
Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)

Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.

(Editors)

September 10-11, 2015

Volume Editors

Jesus Carretero
University Carlos III
Computer Architecture and Technology Area
Computer Science Department
Avda Universidad 30, 28911, Leganes, Spain
E-mail: jesus.carretero@uc3m.es

Javier Garcia Blas
University Carlos III
Computer Architecture and Technology Area
Computer Science Department
Avda Universidad 30, 28911, Leganes, Spain
E-mail: fjblas@arcos.inf.uc3m.es

Roman Wyrzykowski
Institute of Computer and Information Science
Czestochowa University of Technology
ul. Dąbrowskiego 73, 42-201 Częstochowa, Poland
E-mail: roman@icis.pcz.pl

Emmanuel Jeannot
Equipe Runtime
INRIA Bordeaux Sud-Ouest
200, Avenue de la Vielle Tour, 33405 Talence Cedex, France
E-mail: emmanuel_jeannot@inria.fr

Published by:
Computer Architecture,Communications, and Systems Group (ARCOS)
University Carlos III
Madrid, Spain
http://www.nesus.eu

ISBN: 978-84-608-2581-4

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

This document also is supported by:

Printed in Madrid — October 2015

http://www.nesus.eu

Preface

Network for Sustainable Ultrascale Computing (NESUS)

We are very excited to present the proceedings of the Second International Workshop on Sustainable Ultrascale Com-
puting Systems (NESUS 2015), a workshop created to reflect the research and cooperation activities made in the NESUS
COST Action (IC1035) (www.nesus.eu), but open to all the research community working in large/ultra-scale computing
systems. It was held in Krakow (Poland) on September 10-11, 2015.
The goal in scalable and sustainable technology today is to have on the one hand large parallel supercomputers, named
Exascale computers, and on the other hand, to have very large data centers with hundreds of thousands of computers
coordinating with distributed memory systems. Ultimately, NESUS idea is to have both architectures converge to solve
problems in what we call ultrascale. Ultrascale systems combine the advantages of distributed and parallel computing
systems. The former is a type of computing in which many tasks are executed at the same time coordinately to solve
one problem, based on the principle that a big problem can be divided into many smaller ones that are simultaneously
solved. The latter system, in both grid and cloud computing, uses a large number of computers organized into clusters in
a distributed infrastructure, and can execute millions of tasks at the same time usually working on independent problems
and big data. The applications of these systems and the benefits they can yield for society are enormous, according to the
researchers, who note that this type of computing will help conduct studies about genomics, new materials, simulations of
fluid dynamics used for atmospheric analysis and weather forecasts, and even the human brain and its behavior.
The goal of the NESUS Action is to establish an open European research network targeting sustainable solutions for ul-
trascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management.
Ultrascale systems are envisioned in NESUS as large-scale complex systems joining parallel and distributed computing
systems that will be two to three orders of magnitude larger that today’s systems. The EU is already funding large scale
computing systems research, but it is not coordinated across researchers, leading to duplications and inefficiencies. The
network will contribute to glue disparate researchers working across different areas and provide a meeting ground for
researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research
topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency,
and resilience. Some of the most active research groups of the world in this area are members of this NESUS Action. This
Action will increase the value of these groups at the European-level by reducing duplication of efforts and providing a
more holistic view to all researchers, it will promote the leadership of Europe, and it will increase their impact on science,
economy, and society.
The scientific objective of NESUS is to study the challenges presented by the next generation of ultrascale computing sys-
tems to enhance their sustainability. These systems, which will be characterized by their large size and great complexity,
present significant challenges, from their construction to their exploitation and use. We try to analyze all the challenges
there are and see how they can be studied holistically and integrated, to be able to provide a more sustainable system. The
challenges that this type of computing poses affect aspects such as scalability, the programming models used, resilience to
failures, energy management, the handling of large volume of data, etc. One of the NESUS goals is to find the way that all
solutions that are proposed can be transmitted to user applications with the minimum possible redesign and reprogramming
effort.
The project began last March with 29 European countries, but at present consists of 39 European countries and six coun-
tries from other continents. It now involves nearly 200 scientists, almost 40% of whom are young researchers, because

one essential goal of these Actions is to promote and create an ecosystem of scientists who can work on these matters in
the European Union in the future.
This Action, which concludes in 2018, aims to produce a catalogue of open source applications that are being developed
by the members of the Action and which will serve to demonstrate new ultrascale systems and take on their main chal-
lenges. In this way, anyone will be able to use these applications to test them in their systems and demonstrate their level
of sustainability.

Prof. Jesus Carretero
University Carlos III of Madrid
NESUS Chair

October 2015

COST Action IC1305 2014!2018

Aim

!  Coordinate European efforts for proposing realistic solutions addressing major
challenges of building sustainable Ultrascale Computing Systems (UCS) with a
holistic approach.

To:

1.  Increase EU research in the field of sustainable ultrascale computing.
2.  Give coherence to the European ICT research agenda related to sustainability.
3.  Build a multi-disciplinary forum for cross-fertilization of ideas for sustainable

ultrascale computing.

Scientific Workplan

Topics

"  WG1: New techniques to enhance sustainability holistically.

"  WG2: Promoting new sustainable programming and execution

models in the context of rapidly changing underlying computing architecture.

"  WG3: Innovative techniques to deal with hardware and system software
failures or intentional changes within the complex system environment.

"  WG4: Study data management lifecycle on scalable architectures in a
 synergistic approach to pave the way towards sustainable UCS.

"  WG5: Explore the design of metrics, analysis, frameworks and tools for
 putting energy awareness and energy efficiency at the next stage.

"  WG6: Identify algorithms, applications, and services amenable to ultrascale
 systems and to study the impact of application requirements on the sustainable
 ultrascale system design.

Activities

!  Research activities though WGs
!  Set up collaborations through STSM and internships
!  Training schools and PhD forum
!  Meetings for WGs and MC
!  Dissemination and cooperation with industry and stakeholders.
!  Publications, conference organization, industry seminars, …

Contact details

Chair of the Action
Jesus Carretero
jesus.carretero@uc3m.es

Website
www.nesus.eu

Participating countries: 45

EU COST countries: 33
AT, BA, BE, BG, BO, CH, CY, DE, DK, EE,
EL, ES, FI, FR, HR, HU, IE, IL, IT, LT, LU,
MK, MT, NL, NO, PL, PT, RO, SI, SK, SE,
TR, UK

NNC countries: 6
AL, AM, MD, MO, RU, UA

Information and
Communication
Technologies
(ICT)

Global Collaboration: 6

AU, CA, CO, IN, MX, US
,

COST is supported by the EU
RTD Framework Programme

TABLE OF CONTENTS

Second NESUS Workshop (NESUS 2015)

1 Neki Frasheri

Parallel Processing For Gravity Inversion

7 Algirdas Lančinskas, Pilar M. Ortigosa, Julius Žilinskas

Solution of Bi-objective Competitive Facility Location Problem Using Parallel Stochastic Search Algorithm

11 Ricardo Morla, Pedro Gonçalves,Jorge Barbosa

A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs

23 Raimondas Ciegis

Distributed Parallel Computing for Visual Cryptography Algorithms

29 Dana Petcu

On Autonomic HPC Clouds

41 Biljana Stamatovic

Labeling connected componets in binary images based on cellular automata

45 Atanas Hristov

Nature-Inspired Algorithm for Solving NP-Complete Problems

51 Ilias Mavridis,Eleni Karatza

Log File Analysis in Cloud with Apache Hadoop and Apache Spark

63 Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Luis Cebamanos, Alistair Hart, Misun Min,

Paul Fischer

NekBone with Optimized OpenACC directives

71 Gabor Kecskemeti

Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF

83 Pilar Gonzalez-Ferez,Angelos Bilas

NUMA impact on network storage protocols over high-speed raw Ethernet

95 Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trun-

fio

Evaluating data caching techniques in DMCF workflows using Hercules

107 Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza

Heidari,Michael Kuhn

Analyzing power consumption of I/O operations in HPC applications

117 Beat Wolf, Loïc Monney,Pierre Kuonen

FriendComputing: Organic application centric distributed computing

121 Beat Wolf, Pierre Kuonen,Thomas Dandekar

Multilevel parallelism in sequence alignment using a streaming approach

127 Robert Dietze, Michael Hofmann,Gudula Ruenger

Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures

135 Anatoliy Melnyk, Viktor Melnyk,Lyubomyr Tsyhylyk

Chameleon c© C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially

Reconfigurable FPGAs

143 Radim Blaheta, Alexej Kolcun, Ondrej Jakl, Kamil Soucek, Jiri Stary,Ivan Georgiev

HPC in Computational Micromechanics of Composite Materials

147 List of Authors

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Book paper template • September 2015 • Vol. I, No. 1

Parallel Processing For Gravity Inversion

Neki Frasheri

Polytechnic University of Tirana, Albania
nfrasheri@fti.edu.al

Abstract

In this paper results of recent updates of a simple algorithm for the inversion of gravity anomalies for 3D geosections
in parallel computer systems are presented. A relaxation iterative principle was used updating step by step the
geosection distribution of mass density. Selection of updates was done on basis of least squares error match of the
update effect with the observed anomaly. Locally weighted least squares combined with the linear trend were used
to obtain good inversion results for two-body geosections.

Keywords Parallel systems, Gravity inversion, Geophysics

I. Introduction

In the paper we present recent results obtained for the
inversion of gravity anomalies in parallel computer
systems. Inversion of geophysical anomalies is an
old problem from the beginning of geophysics. For
decades a multitude of manual and computer-based
methods are developed. The problem is typically "ill-
posed", from a mathematical point of view the tra-
ditional inversion implies mapping from a 2D array
of measured ground surface values into a 3D array
of voluminous physical parameters of the geosection
[1][2].

Because of the physical and mathematical complex-
ity of geophysical inversion [3], the problem is "at-
tacked" through different methods simplifying the con-
ditions. A typical traditionally used simplification has
been reduction of dimensions through mapping a pro-
file of 1D array of measured values into a 2D array
representing a cross-section of geological structures,
leading to a reduction of the volume of data and of
calculations [4]. Other applied constraints include lim-
itation to convex bodies [5], rectangular 3D prisms [6],
stochastic methods [7] etc, just to mention few cases.
The uncertainty character of the problem is considered
by some scholars [8].

Despite decades of development, inversion remains
problematic. A typical case of problematic 2D inversion

of a two body geosection is given in [9] (Fig. 1).

Figure 1: Typical inversion of two-body model.

Exploitation of parallel computer systems made eas-
ier the 3D inversion and different methods are experi-
mented as in [10 - 13]. In our work we experimented
a simple algorithm GIM (Geophysical Inversion and
Modeling) for the 3D inversion of gravity anomalies
aiming to compensate the simplicity of the algorithm
with the increase of the volume of calculations made
possible in parallel systems. The work started in frame-
work of European FP7 project HP-SEE and first calcu-
lations were carried out in the HP Cluster Platform
Express 7000 operated by the Institute of Information
and Communication Technologies, Bulgarian Academy

1

Neki Frasheri 1

Second NESUS Workshop • September 2015 • Vol. I, No. 1

of Sciences in Sofia, Bulgaria and the SGE system of
the NIIFI Supercomputing Center at University of Pècs,
Hungary. Recent results are obtained using the small
parallel system in Faculty of Information Technology
of Polytechnic University in Tirana.

