RDF Query Language and is used to

query semantic graph databases for data in formats such as RDF or JSON (Ye et al.,

2015).

• The Cryptography Layer ensures data security by means of encryption across the

different standards available within the semantic web stack (Alam et al., 2015).

• The Unifying Logic Layer authors rules for the semantic web while the Proof Layer

implements them while the Trust Layer collaborates with the Proof Layer to evaluate

44

application mechanism and validate the implementation of rules by the Proof Layer

(Alam et al., 2015).

2.1.2 Challenges of the Semantic Web

Despite promises offered by the semantic web, it has been faced with several challenges.

According to Buscaldi et al. (2018), major challenges for the semantic web include content

availability; the evolution, availability and development of ontology; scalability;

multilingualism, and standardisation for semantic web technologies, suggesting that only little

content is available on the semantic web with the need to facilitate context-awareness for web

documents at large through semantic annotations towards a fully semantic web. The need to

create general ontologies for the semantic web as well as the means to develop and manage

changes that come with their evolution and the annotations that refer to them was also a vital

challenge put forward.

The research opined that the organisation of the semantic web content including the storage

and the appropriate mechanisms to search for them are required with the need to exhibit

scalability in preparation for a massive semantic web growth. There is also the challenge of

accessing information in various languages such that there is no access to the content by

providers and users in their native language. Based on the continued increase in the quantity of

information on the semantic web, there is the issue of easy recognition of relevant content by

those who access information. The usual hypertext structure visualisation of the current web

needs to be improved upon for better visualisation. More technologies need to be provided to

make the semantic web languages stable. However, several other dimensions of identifying

semantic web challenges can be noticed from literature that encompass the classification by

Buscaldi et al. (2018) and goes beyond those to identify other challenges. These have been

classified into Execution-Related, Implementation-Related and General Challenges, with an

analysis of each as follows.

2.1.2.1 Execution-Related Challenges

Semantic Web challenges relating to its execution are many and diversified. There are issues

with methods of Information Extraction and Retrieval (IER) from web documents (Niklaus et

al., 2018). While some semantic annotation tools utilise traditional IER methods such as N-

Gram Analysis or Hidden Markov’s Model, another school of thought subscribes to the

development and use of Web IER methods (Yates, 2007). These create a wide range of

processes for semantic annotation based on the IER method deployed. Issues relating to

45

services and trust also exist, in which there are no W3C-compliant standards usable and

deployable by the public for web documents (Tjoa et al., 2005). Furthermore, there are issues

with scalability, as most existing semantic annotation tools have been developed to utilise

specific ontologies or run on a specific platform, thereby limiting its scope of adoption for

wide-scale semantic annotation (Kulesza et al., 2018). For the web to become truly semantic

in nature, a semantic annotation tool that is portable in nature, easily accessible and robust

enough to accept different ontologies for semantic annotation is required.

2.1.2.2 Implementation-Related Challenges

The major challenges in this area are focused on content for the semantic web and means of

managing their life cycle. The additional content that semantic web technologies add to the

web are ontology-generated metadata which are used to annotate web data for the provision of

an underlying meaning and context. Based on available tools and methods, the generation and

availability of these metadata has been a daunting task due to challenges relating to the

development and engineering of ontologies and metadata (Narula et al., 2018). Integrating

ontologies is vital for the aggregation of resources both within same domain and across

multiple domains and is a challenge within Ontology Engineering (Da Silva & Cavalcanti,

2014). Ontology Integration can be implemented in several ways such as ontology mapping,

merging, alignment, elucidation, optimisation and self-learning. The other major area is the

means of adding these additional content (i.e. metadata) when available. There are manual,

semi-automatic and automatic semantic annotation methods and they all present strengths and

weaknesses which are analysed later in section 2.2.

2.1.2.3 General Challenges

Some of the general semantic web challenges identified in research include multilingualism

(Piao et al., 2015; Gracia et al., 2012) and social issues (Kirrane et al., 2018). Multilingualism

refers to issues relating to the translation of ontologies and ontology-generated annotations

from one language to another. The task of developing ontologies for different languages is

time-consuming and cumbersome, considering the need for regular updates as well. While

translating ontologies from one language to another is favoured over developing new ones for

each language, existing translation standards are not matured enough currently and results into

inaccurate translations (Arcan et al., 2016). Social challenges also exist such as consensus on

taxonomies or data dictionaries for specific knowledge domains between experts in the field.

46

These taxonomies or data dictionaries are required for ontology development. Figure 2.2

presents a summary of semantic web challenges based on the classification described.

Figure 2. 2 – A Summary of Semantic Web Challenges

2.2 Semantic Annotation

As described in Section 2.1, the concept of a semantic web is based on the ability of computers

to understand and process documents on the web by means of the application of context to

these documents through an annotation process. Annotation is defined in the Merriam-Webster

online dictionary as “a note added by way of comment or explanation”. Annotation is regarded

as both an object which is added to a document, and the activity that produces this object

(Yordanova & Kruger, 2018). Semantic Annotation defines the process of applying contextual

information to web documents or more specifically, to contents of web documents. Ontology-

based annotation data in formats such as RDF and JSON-LD are utilised to provide the much-

needed context for web document content. Generally, the success of the semantic web depends

to a great deal on the spread of semantically annotated web documents. Annotating web

documents helps to improve search efficiency by introducing well-defined concepts described

by the search domain’s ontology (Slimani, 2013). Semantic Annotation also entails merging

semantic concepts with natural language through the introduction of annotation data (concepts

of an ontology, such as classes, instances, properties and relations) in web documents, in order

to define context (Oliveira & Rocha, 2013).

47

In addition, semantic annotation is a necessity for enabling widespread intelligence in new and

existing web content and making the semantic web vision a reality (Tang et al., 2012), with

application in a wide range of content-oriented areas (Tulasi et al., 2017). It is also used in the

support of information visualisation, reasoning about web resources and advanced information

search (Sajja & Akerkar, 2016). Semantic annotation is applicable to any sort of text, web

pages, regular (non-web) documents, text fields in databases; providing annotations for

mapping instances of ontology classes to the actual ontology classes (Brank et al., 2018).

Furthermore, Semantic Annotation fosters a great level of automation on the web. This includes

automated data linkage based on semantic relationships between annotated web documents.

Likewise, the integration or aggregation of data from multiples sources, presented to a user as

a single piece of data is an automation feature which is both beneficial for the user; in terms of

convenience and timesaving, as well as computing resources; in terms of resources

optimisation. In addition, an automated lifecycle for data on the web can be fostered with

semantic annotation, providing a management mechanism for web data from creation until the

data becomes obsolete and is archived. Figure 2.3 presents an example of a web document

being semantically annotated using data from a knowledge graph.

48

Figure 2. 3 – An Example Web Document Semantic Annotation (Adapted From: Tang et al., 2012)

2.2.1 Manual Annotation

Manual annotation follows strict guidelines and changes the current syntactic resources to

interlinked knowledge structures by adding information to some level of document that

incorporates metadata (Slimani, 2013). It can offer more precision when compared to semi-

automatic and automatic annotation methods due to the full human involvement in the process

which means the annotations can be monitored and appropriately implemented by the user.

Tools like OntoMat and SHOE provide an integrated environment for concurrently annotating

and authoring text or documents (Reeve & Han, 2005). However, it is very labour intensive

49

and due to the use of human annotators, the system is exposed to errors caused by factors like

complex schemas, volume of required training and sometimes the annotators familiarity with

the domain can pose a challenge.

Manual annotation does not take into consideration multiple perspectives of a data source, that

requires multiple ontologies of which can be valuable in supporting the needs of diverse users

(Tang et al., 2012). This also implies that manual annotation for documents requiring very high

levels of precision and aggregation of multiple resources for the annotation can quickly become

a daunting task due to the complexities inherent in such processes. With the scale of the web,

running billions of web documents, a manual process for applying semantic annotations to web

documents is not feasible (El-Ghobashy et al., 2014). Table 2.1 presents a list of some manual

semantic annotation tools.

Table 2. 1 – Common Manual Semantic Annotation Tools
Manual Tools / Research Artefacts Source
Thresher, AKTiveMedia Oliveira & Rocha (2013)
Annotea, Yawas Nacer & Aissani (2014), Belloze et al. (2012)
SHOE, Smore, Meteor-S Nacer & Aissani (2014)
Annozilla, Melita, Knowtator, RDFace, MnM,
Melita

Belloze et al. (2012)

RadiantWeb Guttula (2012)
Amaya, Mangrove, Vannotea Uren et al. (2006)
WebAnno Yimam et al. (2014)

2.2.2 Semi-Automatic Annotation

With this type of annotation, while some processes are automated, the overall semantic

annotation still requires a significant level of intervention by humans. The weight of how much

automation or manual work involved varies from one approach to another based on the

different tools available (Dammak et al., 2013). The automated and non-automated tasks across

current tools also vary. While semi-automatic annotation of web documents has been proposed

in different quarters to overcome the challenges with manual annotations and is the method

mostly used in current systems (Tang et al., 2012), it still faces most of the challenges of manual

annotation (such as being time-consuming, tedious and cumbersome) and cannot be adopted

as the means for annotating over 7 billion web pages available on the web today. The need for

human intervention is still a limitation, especially with regards to scalability (El-Ghobashy et

al., 2014). There are also a wide range of variations in architectural patterns, techniques for

text analysis, ontology engineering tasks, annotation data storage methods as well as

50

automation levels among current semi-automatic tools; posing a selection and service type

challenge for users (Slimani, 2013). Table 2.2 presents a list of some popular semi-automatic

semantic annotation tools.

Table 2. 2 – Common Semi-Automatic Semantic Annotation Tools
Semi-Automatic Tools / Research Artefacts Source
Cerno, Lixto, Semantic MediaWiki, Zemanta,
AeroDAML, Armadillo, KnowWe, CREAM

Oliveira & Rocha (2013)

Semantator Tao et al. (2013)
Analec Landragin et al. (2012)
Argo Batista-Navarro et al. (2016)
OntoMAT Gawich et al. (2012)
Autometa, Belloze et al. (2012)
Visual OntoBridge Grcar & Mladenic (2009)
GonTongle Giannopoulos et al. (2010), Belloze et al. (2012),

Oliveira & Rocha (2013)
GateCloud Belloze et al. (2012), Gawich et al. (2012)
Aatos Tamper et al. (2017)
PANKOW, Muse, Amilcare, S-CREAM Reeve & Han (2005)
Ontea Laclavık et al. (2006)
Domeo Ciccarese et al. (2012)
RDFa Editor Duma (2011)
Marcinczuk et al. (2012), Dammak et al. (2013), Neveol et al. (2011), Liu et al. (2009), Davis et al.
(2009)

2.2.3 Automatic Annotation

Automatic Annotation defines a fully automated approach to semantic annotation. In this case

the annotation process is not expected to require human intervention, instead is to be fully

implemented by computing systems. This eradicates issues associated with both manual and

semi-automatic semantic annotation such as being time-consuming, tedious and cumbersome.

Automation for semantic annotation remains the major viable means of annotating existing

web data as well as the vast amount added to it on a momentary basis (Liu et al., 2017).

Automated annotation also provides the scalability needed for existing documents on the web

and reduces the burden of annotating new ones. Other potential benefits are consistently

applying ontologies and using multiple ontologies to annotate documents through an automated

system (Tulasi et al., 2017). An all-in-one automatic semantic annotation platform that is

scalable enough for the web and captures the entire process of semantic annotation, with

additional requirements such as ontology engineering tasks and annotation data lifecycle

management to provide an automated system for semantic annotation is currently unavailable

51

to the best of the writer’s knowledge. SemTag, which uses a Seeker engine for automatic

semantic annotation is one of the few with a sizeable level of scalability. However, it is still

vastly limited in many ways, more predominantly because its annotation source is a single

taxonomy (known as TAP) as compared to the flexibility of integration with multiple OWL-

compliant ontologies (Oliveira & Rocha, 2013).

In comparison with manual and semi-automatic semantic annotation, the challenge to

automatic annotation however is the potential of the annotation not being fully accurate and

with the human intervention removed from the process, such inaccuracies are not addressed

immediately. Having said that, the availability of annotation accuracy measurement indexes

means the automation can be tested for accuracy with widely accepted indexes such as

Precision, Recall and F-Measure (Liu et al., 2017). With global knowledge graphs such as

DBpedia and Linked Open Data Cloud receiving detailed attention and large communities for

their management, annotation accuracy is expected to continue to increase significantly. A list

of existing semantic annotation tools with a high level of automation can be found on Table

7.1 in section 7.2. Table 2.3 presents a comparison of the three types of semantic annotation

described.

Table 2. 3 – Classification for Semantic Annotation Methods
Methods Description Advantages Disadvantages
Manual Annotation The process in which

humans manually add
metadata to data.

1. Provides a very high
level of accuracy.

1. Tedious and
cumbersome
2. Time-Consuming
3. Long-Winded
4. Not applicable for
web-scale

Semi-Automatic
Annotation

The process of
automating certain
tasks within the
annotation process of
data. One major task
often automated is
information extraction
and retrieval using
methods such as
Named Entity
Recognition, Co-
reference Resolution,
etc.

1. Provides a
reasonably high level
of accuracy.
2. It also provides a
means for humans to
make corrections
where necessary.

1. Quite tedious and
time-consuming
2. Not ideal for
annotating the vast
amount of web data.

Automatic
Annotation

The process of
eliminating the
requirement of a

1. Quick. 1. Processing-
Overload: It requires a
lot of machine

52

human intervention in
the annotation process
for web data, making
it fully machine
processed.

2. Feasible as a
solution for web data
annotation.
3. A self-learning
iterative annotation
process would provide
a very high level of
accuracy.

processing capabilities
and dynamism for
machine resources
allocation for on-
demand semantic
annotation.

2.2.4 The Role of Ontologies

An Ontology is defined as an “explicit, formal specification of a shared conceptualisation”.

The term emanated from philosophy where it refers to a logical account of existence (Gruber,

2007). It defines a representation for a knowledge domain; providing a formal description of

concepts and their relationships resulting in a shared understanding (Munir & Anjum, 2018).

With the current evolvement of a semantic web, the need for standards to facilitate it is very

vital. Ontologies provide this by means of defining data model schemas, which are utilised by

annotation data in the semantic annotation process (Luczak-Rosch et al., 2014). With

ontologies being developed using scientific programming languages, it also implies that

machines can easily understand the annotation they provide to web documents and further

assist humans with information usage, extraction and retrieval on the web. They consist of

terminologies or vocabulary within the specified domain and the relationships between them.

While some generic ontologies exist, most ontologies are domain specific. Figure 2.4 presents

a visual representation of an ontology for a ‘Food Product’, which is a natural domain.

53

Figure 2. 4 – A Visual Representation of an Ontology (Adapted From: Dooley et al., 2018)

There are different classification perspectives for ontologies in research. Slimani (2014)

proposed a classification based on the problems that ontologies have been developed to solve;

defining Terminological Ontologies as based on terms utilised in the construction of knowledge

representation repositories, Information Ontologies for specifying the schema of data in data

storage media such as files and databases, as well as Knowledge Modelling Ontologies which

are developed for describing and conceptualising knowledge in specific domains.

However, Fensel (2011) classified ontologies based on their generality and role in building

knowledge-based systems, proposing domain, metadata, generic, representational and task

ontologies. Similarly, Guarino & Musen (2015) proposed ontology classifications based on the

level of generality of ontologies, defining top-level, domain, task and application ontologies.

In a similar way to the availability of varying classifications for ontologies, several

methodologies exist for engineering them as well. Some of these are MENELAS, IDEF5,

Methontology and DILIGENT (Iqbal et al., 2013). Ontology engineering tools include Protégé,

OntoEdit, OilEd, Ontolingua, Chimaera, SymOnto, WebOnto and Integrated Ontology

Development Environment (Slimani, 2015). Furthermore, some primary uses of ontologies

across several industries such as health, education, engineering and IT as identified by Vegetti

et al. (2016) and Slimani (2015) include the following:

 To share a common representation of knowledge among both computers and humans

54

 To facilitate knowledge reuse within a specific domain. This also prevents re-inventing

the wheel and introduces standards that will consequently facilitate interoperability

 To provide clear and concise context within domains

 To separate domain and operational knowledge.

The lifecycle of developing ontologies as well as other related tasks and activities associated

with them is referred to as Ontology Engineering. Figure 2.5 presents a classification for

different areas of ontology engineering.

Figure 2. 5 – Classification of Ontology Engineering Activities

Ontology Languages refers to scientific programming languages for building ontologies, such

as OWL and RDFS. Some variations across these include their level of expressivity and

standardisation (Akgun & Ayvaz, 2018). Regarding development processes, default software

engineering steps such as requirements gathering, evaluation and documentation also exist with

developing ontologies, with different ontology methodologies defining development and

maintenance lifecycles. The building or compiling of a comprehensive taxonomy with well-

defined relationships between concepts and relations for use in developing ontologies is also a

major phase required for the development (Vegetti et al., 2016).

The analysis and evaluation of ontologies requires consensus on the entire representation

among knowledge experts within the domain being modelled. After the development of

ontologies, a maintenance phase is required to ensure that the concepts and relations defined

within the ontology remain accurate based on updates to ontologies and their repositories.

Furthermore, ontology engineering tasks can be classified under phases; management, pre-

development, development, post-development and support. This is illustrated with Figure 2.6.

55

Figure 2. 6 – Phases of Ontology Engineering (Adapted from SlideWiki, 2016)

As it can be observed from Figure 2.6, the support phase involves tasks to integrate multiple

ontologies together. Ontology Integration tasks are fuelled by different reasons. However, a

prominent reason is to address the overlap which exists within different ontologies, in which

their aggregation would result to a wider scope of formal representation for information in

the domain (Johnson et al., 2012). The representation of concepts within ontologies vary

from one to another and integrating them can help identify and resolve such cases. Several

factors can be identified which leads to a single concept being represented in different ways

within ontologies. These include the use of a single term to describe different concepts

referred to as ambiguity, the use of different terms to describe a single concept referred to as

redundancy and the use of different types of representation for describing concepts within

ontologies.

Furthermore, ontologies can be developed to different levels of granularity or depth and from

different perspectives; factors which can also result into different formalisms of concepts

across ontologies. Likewise, there are challenges common to the different approaches or

methods of integrating ontologies (Harrow et al., 2019). These are actively being engaged in

research and it will be required that results/findings from research are taken into

consideration for any method adopted. According to Da Silva & Cavalcanti (2014), some of

56

these include:

• Different naming conventions – naming conventions for concepts and terms

within ontologies vary and these variations will imply difficulties in being able to

match two or more terms that mean the same together without some additional

input into recognising such similarities.

• Lack of reliable textual definitions – some knowledge domains do not have existing

comprehensive and standard textual definitions for terms. A comprehensive

vocabulary is required for such domains first before ontologies can be used or

integrated.

• Lack of formal categorisation – the principles applied in classifying terms belonging

to same sub-domains requires consistency in order to ensure that the relationships

between different terminologies are well defined and established.

• Different theories of a single domain (such as modern medical knowledge and pre-

scientific representations of the human body) - For instance, the term ‘Cold’ can be

defined within different domains as meaning a sensory perception, an upper

respiratory viral infection or a pulmonary diagnosis known as Chronic Obstructive

Lung Disease. This creates ambiguity in defining the term within ontologies and

subsequently mapping or matching it correctly with similar terms as required.

2.3 Schema.org Markup

Schema.org provides syntax for annotating parts of documents with metadata based on

definitions provided to objects in the Schema.org repository. The objects belong to different

schemas, referred to as ‘Types’, with over 600 Types containing hundreds of properties and

enumeration values at the time of writing (Schema.org, 2019). Some common ‘Types’ include

places, people, things and organisations. This markup makes search results more meaningful

to users based on the additional interpretation it provides to small chunks of data on web pages.

These small chunks are referred to as Google Rich Snippets on the Google search engine (Guha

et al, 2016). An example is a Google search for a product to buy online and the Google search

engine returning relevant results that contain information about the price of the product, the

number of reviews for the product, and so on. These snippets enable users make better, timely

and informed decisions for results from a web search (Ambiah & Lukose, 2012). With

57

Schema.org, markup is added to existing HTML tags within web documents. Figure 2.7

displays a property table from Schema.org.

Figure 2. 7 – A Sample Property Table from Schema.org Vocabulary (Schema.org, 2019)

Schema.org uses standards such as Microdata, RDFa and JSON-LD for the markup in web

documents (Navarrete & Lujan-Mora, 2018). It extends the expressive power of HTML, though

the expressiveness is still limited. Figure 2.8 presents an example of Schema.org markup using

RDFa.

Figure 2. 8 – An Example of Schema.org Markup using RDFa (Schema.org, 2019)

While the Schema.org project has been a success so far for adding markup to existing HTML

tags within documents thereby extending the expressiveness of HTML and postulating an

evolutionary rather than a revolutionary web, it is not semantic annotation and requires

technical expertise for the addition of structured metadata to web content. Its primary use is for

58

the convenience of a group of search engines; in order to better understand web content and

return search results based on this understanding.

2.4 Cloud Computing

Cloud Computing refers to a model of enabling on-demand and convenient access to a shared

pool of computing resources, such as networks, applications, servers, services and storage (Jula

et al., 2014). This definition highlights the ability of computing resources to be provisioned

and released with minimal interaction between the user and the cloud service provider. Senyo

et al. (2018) reiterates this by drawing attention to the ability of the cloud to enable a simple

way of provisioning information technology as a service to users, rather than as a product

through the Internet. Some popular cloud service providers include Google, Amazon,

Microsoft, and Yahoo. Cloud users are abstracted from computing resources and do not

actually know where data or applications are stored in the cloud (Namasudra et al., 2017).

Recently, many organisations have been migrating to the cloud to enjoy the benefits offered by

the technology, such as: affordable access, high performance resources, low maintenance costs

and enhanced security (Zhang et al., 2017).

2.4.1 Cloud Computing Delivery Models

There are three main delivery models in cloud computing – software-as-a-service, platform-as-

a-service and infrastructure-as-a-service. Other categories of delivery models may exist as a

cross between any or all the three main delivery models. Software-as-a-service (SaaS) involves

provisioning of applications on the cloud by a service provider, to be used by several customers

in a multi-tenacity setup (Mell & Grance 2011). SaaS offers software to cloud consumers on-

demand. Common examples of SaaS solutions include web-based emails such as Gmail and

Yahoo Mail, Google Apps, Dropbox, and Salesforce CRM (Namasudra et al., 2017). In most

cases, SaaS services are accessed via simple client interface such as web browsers. The

application provider is responsible for managing technology resources and the solution’s

performance. SaaS services are billed based on a pattern which can be hourly, weekly, monthly

or yearly.

Platform as a Service (PaaS) is another cloud computing delivery model that allows clients to

access various capabilities, such as programming languages, services, tools and libraries;

provisioned and managed by providers (Mell & Grance 2011). As a result, the user transfers

the responsibility of controlling cloud operational platforms and infrastructure, such as

59

network, operating systems, memory and servers to a cloud vendor. The PaaS delivery model

reduces the cost and complexity of purchasing and supporting both software, hardware and

hosting resources (Diaby & Rad, 2017). However, the role of deploying and supporting the

application remains with the client. Some popular examples of PaaS include Azure and Aneka.

Infrastructure as a Service (IaaS) involves utilisation of computing resources such as:

processing, networks and memory from a vendor (Rittinghouse & Ransome, 2017). Users can

deploy their platforms such as operating systems and different applications without worrying

about the necessary cloud infrastructure. In effect, the control for processing, networking, and

storage is transferred to the vendor. Some examples of IaaS solutions are GoGrid and Amazon

EC2.

2.4.2 Cloud Computing Deployment Models

There are four main deployment models in cloud computing – private cloud, community cloud,

public cloud, and hybrid cloud (Mell & Grance, 2011). The private cloud model involves

provisioning cloud resources for use by a single entity with several units or consumers (Mell

& Grance, 2011). A private cloud can be owned and controlled by the enterprise or outsourced

to a third-party service provider. It can either be on premise or externally hosted (Diaby & Rad,

2017). Some of the benefits of this cloud deployment model include enhanced security,

dedicated resources and improved customisation (Diaby & Rad 2017). For community clouds,

they are provisioned for utilisation by a group of consumers referred to as a community (Liu et

al. 2011). In most cases, enterprises forming a community have a shared factor, such as security

requirements and compliance considerations (Mell & Grance, 2011). A community cloud can

be managed by either one of the organisations in the group or outsourced to a service provider.

On the other hand, public clouds are provisioned for public use (Liu et al. 2011). An example

is a cloud service provided by academic institutions or government organisations. Liu et al.

(2011) noted that a public cloud is also owned by a vendor selling cloud services to several

diverse users. Benefits of this deployment model include flexible environment, freedom of self-

service, pay-per-use, increased availability and reliability (Diaby & Rad, 2017). For hybrid

clouds, two or more cloud deployment models can be combined using standardised or

proprietary strategies to create it (Liu et al., 2011). The advantages of a hybrid cloud include

optimal use, data centre consolidation, enhanced availability, and risk transfer (Diaby & Rad

2017).

60

2.4.3 Cloud Computing Essential Characteristics

There are five main characteristics that help in the understanding of what cloud computing is,

what it does and how best to maximise potential benefits of the cloud as defined by NIST

(National Institute of Standards and Technology) (Mell & Grance, 2011). Firstly, with On-

Demand Service, cloud services such as storage, hardware and operating systems can be

provisioned automatically by cloud consumers when needed, providing opportunity for the

reservation and release of IT resources in an independent manner to meet their needs. This

involves what is referred to as ‘provisioning’ and ‘decommissioning’ (Liu et al., 2011). The

provisioning for these functionalities can be through graphical user interfaces (GUIs) or

command line interfaces (CLIs). They can also be through application programming interfaces

(APIs) meant for use in automation. This feature allows a resource changing procedure that

involves updating configuration parameters as well as adding new nodes to the cloud

environment.

Broad Network Access is another of the five essential characteristics. With cloud computing,

services are provisioned by vendors located in diverse geographic locations and accessed

through global reach capability (Diaby & Rad, 2017). The broad network access feature ensures

that cloud computing services are available via the Internet and accessible through diverse

devices such as tablets, workstation computers, laptops, and smartphones. The next one is

Resource Pooling in which the cloud service users are abstracted from mechanisms that

facilitate resources provisioning, creating the impression that resources are from a single

blended resource. This capability enables providers offer a set of real and virtual resources

dynamically (Diaby & Rad, 2017). A cloud service provider can pool computing resources to

serve several users on a multi-tenant model, with diverse computing resources, both physical

and virtual that are dynamically assigned on-demand.

Furthermore, there is Rapid Elasticity which refers to the ability of cloud computing technology

to scale resources up or down based on demand from users (Rittinghouse & Ransome, 2017).

It is a crucial characteristic of cloud computing since it implies that organisations can rapidly

provision or de-provision resources without user interaction. As cloud users have different

workload requirements, there is a “levelling” so that unused resources by some users are readily

deployed to users with higher demands at that moment. In addition to being able to distribute

workload among independent resources, the elasticity has the capability to free up resources

flexibly when they become under-utilised (Liu et al., 2018). Lastly, there is Measured Service,

61

which refers to the ability to automatically monitor, optimise and provide reports for the

utilisation or consumption of different cloud resources over a period. It allows for cloud

computing service usage metering, to enable cloud consumers pay only for what they use

(Saxena & Pushkar, 2016). This charge per use strategy helps optimise resources utilisation.

Saxena & Pushkar (2016) further stated some cloud computing features such as Mobile

Accessibility and Shared Infrastructure as essential for information systems today. Mobile

Accessibility referring to the ability of users to access cloud resources while mobile and

without any degradation in the service or its accessibility. Shared Infrastructure on the other

hand, referring to the ability of cloud providers to deploy a virtualised software model to enable

sharing of physical computing resources, and dynamic provisioning that involves automatic

allocation of resources based on demand.

2.4.4 Cloud Computing Benefits

Cloud Computing offers a wide range of benefits, which includes the ability to rapidly

provision computing resources; both hardware and software as well as the potential to

dynamically scale resources based on user demands; a feature which goes a long way in

optimising cloud computing resources, delivers proven results and saves cost (Namasudra et

al., 2017). Cloud providers are responsible for supporting and maintaining IT resources,

effectively relieving users of the burden of purchasing expensive computing components such

as servers, operating systems, networking tools and so on (Mell & Grance, 2011). Another

benefit of cloud computing is elasticity (Jula et al., 2014). Users can request for computing

resources depending on their requirements, anytime, anywhere, if there is network

connectivity.

Business continuity is also achieved using cloud technology (Namasudra et al., 2017). An

enterprise can deploy cloud backup solutions for storing systems and crucial information. In

case of natural disasters, the information will not be affected. Moreover, cloud providers invest

in security controls which ensures that the business is not adversely affected by cybercriminal

activities. Cloud computing offers flexible work practices and speed (Rittinghouse & Ransome,

2017). Users can access systems and data from any location via a network connection. This

feature enhances productivity and mobility, since employees can work at home or while

travelling.

62

2.4.5 Cloud Computing Issues

Security and privacy are some of the crucial challenges faced while using cloud computing

services (Veloudis & Paraskakis, 2016). Since systems and data are hosted in remote servers,

there is the risk of exposure to hackers and other unauthorised users attempting to gain access

to the cloud resources for various reasons such as financial gain and other malicious purposes.

Another issue for cloud computing service users is downtime (Namasudra et al., 2017). In case

the service is down, or the network has issues, users cannot access applications or data from

cloud locations. Moreover, cloud clients have limited control over their information and

systems since they are stored or running on remote servers owned by vendors. Finally, data and

application interoperability remain a crucial issue in the cloud (Saxena & Pushkar, 2016). It is

vital that cloud data and systems use standard interfaces to allow interoperability regardless of

the delivery or deployment model adopted.

2.5 Semantic Web and Cloud Computing

This section focuses on the review of literature for research efforts which involves an

integration of two or more standards across both semantic web and cloud computing

technologies. With the possibility of leveraging each other, section 2.5.1 reviews literature on

cloud computing leveraging semantic web technologies while section 2.5.2 reverses the order,

by reviewing semantic web technologies leveraging cloud computing. For both instances, it

can be observed that there is a high level of interaction between them as the following sections

analyse.

2.5.1 Leveraging Semantic Technologies for Cloud Computing

Several semantic technologies and solutions have been implemented for cloud platforms,

making them semantic in nature. A semantic cloud fosters the efficiency of a cloud platform

with respect to services across the different delivery models (IaaS, PaaS and SaaS). This is

usually implemented using semantic technologies such as RDF to model data for cloud services

and OWL or RDFS to develop ontologies for cloud models. Currently, ontologies exist for

providing metadata for cloud entities’ description. However, most of these still require further

enhancement and enrichment (Rodriguez-García et al., 2014). From the review of existing

literature on semantic cloud, a classification for the utilisation of semantic technologies for

cloud platforms is presented and evaluated as follows:

63

2.5.1.1 Cloud Interoperability and Portability

While interoperability between applications at the software-as-a-service level in cloud

computing presents challenges, semantic technologies have increasingly been used to address

them and overcome some of the barriers. The work by Rezaei et al. (2014) asserted that

semantic technologies are the fundamental prerequisites towards achieving interoperability in

the cloud. The implementation of semantic interoperability frameworks is critical for software-

as-service systems within the cloud. In addition, semantic technologies are used to provide

comprehensive service specification across various abstraction levels and service categories.

For instance, Fang et al. (2016) proposed a fuzziness-embedded and agility-oriented semantic

model that captures cloud interactions and details across different abstraction levels including

SaaS, PaaS and IaaS. The model can be used to reveal multiple agile interactions among the

resources and services within a cloud computing environment. Figure 2.9 presents the agility-

oriented ontology design of the work by Fang et al. (2016).

Figure 2. 9 - Agility-Oriented Semantic Model for Cloud Services (Fang et al., 2016)

In addition to enhancing the interoperability of cloud-based applications and inter-cloud

policies, semantic technologies are also critical in resource scheduling and provisioning in an

inter-cloud environment. Particularly, ontology-based resource description helps in solving

inter-cloud interoperability problems making it possible for proper resource provisioning from

different cloud service providers. The work by Di Martino & Esposito (2016) proposed an

Inter-Cloud Resource Provisioning System (IRPS) that allows for semantic description of tasks

64

and resources. The system also facilitates the storage of such tasks and resources using resource

ontology which in turn facilitates proper resource allocation based on a semantic scheduler and

inference rules. Similarly, Somasundaram et al. (2012) developed a broker-based architectural

model aimed at the problem of interoperability between OpenNebula and Eucalyptus. This

framework integrates semantic-based resource discovery, capacity-based resource

provisioning and selection mechanism. Overall, semantic technologies have been observed to

be critical in solving inter-cloud interoperability issues, enhancing scheduling and provisioning

success rate, increasing the cloud resources’ efficiency and enhancing the throughput of cloud-

based applications.

2.5.1.2 Discovery, Selection and Utilisation of Cloud Services

Another important application of semantic technologies in the cloud is in their use for the

discovery, selection and utilisation of cloud services (Rekik et al., 2015). One of such uses is

for the enhancement of topic coherence. Without the use of semantic technologies such as

RDFS, OWL and SPARQL, it is difficult to discern whether a set of annotation data is related

to a certain topic. Considering this, a cloud transformation model was developed by Zhang et

al. (2015) which not only determines the relationship between annotation data and a topic but

also integrates the annotation data into the necessary topic model. This model enhances

performance and reduces noise while integrating semantic knowledge into Tag-LDA model.

Furthermore, semantic technologies have proven to be vital for testing reproducibility of

scientific experiments. The reproducibility of results obtained from scientific experiments is

regarded as the cornerstone of any scientific method (Zhang et al., 2015). Unlike the

conventional techniques of addressing reproducibility, semantic tools provide scientists with a

platform for sharing and capturing valuable knowledge regarding computational experiments’

equipment, enabling them to capture the execution environment under which the scientific

experiments are performed and share them through the cloud. Specifically, Santana-Perez et

al. (2017) proposed a novel approach that describes scientific workflows’ execution in the

cloud using semantic vocabularies.

The work by Alti et al. (2015) proposed a multi-level ontology-based architecture referred to

as OntoSmart which can be used in enhancing “the high level of context concepts abstraction

for heterogeneous service sources and profiles using a top-level ontology”. This architecture

can be beneficial in overcoming the barrier resulting from the heterogeneity and diversity of

cloud-based service sources and profiles. In addition, semantic technologies are critical in

65

making the cloud more scalable so that it can interconnect a vast number of servers while

supporting a variety of online services within the cloud environment. This can be observed

from the work of Hua et al. (2014) which presented a scalable and distributed data-centric

system referred to as “Antelope” for cloud computing data centres. The system can be used to

overcome the possibility of mismatching between the data placement and the network

architecture, taking into consideration the data placement’s optimisation as well as the network

architecture’s property. Its underlying concept is leveraging the precomputation-based data

cube to enhance online services hosted on cloud platforms.

In addition, semantic technologies enhance the capabilities of cloud-based platforms in terms

of management and knowledge representation, bridging semantic resources together in

distributed cloud-based platforms and allowing for the interconnection of cloud-based

heterogeneous services with respect to flexibility and interoperability in a virtual organisational

schema (Pileggi et al., 2013). Semantic technologies are also critical in enhancing service

access and discovery within cloud environments. The work by Cortazar et al. (2012) proposed

a cloud computing ontology that allows for semantic access, identification and discovery of

cloud-based services. Additionally, semantic technologies help in the integration of cloud

services among different cloud-based platforms. In addition, Trajanov et al. (2012) proposed a

framework referred to as “Semantic Sky” as a platform that allows the integration of many

cloud-based services via semantic technologies. This system is capable of automatically

discovering the user’s cloud context and offering the necessary actions which can be executed

with the data within the context. It also automates the process of executing users’ tasks and

thus resulting in improvements to the users’ efficiency, information exchange and productivity.

Similarly, Dautov et al. (2013) proposed an approach that allows for self-managing capabilities

of cloud application platforms. The approach perceives cloud computing platforms as

“networks of distributed data centres”.

2.5.1.3 Cloud Security

Semantic-based approaches have also been deployed to enhance security mechanisms within a

cloud environment. Privacy and security concerns have made organisations reluctant to shift

their respective business operations to the cloud (Veloudis & Paraskakis, 2016). Hendre &

Joshi (2015) also stated that cloud providers are required to adhere to necessary privacy and

security policies towards ensuring users’ data are kept secure and confidential. Their research

led to the development of a semantics-enabled application that allows cloud users to identify

66

the necessary cloud compliance and policy statements required for their organisations. The

application also facilitates the identification of privacy and security threats within a cloud

computing environment and the compliance and security models against such threats.

Semantic technologies are also used for retrieving encrypted data from cloud environments.

Yang (2015) emphasised the vital role encryption plays in protecting the privacy and security

of data before and after transfer to a cloud platform. As such, semantic technologies are used

to overcome the limitations of traditional data retrieval methods such as keyword search. The

work by Xia et al. (2014) further stated that there are various searchable encryption techniques

for performing searches on secure outsourced data. Boneh et al. (2004) also proposed a “Public

Key Encryption Scheme with keyword search (PEKS)” as a solution to the problem of

searching on encrypted data. Similarly, Attribute-Based Encryption (ABE) schemes enhance

the flexibility of accessing confidential data as well as the ease of sharing such data, as

illustrated by Figure 2.10 which presents a search model of encrypted data in cloud.

Figure 2. 10 – A Search Model over Encrypted Data in Cloud. (Zhang et al., 2015)

2.5.1.4 Description of Cloud Resources and Services

Contextual description of resources and services in the cloud greatly enhances their effective

use. One of the uses of semantic technologies for cloud is the monitoring of systems. Ward &

Barker (2012) proposed “a scalable distributed data collection system” as a tool for monitoring

cloud systems. This monitoring includes server resources utilisation levels such as processing

power consumption, disc storage usage, etc. Data collected from the monitoring is used to

provide appropriate, real-time statistical status for cloud resources. The system is based on

RDF rather than flat files or relational databases. Chernyshov et al. (2016) defined RDF as a

67

straightforward way of describing instance data in the subject-object relation using resource

identifiers. The RDF’s vocabulary is extensible through other schemas that facilitate the

generation of comprehensive ontologies to represent any problem domain. Unlike other non-

semantic enabled cloud monitoring tools that utilises flat files or relational databases, Ward &

Barker’s (2012) proposed system employs RDF which provides storage for all machine-

readable information, providing a means for computers to be able to understand and process

the data accordingly.

2.5.2 Leveraging Cloud Computing for the Semantic Web

The semantic web is based on the utilisation of technologies from the semantic web stack to

provide context-awareness for web documents. This section provides an investigation and

assessment of a semantic web that is driven by cloud computing. The focus is on leveraging

cloud computing for the semantic web by maximising the full benefits of cloud computing

based on its nature and characteristics. These includes the use of cloud computing mechanisms

to analyse, query and reason with the massive amounts of metadata for the semantic web.

Metadata management for the semantic web requires a very high level of automatic scalability

which cloud computing can provide. The implementation of a solution such as Hadoop

MapReduce in a cloud environment for semantic metadata operations also provides a basis for

leveraging cloud computing for the semantic web.

One of the key issues with the semantic web is scalability. It arises when organising, storing

and retrieving semantic metadata for the vast amount of web documents accessed concurrently

at any given time (Manzoor et al., 2014). The semantic web forms a global graph where

SPARQL is used to retrieve these links. These SPARQL queries may be required to navigate

through several web and database servers joining the links within RDF databases. Retrieving a

link and accessing a web document requires proof and trust processes as well. All these

demands high computational resources due to the number of documents and servers involved.

The access operation in normal circumstances means instantaneously handling millions of user

requests which would result in extended processing times if handled in this manner. To

eliminate this issue, cloud computing mechanisms can be implemented for the provision of

high-performance computing which subsequently, reduces the processing time and high

computational cost that would have ensued (Erl et al., 2015). While semantic web technologies

provide standards for defining context for data and relationships between them, cloud services

68

have the capability to provide a platform where these data can be stored and processed

accordingly.

The research by Mika (2008) considered web semantics in the cloud, providing an overview of

semantic web technologies and three various aspects that have to do with semantic web

technologies in the cloud. Firstly, cloud computing for web data was discussed; these web data

includes metadata obtained from applications that run on the web and computational data

produced via search engines. Due to the large amount of data generated from the web, the use

of cloud services was proposed as an effective way of handling these data. Technologies such

as MapReduce and Hadoop were considered for processing these large datasets. Secondly, the

use of Yahoo! Pig to process huge amounts of RDF data was discussed. An overview of Yahoo!

Pig for querying large volumes of information in a batch processing mode utilising clusters of

several machines, without evident challenges in scalability was analysed. Throughout the

examination it was seen that Yahoo! Pig's information model and change language are like the

relational representations of RDF and the SPARQL query language. The authors stretched out

Pig for processing RDF queries. A limitation of using the model was highlighted as it provides

solutions for only the offline batch processing task. The author recommends that more

algorithms be included into the MapReduce framework to address the issue of scalability. The

scope of the research is also supported by Kim et al. (2010) with a proposition for e-portfolio

designs based on a Private-Public data index system that integrates cloud computing

applications and storage with semantic web architecture.

Similarly, Husain et al. (2011) addressed the issue of complex queries and scalability for large

semantic web data. Leveraging cloud technologies, a scalable semantic framework was built

to handle queries regarding RDF dataset which was becoming very large and complex. The

reason for this work was because the authors stated that the existing solutions that has been

provided, though they handle large RDF dataset, they are usually not scalable, or they do not

scale adequately. The authors devised a novel algorithm to handle complex queries, that is

queries with optional blocks which their previous work did not include and basic graph queries.

Hadoop framework was also utilised to store the RDF data and MapReduce was used for the

query answering system, although some algorithms were used for modification to achieve

scalability. The system was tested using SP2B dataset and the desired result was achieved. The

article did not dwell much on the performance of the queries when applied to larger datasets.

However, the system was stated to possess capabilities for maintaining scalability and

efficiency in such cases.

69

Likewise, Amato et al. (2012) proposed a system that leverages semantic web technologies for

document composition such as editing or composing aiding services; exploiting hardware and

software functionalities (service model) provided by the cloud service provider. The system

can be applicable to various domains, but the testing of the system was streamlined to the health

domain. The paper proposed CloSe, a cloud software as a service system for document

semantic composition. CloSe depicts a development in the cloud computing domain for record

handling and is dependent on semantic methodologies. The framework exploits data and

information contained in suitable document bases, gathered from heterogeneous sources, for

appropriate recommended fragments to be embedded in the document. The outcome

demonstrated that the framework improves the archive structure; helping and providing

preliminary results about the viability of the semantic recovery methods, in view of precision,

recall and f-measure metrics. In any case, performance assessments of the framework were not

revealed.

Furthermore, Hsu & Cheng (2015) proposed a cloud service model called Semantic Agent as

a Service (SAaaS) which involves the integration of a semantic web and software agents as a

typical approach to access cloud resources consistently. SAaaS was developed using UML but

it was enhanced to use SAUML; Semantic-based Agent UML. The proposed model was

associated with an existing cloud service to encourage the improvement of resourceful cloud

computing applications. In line with this, the work by Dessi et al. (2016) proposed the use of

semantic web technologies in relation to bioinformatics. The authors discussed the concerns of

technologies been suitable for promoting the prerequisites of a cooperative environment where

a research community share and develop information regarding the biomedicine discipline. The

authors proposed COWB (Collaborative Workspaces in Biomedicine), a system which

underpins collective knowledge management with regards to biomedical communities to

address this issue. The framework was a cloud service model based on PaaS (Platform as a

Service), displaying an elective method to knowledge management and utilising cloud platform

to share information aggregately. It also enabled storage of knowledge bases across several

machines and accessible to a wide range of users.

Corradi et al. (2016) also towed the Platform as a Service (PaaS) model, proposing a mobile

cloud infrastructure for extracting semantic data from speech recognition within social care

domains. The system proposed was MoSSCa, a mobile cloud empowered speech recognition

system that can give semantic-enhanced text recognition, which is challenging on cell phones

without a portable, supporting cloud architecture. The study did exhibit a system and an

70

architecture, with a survey across various accents, queries and high levels of concurrent user

requests. The architecture aided the processing and management of vast amounts of

information in a Big Data environment (Herrera et al., 2017).

Across the different research efforts analysed, it can be observed that both cloud computing

and semantic web technologies are required for efficiently handling large amount of

heterogenous data that is currently available on the web. While developing a framework to

ensure data is stored and retrieved with respect to the desired domain or challenge, scalability,

efficiency and a high-performance rate are some of the vital requirements. The roles played by

ontologies and natural language processing are also prominent, especially in querying data

either via speech or text form. Table 2.4 presents a summary of the reviewed literature, their

concerns, tools used to achieve those concerns with regards to cloud computing models and

semantic web technologies as well as their scope during the analysis of the review.

Table 2. 4 - Summary of research projects on leveraging cloud computing for semantic-based
applications

Authors Domain Cloud Model Semantic Tools Scope

Mika (2008);
Kim et al. (2010) Web PaaS (Hadoop,

MapReduce) RDF, SPARQL Overview of
technologies.

Husain et al.
(2011)

Web PaaS (Hadoop,
MapReduce)

RDF, SPARQL

Did not handle
complex queries that
involves optional
blocks

Husain et al.
(2011) Web Hadoop,

MapReduce RDF, SPARQL

Performance was not
evaluated with respect
to complex queries
that involved optional
blocks

Amato et al.
(2012)

E-Government
and E-Health

SaaS, IaaS, PaaS NLP, OWL,
SPARQL

Processing semantic
documents in the
cloud

Hsu & Cheng
(2015) Web SaaS, IaaS, PaaS RDF, OWL,

SWRL

SAUML profile only
addressed SAaaS
modelling.

Dessi et al.
(2016)

Bioinformatics
(Health)

PaaS RDF, OWL
Considers only
domain knowledge
from ontology.

Corradi et al.
(2016)

M-Health,
Social Care

PaaS NLP, OWL Although performance
and scalability were

71

considered in the
research, the issue of
data security was not
covered.

2.6 Chapter Summary

This chapter provided a comprehensive review of literature for the technological paradigms

central to this research; semantic web and cloud computing. With semantic annotation being

very pivotal to the semantic web, it was critically reviewed alongside how ontologies impact

on the varying types of challenges it faces today. Cloud computing delivery and deployment

models; characteristics, benefits and issues were also reviewed. Furthermore, the role each of

the two paradigms plays in facilitating the other were reviewed and analysed. For each of the

sections, a gap analysis is conducted by elucidating the challenges therein. With focus on the

automation challenge for semantic annotation, the next chapter starts with the proposal of

requirements to address this holistically.

72

Chapter 3: Towards a Holistic Semantic Annotation Solution

In this chapter, a holistic perspective to automated semantic annotation is proposed. This is

based on the automation challenge of semantic annotation described in section 2.2 of Chapter

2 which analysed the state-of-the-art approaches for automatic semantic annotation. From the

analysis, a disparate approach to semantic annotation was pointed out which has hindered

automatic processes for semantic annotation. To address this, transformation from a disparate

approach to a holistic one is proposed. The holistic perspective is believed to be capable of

addressing the automation challenge. The case for a holistic perspective is presented in section

3.1 while section 3.2 identifies and analyses requirements for the holistic perspective. In section

3.3, a feasibility of cloud computing facilitating the holistic view is assessed by evaluating

cloud computing mechanisms and their potential impacts on the requirements. These results in

a cloud computing capability model for holistic semantic annotation in section 3.4 with a

chapter summary in section 3.5.

3.1 The Holistic Perspective to Semantic Annotation

From the semantic annotation challenges presented and analysed in section 2.2 of Chapter 2

and the subsequent focus on the automatic semantic annotation challenge, several issues

mitigating against it can be observed with existing semantic annotation tools from literature.

Firstly, the scope and depth of ontologies that describe concepts and relations are vital factors

which determine the level of precision obtainable with annotation data (Faria et al., 2014).

While domain-specific ontologies can be very useful, they are still limited in most cases. The

use of a single ontology for describing concepts and relations would result to a low level of

accuracy and completeness for annotation data generated based on such ontologies. This can

be observed with some existing semantic annotation tools such as SemTag (Dill et al., 2003)

and KIM (Malik et al., 2010) that utilise a single ontology. With ontology engineering activities

such as ontology mapping, merging and alignment, it is pertinent to aggregate resources from

multiple ontologies for automatic semantic annotation processes in order to expand the scope

and depth of concept/relations construction.

In addition, the storage mechanism for annotation data can be observed to vary widely across

existing semantic annotation solutions. While some embed these within web documents; such

as CREAM, OpenCalais and MnM, some others such as Cerno and KIM store them remotely

(Oliveira & Rocha, 2013). The format for storing annotation data across both methods can also

be observed to vary, with portable and well-structured formats such as XML and JSON as well

73

as less structured formats such as HTML and XHTML among others. With focus on web

documents which are mostly based on a client-server architecture over the Internet, annotation

data stored remotely and served to corresponding web documents using portable formats would

offer greater benefits. The remote storage mechanism also makes it easier to integrate the

process with ontology engineering activities to facilitate a synchronisation between both. This

is also in line with managing the evolvement of ontologies. Ontologies can evolve by adding

new concepts and relations to them through ontology population (Petasis et al., 2011), or

through an update to the structure of the ontology either by means of changes in the structure

of the model or changes based on the development language; such as OWL evolving to OWL2

(Bayoudhi et al., 2017). The impact of such evolution needs to be managed alongside automatic

semantic annotation of web documents.

Furthermore, when ontologies are mapped or aligned to expand their scope and depth,

techniques adopted for obtaining optimal results from the process are vital, as well as having a

continuous synchronisation between mappings generated and the ontologies that provided them

(Mittra & Ali, 2017). These processes within ontologies; evolution, mapping, alignment,

update among others directly impact on annotation data, hence, the need for a seamless

communication between them. In addition, web documents are very dynamic and change often.

With web documents hosted on web servers possibly remotely from their corresponding

annotation data, a real time consistency between web documents and annotation data is

required. Based on these; web, annotation as well as ontology servers need to establish a data

communication stream continuously for up-to-date data sharing. Figure 3.1 illustrates the

communication required between these.

74

Figure 3. 1 – Communication Stream between Web, Annotation and Ontology Servers

Likewise, the optimisation of data at set intervals is a well-established concept in information

systems (Wang et al., 2018). This applies to annotation data as well because schematic and

structural changes to ontologies and annotation data formats over time has the potential to alter

the structure of annotation data. An optimisation process that will trigger when necessary

requires synchronisation with ontologies and other associated third-party computing resources.

Currently, the optimisation of annotation data has not been observed to be a topic of discussion

in literature. Another concept which has not been observed to receive attention from the state-

of-the-art and which the holistic perspective can foster for automated semantic annotation is

the co-location of annotation data and web documents. Lastly, while some tools are presented

as providing automatic semantic annotation, the level of automation can be realised to be low;

requiring expertise level involvement in the semantic annotation process for end users. This

eventually constitutes a challenge for utilising such solutions. In this context, automation is

opined as not requiring any expertise from end users for the semantic annotation process.

Figure 3.2 illustrates transformation from a disparate state of semantic annotation to a holistic

one; which provides a synchronisation of several independent solutions as well as considers

additional functionalities required for a fully automated semantic annotation process.

75

Figure 3. 2 – From Disparate to Holistic Perspective for Semantic Annotation

These can be observed to be contributing factors to the challenge of automatic semantic

annotation and to the best of our knowledge, no existing semantic annotation tool provides a

solution that addresses all these holistically. While some of these can be observed to be

addressed disparately, a holistic perspective to semantic annotation, which investigates all of

these for facilitating a fully automated semantic annotation solution is proposed in this

research. A solution based on this perspective is believed to possess the potential of

transforming the current state of semantic annotation by means of a holistic approach that

investigates the various automation challenges and offers an integrated solution; capable of

delivering the service as a single unit while also providing a continuous lifecycle of annotation

data generation, delivery, management and evolution for web documents with the capability to

scale and be deployed in multiple clusters across the web. The next section reviews and

analyses identified requirements for a holistic semantic annotation process.

