129 research outputs found

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Status and Future Perspectives for Lattice Gauge Theory Calculations to the Exascale and Beyond

    Full text link
    In this and a set of companion whitepapers, the USQCD Collaboration lays out a program of science and computing for lattice gauge theory. These whitepapers describe how calculation using lattice QCD (and other gauge theories) can aid the interpretation of ongoing and upcoming experiments in particle and nuclear physics, as well as inspire new ones.Comment: 44 pages. 1 of USQCD whitepapers

    Next generation of Exascale-class systems: ExaNeSt project and the status of its interconnect and storage development

    Get PDF
    The ExaNeSt project started on December 2015 and is funded by EU H2020 research framework (call H2020-FETHPC-2014, n. 671553) to study the adoption of low-cost, Linux-based power-efficient 64-bit ARM processors clusters for Exascale-class systems. The ExaNeSt consortium pools partners with industrial and academic research expertise in storage, interconnects and applications that share a vision of an European Exascale-class supercomputer. The common goal is designing and implementing a physical rack prototype together with its cooling system, the non-volatile memory (NVM) architecture and a unified low-latency interconnect able to test different options for network and storage. Furthermore, the consortium goal is to provide real HPC applications to validate the system. In this paper we describe the unified data and storage network architecture, reporting on the status of development of different testbeds and highlighting preliminary benchmark results obtained through the execution of scientific, engineering and data analytics scalable application kernels

    A differentiated proposal of three dimension i/o performance characterization model focusing on storage environments

    Get PDF
    The I/O bottleneck remains a central issue in high-performance environments. Cloud computing, high-performance computing (HPC) and big data environments share many underneath difficulties to deliver data at a desirable time rate requested by high-performance applications. This increases the possibility of creating bottlenecks throughout the application feeding process by bottom hardware devices located in the storage system layer. In the last years, many researchers have been proposed solutions to improve the I/O architecture considering different approaches. Some of them take advantage of hardware devices while others focus on a sophisticated software approach. However, due to the complexity of dealing with high-performance environments, creating solutions to improve I/O performance in both software and hardware is challenging and gives researchers many opportunities. Classifying these improvements in different dimensions allows researchers to understand how these improvements have been built over the years and how it progresses. In addition, it also allows future efforts to be directed to research topics that have developed at a lower rate, balancing the general development process. This research present a three-dimension characterization model for classifying research works on I/O performance improvements for large scale storage computing facilities. This classification model can also be used as a guideline framework to summarize researches providing an overview of the actual scenario. We also used the proposed model to perform a systematic literature mapping that covered ten years of research on I/O performance improvements in storage environments. This study classified hundreds of distinct researches identifying which were the hardware, software, and storage systems that received more attention over the years, which were the most researches proposals elements and where these elements were evaluated. In order to justify the importance of this model and the development of solutions that targets I/O performance improvements, we evaluated a subset of these improvements using a a real and complete experimentation environment, the Grid5000. Analysis over different scenarios using a synthetic I/O benchmark demonstrates how the throughput and latency parameters behaves when performing different I/O operations using distinct storage technologies and approaches.O gargalo de E/S continua sendo um problema central em ambientes de alto desempenho. Os ambientes de computação em nuvem, computação de alto desempenho (HPC) e big data compartilham muitas dificuldades para fornecer dados em uma taxa de tempo desejável solicitada por aplicações de alto desempenho. Isso aumenta a possibilidade de criar gargalos em todo o processo de alimentação de aplicativos pelos dispositivos de hardware inferiores localizados na camada do sistema de armazenamento. Nos últimos anos, muitos pesquisadores propuseram soluções para melhorar a arquitetura de E/S considerando diferentes abordagens. Alguns deles aproveitam os dispositivos de hardware, enquanto outros se concentram em uma abordagem sofisticada de software. No entanto, devido à complexidade de lidar com ambientes de alto desempenho, criar soluções para melhorar o desempenho de E/S em software e hardware é um desafio e oferece aos pesquisadores muitas oportunidades. A classificação dessas melhorias em diferentes dimensões permite que os pesquisadores entendam como essas melhorias foram construídas ao longo dos anos e como elas progridem. Além disso, também permite que futuros esforços sejam direcionados para tópicos de pesquisa que se desenvolveram em menor proporção, equilibrando o processo geral de desenvolvimento. Esta pesquisa apresenta um modelo de caracterização tridimensional para classificar trabalhos de pesquisa sobre melhorias de desempenho de E/S para instalações de computação de armazenamento em larga escala. Esse modelo de classificação também pode ser usado como uma estrutura de diretrizes para resumir as pesquisas, fornecendo uma visão geral do cenário real. Também usamos o modelo proposto para realizar um mapeamento sistemático da literatura que abrangeu dez anos de pesquisa sobre melhorias no desempenho de E/S em ambientes de armazenamento. Este estudo classificou centenas de pesquisas distintas, identificando quais eram os dispositivos de hardware, software e sistemas de armazenamento que receberam mais atenção ao longo dos anos, quais foram os elementos de proposta mais pesquisados e onde esses elementos foram avaliados. Para justificar a importância desse modelo e o desenvolvimento de soluções que visam melhorias no desempenho de E/S, avaliamos um subconjunto dessas melhorias usando um ambiente de experimentação real e completo, o Grid5000. Análises em cenários diferentes usando um benchmark de E/S sintética demonstra como os parâmetros de vazão e latência se comportam ao executar diferentes operações de E/S usando tecnologias e abordagens distintas de armazenamento

    Proceedings of the Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015) Krakow, Poland