II. The methodology of the work

The idea of algorithm CLEAN developed by Högbom
[14] for the interpretation of radio-astronomy data was
used. The algorithm is based on a simple relaxation
principle - iterative approximation of geosection struc-
tures through small updates that offer the best approx-
imation of the anomaly in each iteration. Gravity was
considered as the simplest case of physical fields used
in geophysics. The 3D geosection was modeled with
a 3D array of elementary cuboids. In each iteration
the cuboid that generates a gravity effect (elementary
anomaly) which shape best approximates the observed
anomaly is selected, and its mass density is modified
with a predefined quantity. The effect of this increased
quantity of mass density for the selected cuboid is
subtracted from the observed anomaly and the whole
process is repeated. In each iteration the 3D array
of cuboids is scanned and for each cuboid the grav-
ity effect in each point of the 2D array of observed
anomaly is calculated (one elementary calculation for
each couple cuboid - anomaly point). As result, with
the supposition that dimensions of 2D and 3D arrays
are N2 and N3, the complexity of the algorithm re-
sulted O(N8).

The parallelisation of the algorithm was done using
both OpenMP and MPI techniques. For each iteration
the scanning of the 3D array of cuboids was split in
different threads and calculated in different computing
cores. For the scalability of the algorithm the varia-
tions of runtime as function of the number of cores
and the size of the 2D & 3D arrays. In order to re-
duce time delays from inter-process communication,
only metadata for selected cuboids were exchanged
between processes and each process had to repeat the
subtraction of elementary anomalies from the observed
one. Results of the work were presented in [15 - 20].
The least squares error was used as approximation
metrics to evaluate how the shape of an elementary
anomaly matches the observed anomaly. A modified

least squares metrics was used for this purpose. In the
first version of the algorithm the simple least squares
error formula was used for each cuboid:

Err = ∑(Gij − c ∗ Aij − d)2 (1)

where: Gij is observed anomaly value in the point
(i,j) of the 2D array, Aij is anomaly effect in the point
(i,j) of the 2D array from the 3D cuboid with fictitious
mass density of one unit. Two constants "c" and "d"
were calculated to give the least error for each cuboid
of the 3D geosection array, and the cuboid with the
least error was selected modifying its mass density
with a predefined quantity.

Figure 2: Inversion of single body model.

Experiments with the simple algorithm gave good
results for the inversion of the gravity anomaly of a
single vertical prismatic body (Fig. 2), while for multi-
body geosections the results were characterized by
the presence of a false depth central body instead of
separate vertical prisms. The evolution of relaxation
process of the algorithm was investigated joining to-
gether the central cross-section of the 3D geosection for
each iteration, shaping a "carrot" that describes how
the body was generated through iterations (shown in
Fig. 3, see also Fig. 1):

It is visible from the Fig. 3 that the "focus" of the
algorithm is the generation of a single depth body
which anomaly approximates the observed one, and
only remained anomaly is used for the generation of
two shallow bodies that correspond with the tops of

2

2 Parallel Processing For Gravity Inversion

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 3: Evolution of inversion of the two-body model with
the simple algorithm.

two original prismatic bodies (the same as in Fig. 1).
The modification of least squares error formula was

done in three stages. First, the calculation of the error
was limited in the part of the 2D array of observed
anomaly points where the gravity effect of the cuboid
is more significant. Second, weighted squares errors
were used. Third, a linear local trend of the observed
anomaly was considered:

Err = ∑ Wij ∗ (Gij − c ∗ Aij − di ∗ i − dj ∗ j − e)2 (2)

where: Wij is weights calculated on basis of Aij val-
ues that Aij > L; L is predefined threshold for defini-
tion of the calculation area; constants c, di, dj and e
were calculated to give the least error for each cuboid
of the 3D geosection array. After the third modification
of the least squares error formula, subtraction of the
local linear trend, the evolution of inversion for the
anomaly of two vertical prismatic bodies resulted in
two realistic separate vertical "carrots".

III. Results of gravity anomaly
inversion

The new algorithm was tested with synthetic
anomalies generated in a 3D geosection with size
4,000x4,000x2,000 meters, and discretized with cuboids
with edges 400m, 200m, 100m, 50m. The same mesh
was used for the ground surface 2D array of ob-
served anomaly. The same software was used to
produce observed anomalies used as input for the

inversion. Two cases were modeled, a single vertical
prism 400x400x1,600m in depth -400m, and two vertical
prisms of the same size in distance 1,600m. Scalability
of the algorithm resulted similar for OpenMP (Fig. 4
and Fig. 5) and MPI.

Figure 4: Scalability per model size.

Figure 5: Scalability per number of cores.

Variation of runtime resulted the same as theoreti-
cally predicted. Runtime as function of model size (Fig.
4 is with factor O(N8), while as function of number of
cores C it is with factor O(C−1). Only for small models
parallelized with a great number of threads the scala-
bility is spoiled due to the overhead of inter-process
communication. In the case of the two body model,
when the modified least squares formula was used, the
evolution of geosection proceeded differently from the

3

Neki Frasheri 3

Second NESUS Workshop • September 2015 • Vol. I, No. 1

case of Fig. 1, instead both bodies were developed in
parallel as shown in Fig. 6:

Figure 6: Inversion of two-body model with modified algo-
rithm.

The final result of two body anomaly inversion is
presented in Fig. 7. The difference in the volume of
two inverted bodies is result of a small difference of
the mass density of the original prisms.

Figure 7: modified inversion of two body anomaly.

With the modified inversion algorithm there is clear
contrast between the bodies and surrounding medium,
and there is no in-depth bridging between two bodies
as in the case of simple algorithm.

Scalability (Fig. 8) of the modified algorithm for the
two body model was done in two ways. Digitized geo-
sections with 200m and 100m sized cuboid were used,
each with two cases of mass density step of 1.0 and 0.1
G/cm3 for selected cuboids. Parallelization was done
with 1 to 128 MPI processes using two schemes: a)
running in a single computer node with 8 cores; and b)
running in two computer node blocks interconnected

with a 1Gbps Ethernet switch. The walltime experi-
enced a jump when number of processes bypassed
that of cores and increased in case of the small model
while remaining almost constant for the medium-sized
model. While when processes were distributed in all
cores a small decrease of the trend was observed de-
spite the low bandwidth of the interconnecting switch,
an indication that the software may be run in multi-
grid environment.

Figure 8: Scalability of two-body inversion.

IV. Conclusions

The principle of algorithm CLEAN of Högbom [14]
was applied for the 3D inversion of gravity anomalies
in parallel computer systems. The complexity of the al-
gorithm resulted O(N8) for the ill-defined iterative pro-
cess of mapping from a 2D array of surveyed anomaly
values into a 3D array of mass density of the geosec-
tion. Parallelization was done using OpenMP and MPI.
Calculations for a geosection 4,000x4,000x2,000m dis-
cretized with a step of 50m succeeded in 3 hours using
1,000 cores.

The relaxation iterative process was based on selec-
tion of the best cuboid which effect matched better the
observed anomaly, using least squares error method.
Experiments resulted successful for single body mod-
els while gave wrong three-lobe structures for two
body models. In order to resolve this problem the best
cuboid was selected calculating locally the weighted
least squares error only for points around the cuboid,

4

4 Parallel Processing For Gravity Inversion

Second NESUS Workshop • September 2015 • Vol. I, No. 1

subtracting the linear trend and using the shape of
cuboid’s anomaly as weights. This modification made
possible to obtain good inversion approximation of the
two-body model.

Complexity of algorithm is polynomial of 8−th order
that requires ultra scale parallel computer or multi-grid
systems to obtain results for models with metric nec-
essary for complex multi-method engineering works -
the observed runtimes are for the inversion of gravity
that is the simplest case (scalar field which scattering
does not depend on environment heterogeneity) in the
complex of geophysical methods. Inversion of anoma-
lies for magnetic and electrical fields would require
calculation of vectorial fields which scattering is depen-
dent on environment heterogeneity and anisotropy.

References

[1] J. Hadamard, Sur les Problemes aux Derivees Par-
tielles et leur Signification Physique, Bull Princeton
University, 1902.

[2] W. Lowrie, Fundamentals of Geophysics, Cambridge
University Press, 2007.

[3] M. Sen and P. Stoffa, Global Optimization Methods in
Geophysical Inversion, Elsevier Science B.V., 1995.

[4] Z. Xiaobing, "Analytic solution of the gravity
anomaly of irregular 2D masses with density con-
trast varying as a 2D polynomial function", Geo-
physics, v. 75; no. 2; p. I11-I19, March-April, 2010.

[5] J. Silva, W. E. Medeiros and V. C. F Barbosa,
"Gravity inversion using convexity constraint", Geo-
physics, v. 65; no. 1; p. 102-112, January-February,
2000.

[6] P. Shamsipour, M. Chouteau, D. Marcotte and P.
Keating, "3D stochastic inversion of borehole and
surface gravity data using geostatistics", EGM 2010
International Workshop, Adding new value to Electro-
magnetic, Gravity and Magnetic Methods for Explo-
ration, Capri, Italy, April 11-14, 2010.

[7] Z. Xiaobing, "3D vector gravity potential and line
integrals for the gravity anomaly of a rectangu-
lar prism with 3D variable density contrast", Geo-

physics, v. 74; no. 6; p. I43-I53, November-December,
2009.

[8] F. J. Wellmann, F. G. Horowitz, E. Schill and
K. Regenauer-Lieb, "Towards incorporating uncer-
tainty of structural data in 3D geological inversion",
Elsevier Tectonophysics TECTO-124902, 2010.

[9] M. S. Zhdanov, G. A. Wilson and L. Xiaojun, "3D
imaging of subsurface structures using migration
and regularized focusing inversion of gravity and
gravity gradiometry data", in R. J. L. Lane (Ed),
Airborne Gravity - Abstracts from the ASEG-PESA
Airborne Gravity Workshop, Published jointly by Geo-
science Australia and the Geological Survey of New
South Wales, Geoscience Australia Record 2010/23,
2010.

[10] P. Rickwood and M. Sambridge, "Efficient paral-
lel inversion using the neighborhood agorithm",
Geochemistry Geophysics Geosystems Electronic Jour-
nal of the Earth Sciences, Volume 7, Number 11, 1
November, 2006.

[11] M. H. Loke and P. Wilkinson, "Rapid parallel com-
putation of optimized arrays for electrical imaging
surveys", Near Surface 2009 - 15th European Meeting
of Environmental and Engineering Geophysics, Dublin,
Ireland, 7-9 September, 2009.

[12] H. Zuzhi, H. Zhanxiang, W. Yongtao and S.
Weibin, "Constrained inversion of magnetotelluric
data using parallel simulated annealing algorithm
and its application". SEG Denver Annual Meeting -
SEG Expanded Abstracts, Vol. 29, EM P4 Modeling
and Inversion, 2010.

[13] G. Wilson, M. Ĉuma and M. S. Zhdanov, "Mas-
sively parallel 3D inversion of gravity and gravity
gradiometry data", PREVIEW - The Magazine of the
Australian Society of Exploration Geophysicists, June,
2011.

[14] J. A. Högbom, "Aperture synthesis with a non-
regular distribution of interferometer baselines",
Astr. Astrophys. Suppl., 15, 417, 1974.

[15] N. Frasheri and S. Bushati, "An algorithm for
gravity anomaly inversion in HPC", SCPE: Scalable

5

Neki Frasheri 5

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Computing: Practice and Experience, vol. 13 no. 2, pp.
51-60, 2012.

[16] N.Frasheri and B. Cico, "Convergence of gravity
inversion using OpenMP", Information Technologies
IT’12, Zabljak - Montenegro, Feb 27 - March 02,
2012.

[17] N. Frasheri and B. Cico, "Analysis of the con-
vergence of iterative gravity inversion in parallel
systems", in L. Kocarev (Ed.), Springer Advances in
Intelligent and Soft Computing 150: ICT Innovations
2011, Springer-Verlag, 2012.