3.2 Requirements for the Holistic Perspective

From the holistic perspective to semantic annotation described in section 3.1, several

requirements can be identified, which are also well supported in literature for semantic

annotation generally. While the technique and extent of implementation for these vary across

76

some existing tools, the understanding of what they are as requirements are quite generic.

Furthermore, two additional requirements are added to the ones adapted from literature. These

are Annotation Data Optimisation and Annotation Data Colocation.

Table 3. 1 – Holistic Semantic Annotation Requirements
Requirement Summary Description Support for Requirement
Concept Extraction Extraction, disambiguation and

interlinking of instances of
concepts and relations from text
corpus and their storage in RDF
graph databases

Dou et al., (2015), Grobe-
Bolting et al., (2015),
Martinez-Rodriguez et al.,
(2018)

Ontology Population Addition of concepts and
relation models into the
structures of existing ontologies

Petasis et al. (2011), Faria et al.
(2014), Tomaz et al. (2012),
Cheatham et al. (2019), Makki
(2017)

Ontology Selection Evaluation and selection of
appropriate ontologies for a
semantic annotation process

Park et al. (2011), Hooi et al.
(2015), Sabou et al. (2006),
Dhingra & Bhatia (2012)

Ontology Mapping Mapping same or similar
concepts across multiple
ontologies together

Luczak-Rosch et al. (2014),
Johnson et al. (2012), Xiangmei
& Chunli (2013), Kumar &
Harding (2013), Mittra & Ali
(2017), Wang et al. (2015),
Jean-Mary et al. (2009)

Annotation Data Storage Generation and storage of
annotation data based on a
decoupled approach

Uren et al. (2006), Zou & Ozsu
(2017), Jie et al. (2018), De
Virgilio (2017)

Annotation On-the-fly Online, real time and automated
generation, storage and
annotation of web documents
with contextual data

Based on traditional client-
server architecture in
computing (Mainetti et al.,
2015)

Annotation Data Reuse Use of annotation data instance
multiple times for a web
document

Uren et al. (2006), Zou & Ozsu
(2017), Jie et al. (2018)

Annotation Data Sharing Use of annotation data instance
by multiple web documents

Uren et al. (2006), Oliveira &
Rocha (2013)

Annotation Data Auto-Update Automatically updating
annotation data to maintain
consistency with corresponding
web documents

Uren et al. (2006), Oliveira &
Rocha (2013)

Ontology Auto-Update Automatically updating
ontologies to ensure accuracy
of annotation data

Sassi et al. (2016), Imam
(2016), Losch et al. (2009),
Sangers et al. (2012), Flahive et
al. (2015)

77

Annotation Data Optimisation Periodic optimisation of
annotation data based on
schematic changes to
ontologies.

Novel; based on the computing
concept of data optimisation
(Wang et al., 2018)

Annotation Data Colocation Locating web documents and
annotation data close to each
other to minimise data transfer
issues such as network latency

Novel; based on the computing
concept of co-location of
resources (Wilder, 2012)

Figure 3.3 also presents the holistic semantic annotation requirements based on a classification

of three phases for the semantic annotation process; preparatory, annotation and maintenance

phases.

Figure 3. 3 – Holistic Semantic Annotation Requirements and Phases

3.2.1 Preparatory Phase Requirements

This phase comprises of requirements that defines series of processes needed prior to a

semantic annotation instance. These are: Concept Extraction, Ontology Population, Ontology

Selection, Ontology Mapping and Annotation Data Storage.

78

3.2.1.1 Concept Extraction

Concept Extraction refers to the process of extracting instances of concepts and relations from

different sources to develop annotation data for web documents (Dou et al., 2015). While this

process can be implemented in diverse ways and using different techniques, a generalised

procedure, which defines the major steps can be utilised. Figure 3.4 presents the general

approach to concept extraction for semantic annotation.

Figure 3. 4 – Generic Approach to Concept Extraction for Semantic Annotation

From Figure 3.4, it can be observed that the first step is Text Identification. This requires

identifying documents containing instances of concepts and relations for extraction. The source

of the document needs to be identified and both its availability and accessibility confirmed.

Once the document has been identified and accessed, the extraction of text follows using

scientific techniques such as web scrapping, TextRunner and KnowitAll (Niklaus et al., 2018).

This is known as Information Extraction and Retrieval (IER) (Vlahovic, 2011). Several

methods of IER exist today but they can be broadly categorised into pattern-based and machine

learning-based methods. The pattern-based methods are dependent on specific patterns from

data or rules defined and include Hearst Pattern, JAPE (Java Annotation Pattern Engine),

Pattern Discovery, etc. The machine learning-based are either dependent on probabilistic or

induction theories. Examples are Hidden Markov’s Model, LP2 (Lifted Probabilistic Logic

Programming) and N-Gram Analysis (Reeve & Han, 2005).

The next phase; Text Analysis involves the use of specific algorithms for splitting sentences

and the identification of different concepts such as people, things, places, organisations and

events. This relies on the use of Natural Language Processing (NLP). NLP describes the

process of utilising computerised techniques to read, decipher and analyse natural languages,

such as English and French to come up with meaningful information (Young et al., 2018). This

analysis involves the identification of concepts and relationships from natural text. Some NLP

techniques include Automatic Summarisation, Co-Reference Resolution, Discourse Analysis,

Machine Translation, Morphological Segmentation, Named Entity Recognition, Optical

Character Recognition and Part-of-Speech Tagging (Khurana et al. 2017). The role of

Automatic Summarisation is the production of a comprehensive shorter form of a larger piece

79

of text such that the overall context of the initial text is still intact. Co-reference Resolution has

to do with the identification of different objects within a piece of text that refers to a specific

named entity within the text. Such references include the use of pronouns such as ‘he’, ‘she’,

‘it’, ‘I’ and ‘me’ in reference to the named entity. The function of Discourse Analysis is the

identification of the communication structure for a set of inter-related text. Machine Translation

automatically translates text from one natural language to another one. Morphological

Segmentation deals with the separation of words into separate contextual morphemes and

identification of the types of morphemes. As for Optical Character Recognition (OCR), it offers

an image that represents printed text, thereby helping to determine associated text for the

corresponding images. Part-of-speech Tagging offers sentence description and the

determination of the part of speech for every word (Khurana et al. 2017).

A typical NLP system helps with the manipulation of an input text in a progressively complex

manner. NLP deals with words and considers words as carriers of textual meanings. Hence, it

requires a pre-processing step before additional analysis for delimiting individual word tokens

making up a text, which is known as Tokenisation. Tokens (words) are deciphered according

to the context of their use in a pre-trained classification model that studies parts of speech

(Singh, 2019). A simple approach is the splitting of the text based on whitespaces or

punctuations. Similarly, Sentence Splitting in most cases has to do with utilising basic

heuristics such as searching for the typical end of sentence punctuation (period or question

mark) followed by a capital letter (Verspoor & Cohen 2013).

It is sometimes essential to establish the relevant relations among words in a text. Part-of-

Speech Tagging is the most fundamental in determining the part of speech of a word. Shallow

parsing analyses sentences by identifying and recognising words, or a sequence of words as

belonging to a part of speech. However, deep parsing is required to identify specific

grammatical relationships among them and their roles within the sentences, as shallow parsing

does not do this. (Verspoor & Cohen 2013). Named Entity Recognition (NER) is used in NLP

for locating and classifying named entities in word tokens into categories predefined in NLP

models (Marrero & Urbano, 2018). These categories include names of people, places,

organisations, monetary values and time expressions; utilised in solving real-world problems

such as specific products mentioned in a certain review or names and location of people

mentioned in documents.

80

From the classification, the next step involves the disambiguation of recognised concepts (that

is, definition as people, organisations, places, events and so on) based on one or more domain-

specific ontologies. For example, ‘Leopard’ is classified as an animal and further

disambiguated as ‘Leopard: Cat’ not ‘Leopard: Pisces’. This step is very crucial as it gives text

the ability to be processed and become understandable pieces of data through linkage to a

broader set of already existing data. Next, the Relationship Extraction step, which identifies

relationships between extracted concepts and links them with related external or internal

domain knowledge (Martinez-Rodriguez et al., 2018). The fifth step; Indexing and Storage

deals with indexing and storing the instances in a semantic graph database, usually in RDF

format. At this stage, the data within the graph database can be queried using SPARQL to

generate contextual data for a web document based on the web document content.

3.2.1.2 Ontology Population

Ontology Population refers to the population of domain-specific ontologies with new concepts

and relations as additions to the existing knowledge modelled within such ontologies. It is also

sometimes referred to as Ontology Enrichment (Petasis et al., 2011). In comparison with

Concept Extraction which involves the extraction of instances of concepts and relations,

Ontology Population provides a representation for concepts and relations and not their actual

realisations as utilised in text corpus. Invariably, Concept Extraction utilises the structure

defined for concepts and relations within an ontology to define context and relationships for

instances of such concepts. The addition of more concepts and relations to ontologies implies

increasing the scope of contextual data described by the ontology which subsequently results

into the generation of more meaningful annotation data for web documents (Tomaz et al.,

2012).

Furthermore, with the dynamic and transformational nature of information resulting to new

data being added to the body of knowledge daily, the need for ontology population is very vital

to cater for newly constructed or re-defined concepts and relations in order to avoid mis-

representation of information within annotation data and facilitate their accuracy at all times.

Ontology Population processes result into structural changes for the ontology as it can require

modifications to the hierarchy of concepts or to taxonomic relations (Cheatham et al., 2019).

A typical ontology population process usually requires a mechanism, often regarded as an

extraction engine to identify concepts and relations from several document types (Faria et al.,

2014). An initial ontology is then input into the system alongside the newly extracted concepts

81

and relations to construct a taxonomy from the existing concepts within the initial ontology as

well as the newly extracted ones. Thereafter, semantic relations are extracted and defined for

the new taxonomy. These results into an enriched ontology which undergoes an evaluation to

resolve any inconsistencies. Tomaz et al. (2012) proposed an iterative, unsupervised approach

for this process. Upon inconsistencies resolution, a populated ontology emerges. The overall

process can be repeated for several text corpus and either based on specified intervals with new

document sources or based on the availability of a required level of new concept/relation pairs

within the domain of an ontology. Figure 3.5 presents an ontology population process as

defined by Petasis et al. (2011).

Figure 3. 5 – Ontology Population Process (Petasis et al., 2011)

3.2.1.3 Ontology Selection

Ontology Selection defines the process of identifying ontologies that meet a set of criteria for

a specific purpose (Park et al, 2011). The selection of an appropriate ontology or multiple

ontologies for semantic annotation is very vital in determining the quality of annotation data

produced. This is because selecting appropriate, multiple ontologies to generate RDF

annotation data for a web document provides a better means of covering the required scope and

depth of contextual data required by the web document. Often, selection criteria for ontologies

are dependent on the web documents that the ontologies are to be used for. The domain, scope,

82

size, depth and standardisation for ontologies are all key factors in a selection process (Hooi et

al., 2015).

The selection process also constitutes an evaluation for the ontologies by means of considering

if they meet the required criteria for selection. Once the evaluation metrics are met by one or

more ontologies, they can then be selected for use. Sabou et al. (2006) defined an approach to

ontology selection which involves three criteria; popularity, richness of content and scope. The

popularity of ontologies defines how high they rank; using ontology ranking algorithms, in

comparison with other similar ones. AktiveRank (Dhingra & Bhatia, 2012) is one of such

algorithms popularly used for the ranking process. It defines a five-stage algorithmic approach

to calculate a popularity index for ontologies by analysing the structure of concepts defined

within them. The stages are class match measure, centrality measure, density measure,

semantic similarity measure and total score. The Ontology Scope criteria defines knowledge

domains that the ontology will be representing. The granularity of the ontology is also required

to be identified, as this impacts on its intended use. A list of competency questions can be

developed to provide a well-defined scope for the ontology. Other measures such as number of

concepts and relations contained within the ontology are also means of evaluating and selecting

appropriate ontologies which can be utilised in other ontology engineering processes such as

ontology mapping and ontology alignment among others (Petasis et al., 2011).

3.2.1.4 Ontology Mapping

Ontology Mapping refers to the matching and alignment process for concepts and relations

across multiple ontologies with same or similar contextual information (Luczak-Rosch et al,

2014). For the holistic semantic annotation process being proposed, ontology mapping is

required sequel to ontology selection. The goal of the mapping process is to address issues such

as semantic ambiguities and redundancies (Johnson et al., 2012) which, if well addressed would

lead to the generation of better and rich-content annotation data for web documents by fostering

a means of aggregating resources from multiple ontologies at the same time without conflicts

in their schema for concepts and relations. Mapping ontologies together makes it possible to

update the different ontologies independent of each other and add more ontologies as the need

arises without having to undergo any major overhaul (Xiangmei & Chunli, 2013). Several

factors can be identified which leads to a single data or concept being represented in different

ways within different ontologies. These include:

• The use of a single term to describe different concepts – ambiguity.

83

• The use of different terms to describe a single concept – redundancy.

• The use of different types of representation for describing concepts within ontologies.

• Developing ontologies to different levels of depth in terms of scope.

• Developing domain-specific ontologies from different perspectives.

While several approaches exist to utilising multiple ontologies for a web document, ontology

mapping is very crucial as it enables the individual ontologies to continue evolving

independently irrespective of earlier defined mappings, with updates to the mappings when one

or more ontologies evolve (He et al., 2010). Ontology Merging is one of such other approaches.

However, ontology merging results into an integration between two or more ontologies to

constitute a single unit. Table 3.2 details the differences between both.

Table 3. 2 – Comparison of Ontology Mapping and Ontology Merging
Criteria Ontology Merging Ontology Mapping

Language The ontologies need to have been

developed using same language

Does not require ontologies to be of the

same language before their concepts

can be mapped

Upgrade This is cumbersome, as each initial

ontology still evolves independently

Ontologies are upgraded separately,

hence, less cumbersome

Purpose Becomes restricted to uses permissible

by the merging

This is flexible as individual ontologies

can still be utilised separately

Maintenance It becomes more cumbersome, due to

the volume as well as differences in

maintenance techniques

Relatively less cumbersome due to

their independence

The current approaches to ontology mapping deploy a wide range of methods which was

classified by Kumar & Harding (2013) as follows:

• Linguistic Methods: These exploit linguistic labels of concepts within ontologies to be

mapped. Similarities between labels are identified using techniques such as Hamming

Distance or some specialised domain knowledge. Once these similarities have been

identified, the concepts represented by the labels can be mapped together as

representing a single meaning.

• Statistical Methods: These define mappings between ontological concepts based on the

existence of statistical correlations between them. Such methods, however, are heavily

84

reliant on the availability of large numbers of instances within RDF graphs utilising

such ontologies.

• Structural Methods: These utilise the internal structures of ontologies to identify

similarities between different ontologies. Structural methods however cannot be used

alone and is usually alongside either a linguistic or statistical method.

• Logical Methods: These utilise the logical formalisms within the ontology. However,

ontologies with a low level of semantic structure would not provide a great deal of

formalism. Hence, this can be utilised alongside either a linguistic or statistical method

as well.

Ontology mapping frameworks such as ASMOV (Automated Semantic Mapping of Ontologies

with Validation), FOAM (Framework for Ontology Alignment and Mapping) and QOM

(Quick Ontology Mapping) are commonly used. There is the need however, to ensure that

updates are made to mappings after upgrading an ontology to a newer version (Adachi &

Fukuta, 2017). Mappings can be between local, merged and remote ontologies (Wang et al.,

2015). The ASMOV ontology framework also provides a semantic verification step for

mappings generated as a means of validation (Jean-Mary et al., 2009; Mittra & Ali, 2017). It

uses lexical and structural characteristics of ontologies for an iterative calculation of a

similarity measure index between them to generate an alignment. These alignments go through

a verification process to ensure that there are no semantic inconsistencies. ASMOV exploits

four major characteristics of an ontology to match pairs of entities. These are the lexical

information, internal structure, external structure and individuals (Jean-Mary et al., 2009;

Mittra & Ali, 2017).

3.2.1.5 Annotation Data Storage

Annotation data storage refers to the storage mechanism of contextual data for annotating a

web document. These can be domiciled within the web document which is classified as a

monolithic approach or they can be stored separately from the web document, known as a

decoupled approach (Uren et al., 2006). For web-scale, holistic semantic annotation, the

decoupled approach is believed to be more efficient and effective for their intended purposes.

Table 3.3 presents a comparison of these two approaches.

85

Table 3. 3 - Comparison of Monolithic and Decoupled Annotation Data Storage Mechanisms
Monolithic Annotation Data Storage Decoupled Annotation Data Storage

Changes in a web document automatically makes
the annotation data invalid.

Changes in a web document automatically
triggers a re-generation of annotation data for the
document.

Annotation data is not sharable among multiple
web documents.

Annotation data can be shared by multiple web
documents

Annotation data is usable only by the web
document it is embedded in.

Annotation data is re-usable by multiple web
documents

It does not foster collaboration It promotes collaboration

Requires a 1:1 mapping for web documents and
annotation data

Fosters a 1: N mapping for web documents and
annotation data

Annotation data is always available with the web
document

Annotation data and web document exist
separately

Annotation data can be edited locally, which can
lead to errors

Annotation data is not locally available for
editing; hence its integrity is preserved.

With the dynamic nature of the web, web documents and ontologies are frequently evolving

and requiring updates. The decoupled approach will facilitate automatic updating of annotation

data; triggered when either corresponding web documents or ontologies change as a result of

an update to content, context or structure. Considering the structure of annotation data which

can be in portable formats such as XML, JSON or YAML, changes within a web document

would require a re-generation of its annotation data which needs to be an automated process

without a user’s direct access to the annotation data. However, with the monolithic approach,

annotation data is exposed to users, hence the chances of changes to it by non-experts which

will subsequently render the web document semantic annotation invalid. A scheduled server

script (such as cron jobs on Linux kernels) can be set up to monitor web documents evolution

and initiate annotation data re-generation when such documents evolve.

3.2.2 Annotation Phase Requirements

This phase involves the actual requirements and different scenarios that would result into the

semantic annotation of a web document. It requires that annotation data has already been

generated and stored for the corresponding document. The requirements involved in this phase

are: Annotation On-The-Fly, Annotation Data Reuse and Annotation Data Sharing.

86

3.2.2.1 Annotation On-the-fly

Annotation On-the-fly refers to the ability of a holistic semantic annotation process to provide

online, real time and automated semantic annotation for web documents. Upon the receipt of a

request by a web server for a web document, annotation data can be generated for the web

document content by running SPARQL queries on a semantic graph database for contextual

data regarding the web document. The generated data; which is annotation data is then stored

as well as referenced by the web document instantaneously. This is based on a typical client-

server architecture for web applications on the Internet. A service-based model which web

documents can subscribe to for such a level of automation is not known of to the best of the

writer’s knowledge and is believed to constitute a major stride towards the successful

evolvement of the semantic web. Such a service would require a high level of automation to

enable non-experts utilise it; possibly by means of an API (Application Programming Interface)

call within web documents.

Furthermore, considering the wide-scale use of web content management systems and

frameworks which can utilise a single header file for multiple web documents (hundreds or

even thousands), the API call would only be needed once within a header file and that would

facilitate semantic annotation for all the web documents. Furthermore, considering this

requirement alongside Annotation Data Storage; web content editors, web administrators and

several other categories of non-technical web content managers can have full and free access

to web content without any chances of altering annotation data content or structure.

3.2.2.2 Annotation Data Reuse

The adoption of a decoupled approach to annotation data storage means it can be re-used by

one or more web documents. Annotation data remains valid if the web document content

remains the same. Hence, the same instance of annotation data can be served to a web document

multiple times without requiring a re-generation of the data if the web document has not

changed. This provides a means of optimising computing resources usage, especially

considering that some web documents do not change frequently. A mechanism for facilitating

the requirement would involve mapping web document URLs to annotation data IDs within a

database such that once a web server receives request for a web document, a record in the

database table assigning annotation data to the web document is checked for. The assigned

annotation data would then be reused for the document if such a record exist. Otherwise,

annotation data is generated for the document real time.

87

3.2.2.3 Annotation Data Sharing

Annotation data generated for a web document and stored on an annotation server can be shared

with other similar web documents of the same domain and containing similar content. This will

foster optimisation for the usage of computing resources as it means the same annotation data

is not replicated across a server multiple times for different web documents, thereby consuming

more storage and requiring increased processing power to access them. Furthermore, an update

to the annotation data is immediately implemented for all web documents referencing it,

providing a cascading effect over multiple web documents all at once. Access to an instance of

annotation data for sharing can be managed based on consumer or document attributes using

an attribute store for entities. Entities in the context will be annotation data, web documents

and users. With Attribute-Based Access Control (ABAC), annotation data attributes are signed

to security tokens which matches them with document or consumer attributes to either grant or

deny access to an instance of annotation data (Talukdar et al., 2017). However, this is still

based on the validity of a web document utilising an instance of annotation data previously

generated for another document.

3.2.3 Maintenance Phase Requirements

The requirements in this phase are based on ensuring a consistent and continuous semantic

annotation lifecycle for web documents. This includes by scheduling and running processes

that foster a holistic process for synchronising different tasks together towards service delivery.

The requirements in this phase are: Annotation Data Auto-Update, Ontology Auto-Update,

Annotation Data Optimisation and Annotation Data Colocation.

3.2.3.1 Annotation Data Auto-Update

The dynamicity of annotation data is very crucial due to the ever-changing nature of web

documents (Oliveira & Rocha, 2013). Annotation data once generated, would require a re-

generation whenever either the web document or domain-specific ontologies generating the

annotation data is updated. This is to ensure that consistency is maintained within the three

components; web documents, annotation data and domain-specific ontologies. Updates to the

annotation data are implemented by queries sent to both the web server (containing web

documents) and ontology server (containing the ontologies) from the annotation server. The

response from either of the servers determine if an update is required for the annotation data.

Annotation data can be stored using XML or JSON which are portable and interoperable

formats usable on the web for storage and data transfer across different platforms (Petasis et

88

al., 2011). With the decoupled approach to annotation data storage, which stores annotation

data separately from web documents, it is pertinent to ensure that an up-to-date annotation data

is always served to web documents, hence this process focuses on automatically updating

annotation data when required. Scheduled tasks can be set to iteratively select web document

URLs from a database and read their contents. If there have been any chances to a web

document content from the previous running instance of the scheduled job, then annotation

data for the specific document would have to be regenerated. The regeneration would require

invoking some other processes; Ontology Selection, Ontology Mapping and Annotation Data

Storage.

3.2.3.2 Ontology Auto-Update

Ontologies usually require updates or upgrades based on changes within concepts and relations

modelled within them (Sassi et al., 2016). These can be at a low level, such as adding domain-

specific sub-concepts or at a high level, such as adding middle or upper level concepts to cover

new areas within the domain (Imam, 2016). Updating ontologies based on such changes

maintains consistency between them, data from ontology mapping processes and annotation

data. Maintaining this consistency also implies that annotation data for web documents remain

accurate. An automated means of updating or upgrading ontologies stored in ontology servers

is crucial for holistic semantic annotation. Update to an ontology initiates a re-mapping of two

or more ontologies and subsequently, the re-generation of annotation data for one or more web

documents.

Some research literatures propose techniques for automatically updating ontologies (Flahive et

al., 2015; Sassi et al., 2016; Losch et al., 2009). The work by Losch et al. (2009) which

proposed an event-triggered Ontology Update Language (OUL) to eliminate manual ontology

updating through the provision of a means of defining sets of SPARQL update rules. OUL is

based on SQL-triggers in database management systems. It carries out the process of updating

a list of ontologies with the aid of an Event-Condition-Action model as triggered by event

occurrences through what is known as change handlers. Furthermore, Sangers et al. (2012)

adapted the mechanism to propose OULx which provides prefixes and negation language

features as well as various update execution processes with a prototype implementation.

3.2.3.3 Annotation Data Optimisation

As the structure of ontologies evolve over time, structural changes might be required for

corresponding annotation data. With annotation data stored in formats such as XML, JSON or

89

YAML which are highly structured document types, optimising the structure of annotation data

in order to keep the integrity of the contextual information it stores is perceived as a needed

requirement. While Annotation Data Auto-Update is about updating annotation data itself,

Annotation Data Optimisation is about optimising the structure of annotation data documents,

which invariably may result in minor changes to the actual contextual data stored in it. This

will also constitute a form of maintaining consistency between ontologies and annotation data

by eliminating any disparities between them, which is very vital for the accuracy of contextual

information within annotation data files. The optimisation process would need to be automated

and scheduled to be run for annotation data when its supporting ontology or one of its multiple

supporting ontologies has gone through a structural change due to an upgrade or evolvement.

3.2.3.4 Annotation Data Colocation

With the decoupled approach to annotation data storage described in section 3.1.1.5 which is

based on storing annotation data separately from web documents, the co-location of both

becomes a factor of interest. Annotation Data Colocation defines a mechanism in which

annotation data is stored as closely as possible to the corresponding web document. This is

based on the technological concept of colocation which in simple terms means placing

resources together, or close to each other for one or more reasons (Wilder, 2012). These reasons

include to foster faster communication and reduce network latencies as communication

between system nodes is faster when the nodes are closer to each other than when the nodes

are away from each other (Saeed et al., 2015).

While the location of web documents is dependent on the document owners or authors, with a

global presence for most application hosting providers, annotation data can be stored in the

same geographical zone as its corresponding web document and close to it as much as possible.

Alongside the benefit for web users and web document owners, it will also constitute a huge

benefit for hosting solution providers by greatly minimising computing overhead for

semantically annotating web documents globally. Furthermore, in cases whereby web

document location can be influenced by hosting solution providers, demand and usage statistics

for such documents becomes more important as these can be utilised to select the most

appropriate location for web documents and their associated annotation data based on

proximity to the target audience.

90

3.2.4 Holistic Requirements Summary

The holistic perspective described earlier implies the need for a distributed system that can

facilitate it. With the different requirements needed to be implemented and demanding a high

level of coherence between them to provide a continuous semantic annotation service, there is

the need for a computing platform or paradigm which will be well suited for this purpose. From

the requirements analysed earlier, it can be observed that automation is key to establishing and

maintaining a coherent workflow between them. With automation being very central to cloud

computing, this research reviews and analyses the feasibility of leveraging cloud computing to

deliver holistic semantic annotation. This is illustrated with a high-level conceptual diagram in

Figure 3.6.

Figure 3. 6 – Leveraging Cloud Computing for Holistic Semantic Annotation (High Level)

Furthermore, web documents and data are generally being migrated to cloud platforms due to

the benefits inherent in adopting cloud computing such as: better insights and visibility,

collaboration, supporting diverse business needs, allowing for rapid development and

provisioning of new products and services through automated systems (Namasudra et al.,

2017). The need for very high level of computer processing power for data storage, processing

and management is also a factor that supports cloud computing adoption for holistic semantic

annotation. With the vast amount of data on the web and its ever-increasing nature, coupled

with the generation of equally large amounts of annotation data, high performance computing

would be required to effectively store, process and manage the entire data and their lifecycle.

91

Cloud Computing offers this level of high performance and can be leveraged for the same

purpose (Husain et al., 2011).

Likewise, the need for delivering semantic annotation holistically: as a service (SaaS), via a

platform (PaaS), on an infrastructure (IaaS) for web documents is crucial. These are models

which cloud computing offers (Mell & Grance, 2011). In addition, the need to automate the

processes of: deploying (rapid provisioning), scaling (dynamic scalability) and monitoring

(usage monitoring) the overall process to meet, maintain and manage the web-scale need and

demand for semantic annotation positions cloud computing in good stead for adoption

(Rodriguez & Buyya, 2019). Lastly, the need for standardisation which: provides a common

language and foundation, fosters collaboration and best-of-breed solutions, facilitates a simpler

development and deployment experience which is required for the semantic web, can be

facilitated by cloud computing (Erl et al., 2015). Sections 3.3 and 3.4 focus on an assessment

of cloud computing paradigm and its potential adoption for facilitating a holistic semantic

annotation process.

3.3 Cloud Computing Mechanisms for Holistic Semantic
Annotation

Since its inception, cloud computing has grown tremendously, and indications suggest that its

growth trajectory will continue increasing (Namasudra et al., 2017). The growth has been

motivated by factors such as adopting new business models and realising economies of scale

due to the several cloud computing benefits. The fundamental building blocks of a cloud

environment are based on its nature as a paradigm; characterised by computing technology

concepts which make up cloud computing essential characteristics and more broadly, cloud

computing mechanisms (Chiregi & Navimipour, 2017). Cloud computing mechanisms form

primary artefacts that, in turn, constitute the fundamental cloud technology architecture (Erl et

al., 2013). These mechanisms facilitate the design of various cloud applications that are

reliable, scalable and secure in nature, ensuring that cloud consumers can trust the services

offered by cloud providers. In general, cloud computing uses different approaches to achieve

the same cloud services. The implementation of cloud computing mechanisms does not only

standardise proven practices and solutions, it creates a common foundation on which higher-

level systems can be built and enhances the development of standard software libraries and

frameworks (Arcitura Education, 2018). Erl et al. (2013), proposed a classification for cloud

computing mechanisms based on their characteristics and the technical solutions they offer.

92

This research has adopted the classification for providing an analysis of the roles and

responsibilities for cloud computing mechanisms mapped with the holistic semantic annotation

requirements for the semantic web. The classification helps define a scope and context for each

of the cloud computing mechanisms with respect to facilitating holistic semantic annotation.

The classifications; cloud infrastructure, cloud management, cloud security and specialised

cloud mechanisms are analysed in this section.

3.3.1 Cloud Infrastructure Mechanisms

The first classification is for cloud infrastructure mechanisms which, considering a cloud

environment as an infrastructure, constitutes IT solutions on which the infrastructure is built.

These include mechanisms for resource clustering, resource replication, failover systems and

geotagging which are analysed and evaluated in terms of their potential impact on holistic

semantic annotation.

3.3.1.1 Resource Clustering

Resource clustering refers to grouping multiple instances of cloud computing resources

together for operation as a single entity (Erl et al., 2013). This is often required based on the

geographical diversity of resources within a cloud infrastructure. The diversity requires a

logical combination of resources into groups for the improvement of their allocation and usage

which leads to an increased total computational capacity and availability of the clustered

resources (Cui et al., 2016). The architecture on which this mechanism works requires real-

time communication between nodes for an effective synchronisation of computing systems.

This is usually orchestrated by a cluster management service which monitors and manages

resources across geographical zones and aggregates them into a logical unit when required (Erl

et al., 2013).

As such, Cao et al. (2016) proposed an innovative service model called Cluster as a Service

(ClaaS). The model is said to suit the needs of medium-sized data centres with the aim of

virtualising cluster environments for distributed application frameworks. A prototype of ClaaS

called Docklet was implemented using lightweight containers to ascertain its feasibility. For a

web scale holistic semantic annotation service, the need for clustering cloud resources;

infrastructure, platform and service across geographical zones to meet on-demand requests

which can greatly fluctuate is perceived as vital to delivering such a service. This can include

for aggregating RDF graph storage across multiple geographical zones to facilitate annotation

data generation.

93

3.3.1.2 Resource Replication

Resource replication refers to creating multiple instances of a computing resource, in this

context, within a cloud environment. Software agents responsible for this depend on

virtualisation technologies such as hypervisor-level and operating system-level virtualisation

for its implementation and usually results in automatically scaling the computing resources

being replicated (Shahapure & Jayarekha, 2015). It is also important to note that these can be

hardware or software resources. Replicating resources not only enhances their availability, it

improves their reliability and consistency as multiple instances are created within same or

different environments. Furthermore, it can foster shared bandwidth for software resources,

thereby lowering associated access costs and decreasing delay time (Makhsous et al., 2016).

Furthermore, it ensures that users have seamless and transparent access to computing resources

even in the event of issues such as cyber-attacks or system failure.

For hypervisor-level virtualisation, a hypervisor can access the virtual image of a server and

use this to create multiple instances. This includes replicating and deploying ready cloud

environments based on technologies such as “infrastructure-as-code” to run one or more

applications, allowing cloud users to access different instances of same physical resource in

real-time (Shahapure & Jayarekha, 2015). Unlike on-site infrastructure where an organisation

only has access to the available resources, resource replication works with resource clustering

to provide cloud users with the ability to abstract data and IT resources with various types of

hardware across multiple sites, thereby increasing productivity rates.

3.3.1.3 Failover System

Failover Systems help to ensure that cloud resources are reliable and available with the aid of

established clustering technologies for providing redundant instances of infrastructures

(Mohammed et al., 2017). A failover system is programmed to automatically switch over to a

redundant or standby cloud resource instance when there is a system failure and the currently

active resource is no longer available (Erl et al., 2013). A typical failover system is generally

utilised for mission-critical applications or ones requiring very high levels of availability. They

also work across different geographical regions in such a way that every location hosts one or

more redundant instances of the same resource (Mohammed et al., 2017). Furthermore, it is

dependent on resource replication for provisioning redundant resource instances with active

monitoring to detect errors and downtimes which will initiate switching over to a redundant

instance. Failover Systems ensure a continuous service delivery and a requirement for high-

94

end applications in the cloud such as a semantic annotation solution for web documents which

can be required to serve up to millions of client semantic annotation requests daily. Figure 3.7

illustrates a failover system in the cloud.

Figure 3. 7 – A Failover System for Cloud Computing Services (HowToExpert, 2019)

3.3.1.4 Geotagging

Geotagging refers to adding metadata about geographical location or zone to data. It can be

implemented as a “data receptacle in a trusted platform module (TPM)” containing geolocation

properties with the capability to tag data during the provisioning of a cloud resource (Erl et al.,

2013). This gives users the opportunity to have a specified location for the placement of a

workload and verification of the geographical location in which virtual hosts and workloads

run. A geotag can make provisions for extensions to trusted cloud resource pools, which allows

hardware pooling when it is being provided in the same geolocation (Samet et al. 2014). The

mechanism aids cloud resource provisioning as it defines and presents statistical data about

demand for resources across geographical zones.

With high-level annotation data processing, storage and management for holistic semantic

annotation, Geotagging will provide a basis for defining geographic restrictions for some

instances of annotation data in line with data confidentiality and privacy concerns. It is

commonly used in different application areas such as in web search engines to define

geographical tags for data such as images and videos. In addition, studies on other ways of

using its features have included the location of tweets for localisation on the web (Jonathan &

Mokbel, 2017).

95

3.3.2 Specialised Cloud Mechanisms

There are specialised cloud mechanisms which, unlike several other cloud computing

mechanisms inherited from traditional computing models or other computing paradigms such

as grid computing and utility computing, are native to cloud computing paradigm and were

standardised as technical solutions to specific IT challenges in cloud environments. These

include mechanisms for automated scaling, cloud usage monitoring, load balancing and cloud

workload scheduling which are analysed in this section.

3.3.2.1 Automated Scaling

Automated Scaling refers to a mechanism for automating the number of instances of a cloud

resource running at every point in time, providing a means for cloud resources to dynamically

scale in proportion to real time volume of demands (Novak et al., 2019). It can be implemented

via a listener which acts as a service agent responsible for monitoring and tracking

communication between users and cloud services being accessed in order to achieve dynamic

scalability. The determination of workloads is possible by the volume of server processing

demands initiated by user requests (Erl et al., 2013). Therefore, the major aim of using an

automated scaling mechanism is to enhance the automatic adjustment of cloud resources which

effectively minimises costs while still meeting service level agreements (Jiang et al. 2013).

Figure 3.8 illustrates an auto-scaling mechanism for a cloud resource defining a minimum size,

desired capacity and maximum size for scaling out as needed.

Figure 3. 8 – Automated Scaling Mechanism (Amazon AWS, 2018)

96

Furthermore, the mechanism eases burden on cloud administrators by means of the automation;

requiring no human intervention once implemented. With such mechanisms, software agents

can run automatically based on pre-defined metrics and thresholds. Thresholds can be set such

that when the observed performance metric exceeds or falls below a specified value, there is

an addition or subtraction of predefined number of resource instances accordingly. This type

of automation helps to enhance the merits of cloud dynamic scalability, providing the

opportunity to have additional resources for handling increased workloads and shutting down

redundant resource instances (Novak et al., 2019). Some of the performance metrics used when

cloud auto-scaling mechanisms are deployed include CPU and memory utilisation, disk

operation, bandwidth usage and so on. These metrics are based on the performance of resources

and they help to indicate system utilisation information (Papadopoulos et al., 2016). Figure 3.9

shows automated scaling parameters for containerised applications running on Kubernetes

orchestration platform. The containers in this case have been configured to a minimum size of

1, desired capacity of 1 and dynamic scalability of up to 4 instances each. The threshold for

initiating a new instance has been set to CPU utilisation of 80% of the allocated CPU usage for

each container.

Figure 3. 9 – Horizontal Pod Autoscaling in a Kubernetes Cluster

With such features, auto-scaling for individual holistic semantic annotation capabilities based

on the requirements defined in section 3.1 would be vital to processing fluctuating client

requests while also optimising computing resources usage and computational overhead.

3.3.2.2 Cloud Usage Monitoring

With the wide range of resources available in cloud computing across the different delivery

models, it is vital to implement adequate monitoring mechanisms for diverse purposes such as

computing resources utilisation, issue tracking, audit trail and analytics among others (Leach

et al, 2017). Some commonly monitored metrics in cloud computing include CPU, memory,

bandwidth, storage and database utilisation levels. Monitoring mechanisms ingest data from

97

several sources and process them accordingly. According to Arcitura Education (2018), three

types of agents function together in cloud computing for monitoring cloud resources usage;

monitoring, resource and polling agents. A monitoring agent is based on events and an

intermediary service agent, existing along the paths of communication in order to provide

transparent monitoring and analysis of the flow of data. The resource agent helps in the

collection of usage data through event-driven communications with certain specialised

resource software while a polling agent is a processing module known for the collection of

cloud service usage data by polling IT resources. Figure 3.10 presents an example of cloud

usage monitoring within a Kubernetes container orchestration cluster for CPU utilisation by

resources within a namespace using open source tools Prometheus and Grafana.

Figure 3. 10 – Cloud Usage Monitoring in Kubernetes using Prometheus & Grafana

The several benefits of cloud usage monitoring mechanisms apply to both cloud providers and

consumers. As described in the study of Shao et al. (2010), one of the important features of

cloud computing services is the ability of cloud providers to have monitoring mechanisms for

allocated resources. This helps in providing efficient services to cloud consumers by handling

future requests based on statistical monitoring data. In addition, cloud consumers benefit from

the analysis of resources requirements as well as being able to obtain value for the cost incurred

in cloud resources usage (Dhingra et al., 2012).

3.3.2.3 Load Balancing

Load Balancing is executed by agents known as load balancers which work on runtime and are

programmed with basic logic aimed at employing horizontal scaling. This is to ensure uniform

distribution of workload across multiple instances of a cloud resource, fostering increased

98

performance and capacity not obtainable with a single instance for same workload (Milani &

Navimipour, 2016). This is achieved by algorithms that divide roles with a variety of

techniques for their implementation across different cloud platforms. Some of the popularly

utilised algorithms include Round Robin, Weighted Round Robin, Carton, HoneyBee and

Throttled Load Balancing among others (Aslam & Shah, 2015). Furthermore, balancing

requests for resources allow load balancers prevent an instance from being a single point of

failure, subsequently, improving availability of applications and fostering an increased level of

responsiveness (Ghomi et al., 2017). Some other capabilities of load balancers include ability

to direct traffic which is based on transport layer protocols or based on data obtained from the

network; content switching which is the ability to reroute decisions depending on data from the

application layer and attributes like SSL, session ID and HTTP; and load balancing in global

servers which is the applicability of the aforementioned capabilities in achieving load balancing

within server farms across multiple geographic distributions (Erl et al., 2013). Figure 3.11

illustrates a load balancing scenario within a cloud environment.

Figure 3. 11 – Load Balancing in Cloud Computing

3.3.2.4 Cloud Workload Scheduling

Workload in the cloud refers to the amount of processing assigned to a cloud computing

resource over a given period (Agarwal & Jain, 2014). Workload scheduling is implemented by

software agents known as schedulers and refers to the process of automating and controlling

several processes or workflows within a cloud infrastructure with their allocation to available

resources as each process requires (Erl et al., 2013). With this capability, cloud platforms can

maximise available computing resources and ensure they are allocated for optimal

consumption. A typical task for workload schedulers is to provision new services such that they

99

are placed in hosts with relatively few active services running (Santhosh & Ravichandran,

2013). They also define policies which are set as default for assigning resources and runtime

to different processes.

The policies determine strategies to follow when scheduling services especially if an

administrative runtime input is not available. Runtime decisions made by the scheduler is based

on key resources such as throughput which can be measured based on the total number of

processes that complete their execution per unit time (Agarwal & Jain, 2014). Likewise, latency

is another of such resources which can be measured as the total turnaround time between

submission of a process and its completion. Furthermore, response time is essential for

measuring user experience; and can be measured as the amount of time between the submission

of a request and receipt of a response on the user’s device (Kakadia et al., 2013). Workload

Scheduling is a very crucial capability for holistic semantic annotation. With a distributed

system requiring a high level of automation, workload scheduling to manage resources for

application functionality is inevitable. The automation and controlling of processes would be a

much-needed functionality for web-scale holistic semantic annotation. For instance, the

consistency between web documents and annotation data would require a scheduling task

which monitors web documents against their corresponding annotation data at specified

intervals.

3.3.3 Cloud Management Mechanisms

Cloud management mechanisms can be described as focusing on management tasks required

within a cloud environment. Such tasks include the set-up, configuration, maintenance and

monitoring of IT systems. These include mechanisms for Billing Management Systems,

Resource Management Systems and SLA Management Systems.

3.3.3.1 Billing Management System

Billing Management Systems in cloud computing are designed to collect and process data

relating to cloud resources utilisation by cloud consumers for accounting and billing purposes.

They utilise monitoring mechanisms for gathering required usage runtime data (Erl et al.,

2013). The billing management system makes it possible to define various pricing policies,

including price models suited for different categories of users as well as facilities for limited

or unlimited usage. Most providers implement a system that bills cloud users on a pay-per-use

basis which monitors and acquires usage data at runtime and stores them in repositories (Sui et

100

al., 2018). The system uses these to generate billing and invoice reports, thereby pricing users

based on their usage and fostering an effective billing model.

The dynamism of such billing models is well suited for cloud computing in which billing is a

function of instantaneous cloud loads combined with pricing information acquired depending

on the service provider’s billing specifications. It also entails identifying cloud loads

throughout usage history, determining the load-based entities that correspond to the service

provider’s pricing details (Iwashita & Tanimoto, 2013). A modern billing model, for instance,

bills for resources such as memory and CPU utilisation, storage and network traffic, among

others. Some billing systems can dynamically adjust their billing rates in a given period

depending on infrastructure and load conditions. This enables providers to apply computing

resources and services more efficiently (Li et al., 2019).

3.3.3.2 SLA Management System

Service Level Agreements (SLAs) determine the type of services and resources a cloud

consumer can expect from a cloud service provider. These in turn determines costs for using

such services over a specified period between the consumer and the service provider. They

assist cloud service consumers determine service instances they want to be provided with, the

level of the service instances and the involved cost usually for a defined period (Singh et al.,

2017). SLA Management Systems are responsible for maintaining contractual agreements

between both parties with respect to service delivery (Zhao et al., 2013).

An SLA monitoring mechanism aids specific observation of runtime performance for cloud

services to ensure the fulfilment of what is required based on contractual QoS (Quality of

Service) as stated in SLAs. This is achieved through the collection of data by an SLA

monitoring agent and its subsequent processing by an SLA management system for aggregation

into reporting tools (Zhao et al., 2013). Based on reports analysis, cloud services performance

can be enhanced to meet up with the required levels (Erl et al., 2013). Some factors which

could lead to an SLA violation includes system or application malfunctioning and variations in

workload conditions (Mehmood & Umar, 2017). The work by Singh et al. (2017) which

focused on provisioning dedicated cloud services that can avoid SLA violations was based on

the opinion that cloud systems need self-management services; requiring mechanisms that can

manage resources automatically based on QoS requirements, thereby avoiding SLA violations

quite well.

101

3.3.3.3 Resource Management System

Resources management in the cloud provides a means of coordinating cloud resources based

on actions and events from both cloud consumers and providers. Some of the tasks that the

resource management system mechanism is able to automate and implement are management

of cloud resource templates used for creating pre-built instances; allocation and release of cloud

resources into available physical infrastructure; and coordination of resources based on

interactions with other mechanisms (Erl et al., 2013). Others include enforcing usage and

security policies for cloud service instances; and monitoring the operational status of resources.

With factors such as complexity, geographical span as well as unending and unpredictable

levels of demand for resources, cloud resource management requires complex decisions and

policies to achieve objectives towards resources optimisation (Liaqat et al., 2017).

3.3.4 Cloud Security Mechanisms

With security being a prominent component of any computing infrastructure, this section

analyses some cloud security mechanisms as they relate to the assessment of cloud computing

capabilities for holistic semantic annotation. These are attribute-based access control, digital

certification, digital signatures and identity & access management.

3.3.4.1 Attribute-Based Access Control

Attribute-Based Access Control (ABAC) in computing systems were designed to enhance

confidentiality of data by means of authentication and authorisation based on a set of pre-

defined attributes and policies (Joshi et al., 2017). These include consumer, resource and

environmental attributes as well as a set of policies specified in terms of the attributes.

Consumer in this context is a person or non-person entity, such as a service or device with the

ability to request resources or perform operations on resources. The entity being managed by

ABAC is known as a ‘resource’ while policies spell out rules and relationships for determining

the eligibility of a consumer to access a resource based on resource and environmental

attributes (Erl et al., 2013). Environmental attributes provide operational or situational context

for requests. Anytime a consumer requests for an operation or access, ABAC can investigate

the required specifications in the access control rules and match them with the current value of

consumer, resource and environmental attributes to determine eligibility (Dan et al., 2012). The

ability of ABAC to define different matches of attributes and policies within a distributed

system provides a fine-grained level of authorisation. This is perceived as a vital technology

102

for defining different levels of authorisation based on a wide range of consumer types with

varying attributes for holistic semantic annotation on the web.

3.3.4.2 Digital Certification

With cloud technologies introducing additional IT security challenges, the main goal of digital

certification is to build acceptance, trust and transparency for cloud users regarding data and

application security within a cloud computing environment (Manjusha & Ramachandran,

2015). A typical cloud digital certification process should include extensive auditing for

infrastructure and evaluation for services and contracts (Lins et al., 2016). These require

satisfying specifications such as legal, security, contractual and functional requirements to

ensure that consumers completely trust the reliability of a service before they adopt it.

Building such trust requires cloud providers to obtain digital certifications relating to security,

which among others includes public key and validation certificates. Besides, most users adopt

cloud technologies to access computing resources for processing and storing data. However,

geographical locations of consumers and the physical infrastructure hosting their data are vital

regarding legal and privacy compliance. Cloud users would experience lesser challenges

adopting cloud services provided CSPs (Cloud Service Providers) include certifications for

observing local and international compliance regulations and standards (Lins et al., 2016). Such

include GDPR, European Union Data Protection Directive, US Patriot Act. Certifications for

preserving digital information such that it can be accessed and processed without interruptions

go a long way in reassuring cloud users.

3.3.4.3 Digital Signature

Digital Signature is a mechanism which works with digital certification for protecting the

integrity of data through authentication and non-repudiation mechanisms (Sonali et al., 2015).

A digital signature makes provision for confirming the message authenticity by comparing it

with that created by its original sender. It achieves this by assigning a digital signature before

messages are transmitted, rendering the message invalid if it finds out that there has been any

unauthorised modification to the data. The mechanism makes use of hashing and asymmetrical

encryption to create a digital signature which is in the form of a message digest from the

encryption of a private key and appended to the original message. The message receiver verifies

that the signature is valid by using the corresponding public key for decrypting the digital

signature's encrypted hash, which produces the message digest. The function of the hashing

103

mechanism is to produce the message digest. The integrity of the message is intact when results

from the two different processes are identical (Erl et al., 2013).

3.3.4.4 Identity and Access Management

Identity and Access Management (IAM) mechanisms provide features and policies required

for controlling and tracking identities of users and access privileges for cloud resources,

environments and systems (Werner et al., 2017). Four basic features of IAM mechanisms

include authentication, authorisation, user management and credential management (Indu et

al., 2018). The general forms of authenticating user credentials include username and password

profile with support for other security features such as attribute services which helps with the

definition of attributes for controlling access. Authorisation on the other hand, defines

resources that specific users can access after being authenticated for a resource. The user

management feature manages user administration while credential management establishes and

manages identities using credential issuance. The main reason for utilising IAM mechanisms

is to administer authorisation, denial of service and overlapping trust boundary threats (Erl et

al., 2013).

Access to holistic semantic annotation requirements such as annotation data storage, sharing

and reuse can require identity and access management mechanisms depending on permission

rights on the data. While some annotation data might be available from public RDF graph

repositories such as the Linked Open Data Cloud, others might require authorisation and other

security mechanisms to access them. Such scenarios might be obtainable with confidential data

in sectors such as health, finance and military among others.

3.4 Cloud Computing Capability Model for Holistic Semantic
Annotation

Having identified the requirements for holistic semantic annotation (in section 3.2) and cloud

computing mechanisms required for their implementation earlier in this section, a mapping

between both is presented. These mappings are based on the technical processes for

implementing the holistic requirements and the technical functionalities of each of the cloud

computing mechanisms mapped against them. In each case, the technical specification for the

requirement is reviewed and examined against each of the cloud computing mechanisms in

relation to their technical functionalities. Hence, a mapping is established if the cloud

104

computing mechanism’s technical functionalities proffer a solution for the implementation of

a requirement’s technical specification. The mapping table is presented in Table 3.4.

Table 3. 4 - Mapping Cloud Computing Mechanisms with Holistic Semantic Annotation
Requirements

C
on

ce
pt

 E
xt

ra
ct

io
n

A
nn

ot
at

io
n

O
n-

th
e-

fly

A
nn

ot
at

io
n

D
at

a
A

ut
o-

U
pd

at
e

A
nn

ot
at

io
n

D
at

a
Sh

ar
in

g

A
nn

ot
at

io
n

D
at

a
R

eu
se

A
nn

ot
at

io
n

D
at

a
O

pt
im

is
at

io
n

A
nn

ot
at

io
n

D
at

a
St

or
ag

e

O
nt

ol
og

y
A

ut
o-

U
pd

at
e

A
nn

ot
at

io
n

D
at

a
C

o-
L

oc
at

io
n

O
nt

ol
og

y
M

ap
pi

ng

O
nt

ol
og

y
Po

pu
la

tio
n

O
nt

ol
og

y
Se

le
ct

io
n

Resource Cluster
Resource Replication
Failover System
Geotag
Automated Scaling Listener
Cloud Usage Monitor
Load Balancer
Cloud Workload Scheduler
Billing Management System
SLA Management System
Resource Management
System

Attribute-Based Access
Control

Digital Certification
Digital Signature
Identity and Access
Management

From Table 3.4, it can be observed that the requirements for holistic semantic annotation on

the web can be facilitated using a cloud architecture which has been designed for this purpose

and that considers the specific needs for each of the requirements. These mechanisms are

required to be implemented as a core suite for this objective alongside other necessary cloud

computing mechanisms for deploying applications in the cloud. Different cloud architectural

models emphasise cloud characteristics to varying degrees and deploy cloud design patterns

and mechanisms accordingly to meet the requirements of the cloud characteristics (Erl et al.,

2015). This implies that patterns and mechanisms can be implemented for specific solutions in

105

order to facilitate or enhance application functionality. Hence, from Table 3.4, a cloud

computing capability model for holistic semantic annotation is proposed, as presented in Figure

3.12.

Figure 3. 12 – Cloud Capability Model for Holistic Semantic Annotation

From Figure 3.12, it can be observed that cloud computing has a significant role to play in the

realisation of a truly semantic web through the facilitation of a holistic semantic annotation

solution; one in which documents and resources on the web can be provided with the required

rich-content semantic annotation for data dynamically and continuously, based on a cloud

hosted solution. The semantic annotation of web documents thereby, results in a context-aware

web, in which web documents and resources are processed as “things” rather than as “strings”.

