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Abstract-As the IP-integration of wireless sensor networks 
enables end-to-end interactions, solutions to appropriately secure 
these interactions with hosts on the Internet are necessary. At 
the same time, burdening wireless sensors with heavy security 
protocols should be avoided. While Datagram TLS (DTLS) strikes 
a good balance between these requirements, it entails a high 
cost for setting up communication sessions. Furthermore, not all 
types of communication have the same security requirements: e.g. 
some interactions might only require authorization and do not 
need confidentiality. In this paper we propose and evaluate an 
approach that relies on a trusted gateway to mitigate the high cost 
of the DTLS handshake in the WSN and to provide the flexibility 
necessary to support a variety of security requirements. The 
evaluation shows that our approach leads to considerable energy 
savings and latency reduction when compared to a standard 
DTLS use case, while requiring no changes to the end hosts 
themselves. 

Keywords-Wireless sensor networks, DTLS, 1P, loT, CoAp, 
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I. INTRODUCTION 

Deploying the Internet Protocol inside WSNs has been 
technologically feasible for some years (e.g. via ZigBee IP 
and 6LoWPAN). Today however, vendors might deploy IP 
inside their WSN but the IP network itself is often unaccessible 
to the public Internet. Instead, vendors rely on their own 
platforms to manage all communications from and to their 
WSNs. While this gives vendors a large amount of control 
over their products, it also means that third party developers 
experience difficulties reusing existing sensors in new services. 
They are often left to integrating with vague and volatile cloud­
based APIs that differ from vendor to vendor. This situation 
is commonly referred to as the "Intranet of Things" [1]. 

In order to step away from these closed ecosystems, a 
number of open issues for 6LoWPAN networks are identified 
in [2]. More specifically, the paper mentions a number of 
issues relating to security in 6LoWPAN WSNs. The work 
presented here addresses these security-related issues for the 
IETF low power and lossy network protocol stack [3]. In 
these types of WSNs, security is provided by the end-to-end 
transport layer protocol Datagram TLS [4]. DTLS provides 
communications privacy for datagram protocols (such as the 
Constrained Application Protocol) by enabling client/server 
applications to communicate in a way that is designed to 
prevent eavesdropping, tampering, or message forgery. The 
protocol is based on the Transport Layer Security (TLS) pro­
tocol and provides equivalent security garantees. For the low­
power and battery-operated devices commonly found in WSNs, 

the large communication overhead of DTLS is problematic. 
This is mainly due to the costly DTLS handshake. In the 
next section we show that the communication overhead for a 
single-hop network without any packet loss is an additional 
11 messages spanning five extra round trips. These extra 
messages can be attributed almost entirely to the complex 
DTLS handshake. Thus, the main objective of this paper is 
to overcome the cost of the DTLS handshake in the WSN. 

Our contributions in this paper consist of proposing, im­
plementing and evaluating an approach that relies on a trusted 
gateway for mitigating the overhead of the DTLS handshake 
in IP-based WSNs. Furthermore, our trusted gateway concept 
is able to solve a number of other practical issues related to 
DTLS and WSNs, such as the poor scalability of PSK-based 
cipher suites and the loss of application-layer processing at 
the edge of WSNs that is inherent to end-to-end security. As 
a result, we hope that our work can hasten vendors to adopt 
the open IETF protocol stack in lieu of their closed platforms. 

II. PROBLEM STATEMENT AND RESE ARCH GOALS 

To give an example of the overhead incurred in setting 
up a DTLS session we take a look at the number of bytes 
that are communicated for a typical CoAP transaction on top 
of DTLS. For one CoAP request/response pair that would 
measure 72170 bytes respectively in plain-text, DTLS triggers 
a message exchange of 1529 bytes spread over 13 packets 
that require a minimum of 5 round-trip times for being 
transferred. After the DTLS handshake has finished, DTLS 
application data messages contain a 13 byte DTLS header plus 
the encrypted payload (i.e. CoAP messages) that requires an 
additional 16 bytes for storing the authentication tag and the 
sequence counter for the used cipher suite. Thus, l329 bytes 
were exchanged for the DTLS handshake and the close notify 
messages, while the two application data messages only took 
200 bytes'. 