[18] N. Frasheri and B. Cico, "Scalability of geophys-
ical inversion with OpenMP and MPI in parallel
processing", in S. Markovski and M. Gusev (Eds.),
Springer Advances in Intelligent Systems and Comput-
ing 207: ICT Innovations 2012: Secure and Intelligent
Systems, Springer-Verlag, 2013.

[19] N. Frasheri, S. Bushati and A. Frasheri, "A parallel
processing algorithm for gravity inversion", Euro-
pean Geosciences Union General Assembly EGU’2013,
Vienna 7-12 April, 2013.

[20] N. Frasheri, S. Bushati, A. Frasheri, and B. Cico,
"Some results for 3D gravity inversion in parallel
systems", 7th Congress of the BGS - Balkan Geophysical
Society, Tirana - Albania, 7-10 October, 2013.

6

6 Parallel Processing For Gravity Inversion

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Solution of Bi-objective Competitive Facility
Location Problem Using Parallel Stochastic

Search Algorithm

Algirdas Lančinskas† , Pilar Martínez Ortigosa∗, Julius Žilinskas†

†Vilnius University, Lithuania ∗University of Almeria, Spain
algirdas.lancinskas@mii.vu.lt ortigosa@ual.es

julius.zilinskas@mii.vu.lt

Keywords Parallel Computing, Multi-Objective Optimization, Stochastic Search, Facility Location.

I. Introduction

The Facility Location (FL) deals the optimal placement
of the facilities providing goods or services in a cer-
tain geographical area with respect to maximize the
utility and/or minimize an undesirable effect of the
facility being located. There is a variety of FL mod-
els proposed which varies on their ingredients such
as location space, attractiveness of the facilities, or
customers’ behavior when choosing the most attrac-
tive facility [1, 2, 4, 5]. A lot of attention is paid for
the Competitive Facility Location Problems (CFLPs)
in which determination of the optimal location for the
new facilities involves consideration of their possible
competition for the market share with the preexisting
facilities.

Real-world CFLPs usually require to simultane-
ously consider two or several objectives when locating
the new facilities; e.g. maximize the market share of
the new facilities while minimizing costs for their es-
tablishment or maintenance of the facility; minimize
distance between facilities and customers in accor-
dance with requirements for the minimal distance to
urban areas (actual for semi-obnoxious facilities).

Our research is focused on the Competitive Facil-
ity Location Problem for Firm Expansion (CFLP/FE)
where a firm already in the market is planning to es-
tablish a set of new facilities in order to increase its
market share.

II. CFLP for Firm Expansion

Consider an expanding firm FA having nA preexisting
facilities and its competitor – the firm FB having nB
preexisting facilities – both servicing a discrete set I
of demand points in a certain geographical area. The
firm FA is expected to locate a set X of nX new fa-
cilities with respect to maximize the market share of
the new facilities taking into account the competition
with the facilities owned by FB. Despite the attraction
of new customers from the competitor FB, the newly
established facilities can also attract customers from
the facilities already owned by the expanding firm FA
thus giving rise of the effect of cannibalism. Therefore
the firm FA faces a bi-objective optimization problem
with the following objectives: (f1) to maximize the
market share of the facilities being located and (f2) to
minimize the loss of market share of the preexisting
facilities of FA (the effect of cannibalism).

Due to conflicting objectives usually it is impossi-
ble to find a single solution which would be the best
by both objectives, but rather a set of compromising
(non-dominated) solutions, called Pareto set; the corre-
sponding set of the objective functions’ values is called
Pareto front. Determination of the exact Pareto front
usually is a hard and time consuming task. On the
other hand solution of practical CFLPs usually does
not require to find the exact Pareto front, but rather its
approximation by a set of non-dominated solutions.

1

Algirdas Lančinskas, Pilar M. Ortigosa, Julius Žilinskas 7

Book paper template • September 2014 • Vol. I, No. 1

III. Parallel Multi-Objective
Stochastic Search

Multi-Objective Stochastic Search (MOSS) is a random
search algorithm suitable for approximation of the
Pareto front of a multi-objective optimization problem.
MOSS is derived from its precursor Multi-Objective
Single Agent Stochastic Search (MOSASS) algorithm
proposed in [3].

The algorithm begins with an initial archive A of so-
lutions which are non-dominated among themselves.
The new solution x′ is generated by applying slight
modifications to the solution x randomly sampled
from A, where the strength of the modification de-
pends on the repetitive successful and failed iterations;
see [3] for details of the generation of the new solution.
If the newly generated solution x′ is not dominated by
any one in the archive A, then A is updated by includ-
ing x′ and removing all solution which are dominated
by x′, and the algorithm goes to the next iteration. Oth-
erwise, if x′ is dominated in A, then a symmetric (in
relation with x) solution x′′ is evaluated in the same
way as x′. If the archive is updated either by x′ or x′′,
then iteration is assumed to be successful; otherwise,
the iteration is assumed to be failed.

The main computational effort of the algorithm usu-
ally is devoted to the evaluation of objective func-
tion values. The evaluations of the objective values
of different solutions can be considered as indepen-
dent tasks thus giving availability to distribute the
computational work among different processors. In
such a distribution of tasks the information about all
non-dominated solutions found so far (the archive A)
as well as values of other parameters of the algorithm
must be accessed by all processors. Moreover if one of
the processors is updating a parameter or the archive,
access to it is blocked for any other processor in order
to keep memory and data consistency.

Two parallel algorithms ParMOSS/OMP and Par-
MOSS/MPI suitable for shared- and distributed-
memory parallel computing systems, respectively, has
been developed under considerations above.

The ParMOSS/OMP algorithm begins with the ini-
tialization of the parameters of the algorithm as well
as the data and parameters of the optimization prob-
lem to be solved. This part of the algorithm is a single

processor – the master. Further each of the slaves ran-
domly selects an individuals from the archive A and
evaluates its objective values as well as the dominance
relation in A (as it is described above). If any of pro-
cessors is accessing the archive or any other parameter
of the algorithm, the access to that parameter or the
archive is blocked for all other processors.

In distributed-memory computing systems informa-
tion about solutions in A and values of algorithm
parameters must be transfered by passing messages
using Message Passing Interface (MPI). In order to
guarantee consistent communication between proces-
sors, one of them is devoted for the management
of the communication and overall process of the al-
gorithm. Thus the parallel version of MOSS algo-
rithm ParMOSS/MPI for distributed-memory parallel
computing systems is developed following the master-
slave strategy.

The master processor selects a random solution xi
from A, generates a pair of new solutions (x′i, x′′i) (as
it is described above), and sends it to the i-th proces-
sor (the slave) with the request to evaluate the first
solution x′i. Here i varies from 1 to the number proces-
sors p thus ensuring that the pair will be generated for
each processor. After all slaves are equipped by a pair
of solutions, the master proceeds to the main loop and
waits for the response from any of the slaves with an
evaluated solution. Although all slaves are requested
to evaluate x′i, some of them can also be requested
to evaluate x′′i in the later stage of the algorithm. In
general the master processor proceeds depending on
whether evaluation of x′i or x′′i is received and the fit-
ness of the received solution with respect to solutions
in the archive A.

IV. Numerical Experiments

The developed parallel algorithms ParMOSS/OMP
and ParMOSS/MPI have been experimentally investi-
gated by solving different instances of CFLP/FE: 5000,
1000, 500, and 100 demand points for ParMOSS/OMP;
5000 and 1000 demand points – for ParMOSS/MPI.
The Pareto front of a single instance has been ap-
proximated by 25000 function evaluations. The av-
erage duration of a single approximation by sequen-
tial MOSS was around 728 seconds using 5000 de-

2

8 Solution of Bi-objective Competitive Facility Location Problem Using Parallel Stochastic Search Algorithm

Book paper template • September 2014 • Vol. I, No. 1

mand points, around 145 seconds – using 1000 de-
mand points, around 73 – using 500 demand points,
and around 14 seconds – using 100 demand points.

The obtained results showed that the shared-
memory algorithm ParMOSS/OMP has almost linear
speed-up on up to 16 shared memory processors for
all instances of the problem: 5000, 1000, 500, and 100
demand points; further reduction of the number of
demand points is not reasonable in practical CFLPs.

Similar experiment has been performed for the
distributed-memory algorithm ParMOSS/MPI. The
Pareto front of CFLP/FE with 1000 demand points has
been approximated using 2, 4, 8, and 16 processors.
Results of the experimental investigation showed that
speed-up of ParMOSS/MPI increases linearly with the
increment of the number of processors. The speed-
up of ParMOSS/MPI is lower than speed-up of Par-
MOSS/OMP exactly by one independent on the num-
ber of processors due to an idle time of the master
processor which has no computational work. These re-
sults show that the shared-memory algorithm has no-
table advantage against the distributed-memory one.
On the other hand the shared-memory computing
systems have hardware limitations in the sense of
number of shared-memory processors, whereas the
distributed-memory algorithm can be executed on a
significantly larger number of processors.

The performance of ParMOSS/MPI has been also
investigated using from 32 to 192 processors. Results
of the investigation showed that the approximation
of the Pareto front of the problem with 5000 demand
points has been performed with almost linear speed-
up of the algorithm – the speed-up on 192 processors
was around 186. The approximation of the Pareto
front of the problem with 1000 demand points has
been performed with notably lower speed-up, com-
paring with previous instance – the speed-up on 192
processors is around 155 which corresponds to 80% of
effectiveness of the processors. On the other hand the
speed-up of the algorithm on 96 processors is around
89 which corresponds to 93% of effectiveness of the
processors when performing the computations; fur-
ther increment of the number of processors is not rea-
sonable for approximation of the Pareto front of a real-
world CFLP as the approximation on 128 processors
has been performed within 2 seconds.

Acknowledgment

The work has been partially supported by EU under
the COST Action IC1305 “Network for Sustainable Ul-
trascale Computing (NESUS)”.

References

[1] R. Z. Farahani, S. Rezapour, T. Drezner, and S. Fal-
lah. Competitive supply chain network design:
An overview of classifications, models, solution
techniques and applications. Omega, 45(0):92–118,
2014.

[2] T.L. Friesz, T. Miller, and R.L. Tobin. Competitive
networks facility location models: a survey. Papers
in Regional Science, 65:47–57, 1998.

[3] A. Lančinskas, P. M. Ortigosa, and J. Žilinskas.
Multi-objective single agent stochastic search in
non-dominated sorting genetic algorithm. Nonlin-
ear Analysis: Modelling and Control, 18(3):293–313,
2013.

[4] Frank P. Static competitive facility location:
An overview of optimisation approaches. Euro-
pean Journal of Operational Research, 129(3):461–470,
2001.

[5] C. S. ReVelle, H.A. Eiselt, and M .S. Daskin. A
bibliography for some fundamental problem cate-
gories in discrete location science. European Journal
of Operational Research, 184(3):817–848, 2008.

3

Algirdas Lančinskas, Pilar M. Ortigosa, Julius Žilinskas 9

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

A Scheduler for Cloud Bursting of
Map-Intensive Traffic Analysis Jobs

Ricardo Morla†, Pedro Gonçalves†, Jorge Barbosa‡
†INESC TEC and Faculty of Engineering, University of Porto
‡LIACC and Faculty of Engineering, University of Porto

Porto, Portugal
ricardo.morla@fe.up.pt

Abstract

Network traffic analysis is important for detecting intrusions and managing application traffic. Low cost, cluster-
based traffic analysis solutions have been proposed for bulk processing of large blocks of traffic captures, scaling
out the processing capability of a single network analysis node. Because of traffic intensity variations owing to
the natural burstiness of network traffic, a network analysis cluster may have to be severely over-dimensioned
to support 24/7 continuous packet block capture and processing. Bursting the analysis of some of the packet
blocks to the cloud may attenuate the need for over-dimensioning the local cluster. In fact, existing solutions
for network traffic analysis in the cloud are already providing the traditional benefits of cloud-based services to
network traffic analysts and opening the door to cloud-based Elastic MapReduce-style traffic analysis solutions. In
this paper we propose a scheduler of packet block network analysis jobs that chooses between sending the job to a
local cluster versus sending it to a network analysis service on the cloud. We focus on map-intensive jobs such
as string matching-based virus and malware detection. We present an architecture for an Hadoop-based network
analysis solution including our scheduler, report on using this approach in a small cluster, and show scheduling
performance results obtained through simulation. We achieve up to more than 50% reduction on the amount of
network traffic we need to burst out using our scheduler compared to simple traffic threshold scheduler and full
resource availability scheduler. Finally we discuss scaling out issues for our network analysis solution.