While several applications run from a cloud environment, different application deployment

patterns in the cloud exist. Furthermore, differences between the patterns offer and leverage

106

cloud computing benefits to varying degrees. Furthermore, the scope and utilisation scale for

applications play a role in determining and selecting an application deployment pattern in the

cloud. With the web-scale nature for semantic annotation, it becomes more pertinent to

investigate different application deployment patterns in the cloud and adopt or adapt a suitable

option. The investigation might also suggest the design of a novel application deployment

pattern for holistic semantic annotation solution in the cloud. The model presented in Figure

3.12 aims to implement an application deployment pattern in the cloud that best meets the

requirements for holistic semantic annotation and that fully maximises cloud computing

characteristics and benefits.

3.5 Chapter Summary

In this chapter, a holistic perspective to the process of semantically annotating documents on

the web based on the varying challenges and disparity observed within existing semantic

annotation solutions was proposed. The holistic perspective is with the aim to address

challenges relating to automatic semantic annotation and it is based on the refinement and

formulation of a set of requirements from research and the addition of some novel ones too.

These requirements were further classified into three categories; pre-annotation, annotation and

maintenance phases. Furthermore, the nature of a holistic process requires a technological

paradigm to drive it and a case for the use of the cloud computing paradigm was presented.

The nature of cloud computing, which also defines its benefits to software applications was

fundamental to the choice. In the next chapter, different application deployment patterns in the

cloud would be investigated and analysed based on a set of determinant metrics. This results

into the development of a Cloud Computing Maturity Model for Holistic Semantic Annotation.

107

Chapter 4: Cloud Computing Maturity Model for Holistic
Semantic Annotation

Having identified and proposed a set of requirements for holistic semantic annotation and

assessed how to leverage cloud computing capabilities for a holistic process, this chapter

provides an investigation into different application deployment patterns in the cloud for holistic

semantic annotation. There are varying degrees to maximising cloud computing benefits and

these are dependent on a set of factors some of which are software architectural pattern (for

cloud software layer), the implementation and configuration of technological artefacts for

delivering cloud computing capabilities (for cloud platform layer), the physical cloud

infrastructure (for cloud infrastructure layer) as well a few others. These are critically evaluated

in terms of the various techniques for leveraging them and obtaining maximum benefits for the

deployed application.

Based on the critical analysis and evaluation, a cloud computing maturity model for holistic

semantic annotation is proposed. The model defines maturity levels for holistic semantic

annotation in the cloud from which a novel approach is developed for delivering web-scale

automated semantic annotation as a cloud service. To achieve this, the chapter investigates

software architectural patterns in section 4.1, virtualisation patterns in section 4.2,

containerisation and microservices in section 4.3, container orchestration technologies in

section 4.4 and application automation lifecycle in section 4.5 prior to developing the cloud

computing maturity model in sections 4.6 and 4.7.

4.1 Software Architectural Patterns

A Software Architecture Pattern can be defined as a system’s basic organisation found within

its components and their inter-relationship (Franchitti, 2019). A system’s architecture offers

description of key components within it, the way such components relate (structures), and their

interactions (Richards, 2015). Solms (2012) describes a component as an encapsulated feature

of a software system characterised by an interface, serving as a building block for the system’s

structure and its representation at the programming language level can be as a module, class,

object or as a collection of related functions. The software architectural level provides a

medium for analysing quality features such as reliability or usability, which would not be

possible to do at the code level (Franchitti, 2019). Software architecture helps stakeholders to

communicate; stakeholders are those involved in the making and use of a software system. It

also stands for design decisions made at the early stages of the development of a software (Hao

108

et al., 2017). Due to the architecture being the system’s highest level of decomposition, it is

utilised as a work-breakdown structure; thereby dictating units to plan, schedule and budget. It

can also be used to check whether the system will exhibit its required features even before its

development and deployment. Software architecture is an abstraction that can be transferred,

thereby promoting large scale reuse (Franchitti, 2019).

There are some commonly used architectural patterns and styles in software design. Some of

them include client-server, component-based, data-centric, event-driven, layered,

microservices, service-oriented, space-based and more (Richards, 2015). The Event-Driven

Architecture promotes, produces, detects and reacts to events. The Space-Based Architecture

is mostly used to achieve linear scalability of stateful, high-performance applications with the

tuple space paradigm. Its principles are quite similar with those of Representational State

Transfer (REST) and Service-Oriented Architecture (SOA) (Jacob & Mani, 2018). The

Component-Based Architecture works based on reuse to define, implement and compose

loosely coupled independent components into systems. With SOA, it works by providing

services to other components within an application, through a communication protocol over a

network; its basic principles do not depend on vendors, products and technologies. A service

is a distinct unit with individual functions accessible remotely, acted upon and updated

independently (Richards, 2015). The Client-Server Architecture uses a structure for the

partitioning of tasks or workloads between providers of a resource or service, called servers,

and service requesters, called clients (Mainetti et al., 2015).

The Microservices Software Architecture is seen in most quarters as a fork of SOA (Richards,

2015). However, with Microservices Architecture, sub-systems (hereafter referred to as

microservices) are focused on implementing a specific task and the protocols are lightweight

(Newman, 2015). This architecture makes it possible to decompose an application into distinct

smaller units thereby improving modularity and offering several benefits such as easy

comprehension of an application, easy development and testing, including resilience to

architectural erosion (Newman, 2015; Richardson, 2015). With Microservices Architecture,

there is parallelisation of development by allowing independent development, deployment and

scaling of services by small autonomous teams. In addition, Microservices Architecture enables

continuous delivery and deployment (Carneiro & Schmelmer, 2016). The following sections

would present a critical evaluation of the Microservices Architecture as well as comparison

with some other popular software architectural patterns.

109

4.1.1 Microservices Software Architecture

Due to advancements in technological innovations, various factors have arisen that required

the evolvement of software architectures in order to cope with solution requirements across

several industry sectors. Dynamic and interactive applications demand availability and

scalability from a software architecture point of view (Aderaldo et al., 2017). The

Microservices Software Architecture is an evolving one which provides such capabilities. The

concept of Microservices requires splitting applications into smaller services such that each

service can be tested, scaled, implemented, monitored and deployed independently. Such a

deconstruction allows all functionality components to be deployed or updated without affecting

other components of the application (Florio & Di Nitto, 2016; Newman, 2015). It presents an

approach for software service design, delivery and development that focuses software

application’s development processes on well-established modularisation concepts and

emphasises on technical boundaries (Thones, 2015). Each microservice is developed and

deployed independently, utilising a well-established network interface to provide access to its

interior data and logic. As a result, since every microservice is an independent unit of design,

deployment, development, scaling and versioning, software agility improves and increases

significantly (Daya et al., 2016). Figure 4.1 presents a simplistic illustration of a microservices

architecture.

Figure 4. 1 – A Simplistic Example of Microservices Software Architecture

110

Microservices Architecture was introduced to eliminate the demerits of the Monolithic/N-Tier

Architecture that is characterised by application logic within one deployable unit (Richardson,

2015). Monolithic/N-Tier systems are more suitable for small systems and likewise, possible

to achieve availability and scalability to reasonably high degrees through auto-scaling and load

balancing mechanisms. However, with an increasing growth of such systems, challenges such

as code complexities, increase in deployment time, scalability for loads that are data intensive

as well as the gradual appearance of a long-term commitment to a technology stack are bound

to occur (Balalaie et al., 2016). Hence, Microservices aid the provision of small services

characterised by easy comprehension, capable of independent deployment and scalability and

can run on different technology stacks (Bakshi, 2017). The focus of each microservice is the

completion of just one task thoroughly; and in most cases, the single task stands for a small

business capability. Furthermore, it is possible to implement the development of microservices

with a technology stack different from that of other microservices within an application

(Newman, 2015). This is known as polyglot programming which advocates for using the most

appropriate programming language for each microservice while polyglot persistence involves

the use of multiple dedicated and different storage systems for each microservice, as

appropriate (Wilder, 2012). Each microservice makes use of the most appropriate language

and/or storage mechanism based on its requirements (Gilbert, 2018). The communication

between microservices which is commonly referred to as inter-process communication is

through a neutral API language like REST. For very large, data-intensive applications,

messaging platforms such as Apache Kafka, RabbitMQ, ZeroMQ, etc are usually utilised based

on their capacity to process massive amounts of messages at once. Another feature of

Microservices Architecture is the Bounded Context which implies that microservices within an

application need not have any knowledge about the basic implementation or architecture of

other microservices (Zimmermann, 2017).

Furthermore, each microservice should constitute an independent software, with its own

separate code base; having personal delivery pipelines for builds and deployments. The

independence between microservices makes them loosely coupled which ensures frequent and

rapid deployments and it gives consumers the opportunity to obtain features and capabilities

they really require (Richardson, 2015; Zimmermann, 2017). While several research efforts

identify and discuss a range of key principles for Microservices Architecture with slightly

varying opinions, most of the principles are observed to be uniform across multiple sources.

111

Table 4.1 presents an investigation of Microservices Architecture key principles as identified

from different literature sources.

Table 4. 1 – Microservices Key Principles Across Literature

M
IC

R
O

SE
R

V
IC

E
S

K
E

Y
 P

R
IN

C
IP

L
E

S

N
ew

m
an

 (2
01

5)

D
ay

a
et

 a
l.

(2
01

6)

Ja
ra

m
ill

o
et

 a
l.

(2
01

6)

Ju
ng

 e
t a

l.
(2

01
6)

O
pe

n
G

ro
up

 (2
01

6)

M
ic

ro
so

ft
 (2

01
9)

A
m

az
on

 A
W

S
(2

01
9)

B
as

ka
ra

da
 e

t a
l.

(2
01

8)

Sh
ad

ija
 e

t a
l.

(2
01

7)

C
ar

ne
ll

(2
01

7)

1 Model Around Business Concepts
2 Adopt a Culture of Automation
3 Hide Internal Implementation

Details

4 Decentralise All the Things
(including Polyglot Programming)

5 Independently Deployable
6 Failure Isolation
7 High Observability
8 Loose Coupling and High Cohesion
9 Service Discoverability
10 Well-Defined and Published API

Interface

11 Offloading Cross-Cutting Concerns
to Gateway

From Table 4.1, it can be observed that while some of the key principles’ cuts across the

different literature sources, a few are not so commonly defined. However, with detailed

analysis of the more common ones, the others can be observed to be inclusive within them.

This suggests a high level of uniformity in terms of the required key principles for

Microservices Architecture. Furthermore, successful microservices architectural designs and

deployments can be traced to current software engineering models and present-day progress in

web application development approaches that promote the adoption of standards and best

practices, also known as DevOps (Garg & Garg, 2019).

4.1.2 Benefits of Microservices

From the overview of Microservices Software Architecture in section 4.1, it can be observed

that the architectural pattern provides several benefits, such as the following:

112

• First and foremost, it provides faster ‘time to market’ for applications and software

products by speeding up processing time as separate development teams can work on

different microservices of the same application in parallel (Taibi et al., 2017). In

addition, Dragoni et al. (2017) opines that most organisations today use microservices

to become more agile in responding to market changes. With the ability to leverage

both hypervisor-level and operating system-level virtualisation for applications and

deploy them on a cloud platform, supported by a software integration that is fully

automated, the speed of implementing new software features is greatly increased.

• Microservices Architecture is also beneficial since each microservice is its own unit of

scaling. This implies that at runtime, the different requirements for each microservice

dictates the level of scaling needed (Dragoni et al., 2017). An independent scaling

mechanism not only reduces the time required to scale in or out depending on the

application’s demand for resources, but it also ensures that each component only scales

for the needed resources, thereby optimising computing resources utilisation.

• Furthermore, each microservice is an independent unit of development, thus allowing

development teams to introduce new features without affecting the functionality of

other sub-systems. Moreover, the independence of microservices enable ease of

frequent deployments as compared to other traditional development practices

(Newman, 2015). A specific part of an application can be developed, modified or

deployed as many times as possible without affecting the normal functionality of the

overall system.

• Microservices require different development teams to design, develop and test their

own respective codes which are independent from others. This facilitates improved

composability, maintainability and reusability of code, thereby fostering the

development of quality software and application products.

• Within a Microservices Architecture, failure isolation can be easily implemented. The

architecture promotes techniques such as caching, health-checking and circuit breakers

(Richardson, 2015). These are important since they minimise the impact of a failing

sub-system which in turn leads to the overall improved availability of a given software

system.

• Lastly, Microservices Architecture facilitates the design and development of

applications according to business domains. Rather than writing a bulky code to satisfy

a certain technological need, they enable a business to create applications that are

113

focused on improving business functionalities within specified domains. The processes

of a microservice can thereby be adapted for use in multiple instances. A functionality

can be reused in multiple business processes or in differing business channels,

depending on needs and requirements (Tanasseri & Rai, 2017).

4.1.3 Drawbacks of Microservices

While the Microservices Software Architecture provides solutions to some of the challenges

faced with other software architectural patterns such as Monolithic/N-Tier Architectures, it

poses a few drawbacks of its own. It is common practice for trade-offs to exist with different

software architectures and these applies for Microservices Architectures as well. The major

drawbacks obtainable with the architectural pattern are as follows:

• With a lot of moving parts; in terms of the existence of multiple microservices, it leads

to an increase in operational complexity. Fowler (2015) supports this point, suggesting

that it is necessary to have a sound operations team for the management of the numerous

microservices characterised by regular deployment.

• It also leads to an increase in operating overhead, in most cases. With a Microservice

Architecture, there may be need for more resources for deployment just as there exists

numerous deployments (Wu, 2017). With Microservices, there is a frequent

introduction of multiple databases, message brokers, data caches, and closely related

services requiring maintenance, clustering and preservation (Daya et al., 2016).

Therefore, this often leads to the need for additional time and effort for the creation of

the infrastructure.

• While Microservices aid the provision of small autonomous services characterised by

easy comprehension, capable of independent deployment and scalability, they still form

part of a distributed system. According to Fowler (2015), the demerits of distributed

systems are that they are quite difficult to program, as it takes time to achieve remote

calls and the vulnerability to failure is constant.

Despite the drawbacks identified for Microservices Software Architecture, the benefits far

outweigh them, hence the reason why its adoption rate is very high currently across different

sectors in the society (Di Francesco et al., 2017). The drawbacks identified for Microservices

can be mitigated by adopting the concept of DevOps (Zhu et al., 2016; Balalaie et al., 2016).

DevOps is a term which stands for “Development and Operations” and it is based on the

combination of practices, tools and cultural changes to provide automation of systems and

114

increase the ability of an organisation to deliver services and applications at a higher velocity

(Zhu et al., 2016; Garg & Garg, 2019). It works through the evolution of a product and provides

improvements much quicker than traditional methods of software development.

4.1.4 Monolithic / N-Tier vs. Microservices

This section presents a comparison between Microservices Software Architecture and

Monolithic / N-Tier Architectures. The comparison is based on the innovativeness of

Microservices Architecture and the popularity of Monolithic / N-Tier Architectures.

Monolithic / N-Tier architectures are a sharp contrast to Microservices in that all the code’s

components in the former are designed to work in unison, where the failure of one component

impacts the entire application. The application’s components work together as a single cohesive

unit and they share the same memory space. A software product developed using such

architectures is self-contained and all its components are interdependent and interconnected to

each other (Villamizar et al., 2015). In addition, if the development team desires to implement

new changes or create new updates, they may need to rebuild and redeploy the entire

application from ground up (Escobar et al., 2016). The same case applies for scalability in that

a single component scaling out will result in the entire application scaling as well. It is also

difficult to add new technologies and using a new framework or platform may necessitate the

application’s code to be re-written. Figure 4.2 illustrates differences between monolithic and

microservices architectures.

Figure 4. 2 – Monolithic / N-Tier Architecture vs. Microservices Architecture

115

These two can be compared based on several factors. These include Code, Understandability,

Reusability, Deployment, Reliability, Adaptability, Scaling, Programming Language and

Testing. Table 4.2 presents a comparison between them based on these factors.

Table 4. 2 – Comparison of Monolithic / N-Tier and Microservices Software Architectures
Factor Monolithic / N-Tier Architecture Microservices Architecture

Code Since the application is developed as

a unit it comprises of a single code

base.

Since there are multiple small

services that make up a large

application, there are multiple code

bases with each microservice having

its own.

Understandability As the code base grows over time, it

becomes more difficult to understand

the entire process and make updates.

Maintenance also becomes difficult,

due to its size and complexity.

This is more understandable as it is

micro in nature. It becomes easy to

investigate each microservice to

obtain any information especially

while troubleshooting. Maintenance

is relatively easier as well.

Reusability Due to its size and complexity, it is

not easy to reuse.

Any part of the entire application can

be reused since they are independent

in nature.

Deployment Any update means redeployment of

the entire application. Continuous

deployment becomes difficult. It is

complex to deploy within restricted

maintenance windows and scheduled

downtimes.

It is easier to re-deploy each

microservice independently, with

minimal or zero downtime. This

promotes the possibility of

continuous deployment for complex

applications.

Reliability When there is an issue with a

module, it has the potential to bring

down the entire application.

Furthermore, troubleshooting the

entire application could be very

cumbersome and time-consuming.

The level of reliability is higher since

each unit is on its own. It is easier to

troubleshoot a microservice

independently without any impact on

the others within the application.

Adaptability The adoption of emerging

technologies is usually very difficult

Emerging technologies are easier to

adopt for specific microservices and

116

as transforming from a technology

stack to another would probably

imply re-developing the entire

application from scratch. This will be

quite expensive in both time and

cost.

with polyglot programming,

microservices can run based on

different technology stacks, giving

developers the opportunity to adopt

innovations quicker.

Testing Testing is easier here and can be

through end-to-end testing by

launching the application.

There is a level of complexity in the

process of testing this architecture

due to the multiple microservices

available.

Technology The entire development is typically

based on a specific technology stack.

Each microservice can be based on a

separate technology stack from the

others.

Scaling The entire application needs to be

scaled since it’s a single unit. While

horizontal scaling is simple when

multiple instances run behind a load

balancer, this implies a very high

computational overhead and cost.

The entire application does not need

to be scaled. Scaling can be

automated for each microservice

based on pre-defined thresholds,

hence optimising computational

overhead and cost.

4.1.5 SOA vs. Microservices

Service Oriented Architecture (SOA) is an architectural pattern where components of systems

receive services from other systems through a communication network. Communication is

usually for data transfer and co-ordination of connected services. It usually comprises of

service consumers and a service provider with the user’s interface to the SOA being the

consumer layer and the services provided by the SOA as the provider layer (Richards, 2015).

While Microservices and Software-Oriented Architectures are similar in their reliance on

independent services that have clear and well-defined boundaries, they also possess some

notable differences (Cerny et al., 2017). It is possible to deploy and operate services

independently in Microservices as opposed to SOA. In addition, SOA strongly relies on

products like enterprise service buses and other similar heavyweight middleware whereas

Microservices can utilise much lightweight technologies. As a result, application development

with Microservices Architecture is much simpler and devoid of complex architectural

117

requirements as is the case with SOA (Bogner et al., 2018). In SOA, a single point of failure

can negatively affect the entire system since the communication is made through an Enterprise

Service Bus (ESB), such that when one service is down, it leads to an overall communication

breakdown within the application (Xiao et al., 2016). This is opposed to microservices which

are built to be more fault tolerant. For instance, if there is a memory failure in one of the

services in a microservices architecture, only that service is affected, while other services

continue to run (Richards, 2015). Figure 4.3 illustrates the difference between the two software

architectures.

Figure 4. 3 - Service Oriented Architecture (SOA) vs. Microservices Architecture

118

Furthermore, from Figure 4.3 it can be observed that services in SOA share a single database.

However, each service should have an independent storage with microservices. Sharing storage

has risks of loss and hinders the independence required for individual services. In terms of

scope and size, microservices are smaller compared to SOA (Xiao et al., 2016). According to

Newman (2015), Microservices stand for how to do SOA right as the approach to its

development has come from real world usage, requiring the use of better comprehension of

systems and architecture in doing SOA well.

There are wide-ranging and extensive challenges attempted to be solved by SOA. This further

provides an opportunity to observe differences between both. The attempt by SOA is to make

services available to those who are interested in their use. However, the focus of microservices

is established and the goals are limited, which is acting as a part of a single distributed system

(Daya et al., 2016). Microservices are not about serving multiple systems at the same time. The

existence of microservices is frequently implicit unlike with SOA. Furthermore, the discovery

of microservices does not happen at runtime and there is no need for mediation as is the case

with SOA (Cerny et al., 2017). Table 4.3 details the comparison between SOA and

Microservices.

Table 4. 3 - Comparison of SOA and Microservices Software Architectures
Factor Service-Oriented Architecture Microservices Architecture

Component Sharing The development is based on the

concept of a “share-as-much-as-

possible” architectural style. This

helps to eliminate the issue of

business functionality duplication.

This has the tendency to tightly

couple components and increase the

overall risk associated with change.

It utilises the concept of Bounded

Context to hide implementation

details from other microservices by

coupling services and their

associated data together as a single

closed unit having minimal

dependencies.

Service

Orchestration

Service Orchestration is about

coordinating multiple services

through a centralised mediator. This

is managed via the messaging

middleware component of SOA by

calling multiple services based on a

request, giving SOA the tendency to

Microservices architecture utilises

Service Choreography because of

the absence of a centralised

middleware component in the

architecture topology. This makes

its development, testing,

119

be slower than Microservices. It

requires more time and effort for its

development, testing, deployment

and maintenance.

deployment and maintenance to be

faster.

Access to Remote

Services

There are no limitations to the

protocol for accessing remote

services. The availability of

different types of remote-access

protocols is one of the major

distinctive features of SOA.

There is tendency to depend on

REST as the main remote-access

protocol. However, other messaging

systems are available for simple

messaging such as Redis and more

robust, data-intensive messaging

using message solutions such as

Apache Kafka, ZeroMQ,

RabbitMQ, etc.

Application scope It is suitable for enterprise-wide

systems requiring integration with

several other software and web

services. It suits applications having

numerous shared components.

It is suitable for large-scale, web-

based systems which are open for

public consumption.

Heterogeneous

Interoperability

It has the capability for the

integration of multiple

heterogeneous systems and services.

It attempts to achieve the

simplification of the architectural

pattern and corresponding

implementation through the

reduction of the number of choices

to integrate services.

4.2 Virtualisation Patterns

Virtualisation was first used in mainframe computers in the 1960s, as a method that logically

divides resources of systems within a variety of application software (Naeem et al., 2016). The

concept is based on the abstraction of computing resources and involves creating multiple

instances of a resource from a physical one (Naeem et al., 2016; Carroll et al., 2012). Resources

that can be involved include an operating system, a storage device, a server, computer network

or an application. Several organisations utilise virtualisation to solidify their workloads as a

means of dividing and sharing computing resources into multiple environments for execution

120

by applying technologies such as time-sharing, quality of service and partitioning of computing

resources (Ranganathan, 2018). In software development and the deployment of virtual

infrastructure, the use of virtualisation is prevalent and non-disruptive. For software

development, virtualisation facilitates the delivery of application software to many clients on

demand. For virtual infrastructure, it provides the advantage of managing pooled resources

across an enterprise, allowing a higher level of responsiveness to dynamic organisational needs

and better leverage investment in infrastructure (Ranganathan, 2018; Jain & Choudhary, 2016).

Furthermore, virtualisation provides several advantages for the deployment of application

software in a cloud environment. Firstly, it provides dynamic scalability; the scaling up and

down of resources on-demand, which helps to minimise the infrastructure cost for an

organisation by optimising computing resources usage (Morabito, 2017). In addition, it ensures

faster provisioning and deployment of servers. With the agility and effectiveness for backing

up data, it improves disaster recovery that could occur within a system, ensuring a high level

of productivity for computing systems and resources. Several virtualisation types exist, these

include server virtualisation, client and desktop virtualisation, services and applications

virtualisation, network virtualisation and storage virtualisation (Naeem et al., 2016). For

application deployment in the cloud, hypervisor-level and operating-system-level virtualisation

are very relevant (Jain & Choudhary, 2016). These are analysed in sections 4.2.1 and 4.2.2

respectively.

4.2.1 Hypervisor-Level Virtualisation

Hypervisor-based Virtualisation is the most prominent virtualisation method in computing. It

is based on the use of a hypervisor which is a computer software that allows abstraction from

the hardware layer by intercepting the operating system call to the hardware (Eder, 2016). A

hypervisor performs the function of a middleware between the physical host and operating

system. Furthermore, it is commonly referred to as a Virtual Machine Monitor (VMM) because

it creates and runs virtual machines and can either be a software, hardware or firmware

(Gkortzis et al., 2016). A virtual platform is created on the computer (host machine), on top

which various guest operating systems are run and monitored. A computer which runs multiple

virtual machines on a hypervisor is referred to as a host machine and each virtual machine is

called a guest machine, i.e. the hardware that runs the hypervisor is referred to as the host, and

its operating system as the host operating system while all virtual machines running on it are

referred to as guests and their operating systems as guest operating systems (Eder, 2016;

121

Morabito, 2017). There are three essential characteristics of a hypervisor; the provision of an

environment identical to that of a real machine for programs; provision of appropriate

performance for programs running in virtualised environments and the control of all system

resources in the host machine or system (Ranganathan, 2018).

Furthermore, hypervisor-level virtualisation can be categorised into; Type 1 or Type 2 hosted

hypervisor. The Type 1, native or bare metal hypervisor architecture runs on the host machine

or hardware directly, controlling the hardware and managing the guest operating system

(virtual machine). In this case, the hypervisor interfaces directly with the memory, devices and

CPU on the host hardware, positioned between the hardware and the guest operating system.

The type 1 hypervisor is more efficient and recommended than the type 2 hypervisor (Gkortzis

et al., 2016). Some examples of the type 1 hypervisor architecture include; Xen and Oracle

VM. The Type 2 or hosted hypervisor architecture runs as a program on the host system and is

utilised for software virtualisation. It does not have same level of priority as the type 1

hypervisor and does not access the hardware directly since it runs as a program. A major

advantage is that it can be installed on various host systems without modifying the system

(Morabito, 2017). VMware workstation, VirtualBox and Parallels Desktop for Mac are some

examples of this type of architecture. Figure 4.4 illustrates the two different types of

hypervisor-based virtualisation.

Figure 4. 4 – Hypervisor-Level Virtualisation (Infoworld, 2019)

122

4.2.2 Operating System-Level Virtualisation

Virtualisation at the operating system level, also known as containerisation or container-based

virtualisation is a lightweight alternative to hypervisor-based virtualisation. In this case, there

are no hypervisors involved and host operating system level virtualisation is performed (Eder,

2016). The host OS (Operating System) kernel is shared by all virtualised instances since there

are no hypervisors involved. This largely reduces the runtime overhead and sharing the same

operating system also reduces the storage overhead (Taherizadeh & Stankovski, 2018). The

virtualisation layer is positioned between the operating system and application programs

running on it. Sets of applications or software written for an OS being virtualised is run by the

virtual machine (Jain & Choudhary, 2016). Each application runs in what is known as

‘Containers’. Containers provide a level of abstraction on top of host operating system kernel,

allowing each instance of a container to behave as an independent system with isolation. While

the OS provides a platform for the containers to be deployed, the containers are packaged with

an application as well as all binaries and libraries it requires to run and perform efficiently on

the OS. Application Software running in containers need to be compatible with the host

system’s kernel and CPU architecture (Eder, 2016). Some examples of operating-system level

virtualisation tools are Open VPN, Solaris and Docker. Figure 4.5 presents the architecture for

operating-system level virtualisation using containers.

Figure 4. 5 – Operating-System Level Virtualisation Architecture (Infoworld, 2019)

Hypervisor-based and Container-based Virtualisation have their various trade-offs; hence they

are used to achieve different goals. Based on these trade-offs, they both have individual

strengths and weaknesses. However, they also have some similarities; both are virtualisation

technologies and they involve some levels of abstraction from the hardware. In addition, both

types of virtualisation can be easily migrated to and they enable better use of resources, which

123

results in reduced computational overhead; saving costs and energy (Eder, 2016). Table 4.4

presents a detailed comparison of both types of virtualisation technologies.

Table 4. 4 – Comparison of Hypervisor-Level and OS-Level Virtualisation
Hypervisor-Level Virtualisation Operating-System Level Virtualisation

Emulates the underlying physical hardware and
creates new virtual hardware for each guest OS.
This implies that resources (RAM, CPU, Storage
space) of the physical hardware are shared with
the virtual hardware.

No emulation of physical hardware, it uses kernel
features which creates an environment that is
isolated for the processes. Hence, they utilise the
resources of the host system.

Duplication of functionalities exist due to the
sharing of physical hardware of the host system,
this reduces the performance of the system.

Duplication of functionalities do not exist, so it
provides improved performance rate.

It provides a high level of isolation (complete
isolation) of applications running on different
guest operating systems.

It provides a weak level of isolation because the
base operating system is shared among several
applications. Hence, it provides an awareness of
all processes (applications) running on the base
machine.

Increased runtime and storage overhead. Reduced runtime overhead due to the absence of
hypervisors. Storage overhead is also reduced
since applications share same operating system.

Various operating systems may share hardware
virtualised resources, and they can run on same
physical device

All instances (containers) share a single
operating system.

Even though deployments, provisioning,
backups etc. are facilitated, this type of
virtualisation consumes more resources when
compared to operating system level virtualisation

This is a lightweight alternative to the
hypervisor-based virtualisation. Deployments,
provisioning, backups etc. are relatively quicker.

It provides a higher level of flexible as different
operating systems can be deployed on a single
host.

Less flexibility as all containerised applications
run on the same operating system.

Some examples are Xen, Oracle VM, VMware
workstation, VirtualBox.

Some examples are Open VPN, Solaris, Docker,
OpenVZ.

Bearing in mind the nature of the web with respect to its scale and the comparison between

hypervisor-level and operating-system level virtualisation, leveraging both techniques provides

better results. Benefits of operating-system level virtualisation such as reduced runtime

overhead, reduced storage overhead, reduced computational costs and increased application

agility are all vital for holistic semantic annotation as well as the ability to run multiple virtual

https://en.wikipedia.org/wiki/Virtuozzo

124

images from the same physical server. These technologies become more important based on

the scale required for a holistic semantic annotation solution. A public-facing web application

on the Internet with the potential to attract hundreds of millions of traffic daily will require the

utmost benefits of overhead reduction in every area applicable. The next section, 4.3 focuses

on ‘Containerisation’ and how it greatly facilitates ‘Microservices’.

4.3 Containerisation and Microservices

As described in section 4.2, Containerisation refers to the encapsulation of a software

application in a container with all the binaries and libraries that it requires to run on any host

machine’s operating system, hence possessing the ability to be deployed on another operating

system running on a different host without the need for code changes or re-configuration (Kang

et al., 2016). Containerisation and Microservices have a seamless interaction. Containerisation

greatly enables running and deploying distributed microservices-based web applications

without launching the full virtual environment in which the application is deployed. The

containerisation of a microservices-based web application allows all the microservices to run

on the same host and to access the same operating system (Fazio et al., 2016; Kang et al., 2016).

In addition, it allows such web applications to be managed using their unique namespaces and

requiring relatively minimal computing resources in comparison with utilising only hypervisor-

level virtualisation. With the nature of microservices-based applications implying that each

microservice can be updated, developed, modified and equipped with new features without

affecting the other ones; the ability to deploy each within a container greatly facilitates their

independence while maintaining the communication between them, thereby enhancing the

“loosely-coupled and highly cohesive” key principle for microservices-based applications

(Newman 2015; Richards, 2015). Besides, containerisation does not present the overhead

problems that are common with other virtualisation management options (Guo et al., 2016). As

a result, it supports more applications all within the same infrastructure. Figure 4.6

demonstrates the use of containerisation technology to deploy different microservices of the

same application in a polyglot environment whereby the microservices run on varying

technology stacks.

125

Figure 4. 6 – Polyglot Programming for Microservices

Furthermore, it supports portability across different platforms and operating systems, as

containerised microservices can run on different platforms and even across multiple cloud

environments, maintaining an inter-process communication medium via a messaging channel

such as is available with Apache Kafka, ZeroMQ and RabbitMQ (Eder, 2016). In addition, the

containerisation of microservices-based applications also greatly increases application agility.

With the use of methodologies such as the twelve-factor app to build software as a service,

organisations can quickly respond to customer feedback and carry out rapid iterations for

deploying software updates and increasing their time-to-market (Pahl et al., 2017).

Containerisation has helped to enable agility within software development lifecycles. Often,

microservices-based web applications contain clusters of containerised service instances with

some of their key characteristics being the ability to withstand fault, availability, automatic

scalability based on user demand and ability to disperse geographically (Khan, 2017). This

advantage is evident in the rapid rise of the adoption of containerisation and microservices for

developing and deploying business-critical applications. The isolation of an application and the

components that it depends on to run effectively in a self-contained unit operating in the cloud

is a very significant benefit of containerisation and microservices which will greatly foster

126

holistic semantic annotation. The individual requirements of the holistic semantic annotation

can be developed into capabilities based on microservices architecture and deployed to run

from a cloud platform with the ability to meet user demands either independently or as a

collection of two or more; delivering application functionality in a holistic manner.

4.4 Container Orchestration Technology

With the emergence of containerisation technologies came the need to develop orchestration

platforms for managing the deployment of container clusters, hence the term “Container

Orchestration” (Paladi et al., 2018). Container Orchestration builds on the concept of

“Orchestration” in computing which defines the process of automation for configuring, co-

ordinating and managing a collection of computing systems and software harmoniously (Khan,

2017). Based on these, Container Orchestration refers to the process of automating the

deployment, scaling, monitoring and management of containerised applications within a cloud

computing environment, integrating and managing containers at enterprise level (Rodriguez &

Buyya, 2019). With Container Orchestration, several containers can be managed as an entity;

aiding their availability, networking and scaling while simplifying their overall management.

Some key functions of a container orchestration platform include cluster state management and

scheduling, high availability and fault tolerance, security, service discovery and monitoring

among others (Khan, 2017). Orchestration tools utilise containerised application’s

configuration file, usually in JSON or YAML format to execute processes for the application.

The configuration file is machine-readable and defines rules for the orchestration platform with

respect to the successful running of each containerised application. These includes rules for

establishing communication between containers, mounting storage volumes, locating container

images, storing container logs and lots more (Rodriguez & Buyya, 2019). Based on these rules,

containers are deployed onto host machines typically in groups that are replicated. On further

request to deploy a new container into the cluster, the container orchestration platform

schedules the deployment by an assessment of the most suitable host based on computing

resources needs of the container in relation to the available resources across the host machines

within the cluster (Hoque et al., 2017). Upon successful deployment, containers lifecycles are

managed based on the configuration data. This management usually includes a self-healing

mechanism for the containers if found to be corrupt or destroyed. The self-healing mechanism

could require an automatic re-start or re-scheduling (Paladi et al., 2018). Figure 4.7 presents a

simplified illustration of a container orchestration platform.

127

Figure 4. 7 – Simplistic View of Container Orchestration Cloud Environment (Avi Networks, 2019)

Furthermore, the design of container orchestration systems includes for scheduling workloads

of containerised applications varying from one to many types. There are varying features and

requirements for different applications. While some require a very high level of availability

and long-running jobs, others could require mission-critical batched jobs or latency-sensitive

jobs for instance (Rodriguez & Buyya, 2019). In addition, an application could require a

combination of two or more of these. According to Khan (2017), container orchestration

platforms make provision for an enterprise-level framework to integrate and manage containers

at scale. With the capability to leverage hypervisor-level virtualisation from the virtual host

layer and operating system-level virtualisation from the container layer, container orchestration

provides a high level of agility and flexibility for applications (Hoque et al., 2017). Some of

the commonly used container orchestration platforms include Kubernetes originally developed

by Google and now open source, Elastic Container Service by Amazon, Mesosphere by

Apache, Docker Swarm, Azure from Microsoft supporting Kubernetes, Rancher and Nomad

(Khan, 2017).

4.5 Continuous Integration Mechanism

A continuous integration mechanism refers to the ability of delivering an automated and

continuous stream of updates to a software based on a workflow. Such updates can be as often

as possible; including several times daily. Container Orchestration Engines can facilitate this

by an integration with third-party solutions for the purpose (Mun, 2017). This is believed to be

a required facility for holistic semantic annotation of web documents based on the dynamic

128

and ever-changing nature of web documents and the web environment itself. Updates for

software to ensure and maintain the required level of accuracy and consistency between

components of a holistic semantic annotation solution (such as ontologies, RDF graph

databases, web documents and annotation data) requires an automated means that will facilitate

the persistent nature of such updates.

The continuous integration workflow merges several sets of local changes to a shared code

repository, allowing multiple developers define their respective services that will be used

during application development. The workflow permits different developers to develop and

update their services concurrently. These are then merged to the source code repository. The

source code repository is a storage location for hosting the code developed when updating the

microservices. Predefined configuration files in the source code repository are used to create

new microservice images after updates have been pushed to the repository. For example, with

docker containers, the YAML “docker-compose.yml” configuration file instructs the tools

present within the orchestration environment to create a new image of the containerised

microservice, establish networks for communication and a storage location for storing log files

generated during orchestration (Stahl & Bosch, 2016). The new microservice image is then

tested to identify any errors.

Once the microservice images pass the test, the source codes are combined with their respective

dependencies to create a new instance. The new instance is a runnable file of the containerised

application being updated for re-deployment. Like the microservice image, the health of the

new instance must be tested. Testing identifies problems or errors with the application

functionality or with the integration process. These tests need to be automated, based on a test

plan developed by the development teams, and their main purpose is to validate the software’s

behaviour and functionality (Rathod & Surve, 2015). The time used for testing the health of an

instance depends on the its size, complexity and scope of the testing process. A healthy instance

is one whose code is bug-free, and the developed functions work as intended. In some cases,

the test results may show an unhealthy instance in which case, the new instance would be

discarded, and the previous instance is left to continue running while identified bugs and errors

in the new instance are fixed. Once they are fixed, the new instance is restarted, and it is

subjected to the same testing process. The need for testing a new instance until it is 100%

healthy is to ensure that reproducible errors do not reach the targeted end users. Most large-

scale projects run tests using several stages. These can start with a smoke test, which is designed

to perform sanity tests for end to end integration of the entire project and from a user’s

129

perspective (Sachdeva, 2016). Testing the health of new instances expose issues that

developers were not aware of when writing codes for building the software. It is necessary for

the workflow to provide quick feedbacks for developers to maintain the stream. Figure 4.8

depicts the persistent deployment mechanism for a continuous stream of updates for

containerised microservices applications.

Figure 4. 8 – Continuous Integration Mechanism for Holistic Semantic Annotation

4.6 Cloud Computing Maturity Levels for Holistic Semantic
Annotation

Having reviewed and analysed different factors that impact on application deployment in the

cloud with an evaluation of each, Table 4.5 presents a summary of the factors and their potential

impacts with respect to application deployment in the cloud.

Table 4. 5 – Determinant Factors for Holistic Semantic Annotation Deployment in the Cloud
Factor Impact

Software Architectural Pattern A higher level of decomposability of software architectural

components fosters software agility by being lightweight

and requiring lesser computing resources to meet user

demands. It also greatly enhances automatic scaling.

Virtualisation Pattern A software’s ability to leverage both hypervisor-level and

operating system-level virtualisation increases its

performance and efficiency

130

Containerisation and Microservices Containerisation greatly enables microservices by

encapsulating them with the required files and binaries

needed for them to be independently deployable

Container Orchestration It provides a platform deploying containerised application;

automating their deployment, scaling, monitoring and

management which subsequently enhances software agility.

Persistent Deployment Mechanism It provides an automated mechanism for deploying updates

and new features for software, reducing “time-to-market”

for software products. Its integration with microservices

architecture produces optimal results.

The different factors summarised in Table 4.5 form the basis for defining different patterns for

holistic semantic annotation deployment in the cloud. These are described in the following

sections.

4.6.1 Cloud-Based Monolithic Maturity Level

The Cloud-Based Monolithic Maturity Level depicts a scenario whereby an application is

hosted in a cloud computing environment either by migrating an existing application from a

non-cloud environment or by hosting a newly developed application directly in a cloud

environment. In either case, no changes to the application’s code or architecture is required and

such applications do not fully leverage any of the features illustrated in Table 4.5. Such

applications are developed using a monolithic or n-tier software architectural pattern which

hinders its ability to scale maximally as well as limits its capability based on the several

drawbacks identified for such architectural patterns in section 4.1.

Furthermore, while the application can be configured to leverage hypervisor-level

virtualisation such as by deploying it on a virtual host with automatic scaling capabilities, it

does not leverage operating system-level virtualisation which provides a higher level of

software agility and increases efficiency and productivity when combined with hypervisor-

level virtualisation. In addition, such applications are not containerised, hence does not require

a container orchestration platform. Furthermore, based on the nature of the monolithic or n-tier

software architectural pattern, automating the application lifecycle for continuous integration

and delivery is quite cumbersome as the entire application might need to be re-deployed after

minimal updates. Hence, the ability to implement code changes and deploy new software

updates would be greatly hampered. With this pattern, applications are mainly leveraging cloud

131

computing infrastructure layer with little or no leverage from both platform and software

layers. This is depicted with Figure 4.9.

Figure 4. 9 – Cloud-Based Monolithic Maturity Level for Holistic Semantic Annotation

4.6.2 Cloud-Based Microservices Maturity Level

This is like the Cloud-Based Monolithic Maturity Level. However, it is based on a

microservices software architecture which is the difference between both. While the software

architectural pattern has the potential to boost its performance, it still cannot fully leverage the

other factors described in Table 4.6. Microservices provide the greater level of software agility

based on the architectural pattern’s potential to leverage several other technologies that

monolithic architectures might not be able to leverage or might not leverage as much as

microservices facilitates. Hence, deploying a microservices-based application on a virtual host

directly without containerisation and orchestration capabilities does not take advantage of the

microservices architectural pattern. This is depicted with Figure 4.10.

Figure 4. 10 – Cloud-Based Microservices Maturity Level for Holistic Semantic Annotation

4.6.3 Cloud-Optimised Maturity Level

The Cloud-Optimised Maturity Level has similarities with the Cloud-Based Monolithic in that

they are both based on a monolithic or n-tier software architectural pattern. However, unlike

132

the Cloud-Based, the Cloud-Optimised is modified (or optimised as the name implies) to ensure

a higher level of leverage from the cloud computing environment. While the architectural

pattern remains unchanged, the application is ‘optimised’ by leveraging containerisation which

enables it to utilise both hypervisor-level and operating system-level virtualisation techniques.

This implies a minimal code change for such applications to implement the encapsulation of

the application in software containers; otherwise referred to as containerisation. Additionally,

due to the application containerisation, the containers that ensue can benefit from deployment

in an orchestration platform. As described in section 4.4, container orchestration fosters

automation for deploying, scaling, monitoring and managing applications. The orchestration

platform has the capability to provide several managed services for such applications like auto-

scaling, job scheduling, configuration management and lots more. This presents a significant

leap from the Cloud-Based Monolithic.

However, due to the limitations with the software architectural pattern, the operating system-

level virtualisation in this case requires the entire application to be automatically scaled when

demanded rather than scaling just a component of the entire application that requires it, thereby

leading to an increase in computational overhead by consuming more computing resources as

well as requiring more processing time, hence reducing software agility. Furthermore, the

software architectural pattern still impacts on the application automation lifecycle as is the case

with the Cloud-Based Monolithic by requiring a re-deployment or re-compiling of the entire

application even for minimal changes which impacts on the frequency at which software

updates can be implemented and can lead to extended downtimes when an update fails or

produces unexpected results. So, while both infrastructure and platform layers of cloud

computing are leveraged with this maturity level, the software architectural pattern would still

inhibit maximum application performance. Figure 4.11 depicts the factors leveraged by this

pattern.

133

Figure 4. 11 – Cloud-Optimised Maturity Level for Holistic Semantic Annotation

4.6.4 Cloud-Native Maturity Level

The Cloud-Native Maturity Level, as the name suggests, is based on developing applications

that are well-suited for maximising cloud computing benefits by deploying a development

process which natively ensures cloud computing characteristics and benefits are fully

maximised. According to Wilder (2012), the key to maximising cloud computing benefits for

software applications does not lie with the cloud infrastructure alone, but also with the

architecture of a software deployed in the cloud. This opinion is elaborated on by Leymann et

al. (2016) and Gilbert (2018). The basis of the opinion focuses on the development of

applications utilising a software architectural pattern that enables the decomposition of an

application into loosely-coupled but highly-cohesive modules such that each module is

independently deployable, scalable, updateable and lots more; which are features central to the

fundamental principles of microservices software architecture (as described in sections 4.1 and

4.2). With the microservices architecture, it implies that automatic scaling is at the level of each

microservice rather than scaling an entire application due to the auto-scaling needs of a single

module, thereby making judicious use of computing resources and limiting the computational

overhead involved. Leymann et al. (2016) provides a detailed definition of cloud native where

the term implies using containerised open-source software stacks such that the development

process assigns every part of an application its own container to ensure each part is dynamically

orchestrated. Figure 4.12 illustrates this maturity level.

So, with containerised microservices, leveraging both hypervisor-level and operating system-

level virtualisations with an orchestration platform to deploy them, the Cloud-Native provides

134

a significant leap from the Cloud-Optimised. However, while it fosters such potential benefits

for holistic semantic annotation solution in the cloud, the automation of application lifecycle

by means of a continuous integration and delivery is very vital for a solution requiring the level

of dynamism, agility and efficiency as semantic annotation for web documents. While the

Cloud-Native has the potential to deliver very significantly, it will still present bottlenecks

without a continuous integration mechanism. Based on this, an enhanced version, referred to

as Cloud-Driven is proposed in the next section.

Figure 4. 12 – Cloud-Native Maturity Level for Holistic Semantic Annotation

4.6.5 Enhanced Cloud-Native: Cloud-Driven Maturity Level

The proposed “Enhanced Cloud-Native Maturity Level”, defined as “Cloud-Driven” provides

all the “Cloud-Native” features as well as a “Continuous Integration Mechanism” as described

in section 4.5. It is believed that a holistic semantic annotation solution developed and deployed

based on this model would be equipped with the necessary capabilities to deliver automated

semantic annotation to web documents online, real time, continuously and holistically by

ensuring that updates across different microservices are agile in nature, seamlessly integrated

and dynamically synthesised with the entire system.

Generically, some of the automated processes would include the initiation of code builds,

testing procedures, and deployment. Specifically, required software updates due to evolving

ontologies (by means of ontology updates, upgrades, population, etc.), optimisation of

annotation data, web documents evolution and several other mechanisms within the holistic

135

sphere of a semantic annotation solution can be quickly implemented without impacting on the

overall functionality of the solution, hence, providing a complete lifecycle of semantic

annotation process workflow and management for web documents at large. The integration of

a continuous integration mechanism to foster a transformation from “Cloud-Native” to “Cloud-

Driven” is believed to have the potential for delivering application solution that is entirely

driven by cloud computing with a full automation lifecycle; one that is envisioned as the

required development methodology for web-scale semantic annotation effectively and

efficiently. This implies that with “Cloud-Driven”, the following features are implemented:

• Development of modularised functionalities for the holistic semantic annotation

requirements using microservices architecture.

• Encapsulation of the modularised “holistic semantic annotation” functionalities in

software containers (otherwise referred to as Containerisation) for operating system-

level virtualisation using container software such as Dockers.

• Configuration of the containerised functionalities for both hypervisor-level and

operating system-level virtualisation.

• Orchestration for automating deployment, scaling, monitoring and management of the

containerised functionalities using container orchestration software such as Kubernetes,

Docker Swarm or Amazon Elastic Container Service, among others.

• Application Automation Lifecycle for continuous integration and delivery using a

continuous integration mechanism.

As described in section 4.5, the automation is not only applicable to software but to hardware

as well. This is through automation for rapidly provisioning cloud infrastructure using

document templates containing machine-readable configuration data rather than physically

configuring hardware or using graphical configuration tools which require human intervention

and subsequently, a level of potential errors. The template files can be developed using data

portable formats such as YAML or JSON. Figure 4.13 illustrates the enhanced cloud-native;

the cloud-driven maturity level for holistic semantic annotation.

136

Figure 4. 13 – Cloud-Driven Maturity Level for Holistic Semantic Annotation

4.7 The Proposed Maturity Model

The different deployment patterns for holistic semantic annotation presented in section 4.6

define various deployment approaches in which a set or requirements can be evaluated against

each pattern to select an appropriate approach; which forms the basis for developing and

selecting “cloud-driven” as the appropriate choice for holistic semantic annotation. Due to a

perceived nature that will need evaluating requirements against the different patterns to guide

a selection, they are integrated into a single unit for this purpose. This is in line with the concept

of models in Design Science Research, in which they are described as a set of propositions in

a problem/solution scenario; defining how things are or should be (March & Smith, 1995). The

different patterns provide solutions for application deployment in the cloud based on varying

requirements. Hence, Figure 4.14 presents a Cloud Computing Maturity Model for Holistic

Semantic Annotation.

137

Figure 4. 14 – Cloud Computing Maturity Model for Holistic Semantic Annotation

138

From the model presented in Figure 4.14, this research defines the name; “CloudSea” which

stands for Cloud-Driven Semantic Annotation based on the “cloud-driven” pattern of the

model. The technique for application deployment described and analysed by the pattern will

be utilised for the design and development of the holistic, automated semantic annotation

solution: CloudSea.

4.8 Software Architectural Layers for CloudSea

From the review and analysis of Microservices Software Architecture in section 4.1 of this

chapter and its comparison with SOA and monolithic architectures in section 4.2, it is adopted

for use in this research. From the comparisons in section 4.2, it can be observed that it provides

better software agility and performance as compared to the others. It also has enormous

economic and technical benefits due to reduced time to market and the ease of making and

deploying software updates. Furthermore, and very importantly; the key to maximising cloud

computing benefits does not lie with the cloud infrastructure alone, but also with the

architecture of a software deployed in the cloud (Gilbert 2018; Wilder 2012). The

Microservices Software Architecture is natively for the cloud as its fundamental principles help

maximise cloud computing resources and hence, benefits. Figure 4.15 presents the CloudSea

Microservices Software Architectural Layers with a description of the SaaS layer. The PaaS

layer has been covered in sections 4.3 to 4.5 of this chapter while the IaaS layer is based on

public cloud infrastructures.

139

Figure 4. 15 – Software Architectural Layers for CloudSea

4.8.1 The User Interface Layer

The User Interface Layer is a critical element of any software architecture as it allows for

effective communication between the physical components and the users of the system. It

provides interfaces via personal computers, laptops, mobile devices, kiosks and lots more;

condensing and formatting data for the application users and helping with the acquisition and

validation of data from them (Richards, 2015). It provides access to the various functionalities

implemented within an application. For web-based applications, this layer usually comprises

of a web client software known as web browsers to access applications running on the web.

The web browsers capture data from the users and transfer same to the application as a request.

The response to the request is also presented to the user via the same medium. Some popularly

140

used technologies for developing the user interface layer includes HTML (HyperText Markup

Language), CSS (Cascading Style Sheets) and JavaScript. With Microservices, this layer is

ideally the only public-facing component of the entire application; presented as an interface for

interacting with the several microservices within the application. With CloudSea, this layer

would be web-based, hence, accessible via web browsers for access to different application

functionalities such as annotation on-the-fly, annotation data generation for web documents

semantic annotation and lots more.

4.8.2 The API Gateway Layer

This layer helps with the implementation of one entry point for all users via the User Interface

Layer. Different types of requests received via the User Interface Layer are channelled through

the API Gateway Layer to the different microservices that will process each of the requests. A

common technique for the channelisation is known as ‘Service Discovery’. This involves the

use of a Service Registry to keep the identities of the different microservices and their locations

within the system, in terms of their IP addresses in a networked environment. So, once a request

or series of requests are received, the address of the microservice to process each one is looked

up and the requests are channelled accordingly (Zhao et al., 2018). Furthermore, the API

Gateway is usually utilised for the implementation of security mechanisms such as

authentication and authorisation for users (Joshi et al., 2017). It helps with the insulation of

clients from the details on the decomposition of the application into microservices and brings

about a reduction in the number of requests or the number of cycles to search through for a

request (Newman, 2015). That is, users can obtain data from several microservices in one cycle,

thereby enhancing less overhead and the improvement of user experience. The hosting of all

the API services characterised by clear business functionality is through the API Gateway

(Zhao et al., 2018). Figure 4.16 further illustrates the role of an API Gateway Layer in a

microservices architecture.