Considering wireless communication is one of the biggest 
energy consumers in WSNs, the cost of the handshake is 
problematic for employing DTLS inside WSNs. Therefor, the 
main research goal of this paper is to mitigate the cost of the 
DTLS handshake in the WSN. Rather than inventing a new 

1 Note that in this case the DTLS client grouped multiple DTLS records 
in one flight, whereas the server did not (mainly to avoid 6LoWPAN 
fragmentation while sending). Furthermore, there was no packet loss and 
the two close notify messages sent to close the session were counted as 
part of the DTLS message exchange. These numbers were obtained for 
'TLS]SK_WITH_AES_128_CCM_8', which is a cipher suite suited for 
constrained environments such as WSNs. 
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Figure 1. The trusted gateway sets up a DTLS session with the sensor node once (TERl) and will reuse this session for future DTLS clients (TER). 

security protocol, our aim is to make no changes to the DTLS 
protocol at all. A secondary research goal is to overcome the 
scalability issue inherent to PSK cipher suites. While PSK 
cipher suites allow for very compact key exchanges (only 
the identity hints for the PSKs are exchanged), they are 
problematic when secure communication with Internet hosts 
is necessary as maintaining a PSK with every Internet host is 
impossible. When combined these two goals should lead to a 
solution that is readily deployable. As a result, WSNs are able 
to profit from the benefits provided by DTLS without suffering 
from its costly handshake mechanism. 

III. TRUSTED GATEWAY FOR MITIGATING THE COST OF 

DTLS H ANDSHAKES 

Considering the goals from the previous section, a number 
of solutions are possible. However, when changes to the 
endpoints' DTLS protocol are out of the question most of 
these solutions are no longer applicable. In the end, we have 
chosen for a trusted gateway approach to mitigate the cost 
of the handshake in the WSN. The gateway achieves this by 
maintaining long-lived DTLS sessions with WSN nodes and 
transparently terminating DTLS sessions with Internet hosts. 

Figure 1 gives an overview of our termination approach. 
Clients (IP:P)c initiate a DTLS session with the sensor node 
using the actual IPv6 address of the sensor node (IP:P)sN. If 
the gateway is configured to terminate sessions for the sensor 
node, it will intercept the ClientHello message and respond 
with a HelloVerifyRequest message using the sensor node's 
IPv6 address as a source address (IP:P)sN' If the handshake is 
completed successfully, then the trusted gateway will either 
setup a DTLS session with the sensor (TERl, so named 
because it is the 1st DTLS session destined for the sensor that is 
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terminated by the gateway) or re-use an existing session (TER) 
using its WSN transport address (IP:Pkw. Once there is an 
active session between the gateway and sensor node, the client 
and sensor node are able to communicate. When the client 
closes its DTLS session (i.e the close notify message at the 
bottom of figure 1), the gateway will keep the session with the 
sensor node open for future re-use. 

In our approach, the DTLS sessions with sensor nodes are 
set up once by the gateway and are reused whenever another 
client wishes to conununicate with the sensor node via DTLS. 
The gateway multiplexes requests from multiple clients over 
the long-lived session that is maintained with the WSN node. 
When responses arrive from the sensor node, the gateway 
is also responsible for demultiplexing and making sure each 
response reaches its intended destination. This intercepting and 
terminating mode of operation is transparent to both Internet 
hosts and WSN nodes, i.e. no changes to the DTLS and 
application stack are necessary. From the point of view of 
the WSN node, all DTLS traffic appears to originate from the 
trusted gateway (lP:Pkw. In most cases this is not a problem, 
however when the WSN node must know the transport address 
of the client then the address should be transported inside 
the DTLS payload (one suitable candidate could be a CoAP 
option). From the point of view of the client, all DTLS traffic 
appears to be originating from the WSN node (IP:P)SN as the 
trusted gateway operates completely transparent. 