Keywords Packet Network Traffic Analysis, Hadoop, Cloud Bursting

I. Introduction

Many companies invest in their private IT data cen-
ters to meet most of their needs. However, these pri-
vate data centers might not cope with workload peaks,
leading to delays and lower throughput. Using ex-
tra computing power to handle the unpredictable and
infrequent peak data workloads is expensive and inef-
ficient, since a portion of the resources will be inactive
most of the time. Migrating the whole application to
a cloud infrastructure, though possibly cheaper than
investing in the private data center because servers are
only rented when needed, is still expensive and could
compromise private and important data. A hybrid

model offers the best solution to address the needs for
elasticity when peak workloads appear, while provid-
ing local privacy if needed. In this model, the local
IT data center of an enterprise is optimized to fulfill
the vast majority of its needs, resorting to additional
resources in the cloud when the local data center re-
sources become scarce [1]. This technique is called
Cloud Bursting and enables an enterprise to scale out
their local infrastructure by bursting their applications
to a third-party public cloud seamlessly, if the need
arises [2].

Cloud Bursting could be of use to network man-
agers and security experts. In fact, their need for
more computational power that can perform more

1

Ricardo Morla, Pedro Gonçalves,Jorge Barbosa 11

Book paper template • September 2014 • Vol. I, No. 1

complex network intrusion detection and application
traffic management is hand in hand with the variabil-
ity of network traffic and of traffic analysis workload.
Big data style analysis software and services using
the open source YARN and Hadoop platform1 are
available both in the research community [3, 4] and
commercially2. Although [3] in particular provides a
range of network analysis jobs from low level packet
and flow statistics to intrusion detection, their perfor-
mance evaluation focuses mainly on the throughput
of the analysis system with different file sizes. In par-
ticular, Map and Reduce run time distributions that
could be helpful for large scale evaluation have not
been characterized.

Three types of network traffic analysis are typical
[5]: 1) real-time analysis, where continuous streams
of data are analyzed and processed as they arrive; 2)
batched analysis, where data is aggregated in batches
and analyzed periodically; and 3) forensics analysis
are analysis that only occur when special events are
triggered, for example, when a major intrusion has
been detected and requires detailed analysis of logged
traffic. This work focuses on 24/7 continuous batch
analyses of consecutive captures of network packet
traffic and on the natural variability that characterizes
such traffic. Because intrusion detection results for
each batch must be delivered as soon as possible to
allow for early detection, traffic variability in a contin-
uous batch processing means either over-dimensioning
the computing cluster or waiting longer to get detec-
tion results. Our proposal is to use Cloud Bursting
to burst some jobs and achieve lower waiting times.
We present an integrated solution in section II that we
have implemented in our networking laboratory. An
important part of this solution is the scheduler that
decides whether to burst a job based on the size of
the file that needs to be analyzed and on the resource
usage in the cluster. We present our Map-intensive job,
job model, scheduler rationale, and cluster capacity
estimation in section III. In section IV we show results
of running our network analysis job in a small Hadoop
cluster. The goal here is to provide an example of
how the scheduler works and to obtain an empirical
distribution for the Map run time to be used in our

1http://hadoop.apache.org
2http://www.pravail.com

Figure 1: Our network topology with port mirroring, PCAP
traffic file capture, cluster for PCAP file processing, and our
control node (INTAS).

simulator in section V. In section V we describe the
simulator, provide a distribution for link load, and
characterize run times of single and continuously ar-
riving jobs. In section VI we show job delay and burst
count for our scheduler and compare it with baseline
schedulers. We conclude with scale out analysis in
section VII, related work analysis in section VIII, and
final remarks in section IX.

II. Cloud Bursting Architecture

Figure 1 shows the topology of our network. Out-
bound traffic from the 172.16.1.0/24 and 172.16.2.0/24
networks is captured via port mirroring and the tcp-
dump application in our Integrated Network Traffic
Analysis Solution (INTAS). INTAS will decide whether
to send each PCAP file created by tcpdump to our
local private cloud or to burst the file to a public cloud,
reachable through the Internet. In this paper we as-
sume the public cloud is provisioned such that an
adequate job performance is achieved.

Figure 2 shows the architecture and modules of our
solution. The Network Traffic Gatherer module uses
tcpdump to capture batches of network traffic from
a pre-specified network interface and generate PCAP
files. Once ready, the PCAP files are copied to a folder

2

12 A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs

Book paper template • September 2014 • Vol. I, No. 1

Figure 2: The architecture of INTAS.

where the PCAP File Processor module determines
whether or not the PCAP file is new before delivering
it to the Scheduler/Load Balancer. Using the clus-
ter resource utilization information provided by the
Resource Monitor, the Scheduler decides whether to
launch the job locally or to burst it. In either case, the
PCAP file is first uploaded to HDFS on the destination
cluster through the HDFS Uploader module. After the
upload is complete, the Job Launcher connects to the
Hadoop cluster to launch the map-intensive network
analysis job.

III. Scheduler

III.1 Map-Intensive Network Analysis
Jobs

Map-intensive network analysis jobs such as traffic clas-
sification and virus or malware detection using string
matching can have the following two-phase design.
The Map phase checks packet payload for the presence
of signature keys. This outputs a list of which applica-
tions or viruses were identified on which packets. The
reduce phase merges these results and writes them to
the job’s output file.

The Map phase of this kind of network analysis job

is computationally expensive. Simply put, all possible
string sequences in the packet’s transport layer payload
must be compared to the signature keys of the different
viruses, malware, or specific applications we want to
find. For a signature key with bkey bytes and a string
comparison factor kkey[second/byte], the total process-
ing time of a packet is tpacket = kkey (bpacket − bkey),
with bpacket ≥ bkey. For small keys and relatively large
packets, we can have a close approximation of tpacket
by using its upper bound k bpacket, where k is the sum
of all string comparison factors and which can also be
expressed as k = nkavg with n keys and kavg average
string comparison factor. This upper bound is propor-
tional to the size of the packet. We find an estimate of
k by benchmarking the target cluster as reported later
in the paper.

Under the Map-Reduce paradigm, each traffic cap-
ture file is split into a number of data blocks and each
block is processed by a Map process. Although the
exact number of packets in each block can change ac-
cording to the nature of the network traffic, the size in
bytes of almost all data blocks is pre-configured and
independent of the nature of the traffic. Our estimate
for the Map processing time of a block with bblock bytes
is tblock = k bblock. We assume the switching time be-
tween processing of packets is much smaller than the
actual processing.

The Reduce phase of this kind of network analysis
jobs is much less computationally demanding than the
Map phase. We assume the Reduce processing time to
be zero.

III.2 Job Completion Time Estimate

The number of map tasks that a network analysis
job launches depends on the size of the input traf-
fic capture file and on the Map-Reduce data block
size. A block size of 128 MB is typical, which for
a slightly under 900 MB traffic capture file size b f ile
would yield 7 data blocks on which 7 Map processes
would need to run. More generically, we compute
m = b f ile/bblock and estimate the number of Map pro-
cesses to be M = dme. We disable speculative execu-
tion to improve this estimate.

The container is the unit of resource allocation in
Hadoop YARN. Typically, two containers run per host.

3

Ricardo Morla, Pedro Gonçalves,Jorge Barbosa 13

Book paper template • September 2014 • Vol. I, No. 1

The mapping to containers sets the limit to the number
of Maps that a network analysis task can run simulta-
neously. One Map process runs on a container. Each
Map-Reduce job is managed by an ApplicationMaster
that requires an additional host throughout the com-
plete lifetime of the job. Although Reduces also require
containers, their impact on resource usage in this kind
of network analysis job is much smaller than that of
Maps and we do not consider them.

For a YARN cluster with H hosts, the number of
Maps that can run simultaneously is Ms = 2(H− 1)−
1. Comparing Ms and M takes us to the concept of Map
waves. Each wave of Ms Maps will run simultaneously
for approximately tblock, after which a new wave of Ms
(or fewer) Maps will start. This repeats until all M
Maps have run. We compute n = M/Ms and estimate
the number of waves as N = dne. Our estimate for
the job completion time is tMjob = (N − 1) ∗ tblock +
k(m− bmc)bblock if the last wave has a single Map task
(in which case M− NMs = 1), and tMjob = N ∗ tblock
otherwise, which is the more frequent case.

In addition to TMjob, the scheduler needs have an
estimate of the time it takes the system to upload the
captured traffic file from the capture node to HDFS.
We use a simple estimate Tupload = b f ile/r with r in
[bytes/second]. The total job completion time estimate
is Tjob = TMjob + Tupload.

At any moment in time after the job has been sched-
uled, the estimate for the job completion time Tremaining

job
can be updated as follows:

• TMjob + (b f ile − buploaded
f ile)/r , if the upload not fin-

ished yet. buploaded
f ile is the number of bytes that

have been uploaded so far.

• TMjob − Ndone tblock − twave , if the upload finished.
Ndone is the number of completed waves and twave
is how long the current wave has been running.

This estimate is valid for a single job running in the
cluster.

III.3 Scheduling Concurrent Jobs

An incoming traffic analysis job is scheduled regardless
of the size of the capture file when no job is running

on the cluster. When traffic peaks, it is possible that a
new chunk of traffic is captured and ready for analysis
before the traffic analysis job of the previous chunk is
over. In this case where a job is running in the local
cluster when a new job arrives, the scheduler will have
to decide whether to send the incoming job to the local
cluster or to the cloud.

Our baseline scheduler verifies if there are enough
containers for the job in the local cluster. If there
are, the job is ran locally; otherwise the job is sent to
the public cloud. We assume the connection to the
public cloud and the public cloud cluster itself are
provisioned such that an adequate response time is
achieved. We do not explore public cloud performance
in this paper.

The approach of the baseline scheduler is over sim-
plifying and can send more jobs to the public cloud
than needed: 1) the time it takes to upload the capture
file to the local HDFS can be enough for the current job
to complete and the incoming job to be processed lo-
cally; 2) the last wave of a job may use fewer resources
than the previous waves, which can be used by the in-
coming job. Our proposed scheduler takes advantage
of the job completion time estimate and wave model
presented in the previous section to try to reduce the
number of uploads to the public cloud and reducing
the impact on job completion time.

Our proposed scheduler schedules incoming candi-
date job locally if:

• S0. Local cluster is empty or enough containers
are available to run the incoming job.

• S1. Local cluster has single current job and current
job finishes before or up to Th1 seconds after in-
coming job upload time to local cluster HDFS. For
this we use Tremaining

job of the current job and Tupload

of the incoming candidate job. Th1 provides some
tolerance to the decision and can be chosen to be
a few percent of the wave duration.

• S2. Local cluster has single current job and: 1) the
next to the last wave of current job finishes before
or up to Th1 seconds after incoming job upload
time to local cluster HDFS and 2) the number of
containers of the last wave of the candidate incom-
ing job is smaller than or equal to the number of

4

14 A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs

Book paper template • September 2014 • Vol. I, No. 1

containers not used by last wave of the current
job.