Figure 4. 16 – API Gateway Implementation for Microservices

141

4.8.3 The Application Logic Layer

This layer is also referred to as the Business Logic Layer and is made up of the components

representing the core of the application and helps with the implementation of business rules. It

is the major aspect of an enterprise application, presenting various rules and activities of a

given business domain that defines the relationship and properties of various business data. It

forms the basis of tackling various problems that the entire application aims to solve, consisting

of microservices that have limited scopes, concentrate on specific tasks and are independent.

Some other types of components on this layer can be classes, functions, modules and so on

(Autili et al., 2019). For CloudSea, this layer comprises of the microservices that make up the

entire application. Requests received via the API Gateway Layer are directed to the

microservices based on the user request type. In this regard, the microservices receive pieces

of information from the API Gateway and manipulate the information as required. After

manipulation, the results are relayed back to the User Interface Layer via the API Gateway for

end users. While some web application frameworks merge this layer with the User Interface

Layer, enterprise and web-scale solutions often implement them separately (Hnatkowska &

Kasprzyk, 2009). So, API Gateways act as an intermediary between the Application Logic

Layer and the User Interface Layer. Several technologies exist for implementing this layer;

from open source standards to proprietary solutions. The PHP (Hypertext PreProcessor)

programming language is intended for use primarily for this layer in CloudSea, alongside any

other languages or standards which might be more appropriate for a specific microservice. PHP

is a very common scripting language for web applications. In addition, it forms the bedrock of

several web application frameworks popularly used in IT today for web development.

Examples of such frameworks include CodeIgniter, Zend, Yii and Laravel.

4.8.4 The Data Access Layer

The Data Access Layer is critical for any application since data processing and retrieval are

common tasks within an application. Within a Microservices Architecture, the layer consists

of microservices data abstraction for performing various functions to ensure persistence of

data; focusing on system information structures such as databases, connections, SQL queries,

triggers and result sets (Ahmed & Kurnaz, 2019). It offers simplified access to stored data in

various forms of persistent storage. The Data Access Layer allows for the creation of user

modules with a high level of abstraction such that connectivity to multiple databases either at

once or at different stages is possible without any need for application code change in the

142

Application Logic layer. Functions such as creating, recording, updating and deleting (CRUD)

data in the database are typical events within the layer (Taibi et al., 2018). This approach

facilitates making queries into the database by abstracting various database calls. This layer

also offers a central point for various queries directed to multiple databases making porting

various applications to different database systems practical. In other words, the Data Access

Layer allows an application to interact with various databases within the system. Therefore,

the best designs for the Data Access Layer should consist of appropriate data access

technologies that match the type of data to be handled. Similarly, appropriate Data Access

Layers allow for easier configuration and maintenance of applications by centralising data

access functionalities (Taibi et al., 2018). PDO (PHP Data Objects) is a common PHP library

that provides an abstraction layer for PHP, enabling connectivity to different types of databases

using the scripting language. Figure 4.17 provides an illustration of the Data Access Layer with

PHP programming language and access to multiple database types via a data access layer.

Figure 4. 17 – Data Access Layer with Connectivity to Multiple Databases

4.8.5 The Persistence Layer

This is the database layer responsible for the storage of all application data. It is very pivotal

to the operations of an application as applications are driven by data. The abstraction defined

in the Data Access Layer provides access to data for the Application Logic Layer which in turn

manipulates data for several types of transactions (Ahmed & Kurnaz, 2019). Examples of

databases commonly used for application development today include MySQL, SQL Server,

143

Oracle, PostgreSQL and lots more. With a microservices architecture, an application can

consists of several types of databases, with individual microservices implementing the most

appropriate database server for its internal operations. In addition, access to a database is only

by the microservice owning it, with others being able to utilise such data via a common

messaging channel for the entire application (Richardson, 2015). With CloudSea, the polyglot

persistence is inevitable as several types of databases would be required across multiple

microservices. Some of these include MySQL and RDF Graph databases. Table 4.6 presents a

breakdown of the components for each of the CloudSea software architectural layers discussed

above.

Table 4. 6 – Components for CloudSea Software Architectural Layers
Architectural Layer Components

User Interface End Users, Web Client and Front-End Interface

API Gateway Service Registry and Messaging Stream

Application Logic CloudSea Microservices and their components

Data Access PHP Programming

Persistent (Data Storage) MySQL and JSON

4.9 Chapter Summary

In this chapter, a comprehensive analysis towards the development of the “Cloud-Driven”

concept for holistic semantic annotation was presented with an in-depth analytical approach

that reviewed and critically evaluated all the determinant factors towards developing the

concept. While the “Cloud-Driven” concept for semantic annotation is novel, the overall

approach towards defining different deployment patterns for holistic semantic annotation in the

cloud led to the development of a Cloud Computing Maturity Model which is beneficial

specifically in this context as well as other related domains in information systems.

Furthermore, the holistic perspective to semantic annotation from Chapter 3 and the ‘cloud-

driven’ maturity level from this chapter will constitute the basis for developing CloudSea; a

microservices-based architecture for automated semantic annotation as a cloud service. The

design rationale for the architecture will be based on the theory of “Design Patterns” from

software engineering. These will be covered in the following chapter.

144

Chapter 5: CloudSea – Holistic, Cloud-driven and
Microservices-based Semantic Annotation Architecture

In this chapter, a holistic, cloud-driven and microservices-based architecture for automated

semantic annotation of web documents is proposed. The concept of the architecture draws from

the research efforts described in Chapter 3 (Requirements and Cloud Computing Capability

Model for Holistic Semantic Annotation) and Chapter 4 (Cloud-Driven Pattern of Cloud

Computing Maturity Model). Furthermore, its conceptual design and presentation of technical

solutions adopts the theory of architectural designs based on “Design Patterns and Pattern

Language” from Software Engineering. Section 5.1 describes the design rationale for

CloudSea. Section 5.2 focuses on the engineering methodology for CloudSea Design Patterns.

Section 5.3 describes the CloudSea Pattern Language. In section 5.4, the CloudSea Design

Patterns are described in detail while Section 5.5 presents the proposed architecture. The

chapter concludes with a summary in Section 5.6.

5.1 Design Rationale for CloudSea

The design of CloudSea architecture is based on the concept of “Design Patterns”. Design

Patterns are well-documented and structured data for providing solutions to recurring problems

within a specific domain (Erl et al., 2015). According to Edwin (2014), Design Patterns stand

for solutions to problems arising from the development of software within a context;

encapsulating the static and dynamic structure including the collective efforts in software

designs thereby ensuring the facilitation of the reuse of successful software architectures and

designs. The concept of design patterns was initially created for city planning as well as

construction design. Christopher Alexander, an architect, was dissatisfied with contemporary

architectural projects and believed that a rigid architectural practice had resulted in the

predominance of impracticable resolutions (Alexander, 1977). His motivation was drawn from

primeval cultures that had developed towns and building designs for many years and realised

that there existed recurrent structures or "patterns." Accordingly, with his associates, he printed

253 patterns for building architecture and urban planning for reuse in new projects (Goodyear

& Retalis, 2010). Over the years, the concept has become multi-disciplinary and adopted by

other sectors including computing, for software design purposes. Thus, in computing, Design

Patterns are commonly arising patterns in design which are recurrent and generalist enough to

be written down and called software design constructs which all may usually identify and

apply.

145

A pattern entails defined fields, which include Forces, Context, Problem and Solution. Patterns

are utilised in an architectural ‘Context’ and take into consideration a repetitive design

‘Problem’ in such contexts. The pattern takes focus on the ‘Forces’ which the designer

encounters prior to explaining a ‘Solution’ – a recommended method to the ‘Context’ that

solves the pressures amongst ‘Forces’. According to his book, “A Place to Wait Pattern" the

‘Context’ defines a situation in which people wait for something like a medic's surgical

procedure (Alexander, 1977). The concept of ‘Design Patterns’ for physical architectural

design has become multi-disciplinary and utilised in ‘Design Patterns’ for software

architectural design (Harrer et al., 2017). In Cloud Computing, Design Patterns have been

greatly adopted to define an approach for providing solutions or addressing issues relating to

the development and deployment of applications in the cloud. They cover potential problems

that can be encountered when designing, building and managing cloud applications (Fehling et

al., 2014). This is evident from the catalogues of cloud computing design patterns from several

leading cloud service providers such as Amazon AWS, Google, Microsoft and IBM which are

well proven to be very beneficial for their intended uses. Figure 5.1 presents Amazon AWS

cloud computing design patterns which are utilised for designing and deploying varying

solutions on the Amazon AWS cloud computing platform.

146

Figure 5. 1 - Amazon AWS Cloud Design Patterns

Furthermore, the use of design patterns provides a means of ensuring best practices in the

design of application systems. Some examples are design patterns for typical application

architecture, information systems (Hukerikar & Engelmann, 2017), security systems (Delessy

et al., 2007), software development (Pautasso et al., 2016) and Internet of Things (Chandra,

2016). One of the features of design patterns is abstractness and independency of the

programming language involved or runtime infrastructure to come up with the ageless

knowledge that is applicable in various IT environments (Fehling et al. 2014). Table 5.1

147

presents a survey of several other research efforts in IT that is based on the utilisation of

‘Design Patterns’ within several other domains.

Table 5. 1 - Survey of the use of Design Patterns across different IT domains
Publication(s) Domain

Braga et al. (1999), Meszaros & Brown (1997), Manolescu (1997),
Hamza & Fayad (2002), Mulyar & van der Aalst (2005), Schneider &
Matthes (2015), Harrer et al. (2017), Haimes et al. (2016), Hukerikar
& Engelmann (2017)

Information Systems

Lehtonen & Parssinen (2001), Fernandez & Pan (2001), Kodituwakku
et al. (2001), Fernandez & Sorgente (2005), Delessy et al. (2007)

Security Systems

Richardson (2001), Rossi et al. (1996), Re et al. (2001), Avgeriou et
al. (2004), Paris et al. (2003)

Web Applications

Mahemoff & Johnston (1999), Beedle et al. (1999), Kendall et al.
(1997), Silva et al. (1996), E Silva et al. (2005), Zhao et al. (2008),
Schummer (2003), Evitts & Hinchcliffe (2000), Eloranta et al. (2010),
Hentrich & Zdun (2009), Weiss (2003), Molin & Ohlsson (1996),
Pyarali et al. (2000), Pautasso et al. (2016)

Software Development

Ben-Yehuda (1997), Guerra et al. (2009) Framework Development

Tidwell (1997), Mahemoff & Johnston (1998) Human Computer
Interface Design

Stepney (2012) Computer Simulations

Fehling et al. (2012) Cloud Applications

Keller & Coldewey (1996) Database Management

Byun et al (2002), Amoretti & Zanichelli (2018), Lascano (2017) Systems Networking

Chandra (2016) Internet of Things

The use of design patterns makes it possible to leverage characteristics of flexible design and

design reuse embedded in models that are established based on collaboration for providing

adaptability and reuse in the implementation (VanHilst & Notkin 1996). They also provide a

common vocabulary for professionals across multiple sub-domains in information technology

to enhance the documentation of software designs (Erl et al., 2015). Furthermore, they bring

together static and dynamic structures and over time, are made up of collaborations of

successful solutions to problems coming from when building applications in a domain

(Brezillon, 2003). Section 5.2 presents the engineering process for holistic semantic annotation

design patterns in this research, based on the work of Fehling (2015).

148

5.2 Design Patterns Engineering for CloudSea

Design Patterns Engineering defines the process of identifying, authoring and applying design

patterns within a specified domain. Design Patterns identified within a domain evolve over

time. Hence, the overall engineering process repeats indefinitely to identify new patterns and

refine existing ones constantly. Each of the phases; Pattern Identification, Pattern Authoring

and Pattern Application are also iterative. This is because decisions and assumptions made in

the first iteration of a stage should be accordingly reviewed and adjusted. All phases of the

pattern engineering process are addressed by a user who conducts the steps each phase

prescribes. Every user role may be met by a person or a group of individuals (Fehling et al.,

2015). Figure 5.2 defines the different user roles for each of the engineering phases.

Figure 5. 2 - User Roles for Design Patterns Engineering (Fehling et al., 2015)

5.2.1 Pattern Identification Phase

Fehling et al. (2015) described the pattern identification phase as a phase for the structuring

and collection of information applicable to a domain where the patterns will be identified.

Specifically, in this phase, the aim is to come up with a well-structured domain that will identify

the patterns. The definition of the terminology and graphical elements utilised in describing

patterns are also established for use in every pattern and with the documentation of the solution

in a uniform manner. The steps become necessities in the event of the coordination of large

teams of pattern researchers. The process of identifying patterns in the identification phase is

handled by a domain expert. The responsibility of the domain expert here is to define the

domain and basic characteristic features. There are also negotiations on the collection of

information on solutions at hand; provider documentation, detailed structure, and collection

149

format. Specifically, this is important in situations where several persons are responsible for

the collection of information in this phase to achieve homogeneous outputs. With this research,

a list of requirements for holistic semantic annotation were identified in Chapter 3. The need

to fulfil the requirements necessitated defining the role of each one of them within the holistic

semantic annotation perspective. The role definition also implied specifying capabilities for

each one of them, as can be seen in Chapter 3. Hence, the pattern identification phase in this

context was fulfilled in Chapter 3 by the identification of necessary requirements for holistic

semantic annotation. A summary of the identified design patterns is presented in Table 5.2.

Table 5. 2 - Identified Design Patterns for Holistic Semantic Annotation
Design Pattern Summary Description

Concept Extraction Provides a mechanism for extracting instances of concepts such as
people, places, organisations, etc. from textual documents to populate a
RDF graph database within the repository.

Ontology Population Adding newer concepts and relations to ontologies from textual
documents, defining a larger scope or completeness for the ontology.

Ontology Selection Provides a procedure for selecting the appropriate ontologies from the
repository for an annotation data generation process requiring mapping
of two or more ontologies

Ontology Mapping Executes a mapping process (using ASMOV algorithm) for selected
ontologies towards annotation data generation

Annotation Data Storage Provides a decoupled storage mechanism for generated annotation
data, storing the annotation data separately from the web document

Annotation On-the-fly Provides online, real time annotation for web documents by querying
and fetching corresponding annotation data from the RDF graph
database.

Annotation Data Re-Use Provides a direct mapping between web document and annotation data
such that they can always be paired upon request anytime

Annotation Data Sharing Provides authorised access to annotation data for multiple web
documents with same content and within the same domain

Annotation Data Auto-
Update

Updating annotation data based on ontology or ontology language
evolution to ensure consistency between web documents and their
annotation data.

Ontology Auto-Update Providing updates to ontologies based on updates to ontology schema

Annotation Data
Optimisation

Optimises stored annotation data based on processes such as schematic
evolution of ontology or ontology language to ensure accuracy of
annotation data

150

Annotation Data Co-
Location

Storing or migrating annotation data to locations with close proximity
to the corresponding web documents to optimise computing resources.

5.2.2 Pattern Authoring Phase

During this phase, patterns are established according to the information obtained based on the

identification of similar existing solutions (Fehling et al. 2015). A pattern author is required in

this phase for the analysis of the information collected to identify recurring patterns. The

pattern author then drafts and revises these in several iterations. Pattern documents are

produced by following a specific structure as well as referencing other pattern documents with

the aid of sound interrelations. The study of Meszaros & Brown (1997) gives a description for

the best way to achieve pattern authoring, specifically on how to write pattern documents. The

best practices described in their study are captured as patterns, being in the form of a pattern

language. Their study also discussed the subject pattern document structure which possesses

the capability to influence pattern language metamodel. In addition, their focus was on how to

name patterns as well as how to name the references that come with each pattern in such a way

that the terms used are understandable.

The terms used are also such that they structure the pattern language sufficiently as regards the

design process utilised within the domain. Just as the names given to design patterns should

portray the reason for their existence and should be easy to use within sentences for

contributions to the normal language of architects, naming conventions have been influencing

all cloud computing patterns in a significant manner. Particularly, the use of nouns for naming

patterns is more promoted than the use of verbs for easy reference to patterns as entities in

sentences (Fehling 2015). Furthermore, the structure of design patterns is of huge importance

during the authoring phase. Design Patterns across different areas and domains can have

slightly varying structures which are defined based on the context in which they are being

authored. The structure across multiple domains in IT is quite uniform, although with some

variations. Table 5.3 presents a survey of design pattern structures across varying literature

sources in computing.

151

Table 5. 3 - Design Patterns Structure across Literature in Computing

C
on

te
xt

Pr
ob

le
m

Fo
rc

es

So
lu

tio
n

R
es

ul
tin

g
C

on
te

xt

E
xa

m
pl

e

K
no

w
n

U
se

s

R
el

at
ed

 P
at

te
rn

s

V
ar

ia
tio

ns

O
th

er
s

Braga et al. (1999),
Manolescu (1997)

Lehtonen & Parssinen
(2001), Guerra et al.
(2009)

Fernandez & Pan (2001),
Fehling et al. (2012),
Eloranta et al. (2010),
Schneider & Matthes
(2015)

Richardson (2001),
Amoretti & Zanichelli
(2018)

Mahemoff & Johnston
(1999), Ben-Yehuda
(1997), Tidwell (1997),
Silva et al. (1996),
Meszaros & Brown
(1997)

 Related Issues - Ben-
Yehuda (1997), Notes -
Tidwell (1997),

Beedle et al. (1999)
Kendall et al. (1997)
Rossi et al. (1996) Participants,

Collaboration,
Implementation – Rossi et
al. (1996)

Stepney (2012)
Kodituwakku et al. (2001)
Fernandez & Sorgente
(2005), Lascano (2017)

Re et al. (2001)
E Silva et al. (2005) Implementation – E Silva

(2005)
Massingill et al. (2001) Applicability,

Implementation –
Massingill et al. (2001)

Delessy et al. (2007) Implementation – Delessy
et al. (2007)

152

Avgeriou et al. (2004),
Schummer (2003)

 Participants, Rationale,
Danger Spot – Schummer
(2003)

Zhao et al. (2008) Limitations, What’s Next
– Zhao et al. (2008)

Evitts & Hinchcliffe
(2000), Weiss (2003),
Molin & Ohlsson (1996),
Pyarali et al. (2000),
Hukerikar & Engelmann
(2017)

 Discussion – Evitts &
Hinchcliffe (2000)

Paris et al. (2003) User Category – Paris et
al. (2003)

Hentrich & Zdun (2009)
Byun et al. (2002)
Mahemoff & Johnston
(1998), Hamza & Fayad
(2002)

Mulyar & van der Aalst
(2005), Pautasso et al.
(2016)

Keller & Coldewey
(1996)

Harrer et al. (2017) Liabilities, Shared
Challenge, Unresolved
Forces, Benefits For –
Harrer et al. (2017)

Haimes et al. (2016)

From Table 5.3, it can be observed that while some differences exist in the structure of different

collections of design patterns, these differences are only minimal, with most of them having

very similar structures. From the table, they all define a ‘Context’ for the design patterns as

well as a specific ‘Problem’ it is designed to solve. While the ‘Forces’ section is missing in

some of the research efforts, this is because the impacting factors that constitute scenarios

leading to the problems is single and already described alongside the ‘Problem’ statement. In

similar vein, some of the research efforts define ‘Solutions’ to the stated problems under the

‘Resulting Context’ section. This explains the reason why the ‘Solution’ field is missing in

some of them.

Furthermore, some of the design patterns missing the ‘Examples’ section makes up for this in

several other ways. These include the use of diagrams or other representations such as UML

(Unified Modelling Language) with class, sequence or use case diagrams. The inclusion of the

153

‘Known Uses’ section is dependent on if there are any known uses or not, hence the reason

why it is missing in some design patterns. In some other cases, rather than this field, the

‘Variations’ field is more relevant. Lastly, some design patterns have also defined additional

sections such as ‘Participants’, ‘Collaboration’, ‘Liabilities’, etc. to provide completeness

based on the domain involved. Conclusively, the table reveals the widely accepted sections

required within design patterns and the level of flexibility with them which could imply

omitting one or more sections. Based on these, the sections relevant to this research have been

carefully selected and are described as follows:

Pattern Name - A unique name identifies a design pattern. The name specifies the design

pattern’s purpose. The patterns name further identifies the entity present in the application’s

architecture. The design pattern normally describes the entity.

Context - For every created design pattern, it is necessary to specify the conditions which

describe the problem that it should solve. A Pattern Author may specify the context such that

it refers the design pattern to other patterns if necessary. The context is a very crucial

component especially in describing cloud offering and cloud types. Describing the context in

a design pattern format significantly simplifies the environment where the design pattern’s

application architecture can apply. The context eases the description of the design pattern

requirements in relation to the cloud environment.

Problem - As mentioned earlier, design patterns are used to find solutions for recurring

problems in various IT fields. Detailed design patterns used in cloud computing have a small

descriptive question at the beginning which describes the problem that the pattern will solve.

The driving question is important since developers creating cloud applications use a design

pattern’s catalogue to look for solutions for the patterns’ driving questions. Thus, the driving

question eases the process for identifying the required patterns.

Solution - The solution makes up a complete format of a design pattern. In this section, the

author specifies instructions which the design pattern can use to address all the identified

challenges. The design pattern gives the solution in the form of small steps. The system follows

the steps to address the challenges. The solution is usually supported by at least a graphical

representation. It depicts the functionality of the resulting architecture after the application of

the pattern.

154

Structure - This section provides an illustration of the technical solution described in the

“Solution” field. This could be in the form of a diagram, flowchart or any other suitable means

of representing the technical solution.

Resulting Context - This section describes the effects achieved by following the steps

described in the solution. It also provides details about the implementation of the design

pattern. The identified design patterns for holistic semantic annotation presented in Table 5.2

and formulated from the holistic semantic annotation requirements defined in Chapter 3 of this

thesis have been authored based on these ‘Pattern Authoring’ process as described in the

section.

5.2.3 Pattern Application Phase

After the pattern identification and authoring phases, the next phase is its application. That is,

the newly discovered solutions in form of design patterns are used by any IT professional (such

as a software architect or software developer) who finds them useful. In this phase, there are

various ways of making the design patterns and pattern language available through the

provision of guidance to users of the design patterns while considering the utilisation of the

patterns in solving their problems. Fehling (2015) suggested that the pattern application process

consists of the search for applicable design as well as its application, defining a “pattern search

and recommendation” process which involves recommending patterns to users according to the

structure of the pattern language. Navigation from one pattern to another is carried out with the

aid of references existing between them. The references depict the interrelationships that exist

between the design patterns, as they form building blocks for solutions within a domain and

constitute a ‘Pattern Language’ together. Following navigation is finding and selecting an

initial set of patterns based on their categorisations. The decision to use a specific pattern should

be based on its description and relevance to a challenge according to a need. The design patterns

identified and authored in this research are utilised in section 5.5 for the proposed architecture.

5.3 Design Pattern Language for CloudSea

An individual design pattern may lead to augmented reuse, although the greatest benefits

emerge once patterns are coarsely grained together to form a pattern language. A pattern

language of a specific domain is the collection of available design patterns within the domain,

their interrelations, and rules for combining them (Erl et al., 2015). Thus, the pattern language

deals with the common problems in the domain for the purposes of guiding a design process.

155

After the application of the resolution of a certain design pattern, a fresh context emerges

whereby further complex problems call for a solution. More design patterns may be developed

for capturing the problem-solving process integral in the new context (Goodyear & Retalis

2010). Consequently, the organisation of a group of design patterns into a set-up of co-

dependent patterns creates a pattern language, particularly in which design patterns of greater

level produce situations that are solved by design patterns which are more comprehensive. This

enables a software architect or developer to use the pattern language in a generic manner,

starting with a situation, and following all the applicable design patterns to implement a

solution. The Pattern Language is composed of references among design patterns of distinct

types for enabling navigation. Fehling et al. (2011) affirm that the patterns' order to be

considered is subsequently described in an implicit manner in the pattern language.

This is also applicable for design patterns in the cloud computing domain such that cloud design

patterns possess an implicit ordering for their consideration. To introduce further help to pattern

users, the common tasks of creating a new cloud application may be made more explicit. The

design patterns' implicit ordering along with the refinement stages are defined as an explicit

process that should be followed throughout IT architecture design. During every phase of the

process, a collection of patterns is given which is normally used. Such patterns might be applied

as points of entry to the pattern language with the aim of identifying the use case for specific

pattern compositions by following the references amongst patterns (Fehling et al. 2014; Fehling

2015). A pattern-based design technique for cloud applications is required to explain the

general order in which the cloud computing pattern language ought to be considered in the

process of designing a new application. From the design patterns developed for holistic

semantic annotation, Figure 5.3 represents the proposed pattern language; defining the inter-

relations between the twelve design patterns for semantic annotation.

156

Figure 5. 3 - Holistic Semantic Annotation Pattern Language

Furthermore, a pattern language provides several benefits for software development, right from

the architectural design stage. Firstly, they provide a common foundation, on which to build

higher-level systems. Transiting from a pattern language to an architectural pattern, usually

offering a description of an overall pattern followed by an entire system is a very logical design

flow (Edwin, 2014). In addition, according to Opdyke (1990), design patterns and pattern

languages make provision for a means of facilitating the reorganisation or refactoring of class

hierarchies. Pattern languages also provide a common workspace, which fosters best-of-breed

solutions and ensures consistency in how software systems are designed and built. As described

by Gamma et al. (2000), design patterns and pattern languages serve as building blocks for the

construction of more complex designs, which makes them considerable as microarchitectures

that impact on the overall system architecture. Based on continuous efforts to build more

complex computer systems, the challenges encountered are from the construction phase rather

than from analysis. Hence, the challenges coming from the development of systems are solved

by coming up with programming solutions that are based on the context of the computer

application being developed. Some of the challenges continue to come up several times across

157

a wide range of different computer applications. Evidently, design patterns and pattern

languages can provide solutions to these challenges as they offer a generic solution to such

repeating problems, and such solutions can be adapted to other specific needs for an application

development process.

Furthermore, they enhance the development of standard software libraries and frameworks.

The development of design patterns and pattern languages to provide solutions for recurring

challenges in software development fosters the compilation of software libraries and

frameworks developed as a result of their utilisation. Such libraries and frameworks evolve

over time and often constitute open source solutions to the IT community. In addition, they

provide a simpler development and deployment experience, by making good practices easier

to adopt. Generally, pattern documentation offers the description of a context in which it is

possible to utilise it, the problem the pattern solves, and the solution it proffers (Amoretti &

Zanichelli, 2018), with the opportunity to focus on an object-oriented design through the

description of when it applies, whether it is applicable in view of other design constraints, and

the consequences and trade-offs of its use. Lastly, they organise design intelligence into a

standardised and easily referenced format, providing a description that discusses details of a

design decision (Hukerikar & Engelmann, 2017). Design patterns consist of established

standards that are accessible through software libraries and frameworks, organisable in such a

way that software architects and developers reference them for finding solutions to design and

deployment challenges.

5.4 CloudSea Microservices-based Design Patterns

The pattern language for holistic semantic annotation presented in Figure 5.3 represents a high-

level conceptualisation of the CloudSea Microservices Architecture. In the following section,

each design pattern is decomposed into its various components and functionalities of each one

of them is described. Furthermore, the components of each of the other layers of the

architectural pattern that make up the architecture is defined. The microservices for the

architecture have been classified into two categories; Service Microservices and Experience

Microservices. While the Service Microservices constitute the core of the application, the

Experience Microservices are auxiliary in nature, providing addon value for the application

architecture. Table 5.4 presents a mapping of the CloudSea Design Patterns to their

Microservices names as would be utilised later in the chapter for the CloudSea Architecture.

158

Table 5. 4 – Mapping of CloudSea Design Patterns to Microservices
CloudSea Design Pattern Corresponding CloudSea Microservice

Concept Extraction Concept Extractor

Ontology Population Population Engine

Ontology Selection Selection Engine

Ontology Mapping Mapping Engine

Annotation Data Storage Annotation Data Storage

Annotation On-the-Fly Annotation On-the-Fly

Annotation Data Reuse Annotation Data Reuse

Annotation Data Sharing Annotation Data Sharer

Annotation Data Auto-Update Annotation Data Auto-Updater

Ontology Auto-Update Ontology Auto-Updater

Annotation Data Optimisation Annotation Data Optimiser

Service Co-Location Service Co-Locator

5.4.1 The Service Microservices-Based Design Patterns for CloudSea

The Service Microservices refers to the core sub-systems of the architecture which implement

some fundamental processes for the overall application functionality. This is on contrast to

microservices that offer auxiliary roles within the entire system architecture. Service

Microservices within CloudSea comprises of the holistic semantic annotation requirements

identified in Chapter 3 of this thesis and are discussed in this section.

5.4.1.1 Concept Extraction Design Pattern

Context

The Concept Extraction Design Pattern is based on the “Concept Extractor” microservice of

CloudSea, as stated in Table 5.4 and is responsible for the extraction of entities and their

relationships from diverse textual sources and adding them to a semantic graph database. It

publishes “semantic graph” datasets to the messaging stream which is utilised by the

“Annotation Data Storage” microservice for generating annotation data instances for web

documents.

159

Problem

How can semantic graph databases be managed within a microservices architecture with

activities such as extraction, interlinking and storage among others?

Solution

A “Concept Extractor” microservice is developed with the implementation and integration of

the following components:

• Text Identifier: Textual information exists in diverse types of repositories and

documents. These need to be identified and extracted. This component is for identifying

text from diverse sources, including from both structured and non-structured sources as

well as extracting them for further processing.

• Text Processor: For analysing the extracted text using NLP algorithms and identifying

concepts such as places, organisations, people and dates.

• Entity Extractor: For classifying extracted concepts into specific categories and

addressing any ambiguities based on keyword matching across different domains.

• Relationship Extractor: For identifying and building relationships between the

different extracted entities. This is done by defining a “predicate” values for interlinking

entities. Relationships are also established with existing entities within the graph

database.

• Entity Processor: For indexing the new dataset and storing them in a semantic graph

database for subsequent querying towards web documents semantic annotation.

Structure

Figure 5.4 presents a flowchart to illustrate the process flow for the Concept Extraction Design

Pattern.

160

Figure 5. 4 – Concept Extraction Design Pattern Flowchart

Resulting Context

Annotation data repository, in the form of a graph database is populated with additional entities

and their relationships with each other. This is queried to obtain annotation data instances for

web documents.

5.4.1.2 Ontology Population Design Pattern

Context

The Ontology Population Design Pattern is based on the “Population Engine” microservice of

CloudSea, as stated in Table 5.4. It is responsible for the addition of new concepts and relations

extracted from various textual sources to ontologies. It comprises of a data store which holds

records of ontologies and enough descriptive data about each to inform an effective selection

process. Furthermore, it subscribes to “ontology updates” dataset from the “Ontology Auto-

Updater” microservice while it publishes “ontology profiles” dataset for the “Selection Engine”

microservice.

161

Problem

How can ontologies be populated with new concepts and relations from several streams of

information and aggregated within a microservices architecture?

Solution

A “Population Engine” microservice is developed which provides a mechanism for the

population process. This is based on the implementation and integration of the following

components:

• Concepts Extractor: For the extraction process of concepts from one or more textual

sources based on a technique capable of extracting from different sources and formats.

• Relations Extractor: For identifying and extracting relations between different

concepts. These relations will be applied to the schema within an ontology to define

relationships between different concepts; both existing and newly added ones.

• OWL Generator: For generating an OWL document from the new data (concepts and

relations) for subsequent addition to the appropriate ontology.

• OWL Exporter: The generated OWL document, comprising of new concepts and

relations is exported for importing into the corresponding ontology.

• Ontology Populator: For adding new concepts and relations to the existing schema

within the ontology; identifying the required level of hierarchy and relationships

between new and old concepts.

Structure

Figure 5.5 presents a flowchart to illustrate the process flow for the Concept Extraction Design

Pattern.

Figure 5. 5 – Ontology Population Design Pattern Flowchart

162

Resulting Context

New concepts and relations are added to ontologies within a microservices architecture, from

multiple textual sources and for rich-content annotation data processing.

5.4.1.3 Ontology Selection Design Pattern

Context

The Ontology Selection Design Pattern is based on the “Selection Engine” microservice of

CloudSea, as stated in Table 5.4 and is responsible for the selection of appropriate ontologies

from a repository for an ontology mapping process. The microservice holds records of ontology

selections and their mappings to corresponding URIs. Furthermore, it subscribes to the

“ontology profile” dataset from the “Population Engine” microservice; which provides the

necessary data about ontologies towards an efficient selection process.

Problem

How can appropriate ontologies be selected for aggregation of resources towards ontology

engineering tasks such as ontology mapping to facilitate rich-content semantic annotation

within a microservices architecture?

Solution

A “Selection Engine” microservice is developed which defines parameters and mechanisms

for an effective selection process. This is based on the implementation and integration of the

following components:

• URI Validator: For receiving URI of web document that requires semantic annotation.

Upon its receipt, the URI is parsed to validate its syntax.

• URI Scope Definer: For identifying and defining a scope for the URI. This provides

information regarding the ontologies required to be selected from the repository for the

URI. The scope definition would require defining the domain a URI belongs to, across

multiple levels, such as top-level domain, middle-level domain and lower-level domain.

• Ontology Browser: For facilitating access to the “ontology profile” dataset from the

“Population Engine” microservice. The dataset is queried for ontologies with a profile

that matches the scope defined for the URI.

• Ontology Selector: For the selection of appropriate ontologies for a URI based on the

result of the dataset query by the “Ontology Browser”. The selection is required for an

ontology mapping process by the “Mapping Engine” microservices.

163

• URI Associator: For storing URIs and associated ontologies in its data store.

Structure

Figure 5.6 presents a flowchart to illustrate the process flow of the Ontology Population Design

Pattern.

Figure 5. 6 – Ontology Selection Design Pattern Flowchart

Resulting Context

A set of appropriate ontologies are selected for a URI for use in an ontology mapping process

towards the generation of rich-content semantic annotation for the corresponding web

document.

5.4.1.4 Ontology Mapping Design Pattern

Context

The Ontology Mapping Design Pattern is based on the “Mapping Engine” microservice of

CloudSea, as stated in Table 5.4 and is responsible for generating mappings between different

concepts across multiple ontologies. The mapping provides an aggregation of resources across

the ontologies; providing an extension to the scope and possible context derivable for entities.

The ASMOV technique to ontology mapping is adopted as it applies semantic verification for

the mappings generated, hence, providing a high level of accuracy for them (Mittra & Ali,

2017). The microservice stores these mappings in its data store in JSON format, utilising its

subscription to “selection records” dataset of the “Selection Engine” microservice and

publishing “ontology mappings” dataset to the messaging stream.

164

Problem

How can contextual data schemas across multiple ontologies be utilised together for an

ontology mapping process in a microservices architecture towards the generation of annotation

data for web documents?

Solution

A “Mapping Engine” microservice is developed which adapts the ASMOV algorithm, based

on the implementation and integration of the following components:

• Lexical Matcher: For performing matchings between concepts of two ontologies based

on keyword patterns. While this is iterative, it takes two ontologies for each iteration.

• Similarity Calculator: For calculating similarities between matched concepts. This is

done by an assessment of degrees of equivalence between the pair and utilising a

benchmark to assess the weight of the similarity index. The output is a similarity matrix.

• Semantic Verifier: Based on the similarity matrix obtained, a pre-alignment of

concepts is done using a greedy algorithm. The pre-alignment then undergoes a process

of semantic verification based on the ontology schemas, in which unverifiable matches

are removed.

• Mapping Extractor: Upon successful verification and finalisation of the pre-

alignments, the mappings obtained are extracted from the various sources and stored in

the data store. The process can be repeated between other pairs of ontologies.

Structure

Figure 5.7 presents a flowchart to illustrate the process flow of the Ontology Mapping Design

Pattern.

Figure 5. 7 – Ontology Mapping Design Pattern Flowchart

165

Resulting Context

Concepts and relations across multiple ontologies are mapped, thereby providing a means of

integration between the ontologies and their aggregated use to facilitate the generation of rich-

content annotation data for web documents.

5.4.1.5 Annotation Data Storage Design Pattern

Context

The Annotation Data Storage Design Pattern is based on the “Annotation Data Storage”

microservice of CloudSea, as stated in Table 5.4 and is responsible for the generation and

storage of annotation data for URIs. It does both file-based and server-based storage for

generated annotation data. The microservice is subscribed to two datasets; mapping data from

the “Mapping Engine” microservice and entities from the “Concept Extraction” microservice.

On the other hand, it publishes annotation data to the messaging stream for several

microservices, such as “Service Colocator” and “Annotation On-the-Fly” among others

subscribed to the dataset.

Problem

How can annotation data be stored separately to avoid the challenges of storing them with their

corresponding web documents within a microservice architecture?

Solution

An “Annotation Data Storage” microservice is developed for the decoupled approach to

annotation data storage and is facilitated based on the implementation and integration of the

following components:

• Mapping Fetcher: For fetching mapping data generated by the “Ontology Mapping”

microservice and the associative URIs to the data. The URIs define web documents that

the mapping data have been generated for and the data is received in JSON format.

• Annotation Data Generator: For the generation of annotation data for specific URIs

utilising the mapping data alongside the required ontologies to query the semantic graph

database for the required annotation data, which is received as output in JSON format.

• Annotation Data Processor: For saving a copy of the generated annotation data and

entering a record of it in the data store. The file is saved based on a naming convention.

166

Processing details, such as corresponding URI, process status, JSON filename,

timestamp, etc. are also stored as part of its record in the data store.

Structure

Figure 5.8 presents a flowchart to illustrate the process flow of the Annotation Data Storage

Design Pattern.

Figure 5. 8 – Annotation Data Storage Design Pattern Flowchart

Resulting Context

Annotation Data is stored separately from the web documents they annotate, ensuring that both

the data and web documents can evolve and be processed independently while still maintaining

consistency between them.

5.4.1.6 Annotation On-The-Fly Design Pattern

Context

The Annotation On-the-Fly Design Pattern is based on the “Annotation On-the-Fly”

microservice of CloudSea, as stated in Table 5.4 and is responsible for online, real-time

semantic annotation of web documents without requiring a human intervention. It subscribes

to the “annotation data” dataset of the “Annotation Data Storage” microservice and has no data

store of its own.

Problem

How can web documents be semantically annotated online, real time without requiring human

intervention by means of a microservices architecture?

167

Solution

An “Annotation On-the-Fly” microservice is developed which will trigger three other

microservices; “Selection Engine”, “Mapping Engine” and “Annotation Data Storage”.

Furthermore, it will require the implementation and integration of the following components:

• Annotation Fetcher: For fetching the generated annotation data which has just been

saved on file with a record of it in the data store as well. The file data is published by

the “Annotation Data Storage” microservice and accessible from the messaging stream.

• Annotator: For the actual semantic annotation which requires parsing objects from the

annotation data JSON file and matching them with corresponding strings within the

web document for annotation, utilising string offsets; ‘start offset’ and ‘end offset’ for

the matching.

Structure

Figure 5.9 presents a flowchart to illustrate the process flow of the Annotation On-the-Fly

Design Pattern.

Figure 5. 9 – Annotation On-the-Fly Design Pattern Flowchart

Resulting Context

Web documents can have an automated process for the delivery of continuous and up-to-date

annotation data for their content dynamically.

5.4.1.7 Annotation Data Reuse Design Pattern

Context

The Annotation Data Reuse Design Pattern is based on the “Annotation Data Reuse”

microservice of CloudSea, as stated in Table 5.4 and is responsible for the reuse of an instance

of annotation data by a web document. This would be the case if the web document has not

168

evolved from the time the annotation data was generated for it. It subscribes to “annotation

data” and “URI repository” datasets from the “Annotation Data Storage” and “Annotation Data

Sharing” microservices respectively. Its own data store would hold data of statistical reuse of

annotation data of different URIs.

Problem

How can computing resources be optimised within a microservices architecture by reusing a

web document annotation data it the web document content has not changed?

Solution

An “Annotation Data Reuse” microservice is developed which is based on the implementation

and integration of the following components:

• URI Verifier: For parsing a URI to validate its syntax. It also verifies the URI’s

attributes and its mapping to a specific annotation data instance based on reuse

statistical data in the data store.

• Annotator: For fetching the URI’s annotation data and carrying out same functionality

as the “Annotator” component of the “Annotation On-the-Fly” microservice for the

actual semantic annotation process.

Structure

Figure 5.10 presents a flowchart to illustrate the process flow of the Annotation Data Reuse

Design Pattern.

Figure 5. 10 – Annotation Data Reuse Design Pattern Flowchart

Resulting Context

A web document can reuse annotation data generated for it if the web document content has

not changed after the generation of the annotation data.

169

5.4.1.8 Annotation Data Sharing Design Pattern

Context

The Annotation Data Sharing Design Pattern is based on the “Annotation Data Sharer”

microservice of CloudSea, as stated in Table 5.4 and is responsible for the utilisation of an

instance of annotation data to semantically annotate multiple web documents of the same

content. It requires and is subscribed to “annotation data” datasets from the “Annotation Data

Storage” microservice and publishes “URI repository” datasets which provides data regarding

URI-to-annotation data mappings to the messaging stream. Its dataset is subscribed to by the

“Annotation Data Reuse” microservice.

Problem

How can an instance of annotation data be shared by multiple web documents with the same

piece of content within a microservices architecture?

Solution

An “Annotation Data Sharer” microservice is developed with the implementation and

integration of the following components:

• URI Validator: This component provides same functionality as the “URI Validator”

component of the “Selection Engine” microservice which is based on parsing URIs to

validate their syntax.

• Mapping Browser: For browsing through URI and annotation data mappings based on

the scope for the validated URI to identify annotation data within same low-level scope.

• Similarity Calculator: A similarity calculation compares content within the validated

URI and URI mapped to annotation data instances. A similarity index would be defined

as a requirement before annotation data instance can be shared. This would be expected

to be a value of 100%.

• URI Mapper: Based on the attainment of the required similarity index, the URI

Mapper maps the validated URI with the corresponding annotation data and keeps a

record of it within the microservice data store.

Structure

Figure 5.11 presents a flowchart to illustrate the process flow of the Annotation Data Sharing

Design Pattern.

170

Figure 5. 11 – Annotation Data Sharing Design Pattern Flowchart

Resulting Context

An instance of annotation data is shared between web documents containing same piece of

information. However, this would be applicable only when the web documents content is

exactly same as a slight difference can alter the context of a document.

5.4.1.9 Annotation Data Auto-Update Design Pattern

Context

The Annotation Data Auto-Update Design Pattern is based on the “Annotation Auto-Updater”

microservice of CloudSea, as stated in Table 5.4 and is responsible for maintaining consistency

between web documents and their corresponding annotation data. This is by automatically

updating annotation data of a web document when the document evolves. It requires a tracking

mechanism for web document evolution and publishes logs of updates to annotation data from

its own data store to the messaging stream. The “Annotation Data Storage” microservice is

subscribed to its dataset.

Problem

How can consistency between web documents and annotation data be maintained within a

microservices architecture considering the dynamic nature of web documents?

Solution

An “Annotation Auto-Updater” microservice is developed to maintain consistency between

web documents and annotation data, utilising a mechanism for tracking changes within a web

document and triggering a corresponding update to its annotation data, such as web scraping.

171

These is facilitated through the implementation and integration of an “Annotation Update

Manager” which will read web document content and track any updates to initiate a re-

generation of annotation data if an update has occurred. To re-generate annotation data for a

web document, it will trigger actions for the “Selection Engine”, “Mapping Engine” and

“Annotation Data Storage” microservices based on the functionality provided by each one of

them.

Structure

Figure 5.12 presents a flowchart to illustrate the process flow of the Annotation Data Auto-

Update Design Pattern

Figure 5. 12 – Annotation Data Auto-Update Design Pattern Flowchart

Resulting Context

Annotation data is re-generated for a web document once its content has evolved, maintaining

the required level of consistency between them to guarantee annotation data accuracy always.

5.4.1.10 Ontology Auto-Update Design Pattern

Context

The Ontology Auto-Update Design Pattern is based on the “Ontology Auto-Updater”

microservice of CloudSea, as stated in Table 5.4 and is responsible for ensuring up-to-date

ontology schema to maintain accuracy of instances of annotation data based on such schemas

and subsequently, maintaining consistency between web documents and annotation data by

enforcing annotation data re-generation when necessary.

172

Problem

How can ontology schema changes be managed to ensure consistency with web documents and

annotation data is maintained in a microservices architecture?

Solution

An “Ontology Auto-Updater” microservice is developed with the implementation and

integration of an “Ontology Update Manager” which will track schematic changes to

ontologies and its implications on instances of annotation data. A scheduled task (such as a

cron job on Linux platforms) monitors ontologies for any schematic changes and triggers the

“Concept Extractor”, “Selection Engine”, “Mapping Engine” and “Annotation Data Storage”

microservices for web document(s) annotation data re-generation when such changes occur.

Structure

Figure 5.13 presents a flowchart to illustrate the process flow of the Ontology Auto-Update

Design Pattern.

Figure 5. 13 – Ontology Auto-Update Design Pattern Flowchart

Resulting Context

Ontology schemas are kept up-to-date and this triggers other actions to ensure consistency of

the updates with web documents and annotation data utilising such ontologies.

5.4.1.11 Annotation Data Optimisation Design Pattern

Context

The Annotation Data Optimisation Design Pattern is based on the “Annotation Data Optimiser”

microservice of CloudSea, as stated in Table 5.4 and is responsible for managing upgrades to

173

ontologies, based programming language or standards evolution. It holds a datastore

comprising of “optimisation data”. It also subscribes to “ontology upgrades” dataset from the

“Ontology Auto-Updater” microservice and “annotation data” datasets from the “Annotation

Data Storage” microservice and publishes required “optimisation data” datasets to the

messaging stream; which is utilised by the “Annotation Data Storage” microservice.

Problem

How can the accuracy of annotation data be maintained despite ontological upgrades resulting

from programming language or standards evolution?

Solution

An “Annotation Data Optimisation” microservice is developed with the implementation and

integration of an “Ontology Upgrade Manager” which will track ontological evolutions based

on upgrades to the ontology development language (such as version 1.0 to version 2.0) or

evolution of one or more standards-based specifications (such as W3C standards for OWL). A

scheduled task such as Linux “cron jobs” or Windows “schtasks” monitors ontologies and

standards specifications for any evolution and triggers the “Selection Engine”, “Mapping

Engine” and “Annotation Data Storage” microservices to re-generate annotation data instances

that utilise the evolved ontology.

Structure

Figure 5.14 presents a flowchart to illustrate the process flow of the Annotation Data

Optimisation Design Pattern.

Figure 5. 14 – Annotation Data Optimisation Design Pattern Flowchart

174

Resulting Context

Annotation data is optimised to maintain consistency with web documents and continue to

provide the required level of accuracy for semantic annotation. Computing resources are also

optimised by removing redundant data from storage.

5.4.1.12 Service Colocation Design Pattern

Context

The Service Co-Location Design Pattern is based on the “Service Co-Locator” microservice of

CloudSea, as stated in Table 5.4 and is responsible for maintaining proximity between

annotation data node and web document node. A closer proximity between both enhances

performance by reducing network latency for the semantic annotation process. While web

document node cannot be easily influenced, annotation data node can be flexible to ensure the

highest possible level of proximity to the web document node. The design pattern subscribes

to the “user profiles and settings” dataset of the “User Management” microservice and holds a

data store which maps web document nodes with annotation data nodes.

Problem

How can communication between web documents and annotation data nodes be more efficient

to reduce potential network latencies?

Solution

A “Service Co-locator” microservice is developed with the implementation and integration of

the following components:

• Similarity Calculator: For managing proximity between web document node and

annotation data node by utilising the IP address location of the former to place

annotation data in a node with the closest possible proximity to the web document node.

A benchmark is defined for acceptable proximity index and this is measured for each

web document-annotation data pairing to set annotation data node.

• Geotagger: For geographical metadata specification of annotation data. Annotation

data geolocation is obtained from the “Proximity Calculator” and tagged to the

corresponding web document by updating web document geodata with its annotation

data geodata as additional metadata for the web document.

175

Structure

Figure 5.15 presents a flowchart to illustrate the process flow of the Service Co-locator Design

Pattern.

Figure 5. 15 – Service Co-locator Design Pattern Flowchart

Resulting Context

Annotation data nodes are placed as close to web document nodes as possible to foster faster

communication and reduce potential network latencies, thereby responding to semantic

annotation user requests in a timely manner.

5.4.2 The Experience Microservices

The Experience Microservices are not core to the application architecture. However, they are

required as auxiliary microservices to cater for secondary tasks that are needed while

implementing the primary ones. The two experience microservices covered here are: Frontend

and User Management.

5.4.2.1 The User Interface Design Pattern

Context

The User Interface Microservice is the gateway to the application from end users. End Users

would access the application via the Internet using a graphical user interface. This interface

holds no data of its own. Rather it receives user requests and passes them to the API Gateway.

Subsequently, the API Gateway forwards the requests to the Service Registry. The Service

Registry defines and categorises the requests and forwards them to the appropriate Service API

that will process them. Upon the completion of the processing, the response is sent back to the

User Interface Microservice via the API Gateway for the consumption of the end user that

176

initiated the request. Since the User Interface is not directly involved with inter-process

communication, it does not need to publish or subscribe to data, rather it functions as an

interface between the application and its end users.

Problem

How would users interact with the different application logic implemented within the various

microservices?

Solution

This is by means of a user interface layer that provides several interfaces for interacting with

application logic. The required user interface types can be classified as follows:

• User Services Interfaces: This function would be responsible for serving interfaces

relating to user account management tasks. Such tasks include new user registration,

user login, user password reset, user profile management, user annotations

management, user-generated annotation process and lots more.

• Administrative Services Interfaces: While both user and administrative services

share some interfaces in common, access rights are still limited for user accounts.

Hence, this function utilises Identity and Access Management (IAM) to define access

rights to resources within the application databases. For instance, a logged-in user

would only have access to their own annotation records from a specific URL while the

same URL would grant an admin user access to annotation records for multiple users.

• Operational Interfaces: This function would be responsible for serving interfaces to

both users and administrators for operational tasks. This function would still work in

unison with the Administrative Services Interface function to define access to different

operations for both users and administrators.

Resulting Context

Users can interact with different application logic through the corresponding user interface and

access rights for each made available.

5.4.2.2 The User Management Design Pattern

Context

The User Management Microservice is responsible for dealing with application logics relating

to user accounts. These includes user registration, login, password reset, profile update and lots

177

more. The Microservice holds a database of its own which contains user data for the different

application logics. Such data includes user profiles, settings and system data. These data are

published to the messaging channel for inter-process communication (such as Apache Kafka)

for the consumption of some other microservices. It will comprise of the following functions:

Problem

How would user data be managed appropriately, with the required level of authentication,

authorisation and permission settings?

Solution

A user management mechanism would be implemented which would process user data as

appropriate. The basic modules that will be inclusive within the mechanism are as follows:

• User Registration: This function would be responsible for accepting data from end

users submitted via the Frontend Microservice to register an account. The data collected

would include username, firstname, lastname, password, email address, etc.

• User Login: This function would be responsible for authentication and authorisation

for end users. Authentication involves the process of identifying a user based on a set

of parameters they have presented. Once the parameters have been validated correctly,

then the user becomes authorised. Authorisation implies granting access to certain

resources based on pre-defined account settings within the system.

• Profile Manager: This function would be responsible for the management of user

profiles. This would include updating user data such as password, email address,

contact details, etc.

• Password Reset: This function would be responsible for assisting users to reset their

password. The function would require and utilise mail server settings to send a

‘password reset’ email to the user’s email address registered on file. The mail server

settings that would be required include port number, incoming and outgoing mail server

addresses and mail protocol.

Resulting Context

User data is managed accordingly with the required mechanisms and permission settings. The

user data management would also imply users can access services within the system,

maintaining confidentiality and integrity.

178

5.4.3 The Inter-Process Communication: Apache Kafka

Inter-Process Communication is a vital component of a microservices architecture. With

application functionalities already mapped to business domains and developed independently

as microservices with an API interface, communication and data exchange within the multiple

microservices ensures that they meet the overall integrated solution for a specific application.

While the inter-process communication can be synchronous or asynchronous, the

asynchronous is the ideal option for data-intensive applications (Le Noac'H et al., 2017).

