37 research outputs found

    Solutions for the General, Confluent and Biconfluent Heun equations and their connection with Abel equations

    Full text link
    In a recent paper, the canonical forms of a new multi-parameter class of Abel differential equations, so-called AIR, all of whose members can be mapped into Riccati equations, were shown to be related to the differential equations for the hypergeometric 2F1, 1F1 and 0F1 functions. In this paper, a connection between the AIR canonical forms and the Heun General (GHE), Confluent (CHE) and Biconfluent (BHE) equations is presented. This connection fixes the value of one of the Heun parameters, expresses another one in terms of those remaining, and provides closed form solutions in terms of pFq functions for the resulting GHE, CHE and BHE, respectively depending on four, three and two irreducible parameters. This connection also turns evident what is the relation between the Heun parameters such that the solutions admit Liouvillian form, and suggests a mechanism for relating linear equations with N and N-1 singularities through the canonical forms of a non-linear equation of one order less.Comment: Original version submitted to Journal of Physics A: 16 pages, related to math.GM/0002059 and math-ph/0402040. Revised version according to referee's comments: 23 pages. Sign corrected (June/17) in formula (79). Second revised version (July/25): 25 pages. See also http://lie.uwaterloo.ca/odetools.ht

    Planar 2-homogeneous commutative rational vector fields

    Full text link
    In this paper we prove the following result: if two 2-dimensional 2-homogeneous rational vector fields commute, then either both vector fields can be explicitly integrated to produce rational flows with orbits being lines through the origin, or both flows can be explicitly integrated in terms of algebraic functions. In the latter case, orbits of each flow are given in terms of 11-homogeneous rational functions WW as curves W(x,y)=constW(x,y)=\textrm{const}. An exhaustive method to construct such commuting algebraic flows is presented. The degree of the so-obtained algebraic functions in two variables can be arbitrarily high.Comment: 23 page

    Métodos numérico-simbólicos para calcular soluciones liouvillianas de ecuaciones diferenciales lineales

    Get PDF
    El objetivo de esta tesis es dar un algoritmo para decidir si un sistema explicitable de ecuaciones diferenciales kJiferenciales de orden superior sobre las funciones racionales complejas, dado simbólicamente,admite !Soluciones liouvillianas no nulas, calculando una (de laforma dada por un teorema de Singer) en caso !afirmativo. mediante métodos numérico-simbólicos del tipo Introducido por van der Hoeven.donde el uso de álculo numérico no compromete la corrección simbólica. Para ello se Introduce untipo de grupos algebraicos lineales, los grupos euriméricos, y se calcula el cierre eurimérico del grupo de Galois diferencial,mediante una modificación del algoritmo de Derksen y van der Hoeven, dado por los generadores de Ramis.Departamento de Algebra, Análisis Matemático, Geometría y Topologí

    Non-linear estimation is easy

    Get PDF
    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint

    Swinging Atwood's Machine: Experimental and Theoretical Studies

    Get PDF
    A Swinging Atwood Machine (SAM) is built and some experimental results concerning its dynamic behaviour are presented. Experiments clearly show that pulleys play a role in the motion of the pendulum, since they can rotate and have non-negligible radii and masses. Equations of motion must therefore take into account the inertial momentum of the pulleys, as well as the winding of the rope around them. Their influence is compared to previous studies. A preliminary discussion of the role of dissipation is included. The theoretical behaviour of the system with pulleys is illustrated numerically, and the relevance of different parameters is highlighted. Finally, the integrability of the dynamic system is studied, the main result being that the Machine with pulleys is non-integrable. The status of the results on integrability of the pulley-less Machine is also recalled.Comment: 37 page

    Dynamical Casimir Effect in a Leaky Cavity at Finite Temperature

    Get PDF
    The phenomenon of particle creation within an almost resonantly vibrating cavity with losses is investigated for the example of a massless scalar field at finite temperature. A leaky cavity is designed via the insertion of a dispersive mirror into a larger ideal cavity (the reservoir). In the case of parametric resonance the rotating wave approximation allows for the construction of an effective Hamiltonian. The number of produced particles is then calculated using response theory as well as a non-perturbative approach. In addition we study the associated master equation and briefly discuss the effects of detuning. The exponential growth of the particle numbers and the strong enhancement at finite temperatures found earlier for ideal cavities turn out to be essentially preserved. The relevance of the results for experimental tests of quantum radiation via the dynamical Casimir effect is addressed. Furthermore the generalization to the electromagnetic field is outlined.Comment: 48 pages, 8 figures typos corrected & references added and update

    Description and control of decoherence in quantum bit systems

    Get PDF
    The description and control of decoherence of quantum bit systems have become a field of increasing interest during the last decade. We discuss different techniques to estimate and model decoherence sources of solid state quantum bit realizations. At first, we derive a microscopic, perturbation theoretical approach for Lindblad master equations of a spin-Boson model at low temperatures. A different sort of decoherence is investigate by means of the bistable fluctuator model. For this particular but nevertheless for solid state qubits relevant noise source, we present a suitably designed dynamical decoupling method (so-called quantum bang-bang). This works as a high-pass filter, suppressing low frequency parts of the noise most effectively and thus being a promising method to compensate the ubiquituous 1/f noise. Furthermore, we investigate the behaviour of a two coupled spin system exposed to collective and localized bath. For this dressed-spin system we receive by means of scaling-analysis in first order a quantum phase diagram. On that we can identify the various quantum dynamical and entanglement phases

    Torsion points, Pell's equation, and integration in elementary terms

    Get PDF
    The main results of this paper involve general algebraic differentials ω\omega on a general pencil of algebraic curves. We show how to determine if ω\omega is integrable in elementary terms for infinitely many members of the pencil. In particular, this corrects an assertion of James Davenport from 1981 and provides the first proof, even in rather strengthened form. We also indicate analogies with work of André and Hrushovski and with the Grothendieck-Katz Conjecture. To reach this goal, we first provide proofs of independent results which extend conclusions of relative Manin-Mumford type allied to the Zilber-Pink conjectures: we characterize torsion points lying on a general curve in a general abelian scheme of arbitrary relative dimension at least 2. In turn, we present yet another application of the latter results to a rather general pencil of Pell equations A2DB2=1A^2-DB^2=1 over a polynomial ring. We determine whether the Pell equation (with squarefree DD) is solvable for infinitely many members of the pencil
    corecore