III.4 Benchmarking and Estimating Capac-
ity

Our scheduler requires an estimate of the block execu-
tion time tblock and of the upload to HDFS rate r. Our
approach for estimating these values is to run the net-
work analysis job we are interested in benchmarking
on an sample data set prior to running the job on the
target traffic capture files. This provides samples for
measure Map completion time and file upload time,
which can be averaged or maxed and used as estimate
for tblock and r.

Estimating the capacity of a cluster for this kind
of network analysis is important for: 1) defining
the traffic throughput that a given cluster can sup-
port for analysis and 2) specifying how many and
what kind of nodes there should be in the cluster
for a given traffic throughput that needs to be ana-
lyzed. We estimate the maximum throughput of a
traffic capture that a cluster can support as Thput =
Ms ∗ bblock/tblock = (2(H − 1) − 1)/k. Using this es-
timate, a cluster with 10 nodes, 128 MB block size,
and tblock = 5min (k = 2.23 µs/byte) would support
approximately 60 Mbit/s traffic captures, which yields
a maximum 10 minute traffic capture file of 4.5 GB.

IV. String Matching Job in Small
Physical Clusters

We ran a Map-intensive string matching job with 200
signature keys on H=5 node low-end YARN clusters.
To more easily launch our Hadoop 2.3.0 cluster we use
a private cloud based on Openstack IceHouse3 and
the Sahara Openstack module4 that provisions data-
intensive application clusters like YARN. The bare-
metal operating system is Ubuntu 14.04. Each bare
metal runs a single virtual machine YARN node.

Due to time and lab resource constraints we ran the
two experiments of this section in different hardware.
The scheduling experiment was run on a heteroge-
neous cluster with the following bare-metals: Intel

3https://www.openstack.org/software/icehouse/
4http://docs.openstack.org/developer/sahara/

Core i7-3770 3.40GHz, two Intel Core i7 950 3.07GHz,
Intel E5504 2.00GHz. The map runtime experiment
was run on a homogeneous cluster in which the bare-
metal CPUs are older, 2008 Intel Core 2 Quad Q9300
running at 2.50GHz. CPU names are as reported by
/proc/cpuinfo.

We captured two PCAP files locally on a 100 Mbit/s
link for 10 minutes each. One file (A) is 1.22 GB and
the other (B) is 2.01 GB, corresponding to 17 Mbit/s
and 26 Mbit/s of traffic going out of our local network.
One file has 10 128 MB data blocks and the other 16.

IV.1 Scheduling

For our scheduling experiments we replayed the two
PCAP files A and B into our system every 10 min-
utes according to this sequence: "ABBBBA-ABABAA-
AAAAAA". File A has the cluster running slightly
below capacity whereas file B has the cluster running
above capacity. This means that during the first phase
"ABBBBA" the cluster will be running well above ca-
pacity, during the second phase "ABABAA" the cluster
will be just slightly over capacity, and during the third
phase "AAAAAA" the cluster will be running below
capacity.

Figures 3 and 4 show an example of processing the
first phase "ABBBBA". To produce analysis results as
soon as possible, the Maps for job 6A should start
immediately after the upload is completed, i.e. on
the right side of the small box near 6A. Notice that
without scheduler (figure 3, job id 54), the Maps have
to wait until the previous job completes – which is
a considerable amount of time. In figure 4 with the
scheduler and by bursting job 5B, job 6A can start
immediately after upload.

Figure 5 shows how the job sequence was burst or de-
layed using the three different scheduling approaches:
no scheduler, simple, and advanced. Because we want
to have an idea of the impact of the scheduler on each
job individually, we can compare the run time of a job
Tjob with the sum of the job’s Map run times divided
by the number Ms of Maps that can run simultane-
ously. We define this metric as D = Tjob/Tideal − 1
with Tideal = 1/Ms ∑i ti

block and where ti
block is the run

time of the ith Map of the job. The results confirm our
intuition that by bursting some jobs the job delay can

5

Ricardo Morla, Pedro Gonçalves,Jorge Barbosa 15

Book paper template • September 2014 • Vol. I, No. 1

Figure 3: Example of processing phase "ABBBBA" without
bursting. Horizontal lines are the placeholder for container
utilization through time. "X_Y" labeled boxes represent
Map run Y of job X. Smaller boxes with file sizes and e.g.
"1A" legend represent PCAP file upload to HDFS. Plot
lines on each pair of containers represent traffic in and out of
the network interface in the bare metal where the containers
run.

be reduced. The advanced scheduler only burst 3 jobs
while not causing distinguishable delays compared to
the simple scheduler that burst 5 jobs. Interestingly, the
results for job delay without scheduler suggest some
spillover from phase 1 to phase 2 that seems to make
job delay in phase 2 larger than in phase 1 when in
fact phase 1 is more demanding than phase 2. This
could also be due to the inherent randomness of this
system. This is one of the reasons why we now go to
simulation and better understand the performance of
the bursting approaches.

IV.2 Map run time distribution

Figure 6 shows the distribution of the run time and
throughput of 762 128MB-block Maps that were used
to analyze files A and B. We ran the analysis job on
file A 48 times and on file B 24 times. The Map run
time 50th percentile is 6 minutes and 3 seconds. We
can use this value to estimate the capacity of our clus-
ter as follows: k = 363s/128MB = 2.70µs/byte and
thus Thput = 20.7Mbit/s. With 10 minute captures
this yields a file size of 1.44 GB. We use this value in
our scheduler. A more conservative approach would
choose the 90th percentile and a resource utilization fac-

Figure 4: Example of processing phase "ABBBBA" with
bursting.

Figure 5: Job delay and bursting for different scheduling
options on the example sequence of network analysis jobs.

tor of 2/3 yielding k = 494s/128MB/ 2
3 = 5.52µs/byte

and Thput = 10.64Mbit/s.

V. Simulator

V.1 Design

We built an event-driven simulator in python to
simulate map-intensive traffic analysis jobs. The
simulator keeps a list of jobs to be scheduled
job_launch_schedule, including their randomly gen-
erated file sizes and the times at which they are be
launched in the cluster. This corresponds at the times
at which a PCAP file is ready to be processed in the
YARN cluster. For this paper it’s every 10 minutes.

6

16 A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs

Book paper template • September 2014 • Vol. I, No. 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

y
:

P
ro

p
o
rt

io
n
 o

f
M

a
p

s
sh

o
rt

e
r

th
a
n
 x

x: Map run time (s)

Map run time CDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

y
:

P
ro

p
o
rt

io
n
 o

f
M

a
p

s
w

it
h
 t

h
ro

u
g

h
p

u
t

sm
a
lle

r
th

a
n
 x

x: Map throughput (kB/s)

Map throughput CDF

Figure 6: Empirical CDFs of run time and throughput of
762 Maps of our network analysis job.

This list is populated before the simulation starts and
jobs are popped out and launched as the simulation
progresses. YARN can be configured to allow a max-
imum of simultaneously running applications in the
cluster. To account for this, a job that is popped out
of the job_launch_schedule list will go to a job_waiting
list. If the number of currently running applications is
below the maximum, the oldest job is removed from
the job_waiting list and included in the job_running
list. Jobs in the job_runnig list will compete for avail-
able cluster containers in round-robin. Only the job
at the top of the list will get a container to run a Map.
For every container a running job gets to run a Map
it will be pushed to the back of the list. Container re-
lease events are scheduled according to the randomly
generated Map run time distribution and processed by
the simulation together with job launch events. The
simulation finishes when there are no more events to
process or maximum simulation time is reached. Block
size is 128MB.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

y
:

P
ro

p
o
rt

io
n
 o

f
lo

a
d

 o
b

se
rv

a
ti

o
n
s

sm
a
lle

r
th

a
n
 x

x: Link load (%)

Link load CDF

Figure 7: 10 Gbps link load empirical CDF.

V.2 Workload Distributions

Synthetic workload generation requires two compo-
nents. The first is a distribution for the Map run time,
for which we use the Map run time empirical distribu-
tion obtained from our 5 node clusters and shown in
figure 6. The second is the PCAP file size distribution
that determines the number of data blocks and Map
tasks that the job needs to process. As this is directly
related to the amount of traffic through a packet net-
work, we build on publicly available data from the
CAIDA Center for Applied Internet Data Analysis in
San Diego, CA5. We use every month, hour-long av-
erage bitrate on both directions of their 10 Gbps San
Diego links to Chicago and San Jose to build a 247
point empirical link load distribution. We show the
CDF of this distribution in figure 7. Average link load
is 31%.

Figure 8 shows the Q-Q plots for our synthetic data
and the empirical distributions. Notice how close the
Q-Q points are to the y = x line. Because we have
fewer observations in the high link load region the
points there are not as close to the y = x line as the
other points.

Simulation results in the rest of the paper are ob-
tained by running 104 jobs for each link capacity. In
continuously arriving jobs including when the sched-
ulers are used we run each set of 104 jobs 20 times to
get final results.

5 The CAIDA UCSD http://www.caida.org/data/passive/trace_stats/

7

Ricardo Morla, Pedro Gonçalves,Jorge Barbosa 17

Book paper template • September 2014 • Vol. I, No. 1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500

y
:

M
a
p
 t

h
ro

u
g
h
p
u
t

(k
B

/s
)

sy
n
th

e
ti

c
d
a
ta

x: Map throughput (kB/s) real data

Map throughput Q-Q

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

y
:

Li
n
k

lo
a
d
 (

%
)

sy
n
th

e
ti

c
d
a
ta

x: Link load (%) real data

Link load Q-Q

Figure 8: Q-Q plots comparing 10k synthetic data points
and the empirical distributions of Map throughput and link
load from figures 6 and 7.

V.3 Single Job

Understanding the performance of a cluster under a
single job workload helps validate the simulator and
can provide insights into the performance analysis of
our scheduler under a continuous workload. Figure
9 shows the run time CDF of a single job for a fixed
link bitrate that we vary from 1 Mbps to 40 Mbps on
our H=5 simulated cluster. The bitrate grows from left
CDF to right CDF. We can notice groups of CDFs that
correspond to waves in our job model. The first group
goes up to 12.53 Mbit/s which yields a 7 128MB block
PCAP file requiring exactly the number of Maps (7)
that can run simultaneously in a wave. We call this the
wave boundary bit rate. With a slight increase to 15
Mbit/s, file size of 1073 MB, and 9 Maps (8 128 blocks
and 1 48 MB block), there is a significant increase in the
50th percentile run time from 495 s at 12.53 Mbit/s to
698 s at 15 Mbit/s, as this file size requires two waves of
Maps. As the link traffic increases to include multiple
waves this difference seems to decrease. Unless stated
otherwise, link throughput values and their linestyle
mapping in figure 9 are used throughout the paper.

As discussed in section V.2, link throughput is not
constant and this has an impact on job runtime and
resource usage CDFs. Figure 10 shows run time for
links with capacity equal to the fixed bitrate values
used in the previous section. Run times are generally
smaller than those in figure 9 as the random workload
distribution is applied to the link capacity and on aver-
age results in smaller bitrates and smaller PCAP files
to process. Notice that the wave phenomenon is no

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

P
ro

p
o
rt

io
n
 o

f
Jo

b
s

sh
o
rt

e
r

th
a
n
 x

x: Job run time (s)

Job run time CDF

Figure 9: CDFs of the run time of fixed workload jobs on
an Ms = 7 cluster. From left to right the link throughput
values in Mbit/s are: (1, 2, 5, 7, 10, 12, 12.53), (15, 17,
20, 22, 24.5, 25.05), (27, 30, 32, 35, 37, 37.58), (40, 42,
45, 47, 50, 100). The 100 Mbit/s line is out of range. The
CDFs for each link throughput form groups according to the
number of waves that our model indicates (1:long dash, 2:
solid, 3:short dash, 4:long-short dash). Line width in each
group increases with link throughput.

longer obvious to observe except for the first two link
capacity values.