Apache Kafka is one of several options for providing asynchronous messaging between

microservices. It has been described as a messaging system characterised by several messaging

patterns, including the distributed publish-subscribe messaging pattern; known for the handling

of huge data volumes (Shaheen, 2017). It acts as a robust queue and allows the passage of

messages from one endpoint to another. When it first emerged, its description was a

“distributed commit log”; however, it has become a major messaging solution, with is adoption

by several organisations for asynchronous messaging within highly distributed systems (D'silva

et al., 2017). Its design is such that it addresses the challenges of the management of continuous

data flows within data-intensive applications.

The Publish-subscribe messaging pattern works by the sender of a message not specifically

directing it to a receiver, but there is classification of the message by the publisher with the

receiver subscribing to receiving some classes of messages. A broker and a central point for

the publication of messages facilitate this process. Figure 5.16 illustrates the publish-subscribe

messaging system of Apache Kafka:

Figure 5. 16 - Apache Kafka Pub-Sub for Microservices Inter-Process Communication (Apache

Documentation, 2019)

179

Durable recording of every transaction for replaying to consistently build the system state is

through a filesystem or database commit log. In addition, there is durable storage of data within

Kafka, in order, and can be read in a deterministic manner. In addition, there could be data

distribution within the system for the provision of additional protection against failures,

including remarkable opportunities to scale performance (Wang et al., 2015). The applicative

pattern designed for the holistic semantic annotation microservices architecture is the former,

whereby streaming data pipelines can be accessed by the microservices based on the publish-

subscribe pattern. Some of the benefits of Apache Kafka include reliability, scalability,

durability and performance. It is reliable due to its distribution, partitioning, replication and

fault-tolerant features. It achieves scalability as a messaging system, without downtime

(Shaheen, 2017). Its durability is based on persistence of messages on disk at a speedy rate

using “distributed commit log”. Furthermore, it does message publishing and subscription with

a high throughput, providing a high level of stability in its performance even with the storage

of huge number of messages. Several datasets are defined within CloudSea, with each

belonging to a specific microservice and distributed across the system based on the Apache

Pub-Sub Messaging Pattern. Table 5.5 presents a list of the datasets and their distribution

pattern across the overall architecture.

Table 5. 5 - CloudSea Data Distribution based on Pub-Sub Messaging

D
at

a
Se

ts

T
ex

t C
or

pu
s

Fr
on

te
nd

U
se

r
M

an
ag

em
en

t

E
nt

ity
 E

xt
ra

ct
io

n

O
nt

ol
og

y
Po

pu
la

tio
n

O
nt

ol
og

y
Se

le
ct

io
n

O
nt

ol
og

y
M

ap
pi

ng

A
nn

ot
at

io
n

D
at

a
St

or
ag

e
A

nn
ot

at
io

n
O

n-
th

e-
fly

A
nn

ot
at

io
n

D
at

a
R

eu
se

A
nn

ot
at

io
n

D
at

a
Sh

ar
in

g
A

nn
ot

at
io

n
D

at
a

A
ut

o-
U

pd
at

e
O

nt
ol

og
y

A
ut

o-
U

pd
at

e

A
nn

ot
at

io
n

D
at

a
O

pt
im

is
at

io
n

Se
rv

ic
e

C
ol

oc
at

io
n

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e
Pu

bl
is

h
Su

bs
cr

ib
e

Pu
bl

is
h

Su
bs

cr
ib

e

Concepts and
Relations

Ontology Updates
Entities
Ontology Profiles
Ontology
Selections

Mapping Data
Annotation Data
Optimisation Data
User Data
User Request
User Response

180

URI Repository
Annotation Update
Logs

RDF Data
Repository

Consumer Statistics
Reuse Statistics

5.4.4 Service Discovery

Service discovery refers to the process of determining the host present in the container

orchestrator that should be scheduled next. In microservices architectures, it ascertains that

microservices applications process requests effectively such that it can handle workload

changes (Khan, 2017). Service discovery can be accomplished through two main ways. These

are a client-side discovery and server-side discovery technique. In a client-side discovery, a

client determines the location of the networks hosting available services and determines the

load balancing requests. The client then queries the service registry which hosts a database

containing instances of available services. A load balancer is then used to select the appropriate

service instance and the client’s request is channelled to the instance (Ghomi et al., 2017). On

the other hand, server-side discovery is a process where a client uses the load balancer to make

a request for services. The load balancer then queries for the availability of service instances

in the service registry and each request is routed wherever a service instance is available

(Milani & Navimipour, 2016). The similarity between the two options is that the service

registry registers and deregisters service instances. With a microservices architecture

comprising of multiple micro-applications like CloudSea does, the Service Discovery

capability in the orchestration of containers is very vital. From the comparison of both client-

side and server-side approaches to service discovery, the server-side approach is proposed

based on the scale of requests that the system is built for with availability of more computing

resources for the server-side approach. With the holistic semantic annotation architecture, it

works with a service registry to keep the identities (names) of the different micro-applications

and their IP address. So, once a request is channelled towards a specific micro-application, the

service discovery mechanism looks up the address of the micro-application and directs the

request to it accordingly.

181

5.5 CloudSea: The Proposed Holistic, Cloud-Driven,
Microservices-Based Architecture for Automated Semantic
Annotation of Web Documents

Section 5.4 has provided detailed descriptions of the architectural components for CloudSea;

from the design patterns developed for each of the CloudSea microservices. The overall

architecture encapsulates the novel concepts developed from this thesis. The requirement

specifications for a holistic semantic annotation proposed in Chapter 3 of this thesis have been

assessed and transformed into capabilities. These capabilities are demonstrated by the design

patterns of section 5.4. In addition, the design patterns are microservices-based and derived

from the cloud-driven pattern of the proposed Holistic Semantic Annotation Cloud Computing

Maturity Model in Chapter 4 of this thesis. Therefore, this research proposes a holistic, cloud-

driven and microservices-based architecture for automated semantic annotation of web

documents, as presented in Figure 5.17.

182

Figure 5. 17 – CloudSea: Holistic, Cloud-driven and Microservices-based Architecture for Automated
Semantic Annotation

183

From Figure 5.17, the orchestration layer offers several capabilities for the overall running of

the CloudSea architecture in a cloud computing environment. The orchestration engine

comprises of a database for storing data and several nodes for provisioning and deploying the

CloudSea microservices. With Cluster Management capabilities, a central system operates as

the server for the orchestration engine, managing the entire workflow for the layer. Such

management capabilities include resource replication, resource clustering and creating failover

systems. The scheduling of tasks such as running scheduled processes (like cron jobs or

schtasks) or assigning resources for processes is also a key capability of the orchestration

engine and this is commonly handled by a Cloud Workload Scheduler.

Furthermore, several monitoring activities are engaged in within the orchestration layer. This

includes monitoring for the usage of cloud resources, traffic monitoring and SLA monitoring.

Third-party solutions can be integrated to enhance monitoring in diverse ways, such as

processing the ingestion of data and providing reporting tools via enhanced visualisation

interfaces. Results obtained from monitoring metrics can also influence configuration

parameters. For instance, a microservice can be configured to automatically scale to multiple

instances when CPU utilisation reaches 80%. Based on performance monitoring metrics, this

value may need to be adjusted, either by increasing or reducing it. Furthermore, regarding the

automatic scaling of microservices, it provides a basis for large-scale service delivery which is

directly proportional to real time client request traffic, hence, optimising cloud computing

resources utilisation.

Capabilities for the management of security and policy issues are also facilitated by the

orchestration layer; providing mechanisms such as identity and access management, attribute-

based access control and SLA management systems. In addition, with the need for an

automated and dynamic means of a continuous stream of updates to several components within

the overall architecture, the orchestration layer facilitates continuous integration through a

synchronisation with a remote CI (Continuous Integration) server that pushes updates to the

microservices as often as needed. These foster the holistic perspective proposed for an

automated semantic annotation cloud service for web documents at large-scale which fully

maximises cloud computing benefits based on the cloud-driven pattern of deployment that it is

built on. Furthermore, the process flow for CloudSea Architecture is demonstrated with the

flowchart in Figure 5.18.

184

Figure 5. 18 – Process Flow for CloudSea Architecture

185

5.5 Chapter Summary

This chapter provided detailed description for one of the major contributions of the research.

With the conceptualisation of CloudSea in Chapter 4. Chapter 5 started with a design rationale

for CloudSea; lending the theory of ‘Design Patterns’ from software engineering. The

engineering methodology for CloudSea Design Patterns was also described. In addition,

CloudSea Pattern Language; which provides an inter-relationship between the different design

patterns and how each constitutes a building block in the overall conceptual system was

developed. These set the stage for developing the CloudSea Design Patterns, as ‘Microservices-

Based’; in line with the background concepts developed in Chapter 4 as well as the Cloud

Computing Maturity Model. The technical details for each of the microservices-based design

patterns was also detailed based on ‘Design Patterns’ standard structure and format. The

CloudSea Architecture for automated semantic annotation of web documents resulted from the

design patterns and was presented. Furthermore, a process flow for the architecture was

presented in the form of a flowchart.

186

Chapter 6: Prototype Implementation

This chapter provides details of a prototype implementation for CloudSea. This is based on the

development and deployment of functionalities for the Annotation On-the-Fly and Annotation

Data Storage microservices of CloudSea Architecture presented in Figure 5.17. The Annotation

On-the-Fly microservice utilises an API call for service delivery. The prototype

implementation is based on the “Cloud-Driven” model proposed in Chapter 4 of this thesis,

which, alongside leveraging microservices software architecture, also leverages hypervisor-

level and operating system-level virtualisations based on Amazon AWS virtual hosts and

Docker Containers respectively, container orchestration using Kubernetes platform as well as

the persistent deployment mechanism proposed in Chapter 4; based on a synchronisation

between a private GitHub repository and CircleCi to provide pipeline for a continuous stream

of updates and upgrades to the microservices within the architecture.

6.1 Requirements

This section provides the detailed requirements, both software and platform requirements for

the prototype implementation. The software requirements specify the features and behaviour

for the prototype while the platform requirements specify the features for the deployment

environment which is set up on Amazon AWS.

6.1.1 Software Requirements

 The prototype should allow users register for an account

 The prototype should allow users manage their account; such as logging in, updating

user profile, password reset and logging out

 The prototype should allow users submit URLs for annotation data generation

 The prototype should allow users view a list of all URLs they've submitted for semantic

annotation

 The prototype should allow users to re-submit a URL or URLs for annotation data

generation

 The prototype should automatically provide semantic annotation to a web document

with a call to the Annotation API via its endpoint

 The prototype should provide automatic semantic annotation to a web document for

every instance of the document being accessed online

187

 The prototype should provide a categorisation of 'Entity Types' on web documents

being semantically annotated

 The prototype should allow users turn 'on' or 'off' any of the 'Entity Types' annotated

within a document

 The prototype should allow users define the text on a web document that they want to

have semantically annotated

 The prototype should be developed based on Microservices Software Architecture

 The prototype needs to be responsive in nature; being usable on diverse types of devices

such as PCs, laptops, tablets, mobile devices, etc.

 The prototype should fulfil the 'Cloud-Driven' Methodology

 The prototype should be built using the PHP framework 'Laravel'

 The prototype should conform to good programming standards and best practices

6.1.2 Platform Requirements

• The prototype should be deployed within a cloud computing environment

• The prototype should leverage both hypervisor-level and operating system-level

virtualisation

• The prototype should leverage a container orchestration platform in the cloud

• The prototype should have a full application automation lifecycle for continuous

integration and delivery

• The prototype should be scalable to adequately respond to huge amounts of client

requests over a period

• Facilities should be available to manage the prototype remotely after deployment in a

cloud environment

• Facilities should be available to monitor the prototype after deployment in a cloud

environment

6.2 The Development Environment

This section describes the development environment for the actual build of the prototype. A

local workstation running Windows 10 operating system was utilised for developing the

prototype. The development required installing and configuring some software. A stack of

technologies known as XAMPP, bundled together and available online as a WinZip file was

downloaded and installed. The components of the bundle are as follows:

188

• Apache: A very popular web server for running web applications and responding to

client requests over protocols such as HTTP and HTTPS for data via the applications

running on it. It is developed and maintained by the Apache Software Foundation and

runs on up to 67% of web servers on the Web (CBROnline, 2019).

• MySQL: It stands for My Structured Query Language and is an open-source relational

database management system for storing data. It is commonly used as the database for

web applications, either within content management systems (such as Drupal, Joomla,

Magento and WordPress) or for custom-built applications. It utilises SQL queries for

carrying out CRUD (Create, Record, Update, Delete) functions on its database tables.

• PHP: PHP stands for Hypertext Pre-Processor and is an open-source server-side

scripting language popularly used on the Web. It is regarded as a scripting language

because its code is interpreted at runtime, offering a rich set of in-built functions for

processing and managing data transactions on the Web. PHP code is either processed

by its interpreter which runs as a module on a web server (in this case Apache Web

Server) or as a CGI (Common Gateway Interface) executable. It also offers a data

access layer which enables it to be ported with different types of databases, such as

MySQL, PostgreSQL, SQL Server and lots more.

6.3 Enabling Technologies

A wide range of enabling technologies were utilised for developing the prototype. These

includes programming languages, libraries, frameworks, open source software and lots more,

utilised for functionalities across the different architectural layers of the prototype. These are

detailed in the section, as follows.

6.3.1 Laravel Framework

The prototype has been developed using Laravel Framework. Laravel is an open source PHP

framework which is very popular for developing high-end, custom-built web applications. It

uses a model-view-controller design pattern and benefits from a rich list of components

commonly built into standard PHP frameworks. Laravel offers a platform for developing quick,

scalable and efficient web applications with its rich set of features. It has a set of system

requirements which needs to be met before running Laravel, most of which are required PHP

extensions (such as PDO, JSON and MbString PHP extensions) as well as a PHP engine.

Laravel 5.7 was installed, configured and utilised for the implementation and it required PHP

version 7.1.3 or higher as well as several other dependencies.

189

6.3.2 The Frontend Tools

Frontend refers to the web graphical user interface for interacting with the prototype application

logic. This was developed as a microservice on its own, in line with MVC design pattern and

microservices key principles. The development of the frontend was based on standard

technologies such as HTML, CSS, JavaScript and jQuery.

6.3.3 Redis

Redis is an acronym that stands for Remote Dictionary Server. It acts like a dictionary as it

stores data in “key-value” pairs within an in-memory data store for both strings and abstract

data types. It is very portable and a viable option for small to medium-sized distributed systems.

While Apache Kafka was proposed for CloudSea due to its benefits and robustness to manage

extremely large datasets, the prototype implementation was done using Redis in its place. This

is due to the minimal data being managed within the prototype in comparison with what is

expected for an actual product based on the CloudSea architecture. Implementing Apache

Kafka with its steep learning curve and vast requirement for resources for the prototype

implementation was observed to be quite imbalanced. Redis was deemed to be an appropriate

alternative for the purpose of a prototype implementation. It was utilised for inter-process

communication between the microservices, storing and transmitting data such as user sessions,

cookies and authentication tokens.

6.3.4 JavaScript Object-Notation (JSON)

JSON is a lightweight and portable file format which is commonly used for storing and

transferring data across multiple systems. The file format is interoperable which makes it a

versatile option for use in sharing and transporting data amongst several different types of

vendor-specific applications. Data within JSON files are stored as objects, comprising of an

“attribute-value” pair like the same type of pairing with HTML format. JSON files also contain

array data types for the data objects. JSON has been utilised for storing annotation data

retrieved from DBpedia knowledge graph. Objects within the JSON files constitute contextual

data which is utilised to provide semantic annotation for the corresponding web documents.

6.4 The Annotation API

While a web interface was developed for users’ registration, generation of annotation data for

URLs and their management, for the purpose of demonstrating the implemented functionality,

the annotation API approach to the semantic annotation process was the focus; in which case a

190

guest can still utilise the service and need not sign up for an account before being able to do

so. Please refer to Appendix B for screenshots demonstrating the web interface functionalities.

A request to the API service is required to provide semantic annotation by means of inserting

the API call between the <head> tags of a web document to be semantically annotated. The

request call invokes the Annotation on-the-fly microservice which processes the request on the

business logic layer of the microservice architecture as well as managing transactions with

other layers and with external components such as the DBpedia graph database. It responds by

providing the required semantic annotation to the web document. Figure 6.1 presents a

flowchart for the semantic annotation process either as a registered or guest user.

191

Figure 6. 1 – User Perspective for CloudSea Semantic Annotation Process

Please refer to section 7.1.2 for further explanation of the semantic annotation process.

Furthermore, Figure 6.2 presents a screenshot of a sample web page semantically annotated

using the Annotation API.

192

Figure 6. 2 – Automated Semantic Annotation using CloudSea API

6.5 The Deployment Environment

After developing the prototype on a local workstation, it was transferred to the deployment

environment. In line with the platform requirements in section 6.1.2 of this chapter, the

prototype has been developed to run from a cloud computing environment, hence, it had to be

deployed accordingly. While the prototype could have been deployed on any classification of

cloud platforms; public, private, hybrid or community clouds, it was deployed in a public cloud;

Amazon AWS. This is due to its proposed purpose, which is for a global and public access to

documents on the web and via the Internet. In addition, of the several available public cloud

service providers such as Google, Amazon, Microsoft, IBM, DigitalOcean, etc., any of them

could have been utilised. However, due to a significantly higher market share and the level of

technical details readily available on the web regarding their products, services and models for

offering these services, Amazon AWS was the preferred choice as a deployment environment.

Figure 6.3 presents a survey by CBN Insights (2019) which shows the market share for the top

cloud service providers in the market as at February 2019.

193

Figure 6. 3 – Market Share for Top Cloud Service Providers (CBN Insights, 2019)

6.5.1 Amazon AWS

After completing the development, a deployment environment was set-up on Amazon AWS

for the prototype. To set up the deployment environment, the following steps were taken:

• The creation of an Amazon AWS account via: https://aws.amazon.com

• The setting up and configuration of four EC2 instances for the deployment and its

orchestration using Kubernetes cluster. One of the instances was set up for the

Kubernetes master node and the other two for the worker nodes. The specification for

the EC2 instances is presented in Table 6.1.

Table 6. 1 – System Specification of EC2 Instances for CloudSea Kubernetes Cluster
Specification Value

Model M4 Large

Virtual CPUs 2 (Each is a thread of either an Intel Xeon core or an AMD
EPYC core)

Memory 8 GB

Storage Amazon EBS (Elastic Block Store)

AMI Debian Jessie AMD64

https://aws.amazon.com/

194

Hypervisor-Level Virtualisation HVM

Dedicated EBS Bandwidth 450 Mbps

Network Performance Moderate

• The installation and configuration of Apache Web Server, PHP and MySQL. For

detailed installation, configuration and deployment steps, please refer to Appendix C.

Figure 6.4 shows a screenshot of the Amazon AWS account with five EC2 instances. Three for

the CloudSea Kubernetes master node with two worker nodes. The fourth and fifth EC2

instances were for deployments of the prototype based on the ‘Cloud-Based Monolithic’ and

‘Cloud-Based Microservices’ maturity levels of the Cloud Computing Maturity Model

respectively. These would be utilised in the next chapter for empirical investigation.

Figure 6. 4 – Amazon AWS account running EC2 instances for CloudSea

6.5.2 Prototype Containerisation

As detailed in Chapter 5, containerisation is a type of virtualisation which allows applications

to run independent of the virtual host operating system, hence easily deployable and scalable

across platforms. The prototype microservices were containerised for operating system-level

virtualisation using Docker containers. A Dockerfile was created for each of the microservices

to build docker images for them. These Docker images are required to build the actual

195

containerised applications and includes the necessary configuration parameters and

dependencies for each microservice to be deployable and runnable as a container within the

orchestration platform. Figure 6.5 presents a screen shot of the “Frontend” microservice

containerisation configuration parameters using Dockerfile.

Figure 6. 5 – Screen shot of the Dockerfile for CloudSea Frontend Microservice

6.5.3 Installing, Configuring and Running an Orchestration Platform:
Kubernetes

With the prototype microservices already containerised using Docker containers and the cloud

computing infrastructure layer resources in place, the next step was to set up an orchestration

platform for the containers. While there are several container orchestrators available,

Kubernetes was the preferred choice for this implementation. Some of the other available

options include Docker Swarm, Apache Mesos Marathon, Amazon Elastic Container Service,

Microsoft Azure Container Service and HashiCorp Nomad. The choice of Kubernetes was

196

based on the extensive list of features it provides and supports; with a very large support

community as an open source software. In addition, the technical documentation available for

Kubernetes was observed to be very comprehensive for use either as a beginner, intermediate

or an expert. Furthermore, it is very popular and widely adopted for use in the industry

compared to the others. For instance, Docker provides Docker Swarm for container

orchestration. However, it has adopted Kubernetes as the official container orchestrator for its

docker containers (Handy, 2019).

Kubernetes is an open source software that automates the deployment, scaling, monitoring and

management of containerised applications (Kubernetes.io, 2019). It manages application

container operations across clusters of hosts; helping to replicate containers, providing

automatic scaling for cluster containers, facilitating load balancing across multiple containers,

rolling application container upgrades, rescheduling failed containers, controlling the exposure

of network ports to external systems and lots more (Wu, 2017). The fundamental building block

of Kubernetes is called a pod. The function of a pod is to encapsulate containers that are tightly

coupled and are co-located, sharing the same set of resources. Some other resources that pods

encapsulate include storage resources and network IPs. During the creation of a pod, it is

necessary to specify the amount of CPU, memory, and ephemeral storage it requires

(Kubernetes.io, 2019). The specifications are then available to the scheduler for decisions on

where to place pods within the cluster. Figure 6.6 shows the popularity among different

container orchestrators, with Kubernetes being significantly more popular than the others.

197

Figure 6. 6 – Container Orchestration Engines Popularity (CNCF.io, 2018)

Kubernetes was installed and configured as a cluster, with the master node running on an EC2

instance and two worker nodes each running on separate EC2 instances. For the CloudSea

Kubernetes cluster, some of the most prominent components include the nodes, namespaces,

deployments, pods and addons. These are described as follows.

6.5.3.1 The Kubernetes Nodes

The CloudSea Kubernetes cluster comprises of three nodes; a master node and two worker

nodes. The master node is on an EC2 instance and runs the control plane of the Kubernetes

cluster. A Kubernetes cluster control plane is the central point of the cluster as it contains

components that control, manage and provide needed functionalities for the entire operations

of the cluster. The components involved are as follows:

• API Server: It provides an interface for managing the state of the cluster. This includes

querying and modifying component data over a RESTful API, providing the ability to

execute CRUD (Create, Read, Update and Delete) functions on different cluster

components. Kubectl; a command-line interface utility makes use of the API server for

its operations as well. This was installed and configured on a local machine for

interacting with the Kubernetes API Server.

198

• Scheduler: It assigns pods to specific worker nodes and updates the pod definition

within the API server accordingly. The pod-to-node assignment is based on the

availability of computing resources for running each of the pods. These includes both

system and application pods.

• Controller Manager: It comprises of several types of controllers executing operations

for a specific type of resource. Some of these controllers include pod, deployment,

replication, namespace and service controllers. They carry out various functions for

these resources by observing any changes within the resources and carrying out

operations in response to any observations to ensure the continuous optimal functioning

of the resources.

• Etcd: It is the database for the cluster; storing stateful data as well as both configuration

data and metadata, allowing each of the nodes within the cluster to read and write data

to it.

The worker nodes each comprise of a Kubelet, Kube Proxy and Pods. Their roles are as follows:

• Kubelet: It functions as the engine room for each worker node by managing and

monitoring activities. It registers the node with the API server on the master node and

then listens on the API server for any pods that have been scheduled to run on it. Once

pods have been scheduled to run on a node, the kubelet assigns the necessary resources

including the container runtime to run the pod and continuously monitors metrics such

as status, health, etc. of each pod and transmits this back to the API server.

• Kube Proxy: This is responsible for establishing connections between clients and the

services they have requested for. It keeps a record of all running pods and their locations

within the node. When a service request has multiple pods running for it, the Kube

Proxy performs load balancing to distribute requests among the different pods.

• Pods: These are the smallest units of deployment on the cluster. A pod would contain

one or more containers that are deployed together. The CloudSea prototype runs as pods

across the two worker nodes and are automatically distributed by the master node based

on the availability of computing resources.

The architecture of the CloudSea Kubernetes cluster is presented in Figure 6.7.

199

Figure 6. 7 – Architecture of CloudSea Kubernetes Cluster

Figure 6.8 also provides a screenshot of the CloudSea Kubernetes nodes via the Kubernetes

Dashboard.

Figure 6. 8 – Screenshot of CloudSea Kubernetes Master and Worker Nodes

Upon installing and configuring Kubectl locally, the command $ kubectl proxy is used to

launch the dashboard from the command-line interface. The CloudSea Kubernetes nodes can

200

also be checked from the command-line with the command: $ kubectl get nodes as shown in

Figure 6.9. While most of the CloudSea Kubernetes cluster resources can be accessed via either

the graphical user interface; the dashboard or command-line interface utilising Kubectl, most

of the subsequent descriptions would be via Kubectl; the command-line utility for Kubernetes.

Figure 6. 9 – Screenshot of CloudSea Kubernetes Master and Worker Nodes from CLI

System metrics such as real time CPU and memory utilisation of the Kubernetes nodes can also

be checked. Figure 6.10 shows a screenshot of real time CPU and memory utilisation of the

CloudSea Kubernetes nodes using the $ kubectl get top nodes command.

Figure 6. 10 – Real time CPU & Memory Usage of CloudSea Kubernetes Nodes

6.5.3.2 The Kubernetes Namespaces

Namespaces in Kubernetes provides a means of categorising resources within the cluster into

different groups. While this is an optional feature, it can be helpful in managing and monitoring

resources as these can be done based on the namespace such resources belong to. CloudSea

Kubernetes was configured with the following namespaces:

• Default: As the name implies, it is a default namespace which is used for objects not

assigned to a specific namespace. For the CloudSea Kubernetes cluster, the prototype

microservices were not assigned to any specific namespace during their deployment,

hence they all belong to the ‘Default’ namespace.

201

• Kube-ingress: This namespace caters for resources relating to ‘ingress’; the mechanism

for exposing specific resources to the public by defining routing rules for each service

being exposed for access from outside of the cluster.

• Kube-public: This was created automatically by the Kubernetes system and is generally

assigned for objects within the cluster that are meant to be publicly accessible within

the cluster.

• Kube-system: This namespace is for system-generated objects such as pods for kube-

proxy, kube-dns and others.

• Monitoring: It was set up for the monitoring resources implemented for the cluster. This

includes Prometheus, Grafana and the ELK (Elasticsearch, Logstash and Kibana) stack.

As an example, Figure 6.11 shows a screenshot of the CloudSea Kubernetes cluster pods within

the ‘Kube-system’ namespace with the number of instances running, their status, restarts and

age (i.e. number of days since their creation) using the $ kubectl get pods -n kube-system

command.

Figure 6. 11 - Screenshot of CloudSea Kubernetes Kube-System Namespace Pods

6.5.3.3 The Kubernetes Deployments

Deployments in Kubernetes refers to containers that have been instantiated to run within the

Kubernetes cluster. These could be application containers; for the application developed to run

on Kubernetes or system containers; for the effective running of the cluster itself which could

be a native Kubernetes container or for any third-party software installed and configured to run

within the cluster. The CloudSea Kubernetes cluster has several application and system

202

containers deployed on it and Figure 6.12 shows a screenshot of all deployments under the

default and kube-system namespaces using the $ kubectl get deployments -n default and

kubectl get deployments -n kube-system commands respectively.

Figure 6. 12 – Screenshot of CloudSea Kubernetes Deployments by Namespaces

A brief description of all the various deployments by their namespaces is as follows:

• Default Namespace

 cloud-optimised: for the deployed monolithic and containerised prototype

version to enable experimental evaluation comparison (detailed in Chapter 7).

 cloud-optimised-mysql: the mysql database deployment for “cloud-optimised”

 cloudsea-annotation-service: for the annotation-on-the-fly microservice,

allowing users to semantically annotate web documents by embedding the API

within the corresponding web documents.

 cloudsea-annotation-mysql: the mysql database deployment for “cloud-

annotation-service”

 cloudsea-auth-service: for the user-management microservice, allowing

registration, user login, password reset and log out functions.

 cloudsea-auth-service-mysql: the mysql database deployment for “cloudsea-

auth-service”

203

 cloudsea-front-end: for the frontend microservice, providing a graphical user

interface for the web application.

 cloudsea-front-end-mysql: mysql database for “cloudsea-front-mysql”.

However, as the microservice does not require a database, this was not utilised

 cloudsea-mysql: this was also not utilised but was kept as a backup for the mysql

databases.

• Monitoring Namespace

 cerebro: It is a web admin tool for Elasticsearch (Elasticsearch is a component

of the ELK stack). It comes with the ELK stack.

 es-coordinating: An Elasticsearch node for the distribution of search queries to

different nodes and the aggregation of all received search results.

 es-ingest: It is an Elasticsearch component for pre-processing documents before

their indexing.

 grafana: A visualisation tool for displaying application performance metrics in

a web graphical user interface.

 kibana: A visualisation tool for displaying log metrics in a web graphical user

interface.

 kube-state-metrics: For listening to the Kubernetes API server and generating

metrics for deployments, nodes and pods. It is focused on the healthy running

of these components.

 prometheus-adapter: For gathering custom metrics which are utilised by the

HPA (Horizontal Pod Auto-Scaling) for auto-scaling pods when necessary.

Some of such custom metrics includes CPU and memory utilisation.

 prometheus-operator: For creating, configuring and managing the Prometheus

installation. It acts as a central system to ensure the effective running of the

different instances of Prometheus objects running on the cluster.

• Kube System Namespace

 dns-controller: It creates DNS records for objects within the Kubernetes cluster

so they can be accessed based on the record.

 kube-dns: It is the DNS service of the Kubernetes cluster, converting hostnames

into IP addresses for specifying and identifying the location of different objects

within the cluster.

204

 kube-dns-autoscaler: It is responsible for the automatic horizontal scaling of the

Kubernetes DNS service based on the number of requests at every moment.

 kubernetes-dashboard: It is responsible for the web user interface of

Kubernetes, through which cluster objects can be monitored and updated.

 monitoring-influxdb: It is responsible for storing time-series data in relation to

monitoring metrics and events within the kube-system namespace, providing a

high-speed data ingestion and compression.

• Kube Ingress Namespace

 ingress-default-http-backend: It defines a default backend for any routes (such

as HTTP or HTTPS requests) that are not specified for a service within the

cluster.

 ingress-nginx: It is responsible for exposing routes such as ‘HTTP’ and

‘HTTPS’ from outside the cluster to specific services within the cluster. For the

CloudSea cluster, this has been utilised to expose deployments such as the

‘Frontend’ microservice of the prototype to a domain name.

6.5.3.4 The Kubernetes Pods

Each CloudSea Kubernetes namespace has several pods running under it. With Kubernetes,

pods contain one or more containers and are the smallest units of deployment. Figure 6.13

shows a screenshot of all the running pods within the ‘Default’ namespace of the cluster using

the $ kubectl get pods -n default command.

Figure 6. 13 – List of Pods within CloudSea Default Namespace

205

To check running pods within any other namespace, the namespace would have to be specified

in the command, as shown in Figure 6.14 which lists all running pods within the ‘kube-system’

namespace using the $ kubectl get pods -n kube-system command.

Figure 6. 14 – List of Pods under ‘kube-system’ namespace of CloudSea Kubernetes

6.5.4 Installing, Configuring and Running Prometheus + Grafana for
Monitoring

Some additional software were installed and configured for the CloudSea Kubernetes cluster.

Kubernetes provides a means of integrating with several other third-party applications to

enhance application performance in various ways. Some areas through which other solutions

can be integrated with Kubernetes include co-ordination, service discovery, remote procedure

call, service proxy and so on (IBM Cloud Education, 2019). For CloudSea Kubernetes;

Prometheus, Grafana and ELK (Elasticsearch, Logstash and Kibana) stack were installed and

configured as well.

The CloudSea Kubernetes cluster utilises Prometheus + Grafana for monitoring various

resources within the cluster. Prometheus is an open source software which is used for this

purpose with respect to the deployment of applications in the cloud. Prometheus can be

installed on a virtual host as a stand-alone or within a Kubernetes cluster (Prometheus.io, 2019).

For CloudSea, it runs within the Kubernetes cluster and is responsible for monitoring several

metrics such as CPU utilisation, memory utilisation, network activity and lots more for

deployments, nodes and pods across different namespaces.

206

Grafana on the other hand is a visualisation tool which can be utilised with several data stores

to present metrics of application data in visual forms; utilising several graphical representations

(Grafana Labs, 2019). The combination of Prometheus and Grafana implies that while the

former pulls application metrics from the Kubernetes cluster, the latter renders these data in

compelling visualisation formats. Just like Prometheus, Grafana is an open source tool. Figure

6.15 is a screenshot of Grafana running as a node port over a secure socket layer (SSL) and

displaying real time CPU utilisation of the pods under the ‘kube-ingress’ namespace.

Figure 6. 15 – Monitoring Metrics for ‘kube-ingress’ Namespace via Grafana

6.5.5 Installing, Configuring and Running the ELK Stack for Logging

ELK is an acronym that stands for the different open source technologies that make up a stack.

These are Elasticsearch, Logstash and Kibana (Elastic.co, 2019). Elasticsearch is a search and

analytics engine which is built on Apache Lucene. It is used for several purposes such as search

and log analytics (Elastic.co; Elasticsearch, 2019). For this implementation, Elasticsearch has

been utilised for searching and aggregating logs across the entire Kubernetes cluster. The

different sources of logs include the namespaces (kube-system, kube-ingress, monitoring,

207

default, etc.), pods (both system and application pods) as well as the several containers running

with the cluster.

Logstash is a tool for data ingestion, with the capability to ingest data from multiple data

sources, transform the data based on pre-defined or default configuration values and transfer

the processed data to specified destinations (Elastic.co; Logstash, 2019). It receives the

different logs generated by Elasticsearch for this implementation, transforms and transfers the

data to Kibana. Kibana sits on top of the stack, providing visualisation for the aggregated logs

received (Elastic.co; Kibana, 2019). The visualisation ensures that these logs can be explored,

reviewed and analysed accordingly. Figure 6.16 shows a screenshot of Kibana with aggregated

log analytics from the CloudSea Kubernetes cluster over a 15-minute period. Furthermore,

please refer to Appendix E for sample log entries fetched from Kibana for application pods

within the cluster.

Figure 6. 16 – Kibana Log Aggregation Sample Data for CloudSea Kubernetes cluster

6.7 Chapter Summary

This chapter has provided a description of steps taken towards the implementation of a

prototype for the CloudSea Architecture proposed in Chapter 5 up to its deployment and

running from a public cloud infrastructure. The development environment, supporting

technologies and deployment environment were also described. The next chapter will focus on

208

functional, comparative and experimental evaluation for CloudSea Architecture and the

prototype implementation.

209

Chapter 7: Research Evaluation

This chapter provides evaluation for the research in three different contexts. Firstly, a

functionality evaluation is conducted for CloudSea prototype implementation as a

demonstration of its core functionalities. Secondly, a comparative evaluation of CloudSea

Architecture is conducted to demonstrate its novelty through a rigorous comparison with

existing solutions in the same domain. Thirdly, an experimental evaluation of the proposed

Cloud Computing Maturity Model for Holistic Semantic Annotation is conducted by carrying

out empirical investigation on different instances of the prototype, based on the patterns defined

in the model.

7.1 Functionality Evaluation

This section provides an evaluation for the core functionality of CloudSea prototype

implementation. Firstly, an API status check is conducted to confirm its availability.

Subsequently, a demonstration of its usability for automated semantic annotation and its

capability to automatically scale to multiple instances of same microservice in response to

client request counts is conducted.

7.1.1 API Status Check

The availability of an API can be checked by confirming its status through a command or series

of commands. One popularly used command to check an API availability is known as cURL.

cURL is an acronym for Client for URLs, and it is a software utility command tool that is used

for transferring data to or from a network server using one of several supported protocols such

as HTTP, HTTPS, FTP, FTPS, Telnet, LDAP and lots more. It comprises of two sub-utilities;

cURL and libcurl. cURL provides the command-line for receiving or sending resources such

as files using the URL web protocol. libcurl on the other hand, is a portable utility that provides

support for client-side transfer library protocols (Stenberg, 2019). An API call using cURL

provides a code to confirm the status of the API in terms of its availability and validating for

providing functionality. Status code ‘200’ confirms the availability and validity of an API

endpoint. Figure 7.1 provides a screen shot of the cURL command with CloudSea API endpoint

which confirms its validity.

210

Figure 7. 1 – API Status Check for CloudSea API endpoint

From Figure 7.1, it can be observed that the status code for the CloudSea API endpoint is ‘200’

which confirms that a call to the API is successful.

7.1.2 Annotation API Functionality

In this section, further evaluation of the CloudSea Annotation API is provided by describing

the procedure for utilising it to provide online, real time and automatic semantic annotation to

web documents. The procedure is a very straightforward one, making it as easy as possible for

web documents semantic annotation. The process can be implemented by several categories of

people such as website administrators, website content editors, website designers, web

developers and lots more. It is as follows:

1. Create a web page or open an existing one for editing: This use case will be done with an

existing web page as a web page creation method varies across several types of web

applications, frameworks or content management systems. A simplistic method of creating and

utilising a physical web file on a server is demonstrated here. Figure 7.2 is an example of a web

page in which the API is to be called.

211

Figure 7. 2 – A sample web document source code before API call insertion

2. Insert the API call within the <head> tags of the web page and define a <div> tag with id set

as: "text" around the text you wish to annotate. The API endpoint needs to be inserted into web

page source code before the closing <head> tag of the file. This is to call the Annotation On-

the-fly Microservice to provide semantic annotation for the web document. The “id” attribute

is defined with value as “text” for the content within the web document that is to be

semantically annotated. Figure 7.3 displays the same web page now with the API call inserted

into it and a user specification for the web document content to be semantically annotated.

212

Figure 7. 3 – Web page with the API call and specification for content to be annotated

3. Save the changes to the web page

4. Access the web page via any web browser of choice. Figure 7.4 presents a screen shot of the

semantically annotated web page on-the-fly.

Figure 7. 4 – A screenshot of the semantically annotated web document using the API

213

5. Toggle 'on' or 'off' any annotation types you are not interested in. The different categories of

annotations on the web document can be toggled ‘on’ or ‘off’ based on user preferences as

shown in Figure 7.5.

Figure 7. 5 – A screenshot of the web document with some annotation types toggled off

It is also noteworthy to mention that the API can be utilised with web documents with dynamic

content, in which case it will provide semantic annotation for the text resulting from processing

data at the application logic and data access layers. Please refer to Appendix B for functionality

evaluation of the web interface features through screenshots for the interfaces.

With the web-scale audience for utilising such a service, the ability to automatically scale in

and out based on user requests is very vital. Based on this, the microservices were configured

for automatic scaling. This provides the application with the capability to meet user demands

and maximise computing resources usage. Within the CloudSea Kubernetes cluster, four

deployments were configured for auto-scaling from the command-line using kubectl. To

display the auto-scaling configurations defined for each deployment, the following command

is utilised: $ kubectl get hpa. The command executed for auto-scaling is as follows:

$ kubectl autoscale deployment <deployment-name> --min=1 --max=10 --cpu-percent=80

The components of the command are as follows:

• kubectl: the command-line utility that sends an executable statement to the Kubernetes
master node

• autoscale: the command being sent to the Kubernetes master node
• deployment: specifying the type of resource that the command is meant for

214

• <deployment-name>: where ‘deployment-name’ is the name of the deployment to be
auto-scaled

• min: specifies the minimum count of instances for the deployment
• max: specifies the maximum count that the deployment should auto-scale to
• cpu-percent: specifies the CPU percentage utilisation threshold before auto-scaling

Figure 7.6 shows a screenshot of the auto-scaling configurations for each of the deployments

as the first command executed. The next command executed is to configure auto-scaling for

another deployment: ‘cloudsea-annotation-service’. The third command from the screenshot

shows the first command executed again and then the new auto-scaling configuration which

has been added to the previously configured ones.

Figure 7. 6 – Configuration for auto-scaling a microservice when CPU utilisation hits 80%

Furthermore, Figure 7.7. shows the “cloudsea-annotation-service” automatically scaling

through operating system-level virtualisation to eight instances based on a load test of 100,000

user requests over a period of 10 mins.

215

Figure 7. 7 – Auto-Scaling for Annotation Microservice through OS-level Virtualisation

7.2 Comparative Evaluation

The purpose of this section is to provide a comparison of the CloudSea architecture with

existing automatic semantic annotation solutions, both from academic publications and the

industry. The basis of comparison are two folds; firstly, based on the set of requirements

identified as necessary for addressing the automatic semantic annotation challenge which have

been comprehensively reviewed, analysed and developed into capabilities in this thesis.

Secondly, from the evaluation of the existing solutions as well as through the arguments for

the solutions presented by CloudSea in this thesis, some other factors emerge which constitute

vital components for drawing comparisons. A detailed search was conducted to identify the list

of solutions utilised for the comparative evaluation; both proposed in academic publications

and available as industry tools.

From the comparative evaluation conducted, it was observed that no existing solution meets all

the identified requirements to foster an automated system that delivers semantic annotation

holistically and as a service to web documents, with most of the requirements unavailable in

216

existing solutions. While the set of requirements for holistic semantic annotation identified in

this thesis are proven from research, it was further observed that none of the existing solutions

provides any other perspective; either holistic or non-holistic that presents a solution for

addressing automatic semantic annotation challenges as CloudSea presents. From the

evaluation, annotation data management; to ensure consistency between web documents and

annotation data appears to be one of the major areas uncovered among most existing solutions

such as Alec et al. (2016), Brank et al. (2018), Albukhitan et al. (2018) and Fiorelli et al. (2015).

It is opined that the unavailability of the “Cloud-Driven” pattern proposed in this thesis or any

similar pattern among existing solutions might be a major factor for such. This is because

annotation data management for a scale as large as the web implies a very high level of

computing processing and resources optimisation which can be a daunting task to achieve

without the adoption of cloud computing and a mechanism for optimising and fully maximising

cloud computing benefits, as “Cloud-Driven” presents. In addition, ontology management to

ensure accuracy of annotation data and consistency with web documents can be observed to be

an issue among some solutions (Gao et al., 2017; Espinoza & Melga, 2015; Salih, 2013).

Furthermore, the general level of automation within different components, as CloudSea

presents, to foster a dynamic and continuous delivery of automated semantic annotation as a

service is not observable within any of the existing solutions.

It is worth mentioning as well however, that most industry solutions are not focused on

semantic annotation, rather on text analytics using semantic technologies and provide wide

ranges of solutions based on these technologies. Hence, while a comparison with such solutions

was conducted, it is quite important to recognise the goal of such solutions which then impacts

on the semantic annotation capabilities they foster. Considering the instance-based nature of

text analytics and its scope which is often enterprise-level, in comparison to semantic

annotation of web documents which is not necessarily instance-based (as some web document

content may not change over very long periods of time) and has a much larger scope; global-

level, the unavailability of some semantic annotation requirements in the text analytic tools is

understandable.

In addition to facilitating only some of the identified holistic semantic annotation requirements

and, in most cases, not leveraging cloud computing or only doing so minimally, some other

factors were observed. For instance, some existing solutions were observed to provide semantic

annotation for plain text or locally imported documents, without a facility to do so for web

documents via a URL. Some of these include Brank et al. (2018) and Yosef et al. (2011). Some

217

others also exist as a web browser plugin (Fiorelli et al., 2015) which neither fosters a universal

usage nor ensures consistency, with an array of possible challenges such as compatibility with

browsers when they are upgraded, differing requirements from one browser to another, the

need to install the plugin among others. Overall, this comparative evaluation demonstrates the

novelty of the proposed CloudSea architecture and its capability to address the automation

challenge for semantic annotation of web documents at large based on its holistic perspective,

cloud-driven methodology, microservices-based architecture as well as other novel

specifications presented in this thesis. Table 7.1 presents a summary of the comparative

evaluation.

Table 7. 1 – Summary Comparison of CloudSea with Existing Systems

T
oo

ls

C
on

ce
pt

 E
xt

ra
ct

io
n

O
nt

ol
og

y
Po

pu
la

tio
n

O
nt

ol
og

y
Se

le
ct

io
n

O
nt

ol
og

y
M

ap
pi

ng

A
nn

ot
at

io
n

D
at

a
St

or
ag

e

A
nn

ot
at

io
n

O
n-

th
e-

Fl
y

A
nn

ot
at

io
n

D
at

a
R

eu
se

A
nn

ot
at

io
n

D
at

a
Sh

ar
in

g

A
nn

ot
at

io
n

D
at

a
A

ut
o-

U
pd

at
e

O
nt

ol
og

y
A

ut
o-

U
pd

at
e

A
nn

ot
at

io
n

D
at

a
O

pt
im

is
at

io
n

A
nn

ot
at

io
n

D
at

a
C

ol
oc

at
io

n

O
th

er
 R

em
ar

ks

The Proposed Requirements for Holistic Semantic Annotation

Alec et al. (2016) A

Brank et al. (2018) A, B

Fiorelli et al. (2015) A, C

Gao et al. (2017) A

Albukhitan et al. (2018) A
Da Silva & Cavalcanti
(2014) A

Yosef et al. (2011) A, B
Espinoza & Melga
(2015) A

Salih (2013) A
DBpedia Spotlight
(Michel et al., 2018) G

Aylien (Aylien, 2019;
Michel et al., 2018) D, E

Ambiverse (Ambiverse,
2019; Michel et al.,
2018)

 D, F

Cogito API D, E
Dandelion (Michel et al.,
2018) ? ? D, G

218

GateCloud (Gate Cloud,
2019; Tablan et al.,
2013)

 ? D, I

OntoText (OntoText,
2019) ? D, E

Open Calais (Michel et
al., 2018) ? ? ? ? D, G, H

PoolParty (PoolParty,
2019) ? D, E

TextRazor (Michel et al.,
2018) D, E

Proposed CloudSea J

Description for Symbols in “Other Remarks” Column

A – It does not leverage cloud computing in any context
B - It only annotates copied text or loaded from a document. It does not provide annotation via web
document URL
C - It exists as a Mozilla Firefox plugin, hence, not universally usable on the Web.
D – It focuses on text analysis using NLP and leveraging semantic technologies. Hence, the semantic
annotation capability is only accessible programmatically; requiring a programmer or developer for
implementation.
E - Leverages cloud computing but exact context not clear.
F - No longer in service
G - No reference to leveraging cloud computing.
H - No adequate documentation available online. Hence, some features are not determinable.
I – Only leverages cloud computing at the "Cloud-Based" maturity level.
J - The proposed architecture by this thesis, which is holistic, cloud-driven and microservices-based for an
automated system that provides managed services for continuous delivery of automatic semantic annotation
to web documents at large.

7.3 Experimental Evaluation

An experiment is an empirical investigation that examines fundamental relations and processes.

Experimentation in software engineering involves the gathering of evidence, through

measurements and experiments that involves software systems such as products, processes and

resources (Menzies et al., 2016). The data obtained is intended to be used as the basis of theories

about specific processes within information systems. These theories backed up by data is a

fundamental tenet of scientific methods. Several research groups primarily use empirical and

experimental techniques for conducting research. Data analysis is an important component of

experimental evaluation and is based on a design template for the experiment. While the

analysis summarises data collected and treatment of the data, it is also important to note that

the analysis is not expected to interpret results and data should be analysed in accordance with

the design. Furthermore, the outcomes of an experiment need to be properly analysed to

generate knowledge. The adoption of good practices towards finding explanations for results

219

and following standard reporting guidelines will help in generating this knowledge (Jedlitschka

et al., 2008).

Chapter 4 of this thesis proposed a Cloud Computing Maturity Model for Holistic Semantic

Annotation which defined different maturity levels for application deployment in the cloud

generally and specifically for holistic semantic annotation. This section presents an

experimental evaluation for the different instances of the prototype developed in this thesis.

The differences are based on the maturity levels identified within the cloud computing maturity

model. The objective is to gather, present and analyse performance metrics for each one of

them. The analysis would be based on the results obtained and how they relate to the research

hypothesis and critical evaluations made over the course of this research. For this experimental

evaluation, several series of iterative load tests were carried out on the API endpoints for each

of the different versions of the prototype. The API endpoint in each case is the medium through

which the application provides automatic and holistic semantic annotation for corresponding

web documents based on the ‘Annotation On-the-Fly’ microservice. Testing API endpoints is

a standard and well-accepted means of evaluating API functionality. According to Wang et al.

(2017), load tests for API endpoints provides a relatively accurate means of evaluating them.

This is also supported by Stahlin et al. (2016) and Bangare et al. (2012). One of the major

reasons for this is because it provides a precise and stream-lined test in comparison with testing

via a web document that calls an API. For the latter, the different requests made by the web

document other than the API request would also constitute determinants in the overall values

obtained, creating an additional task of separating API request results from non-API request

results. Several types of requests are commonly made by web documents via protocols such as

HTTP, HTTPS, database query requests and lots more.

Furthermore, the load tests were carried out using a very popular cloud-based API endpoints

load testing tool known as Loader.io (Loader.io, 2019) and accessible via https://loader.io as

at the time of writing. Loader.io provides cloud-based load and scalability testing via the SaaS

cloud model for web applications and API endpoints. It is a product of SendGrid Labs; an

Amazon AWS partner and providers of an AWS email service; SendGrid Email Delivery

Service, a leading industry product delivering efficient and scalable, cloud-based email services

(AWS Marketplace, 2019). The tests were carried out based on a set of test configuration

parameters which define the settings and requirements for each of them. Table 7.2 presents the

test configuration settings.

https://loader.io/

220

Table 7. 2 – Load Tests Configuration for Experimental Evaluation
Description Value

Environment Loader.io (Cloud-Based API Endpoints Load Testing)

Test Type Clients per test

Clients Type Virtual

Clients Count Ranging from 10,000 to 100,000

Test Duration Ranging from 1 to 10 minutes

Error Threshold 50%

Timeout 30 seconds

Iteration Count 7

Test Command GET Requests

Non-Cloud Monolithic

http://www.a009324a.co.uk/mono/public/annotation/annotate/guest.js

Non-Cloud Microservices

http://a009324a.co.uk/micro/annotation-service/public/api/annotate/guest.js

Cloud-Based Monolithic

http://cloud-based.a009324a.co.uk/annotation/annotate/guest.js

Cloud-Based Microservices

http://cloud-based-micro.a009324a.co.uk/api/annotate/guest.js

Cloud-Optimised

http://cloud-optimised.a009324a.co.uk/annotation/annotate/guest.js

Cloud-Driven

http://cloud-annotation-service.a009324a.co.uk/api/annotate/guest.js

Scenario 1 10,000 requests over 10 minutes

Scenario 2 20,000 requests over 10 minutes

Scenario 3 40,000 requests over 10 minutes

Scenario 4 100,000 requests over 10 minutes

Scenario 5 100,000 requests over 5 minutes

Scenario 6 100,000 requests over 1 minute

Metric 1 Average Response Time (in milliseconds)

Metric 2 Successful Responses (count)

Metric 3 Timeout Errors (count)

Metric 4 Network Errors (count)

Metric 5 400/500 Errors (count)

Metric 6 Average Error Rate (percentage)

http://www.a009324a.co.uk/mono/public/annotation/annotate/guest.js
http://a009324a.co.uk/micro/annotation-service/public/api/annotate/guest.js
http://cloud-based.a009324a.co.uk/annotation/annotate/guest.js
http://cloud-based-micro.a009324a.co.uk/api/annotate/guest.js
http://cloud-optimised.a009324a.co.uk/annotation/annotate/guest.js
http://cloud-annotation-service.a009324a.co.uk/api/annotate/guest.js

221

Average API

Response Time

(in milliseconds)

200

From Table 7.2, the different metrics listed are described below:

Metric 1: Average Response Time

Response Time in the context of client/server architecture refers to the time between a server

receiving client request and the time client receives a response to the request from the server

(Loader.io, 2019). For each test, the response time for every request made is monitored by

Loader.io. The average response time is the average value of time taken to get responses to all

requests made for each iteration and is specified in milliseconds.