One consequence of our termination approach is that it is 
straightforward to employ different cipher suites for the client 
and the sensor node. For example, pre-shared key (PSK) cipher 
suites [5] are a good option for the sensor node's suite as the 
amount of keying material that has to be exchanged is low. 
For the client's cipher suite a more scalable option than PSK 



suites is desirable as there are expected to be a large number 
of clients. Cipher suites based on public key cryptography are 
good candidates due to the better scalability offered by public 
key infrastructure in comparison to PSKs. 

Another consequence of terminating DTLS sessions is that 
a gateway can employ a security policy. This policy can decide 
whether certain requests should be passed over DTLS to the 
sensor node or in plain text. Consider as an example the case 
where DTLS is only used to secure the Internet leg of the 
communication for non-critical conununication. Figure 2 gives 
an overview of the different envisioned scenarios. 

Figure 2. Different DTLS termination policies are possible at the gateway. 

The resulting trusted gateway is a powerful entity that 
can perform (large amounts of) processing at the edge of the 
WSN, both on the transport layer (i.e. DTLS) but also on 
the application layer (thereby becoming an application proxy). 
This can help alleviate the load on the sensor network, which 
can increase its life span. Examples include access control and 
caching performed at the gateway for CoAP resources hosted 
by sensor nodes. In case of end-to-end security between client 
and sensor node, the gateway can not provide these services 
as it can not decipher the DTLS messages. Terminating the 
DTLS session at the gateway, makes these additional services 
and all their benefits possible. Another side effect is that 
by reducing the amount of handshakes with the WSN node, 
the total number of failed handshakes due to packet loss is 
lowered [6]. 

The trusted gateway approach also has a number of down­
sides. Firstly, it introduces another party where all commu­
nication between Internet hosts and sensor nodes passes in 
plain-text. Thus the risk of this party being compromised 
should not be overlooked. Therefor, it should be properly 
maintained, monitored and hardened against known attacks. 
On the other hand, the gateway also shields the DTLS stack 
on the WSN nodes from direct communication with Internet 
hosts, thus their exposure to potential attacks is reduced. From 
a management point of view, it might actually be more feasible 
to harden a DTLS terminating gateway (which typically runs 
on more accessible hardware) than an entire sensor network. 

A second issue is that the gateway should be on the routing 
path between the Internet host and the WSN node in order to 
terminate the session. If the gateway is not on the routing path 
then an extra mechanism is necessary to intercept the DTLS 
traffic. A number of solutions are possible to solve this issue 
and these are briefly discussed in the future work section. 

A potential criticism is that gateway in effect breaks the 
end-to-end relationship between the client and the sensor node. 
While this is true, the arguments from the previous paragraphs 
and the results in next section show that the benefits of doing 
so significantly outweigh the costs as long as the gateway is not 
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compromised. In cases where the sensor node does not trust the 
sensor gateway, a different machine that is trusted by the sensor 
can be used as a trusted gateway (e.g. a reverse proxy running 
outside the WSN, e.g. in the cloud). We also refer to modern 
data centers where it is common practice to offload TLS 
sessions to SSL load balancers for improved scalability [7]. 
Similar to our approach, the machine terminating the TLS 
session differs from the machine responding to the HTTP 
request. 

IV. EVALUATION 

In order to evaluate our termination approach we composed 
a realistic application scenario and ran a number of simulations 
for three different configurations of the gateway. In the first 
configuration (E2E) the gateway is left unconfigured and just 
acts as a normal Internet router. In this configuration the client 
establishes DTLS sessions with the sensor nodes directly. In 
the second configuration, TERl, the gateway is configured to 
terminate the DTLS session and setup a new DTLS session 
with the sensor node. This represents the case where the 
gateway does not have an active session with the sensor node 
and has to setup a new one. In the third scenario, TER, the 
gateway is configured to terminate the DTLS session and reuse 
an existing DTLS session with the sensor node inside the 
WSN. This is considered to be the steady state in typical 
operations, as a sensor node is expected to have an active 
DTLS session with the gateway during most of its lifetime. 
The E2E and TER configurations are shown in figure 2. The 
application scenario is also executed in plain text between the 
client and the sensor node. These results are labeled as PLT 
and serve as a lower limit for what can be achieved. 