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015

    Relajaciones de ejecución definidas por el usuario para la mejora de la programabilidad en computación paralela de altas prestaciones

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 22-11-2019This thesis proposes the development and implementation of a new programming model basedon execution relaxations, and focused on High-Performance Parallel Computing. Specifically,the main goals of the thesis are:1. Advocate a development methodology in which users define the basic computing units(tasks), together with a set of relaxations in, possibly, multiple dimensions. These relaxationswill be translated, at execution time, into expanded (and complex) scheduling opportunitiesdepending on the underlying architectural features, yielding improvements in termsof desired output metrics (e.g., performance or energy consumption).2. Abstract away users from the complexity of the underlying heterogeneous hardware, delegatingthe proper exploitation of expanded scheduling choices to a system software component(typically referred as a runtime). This piece of software, armed with knowledge fromstatic architectural characteristics and dynamic status of the hardware at execution time,will exploit those combinations considered optimal among those relaxations proposed bythe user for each task ready for execution.3. Extend this abstraction in order to describe both computing systems, by means of executor/ allocator hierarchies that describe the heterogeneous computing architecture, and applications,in terms of sets of interdependent tasks. In addition, the relations between executorsand tasks are categorized into a new task-executor taxonomy, which motivates ambiguityfreeHPC programming frontends based on the STSE, Single Task - Single Executor classification,distinguished from fully-automated runtime backends.4. Propose a new programming model (STEEL) based on previous ideas, that gathers featuresconsidered to be basic for future task-based programming models, namely: performance,composability, expressivity and hard-to-misuse interfaces.5. Specify an API to support the STEEL programming model, and a runtime implementationleveraging techniques and programming paradigms supported by modern C++, illustratingits flexibility, ease of use and performance impact by means of simple use cases and examples.Hence, the proposed methodology stands for a clear and strict separation of concerns betweenthe involved actors in a parallel executions: user / codes and underlying hardware. This kind ofabstractions allows a delegation of the expert knowledge from the user toward the system software(runtime) in a systematic way, and facilitates the integration of mechanisms to automate optimizations,adapting performance to the specificities of the heterogeneous parallel architecture in whichthe code is instantiated and executed.From this perspective, the thesis designs, implements and validates mechanisms to perform aso-called complexity formalization, classifying many actions that are currently done by the userand building a framework in which these complexities can be delegated to the runtime system. Thedelegation of these decisions is already a step forward to next generation of programming modelsseeking performance, expressivity, programmability and portability...La presente tesis doctoral propone el diseño e implementación de un nuevo modelo de programación basado en relajaciones de ejecución y enfocado al ámbito de la Computación Paralela de Altas Prestaciones. Concretamente, los objetivos principales de la tesis son:1. Abogar por una metodología de desarrollo en la que el usuario define las unidades básicas de computo (tareas), junto con un conjunto de relajaciones en, posiblemente, múltiples dimensiones. Estas relajaciones se traducirán, en tiempo de ejecución, en oportunidades expandidas(y complejas) de planificación en función de la arquitectura subyacente, impactando así en métricas como rendimiento o consumo energético.2. Abstraer al usuario de la complejidad del hardware subyacente, delegando la correcta explotación de dichas posibilidades de planificación expandidas a un componente software de sistema (típicamente conocido como runtime). Dicho software, dotado de conocimiento tanto de las características estáticas de la arquitectura subyacente como del estado puntual de la misma en el momento de la ejecución, explotará las combinaciones consideradas optimas de entre las relajaciones propuestas por el usuario para cada tarea lista para set ejecutada.3. Extender dicha abstracción para describir tanto sistemas de cómputo, en forma de jerarquía de ejecutores y alojadores de memoria que en ´ultimo término describen una arquitectura de cómputo heterogénea, como aplicaciones, en forma de un conjunto de tareas interrelacionadas. Además, las relaciones entre ejecutores y tareas son clasificadas en una nueva taxonomía tarea-ejecutor, la cual motiva frontends de programación HPC sin ambigüedad basados en la clasificación STSE, Single Task - Single Executor, separada de backends runtime totalmente automatizados.4. Proponer un nuevo modelo de programación (STEEL) basado en la clasificación STSE que aglutine ciertas características consideradas básicas de cara al éxito de los futuros modelos de programación basados en tareas: rendimiento, facilidad de composición, expresividad e interfaces no permisivos ante fallos.5. Especificar una API que dé soporte al modelo de programación, así como una implementación runtime del mismo aprovechando técnicas y paradigmas soportados en el lenguaje C++ de última generación, e ilustrar su uso, flexibilidad e impacto en el rendimiento a través de ejemplos y casos de uso sencillos .La metodología que se propugna aboga por una clara y estricta separación de conceptos entre los actores básicos que componen una ejecución paralela: usuario / código y hardware subyacente. Este tipo de abstracciones permite delegar el conocimiento experto desde el usuario hacia el software de sistema, proporcionando así mecanismos para mecanizar y automatizar su optimización ,y adaptar su rendimiento a la arquitectura paralela sobre la que se instanciarán los códigos. Desde este punto de vista, la tesis diseña, implementa y valida mecanismos para llevar a cabo una formalización de la complejidad inherente a la programación paralela heterogénea, clasificando aquellas acciones que en la actualidad se llevan a cabo por parte del usuario en el proceso de desarrollo y optimización de código, y proporcionando un marco de trabajo en el que dicha complejidad puede ser delegada, de forma eficiente y consistente, a un runtime...Fac. de InformáticaTRUEunpu
    corecore