Metric 2: Successful Responses

For each test, several requests will be made via Loader.io load generators and each request is

expected to receive a response from the API endpoint. This parameter would count the number

of successful responses to requests made for each iterative test. This value would be expected

to be as close to 100% as possible and closely observed to note when the percentage success

rate starts dropping.

Metric 3: Timeout Errors

Timeout refers to the amount of time a client making a request will wait for a response before

giving up on receiving it. If the requesting client has waited for the specified timeout period

and has not received any response, it stops waiting and constitutes a timeout for the specific

request. So, the timeout error is defined by instances when the threshold for the requesting

client to wait for a response passed without any response being received. The threshold defined

for the configuration settings was 50%.

Metric 4: Network Errors

A network error implies that the application or server making a request cannot reach the

application/server that is meant to process and respond to the request. Several reasons could be

responsible for a network error. This includes DNS resolution errors, TCP connection problems

or the server closing/resetting the connection with no response (Loader.io). In this scenario, a

network error can occur if the domain name assigned for the specific application version does

not resolve to the Amazon AWS IP address or if there is a TCP connectivity issue. It could also

222

be that the API is unavailable or unable to process the request due to the size of the load to

process at that point in time which could be excessive for the application or the server based

on available computing resources such as CPU and memory. In such cases, there will be no

response at all from the API. This will be measured as counts, in terms of the number of

network errors obtained during a specific test iteration.

Metric 5: 400/500 Errors

400/500 errors refer to a series of error codes obtainable over a request such as HTTP in a

client-server model. Error codes starting with ‘4’ implies a client-side error while ones starting

with ‘5’ implies a server-side error. While several error codes belong to this classification,

Table 7.3 presents the most common ones over HTTP as obtained from Oracle Corporation

(2018).

Table 7. 3 – Common 400/500 Error Codes for Web Server Responses
Error Code Description

400 Bad input parameter. This should be further described by the error message.

401 Unauthorised. This implies that an invalid authorisation token was passed by

the client.

404 Not Found. This implies that the resource being requested for cannot be found.

405 Method Not allowed. This implies that the HTTP verb is unsupported.

409 Conflict. This implies that there is a conflict in the request.

411 Length Required. This implies that a length is required to be specified for the

content header

412 Pre-condition failed.

429 Too many requests. This implies requests are too many for the server to handle

at the time.

500 Internal Server Error. A wide range of issues could cause this and would need

further troubleshooting.

503 Service Unavailable. This implies that the service being requested for is

unavailable currently.

Metric 6: Average Error Rate

This returns the average value of errors obtained from timeout, network and 400/500 errors.

As these parameters are based on counts, the average value across the three is obtained and

223

presented as a percentage value. This value would be expected to be as close as possible to

0.00%. It would be vital to observe when this value starts rising for the tests.

GET Command

The GET command is a HTTP request method for data transfer between a client and a server

over a network. The command can take one or more parameters which constitutes data sent to

a server. The format and data type are expected to be understandable by the server and able to

be processed. It is a standard method for making requests to API endpoints over HTTP

(Loader.io). The remainder of this section will be focused on the different load experimental

tests, their objectives, specific settings, data gathering and presentation, analysis of the data

and comparisons where applicable.

7.3.1 Non-Cloud Monolithic Maturity Level

An instance of the developed monolithic version of CloudSea prototype was set up on a

traditional web hosting account which is a non-cloud computing environment. While this

instance has same fundamental functionality as the CloudSea prototype, it runs from a non-

cloud computing environment and is based on the monolithic software architectural pattern and

design. Hence, the purpose for setting this up is to carry out load tests on it and observe its

performance. The performance metrics can then be evaluated accordingly. There is no access

to server specification or performance monitoring tools for the public hosting platform.

However, the load test environment is cloud-based, and the test configuration is as presented

in Table 7.2.

7.3.1.1 Scenario 1

Scenario 1 (as defined in Table 7.2) experiments conducted for this maturity level provided

results as presented in Table 7.4.

Table 7. 4 – Scenario 1 Results for Non-Cloud Monolithic
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 442 9987 11 0 0 / 0 0.11 %
Test 2 871 9966 1 0 0 / 27 0.28 %
Test 3 333 9997 0 0 0 / 0 0.0 %
Test 4 832 9929 2 0 0 / 0 0.02 %
Test 5 418 9997 0 0 0 / 0 0.0 %
Test 6 501 9996 0 0 0 / 0 0.0 %
Test 7 487 9996 0 0 0 / 0 0.0 %
 555 99.81 % 2 0 0 / 4 0.06 %

224

From Table 7.4, it can be noted that seven load tests were carried out for ‘Non-Cloud

Monolithic’ with 10,000 client requests for each iteration. The tests were based on settings

defined in Table 7.2. From the results, it can be observed that average response time for the

API was 555 milliseconds for 10,000 requests distributed over a period of 10 minutes; across

7 iterations. It can also be observed that 99.81% of the responses were successful over the

series of tests. The total timeout count was fourteen while there were twenty-seven ‘400/500’

error codes, with all of them being ‘500’ error codes. This implies that the errors were server-

side; pointing to possible issues with availability of adequate server resources to process the

requests. The overall error rate was approximately 0.06%. The average response time was quite

high (at 555 milliseconds) and both timeout and ‘500’ errors are values which signalled some

level of stress on the API based on the available computing resources. Figure 7.8 presents a

graph of average values for response time and error rates.

Figure 7. 8 - Average Response Time and Error Rate for Non-Cloud Monolithic Scenario 1

With values obtained for “Scenario 1”, it was necessary to conduct “Scenario 2” in which the

client request count doubled from 10,000 to 20,000.

7.3.1.2 Scenario 2

For “Scenario 2” experiments with this maturity level, results obtained are presented in Table

7.5.

225

Table 7. 5 - Scenario 2 Results for Non-Cloud Monolithic
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 4241 17811 168 0 0 / 1974 10.71 %
Test 2 4424 17776 175 0 0 / 1879 10.27 %
Test 3 6899 16750 170 0 0 / 2982 15.76 %
Test 4 6357 17164 166 0 0 / 2343 12.55 %
Test 5 5369 16767 182 0 0 / 2885 15.43 %
Test 6 4853 17122 169 0 0 / 2373 12.71 %
Test 7 7800 17501 229 0 0 / 2151 11.90 %
Average 5706 86.35 % 180 0 0 / 2370 12.76 %

From Table 7.5, a further decline in the application performance can be noticed. There was an

increase of up to 700% in the average response time; from 555 to 5,706 milliseconds. In

addition, the successful response rate dropped from 99.81% to 86.35%. Similar trends can be

noticed across the timeout and ‘400/500’ error rates. It can be generally observed that the

application struggled to cope with the 20,000-client request count for “Scenario 2”. Figure 7.9

presents average values for response time and error rates for these.

Figure 7. 9 - Average Response Time and Error Rate for Non-Cloud Monolithic Scenario 2

7.3.1.3 Analysis

From test results obtained for this maturity level, while the server specification is unknown and

would vary across different web hosting solutions available, it shows that essential cloud

characteristics such as elasticity, resource pooling, rapid provisioning and lots more are very

vital with applications intended for large-scale utilisation on the web. As the hosting

environment for this instance is non-cloud, cloud computing features such as auto-scaling and

load balancing could not be configured to provide cloud computing characteristics and enable

the application cope with the number of requests. The next section presents results for the ‘Non-

Cloud Microservices’ Maturity Level which is deployed on same hosting platform.

226

7.3.2 Non-Cloud Microservices Maturity Level

An instance of CloudSea prototype based on the ‘Non-Cloud Microservices’ Maturity Level of

the Holistic Semantic Annotation Cloud Computing Maturity Model presented in Chapter 4

was also set up in a non-cloud computing environment and load tested for experimental

evaluation. It was set up on the same hosting platform as the ‘Non-Cloud Monolithic’ described

in section 7.3.1. With these two running from the same platform, it provides a very good basis

for comparing their performance. Hence, the purpose for this experiment is to compare the

same web application built using two different software architectural patterns; monolithic and

microservices architecture. The comparisons are based on the differences drawn between them

within the model in Chapter 4 and summarised in Figure 4.14. Two series of load tests were

carried out in this case too; Scenario 1 and 2, with each one comprising of seven iterations. The

test configuration is same, as described in Table 7.2.

7.3.2.1 Scenario 1

Results obtained for Scenario 1 for this maturity level are presented in Table 7.6.

Table 7. 6 - Scenario 1 Results for Non-Cloud Microservices
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 279 10000 0 0 0 / 0 0.0 %
Test 2 276 10000 0 0 0 / 0 0.0 %
Test 3 268 10000 0 0 0 / 0 0.0 %
Test 4 261 10000 0 0 0 / 0 0.0 %
Test 5 274 10000 0 0 0 / 0 0.0 %
Test 6 267 10000 0 0 0 / 0 0.0 %
Test 7 268 10000 0 0 0 / 0 0.0 %
Average 270 100% 0 0 0 / 0 0.0 %

From Table 7.6, it can be observed that this pattern performed better than its monolithic version

for Scenario 1. While the average response time for ‘Non-Cloud Monolithic’ was 555

milliseconds, it was 270 milliseconds for the ‘Non-Cloud Microservices’, constituting over

105% better response time. In addition, improvements can be noticed with the successful

response and error rates, with this maturity level reporting 100% and 0.0% for them

respectively; implying a complete successful response and no errors. Figure 7.10 presents the

average values for response time and error rates for these.

227

Figure 7. 10 - Average Response Time and Error Rate for Non-Cloud Microservices Scenario 1

7.3.2.2 Scenario 2

With the impressive set of results obtained in the first series (Scenario 1), the second series of

tests (Scenario 2) for this maturity level were conducted and results obtained are presented in

Table 7.7.

Table 7. 7 - Scenario 2 Results for Non-Cloud Microservices
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 444 19968 31 0 0 / 0 0.16 %
Test 2 588 19967 0 0 0 / 0 0.0 %
Test 3 2589 18524 142 0 0 / 1027 5.85 %
Test 4 8151 17380 190 0 0 / 2065 11.28 %
Test 5 6883 17613 208 0 0 / 2139 11.74 %
Test 6 6631 17207 158 0 0 / 2282 12.20 %
Test 7 8165 16479 156 0 0 / 3154 16.55 %
Average 4778 90.81 % 126 0 0 / 1524 8.25 %

From Table 7.7, it can be observed that in a similar way to the ‘Non-Cloud Monolithic’, this

maturity level showed a decline in performance from Scenario 1 to Scenario 2. It can be

observed that the average response time increased from 270 milliseconds to 4778 milliseconds.

In addition, the successful response rate dropped from 100% to 90.81%. The same trends can

be noticed with timeout and ‘400/500’ errors which were zero with its values for Scenario 1.

Figure 7.11 presents a graph of the average response time and error rates for these series of

tests.

228

Figure 7. 11 - Average Response Time and Error Rates for Non-Cloud Microservices Scenario 2

7.3.2.3 Comparative Analysis

Over the two series of tests for both ‘Non-Cloud Monolithic’ and ‘Non-Cloud Microservices’

maturity levels, while their performances declined from Scenario 1 to 2, the results obtained

for the ‘Non-Cloud Microservices’ were observed to be better across the different performance

metrics in comparison with those of the ‘Non-Cloud Monolithic’. Based on the huge

performance decline after Scenario 2 for both versions, no further tests were conducted for

them. While the ‘Non-Cloud Microservices’ performed better than the ‘Non-Cloud

Monolithic’, they are both still inhibited with being hosted in a non-cloud environment which

does not facilitate capabilities such as auto-scaling, load balancing, elasticity and lots more.

However, it provides a valid basis for concluding that the microservices architectural pattern

provides better software agility than monolithic / N-tier architectures as concluded with the

model summarised in Figure 4.14. Furthermore, as these two could not be configured for

automatic scaling to cater for the additional requests, since they are deployed in a non-cloud

computing environment, it provides a level of support to the concept of leveraging cloud

computing to deliver automated semantic annotation on a large-scale to web documents.

7.3.3 Cloud-Based Monolithic Maturity Level

This instance is based on the ‘Cloud-Based Monolithic’ Maturity Level of the Holistic

Semantic Annotation Cloud Computing Maturity Model presented in Chapter 4. As the name

suggests, it is hosted in a cloud environment; Amazon AWS. However, it is based on a

monolithic architectural pattern and focuses on leveraging the IaaS model of cloud computing.

The deployment technique is a direct migration from a non-cloud environment to a virtual host

in the cloud without any changes to the application code or architectural pattern. Hence, the

purpose of this test is in two phases. Firstly, to provide a comparison between this maturity

level and the ‘Non-Cloud Monolithic’ as the comparison would be between same application

229

deployed in different environments. Cloud computing elasticity features such as auto-scaling

is not configured for the ‘Cloud-Based Monolithic’ as doing so would give it a competitive

advantage over the ‘Non-Cloud Monolithic’. Secondly, to provide a comparison between this

maturity level and the ‘Non-Cloud Microservices’, in which case, results would be observed

for any progression in performance, with cognisance to the differences in their architectural

patterns. Some specification about the virtual host for this deployment is detailed in Table 7.8.

Table 7. 8 - Virtual Host Specification for Cloud-Based Monolithic
Description Value

Instance Type m4.large

Virtual CPUs 2

RAM 4 GB

Amazon Image Type Canonical, Ubuntu, 18.04 LTS, AMD64 bionic image

Platform Ubuntu

Virtualisation HVM

With this maturity level, Scenarios 1 and 2 (of Table 7.2) were conducted. Scenario 3 was not

conducted due to the observable stress after Scenario 2 as was the case with the previously

tested maturity levels; Non-Cloud Monolithic and Non-Cloud Microservices.

7.3.3.1 Scenario 1

Table 7.9 presents results obtained from Scenario 1 experiments for this maturity level.

Table 7. 9 - Scenario 1 Results for Cloud-Based Monolithic
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 108 9996 0 0 0 / 0 0.0 %
Test 2 92 9997 0 0 0 / 0 0.0 %
Test 3 88 9997 0 0 0 / 0 0.0 %
Test 4 89 9998 0 0 0 / 0 0.0 %
Test 5 85 9997 0 0 0 / 0 0.0 %
Test 6 87 9996 0 0 0 / 0 0.0 %
Test 7 89 9997 0 0 0 / 0 0.0 %
Average 91 99.97 % 0 0 0 / 0 0.0 %

Results obtained for these tests as presented in Table 7.9 were impressive; with an average

response time of 91 milliseconds, average successful response rate of 99.97% and an

infinitesimal error rate. Figure 7.12 presents the average response time and error rate.

230

Figure 7. 12 - Average Response Time and Error Rate for Cloud-Based Monolithic Scenario 1

7.3.3.2 Scenario 2

With the relatively good performance with Scenario 1, Scenario 2 was conducted, and results

obtained are presented in Table 7.10.

Table 7. 10 - Scenario 2 Results for Cloud-Based Monolithic
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 452 19852 144 0 0 / 0 0.72 %
Test 2 616 19812 184 0 0 / 0 0.92 %
Test 3 755 19653 336 0 0 / 0 0.17 %
Test 4 928 19483 345 0 0 / 0 0.17 %
Test 5 543 19837 148 0 0 / 0 0.74 %
Test 6 615 19822 169 0 0 / 0 0.85 %
Test 7 678 19784 185 0 0 / 0 0.93 %
Average 655 98.75 % 215 0 0 / 0 0.64 %

From the results obtained as presented in Table 7.10, a decline in performance can be observed

for this too from Scenario 1 to 2. There was a drastic effect of the increased load as the average

response time increased from 91 milliseconds to 655 milliseconds, representing an increase of

about 620%. In addition, timeout errors can be noticed from the results which suggests

inadequate computing resources for the application to respond to client requests before the

timeout threshold of 30 seconds. With the values obtained from Table 7.10, no further load

tests were carried out on this deployment based on the emergence of a significant percentage

of errors in the context of server responses to client requests. Figure 7.13 presents the average

response time and error rate.

231

Figure 7. 13 - Average Response Time and Error Rate for Cloud-Based Monolithic Scenario 2

7.3.3.3 Comparative Analysis

Results obtained for this maturity level can be observed to be better than those of the ‘Non-

Cloud Monolithic’ across both Scenarios 1 and 2. Considering that they are exactly same

application, hosted in different environments, this deployment can be observed to have

leveraged cloud computing to perform better and produce results accordingly. For comparison

with the ‘Non-Cloud Microservices’, while this deployment runs on a monolithic architecture,

it still had a better overall performance than the ‘Non-Cloud Microservices’. From the results

obtained for Scenario 1, this deployment had a 197% better response time; at 91 milliseconds

compared to 270 milliseconds for the ‘Non-Cloud Microservices’.

It was a wider margin for Scenario 2 at an average of 655 to 4778 milliseconds, representing a

630% difference. These suggest that the ‘Cloud-Based Monolithic’ benefitted from being

hosted in a cloud computing environment, even in comparison with a microservices

application. Overall, results obtained with this deployment and their comparison with the

previous two are in line with the Holistic Semantic Annotation Cloud Computing Maturity

Model presented in Chapter 4. From the results comparison, even though microservices offers

better software agility, it was observed that leveraging cloud computing can greatly enhance

application performance due to resources capability for high performance and data processing,

in comparison with a non-cloud computing environment.

7.3.4 Cloud-Based Microservices Maturity Level

This maturity level demonstrates an instance based on the microservices software architecture

and hosted in the cloud. However, despite its potentials to leverage operating system-level

virtualisation due to the architectural pattern, it has been deployed directly on a virtual host,

like with the ‘Cloud-Based Monolithic’. Hence, the comparison in this case would be with the

232

‘Cloud-Based Monolithic’ to observe if same pattern noticed with the two non-cloud

deployments would emerge as well. Scenarios 1,2 and 3 were conducted for this deployment

and results obtained are analysed as follows.

7.3.4.1 Scenario 1

Results obtained for Scenario 1 with this deployment are presented in Table 7.11.

Table 7. 11 – Scenario 1 Results for Cloud-Based Microservices
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 94 9995 0 0 0 / 0 0.0 %
Test 2 80 9995 0 0 0 / 0 0.0 %
Test 3 80 9994 0 0 0 / 0 0.0 %
Test 4 77 9995 0 0 0 / 0 0.0 %
Test 5 79 9995 0 0 0 / 0 0.0 %
Test 6 82 9994 0 0 0 / 0 0.0 %
Test 7 82 9993 0 0 0 / 0 0.0 %
Average 82 99.94 % 0 0 0 / 0 0.0 %

From Table 7.11, an impressive set of results can be observed; with an average response rate

of 82 milliseconds, successful response rate of 99.94% and quite an infinitesimal amount of

errors. Figure 7.14 further presents the average response time and error rate.

Figure 7. 14 – Average Response Time and Error Rate for Cloud-Based Microservices Scenario 1

7.3.4.2 Scenario 2

Scenario 2 results for this deployment are presented in Table 7.12.

233

Table 7. 12 – Scenario 2 Results for Cloud-Based Microservices
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 191 19995 0 0 0 / 0 0.0 %
Test 2 251 19983 0 0 0 / 0 0.0 %
Test 3 290 19973 24 0 0 / 0 0.12 %
Test 4 384 19852 126 0 0 / 0 0.63 %
Test 5 391 19946 31 0 0 / 0 0.15 %
Test 6 141 19999 0 0 0 / 0 0.0 %
Test 7 147 19997 0 0 0 / 0 0.0 %
Average 256 99.82 % 26 0 0 / 0 0.13 %

From Table 7.12, while the overall application performance declined in comparison with the

Scenario 1 results, the average response time, at 256 milliseconds is relatively alright even

though the average error rate is slightly high in this context at 0.13%. Figure 7.15 further

presents the average response time and error rate.

Figure 7. 15 – Average Response Time and Error Rate for Cloud-Based Microservices Scenario 2

With the error rate from Scenario 2 at 0.13% compared to the 0.64% obtained for same tests

with the ‘Cloud-Based Monolithic’, Scenario 3 was conducted, and results obtained are

presented in section 7.3.4.3.

7.3.4.3 Scenario 3

Scenario 3 results obtained for this deployment are presented in Table 7.13.

Table 7. 13 – Scenario 3 Results for Cloud-Based Microservices
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 8081 30348 8846 0 0 / 0 22.57 %
Test 2 11647 25412 13633 0 0 / 0 34.92 %
Test 3 8123 30119 8991 0 0 / 0 22.99 %
Test 4 5858 33417 6099 0 0 / 0 15.43 %
Test 5 13880 22555 16574 0 0 / 0 42.36 %
Test 6 12821 24264 15185 0 0 / 0 34.89 %
Test 7 16232 17937 17986 0 0 / 0 50.07 %
Average 10949 65.73 % 12473 0 0 / 0 31.89 %

234

The Scenario 3 results obtained for this deployment, as presented in Table 7.13 demonstrates

a significant level of stress on the deployment with the 40,000 client requests count per

iteration; producing a much higher value of 31.89% error rate. Figure 7.16 further presents the

average response time and error rate.

Figure 7. 16 – Average Response Time and Error Rate for Cloud-Based Microservices Scenario 3

7.3.4.4 Comparative Analysis

The results obtained for this deployment can be observed to have been better than those of the

‘Cloud-Based Monolithic’. Even though they are hosted on virtual hosts with same

specification and capabilities, the ‘Cloud-Based Microservices’ yielded better results. This

suggests that the latter is leveraging its microservices software architecture, which is the only

difference between both. With an average response rate of 655 milliseconds for the ‘Cloud-

Based Monolithic’ at Scenario 2, this pattern returned at less than half of that value averagely;

256 milliseconds. A similar pattern was observed between the two non-cloud deployments.

Overall, two significant patterns can be observed from the ‘Cloud-Based Microservices’

results. Firstly, in comparison with the ‘Cloud-Based Monolithic’, it produced better results

which suggests that the microservices architecture provided better software agility. This same

pattern was observed between the ‘Non-Cloud Monolithic’ and ‘Non-Cloud Microservices’ as

well. Secondly, the cloud-based deployments can be observed to have performed better than

the non-cloud ones; in line with the relatively high-performance that can be obtained from

cloud computing.

7.3.5 Cloud-Optimised Maturity Level

This instance represents the ‘Cloud-Optimised’ Maturity Level of the Holistic Cloud

Computing Maturity Model and as described in Figure 4.14. It is deployed in the cloud with

operating system-level virtualisation using Docker containers and running it on Kubernetes

Container Orchestration platform as a monolith application. The experiments in this case aim

235

to demonstrate the impact of operating system-level virtualisation and subsequently, the

implementation of orchestration. So, even though this deployment runs on a monolithic

architecture, it is “optimised” for cloud environment through the OS-level virtualisation and

orchestration. Hence, this maturity level would be compared with the ‘Cloud-Based

Monolithic’ which is same application but neither leverages OS-level virtualisation nor

orchestration. It would also be compared with the ‘Cloud-Based Microservices’ to observe if

there is the expected maturity, in terms of progressive performance. The test configuration is

still same as defined in Table 7.2. A summary overview of the specification for the deployment

platform is provided in Table 7.14.

Table 7. 14 – CloudSea Kubernetes Cluster Summary Overview
Description Value

Number of EC2 Instances 3

Instance Type m4.large

Kubernetes Master Node 1 EC2 Instance

Kubernetes Worker Nodes 2 EC2 Instances

Virtual CPUs (per instance) 2

RAM (per instance) 4 GB

Virtualisation Operating System Level

Amazon Image Type Kubernetes 1.10 Base Image - Debian Jessie amd64

OS-level Virtualisation Engine Docker Containers

Orchestration Engine Kubernetes

7.3.5.1 Scenario 1

From the experiments conducted for this deployment based on “Scenario 1”, results obtained

are presented in Table 7.15.

Table 7. 15 - Scenario 1 Results for Cloud-Optimised
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 151 9996 0 0 0 / 0 0.0 %
Test 2 128 9994 0 0 0 / 0 0.0 %
Test 3 132 9997 0 0 0 / 0 0.0 %
Test 4 173 9996 0 0 0 / 0 0.0 %
Test 5 129 9998 0 0 0 / 0 0.0 %
Test 6 132 9997 0 0 0 / 0 0.0 %
Test 7 156 9998 0 0 0 / 0 0.0 %
Average 143 99.97 % 0 0 0 / 0 0.0 %

236

From Table 7.15, the average response time for Scenario 1 in this case can be observed to be

143 milliseconds, with an average success rate of 99.97% and an infinitesimal error rate. While

these values are impressive, a quick comparison with Scenario 1 results for both ‘Cloud-Based’

maturity levels show a decline. However, further tests would be conducted before a

comparative analysis. Figure 7.17 presents the average response and error rates for these tests.

Figure 7. 17 - Average Response Time and Error Rate for Cloud-Optimised Scenario 1

7.3.5.2 Scenario 2

Scenario 2 results for this deployment are presented in Table 7.16.

Table 7. 16 - Scenario 2 Results for Cloud-Optimised
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 205 20000 0 0 0 / 0 0.0 %
Test 2 202 20000 0 0 0 / 0 0.0 %
Test 3 128 20000 0 0 0 / 0 0.0 %
Test 4 170 20000 0 0 0 / 0 0.0 %
Test 5 212 20000 0 0 0 / 0 0.0 %
Test 6 255 20000 0 0 0 / 0 0.0 %
Test 7 131 20000 0 0 0 / 0 0.0 %
Average 186 100 % 0 0 0 / 0 0.0 %

From Table 7.16, it can be observed that the pattern still performed well with Scenario 2,

returning an average response time of 186 milliseconds, a 100% successful response rate and

no errors at all. While the average response time increased from Scenario 1 to Scenario 2, a

value of 186 milliseconds is still regarded as healthy. In addition, the average success rate can

be observed to have been better. Figure 7.18 presents a graph of the average response time and

error rates for these tests.

237

Figure 7. 18 - Average Response Time and Error Rates for Cloud-Optimised Scenario 2

7.3.5.3 Scenario 3

The third series of tests; Scenario 3 was conducted based on results obtained from Scenario 2.

The results are presented in Table 7.17.

Table 7. 17 - Scenario 3 Results for Cloud-Optimised
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 133 40000 0 0 0 / 0 0.0 %
Test 2 144 40000 0 0 0 / 1 0.0 %
Test 3 134 40000 0 0 0 / 0 0.0 %
Test 4 148 40000 0 0 0 / 0 0.0 %
Test 5 133 40000 0 0 0 / 0 0.0 %
Test 6 138 39999 0 0 0 / 0 0.0 %
Test 7 136 40000 0 0 0 / 0 0.0 %
Average 138 100% 0 0 0 / 1 0.0 %

From Table 7.17, Scenario 3 results for this maturity level can be observed to have been even

better than its Scenario 1 and 2 results despite the increase to 40,000-client request count in

this case. The successful response rate was approximately 100% with only one 500 code error

out of the entire 280,000 requests over the seven iterations. Figure 7.19 presents the average

response time and error rates for these.

Figure 7. 19 - Average Response Time and Error Rate for Cloud-Optimised Scenario 3

238

7.3.5.4 Scenario 4

With the Scenario 3 results obtained, Scenario 4 was conducted for this maturity level and

results obtained are presented in Table 7.18.

Table 7. 18 - Scenario 4 Results for Cloud-Optimised
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 13030 4491 596 0 0 / 4394 52.63 %*
Test 2 11252 2191 159 0 0 / 2033 50.01 %*
Test 3 9668 2213 37 0 0 / 2290 51.26 %*
Test 4 6928 478 0 0 0 / 2853 85.65 %*
Test 5 6741 233 0 0 0 / 3094 93.0 %*
Test 6 12751 839 0 0 0 / 1775 67.9 %*
Test 7 10219 1277 0 0 0 / 1412 52.51 %*
Average 10084 1.68 % 113 0 0 / 2550 64.71 %
*Tests were aborted automatically after reaching the 50% error threshold defined in test configuration.
Hence, the average error rates were at the point of test abortion.

A drastic difference in performance can be observed with the ‘Cloud-Optimised’ maturity level

from results obtained for Scenario 3 to 4, as presented in Table 7.18. While the tests were

automatically aborted before processing all requests for each iteration due to the 50% error

threshold, the impact of 100,000 client requests per iteration can be observed to have greatly

impacted the results negatively. Figure 7.20 presents a graph of the average response time and

error rates for these.

Figure 7. 20 - Average Response Time and Error Rates for Cloud-Optimised Scenario 4

7.3.5.5 Comparative Analysis

Results obtained for Scenarios 1 and 2 can be observed to have been better with the ‘Cloud-

Based Monolithic’ than the ‘Cloud-Optimised’. However, while performance for the former

declined drastically with higher load stress in Scenario 3, the ‘Cloud-Optimised’ can be

observed to have produced even better results, suggesting the OS-level virtualisation influence;

a factor the ‘Cloud-Based Monolithic’ does not leverage. In comparison with the ‘Cloud-Based

239

Microservices’, a similar pattern can be observed with Scenarios 1 and 2, in which ‘Cloud-

Based Microservices’ performed better but declined drastically for Scenario 3. The suggestion

from that pattern is that while both ‘Cloud-Based’ maturity levels struggled with increased

loads, the ‘Cloud-Optimised’ was able to leverage OS-level virtualisation and cope with the

increased loads accordingly.

Overall, the cloud-optimised version was observed to have performed very well until the client

request count was increased to 100,000 requests over 10 minutes for Scenario 4. Based on the

features described in Figure 4.14 for the ‘Cloud-Optimised’ maturity level, it is important to

note that with OS-level virtualisation and container orchestration, additional resources could

still be configured for the deployment to automatically scale and be able to process the 100,000

requests per 10 minutes which it could not do with Scenario 4. However, for the purpose of

these experiments, an upper limit of resources substantial enough for the evaluation was set.

7.3.6 Cloud-Driven Maturity Level

This instance is based on the ‘Cloud-Driven’ Maturity Level of the Holistic Semantic

Annotation Cloud Maturity Model of Figure 4.14. As described in Chapter 4, it is an enhanced

‘Cloud-Native’ Maturity Level as they are same application. However, the ‘Cloud-Driven’

Maturity Level involves the integration of a Continuous Integration Mechanism (as presented

in Figure 4.12) to facilitate an automated semantic annotation application life cycle. Hence, the

tests in this section applies to both ‘Cloud-Native’ and ‘Cloud-Driven’ Maturity Levels. Like

the ‘Cloud-Optimised’, these also leverage OS-level virtualisation using Docker containers and

run on the Kubernetes container orchestration platform. However, unlike the monolithic

‘Cloud-Optimised’, these are based on microservices architecture. It is also worth reiterating

that the prototype implementation in Chapter 6 is based on the ‘Cloud-Driven’ maturity level.

Cloud-Driven, as defined in this research requires an automated process for continuous

integration and continuous delivery to a cloud-native application; in which case provides an

automation lifecycle required for data-intensive and large-scale use applications on the web.

The tests in this case would enable a comparison with the monolithic ‘Cloud-Optimised’ as

well as observe if the performance progression of the maturity model persists. The test

configuration is still same, as presented in Table 7.2.

7.3.6.1 Scenario 1

From Scenario 1 for this maturity level, the results obtained are presented in Table 7.19.

240

Table 7. 19 - Scenario 1 Results for Cloud-Driven
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 125 9996 0 0 0 / 0 0.0 %
Test 2 124 9994 0 0 0 / 0 0.0 %
Test 3 125 9997 0 0 0 / 0 0.0 %
Test 4 142 9996 0 0 0 / 0 0.0 %
Test 5 130 9998 0 0 0 / 0 0.0 %
Test 6 125 9997 0 0 0 / 0 0.0 %
Test 7 121 9998 0 0 0 / 0 0.0 %
Average 127 99.97 % 0 0 0 / 0 0.0 %

From Table 7.19, an impressive set of results can be observed for this maturity level; with an

average response time of 127 milliseconds, a 99.97% successful response rate and no errors.

These results can also be observed to represent a better performance than those obtained with

Scenario 1 results for ‘Cloud-Optimised’ as presented in Table 7.15. Figure 7.21 presents the

average response time and error rates for these.

Figure 7. 21 - Average Response Time and Error Rates for Cloud-Driven Scenario 1

7.3.6.2 Scenario 2

From Scenario 2 for this maturity level, the results obtained are presented in Table 7.20.

Table 7. 20 - Scenario 2 Results for Cloud-Driven
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 124 20000 0 0 0 / 0 0.0 %
Test 2 124 19997 0 0 0 / 0 0.0 %
Test 3 123 20000 0 0 0 / 0 0.0 %
Test 4 121 20000 0 0 0 / 0 0.0 %
Test 5 122 19999 0 0 0 / 0 0.0 %
Test 6 120 20000 0 0 0 / 0 0.0 %
Test 7 143 20000 0 0 0 / 0 0.0 %
Average 125 99.997 % 0 0 0 / 0 0.0 %

241

The data presented in Table 7.20 for Scenario 2 here shows a similar pattern with Scenario 1

results, in Table 7.19, with a slightly better performance in this case. Figure 7.22 further

presents the average response time and error rates for these.

Figure 7. 22 - Average Response Time and Error Rates for Cloud-Driven Scenario 2

7.3.6.3 Scenario 3

Scenario 3 results for this maturity level are presented in Table 7.21.

Table 7. 21 - Scenario 3 Results for Cloud-Driven
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 129 40000 0 0 0 / 0 0.0 %
Test 2 126 40000 0 0 0 / 0 0.0 %
Test 3 121 39999 0 0 0 / 0 0.0 %
Test 4 124 40000 0 0 0 / 0 0.0 %
Test 5 126 40000 0 0 0 / 0 0.0 %
Test 6 127 39998 0 0 0 / 0 0.0 %
Test 7 122 39998 0 0 0 / 0 0.0 %
Average 125 100 % 0 0 0 / 0 0.0 %

The Scenario 3 results also demonstrate an impressive performance, with yet a slightly better

performance than Scenario 2 results. With the two maturity levels that leverage OS-level

virtualisation, a pattern of better performance from Scenarios 1 to 3 can be observed, which as

suggested earlier seems to demonstrate the impact of OS-level virtualisation for both. Figure

7.23 further presents the average response time and error rates for these.

242

Figure 7. 23 - Average Response Time and Error Rates for Cloud-Driven Scenario 3

7.3.6.4 Scenario 4

Based on the Scenario 3 results obtained, Scenario 4 was also conducted, and the results are

presented in Table 7.22.

Table 7. 22 - Scenario 4 Results for Cloud-Driven
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 125 100000 0 0 0 / 0 0.0 %
Test 2 126 100000 0 0 0 / 0 0.0 %
Test 3 125 99999 0 0 0 / 0 0.0 %
Test 4 124 99999 0 0 0 / 0 0.0 %
Test 5 125 100000 0 0 0 / 0 0.0 %
Test 6 123 99992 0 0 0 / 0 0.0 %
Test 7 124 100000 0 0 0 / 0 0.0 %
Average 124 100 % 0 0 0 / 0 0.0 %

From Table 7.22, a consistency in the results from Scenarios 1 to 4 can be observed, with the

performance metrics being just slightly varying across them. This implies that the different

client request counts; from 10,000 to 100,000 over 10 minutes have all been within the

capability of the deployment to process. Figure 7.24 further presents the average response time

and error rates for these.

Figure 7. 24 – Average Response Time and Error Rates for Cloud-Driven Scenario 4

243

7.3.6.5 Scenario 5

With the impressive results obtained across Scenarios 1 to 4, Scenario 5 which has the same

test configuration as Scenario 4 except for the reduction in processing time from 10 minutes to

5 minutes was conducted and the results obtained are presented in Table 7.23.

Table 7. 23 - Scenario 5 Results for Cloud-Driven
 Average

Response Time
Successful
Reponses

Timeout
Errors

Network
Errors

400/500
Errors

Average
Error Rate

Test 1 10637 9842 1002 0 0 / 10472 53.83 %
Test 2 13293 12049 1400 0 0 / 12130 52.89 %
Test 3 11739 3139 54 0 0 / 3723 54.61 %
Average 11890 8.34 % 819 0 0 / 8775 53.78 %

The Scenario 5 results as presented in Table 7.23 can be observed to have provided a good

level of stress on the deployment, with an average response time of 11,890 milliseconds, a

successful response rate of 8.34 %, average 819 timeout errors, average 8,775 500 code errors

and an overall error rate of 53.78 % at the point of the 50% error threshold set in the test

configuration. Figure 7.25 further presents the average response time and error rates for these.

Figure 7. 25 - Average Response Time & Error Rates for Cloud-Driven Scenario 5

With the results obtained from Scenario 5 as presented in Table 7.23 and Figure 7.25, Scenario

6 which is based on sending 100,000 client requests to the API over a period of one minute

was not conducted due to the stress level achieved already.

7.3.6.6 Comparative Analysis

In drawing comparisons between ‘Cloud-Optimised’ and ‘Cloud-Driven’, a close level of

performance can be observed between them from Scenarios 1 to 3, with ‘Cloud-Driven’

providing slightly better results. However, Scenario 4 results shows a massive difference

between them with ‘Cloud-Optimised’ returning an error rate of 64.71% while ‘Cloud-Driven’

had a zero-error rate. Similar huge differences can be noticed with the average response time

244

and successful responses for both during Scenario 4. The pattern of microservices performing

better than a monolith is once again observed with these two. The close level of performance

observed between them across Scenarios 1 to 3 seem to be attributable to the size and scale of

the ‘Cloud-Driven’ in comparison to the ‘Cloud-Optimised’. With only 3 microservices for the

‘Cloud-Driven’, it constitutes a ratio of 3:1 with the ‘Cloud-Optimised’. With a full-fledged

implementation and an evolvement over time, the ratio would increase, hence, the impact of

the decomposition offered by the microservices software architecture would be expected to

become more prevalent and impact on the results of a comparison between both. While

progression can be observed with the maturity levels from one to another, results obtained with

Scenario 1 for ‘Cloud-Based Microservices’ emerged the best with an average response time

of 82 milliseconds. However, with the other scenarios, ‘Cloud-Driven’ produced the best

results and the progression remained linear henceforth.

Based on the overall results obtained, ‘Cloud-Driven’ has demonstrated the ability of the

prototype implementation detailed in Chapter 6 to provide large-scale, automated and holistic

semantic annotation to documents on the web. With more resources and its extension to

implement the other microservices of CloudSea, as described in Chapter 5, it presents huge

potentials towards the semantic web. Finally, it is noteworthy to reiterate that these tests did

not utilise hypervisor-level virtualisation. Doing so would enable the different cloud maturity

levels to be able to meet even higher levels of demand without a specific limit. However, for

the basis of this experimental evaluation, automated scaling of virtual host; which is based on

hypervisor-level virtualisation was not configured for two reasons; firstly because of budget

constraints and secondly, to set an upper limit as a benchmark for the tests.

7.3.7 Experimental Evaluation Summary

The experimental evaluation conducted has been very thorough and comprehensive, with the

results obtained in full support of the descriptions and solution proffered with the Holistic

Semantic Annotation Cloud Maturity Model. Firstly, the results demonstrate the impact of

cloud computing for deploying the CloudSea prototype as compared to deployment in a non-

cloud computing environment. This is demonstrated by the results obtained with the cloud

deployments in comparison with the non-cloud ones. Secondly, the evaluation supports the

proposition that microservices architecture provides better software agility and capability for

large-scale, data-intensive applications such as the CloudSea prototype implementation. This

245

is demonstrated through results obtained with the microservices deployments across both cloud

and non-cloud, which provided better results than their corresponding monolithic deployments.

Thirdly, the evaluation supports the facilitation of applications, especially microservices-based

applications with operating system-level virtualisation, also known as containerisation and the

orchestration of the containers for automated deployment, scaling, management and

monitoring, as these optimise cloud computing resources more than merely leveraging

hypervisor-level virtualisation; as described in Chapter 4. Fourthly, the evaluation

demonstrates the need for a full application automation lifecycle that ensures continuous

integration and delivery of software updates in a very dynamic environment such as the

semantic web. The application automation lifecycle framework facilitates collaboration

between different development teams and the continuous implementation of updates and

upgrades to a system, such as would be required for providing holistic semantic annotation to

documents on the web. Table 7.24 presents a summary of the experimental evaluation

conducted.

246

Table 7. 24 – Summary Results from the Experimental Evaluation
 Non-Cloud

Monolithic
Non-Cloud
Microservices

Cloud-Based
Monolithic

Cloud-Based
Microservices

Cloud-
Optimised

Cloud-
Driven

10,000
over
10mins
for 7
iterations
(70,000
requests)

Avg.
Response
Time

555 270 91 82 143 127

Avg.
Successful
Responses

99.81 % 100 % 99.97 % 99.94 % 99.97 % 99.97 %

Timeout
Errors

2 0 0 0 0 0

400/500
Errors

0 / 4 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Avg. Error
Rate

0.06 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

20,000
over
10mins
for 7
iterations
(140,000
requests)

Avg.
Response
Time

5,706 4,778 655 256 186 125

Successful
Responses

86.35 % 90.81 % 98.75 % 99.82 % 100 % 99.997
%

Timeout
Errors

180 126 215 26 0 0

400/500
Errors

0 / 2370 0 / 1524 0 / 0 0 / 0 0 / 0 0 / 0

Avg. Error
Rate

12.76 % 8.25 % 0.64 % 0.13 % 0.0 % 0.0 %

40,000
over
10mins

Avg.
Response
Time

 10949 138 125

Successful
Responses

 65.73 % 100 % 100 %

Timeout
Errors

 12473 0 0

400/500
Errors

 0 / 0 0 / 1 0 / 0

Avg. Error
Rate

 31.89 % 0.0 % 0.0 %

100,000
over
10mins

Avg.
Response
Time

 10,084 124

Successful
Responses

 1.68 % 100 %

Timeout
Errors

 113 0

400/500
Errors

 0 / 2,550 0 / 0

Avg. Error
Rate

 64.71 % 0.0 %

100,000
over
5mins

Avg.
Response
Time

 11,890

Successful
Responses

 8.34 %

Timeout
Errors

 2456

400/500
Errors

 0 / 26325

Avg. Error
Rate

 53.78 %

247

7.4 – Chapter Summary

This chapter focused on evaluation for the thesis in multiple ways. Firstly, a functional

evaluation of CloudSea prototype was detailed by describing the approach for utilising the

prototype. Secondly, a comparative evaluation of the proposed CloudSea architecture was

detailed by conducting comparisons with existing systems, both from academic publications

and industry tools and then a comprehensive experimental evaluation was detailed, which

provided empirical investigation for the proposed Cloud Computing Maturity Model for

holistic semantic annotation, including its ‘Cloud-Driven’ Maturity Level which is

fundamental to the proposed CloudSea architecture. Results from the empirical investigation

are in line with the arguments that led to developing the maturity model for holistic semantic

annotation. The next chapter provides a summary of the entire research.

248

Chapter 8: Conclusions and Recommendations

This chapter provides a summary for the entire research. This includes an overview of the

research activities, contributions to the body of knowledge from the research, the research

limitations and recommendations for further research in the domain.

8.1 Research Summary

This research was aimed at addressing the challenge of automatic semantic annotation of

documents on the web at large with a set of objectives. The introductory chapter provided the

fundamental building blocks for the research, in terms of background and motivation; aim and

objectives, research hypothesis, the adopted research methodology and the expected

contributions to the body of knowledge. With that foundation put in place, the second chapter

was focused on the review of literature for the two major paradigms being investigated based

on the research aim and objectives; semantic web technologies and cloud computing. The

investigation focused on each one of them initially and then on both, in terms of how they

leverage each other, with interesting research findings. So, alongside providing a

comprehensive state-of-the-art for the two paradigms, the chapter also provided research gaps

for semantic web technologies.

Based on the research findings from Chapter 2, the third chapter proposed a holistic perspective

to addressing the automation challenge of semantic annotation. This was by means of defining

a requirements specification for the holistic perspective. Twelve requirements were proposed

with some from previous research efforts in the domain and a few others as novel requirements;

lending concepts from other domains in Information technology to provide a multi-disciplinary

approach for facilitating the proposed holistic perspective. Furthermore, considering the nature

and mechanisms for the holistic perspective, an investigative assessment was conducted into

the feasibility of cloud computing facilitating the holistic requirements and hence, perspective.

The result of the assessment was a Cloud Computing Capability Model which confirmed that

cloud computing could be leveraged for this purpose and detailed different cloud computing

mechanisms for each of the requirements.

With the stage set for a “cloud computing” solution to the holistic semantic annotation

proposed, Chapter 4 focused on further investigation into application deployment in the cloud

and how that will impact on holistic semantic annotation based on its requirements. A set of

determinant factors were defined and each one critically evaluated in terms of its potential role

249

towards deploying a holistic semantic annotation solution in the cloud. The focus was to ensure

that cloud computing characteristics would be fully maximised for the solution. From the

critical analysis and evaluation of the set of determinant factors, several application deployment

patterns for holistic semantic annotation in the cloud were defined in terms of how well they

can leverage cloud computing characteristics and benefits. These produced a Cloud Computing

Maturity Model for holistic semantic annotation and the optimal pattern from the model;

“Cloud-Driven” was chosen as a methodological approach towards the design and development

of a holistic semantic annotation solution in the cloud.

Chapter 5 focused on the design of a holistic semantic annotation solution. However, it started

with a design rationale; in which the “Design Patterns” paradigm of software engineering was

adopted. This produced several artefacts, including:

• Microservices-based Design Patterns for Holistic Semantic Annotation

• Pattern Language for Holistic Semantic Annotation, and

• CloudSea: A Holistic, Cloud-driven and Microservices-based Architecture for

Automated Semantic Annotation of Web Documents

With a standard architecture in place for holistic semantic annotation, Chapter 6 described a

prototype implementation for CloudSea. This included the functional and non-functional

requirements, build and deployment on Amazon AWS public cloud. Descriptions for the

development and deployment environments were also detailed. In addition, limitations for the

prototype were detailed. Furthermore, based on the Cloud Computing Maturity Model

developed in Chapter 4, two versions of CloudSea were developed; one using a monolithic

software architectural pattern and the other based on a microservices software architectural

pattern. These two were each deployed based on three different patterns – making a total of six

different deployments of CloudSea.

This provided opportunity for an empirical and experimental evaluation for the Cloud

Computing Maturity Model. Each of the six deployments were comprehensively evaluated

based on a load test configuration to validate the model and the results obtained were positive.

These can be found in Chapter 7. Furthermore, the chapter contains functional and comparative

evaluation sections for CloudSea Architecture and prototype. With reference to the research

hypothesis in section 1.3, the evaluations; functionality, comparative and experimental

validates and confirms the hypothesis as correct; which states that “Cloud Computing can be

fully leveraged as a paradigm to address the automation challenge of providing machine-

250

understandable contextual data for semantically annotating documents on the web”. This

chapter provides conclusions and recommendations for further research directions in the

domain.

8.2 Research Contributions

This research has produced some contributions to the body of knowledge. These are in domains

such as semantic web, cloud computing, software engineering and computing in general. The

major contributions to the body of knowledge from this research are detailed in the following

sub-sections.

8.2.1 Semantic Web and Cloud Computing State-of-the-Art

A comprehensive critical review of existing literature for semantic web and cloud computing;

as individual technologies as well as based on their integration. This included a critical review

for leveraging cloud computing for the semantic web and vice versa. The review, alongside

research findings from the review constitute a contribution to the body of knowledge. These

provides a rich repository of knowledge for interested researchers in the area as well as provides

a guide towards the gaps identified which can be taken on for research purposes.

8.2.2 A Holistic Semantic Annotation Requirements Specification

From the research gaps identified in the literature review, a set of requirements specification

were identified and analysed for addressing automated semantic annotation holistically. A

holistic perspective was proposed for the automation challenge of semantic annotation and no

existing solution was observed to offer a holistic solution at the proposed level. While most of

the requirements came from previous automated semantic annotation efforts from research, a

few novel requirements were also proposed. These draw from concepts in software engineering

and computing generally. The set of requirements together, constitute novel knowledge which

can be developed based on methodologies deemed appropriate for delivering a holistic and

automated semantic annotation solution for web documents.

8.2.3 A Cloud Capability Model for Holistic Semantic Annotation

The Cloud Computing Capability Model for Holistic Semantic Annotation developed in

Chapter 3 of this thesis and the approach towards its development constitute a contribution to

the body of knowledge. The model provides an assessment approach for the adoption of cloud

computing in the facilitation of holistic semantic annotation. Furthermore, it demonstrates the

251

capability of cloud computing mechanisms and how they can drive specific software

requirements. While the model is specifically for holistic semantic annotation, the approach

towards its development can also be utilised in the assessment of cloud computing capabilities

for requirements in other domains within computing.

8.2.4 A Cloud Maturity Model for Holistic Semantic Annotation

The Cloud Computing Maturity Model for Holistic Semantic Annotation proposed in Chapter

4 of this thesis is another contribution to the body of knowledge. Based on a set of determinant

factors identified from research, the model defines different patterns for a holistic semantic

annotation solution deployment in the cloud and how well each pattern leverages cloud

computing in terms of its characteristics and benefits. It provides knowledge which specifies

the most appropriate pattern for a solution deployment.

Furthermore, it defines a pattern for fully maximising cloud computing benefits for a holistic

semantic annotation solution, defined as a “Cloud-Driven” pattern. The development

methodology based on the pattern was utilised in this research for the prototype implementation

and can be utilised for same purpose or for similar solutions either in the academia or industry.

In addition, while the model was developed based on the requirements proposed for holistic

semantic annotation earlier in the thesis, it can be adapted for solutions in other areas of

computing. In addition, the experimental evaluation data for the model provides empirical

evidence for the validation of the model and its suitability for use in the selection of application

deployment patterns in the cloud.

8.2.5 Design Patterns and Pattern Language for Cloud-Driven,
Holistic Semantic Annotation

Design Patterns and their Pattern Language is a method of constructing and sharing knowledge

in Software Engineering. This research further produced twelve design patterns and a pattern

language for cloud-driven, holistic semantic annotation which are re-usable for the technical

solutions they proffer. These stemmed from the development of technical solutions for the

holistic semantic annotation requirements proposed in this thesis. Furthermore, they are

designed based on microservices software architecture which demonstrates an implementation

approach for developing and deploying microservices within a software architectural system.

252

8.2.6 CloudSea: A Holistic, Cloud-driven and Microservices-based
Architecture for Automated Semantic Annotation of Web Documents

This research also designed and proposed a holistic, cloud-driven and microservices-based

architecture for automated semantic annotation of web documents. The architecture has been

designed and proposed based on a rigorous research activity and sound software engineering

principles. This implies that while it is up to elite industry standards, it benefits from a thorough

research background which provides a basis for its implementation as a full-fledged software.

Furthermore, the overall approach to its design constitutes knowledge which can be either

adopted or adapted for solutions in other areas of computing. One main output from the

architecture already is the prototype implementation which delivers automated semantic

annotation as a cloud service by means of an API call within web documents. A Flowchart for

process flow within the architecture is also presented.

8.3 Research Limitations

While the research aim and objectives have been fulfilled, there are a couple of limitations

recognised by the author which can be addressed in future work. They are as follows:

• The prototype is not a full implementation of the CloudSea Architecture. However, it

provides the core functionality of the proposed CloudSea Architecture and constitutes

a proof-of-concept and MVP (Minimum Viable Product) for the novel solution that

CloudSea Architecture proposes.

• The prototype is dependent on a RESTful DBpedia API, which provides access to the

DBpedia knowledge graph for fetching contextual data from the knowledge repository.

However, a knowledge repository such as DBpedia would always be required for web-

scale semantic annotation and there are only a few of such repositories on the web

today. Hence, access to web-scale contextual data such as is available with DBpedia,

Google Knowledge graph or Linked Open Data Cloud is required in this context.

• Specialist annotators were not involved in the evaluation process of the CloudSea

prototype implementation.

8.4 Recommendations for Future Research

This research domain has been found to be exciting and one with potential impacts across

diverse spheres of life as it has to do with web users making the most of information on the

platform for personal, corporate and societal benefits. This also implies that there is abundant

253

further research within the domain. However, three major areas for further research in the area

are described as follows:

1. With the scale of the web and size of its users, the list of requirements necessary for a

holistic solution that meets the needs of all users (billions of humans worldwide) would

require further investigation and would be expected to increase significantly. Some

potential determinant factors for requirements analysis might include multilingualism

and industry sector. Having said that, it is opined that the emergence of more

requirements or the refinement of the proposed ones would be facilitated by the actual

implementation and use of the solution for delivery a continuous, consistent and

dynamic semantic annotation to web documents automatically.