9 

7 6 

Figure 3. WSN network topology: the 9 nodes are arranged in an X pattern. 
The DTLS servers (6, 7, 8, 9) are 2 hops away from the border router (I). 

The application scenario consists of executing three CoAP 
requests in sequence, i.e. executing request i+ 1 blocks until 
the response for request i is received. First, a discovery 
step is performed by retrieving the discovery resource ".well­
known/core" from the sensor node. In our particular setup this 
requires two requests/responses via CoAP's block2 mechanism 
as the resource is larger than the MTU inside the 802.15.4 
WSN. Secondly, a sensor measurement is retrieved from a 
"/s" resource. Finally, a request is sent to toggle an actuator 
via the "/a" resource. The resulting scenario represents a dis­
cover/sense/actuate cycle that is cOlmnonly found in Wireless 
Sensor Network use cases. Prior to every application scenario, 
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Figure 4. Transaction times for the three configurations of the gateway (E2E, TERl, TER) and the plain-text CoAP reference case (PLT) 

the client sets up a DTLS session with the DTLS server in 
question. After completing the scenario, the client closes the 
DTLS session. In case of PLT, the DTLS session is obviously 
not setup. 

The simulated WSN consists of 9 RM090 motes, arranged 
in a X pattern as shown in figure 3. In the middle of the X there 
is a RPL border router that routes traffic to and from the WSN 
and that is responsible for the RPL DODAG. Of the other 8 
nodes, four act as an intermediary router for the last 4 nodes 
that act as DTLS servers. Thus, there are four DTLS servers 
that are 2 hops away from the border router. The simulation 
was run in Cooja [8] on the RM090 hardware platform. RM090 
motes contain a MSP430f5437 !-IC with 16 kB RAM and 
256 kB ROM memory and a CC2520 802.15.4 radio, both 
of which are simulated in software by mspsim. For the DTLS 
servers inside the WSN we employed TinyDTLS configured to 
accept the 'TLS]SK_ WITH_AES_128_CCM_8' cipher suite 
with a PSK hint of 15 bytes. For all three configurations, we 
ran the application scenario a hundred times per DTLS server. 
Prior to starting our measurements, we waited 5 minutes to 
allow the RPL DODAG to stabilize. All results were obtained 
using the default CSMA MAC protocol and ContikiMAC RDC 
protocol available in Con tiki. The trusted gateway ran on a 
standard x86 laptop with an Intel i5-2520M CPU and 8 GiB of 
RAM and was implemented as part of our CoAP++ framework 
in Click router [9f. 

Figure 4(a) shows the total transaction time (TIT) of set­
ting up the DTLS session, completing the application scenario 
and closing the session. In the TER configuration, the DTLS 
session with the sensor node is already available and can be 
reused. As a result, the expensive DTLS handshake with the 
sensor node can be avoided. In this case, the TTT is composed 
of setting up a DTLS session between the client and the trusted 
gateway, completing the application scenario and closing the 
DTLS session between the client and the gateway. The figure 

2 An archive file with the raw data obtained from our experiments is 
published at [10]. 
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shows that our approach can reduce the median TTI by more 
than half when compared to the E2E case. The lower TIT in 
the TERI scenario when compared to the E2E configuration, 
is caused by the DTLS client closing the session with the 
gateway as opposed to the sensor node as is the case in the 
E2E configuration. Therefore the close notify message does 
not traverse the WSN (as the trusted gateway will keep the 
DTLS session with the WSN node open for future reuse). 
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Figure 5. Number of packets received and transmitted by sensor node 

This result is confirmed by figure 4(b) which shows 
the transaction time (TI) up to the reception of the .well­
known/core resource. For the TER configuration this time is 
nearly equal to two times the host-to-host round trip time, as 
the handshake with the gateway only takes 42 ms. Because 
the WKC TI does not include the close notify messages, the 
results for E2E and TERI are similar. Figures 4(a) and 4(b) 
also show that the median transaction times for the TER con-



figuration are close to the lower limit of the PLT reference case. 
The observed difference is due to 6LoWPAN fragmentation of 
the larger DTLS packets and the time penalty of performing 
AES cryptography in software. 