V.4 Continuously Arriving Jobs

We now consider the case that we are most interested
in: PCAP files freshly captured and uploaded to be
processed by our network analysis job every 10 min-
utes. Bit rate and Map processing time distributions
will make some jobs last more than 10 minutes, in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

P
ro

p
o
rt

io
n
 o

f
Jo

b
s

sh
o
rt

e
r

th
a
n
 x

x: Job run time (s)

Job run time CDF

Figure 10: CDFs of the run time of random workload jobs
on an Ms = 7 cluster following our random workload
distribution.

8

18 A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs

Book paper template • September 2014 • Vol. I, No. 1

which case the next job will start later. Because we are
interested in obtaining the results of the analysis as
soon as possible after PCAP file capture and upload to
the cluster, we include this delay in the job run time.
Job run time results for this case are shown in figure
11 and the Q-Q plot comparison with the single job
case is shown in figure 12. The effect of the current job
delaying the next is not noticeable in the lower capacity
links. Above 27 Mbit/s the Q-Q plots get noticeably
away from the y = x line, especially for job run times
higher than 400 s. This means that with these link
capacities a significant number of jobs will be starting
to experience delay because the previous job did not
finish on time. For the 100 Mbit/s link the job run time
will eventually increase monotonically with each in-
coming job at which point the cluster is unable to keep
up. For the range of link capacities that we are study-
ing in our Ms = 7 cluster, our bursting approach and
scheduler will likely only be useful above 27 and below
100 Mbit/s where congestion exists but is moderate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

P
ro

p
o
rt

io
n
 o

f
Jo

b
s

sh
o
rt

e
r

th
a
n
 x

x: Job run time (s)

Job run time CDF

Figure 11: CDFs of the run time of random workload jobs
on an Ms = 7 cluster following our random workload
distribution but now with continuously arriving jobs. The
100 Mbit/s line is out of range.

VI. Scheduler Performance Results

In this section we compare four approaches: no sched-
uler, a simple scheduler using S0 from section III.3,
our proposed advanced scheduler using S0, S1, and S2,
and a traffic threshold-based scheduler that bursts all
jobs with more than 50% link load. We compare these
approaches on two aspects for each link bandwidth: 1)
Q-Q job run time distributions with respect to singe

Continuously arriving vs. single Job run time Q-Q

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

S
in

g
le

 j
o
b

 r
u
n
 t

im
e
 (

s)

x: Continuously arriving job run time (s)

1.0 through 12.5 Mbit/s

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

S
in

g
le

 j
o
b

 r
u
n
 t

im
e
 (

s)

x: Continuously arriving job run time (s)

15.0 through 25.0 Mbit/s

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

S
in

g
le

 j
o
b

 r
u
n
 t

im
e
 (

s)

x: Continuously arriving job run time (s)

27.0 through 37.5 Mbit/s

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800

y
:

S
in

g
le

 j
o
b

 r
u
n
 t

im
e
 (

s)

x: Continuously arriving job run time (s)

40.0 through 100.0 Mbit/s

Figure 12: Q-Q plot comparing the job run time distribu-
tions of each link capacity with a single job (y) and continu-
ously arriving jobs (x).

job as in figure 12 and 2) proportion of traffic that is
burst. We include the run time of burst traffic in our
Q-Q analysis by considering that it will be processed
as a single job on the cloud. Noting that the Q-Q plots
for the simple, advanced, and threshold approaches
are visually similar to each other and to that of the
approach without scheduler shown in figure 12, we
use the following metric T to quantify their differences.
Consider y and x as the Q-Q run time values for the
run time distribution of single jobs (y) and the run
time distribution for a given scheduler approach (x).
We define t = y/x− 1, that is negative for each point
where the run time value of the scheduler approach is
larger than that of the single job. The scheduler perfor-
mance metric we define is T = 1/n ∑ t for an n point
Q-Q plot. Figure 13 shows metric T and the propor-
tion of burst traffic for our set of link capacities. The
four approaches have similar run times just slightly
worse than single job up to 25 Mbit/s link capacity.
From that value the run time T metric of the approach
without scheduler degrades progressively whereas the

9

Ricardo Morla, Pedro Gonçalves,Jorge Barbosa 19

Book paper template • September 2014 • Vol. I, No. 1

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

T
 m

e
tr

ic
 v

a
lu

e

P
ro

p
o
rt

io
n
 o

f
tr

a
ffi

c
b

u
rs

t

Bit rate (Mbit/s)

Scheduler run time comparison

None
Simple

Advanced
Threshold

Figure 13: T metric and proportion of traffic burst for differ-
ent scheduler approaches. T metric values are closer to the
top of the graph, traffic burst values closer to the bottom.

other three approaches are reasonably similar and not
much worse than lower link capacities or single job.
Looking at burst traffic, the simple approach bursts
almost twice as much traffic as the advanced approach.
The approach with less burst traffic is the advanced
scheduler up to 45 Mbit/s. At 35 Mbit/s the advanced
scheduler bursts 56% less traffic than the other two
schedulers. Thus for the range of values where burst-
ing could be useful, i.e. from 27 Mbit/s and below 100
Mbit/s, the advanced scheduler yields both the small-
est amount of burst traffic and single-job comparable
run times.

VII. Scaling Out

12 Mbit/s and the other bit rate values used in figure 9
are not link capacities that can be found in typical net-
work links. Four typical link capacities are 10 Mbit/s,
100 Mbit/s, 1Gbit/s, and 10Gbit/s. The conservative
capacity estimation approach in section IV.2 puts our
Ms = 7 cluster at approximately 11 Mbit/s, which is
not enough for the four typical link capacities. With
that in mind, in figure 14 we show job run time for the
four typical link capacities on clusters of 3 different
sizes: our Ms = 7 initial cluster and Ms = 70 and
Ms = 700 clusters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500

y
:

P
ro

p
o
rt

io
n
 o

f
Jo

b
s

sh
o
rt

e
r

th
a
n
 x

x: Job run time (s)

Job run time CDF

Figure 14: CDFs of the run time of random workload jobs
for typical link bitrates on clusters of different sizes. Long
dash: 10 Mbit/s and 100 Mbit/s on an Ms=7 cluster. Solid
line: 10 Mbit/s, 100 Mbit/s, and 1 Gbit/s on an Ms = 70
cluster. Short dash: 10 Mbit/s, 100 Mbit/s, 1 Gbit/s, and 10
Gbit/s on an Ms = 700 cluster.

VIII. Related Work

In the introduction we provided arguments for the
relevance of our approach in the context of the analysis
of network traffic. In summary, cloud bursting of
batched Map-intensive network analysis jobs and the
scheduling of such bursts has not been proposed before
in the traffic analysis literature. In this section we
take a look at different general-purpose cloud bursting
approaches and argue that they are not adequate to
our batched Map-intensive network analysis jobs.

Existing open-source virtualized data center man-
agement tools such as OpenStack and OpenNebula
already support cloud bursting. Their initial focus was
to provide an abstraction layer for the low level de-
tails of transitioning VMs (Virtual Machines) between
data centers [1]. Throughout recent years, continuous
improvements have been made to the amount of pro-
vided features and configurable parameters to better
suit the users’ needs. Today, many available solutions
including Seagull [1] and the OPTIMIS Project [2] of-
fer scheduling policies that determine if and when
to burst to the cloud. However, these solutions are
typically geared towards web applications and do not
adequately support applications that need to process
large amounts of data.

As the world embraces the ever-growing paradigm

10

20 A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs

Book paper template • September 2014 • Vol. I, No. 1

of Big Data, Cloud Bursting can also be used in the con-
text where cloud resources are used to store additional
data if local resources become scarce. In fact, the use
of Cloud Bursting for data-intensive computing has
not only been proved feasible but scalable as well. [6]
presents a middleware that supports a custom MapRe-
duce type API and enables data-intensive computing
with Cloud Bursting in a scenario where the data is
split across a local private data center and a public
cloud data center. Data is processed using computing
power from both the local and public cloud data cen-
ters. Furthermore, data on one end can be processed
with computing power from the other end, albeit low-
ering the overall job execution time. BStream [7] is
a Cloud Bursting implementation that uses Hadoop
YARN with MapReduce in the local data center and
the Storm stream processing engine in the cloud to
process MapReduce jobs instead of using YARN. The
use of Storm allows the output of Maps to be streamed
to Reduces in the cloud. Both [6] and [7] are better
suited for forensic jobs for which a large data set must
be analyzed and outputs from local Maps need to be
processed on the cloud, than for batched analysis of
smaller yet still computationally demanding data sets.
In our case jobs can fit both in the local data center
or the public cloud and the challenge is to process
continuously arriving jobs.

IX. Conclusion

We have set out to explore cloud bursting for Map-
intensive network traffic analysis jobs. Using our pro-
posed architecture for collecting, cloud bursting, and
processing traffic on Hadoop clusters, we character-
ized the run times of Maps on our physical clusters
and used it to drive a simulation assessment of our
job model and cloud bursting scheduler. Our sched-
uler bursts out up to more than 50% less traffic than
other schedulers we compared. We plan to extend
the traffic analysis modeling to other types of network
traffic analyses and on platforms such as Spark using
GPUs and to understand heterogeneity and energy
consumption issues of scaling out the traffic analysis.

References

[1] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu.
Cost-Aware Cloud Bursting for Enterprise Applications,
ACM Transactions on Internet Technology, 13(3):1-
24, 2014.

[2] S. K. Nair, et al. Towards Secure Cloud Bursting, Bro-
kerage and Aggregation. Proceedings of the 8th IEEE
European Conference on Web Services, ECOWS
2010, pages 189-196, 2010.

[3] Y. Lee and Y Lee. Toward scalable internet traffic
measurement and analysis with Hadoop, ACM SIG-
COMM Computer Communication Review, 43(1):5-
13, 2012.

[4] RIPE. Large-scale PCAP Data Analysis Using
Apache Hadoop, https://github.com/RIPE-NCC/
hadoop-pcap, 2012.

[5] A. Pallavi and P. Hemlata. Network Traffic Analysis
Using Packet Sniffer, International Journal of Engi-
neering Research and Applications, 2(3):854-856,
2012.

[6] T. Bicer, D. Chiu, and G. Agrawal. A Framework for
Data-Intensive Computing with Cloud Bursting. 2011
IEEE International Conference on Cluster Comput-
ing, pages 169âĂŞ177, September 2011.

[7] S. Kailasam, P. Dhawalia, S. J. Balaji, G. Iyer, and J.
Dharanipragada. Extending MapReduce across Clouds
with BStream. IEEE Transactions on Cloud Comput-
ing, 2(3):362-376, July 2014.

11

Ricardo Morla, Pedro Gonçalves,Jorge Barbosa 21

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS workshop • September 2015 • Vol. I, No. 1

Distributed Parallel Computing for Visual
Cryptography Algorithms

Raimondas Čiegis†, Vadimas Starikovičius†, Natalija Tumanova†,
Minvydas Ragulskis∗, Rita Palivonaitė∗

† Vilnius Gediminas Technical University, Lithuania, ∗ Kaunas Technological University, Lithuania
rc@vgtu.lt

Abstract

The recent activities to construct exascale and ultrascale distributed computational systems are opening a possibil-
ity to apply parallel and distributed computing techniques for applied problems which previously were considered
as not solvable with the standard computational resources. In this paper we consider one global optimization
problem where a set of feasible solutions is discrete and very large. There is no possibility to apply some apriori
estimation techniques to exclude an essential part of these elements from the computational analysis, e.g. applying
branch and bound type methods. Thus a full search is required in order to solve such global optimization problems.
The considered problem describes visual cryptography algorithms. The main goal is to find optimal perfect grat-
ings, which can guarantee high quality and security of the visual cryptography method. The full search parallel
algorithm is based on master-slave paradigm. We present a library of C++ templates that allow the developer to
implement parallel master-slave algorithms for his application without any parallel programming and knowledge
of parallel programming API. These templates automatically give parallel solvers tailored for clusters of comput-
ers using MPI API and distributed computing applications using BOINC API. Results of some computational
experiments are presented.