2. A key principle of Microservices is the decomposition of an application into bounded

contexts for the provision of a specific functionality. However, the decomposition can

be too coarse or too granular. Further research into an ideal level of granularity for the

microservices of the CloudSea architecture is perceived to possess potentials for further

leveraging the benefits of the software architectural pattern.

3. Lastly, CloudSea deployment in the cloud was on an orchestration engine platform and

the concept of orchestration in computing is a well-established one. Orchestration in

computing refers to a process of providing automated co-ordination and functioning of

components within computer systems. Another compute technique; known as

serverless computing is emerging and defines a different approach to automation

techniques for computing components. It leans more towards the “Choreography”

concept in computing as opposed to “Orchestration”. As the concept of “Serverless

Computing” matures, research into its adoption or adaptation for holistic semantic

annotation would be a viable one.

254

References

Adachi, T. & Fukuta, N., 2017, August. A Mapping-Enhanced Linked Data Inspection and

Querying Support System using Dynamic Ontology Matching. In Proceedings of the

International Conference on Web Intelligence (pp. 1191-1194). ACM.

Aderaldo, C.M., Mendonça, N.C., Pahl, C. & Jamshidi, P., 2017, May. Benchmark

Requirements for Microservices Architecture Research. In Proceedings of the 1st

International Workshop on Establishing the Community-Wide Infrastructure for

Architecture-Based Software Engineering (pp. 8-13). IEEE Press.

Agarwal, D. & Jain, S., 2014. Efficient Optimal Algorithm of Task Scheduling in Cloud

Computing Environment. arXiv preprint arXiv:1404.2076.

Ahmed, O.K. & Kurnaz, A.P.D.S., 2019. Data Access Layer Development for Interoperable

GIS Solutions Using NHibernate Mapper.

Aken, J.E.V., 2004. Management Research based on the Paradigm of the Design Sciences: The

Quest for Field‐Tested and Grounded Technological Rules. Journal of Management Studies,

41(2), pp.219-246.

Akgun, A. & Ayvaz, S., 2018, April. An Approach for Information Discovery Using Ontology

in Semantic Web Content. In Proceedings of the 2018 International Conference on

Information Science and System (pp. 250-255). ACM.

Alam, F., Rahman, S.U., Khusro, S. & Ali, S., 2015. Towards a Semantic Web Stack

Applicable for Both RDF and Topic Maps: A Survey. University of Engineering and

Technology Taxila. Technical Journal, 20(2), p.114.

Albukhitan, S., Alnazer, A. & Helmy, T., 2018. Semantic Annotation of Arabic Web

Documents using Deep Learning. Procedia Computer Science, 130, pp.589-596.

Alec, C., Reynaud-Delaître, C. & Safar, B., 2016, May. An Ontology-Driven Approach for

Semantic Annotation of Documents with Specific Concepts. In European Semantic Web

Conference (pp. 609-624). Springer, Cham.

Alexander, C., 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University

Press.

255

Alti, A., Laborie, S., & Roose, P. (2015). Cloud Semantic-Based Dynamic Multimodal

Platform for Building mHealth Context-Aware Services. In Wireless and Mobile

Computing, Networking and Communications (WiMob), 2015 IEEE 11th International

Conference on (pp. 357-364). IEEE.

Amato, F., Mazzeo, A., Mazzocca, N. & Romano, S., 2012, July. Close: A Cloud SaaS for

Semantic Document Composition. In 2012 Sixth International Conference on Complex,

Intelligent, and Software Intensive Systems (pp. 781-786). IEEE.

Amazon AWS (2018). Amazon EC2 Auto Scaling. [image] Available at:

https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-

scaling.html [Accessed 12 Aug. 2018].

Ambiah, N. & Lukose, D., 2012, September. Enriching Webpages with Semantic Information.

In International Conference on Dublin Core and Metadata Applications (pp. 1-11).

Amoretti, M. & Zanichelli, F., 2018. P2P-PL: A Pattern Language to Design Efficient and

Robust Peer-to-Peer Systems. Peer-to-Peer Networking and Applications, 11(3), pp.518-

547.

Arcan, M., Dragoni, M. & Buitelaar, P., 2016, June. ESSOT: An Expert Supporting System

for Ontology Translation. In International Conference on Applications of Natural Language

to Information Systems (pp. 60-73). Springer, Cham.

Arcitura Education (2018). Mechanisms | Arcitura Patterns. [online] Patterns.arcitura.com.

Available at: https://patterns.arcitura.com/cloud-computing-patterns/mechanisms

[Accessed 14 Feb. 2018].

Aslam, S. & Shah, M.A., 2015, December. Load Balancing Algorithms in Cloud Computing:

A Survey of Modern Techniques. In 2015 National Software Engineering Conference

(NSEC) (pp. 30-35). IEEE.

Autili, M., Inverardi, P., Spalazzese, R., Tivoli, M. & Mignosi, F., 2019. Automated Synthesis

of Application-Layer Connectors from Automata-Based Specifications. Journal of

Computer and System Sciences.

Avgeriou, P., Vogiatzis, D., Tzanavari, A. & Retalis, S., 2004. Towards a Pattern Language for

Adaptive Web-based Educational Systems. Advanced Technology for Learning Journal,

1(4), pp.202-209.

256

Avi Networks (2019). Container Orchestration. [image] Available at:

https://avinetworks.com/wp-content/uploads/2018/12/container-orchestration-diagram-

1.png [Accessed 10 Mar. 2019].

Avraam, I., Bratsas, C., Antoniou, I. & Bamidis, P., 2014. DBpedia Spotlight

Internationalization using the DBpedia in Greek as a Case Study – Realizing the Greek

DBpedia Spotlight. Information and Communication Technology for Education (2 Volume

Set), 58, p.69.

AWS Marketplace (2019). AWS Marketplace: SendGrid Email Delivery Service. [online]

Aws.amazon.com. Available at: https://aws.amazon.com/marketplace/pp/B074CQY6KB

[Accessed 16 Apr. 2019].

Bajaj, G., Agarwal, R., Singh, P., Georgantas, N. & Issarny, V., 2017. A Study of Existing

Ontologies in the IoT-domain. arXiv preprint arXiv:1707.00112.

Bakshi, K., 2017, March. Microservices-based Software Architecture & Approaches. In 2017

IEEE Aerospace Conference (pp. 1-8). IEEE.

Balalaie, A., Heydarnoori, A. & Jamshidi, P., 2016. Microservices Architecture Enables

Devops: Migration to a Cloud-Native Architecture. IEEE Software, 33(3), pp.42-52.

Bangare, S.L., Borse, S., Bangare, P.S. & Nandedkar, S., 2012. Automated API Testing

Approach. International Journal of Engineering Science and Technology, 4(2).

Baskarada, S., Nguyen, V. & Koronios, A., 2018. Architecting Microservices: Practical

Opportunities and Challenges. Journal of Computer Information Systems, pp.1-9.

Basu, A., 2019. Semantic Web, Ontology, and Linked Data. In Web Services: Concepts,

Methodologies, Tools, and Applications (pp. 127-148). IGI Global.

Batista-Navarro, R., Carter, J. & Ananiadou, S., 2016. Argo: Enabling the Development of

Bespoke Workflows and Services for Disease Annotation. Database, 2016.

Bayoudhi, L., Sassi, N. & Jaziri, W., 2017. A Hybrid Storage Strategy to Manage the Evolution

of an OWL 2 DL Domain Ontology. Procedia Computer Science, 112, pp.574-583.

Beedle, M., Devos, M., Sharon, Y., Schwaber, K. & Sutherland, J., 1999. SCRUM: An

Extension Pattern Language for Hyper Productive Software Development. Pattern

Languages of Program Design, 4, pp.637-651.

257

Belloze, K.T., Monteiro, D.I.S., Lima, T.F., Silva Jr, F.P. & Cavalcanti, M.C., 2012. An

Evaluation of Annotation Tools for Biomedical Texts. In Ontology Research in Brazil and

International Workshop on Metamodels, Ontologies and Semantic Technologies (pp. 108-

119).

Ben-Yehuda, S., 1997. Pattern Language for Framework Construction. In PLoP-97 Writer's

Workshop (pp. 97-34).

Bogner, J., Zimmermann, A. & Wagner, S., 2018. Analyzing the Relevance of SOA Patterns

for Microservice-Based Systems. ZEUS, 9, pp.9-16.

Boneh, D., Di Crescenzo, G., Ostrovsky, R., & Persiano, G. (2004). Public Key Encryption

with Keyword Search. In International Conference on the Theory and Applications of

Cryptographic Techniques (pp. 506-522). Springer, Berlin, Heidelberg.

Bourgonje, P., Moreno-Schneider, J., Nehring, J., Rehm, G., Sasaki, F. & Srivastava, A., 2016,

May. Towards a Platform for Curation Technologies: Enriching Text Collections with a

Semantic-Web Layer. In European Semantic Web Conference (pp. 65-68). Springer, Cham.

Braga, R.T.V., Germano, F.S. & Masiero, P.C., 1999, August. A Pattern Language for Business

Resource Management. In Proceedings of PLOP (Vol. 7, pp. 1-33).

Brank, J., Leban, G. & Grobelnik, M., 2018. Semantic Annotation of Documents Based on

Wikipedia Concepts. Informatica, 42(1).

Bratt, S., 2008, May. Fast forward get ready for Web 3.0. In Conferencia de World Wide Web

Consortium (pp. 4-44).

Brezillon, P., 2003. Individual and Team Contexts in a Design Process (CLNSS02). In

Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 27-

27).

Buscaldi, D., Gangemi, A. & Recupero, D.R., 2018. Semantic Web Challenges. Springer

International Publishing.

Byun, Y., Sanders, B. & Chung, K., 2002, September. A Pattern Language for Communication

Protocols. In Proceedings of the 9th Conference on Pattern Languages of Programs,

Monticello, Illinois.

258

Cao, D., Liu, P., Cui, W., Zhong, Y. & An, B., 2016. Cluster as a Service: A Resource Sharing

Approach for Private Cloud. Tsinghua Science and Technology, 21(6), pp.610-619.

Carneiro Jr, C. & Schmelmer, T., 2016. Microservices From Day One: Build Robust and

Scalable Software from the Start. Apress. Berkeley, CA.

Carnell, J., 2017. Spring Microservices in Action. Manning Publications Co.

Carroll, M., Kotze, P. & Van der Merwe, A., 2012. A Risk and Control Framework for Cloud

Computing and Virtualisation: Enabling Technologies. CSIR Science Scope, 6(2), pp.62-63.

CBROnline. (2019). What is Apache? - Computer Business Review. [online] Available at:

https://www.cbronline.com/what-is/what-is-apache-4909894/ [Accessed 26 Jun. 2019].

Cerny, T., Donahoo, M.J. & Pechanec, J., 2017, September. Disambiguation and Comparison

of SOA, Microservices and Self-Contained Systems. In Proceedings of the International

Conference on Research in Adaptive and Convergent Systems (pp. 228-235). ACM.

Chandra, G.S., 2016. Pattern Language for IoT applications. In PLoP Conference, USA.

Cheatham, M., Lambert, J. & Vardeman II, C.F., 2019. Leveraging Wikipedia for Ontology

Pattern Population from Text. In AAAI Spring Symposium: Combining Machine Learning

with Knowledge Engineering.

Chernyshov, A., Balandina, A., Kostkina, A., & Klimov, V. (2016). Intelligence Search Engine

and Automatic Integration System for Web-Services and Cloud-Based Data Providers

Based on Semantics. Procedia Computer Science, 88, 272-276.

Chiregi, M. & Navimipour, N.J., 2017. Cloud Computing and Trust Evaluation: A Systematic

Literature Review of the State-of-the-art Mechanisms. Journal of Electrical Systems and

Information Technology.

Ciccarese, P., Ocana, M. & Clark, T., 2012. DOMEO: A Web-Based Tool for Semantic

Annotation of Online Documents. Bio-Ontologies 2011.

CNCF.io. (2018). Cloud Native Technologies Are Scaling Production Applications - Cloud

Native Computing Foundation. [online] Cloud Native Computing Foundation. Available at:

https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-

applications/ [Accessed 7 Feb. 2019].

259

Cohen, L. & Manion, L., 1994. Research Methods in Education (4th Edition) (London, Croom

Helm Ltd). Institutionalismus in der Erziehungswissenschaft, pp.326-346.

Coronado, M., Iglesias, C.A. & Serrano, E., 2015. Modelling Rules for Automating the Evented

Web by Semantic Technologies. Expert Systems with Applications, 42(21), pp.7979-7990.

Corradi, A., Destro, M., Foschini, L., Kotoulas, S., Lopez, V. & Montanari, R., 2016. Mobile

Cloud Support for Semantic-Enriched Speech Recognition in Social Care. IEEE

Transactions on Cloud Computing

Cortazar, G. O., Zapater, J. J. S., & Sánchez, F. G. (2012). Adding Semantics to Cloud

Computing to Enhance Service Discovery and Access. In Proceedings of the 6th Euro

American Conference on Telematics and Information Systems (pp. 231-236). ACM.

Cui, W., Zhan, H., Li, B., Wang, H. & Cao, D., 2016, March. Cluster as a Service: A Container

Based Cluster Sharing Approach with Multi-User Support. In 2016 IEEE Symposium on

Service-Oriented System Engineering (SOSE) (pp. 111-118). IEEE.

D'silva, G.M., Khan, A. & Bari, S., 2017, May. Real-time Processing of IoT Events with

Historic Data using Apache Kafka and Apache Spark with Dashing Framework. In 2017

2nd IEEE International Conference on Recent Trends in Electronics, Information &

Communication Technology (RTEICT) (pp. 1804-1809). IEEE.

Da Silva, M.A.A. & Cavalcanti, M.C., 2014. Combining Ontology Modules for Scientific Text

Annotation. Journal of Information and Data Management, 5(3), pp.238-251.

Dammak, S.M., Jedidi, A. & Bouaziz, R., 2013, December. Automation and Evaluation of the

Semantic Annotation of Web Resources. In 8th International Conference for Internet

Technology and Secured Transactions (ICITST-2013) (pp. 443-448). IEEE.

Dan, N., Hua-Ji, S., Yuan, C. & Jia-Hu, G., 2012, August. Attribute Based Access Control

(ABAC)-Based Cross-Domain Access Control in Service-Oriented Architecture (SOA). In

2012 International Conference on Computer Science and Service System (pp. 1405-1408).

IEEE.

Dautov, R., Kourtesis, D., Paraskakis, I., & Stannett, M. (2013). Addressing Self-Management

in Cloud Platforms: A Semantic Sensor Web Approach. In Proceedings of the 2013

international workshop on Hot topics in cloud services (pp. 11-18). ACM.

260

Davis, B., Varma, P., Handschuh, S., Dragan, L. & Cunningham, H., 2009, May. Controlled

Natural Language for Semantic Annotation. In European Semantic Web Conference (pp.

816-820). Springer, Berlin, Heidelberg.

Daya, S., Van Duy, N., Eati, K., Ferreira, C.M., Glozic, D., Gucer, V., Gupta, M., Joshi, S.,

Lampkin, V., Martins, M. & Narain, S., 2016. Microservices from Theory to Practice:

Creating Applications in IBM Bluemix Using the Microservices Approach. IBM Redbooks.

De Virgilio, R., 2017, May. Smart RDF Data Storage in Graph Databases. In 2017 17th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)

(pp. 872-881). IEEE.

Delessy, N., Fernandez, E.B. & Larrondo-Petrie, M.M., 2007, March. A Pattern Language for

Identity Management. In 2007 International Multi-Conference on Computing in the Global

Information Technology (ICCGI'07) (pp. 31-31). IEEE.

Dessi, N., Milia, G., Pascariello, E. & Pes, B., 2016. COWB: A Cloud-Based Framework

Supporting Collaborative Knowledge Management within Biomedical Communities.

Future Generation Computer Systems, 54, pp.399-408.

Dhingra, V. & Bhatia, K., 2012. Comparative Analysis of Ontology Ranking Algorithms.

International Journal of Information Technology and Web Engineering (IJITWE), 7(3),

pp.55-66.

Dhingra, M., Lakshmi, J. & Nandy, S.K., 2012, September. Resource Usage Monitoring in

Clouds. In 2012 ACM/IEEE 13th International Conference on Grid Computing (pp. 184-

191). IEEE.

Di Francesco, P., Malavolta, I. & Lago, P., 2017, April. Research on Architecting

Microservices: Trends, Focus, and Potential for Industrial Adoption. In 2017 IEEE

International Conference on Software Architecture (ICSA) (pp. 21-30). IEEE.

Di Martino, B., & Esposito, A. (2016). Semantic Techniques for Multi-Cloud Applications

Portability and Interoperability. Procedia Computer Science, 97, 104-113.

Diaby, T. & Rad, B.B., 2017. Cloud Computing: A Review of the Concepts and Deployment

Models. International Journal of Information Technology and Computer Science, 9(6),

pp.50-58.

261

Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan,

S., Tomkins, A., Tomlin, J.A. & Zien, J.Y., 2003, May. SemTag and Seeker: Bootstrapping

the Semantic Web via Automated Semantic Annotation. In Proceedings of the 12th

International Conference on World Wide Web (pp. 178-186). ACM.

Dooley, D.M., Griffiths, E.J., Gosal, G.S., Buttigieg, P.L., Hoehndorf, R., Lange, M.C.,

Schriml, L.M., Brinkman, F.S. and Hsiao, W.W., 2018. FoodOn: A Harmonized Food

Ontology to Increase Global Food Traceability, Quality Control and Data Integration.

Nature Paper Journals Science of Food, 2(1), p.23.

Dou, D., Wang, H. & Liu, H., 2015, February. Semantic Data Mining: A Survey of Ontology-

Based Approaches. In Proceedings of the 2015 IEEE 9th International Conference on

Semantic Computing (IEEE ICSC 2015) (pp. 244-251). IEEE.

Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R. & Safina, L., 2017, June.

Microservices: How to make your Application Scale. In International Andrei Ershov

Memorial Conference on Perspectives of System Informatics (pp. 95-104). Springer, Cham.

Drechsler, Andreas, & Alan Hevner. "A Four-Cycle Model of IS Design Science Research:

Capturing the Dynamic Nature of IS Artefact Design." In Breakthroughs and Emerging

Insights from Ongoing Design Science Projects: Research-in-progress papers and poster

presentations from the 11th International Conference on Design Science Research in

Information Systems and Technology (DESRIST) 2016. St. John, Canada, 23-25 May.

DESRIST 2016, 2016.

Duma, M., 2011, September. RDFa Editor for Ontological Annotation. In Proceedings of the

Second Student Research Workshop associated with RANLP 2011 (pp. 54-59).

E Silva, F.J.D.S., Kon, F., Yoder, J. & Johnson, R., 2005. A Pattern Language for Adaptive

Distributed Systems. In Proceedings of the 5th Latin American Conference on Pattern

Languages of Programming (pp. 19-48).

Eder, M., 2016. Hypervisor vs. Container-based Virtualization. Future Internet (FI) and

Innovative Internet Technologies and Mobile Communications (IITM), 1.

Edwin, N.M., 2014. Software Frameworks, Architectural and Design Patterns. Journal of

Software Engineering and Applications, 7(08), p.670.

262

El-Ghobashy, A.N., Attiya, G.M. & Kelash, H.M., 2014. A Proposed Framework for Arabic

Semantic Annotation Tool. International Journal of Computing and Digital Systems,

218(1223), pp.1-7.

Elastic.co. (2019). Elasticsearch: RESTful, Distributed Search & Analytics | Elastic. [online]

Available at: https://www.elastic.co/products/elasticsearch [Accessed 13 Mar. 2019].

Elastic.co. (2019). Kibana: Explore, Visualize, Discover Data | Elastic. [online] Available at:

https://www.elastic.co/products/kibana [Accessed 13 Mar. 2019].

Elastic.co. (2019). Logstash: Collect, Parse, Transform Logs | Elastic. [online] Available at:

https://www.elastic.co/products/logstash [Accessed 13 Mar. 2019].

Elastic.co. (2019). Open Source Search & Analytics · Elasticsearch | Elastic. [online] Available

at: https://www.elastic.co/ [Accessed 13 Mar. 2019].

Eloranta, V.P., Koskinen, J., Leppänen, M. & Reijonen, V., 2010. A Pattern Language for

Distributed Machine Control Systems. Tampere University of Technology, Department of

Software Systems.

Erdmann, M., Maedche, A., Schnurr, H.P. & Staab, S., 2000, August. From Manual to Semi-

Automatic Semantic Annotation: About Ontology-Based Text Annotation Tools. In

Proceedings of the COLING-2000 Workshop on Semantic Annotation and Intelligent

Content (pp. 79-85). Association for Computational Linguistics.

Erl, T., Cope, R. & Naserpour, A., 2015. Cloud Computing Design Patterns. Prentice Hall

Press.

Erl, T., Puttini, R. & Mahmood, Z., 2013. Cloud Computing: Concepts, Technology &

Architecture. Pearson Education.

Escobar, D., Cárdenas, D., Amarillo, R., Castro, E., Garcés, K., Parra, C. & Casallas, R., 2016,

October. Towards the Understanding and Evolution of Monolithic Applications as

Microservices. In 2016 XLII Latin American Computing Conference (CLEI) (pp. 1-11).

IEEE.

Espinoza, R. & Melgar, A., 2015, November. An Automated Semantic Annotation Tool

Supported by an Ontology in the Computer Science Domain. In International Conference

on Knowledge Engineering and Ontology Development (pp. 133-138).

263

Evitts, P. & Hinchcliffe, D., 2000. A UML Pattern Language. Indianapolis, Ind.: Macmillan

Technical.

Fang, D., Liu, X., Romdhani, I., Jamshidi, P. & Pahl, C., 2016. An Agility-Oriented and

Fuzziness-Embedded Semantic Model for Collaborative Cloud Service Search, Retrieval

and Recommendation. Future Generation Computer Systems, 56, pp.11-26.

Faria, C., Serra, I. & Girardi, R., 2014. A Domain-Independent Process for Automatic

Ontology Population from Text. Science of Computer Programming, 95, pp.26-43.

Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L. & Villari, M., 2016. Open Issues in

Scheduling Microservices in the Cloud. IEEE Cloud Computing, 3(5), pp.81-88.

Fehling, C., Leymann, F., Retter, R., Schupeck, W. & Arbitter, P., 2014. Cloud Computing

Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer

Science & Business Media.

Fehling, C., Leymann, F., Rütschlin, J. & Schumm, D., 2012. Pattern-Based Development and

Management of Cloud Applications. Future Internet, 4(1), pp.110-141.

Fensel, D. ed., 2011. Foundations for the Web of Information and Services: A Review of 20

years of Semantic Web Research. Springer Science & Business Media.

Fernandez, E.B. & Pan, R., 2001, September. A Pattern Language for Security Models. In Proc.

of PLoP (Vol. 1).

Fernandez, E.B. & Sorgente, T., 2005, August. A Pattern Language for Secure Operating

System Architectures. In Procs. of the 5th Latin American Conference on Pattern

Languages of Programs (pp. 16-19).

Fiorelli, M., Pazienza, M.T. & Stellato, A., 2015. A Flexible Approach to Semantic Annotation

Systems for Web Content. Intelligent Systems in Accounting, Finance and Management,

22(1), pp.65-79.

Flahive, A., Taniar, D., Rahayu, W. & Apduhan, B.O., 2015. A Methodology for Ontology

Update in the Semantic Grid Environment. Concurrency and Computation: Practice and

Experience, 27(4), pp.782-808.

264

Florio, L. & Di Nitto, E., 2016, July. Gru: An Approach to Introduce Decentralised Autonomic

Behaviour in Microservices Architectures. In 2016 IEEE International Conference on

Autonomic Computing (ICAC) (pp. 357-362). IEEE.

Fowler, M., 2015. Microservice Trade-offs. From: https://martinfowler.

com/articles/microservice-trade-offs. html.

Fox, C., Grimm, R. & Caldeira, R., 2016. An Introduction to Evaluation. Sage.

Franchitti, J. (2019). Software Engineering. [online] New York University. Available at:

http://www.nyu.edu/classes/jcf/g22.2440-

001_sp06/slides/session8/g22_2440_001_c82.pdf [Accessed 24 Jan. 2019].

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 2000. Design Patterns: Abstraction and

Reuse of Object-Oriented Design. ECOOP 1993: ECOOP’ 93 — Object-Oriented

Programming pp 406-431

Gao, G., Liu, Y.S., Lin, P., Wang, M., Gu, M. & Yong, J.H., 2017. BIMTag: Concept-Based

Automatic Semantic Annotation of Online BIM Product Resources. Advanced Engineering

Informatics, 31, pp.48-61.

Garg, S. and Garg, S., 2019, April. Automated Cloud Infrastructure, Continuous Integration

and Continuous Delivery using Docker with Robust Container Security. In 2019 IEEE

Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 467-470).

IEEE.

Gawich, M., Badr, A., Hegazy, A. & Ismael, H., 2012. A Survey on Semantic Annotation

Tools. Egyptian Computer Science Journal, ECS, 36(2).

Getting, B., 2007. Basic Definitions: Web 1.0, Web. 2.0, Web 3.0. Practical eCommerce:

Insights for Online Merchants–2007. URL: http://www. practicalecommerce.

com/articles/464-Basic-Definitions-Web-1-0-Web-2-0-Web-3-0.

Gezer, V. & Bergweiler, S., 2016. Service and Workflow Engineering based on Semantic Web

Technologies. In Tenth International Conference on Mobile Ubiquitous Computing,

Systems, Services and Technologies (UBICOMM 2016), International Academy, Research,

and Industry Association (IARIA). IARIA (Vol. 10, pp. 152-157).

Ghomi, E.J., Rahmani, A.M. & Qader, N.N., 2017. Load-Balancing Algorithms in Cloud

Computing: A Survey. Journal of Network and Computer Applications, 88, pp.50-71.

265

Giannopoulos, G., Bikakis, N., Dalamagas, T. & Sellis, T., 2010, May. GoNTogle: A Tool for

Semantic Annotation and Search. In Extended Semantic Web Conference (pp. 376-380).

Springer, Berlin, Heidelberg.

Gilbert, J. (2018). Cloud Native Development Patterns and Best Practices. Birmingham: Packt.

Giri, K., 2011. Role of Ontology in Semantic Web. DESIDOC Journal of Library &

Information Technology, 31(2).

Gkortzis, A., Rizou, S. & Spinellis, D., 2016, December. An Empirical Analysis of

Vulnerabilities in Virtualization Technologies. In 2016 IEEE International Conference on

Cloud Computing Technology and Science (CloudCom) (pp. 533-538). IEEE.

Goodyear, P. & Retalis, S., 2010. Technology-Enhanced Learning. Rotterdam: Sense

Publishers.

Gracia, J., Montiel-Ponsoda, E., Cimiano, P., Gómez-Pérez, A., Buitelaar, P. & McCrae, J.,

2012. Challenges for the Multilingual Web of Data. Web Semantics: Science, Services and

Agents on the World Wide Web, 11, pp.63-71.

Grafana Labs. (2019). Grafana - The Open Platform for Analytics and Monitoring. [online]

Available at: https://grafana.com/ [Accessed 13 Jun. 2019].

Grcar, M. & Mladenic, D., 2009, September. Visual OntoBridge: Semi-Automatic Semantic

Annotation Software. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases (pp. 726-729). Springer, Berlin, Heidelberg.

Gregor, S. & Hevner, A.R., 2013. Positioning and Presenting Design Science Research for

Maximum Impact. MIS quarterly, pp.337-355.

Grobe-Bolting, G., Nishioka, C. & Scherp, A., 2015, October. A Comparison of Different

Strategies for Automated Semantic Document Annotation. In Proceedings of the 8th

International Conference on Knowledge Capture (p. 8). ACM.

Gruber, T., 2007. Ontology of Folksonomy: A Mash-Up of Apples and Oranges. International

Journal on Semantic Web and Information Systems (IJSWIS), 3(1), pp.1-11.

Guarino, N. & Musen, M.A., 2015. Ten Years of Applied Ontology. Applied Ontology, 10(3-

4), pp.169-170.

266

Guerra, E.M., De Souza, J.T. & Fernandes, C.T., 2009, August. A Pattern Language for

Metadata-based Frameworks. In Proceedings of the 16th Conference on Pattern Languages

of Programs (p. 3). ACM.

Guha, R.V., Brickley, D. & Macbeth, S., 2016. Schema.org: Evolution of Structured Data on

the Web. Communications of the ACM, 59(2), pp.44-51.

Gunelius, S. (2014). The Data Explosion in 2014 Minute by Minute – Infographic. [online]

ACI. Available at: https://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-

minute-infographic/ [Accessed 13 Aug. 2018].

Guo, D., Wang, W., Zeng, G. & Wei, Z., 2016, March. Microservices Architecture Based

Cloudware Deployment Platform for Service Computing. In 2016 IEEE Symposium on

Service-Oriented System Engineering (SOSE) (pp. 358-363). IEEE.

Gutierrez, Y., Tomas, D. & Moreno, I., 2019. Developing an Ontology Schema for Enriching

and Linking Digital Media Assets. Future Generation Computer Systems.

Guttula, C., 2012. RADIANTWEB: A Tool Facilitating Semantic Annotation of Web Services

(Doctoral dissertation, University of Georgia).

Haimes, P., Medley, S. & Baba, T., 2016. A Pattern Language: Designing a Hazard Information

Map Interface for Community-Based Users. International Journal of Asia Digital Art and

Design Association, 20(1), pp.5-13.

Halford, S., Pope, C. & Weal, M., 2013. Digital Futures? Sociological Challenges and

Opportunities in the Emergent Semantic Web. Sociology, 47(1), pp.173-189.

Hall, W. & Tiropanis, T., 2012. Web Evolution and Web Science. Computer Networks, 56(18),

pp.3859-3865.

Hamza, H. & Fayad, M.E., 2002, September. A Pattern Language for Building Stable Analysis

Patterns. In Proceedings of PLoP.

Handy, A. (2019). Docker Fully Embraces Kubernetes - The New Stack. [online] The New

Stack. Available at: https://thenewstack.io/docker-fully-embraces-kubernetes/ [Accessed 26

Jun. 2019].

267

Hanid, M.B., 2014. Design Science Research as an Approach to Develop Conceptual Solutions

for Improving Cost Management in Construction (Doctoral dissertation, University of

Salford).

Hao, Z., Novak, E., Yi, S. & Li, Q., 2017. Challenges and Software Architecture for Fog

Computing. IEEE Internet Computing, 21(2), pp.44-53.

Harrow, I., Balakrishnan, R., Jimenez-Ruiz, E., Jupp, S., Lomax, J., Reed, J., Romacker, M.,

Senger, C., Splendiani, A., Wilson, J. & Woollard, P., 2019. Ontology Mapping for

Semantically Enabled Applications. Drug Discovery Today.

Harrer, S., Lenhard, J., Kopp, O., Ferme, V. & Pautasso, C., 2017, July. A Pattern Language

for Workflow Engine Conformance and Performance Benchmarking. In Proceedings of the

22nd European Conference on Pattern Languages of Programs (p. 1). ACM.

He, Q., Berg, A., Li, Y., Vallejos, C.E. and Wu, R., 2010. Mapping Genes for Plant Structure,

Development and Evolution: Functional Mapping meets Ontology. Trends in Genetics,

26(1), pp.39-46.

Hendre, A., & Joshi, K. P. (2015). A Semantic Approach to Cloud Security and Compliance.

In Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on (pp. 1081-

1084). IEEE.

Hentrich, C. & Zdun, U., 2009. A Pattern Language for Process Execution and Integration

Design in Service-Oriented Architectures. In Transactions on Pattern Languages of

Programming I (pp. 136-191). Springer, Berlin, Heidelberg.

Herrera, N.P., Gomez, F.L., Bucheli, V.A. & Pabón, O.S., 2017. Semantic Annotation and

Retrieval of Scientific Documents in a Big Data Environment.

Hevner, A.R., 2007. A Three-Cycle View of Design Science Research. Scandinavian Journal

of Information Systems, 19(2), p.4.

Hevner, A. & Chatterjee, S., 2010. Design Research in Information Systems: Theory and

Practice (Vol. 22). Springer Science & Business Media.

Hnatkowska, B. & Kasprzyk, K., 2009, October. Integration of Application Business Logic

and Business Rules with DSL and AOP. In IFIP Central and East European Conference on

Software Engineering Techniques (pp. 30-39). Springer, Berlin, Heidelberg.

268

Hooi, Y.K., Hassan, M.F. & Shariff, A.M., 2015, May. Ontology Evaluation – A Criteria

Selection Framework. In 2015 International Symposium on Mathematical Sciences and

Computing Research (iSMSC) (pp. 298-303). IEEE.

Hoque, S., de Brito, M.S., Willner, A., Keil, O. & Magedanz, T., 2017, July. Towards

Container Orchestration in Fog Computing Infrastructures. In 2017 IEEE 41st Annual

Computer Software and Applications Conference (COMPSAC) (Vol. 2, pp. 294-299). IEEE.

HowToExpert (2019). [Image] Available at: http://www.howto-expert.com/wp-

content/uploads/overview.png [Accessed 11 May. 2019].

Hsu, I.C. & Cheng, F.Q., 2015. SAaaS: A Cloud Computing Service Model using Semantic‐

Based Agent. Expert Systems, 32(1), pp.77-93.

Hu, J., Jia, S. & Wu, K., 2015. Semantic-Based Requirements Content Management for Cloud

Software. Mathematical Problems in Engineering, 2015.

Hua, Y., Liu, X., & Jiang, H. (2014). Antelope: A Semantic-Aware Data Cube Scheme for

Cloud Data Centre Networks. IEEE Transactions on Computers, 63(9), 2146-2159.

Hukerikar, S. & Engelmann, C., 2017, July. A Pattern Language for High-Performance

Computing Resilience. In Proceedings of the 22nd European Conference on Pattern

Languages of Programs (p. 12). ACM.

Husain, M., McGlothlin, J., Masud, M.M., Khan, L. & Thuraisingham, B.M., 2011. Heuristics-

Based Query Processing for Large RDF Graphs using Cloud Computing. IEEE Transactions

on Knowledge and Data Engineering, 23(9), pp.1312-1327.

Huttermann, M. (2012). DevOps for Developers, Apress.

IBM Cloud Education (2019). Kubernetes: A Complete Guide. [online] Ibm.com. Available

at: https://www.ibm.com/cloud/learn/kubernetes [Accessed 27 June 2019].

Iivari, J., 2010. Twelve Theses on Design Science Research in Information Systems. In Design

Research in Information Systems (pp. 43-62). Springer, Boston, MA.

Imam, F.T., 2016. Application of Ontologies in Cloud Computing: The State-Of-The-Art.

arXiv preprint arXiv:1610.02333.

269

Indu, I., Anand, P.R. & Bhaskar, V., 2018. Identity and Access Management in Cloud

Environment: Mechanisms and Challenges. Engineering Science and Technology, An

International Journal, 21(4), pp.574-588.

Infoworld (2019). What is Docker? [image] Available at:

https://www.infoworld.com/article/3204171/what-is-docker-docker-containers-

explained.html [Accessed 21 May 2019].

Iqbal, R., Murad, M.A.A., Mustapha, A. & Sharef, N.M., 2013. An Analysis of Ontology

Engineering Methodologies: A Literature Review. Research Journal of Applied Sciences,

Engineering and Technology, 6(16), pp.2993-3000.

Iwashita, M. & Tanimoto, S., 2013, July. Consideration of Billing Management Method for

Cloud Computing Services. In 2013 14th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (pp.

394-399). IEEE.

Jacob, P.M. & Mani, P., 2018. Software Architecture Pattern Selection Model for Internet of

Things Based Systems. IET Software, 12(5), pp.390-396.

Jain, N. & Choudhary, S., 2016, March. Overview of Virtualisation in Cloud Computing. In

2016 Symposium on Colossal Data Analysis and Networking (CDAN) (pp. 1-4). IEEE.

Jaramillo, D., Nguyen, D.V. & Smart, R., 2016, March. Leveraging Microservices Architecture

by using Docker Technology. In SoutheastCon 2016 (pp. 1-5). IEEE.

Jean-Mary, Y.R., Shironoshita, E.P. & Kabuka, M.R., 2009. Ontology Matching with Semantic

Verification. Journal of Web Semantics, 7(3), pp.235-251.

Jedlitschka, A., Ciolkowski, M. & Pfahl, D., 2008. Reporting Experiments in Software

Engineering. In Guide to Advanced Empirical Software Engineering (pp. 201-228).

Springer, London.

Jiang, J., Lu, J., Zhang, G. & Long, G., 2013, May. Optimal Cloud Resource Auto-Scaling for

Web Applications. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,

and Grid Computing (pp. 58-65). IEEE.

Jie, L., Jianfeng, C., Zhihong, R., Zhi, S., Hui, Y. & Rui, X., 2018, April. A Massive RDF

Storage Approach based on Graph Database. In Proceedings of the International

Conference on Geoinformatics and Data Analysis (pp. 169-173). ACM.

270

Johnson, J.R., Miller, A., Khan, L. & Thuraisingham, B., 2012, June. Extracting Semantic

Information Structures from Free Text Law Enforcement Data. In 2012 IEEE International

Conference on Intelligence and Security Informatics (pp. 177-179). IEEE.

Jonathan, C. & Mokbel, M.F., 2017. A Demonstration of Stella: A Crowdsourcing-Based

Geotagging Framework. Proceedings of the VLDB Endowment, 10(12), pp.1969-1972.

Joshi, M., Mittal, S., Joshi, K.P. & Finin, T., 2017, June. Semantically Rich, Oblivious Access

Control using ABAC for Secure Cloud Storage. In 2017 IEEE International Conference on

Edge Computing (EDGE) (pp. 142-149). IEEE.

Jula, A., Sundararajan, E. & Othman, Z., 2014. Cloud Computing Service Composition: A

Systematic Literature Review. Expert Systems with Applications, 41(8), pp.3809-3824.

Jung, M., Mallering, S., Dalbhanjan, P., Chapman, P. & Kassen, C., 2016. Microservices on

AWS. Amazon Web Services, Inc., New York, NY, USA, Tech. Rep.

Kakadia, D., Saripalli, P. & Varma, V., 2013, July. MECCA: Mobile, Efficient Cloud

Computing Workload Adoption Framework using Scheduler Customization and Workload

Migration Decisions. In Proceedings of the first international workshop on Mobile cloud

computing & networking (pp. 41-46). ACM.

Kang, H., Le, M. & Tao, S., 2016, April. Container and Microservice Driven Design for Cloud

Infrastructure DevOps. In 2016 IEEE International Conference on Cloud Engineering

(IC2E) (pp. 202-211). IEEE.

Keller, W. & Coldewey, J., 1996, September. Relational Database Access Layers: A Pattern

Language. In Proceedings PLoP ‘96, Allerton Park.

Kendall, E.A., Pathak, C.V., Krishna, P.M. & Suresh, C.B., 1997, September. The Layered

Agent Pattern Language. In Proceedings of the Conference on Pattern Languages of

Programs.

Khalili, A., Loizou, A. & van Harmelen, F., 2016, May. Adaptive Linked Data-driven Web

Components: Building Flexible and Reusable Semantic Web Interfaces. In European

Semantic Web Conference (pp. 677-692). Springer, Cham.

Khan, A., 2017. Key Characteristics of a Container Orchestration Platform to Enable a Modern

Application. IEEE Cloud Computing, 4(5), pp.42-48.

271

Kim, P., Ng, C.K. & Lim, G., 2010. When Cloud Computing meets with Semantic Web: A

New Design for E‐Portfolio Systems in the Social Media Era. British Journal of Educational

Technology, 41(6), pp.1018-1028.

Kirrane, S., Villata, S. & d’Aquin, M., 2018. Privacy, Security and Policies: A Review of

Problems and Solutions with Semantic Web Technologies. Semantic Web, 9(2), pp.153-161.

Kiryakov, A., Popov, B., Terziev, I., Manov, D. & Ognyanoff, D., 2004. Semantic Annotation,

Indexing, and Retrieval. Web Semantics: Science, Services and Agents on the World Wide

Web, 2(1), pp.49-79.

Khurana, D., Koli, A., Khatter, K. & Singh, S., 2017. Natural Language Processing: State-of-

the-art, Current Trends and Challenges. arXiv preprint arXiv:1708.05148.

Kodituwakku, S.R., Bertok, P. & Zhao, L., 2001. APLRAC: A Pattern Language for Designing

and Implementing Role-Based Access Control. In EuroPLoP (Vol. 1, p. 2001).

Kollmann, T., Lomberg, C. & Peschl, A., 2016. Web 1.0, Web 2.0, and Web 3.0: The

Development of E-Business. In Encyclopedia of E-Commerce Development,

Implementation, and Management (pp. 1139-1148). IGI Global.

Kubernetes.io. (2019). Production-Grade Container Orchestration. [online] Available at:

https://kubernetes.io/ [Accessed 10 Feb. 2019].

Kuechler, W. & Vaishnavi, V., 2012. A Framework for Theory Development in Design Science

Research: Multiple Perspectives. Journal of the Association for Information systems, 13(6),

p.395.

Kulesza, R., Lima, M., Araujo, C. & de Sousa, M.F., 2018, October. Evolution of Software

Architectures: From Web 1.0 to Web 3.0 Systems. In Proceedings of the 24th Brazilian

Symposium on Multimedia and the Web (pp. 11-13). ACM.

Kumar, S.K. & Harding, J.A., 2013. Ontology Mapping using Description Logic and Bridging

Axioms. Computers in Industry, 64(1), pp.19-28.

Laclavık, M., Šeleng, M. and Babık, M., 2006. Ontea: Semi-Automatic Ontology-Based Text

Annotation Method. Tools for Acquisition, Organisation and Presenting of Information and

Knowledge, pp.49-63.

272

Landragin, F., Poibeau, T. & Victorri, B., 2012, May. ANALEC: A New Tool for the Dynamic

Annotation of Textual Data. In International Conference on Language Resources and

Evaluation (LREC 2012) (pp. 357-362).

Lascano, J.E., 2017. A Pattern Language for Designing Application-Level Communication

Protocols and the Improvement of Computer Science Education Through Cloud Computing.

Utah State University.

Le Noac'H, P., Costan, A. & Bougé, L., 2017, December. A Performance Evaluation of Apache

Kafka in Support of Big Data Streaming Applications. In 2017 IEEE International

Conference on Big Data (Big Data) (pp. 4803-4806). IEEE.

Leach, K., Zhang, F. & Weimer, W., 2017, September. Scotch: Combining Software Guard

Extensions and System Management Mode to Monitor Cloud Resource Usage. In

International Symposium on Research in Attacks, Intrusions, and Defenses (pp. 403-424).

Springer, Cham.

Lehtonen, S. & Pärssinen, J., 2001. A Pattern Language for Key Management. Procs. of PLoP

2001.

Leymann, F., Breitenbücher, U., Wagner, S. & Wettinger, J., 2016, April. Native Cloud

Applications: Why Monolithic Virtualisation is not their Foundation. In International

Conference on Cloud Computing and Services Science (pp. 16-40). Springer, Cham.

Li, C., Sun, H., Tang, H., & Luo, Y. (2019). Adaptive Resource Allocation based on the Billing

Granularity in Edge-Cloud Architecture. Computer Communications.

Liaqat, M., Chang, V., Gani, A., Ab Hamid, S.H., Toseef, M., Shoaib, U. & Ali, R.L., 2017.

Federated Cloud Resource Management: Review and Discussion. Journal of Network and

Computer Applications, 77, pp.87-105.

Lins, S., Grochol, P., Schneider, S. & Sunyaev, A., 2016. Dynamic Certification of Cloud

Services: Trust but Verify! IEEE Security & Privacy, 14(2), pp.66-71.

Liu, C.H., Chen, H.C., Jain, J.L. and Chen, J.Y., 2009, March. Semi-Automatic Annotation

System for OWL-Based Semantic Search. In 2009 International Conference on Complex,

Intelligent and Software Intensive Systems (pp. 475-480). IEEE.

Liu, F., Li, P. & Deng, D., 2017. Device-Oriented Automatic Semantic Annotation in IoT.

Journal of Sensors, 2017.

273

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L. & Leaf, D., 2011. NIST Cloud

Computing Reference Architecture. NIST Special Publication, 500(2011), pp.1-28.

Liu, S., Chan, F.T., Yang, J. & Niu, B., 2018. Understanding the effect of Cloud Computing

on Organisational Agility: An Empirical Examination. International Journal of Information

Management, 43, pp.98-111.

Loader.io. (2019). Application Load Testing Tools for API Endpoints with loader.io. [online]

Available at: https://loader.io/ [Accessed 14 Mar. 2019].

Losch, U., Rudolph, S., Vrandečić, D. & Studer, R., 2009, May. Tempus Fugit: Towards an

Ontology Update Language. In European Semantic Web Conference (pp. 278-292).

Springer, Berlin, Heidelberg.

Luczak-Rosch, M., Simperl, E., Stadtmüller, S. & Käfer, T., 2014. The Role of Ontology

Engineering in Linked Data Publishing and Management: An Empirical Study.

International Journal on Semantic Web and Information Systems (IJSWIS), 10(3), pp.74-

91.

Mahemoff, M.J. & Johnston, L.J., 1998, November. Principles for a Usability-Oriented Pattern

Language. In Computer Human Interaction Conference, 1998. Proceedings. 1998

Australasian (pp. 132-139). IEEE.

Mahemoff, M.J. & Johnston, L.J., 1999, September. The Planet Pattern Language for Software

Internationalisation. In Proceedings of the 6th Annual Conference on the Pattern Languages

of Programs, Retrieved July (Vol. 30, p. 2009).

Mainetti, L., Mighali, V. & Patrono, L., 2015. A Software Architecture enabling the Web of

Things. IEEE Internet of Things Journal, 2(6), pp.445-454.

Makhsous, S.H., Gulenko, A., Kao, O. & Liu, F., 2016, July. High Available Deployment of

Cloud-Based Virtualized Network Functions. In 2016 International Conference on High

Performance Computing & Simulation (HPCS) (pp. 468-475). IEEE.

Makki, J., 2017. OntoPRiMa: A Prototype for Automating Ontology Population. International

Journal of Web/Semantic Technology (IJWesT), 8.

Malik, S.K., Prakash, N. & Rizvi, S.A.M., 2010. Semantic Annotation Framework for

Intelligent Information Retrieval using KIM Architecture. International Journal of Web &

Semantic Technology (IJWest), 1(4), pp.12-26.

274

Manjusha, R. & Ramachandran, R., 2015. Secure Authentication and Access System for Cloud

Computing Auditing Services using Associated Digital Certificate. Indian Journal of

Science and Technology, 8, p.220.

Manolescu, D.A., 1997, September. A Dataflow Pattern Language. In Proceedings of the 4th

Pattern Languages of Programming Conference.

Manzoor, D., Ali, A., & Ahmad, A. (2014). Cloud and Web Technologies: Technical

Improvements and Their Implications on E-Governance. In International Journal of

Advanced Computer Science and Applications on (pp. 196-201).

March, S.T. & Smith, G.F., 1995. Design and Natural Science Research on Information

Technology. Decision Support Systems, 15(4), pp.251-266.

March, S.T. & Storey, V.C., 2008. Design Science in the Information Systems Discipline: An

Introduction to the Special Issue on Design Science Research. MIS Quarterly, 32(4), pp.725-

730.

Marcinczuk, M., Kocon, J. & Broda, B., 2012. Inforex - A Web-Based Tool for Text Corpus

Management and Semantic Annotation. In International Conference on Language

Resources and Evaluation (pp. 224-230).

Marr, B. (2018). How Much Data Do We Create Every Day? The Mind-Blowing Stats

Everyone Should Read. [online] Forbes.com. Available at:

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-

every-day-the-mind-blowing-stats-everyone-should-read/ [Accessed 15 Jul. 2018].

Marrero, M. & Urbano, J., 2018. A Semi-Automatic and Low-Cost Method to Learn Patterns

for Named Entity Recognition. Natural Language Engineering, 24(1), pp.39-75.

Martinez-Lopez, F.J., Anaya-Sánchez, R., Aguilar-Illescas, R. & Molinillo, S., 2016. Evolution

of the Web. In Online Brand Communities (pp. 5-15). Springer, Cham.

Martinez-Rodriguez, J.L., Hogan, A. & Lopez-Arevalo, I., 2018. Information Extraction Meets

the Semantic Web: A Survey. Semantic Web, (Preprint), pp.1-81.

Massingill, B.L., Mattson, T.G. & Sanders, B.A., 2001. Parallel Programming with a Pattern

Language. International Journal on Software Tools for Technology Transfer, 3(2), pp.217-

234.

275

Mehmood, S. & Umar, A.I., 2017. Scalable and Flexible SLA Management Approach for

Cloud. Mehran University Research Journal of Engineering & Technology, 36(1), p.87.

Mell, P. & Grance, T., 2011. The NIST Definition of Cloud Computing. National Institute of

Standards and Technology, U.S. Department of Commerce, Special Publication 80-145.

Menzies, T., Williams, L. & Zimmermann, T., 2016. Perspectives on Data Science for

Software Engineering. Morgan Kaufmann.

Meszaros, G. & Brown, K., 1997, September. A Pattern Language for Workflow Systems. In

Proceedings of the 4th Pattern Languages of Programming Conference, Washington

University Technical Report (pp. 97-34).

Michel, G., Amal, Z., Francisco, A., Faezeh, E. & Ludovic, J.L., 2018. An Analysis of the

Semantic Annotation Task on the Linked Data Cloud. arXiv preprint arXiv:1811.05549.

Mika, P. (2008). The Semantic Web in the Cloud. IEEE Intelligent Systems.

Milani, A.S. & Navimipour, N.J., 2016. Load Balancing Mechanisms and Techniques in the

Cloud Environments: Systematic Literature Review and Future Trends. Journal of Network

and Computer Applications, 71, pp.86-98.

Mittra, T. & Ali, M.M., 2017. Parallelized and Distributed Task-Based Ontology Matching in

Clustering Environment with Semantic Verification. CSI Transactions on ICT, 5(3), pp.265-

279.

Mohammed, B., Kiran, M., Maiyama, K.M., Kamala, M.M. & Awan, I.U., 2017. Failover

Strategy for Fault Tolerance in Cloud Computing Environment. Software: Practice and

Experience, 47(9), pp.1243-1274.

Molin, P. & Ohlsson, L., 1996, September. Points & Deviations - A Pattern Language for Fire

Alarm Systems. In Proceedings of the 3rd International Conference on Pattern Languages

for Programming (No. 6.6).

Morabito, R., 2017. Virtualization on Internet of Things Edge Devices with Container

Technologies: A Performance Evaluation. IEEE Access, 5, pp.8835-8850.

Mulyar, N. & van der Aalst, W.M., 2005, October. Towards a Pattern Language for Coloured

Petri Nets. In Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the

CPN Tools (p. 39).

276

Munir, K. & Anjum, M.S., 2018. The Use of Ontologies for Effective Knowledge Modelling

and Information Retrieval. Applied Computing and Informatics, 14(2), pp.116-126.

Nacer, H. & Aissani, D., 2014. Semantic Web Services: Standards, Applications, Challenges

and Solutions. Journal of Network and Computer Applications, 44, pp.134-151.

Naeem, M.M., Memon, H.M.F., Siddique, M. & Rauf, A., 2016, July. An Overview of

Virtualisation & Cloud Computing

Namasudra, S., Roy, P. & Balusamy, B., 2017, February. Cloud Computing: Fundamentals and

Research Issues. In 2017 Second International Conference on Recent Trends and

Challenges in Computational Models (ICRTCCM) (pp. 7-12). IEEE.

Narula, G.S., Wason, R., Jain, V. & Baliyan, A., 2018. Ontology Mapping and Merging

Aspects in Semantic Web. International Robotics & Automation Journal, 4(1), p.00087.

Navarrete, R. & Lujan-Mora, S., 2018. A Quantitative Analysis of the use of Microdata for

Semantic Annotations on Educational Resources. Journal of Web Engineering, 17(1&2),

pp.045-072.