Figure 5 presents the sum of the number of packets that 
were received and transmitted by the sensor node in the form 
of box plots. The TER1 median is two packets smaller than 
E2E (21 vs 23 packets), this confirms that the close notify 
messages do not traverse the sensor network in the TER1 case. 
Also note that the TER case sends two additional packets when 
compared to the PLT case. This is because the combination 
of DTLS headers with the large discovery responses triggers 
6LoWPAN fragmentation. As a result the two blocks of the 
discovery response are fragmented into four fragments. 

In terms of energy usage, the results show that by reusing 
existing DTLS sessions we can achieve a median energy saving 
of 59.5%. In figure 6 the total energy usage of the sensor 
node during the application scenario is shown as a box plot 
on the right axis. The bar plot and its axis on the left shows 
the median energy usage per energy usage category. The plot 
shows that the relative energy savings are largest for the CPU 
category. This is because the SHA hash calculations (that 
are performed in software) during the handshake messages 
in case of the ' TLS]SK_ WITH_AES_128_CCM_8' cipher 
suite are avoided for the TER configuration. Note that when a 
sensor node supports a hardware coprocessor for cryptographic 
calculations, this difference is expected to be smaller. 

The largest absolute energy savings are achieved in the 
radio categories. This is because the communication inherent 
to the DTLS handshake is not present. The difference in 
total energy usage between the E2E and TER1 experiments 
is again explained by the absence of the close notify message 
in the TERI case. In effect, our approach spreads the cost of 
the initial DTLS handshake between the trusted gateway and 
the sensor nodes (TER1) over all future interactions with the 
sensor node (TER). When comparing to the lower limit, the 
TER configuration consumes additional energy for performing 
cryptography, sending and receiving larger packets (due to the 
presence of the DTLS headers) and for sending additional 
packets due to the 6LoWPAN fragmentation. 

Table I. 

RAM (kB) 
DTLS server 8. I 
CoAP server (reference) 6.0 
Per additional DTLS session 0.596 

ROM (kB) 
70.8 
48.5 

o 

CODE FOOTPRINT FOR DTLS AND CoAP SERVERS AND PER 
ADDITIONALLY SUPPORTED DTLS SESSION 

Finally, table I lists the code footprint of the DTLS server 3. 

The DTLS server includes contiki's RPL implementation, 
the TinyDTLS server and the Erbium CoAP server. When 
compared to a CoAP server, the DTLS server requires an 
additional 22.3 kB of ROM and 2.1 kB of RAM. When more 
than one simultaneously-active DTLS session is required, the 
TinyDTLS server requires 596 bytes of RAM memory for 
every additional session. In our approach the DTLS server 
only has one active session with the gateway, so no additional 
RAM has to allocated to accommodate for multiple clients. 

3The con tiki source code is available at [11]. Size measurements were 
performed with msp430-gcc 4.7.0. 
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Figure 6. Median energy usage per category (left axis) and total energy usage 
(right axis). 

Instead, supporting multiple DTLS peers is handled by the 
trusted gateway. 

V. REL ATED WORK 

In terms of related work, the ongoing efforts in the DICE 
working group and two other relevant works from literature 
are discussed. 

