1,313 research outputs found

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols

    Get PDF
    Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Leveraging upon standards to build the Internet of things

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there were many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. Long time, most efforts were focusing on the networking layer. More recently, the IETF CoRE working group started working on an embedded counterpart of HTTP, allowing the integration of constrained devices into existing service networks. In this paper, we will briefly review the history of integrating constrained devices into the Internet, with a prime focus on the IETF standardization work in the ROLL and CoRE working groups. This is further complemented with some research results that illustrate how these novel technologies can be extended or used to tackle other problems.The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2 007-2013) under grant agreement n°258885 (SPITFIRE project), from the iMinds ICON projects GreenWeCan and O’CareCloudS, and a VLI R PhD scholarship to Isam Ishaq

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Secure communication in IP-based wireless sensor network via a trusted gateway

    Get PDF
    As the IP-integration of wireless sensor networks enables end-to-end interactions, solutions to appropriately secure these interactions with hosts on the Internet are necessary. At the same time, burdening wireless sensors with heavy security protocols should be avoided. While Datagram TLS (DTLS) strikes a good balance between these requirements, it entails a high cost for setting up communication sessions. Furthermore, not all types of communication have the same security requirements: e.g. some interactions might only require authorization and do not need confidentiality. In this paper we propose and evaluate an approach that relies on a trusted gateway to mitigate the high cost of the DTLS handshake in the WSN and to provide the flexibility necessary to support a variety of security requirements. The evaluation shows that our approach leads to considerable energy savings and latency reduction when compared to a standard DTLS use case, while requiring no changes to the end hosts themselves

    Securing Internet of Things with Lightweight IPsec

    Get PDF
    Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. In some cases it may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between an IP enabled sensor nodes and a device on traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec on Contiki. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access
    • …
    corecore