Neveol, A., Doğan, R.I. & Lu, Z., 2011. Semi-Automatic Semantic Annotation of PubMed

Queries: A Study on Quality, Efficiency, Satisfaction. Journal of Biomedical Informatics,

44(2), pp.310-318.

Newman, S., 2015. Building Microservices: Designing Fine-Grained Systems. "O'Reilly

Media, Inc.".

Niklaus, C., Cetto, M., Freitas, A. & Handschuh, S., 2018. A Survey on Open Information

Extraction. arXiv preprint arXiv:1806.05599.

Novak, J.H., Kasera, S.K. & Stutsman, R., 2019, January. Cloud Functions for Fast and Robust

Resource Auto-Scaling. In 2019 11th International Conference on Communication Systems

& Networks (COMSNETS) (pp. 133-140). IEEE.

Nunamaker Jr, J.F., Chen, M. & Purdin, T.D., 1990. Systems Development in Information

Systems Research. Journal of Management Information Systems, 7(3), pp.89-106.

O'reilly, T., 2007. What is Web 2.0: Design Patterns and Business Models for the Next

Generation of Software. Communications & Strategies, (1), p.17.

277

Offermann, P., Levina, O., Schönherr, M. & Bub, U., 2009, May. Outline of a Design Science

Research Process. In Proceedings of the 4th International Conference on Design Science

Research in Information Systems and Technology (p. 7). ACM.

Oliveira, P. & Rocha, J., 2013, April. Semantic Annotation Tools Survey. In 2013 IEEE

Symposium on Computational Intelligence and Data Mining (CIDM) (pp. 301-307). IEEE.

Opdyke, W.F., 1990. Refactoring: An Aid in Designing Application Frameworks and Evolving

Object-Oriented Systems. In Proc. SOOPPA'90: Symposium on Object-Oriented

Programming Emphasizing Practical Applications.

Oracle (2018). Using Oracle Messaging Cloud Service. [online] Oracle Help Center. Available

at: https://docs.oracle.com/en/cloud/iaas/messaging-cloud/csmes/rest-api-reference.html

[Accessed 14 Mar. 2019].

Pahl, C., Brogi, A., Soldani, J. & Jamshidi, P., 2017. Cloud Container Technologies: A State-

of-the-Art Review. IEEE Transactions on Cloud Computing.

Paladi, N., Michalas, A. & Dang, H.V., 2018, April. Towards Secure Cloud Orchestration for

Multi-Cloud Deployments. In Proceedings of the 5th Workshop on CrossCloud

Infrastructures & Platforms (p. 4). ACM.

Papadopoulos, A.V., Ali-Eldin, A., Årzén, K.E., Tordsson, J. & Elmroth, E., 2016. PEAS: A

Performance Evaluation Framework for Auto-Scaling Strategies in Cloud Applications.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems

(TOMPECS), 1(4), p.15.

Paris, A., Andreas, P., Symeon, R. & Manolis, S., 2003. Towards a Pattern Language for

Learning Management Systems. Journal of Educational Technology & Society, 6(2).

Park, J., Oh, S. & Ahn, J., 2011. Ontology Selection Ranking Model for Knowledge Reuse.

Expert Systems with Applications, 38(5), pp.5133-5144.

Pautasso, C., Ivanchikj, A. & Schreier, S., 2016, July. A Pattern Language for RESTful

Conversations. In Proceedings of the 21st European Conference on Pattern Languages of

Programs (p. 4). ACM.

Peffers, K., Tuunanen, T., Rothenberger, M.A. & Chatterjee, S., 2007. A Design Science

Research Methodology for Information Systems Research. Journal of Management

Information Systems, 24(3), pp.45-77.

278

Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A. & Zavitsanos, E., 2011, January.

Ontology Population and Enrichment: State of the Art. In Knowledge-driven Multimedia

Information Extraction and Ontology Evolution (pp. 134-166). Springer-Verlag.

Piao, S., Bianchi, F., Dayrell, C., D’Egidio, A. & Rayson, P., 2015. Development of the

Multilingual Semantic Annotation System. In Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (pp. 1268-1274).

Pileggi, S. F., Calvo-Gallego, J., & Amor, R. (2013). Bringing Semantic Resources Together

in the Cloud: From Theory to Application. In Computational Intelligence, Modelling and

Simulation (CIMSim), 2013 Fifth International Conference on (pp. 113-118). IEEE.

Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D. & Goranov, M., 2003,

October. KIM – Semantic Annotation Platform. In International Semantic Web Conference

(pp. 834-849). Springer, Berlin, Heidelberg.

Prabhu, D., 2017. Application of Web 2.0 and Web 3.0: An Overview. LAP LAMBERT

Academic Publishing.

Prasad, M.R., Manjula, B. & Bapuji, V., 2013. A Novel Overview and Evolution of World

Wide Web: Comparison from Web 1.0 to Web 3.0. International Journal of Computer

Science and Technology, 4(1), p.352.

Prometheus.io. (2019). Prometheus - Monitoring System & Time Series Database. [online]

Available at: https://prometheus.io/ [Accessed 12 Apr. 2019].

Pyarali, I., O'Ryan, C. & Schmidt, D.C., 2000. A Pattern Language for Efficient, Predictable,

Scalable, and Flexible Dispatching Mechanisms for Distributed Object Computing

Middleware. In Object-Oriented Real-Time Distributed Computing, 2000. (ISORC 2000)

Proceedings. Third IEEE International Symposium on (pp. 62-69). IEEE.

Ranganathan, R., 2018. A Highly Available and Scalable Microservice Architecture for Access

Management.

Rathod, N. & Surve, A., 2015, January. Test Orchestration a Framework for Continuous

Integration and Continuous Deployment. In 2015 International Conference on Pervasive

Computing (ICPC) (pp. 1-5). IEEE.

279

Re, R., Braga, R.T. & Masiero, P.C., 2001. A Pattern Language for Online Auctions

Management. In Proceedings of PLoP (Vol. 2001).

Reeve, L. & Han, H., 2005, March. Survey of Semantic Annotation Platforms. In Proceedings

of the 2005 ACM Symposium on Applied Computing (pp. 1634-1638). ACM.

Rekik, M., Boukadi, K., & Ben-Abdallah, H. (2015). Cloud Description Ontology for Service

Discovery and Selection. In 2015 10th International Joint Conference on Software

Technologies (ICSOFT) (pp. 1-11). IEEE.

Rezaei, R., Chiew, T.K., Lee, S.P. & Aliee, Z.S., 2014. A Semantic Interoperability Framework

for Software as a Service Systems in Cloud Computing Environments. Expert Systems with

Applications, 41(13), pp.5751-5770.

Richards, M., 2015. Software Architecture Patterns. O'Reilly Media, Incorporated.

Richards, M., 2015. Microservices vs. Service-Oriented Architecture. O'Reilly Media.

Richardson, C., 2001. A Pattern Language for J2EE Web Component Development. In

Proceedings of the 8th Conference on Pattern Languages and Programming. ACM.

Richardson, C., 2015. Microservices Architecture (2014).

Rittinghouse, J.W. & Ransome, J.F., 2017. Cloud Computing: Implementation, Management,

and Security. CRC Press.

Rodriguez, M.A. & Buyya, R., 2019. Container‐Based Cluster Orchestration Systems: A

Taxonomy and Future Directions. Software: Practice and Experience, 49(5), pp.698-719.

Rodriguez-Garcia, M.Á., Valencia-García, R., García-Sánchez, F. & Samper-Zapater, J.J.,

2014. Ontology-Based Annotation and Retrieval of Services in the Cloud. Knowledge-

Based Systems, 56, pp.15-25.

Rossi, G., Schwabe, D. & Garrido, A., 1996, September. Towards a Pattern Language for

Hypermedia Applications. In Proceedings of the 3rd Annual Conference on Pattern

Languages of Programs (Vol. 96).

Rudman, R. & Bruwer, R., 2016. Defining Web 3.0: Opportunities and Challenges. The

Electronic Library, 34(1), pp.132-154.

Sabou, M., Lopez, V., Motta, E. & Uren, V., 2006. Ontology Selection: Ontology Evaluation

on the Real Semantic Web.

280

Sachdeva, R., 2016, May. Automated Testing in DevOps. Pacific Northwest Software Quality

Conference 2016.

Saeed, A., Ibrahim, M., Harras, K.A. & Youssef, M., 2015. Toward Dynamic Real-Time Geo-

Location Databases for TV White Spaces. IEEE Network, 29(5), pp.76-82.

Sajja, P.S. & Akerkar, R., 2016. Intelligent Technologies for Web Applications. Chapman and

Hall/CRC.

Salih, A.Q.M., 2013. Towards from Manual to Automatic Semantic Annotation: Based on

Ontology Elements and Relationships. International Journal of Web & Semantic

Technology, 4(2), p.21.

Samet, H., Sankaranarayanan, J., Lieberman, M.D., Adelfio, M.D., Fruin, B.C., Lotkowski,

J.M., Panozzo, D., Sperling, J. & Teitler, B.E., 2014. Reading News with Maps by

Exploiting Spatial Synonyms. Communications of the ACM, 57(10), pp.64-77.

Sanchiz, M., Chin, J., Chevalier, A., Fu, W.T., Amadieu, F. & He, J., 2017. Searching for

Information on the Web: Impact of Cognitive Aging, Prior Domain Knowledge and

Complexity of the Search Problems. Information Processing & Management, 53(1), pp.281-

294.

Sangers, J., Hogenboom, F. & Frasincar, F., 2012, November. Event-Driven Ontology

Updating. In International Conference on Web Information Systems Engineering (pp. 44-

57). Springer, Berlin, Heidelberg.

Santana-Perez, I., da Silva, R. F., Rynge, M., Deelman, E., Pérez-Hernández, M. S., & Corcho,

O. (2017). Reproducibility of Execution Environments in Computational Science using

Semantics and Clouds. Future Generation Computer Systems, 67, 354-367.

Santhosh, R. & Ravichandran, T., 2013, February. Pre-Emptive Scheduling of Online Real

Time Services with Task Migration for Cloud Computing. In 2013 International Conference

on Pattern Recognition, Informatics and Mobile Engineering (pp. 271-276). IEEE.

Sassi, N., Jaziri, W. & Alharbi, S., 2016. Supporting Ontology Adaptation and Versioning

based on a Graph of Relevance. Journal of Experimental & Theoretical Artificial

Intelligence, 28(6), pp.1035-1059.

281

Saxena, V.K. & Pushkar, S., 2016, March. Cloud Computing Challenges and Implementations.

In 2016 International Conference on Electrical, Electronics, and Optimisation Techniques

(ICEEOT) (pp. 2583-2588). IEEE.

Schema.org. (2019). Schemas - Schema.org. [online] Available at:

https://schema.org/docs/schemas.html [Accessed 14 June 2019].

Schneider, A.W. & Matthes, F., 2015, July. Evolving the EAM Pattern Language. In

Proceedings of the 20th European Conference on Pattern Languages of Programs (p. 45).

ACM.

Schummer, T., 2003, February. GAMA: A Pattern Language for Computer Supported

Dynamic Collaboration. In EuroPLoP (pp. 53-114).

Scotland, J., 2012. Exploring the Philosophical Underpinnings of Research: Relating Ontology

and Epistemology to the Methodology and Methods of the Scientific, Interpretive, and

Critical Research Paradigms. English Language Teaching, 5(9), pp.9-16.

Senyo, P.K., Addae, E. & Boateng, R., 2018. Cloud Computing Research: A Review of

Research Themes, Frameworks, Methods and Future Research Directions. International

Journal of Information Management, 38(1), pp.128-139.

Shadija, D., Rezai, M. & Hill, R., 2017, September. Towards an Understanding of

Microservices. In 2017 23rd International Conference on Automation and Computing

(ICAC) (pp. 1-6). IEEE.

Shahapure, N.H. & Jayarekha, P., 2015. Replication: A Technique for Scalability in Cloud

Computing. International Journal of Computer Applications, 122(5).

Shaheen, J. (2017). Apache Kafka: Real Time Implementation with Kafka Architecture

Review. International Journal of Advanced Science and Technology, 109, pp.35-42.

Shao, J., Wei, H., Wang, Q. & Mei, H., 2010, July. A Runtime Model-Based Monitoring

Approach for Cloud. In 2010 IEEE 3rd International Conference on Cloud Computing (pp.

313-320). IEEE.

Sheth, A. & Thirunarayan, K., 2012. Semantics Empowered Web 3.0: Managing Enterprise,

Social, Sensor, and Cloud-Based Data and Services for Advanced Applications. Synthesis

Lectures on Data Management, 4(6), pp.1-175.

282

Silva, A.R., Hayes, F., Mota, F., Torres, N. & Santos, P., 1996. A Pattern Language for the

Perception, Design and Implementation of Distributed Application Partitioning. In

Workshop on Methodologies for Distributed Objects.

Singh, P., 2019. Natural Language Processing. In Machine Learning with PySpark (pp. 191-

218). Apress, Berkeley, CA.

Singh, S., Chana, I. & Buyya, R., 2017. STAR: SLA-Aware Autonomic Management of Cloud

Resources. IEEE Transactions on Cloud Computing.

Sjoberg, D.I., Dyba, T. & Jorgensen, M., 2007, May. The Future of Empirical Methods in

Software Engineering Research. In 2007 Future of Software Engineering (pp. 358-378).

IEEE Computer Society.

SlideWiki (2016). Ontology Engineering Phases. [Online Image] Available from -

http://slidewiki.org/upload/media/images/141/2338.png. [Accessed: 14th July 2016].

Slimani, T., 2013. Semantic Annotation: The Mainstay of Semantic Web. arXiv preprint

arXiv:1312.4794.

Slimani, T., 2015. Ontology Development: A Comparing Study on Tools, Languages and

Formalisms. Indian Journal of Science and Technology, 8(24), pp.1-12.

Slimani, T., 2014. A Study on Ontologies and their Classification. Recent Advances in

Electrical Engineering and Educational Technologies.

Solms, F., 2012, October. What is Software Architecture? In Proceedings of the South African

Institute for Computer Scientists and Information Technologists Conference (pp. 363-373).

ACM.

Somasundaram, T. S., Govindarajan, K., & Rao, S. M. (2012). An Architectural Framework to

solve the Interoperability issue between Private Clouds using Semantic Technology. In

Recent Trends in Information Technology (ICRTIT), 2012 International Conference on (pp.

162-167). IEEE.

Sonali, S.S.S.G.P., Bogiri, D.S.M.P.N. & Guide, S.S.S.S., 2015. Cloud Computing Security:

From Single Cloud to Multi-Clouds using Digital Signature. International Journal of

Advanced Research in Computer Engineering & Technology (IJARCET), 4(4).

283

Staab, S., Maedche, A. and Handschuh, S., 2001. An Annotation Framework for the Semantic

Web (pp. 30-31). Institute of Applied Informatics and Formal Description Methods (AIFB)

Stahl, D. & Bosch, J., 2016, May. Industry Application of Continuous Integration Modelling:

A Multiple-Case Study. In 2016 IEEE/ACM 38th International Conference on Software

Engineering Companion (ICSE-C) (pp. 270-279). IEEE.

Stahlin, J., Lang, S., Kajzar, F. & Zirpins, C., 2016, September. Consumer-Driven API Testing

with Performance Contracts. In European Conference on Service-Oriented and Cloud

Computing (pp. 135-143). Springer, Cham.

Stenberg, D. (2019). Introduction · Everything cURL. [online] Ec.haxx.se. Available at:

https://ec.haxx.se/ [Accessed 4 Apr. 2019].

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S. & Tsujii, J.I., 2012, April. BRAT:

A Web-based Tool for NLP-assisted Text Annotation. In Proceedings of the

Demonstrations at the 13th Conference of the European Chapter of the Association for

Computational Linguistics (pp. 102-107). Association for Computational Linguistics.

Stepney, S., 2012, September. A Pattern Language for Scientific Simulations. In Proceedings

of the 2012 Workshop on Complex Systems Modelling and Simulation, Orleans, France (pp.

77-103).

Suarez-Figueroa, M.C., Gómez-Pérez, A. & Fernández-López, M., 2012. The NeOn

Methodology for Ontology Engineering. In Ontology Engineering in a Networked World

(pp. 9-34). Springer, Berlin, Heidelberg.

Sui, B., Li, Q., Wen, J. & Yao, Y., 2018, August. Billing System Design of Cloud Services. In

2018 3rd International Conference on Control, Automation and Artificial Intelligence

(CAAI 2018). Atlantis Press.

Tablan, V., Roberts, I., Cunningham, H. & Bontcheva, K., 2013. GATECloud.net: A Platform

for Large-Scale, Open-Source Text Processing on the Cloud. Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1983),

p.20120071.

Tate, M.A., 2018. Web Wisdom: How to Evaluate and Create Information Quality on the Web.

CRC Press.

284

Taherizadeh, S. & Stankovski, V., 2018. Dynamic Multi-Level Auto-Scaling Rules for

Containerised Applications. The Computer Journal, 62(2), pp.174-197.

Taibi, D., Lenarduzzi, V., Pahl, C. & Janes, A., 2017, May. Microservices in Agile Software

Development: A Workshop-Based Study into Issues, Advantages, and Disadvantages. In

Proceedings of the XP2017 Scientific Workshops (p. 23). ACM.

Taibi, D., Lenarduzzi, V. & Pahl, C., 2018, March. Architectural Patterns for Microservices:

A Systematic Mapping Study. In CLOSER (pp. 221-232).

Takeda, H., Veerkamp, P., Tomiyama, T., & Yoshikawam, H. (1990). Modelling Design

Processes. AI Magazine Winter: 37–48.

Talukdar, T., Batra, G., Vaidya, J., Atluri, V. & Sural, S., 2017, October. Efficient Bottom-Up

Mining of Attribute-Based Access Control Policies. In 2017 IEEE 3rd International

Conference on Collaboration and Internet Computing (CIC) (pp. 339-348). IEEE.

Tamper, M., Leskinen, P., Ikkala, E., Oksanen, A., Mäkelä, E., Heino, E., Tuominen, J., Koho,

M. & Hyvönen, E., 2017, June. AATOS – A Configurable Tool for Automatic Annotation.

In International Conference on Language, Data and Knowledge (pp. 276-289). Springer,

Cham.

Tanasseri, N. & Rai, R., 2017. Microservices with Azure: Build Highly Maintainable and

Scalable Enterprise-Grade Apps.

Tang, J., Zhang, D., Yao, L. & Li, Y., 2012. Automatic Semantic Annotation Using Machine

Learning. In Machine Learning: Concepts, Methodologies, Tools and Applications (pp.

535-578). IGI Global.

Tao, C., Song, D., Sharma, D. & Chute, C.G., 2013. Semantator: Semantic Annotator for

Converting Biomedical Text to Linked Data. Journal of Biomedical Informatics, 46(5),

pp.882-893.

Thones, J., 2015. Microservices. IEEE Software, 32(1), pp.116-116.

Thornhill, A., Saunders, M. & Lewis, P., 2009. Research Methods for Business Students.

London: Pearson Education.

Tidwell, J., 1997. A Pattern Language for Human-Computer Interface Design. Available via

DIALOG.

285

Tjoa, A.M., Andjomshoaa, A., Shayeganfar, F. & Wagner, R., 2005, August. Semantic Web

Challenges and New Requirements. In 16th International Workshop on Database and

Expert Systems Applications (DEXA'05) (pp. 1160-1163). IEEE.

Tomaz, H., Lima, R., Emanoel, J. & Freitas, F., 2012, November. An Unsupervised Method

for Ontology Population from the Web. In Ibero-American Conference on Artificial

Intelligence (pp. 41-50). Springer, Berlin, Heidelberg.

Trajanov, D., Stojanov, R., Jovanovik, M., Zdraveski, V., Ristoski, P., Georgiev, M., &

Filiposka, S. (2012). Semantic Sky: A Platform for Cloud Service Integration Based on

Semantic Web Technologies. In Proceedings of the 8th International Conference on

Semantic Systems (pp. 109-116). ACM.

Tulasi, R.L., Rao, M.S., Ankita, K. & Hgoudar, R., 2017. Ontology-Based Automatic

Annotation: An Approach for Efficient Retrieval of Semantic Results of Web Documents.

In Proceedings of the First International Conference on Computational Intelligence and

Informatics (pp. 331-339). Springer, Singapore.

Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E. & Ciravegna, F.,

2006. Semantic Annotation for Knowledge Management: Requirements and a Survey of the

State of the Art. Web Semantics: Science, Services and Agents on the World Wide Web, 4(1),

pp.14-28.

Vaishnavi, V., Kuechler, W., & Petter, S. (Eds.) (2004/17). “Design Science Research in

Information Systems” January 20, 2004 (created in 2004 and updated until 2015 by

Vaishnavi, V. and Kuechler, W.); last updated (by Vaishnavi, V. and Petter, S.), December

20, 2017. URL: http://www.desrist.org/design-research-in-information-systems/.

VanHilst, M. & Notkin, D., 1996. Using Role Components in Implement Collaboration-Based

Designs. ACM SIGPLAN Notices, 31(10), pp.359-369.

Vegetti, M., Roldán, L., Gonnet, S., Leone, H. & Henning, G., 2016. A Framework to

Represent, Capture, and Trace Ontology Development Processes. Engineering Applications

of Artificial Intelligence, 56, pp.230-249.

Veloudis, S., & Paraskakis, I. (2016). Defining an Ontological Framework for Modelling

Policies in Cloud Environments. In Cloud Computing Technology and Science (CloudCom),

2016 IEEE International Conference on (pp. 277-284). IEEE.

http://www.desrist.org/design-research-in-information-systems/

286

Verspoor, K. & Cohen, K.B., 2013. Natural Language Processing. Encyclopaedia of Systems

Biology, pp.1495-1498.

Verspoor, K., Kim, J.D. & Dumontier, M., 2015, December. Interoperability of Text Corpus

Annotations with the Semantic Web. In BMC proceedings (Vol. 9, No. 5, p. A2). BioMed

Central.

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R. & Gil, S., 2015,

September. Evaluating the Monolithic and the Microservice Architecture Pattern to Deploy

Web Applications in the Cloud. In 2015 10th Computing Colombian Conference (10CCC)

(pp. 583-590). IEEE.

Vlahovic, N., 2011. Information Retrieval and Information Extraction in Web 2.0

Environment. International Journal of Computers, 5(1), pp.1-9.

Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede, N., Rao, J.,

Kreps, J. & Stein, J., 2015. Building a Replicated Logging System with Apache Kafka.

Proceedings of the VLDB Endowment, 8(12), pp.1654-1655.

Wang, H., Wang, W., Cui, L., Sun, H., Zhao, J., Wang, Y. & Xue, Y., 2018. A Hybrid Multi-

Objective Firefly Algorithm for Big Data Optimization. Applied Soft Computing, 69,

pp.806-815.

Wang, J., Bai, X., Ma, H., Li, L. & Ji, Z., 2017, March. Cloud API Testing. In 2017 IEEE

International Conference on Software Testing, Verification and Validation Workshops

(ICSTW) (pp. 385-386). IEEE.

Wang, X., Zhang, X. & Li, M., 2015. A Survey on Semantic Sensor Web: Sensor Ontology,

Mapping and Query. International Journal of u-and e-Service, Science and Technology,

8(10), pp.325-342.

Ward, J. S., & Barker, A. (2012). Semantic Based Data Collection for Large Scale Cloud

Systems. In Proceedings of the fifth international workshop on Data-Intensive Distributed

Computing Date (pp. 13-22). ACM.

Weiss, M., 2003, July. A Pattern Language for Motivating the use of Agents. In International

Bi-Conference Workshop on Agent-Oriented Information Systems (pp. 142-157). Springer,

Berlin, Heidelberg.

287

Werner, J., Westphall, C.M. & Westphall, C.B., 2017. Cloud Identity Management: A Survey

on Privacy Strategies. Computer Networks, 122, pp.29-42.

Wilder, B., 2012. Cloud Architecture Patterns: Using Microsoft Azure. " O'Reilly Media, Inc.".

Wong, R.C. & Leung, C.H., 2008. Automatic Semantic Annotation of Real-World Web

Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(11), pp.1933-

1944.

Wu. (2017, Dec 25). Taking the Cloud-Native Approach with Microservices. Google Inc.

Retrieved from edureka.co: https://www.edureka.co/blog/what-is-microservices/

Wu, A. (2018). Running Your Modern .NET Application on Kubernetes.

Xia, Z., Zhu, Y., Sun, X., & Chen, L. (2014). Secure Semantic Expansion-Based Search Over

Encrypted Cloud Data Supporting Similarity Ranking. Journal of Cloud Computing, 3(1),

8.

Xiangmei, Z. & Chunli, S., 2013, June. Semantic Search Technology Based on Cloud

Computing Research. In 2013 Fourth International Conference on Digital Manufacturing

& Automation (pp. 1196-1198). IEEE.

Xiao, Z., Wijegunaratne, I. & Qiang, X., 2016, November. Reflections on SOA and

Microservices. In 2016 4th International Conference on Enterprise Systems (ES) (pp. 60-

67). IEEE.

Yang, Y. (2015). Attribute-Based Data Retrieval with Semantic Keyword Search for E-Health

Cloud. Journal of Cloud Computing, 4(1), 10.

Yates, A., 2007. Information Extraction from the Web: Techniques and Applications (Doctoral

Dissertation, University of Washington).

Ye, J., Dasiopoulou, S., Stevenson, G., Meditskos, G., Kontopoulos, E., Kompatsiaris, I. &

Dobson, S., 2015. Semantic Web Technologies in Pervasive Computing: A Survey and

Research Roadmap. Pervasive and Mobile Computing, 23, pp.1-25.

Yimam, S.M., Biemann, C., de Castilho, R.E. and Gurevych, I., 2014, June. Automatic

Annotation Suggestions and Custom Annotation Layers in WebAnno. In Proceedings of

52nd Annual Meeting of the Association for Computational Linguistics: System

Demonstrations (pp. 91-96).

https://www.edureka.co/blog/what-is-microservices/

288

Yordanova, K. & Kruger, F., 2018. Creating and Exploring Semantic Annotation for Behaviour

Analysis. Sensors, 18(9), p.2778.

Yosef, M.A., Hoffart, J., Bordino, I., Spaniol, M. & Weikum, G., 2011. AIDA: An Online Tool

for Accurate Disambiguation of Named Entities in Text and Tables. Proceedings of the

VLDB Endowment, 4(12), pp.1450-1453.

Young, T., Hazarika, D., Poria, S. & Cambria, E., 2018. Recent Trends in Deep Learning Based

Natural Language Processing. IEEE Computational Intelligence Magazine, 13(3), pp.55-

75.

Zannettou, S., Sirivianos, M., Blackburn, J. & Kourtellis, N., 2019. The Web of False

Information: Rumours, Fake News, Hoaxes, Clickbait, and Various other Shenanigans.

Journal of Data and Information Quality (JDIQ), 11(3), p.10.

Zhang, D., Yan, B.H., Feng, Z., Zhang, C. and Wang, Y.X., 2017, April. Container Oriented

Job Scheduling using Linear Programming Model. In 2017 3rd International Conference

on Information Management (ICIM) (pp. 174-180). IEEE.

Zhang, M., Yuan, F. & Zhu, J., 2015, October. Integrating Semantic Knowledge into Tag-LDA

Model through Cloud Model. In 2015 IEEE International Conference on Big Data (Big

Data) (pp. 2907-2909). IEEE.

Zhao, J.T., Jing, S.Y. & Jiang, L.Z., 2018, September. Management of API Gateway Based on

Microservice Architecture. In Journal of Physics: Conference Series (Vol. 1087, No. 3, p.

032032). IOP Publishing.

Zhao, L., Macaulay, L., Adams, J. & Verschueren, P., 2008. A Pattern Language for Designing

E-business Architecture. Journal of Systems and Software, 81(8), pp.1272-1287.

Zhao, L., Sakr, S. & Liu, A., 2013. A Framework for Consumer-Centric SLA Management of

Cloud-Hosted Databases. IEEE Transactions on Services Computing, 8(4), pp.534-549.

Zhu, L., Bass, L. & Champlin-Scharff, G., 2016. DevOps and its Practices. IEEE Software,

33(3), pp.32-34.

Zimmermann, O., 2017. Microservices Tenets. Computer Science-Research and Development,

32(3-4), pp.301-310.

289

Zou, L. & Ozsu, M.T., 2017. Graph-Based RDF Data Management. Data Science and

Engineering, 2(1), pp.56-70.

290

Appendix A Cloud-Based Web App Deployment Notes

This appendix details the deployment procedure for the cloud-based version of the prototype

web application. The procedure detailed herein is very similar to that of the non-cloud versions;

(i) the non-cloud monolithic web application and (ii) the non-cloud microservices web

application.

1. Code moved to Version Control (GitHub)

2. Created Virtual Host on Amazon AWS

3. Logged into newly created virtual host

4. Enabled root login for virtual host, as follows:

a. SSH into the machine

b. sudo nano /etc/ssh/sshd_config

c. sudo service ssh restart

d. sudo passwd

5. Now able to log in using root user

6. Copied SSH public key from PC to Virtual Host /home/ubuntu/.ssh

7. Unset root password

a. sudo passwd -l root

8. Disabled root login from password

a. sudo nano /etc/ssh/sshd_config

b. sudo service ssh restart

9. Installed Apache Web Server on Virtual Host, running on port 80

a. sudo apt update

b. sudo apt install apache2

10. Installed PHP 7.2

a. sudo apt-get update -y

b. sudo apt-get upgrade -y

c. sudo apt install php libapache2-mod-php

d. sudo systemctl restart apache2

e. sudo apt install php-mysql php-gd

11. Installed MySQL Database on port 3306

291

a. sudo apt update

b. sudo apt install mysql-server

c. sudo mysql_secure_installation

d. Allowed remote login to MySQL by editing the /etc/mysql/mysql.conf.d/
mysqld.cnf

e. MySQL

f. GRANT ALL ON *.* to root@'%' IDENTIFIED BY '!2j*73bcXnnJ2';

g. Application .env file is updated with MySQL database access credentials.

12. Installed Git

a. sudo apt install git

13. Installed Composer

a. sudo apt update

b. sudo apt install wget php-cli php-zip unzip

c. php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"

d. sudo php composer-setup.php --install-dir=/usr/local/bin --filename=composer

14. Enabled mod_rewrite for Apache Web Server

a. sudo a2enmod rewrite

b. sudo a2enmod headers

c. systemctl restart apache2

15. Generated SSH key for Git deployment

a. SSH-keygen

b. Save the public key of the server to Git repository for auto deployment

c. Cloning the git repository at /var/www/html/cloudsea/app

d. git clone git@bitbucket.org:tigerzs0ft/laravel.git .

16. Installed the required libraries for PHP

a. sudo apt-get install php-mbstring

b. sudo apt-get install php-dom

17. Installed Composer packages

a. composer install

18. Allowed .htaccess

a. Edit /etc/apache/apache2.conf

mailto:git@bitbucket.org:tigerzs0ft/laravel.git

292

b. sudo systemctl restart apache2

19. Changed home directory

a. Edit /etc/apache2/sites-available/000-default.conf

b. sudo systemctl restart apache2

c. chmod -R 0755 /var/www/html/cloudsea

d. chown -R www-data: /var/www/html/cloudsea

20. Copied database to server

21. Prepared deployment script

22. Installed Cron job on server

a. sudo apt install cron

b. crontab -e

c. 30 * * * * sudo -u www-data php /var/www/html/cloudsea/app/artisan
route:call --uri=/cron/annotation-fixer

d. systemctl restart cron

23. Installed Let’s encrypt for SSL (Secure Sockets Layer)

a. sudo wget https://dl.eff.org/certbot-auto -O /usr/sbin/certbot-auto

b. sudo chmod a+x /usr/sbin/certbot-auto

c. sudo add-apt-repository ppa:certbot/certbot

d. sudo apt install python-certbot-apache

e. systemctl stop apache2

f. sudo certbot --apache -d cloud-based.a009324a.co.uk

g. systemctl restart apache2

h. changed the ‘.env’ APP URL for SSL access

i. cd /var/www/html/cloudsea/app

j. php artisan cache:clear

k. php artisan config:clear

l. Annotation API accessible via: https://cloud-
based.a009324a.co.uk/annotation/annotate/guest.js

https://cloud-based.a009324a.co.uk/annotation/annotate/guest.js
https://cloud-based.a009324a.co.uk/annotation/annotate/guest.js

293

Appendix B Web GUI for Prototype Implementation

Figure B1 – The login page for CloudSea

Figure B2 – The Register page for CloudSea

294

Figure B3 – CloudSea Annotate Page: Form Submission for Non-API Semantic Annotation

Figure B4 – Results of Non-API Semantic Annotation Process

295

Figure B5 – CloudSea Annotations Page: Displaying a list of all non-API semantic
annotations by a user

296

Appendix C CloudSea Annotation API Endpoint

function AnnotationService_Guest() {

 let annotationJquery;

 let annotationServiceEndPoint = "http://cloud-annotation-service.a009324a.co.uk";

 let annotationServiceApiEndPoint = annotationServiceEndPoint+"/api";

 function init() {

 getScript('https://code.jquery.com/jquery-3.3.1.min.js', function () {

 annotationJquery = $.noConflict(true);

 annotate();

 });

 }

 function annotate() {

 let currentPageUrl = getCurrentPageUrl();

 annotationJquery.ajax({

 url: annotationServiceApiEndPoint+'/annotate/guest',

 method: 'POST',

 data: {

 'urls[]': currentPageUrl,

 'isOnlyTextDiv':true

 }, success: function (response) {

 if (response.hasOwnProperty('results') &&
response.results.hasOwnProperty('alreadyAssignedUrls') &&
response.results.hasOwnProperty('processedAnnotations')) {

 let alreadyAssignedUrls = response.results.alreadyAssignedUrls;

 let processedAnnotations = response.results.processedAnnotations;

 let fileName = undefined;

 let status = false;

 if (Array.isArray(alreadyAssignedUrls) && alreadyAssignedUrls.length == 1) {

 if (alreadyAssignedUrls[0].hasOwnProperty('file_name')) {

 fileName = alreadyAssignedUrls[0].file_name;

 status = alreadyAssignedUrls[0].status;

297

 }

 } else if (Array.isArray(processedAnnotations) && processedAnnotations.length == 1) {

 if (processedAnnotations[0].hasOwnProperty('file_name')) {

 fileName = processedAnnotations[0].file_name;

 status = processedAnnotations[0].status;

 }

 }

 if(status == false){

 annotationJquery('body').prepend('' +

 '<div style="padding: 20px;background-color: #f44336;color: white;">\n' +

 ' <span style="margin-left: 15px;color: white;font-weight: bold;float: right;font-
size: 22px;line-height: 20px;cursor: pointer;transition: 0.3s;"
onclick="this.parentElement.style.display=\'none\';">× ' +

 ' Please Note: API didn\'t return any data from the knowledge
graph to annotate the web page content semantically.' +

 '</div>' +

 '');

 return;

 }//stop the execution here if status is false

 if (fileName != undefined) {

 annotationJquery('body').prepend('<div data-
apiendpoint="'+annotationServiceEndPoint+'" id="json">' + fileName + '</div>');

 getScript('http://cloud-annotation-
service.a009324a.co.uk/annotationfiles/js/jquery.js',function () {

 getScript('http://cloud-annotation-
service.a009324a.co.uk/annotationfiles/js/jquery.ui.js',function () {

 getScript('http://cloud-annotation-
service.a009324a.co.uk/annotationfiles/js/annotationScript.js',function () {

 getStyleSheet('http://cloud-annotation-
service.a009324a.co.uk/annotationfiles/css/jquery.ui.css');

 getStyleSheet('http://cloud-annotation-
service.a009324a.co.uk/annotationfiles/css/annotation.css');

 })

 })

298

 })

 }

 }

 }, error: function () {

 }

 });

 }

 return {

 init: init

 };

}

function getScript(src, callback) {

 var s = document.createElement('script');

 s.src = src;

 s.async = true;

 s.onreadystatechange = s.onload = function () {

 if (!callback.done && (!s.readyState || /loaded|complete/.test(s.readyState))) {

 callback.done = true;

 callback();

 }

 };

 document.querySelector('head').appendChild(s);

}

function getStyleSheet(src) {

 $('head').append('<link rel="stylesheet" type="text/css" href="'+src+'">');

}

function getCurrentPageUrl() {

 return window.location.href;

}

var annotationService_Guest = new AnnotationService_Guest();

annotationService_Guest.init();

299

Appendix D Sample Load Test System Logs

D.1 Sample Load Test System Log for Cloud-Driven API

{
 "_index": "filebeat-6.5.1-2019.05.29",
 "_type": "doc",
 "_id": "uxyqAWsBhCMhMSt_0Xen",
 "_version": 1,
 "_score": null,
 "_source": {
 "@timestamp": "2019-05-29T03:38:18.456Z",
 "stream": "stdout",
 "prospector": {
 "type": "docker"
 },
 "kubernetes": {
 "pod": {
 "name": "cloudsea-annotation-service-79664bcfcd-mxc9f"
 },
 "node": {
 "name": "ip-172-20-37-165.eu-west-1.compute.internal"
 },
 "container": {
 "name": "cloudsea-annotation-service"
 },
 "namespace": "default",
 "replicaset": {
 "name": "cloudsea-annotation-service-79664bcfcd"
 },
 "labels": {
 "cloudsea": {
 "service": "cloudsea-annotation-service"
 },
 "pod-template-hash": "3522067978"
 }
 },
 "beat": {
 "hostname": "filebeat-zmv76",
 "version": "6.5.1",
 "name": "filebeat-zmv76"
 },
 "meta": {
 "cloud": {
 "availability_zone": "eu-west-1a",
 "instance_id": "i-0e769dde061b109e6",
 "machine_type": "m4.large",
 "provider": "ec2",
 "region": "eu-west-1"
 }
 },
 "source":
"/var/lib/docker/containers/1bfb244e7a52900487ed9751c783bd26e830dbed2d2b8e56210b5f63624fb
252/1bfb244e7a52900487ed9751c783bd26e830dbed2d2b8e56210b5f63624fb252-json.log",

300

 "offset": 102014,
 "message": "100.96.6.113 - - [29/May/2019:03:38:11 +0000] \"GET /api/annotate/guest.js
HTTP/1.1\" 200 4792 \"-\" \"loader.io;d09a4caf5d1864c78542bdc0f050872a\"",
 "input": {
 "type": "docker"
 },
 "host": {
 "name": "filebeat-zmv76"
 }
 },
 "fields": {
 "@timestamp": [
 "2019-05-29T03:38:18.456Z"
]
 },
 "highlight": {
 "kubernetes.container.name": [
 "@kibana-highlighted-field@cloudsea-annotation-service@/kibana-highlighted-field@"
],
 "kubernetes.namespace": [
 "@kibana-highlighted-field@default@/kibana-highlighted-field@"
],
 "message": [
 "100.96.6.113 - - [29/May/2019:03:38:11 +0000] \"@kibana-highlighted-field@GET@/kibana-
highlighted-field@ /@kibana-highlighted-field@api@/kibana-highlighted-field@/@kibana-
highlighted-field@annotate@/kibana-highlighted-field@/@kibana-highlighted-
field@guest.js@/kibana-highlighted-field@ HTTP/1.1\" @kibana-highlighted-field@200@/kibana-
highlighted-field@ 4792 \"-\" \"loader.io;d09a4caf5d1864c78542bdc0f050872a\""
]
 },
 "sort": [
 1559101098456
]
}

301

D.2 Sample Load Test System Log for Cloud-Optimised API

{
 "_index": "filebeat-6.5.1-2019.05.29",
 "_type": "doc",
 "_id": "Exf1AGsBhCMhMSt_P_KB",
 "_version": 1,
 "_score": null,
 "_source": {
 "@timestamp": "2019-05-29T00:19:59.064Z",
 "kubernetes": {
 "container": {
 "name": "cloud-optimised"
 },
 "namespace": "default",
 "replicaset": {
 "name": "cloud-optimised-54567c4b8b"
 },
 "labels": {
 "pod-template-hash": "1012370646",
 "cloudsea": {
 "service": "cloud-optimised"
 }
 },
 "pod": {
 "name": "cloud-optimised-54567c4b8b-2wpm8"
 },
 "node": {
 "name": "ip-172-20-46-27.eu-west-1.compute.internal"
 }
 },
 "host": {
 "name": "filebeat-xn5bk"
 },
 "prospector": {
 "type": "docker"
 },
 "input": {
 "type": "docker"
 },
 "beat": {
 "name": "filebeat-xn5bk",
 "hostname": "filebeat-xn5bk",
 "version": "6.5.1"
 },
 "meta": {
 "cloud": {
 "provider": "ec2",
 "instance_id": "i-072a8c0db3f571d26",
 "machine_type": "m4.large",
 "region": "eu-west-1",
 "availability_zone": "eu-west-1a"
 }
 },

302

 "source":
"/var/lib/docker/containers/30bf23e2553b031eca2548fff7ddec5f7cd0bf7da15fbd3c24ae7f82f04d150c
/30bf23e2553b031eca2548fff7ddec5f7cd0bf7da15fbd3c24ae7f82f04d150c-json.log",
 "offset": 86742,
 "stream": "stdout",
 "message": "100.96.6.113 - - [29/May/2019:00:19:51 +0000] \"GET /annotation/annotate/guest.js
HTTP/1.1\" 200 5399 \"-\" \"loader.io;a7dadffabed9a8454ab584b055652e3f\""
 },
 "fields": {
 "@timestamp": [
 "2019-05-29T00:19:59.064Z"
]
 },
 "highlight": {
 "kubernetes.container.name": [
 "@kibana-highlighted-field@cloud-optimised@/kibana-highlighted-field@"
],
 "kubernetes.namespace": [
 "@kibana-highlighted-field@default@/kibana-highlighted-field@"
]
 },
 "sort": [
 1559089199064
]
}

	Abstract
	Acknowledgements
	Dedication
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1: Introduction
	1.1 Research Motivation
	1.2 Research Aim and Objectives
	1.3 Research Hypothesis
	1.4 Research Methodology
	1.4.1 Design Science Research in Information Systems
	1.4.2 Philosophical Ground of DSR
	1.4.3 DSR Three and Four-Cycle Views
	1.4.4 DSR Process Model
	1.4.5 DSR Cognitive Stages
	1.4.6 DSR Knowledge Contribution Framework

	1.5 Research Contributions to Knowledge
	1.6 Thesis Structure
	Chapter 2: Literature Review
	2.1 The Semantic Web
	2.1.1 Supporting Technologies
	2.1.2 Challenges of the Semantic Web
	2.1.2.1 Execution-Related Challenges
	2.1.2.2 Implementation-Related Challenges
	2.1.2.3 General Challenges

	2.2 Semantic Annotation
	2.2.1 Manual Annotation
	2.2.2 Semi-Automatic Annotation
	2.2.3 Automatic Annotation
	2.2.4 The Role of Ontologies

	2.3 Schema.org Markup
	2.4 Cloud Computing
	2.4.1 Cloud Computing Delivery Models
	2.4.2 Cloud Computing Deployment Models
	2.4.3 Cloud Computing Essential Characteristics
	2.4.4 Cloud Computing Benefits
	2.4.5 Cloud Computing Issues

	2.5 Semantic Web and Cloud Computing
	2.5.1 Leveraging Semantic Technologies for Cloud Computing
	2.5.1.1 Cloud Interoperability and Portability
	2.5.1.2 Discovery, Selection and Utilisation of Cloud Services
	2.5.1.3 Cloud Security
	2.5.1.4 Description of Cloud Resources and Services

	2.5.2 Leveraging Cloud Computing for the Semantic Web

	2.6 Chapter Summary
	Chapter 3: Towards a Holistic Semantic Annotation Solution
	3.1 The Holistic Perspective to Semantic Annotation
	3.2 Requirements for the Holistic Perspective
	3.2.1 Preparatory Phase Requirements
	3.2.1.1 Concept Extraction
	3.2.1.2 Ontology Population
	3.2.1.3 Ontology Selection
	3.2.1.4 Ontology Mapping
	3.2.1.5 Annotation Data Storage

	3.2.2 Annotation Phase Requirements
	3.2.2.1 Annotation On-the-fly
	3.2.2.2 Annotation Data Reuse
	3.2.2.3 Annotation Data Sharing

	3.2.3 Maintenance Phase Requirements
	3.2.3.1 Annotation Data Auto-Update
	3.2.3.2 Ontology Auto-Update
	3.2.3.3 Annotation Data Optimisation
	3.2.3.4 Annotation Data Colocation

	3.2.4 Holistic Requirements Summary

	3.3 Cloud Computing Mechanisms for Holistic Semantic Annotation
	3.3.1 Cloud Infrastructure Mechanisms
	3.3.1.1 Resource Clustering
	3.3.1.2 Resource Replication
	3.3.1.3 Failover System
	3.3.1.4 Geotagging

	3.3.2 Specialised Cloud Mechanisms
	3.3.2.1 Automated Scaling
	3.3.2.2 Cloud Usage Monitoring
	3.3.2.3 Load Balancing
	3.3.2.4 Cloud Workload Scheduling

	3.3.3 Cloud Management Mechanisms
	3.3.3.1 Billing Management System
	3.3.3.2 SLA Management System
	3.3.3.3 Resource Management System

	3.3.4 Cloud Security Mechanisms
	3.3.4.1 Attribute-Based Access Control
	3.3.4.2 Digital Certification
	3.3.4.3 Digital Signature
	3.3.4.4 Identity and Access Management

	3.4 Cloud Computing Capability Model for Holistic Semantic Annotation
	3.5 Chapter Summary
	Chapter 4: Cloud Computing Maturity Model for Holistic Semantic Annotation
	4.1 Software Architectural Patterns
	4.1.1 Microservices Software Architecture
	4.1.2 Benefits of Microservices
	4.1.3 Drawbacks of Microservices
	4.1.4 Monolithic / N-Tier vs. Microservices
	4.1.5 SOA vs. Microservices

	4.2 Virtualisation Patterns
	4.2.1 Hypervisor-Level Virtualisation
	4.2.2 Operating System-Level Virtualisation

	4.3 Containerisation and Microservices
	4.4 Container Orchestration Technology
	4.5 Continuous Integration Mechanism
	4.6 Cloud Computing Maturity Levels for Holistic Semantic Annotation
	4.6.1 Cloud-Based Monolithic Maturity Level
	4.6.2 Cloud-Based Microservices Maturity Level
	4.6.3 Cloud-Optimised Maturity Level
	4.6.4 Cloud-Native Maturity Level
	4.6.5 Enhanced Cloud-Native: Cloud-Driven Maturity Level

	4.7 The Proposed Maturity Model
	4.8 Software Architectural Layers for CloudSea
	4.8.1 The User Interface Layer
	4.8.2 The API Gateway Layer
	4.8.3 The Application Logic Layer
	4.8.4 The Data Access Layer
	4.8.5 The Persistence Layer

	4.9 Chapter Summary
	Chapter 5: CloudSea – Holistic, Cloud-driven and Microservices-based Semantic Annotation Architecture
	5.1 Design Rationale for CloudSea
	5.2 Design Patterns Engineering for CloudSea
	5.2.1 Pattern Identification Phase
	5.2.2 Pattern Authoring Phase
	5.2.3 Pattern Application Phase

	5.3 Design Pattern Language for CloudSea
	5.4 CloudSea Microservices-based Design Patterns
	5.4.1 The Service Microservices-Based Design Patterns for CloudSea
	5.4.1.1 Concept Extraction Design Pattern
	5.4.1.2 Ontology Population Design Pattern
	5.4.1.3 Ontology Selection Design Pattern
	5.4.1.4 Ontology Mapping Design Pattern
	5.4.1.5 Annotation Data Storage Design Pattern
	5.4.1.6 Annotation On-The-Fly Design Pattern
	5.4.1.7 Annotation Data Reuse Design Pattern
	5.4.1.8 Annotation Data Sharing Design Pattern
	5.4.1.9 Annotation Data Auto-Update Design Pattern
	5.4.1.10 Ontology Auto-Update Design Pattern
	5.4.1.11 Annotation Data Optimisation Design Pattern
	5.4.1.12 Service Colocation Design Pattern

	5.4.2 The Experience Microservices
	5.4.2.1 The User Interface Design Pattern
	5.4.2.2 The User Management Design Pattern

	5.4.3 The Inter-Process Communication: Apache Kafka
	5.4.4 Service Discovery

	5.5 CloudSea: The Proposed Holistic, Cloud-Driven, Microservices-Based Architecture for Automated Semantic Annotation of Web Documents
	5.5 Chapter Summary
	Chapter 6: Prototype Implementation
	6.1 Requirements
	6.1.1 Software Requirements
	6.1.2 Platform Requirements

	6.2 The Development Environment
	6.3 Enabling Technologies
	6.3.1 Laravel Framework
	6.3.2 The Frontend Tools
	6.3.3 Redis
	6.3.4 JavaScript Object-Notation (JSON)

	6.4 The Annotation API
	6.5 The Deployment Environment
	6.5.1 Amazon AWS
	6.5.2 Prototype Containerisation
	6.5.3 Installing, Configuring and Running an Orchestration Platform: Kubernetes
	6.5.3.1 The Kubernetes Nodes
	6.5.3.2 The Kubernetes Namespaces
	6.5.3.3 The Kubernetes Deployments
	6.5.3.4 The Kubernetes Pods

	6.5.4 Installing, Configuring and Running Prometheus + Grafana for Monitoring
	6.5.5 Installing, Configuring and Running the ELK Stack for Logging

	6.7 Chapter Summary
	Chapter 7: Research Evaluation
	7.1 Functionality Evaluation
	7.1.1 API Status Check
	7.1.2 Annotation API Functionality

	7.2 Comparative Evaluation
	7.3 Experimental Evaluation
	7.3.1 Non-Cloud Monolithic Maturity Level
	7.3.1.1 Scenario 1
	7.3.1.2 Scenario 2
	7.3.1.3 Analysis

	7.3.2 Non-Cloud Microservices Maturity Level
	7.3.2.1 Scenario 1
	7.3.2.2 Scenario 2
	7.3.2.3 Comparative Analysis

	7.3.3 Cloud-Based Monolithic Maturity Level
	7.3.3.1 Scenario 1
	7.3.3.2 Scenario 2
	7.3.3.3 Comparative Analysis

	7.3.4 Cloud-Based Microservices Maturity Level
	7.3.4.1 Scenario 1
	7.3.4.2 Scenario 2
	7.3.4.3 Scenario 3
	7.3.4.4 Comparative Analysis

	7.3.5 Cloud-Optimised Maturity Level
	7.3.5.1 Scenario 1
	7.3.5.2 Scenario 2
	7.3.5.3 Scenario 3
	7.3.5.4 Scenario 4
	7.3.5.5 Comparative Analysis

	7.3.6 Cloud-Driven Maturity Level
	7.3.6.1 Scenario 1
	7.3.6.2 Scenario 2
	7.3.6.3 Scenario 3
	7.3.6.4 Scenario 4
	7.3.6.5 Scenario 5
	7.3.6.6 Comparative Analysis

	7.3.7 Experimental Evaluation Summary

	7.4 – Chapter Summary
	Chapter 8: Conclusions and Recommendations
	8.1 Research Summary
	8.2 Research Contributions
	8.2.1 Semantic Web and Cloud Computing State-of-the-Art
	8.2.2 A Holistic Semantic Annotation Requirements Specification
	8.2.3 A Cloud Capability Model for Holistic Semantic Annotation
	8.2.4 A Cloud Maturity Model for Holistic Semantic Annotation
	8.2.5 Design Patterns and Pattern Language for Cloud-Driven, Holistic Semantic Annotation
	8.2.6 CloudSea: A Holistic, Cloud-driven and Microservices-based Architecture for Automated Semantic Annotation of Web Documents

	8.3 Research Limitations
	8.4 Recommendations for Future Research
	References
	Appendix A Cloud-Based Web App Deployment Notes
	Appendix B Web GUI for Prototype Implementation
	Appendix C CloudSea Annotation API Endpoint
	Appendix D Sample Load Test System Logs
	D.1 Sample Load Test System Log for Cloud-Driven API
	D.2 Sample Load Test System Log for Cloud-Optimised API