DTLS In Constrained Environments (DICE) is an IETF 
working group that focuses on supporting the use of DTLS 
transport-layer security in constrained environments. The 
scope includes both constrained devices and networks. Its first 
task is to define a DTLS profile that is suitable for Internet 
of Things applications and is reasonably implementable on 
many constrained devices. To this end, the WG has adopted 
a draft [12] that discusses the use of PSKs, raw public keys 
and certificates as well other practical issues that might arise 
when using DTLS. One difference from our work, is that 
the constrained device is considered to be the DTLS client 
and that they are preconfigured with the addresses of their 
communication servers. Our approach provides more flexibility 
with the constrained device as a DTLS server, as the sensors 
and their data are readily accessible by multiple parties over 
IP and are therefor not limited to the number of parties 
programmed into the device. Apart from multicast security, 
the group also intends to investigate practical issues around 
the DTLS handshake in constrained environments. Proposed 
work includes compression of DTLS messages and completing 
the DTLS handshakes over CoAP. These mechanisms look 
promising and are largely orthogonal to our work as they 
aim to optimize the handshake mechanism itself. Finally, the 
contribution of Keoh S. et al. [13] gives a clear overview on 
securing the Internet of Things from a standardization point of 
view with a focus on the IETF. 

The authors of Lithe [14] propose a novel DTLS header 
compression scheme that aims to reduce the energy con­
sumption by leveraging the 6LoWPAN standard. The header 
compression scheme significantly reduces the number of trans-



mitted bytes while its use of 6LoWPAN ensures interoperabil­
ity with existing DTLS implementations. Their approach is 
evaluated using the open source TinyDTLS implementation 
on ContikiOS. The authors report significant improvements in 
terms of packet size, energy consumption, processing time, 
and response times. The presented compression scheme is 
complementary to our approach: i.e. both approaches can 
benefit from one another. 

In [15], Hummen R. et al. introduce a security architecture 
for delegation purposes that executes the DTLS Handshake 
on a trusted and powerful delegation server. Afterwards, the 
security context is transferred securely to the constrained 
device by using the session resumption mechanism in DTLS. 
This transfer is secured by symmetric key cryptography that 
requires a secret preshared key between the constrained device 
and the delegation server. As a result, the delegation server can 
authenticate and authorize Internet nodes. The approach saves 
a considerable amount of resources on the constrained device: 
memory requirements decrease with 64%, calculations drop 
with 97% and there is 68% less traffic. While the authors' 
research goals are similar to ours, the followed approach 
is very different. There are a number of differences worth 
noting here. Firstly, our approach can provide similar gains by 
offloading the handshake to a third party without requiring any 
changes to the DTLS implementations running on the Internet 
client and the WSN node. This is a huge benefit as adopting 
the proposed delegation mechanism would take a considerable 
amount of time. Secondly, our approach also allows for more 
flexibility as the use of DTLS inside the WSN is configurable 
and therefor optional. Finally, we also consider application­
layer processing at the gateway (e.g. caching) whereas the 
delegation server operates solely on the transport layer. 

VI. CONCLUSION AND FUTURE WORK 

This paper has presented the use of a trusted gateway to 
mitigate the overhead of the DTLS handshake in IP-based 
WSNs. By terminating DTLS sessions with Internet hosts 
and multiplexing their contents over a long-lived session with 
the WSN node, considerable energy savings can be achieved. 
Through simulation of a representative application scenario we 
have shown that our approach can save up to 60% in energy 
expenditure. The time to complete this scenario is also reduced 
by more than half. Furthermore, our approach allows to use 
different cipher suites on the public Internet and the WSN. 
Thus, offering X.509 certificates on behalf of WSN nodes is 
supported as well. 

In the future, we will adapt our approach for networks 
where the trusted gateway is not on routing path between 
the Internet and the WSN. In order to reduce costs the 
trusted gateway might be virtualized in the cloud, in this case 
a lightweight tunnel from the cloud to the WSN gateway 
might prove a feasible option. However, a solution where 
every sensor node has a virtual counterpart located in the 
cloud (hosted at an Internet address that is routed to the cloud) 
is also possible. Furthermore, we are in the process of adding 
more functionality on the application layer (such as access 
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control and caching for CoAP resources hosted on sensor 
nodes) to this (potentially virtualized) trusted gateway. 
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