Keywords Visual Cryptography, Parallel Algorithm, BOINC, Parallel Templates

I. Introduction

The recent activities to construct exascale and ultra-
scale distributed computational systems are opening
a possibility to apply parallel and distributed com-
puting techniques for applied problems which previ-
ously were considered as not solvable with standard
computational resources. In this paper we consider a
global optimization problem, where a set of feasible
solutions is discrete and very large. There is no pos-
sibility to apply some apriori estimation techniques
to exclude an essential part of these elements from
the computational analysis, e.g. applying branch and
bound type methods [1]. Thus a full search is required
in order to solve such global optimization problems.

The given problem describes visual cryptography
algorithms [2]. The main goal of this paper is to

find optimal perfect gratings, which can guarantee
high quality and security of the visual cryptography
method. The full search parallel algorithm is based
on master-slave paradigm [3]. We present a library
of C++ templates that allow the developer to imple-
ment parallel master-slave algorithms for his applica-
tion without any parallel programming and knowl-
edge of parallel programming API. These templates
automatically give parallel solvers tailored for clusters
of computers using MPI API and distributed comput-
ing applications using BOINC API [4]. For application
of such MPI templates see [5].

The rest of this paper is organized as follows. In
Section II, the discrete global optimization problem
is formulated. The optimality criterion for finding
the optimal perfect grating function is defined and
the set of feasible solutions is described. The paral-

1

Raimondas Ciegis 23

Second NESUS workshop • September 2014 • Vol. I, No. 1

lel master-slave type algorithm is presented in Sec-
tion III. Here we also describe a genetic evolutionary
algorithm. Heuristics as an alternative for full search
algorithms are recommended for such type of deter-
ministic global optimization problems. Our aim is
to investigate the efficiency of such algorithms in the
case when the set of feasible solutions is described
by quite complicated non-local requirements. In Sec-
tion IV, templates for master-slave type algorithms are
described. They allow developers to implement paral-
lel master-slave algorithms for their applications with-
out any parallel programming on clusters of comput-
ers using MPI and distributed computing systems us-
ing BOINC technology. Results of computational ex-
periments are given in Section V. They illustrate the
theoretical scalability results. Some final conclusions
are presented in Section VI.

II. Problem Formulation

Here we define the most important details on ad-
vanced dynamic visual cryptography algorithms. The
image hiding method is based on time-averaging
moire gratings [6]. The method generates only one
picture, which is used as a plaintext. The secret image
can be seen by the human visual system only when
the original encoded image is oscillated in a prede-
fined direction at a strictly defined amplitude.

Function F(x) defines a greyscale grating if the fol-
lowing requirements are satisfied

(i) The grating is a periodic function F(x + λ) =
F(x), here λ is the pitch of grating, and 0 ≤
F(x) ≤ 1;

(ii) m-pixels n-level greyscale function Fmn(x) is de-
fined as:

Fmn(x) =
yk
n

,
(k−1)λ

m
≤ x ≤ kλ

m
, k = 1, . . . , m,

where k = 1, . . . , m, 0 ≤ yk ≤ n.

We will consider a subset P of perfect greyscale
step functions, they satisfy the following additional
requirements:

(1) The grating spans through the whole greyscale in-
terval

min yk = 0, max yk = n.

(2) The average greyscale level in a pitch of the grat-
ing equals

γ :=
1
m

m

∑
k=1

yk =
n
2

.

(3) The "norm" of the greyscale grating function must
be at least equal to the half of the norm of the
harmonic grating

‖F‖ ≥ ‖F̃‖ =
1

2π
, ‖F‖ :=

1
λ

∫ λ

0

∣∣∣∣F(x)− 1
2

∣∣∣∣ dx.

(4) The pitch of the grating λ must be strongly identi-
fiable, the main peak of the discrete Fourier ampli-
tude must be at least two times larger compared
to all other Fourier modes

√
a2

1 + b2
1 ≥ 2

√
a2

j + b2
j , j = 2, 3, . . . , m − 1,

where the function F is expanded into the Fourier
truncated series

F(x) =
a0

2
+

m−1

∑
j=1

(
aj cos

2πkx
λ

+ bj sin
2πkx

λ

)
.

Now we formulate the optimality criterion for find-
ing the optimal perfect grating function

δ(F0
mn) = max

Fmn∈P
min
s∈S1

(
σ
(

Hs(Fmn, ξ̃s)
))

, (1)

where the standard deviation of a grayscale step grat-
ing function oscillated harmonically is given by (s is
the oscillation amplitude):

σ
(

Hs(Fmn, ξ̃s)
)
=

√
2

2

√√√√
m−1

∑
j=1

(a2
j + b2

j)J2
0 (2π js/λ),

where J0 is the Bessel function of the first type.

III. Parallel Algorithm

The determination of the optimal perfect grating (1)
requires to test a full set D of gratings in two steps. For
each given grating the following algorithm is applied:

1. First, the testing of grating is done to check if all
conditions of perfect gratings are satisfied.

2

24 Distributed Parallel Computing for Visual Cryptography Algorithms

Second NESUS workshop • September 2014 • Vol. I, No. 1

2. Second, for a perfect grating the value of the stan-
dard deviation of the grating function is com-
puted and the optimal value is updated.

This algorithm is fully parallel and it can be imple-
mented by using the master and slaves paradigm [5].
Thus it is well suited for application of distributed
computing technologies, including BOINC technol-
ogy.

The complexity of the full search algorithm is of or-
der

W = O(m2nm).

Here the factor m2 arises due to application of simple
Fourier summing algorithm instead of FFT algorithm.
For small values of m this approach is more robust
and flexible.

For industrial applications gratings with 12 ≤ m ≤
25 and 15 ≤ n ≤ 127 are considered. In order to
reduce the size of set D two specific modifications are
applied.

1. Due to the first condition of the perfect gratings
we can fix ym = 0.

2. The periodicity condition and the mirror transfor-
mation are applied to exclude the gratings, which
were tested in earlier stages of the full search al-
gorithm.

We note, that such modifications still not change the
asymptotic of the complexity of the full search algo-
rithm.

The presented parallel full search algorithm re-
quires very big computational resources. As an alter-
native heuristic methods can be considered. A natural
selection is to use genetic evolutionary algorithms. We
have applied a modification of the standard genetic
method [7].

• Every chromosome represents one period of a
grayscale function Fmn(x). The initial popula-
tion comprises of N randomly generated chromo-
somes (perfect gratings) with values of genes uni-
formly distributed over the interval [0, n − 1]. We
note, that only perfect gratings are included into
the population.

• The crossover between two chromosomes is done
by using the random roullete method. The chance
that the chromosome will be selected to the mat-
ing is proportional to its fitness value. The main
difficulty of this step is that after crossover be-
tween two perfect gratings in most cases we ob-
tain non-perfect new grating. Thus this step is
continued while the specified number M of new
chromosomes are obtained. It is allowed to in-
clude into the new population more than one
copy of the same chromosome.

• A mutation procedure is used with a slight modi-
fication that if the value of one gene is reduced by
δk, then the value of the other randomly selected
gene is increased by the same amount. Again,
only perfect new chromosomes are included into
the updated population.

In computational experiments we have tested the
quality of solutions obtained by using this heuristic
based on the genetic evolutionary algorithm.

IV. MPI and BOINC Templates

We obtain a parallel solver for the considered prob-
lem using our C++ templates for distributed comput-
ing applications. These templates were designed for
easy and quick development of parallel applications
based on master-slave parallelization paradigm [3]. In
master-slave parallel algorithm, master process reads
the problem input, generates and distributes jobs to
the slave processes. Slave processes receive jobs from
the master, solve them and return back the obtained
results. Finally, master process receives the results
from the slaves and generates a new set of jobs if nec-
essary.

Our C++ templates allow the developer to imple-
ment the parallel master-slave algorithm for his appli-
cation without any parallel programming and knowl-
edge of parallel programing API. The developer needs
only to implement the application-specific parts of the
code for the reading of the problem input, consec-
utive generation of single jobs, solving of the single
job, processing or merging of obtained results. These
application-specific tasks need to be implemented and
placed in appropriate virtual functions of our C++

3

Raimondas Ciegis 25

Second NESUS workshop • September 2014 • Vol. I, No. 1

templates. The workflow of the whole master-slave al-
gorithm (including communication between the mas-
ter and slave processes) is provided by the basic
classes of our C++ templates.

Let us now formulate the special features of our C++
templates for distributed computing applications:

• The templates are built as a hierarchy of C++
classes. Basic classes implement the basic func-
tionality of master-slave algorithm and specify
the pure virtual functions, which need to be im-
plemented in descendant classes to obtain appli-
cation-specific parallel solvers.

• Input parameters and results of the job are ex-
changed between the master and slave using in-
put and output files.

• Design of the templates allows to build a parallel
application using MPI API [8] or distributed com-
puting application using BOINC API [4] apply-
ing the same C/C++ code with implementation
of application-specific tasks.

The usage of technology based on input and out-
put files is not as efficient as a direct message passing
between processes. However, the performance over-
head is negligible for the coarse grained jobs. This
is it the case for our problem. In turn, such an ap-
proach significantly simplifies the template and allows
the communication of input and output data between
the master and slaves without application-specific par-
allel programming.

Such an approach also allows the implementation
of distributed computing applications. Currently, our
programing tool allows easy and quick development
of distributed application for volunteer computing
project based on the Berkeley Open Infrastructure for
Network Computing (BOINC) [4], which is the most
popular middleware for volunteer computing. Using
our C++ templates, application for BOINC project can
be developed without any knowledge of BOINC API.
Moreover, MPI version of application solver is very
useful in testing and debugging implementations of
application-specific tasks.

Application-specific tasks are separated and imple-
mented in different classes:

• WorkGenerator class. It reads the problem input in
the constructor, generates and writes to the file in-
put for the next job by calling application-specific
function GenerateInputForNewJob(FILE *jobInput-
File), which must be provided by the application
developer.

• ClientApplication class. It reads the input file,
solves the job, and writes the results to output file
by calling application-specific function SolveSin-
gleJob(const char* inputFileName, const char* out-
putFileName), which must be provided by the ap-
plication developer.

• ResultsAssimilator class. It is processing results of
the single job and merging them with previous
results by calling application-specific function As-
similateResults(FILE *jobResultsFile), which must
be provided by the application developer.

For our problem we don’t need it, but for BOINC
project application, developer needs also to provide a
separate class for validation of the obtained results.

V. Computational Experiments

Parallel numerical tests were performed on the com-
puter cluster “Vilkas” at the Laboratory of Parallel
Computing of Vilnius Gediminas technical university.
We have used up to eight nodes with Intel R© CoreTM

i7-860 processors with 4 cores (2.80 GHz) and 4 GB
of RAM per node. computational nodes are intercon-
nected via Gigabit Smart Switch.

V.1 Parallel search algorithm

First, we have solved a small benchmark problem in
order to show a very good scalability of such type
of parallel algorithms. They can be implemented ef-
ficiently on very large distributed heterogeneous sys-
tems, including BOINC technology.

We have solved the optimization problem for m =
10, n = 10. In table 1, we present the total wall
time Ts,p×c in seconds, when parallel computations
are done on a cluster with p nodes and c cores per
node, and s slaves have solved computational tasks.

4

26 Distributed Parallel Computing for Visual Cryptography Algorithms

Second NESUS workshop • September 2014 • Vol. I, No. 1

The master is responsible for generation and distribu-
tion of job set and accumulation of results from slaves,
a separate core is used to run this part of the paral-
lel algorithm. Also, we present the values of parallel
algorithmic speed-up

Ss =
Ts,p×c

s
.

1, 2x1 2, 3x1 3, 4x1 7, 2x4 11, 3x4
Ts,p×c 478.0 242.2 160.2 78.2 50.1
Ss 1 1.97 2.98 6.11 9.54

Table 1: The total wall time Ts,p×c and speed-up Ss values
for solving the grading optimization problem with m = 10,
n = 10.

The degradation of the efficiency of the parallel al-
gorithm for s = 7 and s = 11 slaves is explained by
the well-known fact, that in the case of more cores
per node the shared-memory structure becomes a bot-
tleneck when too many cores try to access the global
memory of a node simultaneously [9]. This conclusion
is confirmed also by results of more computational ex-
periments with different configurations of nodes and
clusters:

T2,1×3 = 275.5, T3,2×2 = 166.6, T3,1×4 = 183.0.

The presented estimate of the complexity of the par-
allel search algorithm gives quite accurate estimate
from above for the total computation time. For ex-
ample, using results of previous computational exper-
iments we get prediction that a problem with m = 11,
n = 12 on 4 × 4 cluster will be solved in T = 1195
seconds. The result of computational experiments
is T15,4×4 = 939 seconds. Again, we can note that
the scalability of the parallel search algorithm is very
good, the same problem is solved on 5 × 4 cluster in
T15,4×4 = 746 seconds, this CPU time is very close to
the prediction from the scalability analysis.

V.2 Genetic search algorithm

The full search algorithm requires very big computa-
tional resources and leads to a big challenge even for

ultrascale distributed computational systems. Thus al-
ternatives based on heuristic global optimization algo-
rithms also should be investigated. Next we present
results of computational experiments for the heuristic
search algorithm which is based on genetic evolution-
ary algorithm.

In table 2, we present the standard deviation values
for optimal gratings and gratings computed by using
the genetic algorithm.

m n δoptim δgenetic
8 13 0.06178 0.06178
9 13 0.06310 0.06267
10 13 0.05984 0.05717
11 13 0.06162 0.05808

Table 2: The standard deviation values for optimal gratings
and gratings computed by using the genetic algorithm.

The presented results of computational experiments
show that the classical genetic algorithm is not effi-
cient for this type of problems. Such a behaviour of
the given heuristic is connected to the fact that for per-
fect gratings the mutation of two high-quality gratings
mostly will not produce a new perfect grating. But
exactly this step is most important for obtaining ef-
ficient genetic algorithms for solving discrete global
optimization problems.

VI. Conclusions

In this paper we have described a library of templates
for implementation of parallel master-slave type algo-
rithms. These C++ templates allow to build a paral-
lel solver automatically from the sequential version
of the algorithm. The parallel solvers for clusters us-
ing MPI API or distributed computing applications us-
ing BOINC API are generated using the same C/C++
code. Only application-specific tasks must be pro-
vided by users. These templates are used to generate
a parallel solver for applied problem of visual cryptog-
raphy. The provided results of computational experi-
ments have confirmed theoretical scalability estimates
of the parallel algorithm.

The complexity of the given discrete global op-

5

Raimondas Ciegis 27

Second NESUS workshop • September 2014 • Vol. I, No. 1

timization is very big even for modern distributed
computational systems. Thus as an alternative some
heuristics can be considered. Results of application
of classical genetic heuristic algorithms are showing
that such standard algorithms are not efficient for this
type of problems. In the future paper we will in-
vestigate hybrid genetic algorithm. In these memetic
algorithms the approximations obtained by genetic
method are also subject to local improvement phases.
For such local optimization the modifications of the
full-search algorithm described above can be used.

Acknowledgment

The work presented in this paper has been partially
supported by EU under the COST programme Action
IC1305, ’Network for Sustainable Ultrascale Comput-
ing (NESUS)’.

References

[1] R. Horst, P.M. Pardalos and N.V. Thoai, Introduc-
tion to Global Optimization, Second Edition. Kluwer
Academic Publishers, 2000.

[2] P.S. Revenkar, A. Anjum and W.Z. Gandhare. "Sur-
vey of visual cryptography schemes," Intern. Jour-
nal of Security and Its Applications, vol. 4, no. 2, pp.
56-70, 2010.

[3] V. Kumar, A. Grama, A. Gupta and G. Karypis,
Introduction to Parallel Computing: Design and Anal-
ysis of Algorithms. Benjamin/Cummings, Redwood
City, 1994.

[4] D. P. Anderson, “Boinc: a system for public re-
source computing and storage,” in Proceedings of
the 5th IEEE/ACM International Workshop on Grid
Computing, 2004, pp. 1-7.

[5] M. Baravykaitė and R. Čiegis, “An implementa-
tion of a parallel generalized branch and bound
template”, Mathematical Modelling and Analysis, vol.
12, no. 3, pp. 277–289, 2007.

[6] M. Ragulskis and A. Aleksa, “Image hiding based
on time-averaging moire”, Optics Communications,
vol. 282, no. 14, 2752-2759, 2009.

[7] D. Goldberg, The Design of Innovation: Lessons from
and for Competent Genetic Algorithms. Norwell, MA:
Kluwer Academic Publishers, 2002.

[8] Message Passing Interface Forum, “MPI: A Mes-
sage Passing Interface Standard,” www.mpi-fo-
rum.org, Version 1.1, 1995.

[9] N. Tumanova and R. Čiegis, “Parallel algorithms
for parabolic problems on graphs”, in High-Perfor-
mance Computing on Complex Environments, Chap-
ter 4, pp. 51-71, John Wiley & Sons, Inc, 2014.

6

28 Distributed Parallel Computing for Visual Cryptography Algorithms

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS workshop • September 2015 • Vol. I, No. 1

On Autonomic HPC Clouds
Dana Petcu

Institute e-Austria Timişoara and West University of Timişoara, Romania
petcu@info.uvt.ro

Abstract

The long tail of science using HPC facilities is looking nowadays to instant available HPC Clouds as a viable
alternative to the long waiting queues of supercomputing centers. While the name of HPC Cloud is suggesting a
Cloud service, the current HPC-as-a-Service is mainly an offer of bar metal, better named cluster-on-demand. The
elasticity and virtualization benefits of the Clouds are not exploited by HPC-as-a-Service. In this paper we discuss
how the HPC Cloud offer can be improved from a particular point of view, of automation. After a reminder
of the characteristics of the Autonomic Cloud, we project the requirements and expectations to what we name
Autonomic HPC Clouds. Finally, we point towards the expected results of the latest research and development
activities related to the topics that were identified.

Keywords HPC Clouds, Autonomic Computing

I. Introduction

The main characteristics of Cloud computing that
have make it a market success for distributed appli-
cations are the elasticity in resource usage and on-
demand self-service. However, the availability of a
large number of computing resources has attract also
various parallel computing applications that are ready
to can make a compromise in performance in favor of
scalability opportunities and instant availability of re-
sources. While the supercomputing center have long
queues that are serving resource-greedy batch parallel
applications already tuned to match the architecture
of the supercomputer, the HPC resources offered as
Cloud services are nowadays seen as alternative for
just-in-time parallel applications, real-time or interac-
tive parallel applications, or even to support special
environmental settings that are hard to be set in a
supercomputing center through the interaction with
admins. However, most of the current parallel ap-
plications are expected to run in the Cloud environ-
ment in the same manner as they are running on
supercomputers (especially for production phases of
an application), despite the multiple warnings from
the literature about the lost of performance relative
to the case of a supercomputing usage. In such con-

text, the Cloud environment is expected to behave as
a Grid environment, with the main difference that
the user has more control on the software stack that
is supporting the application execution (a thin differ-
ence as the Grid environments are allowing to sim-
ulate Cloud environments on top of Grid services).
While such perspective is useful for the users who
do not have access to the Grid environments that are
mainly targeting academic users, the Cloud comput-
ing paradigm can offer more to HPC applications than
the grid-like perspective.

Despite the fact that even the Cloud computing
community has not taken up yet the full benefit
of the rich results that have been obtained in the
field of autonomic computing, we discuss in this pa-
per a particular approach, on autonomic computing
in HPC Clouds.

The paper is organized as follows. Firstly, we dis-
cuss the concept of Autonomic Cloud and the tech-
niques that can make it a reality. Then we introduce
the concept of Autonomic HPC Cloud and we look
how the Autonomic Cloud concepts and techniques
are projected in this particular case. Finally, we in-
vestigate the prospects of new results in the field by
pointing towards various initiatives to provide partic-

1

Dana Petcu 29

Second NESUS workshop • September 2015 • Vol. I, No. 1

ular solutions for Autonomic Cloud, respectively Au-
tonomic HPC Clouds.

II. Autonomic Clouds

II.1 Autonomic computing

The automation of resource management is referred
nowadays under the name of autonomic computing
[1]. Autonomic computing refers also to information
systems capable to self-manage following the goals set
by human administrators. It is an inter-disciplinary
field involving knowledge from several well-known
branches of computer science, like distributed sys-
tems, artificial intelligence, bio-inspired computing,
software engineering and control systems.

An autonomic system is expected to take decisions
on its own using certain policies. It should also check
and optimize its status and automatically adapt itself
to changing conditions. The concept of autonomic
computing is inspired from biology, in an analogy
with the autonomic nervous system which takes care
of low-level functions of the human body such as tem-
perature regulation without any conscience action.

We consider in this paper that that the Autonomic
Computing refers to the self-managing characteristics
of a computing system.

II.2 The concept of Autonomic Cloud

Autonomic techniques are applied in Cloud environ-
ments, as rapid scalability of the pool of resources is
needed to support unpredictable number of demands
without a human intervention, or fast adaptation is
requested to avoid the failures of hardware resources.

In what follows, we consider that the main charac-
teristics of an Autonomic Cloud are the followings, as
argued in [2]:

• involves computing and software services which
instance number varies by adapting to unpre-
dictable changes;

• follows a contextual behavior through methods of
self-management, self-tuning, self-configuration,
self-diagnosis, and self-healing;

• easy to manage and operate the services and de-
ployments by using techniques for the design,
build, deployment and management of resources
with minimal human involvement;

• presents itself as a robust and fault tolerant sys-
tem.

II.3 Architectures

The authors of [3] proposed a framework for evalu-
ating the degree of adaptability supported by an ar-
chitectural style and classified the most known archi-
tectural styles for distributed applications (e.g., pipe
and filter, publish/subscribe, SOA, peer-to-peer) ac-
cording to this framework. The most adaptable archi-
tectural styles for Autonomic Clouds can follow such
adaptability evaluation.

The authors of [4] classified the architectural con-
tributions to Cloud computing; to match the clas-
sification requirements at platform-as-a-service layer,
for example, the programming environment (i.e., the
tools for the development of applications) need to be
ignored in order to focus on the execution environ-
ment with the goal to find an optimum deployment
of application components on Cloud resources. At the
software-as-a-service level the main goal is to make
sure that services respect their QoS (e.g., response
time).

An autonomic computing framework is naturally
implemented using multi-agent systems, like in [5].
However, also other artificial intelligence techniques,
like genetic algorithms, neural networks, or multi-
objective and combinational optimization heuristics,
can be successfully applied.

II.4 Techniques

Auto-scaling and load balancing. In order to take
advantage of the elasticity characteristic of the Cloud,
the deployed applications need to be automatically
scaled in a way that makes the most efficient use of re-
sources. Several frameworks have been introduced in
the last years to support the application development
taking into account the need of scalability. For exam-
ple, SmartScale [6] and AutoJuju [7] are automated

2

30 On Autonomic HPC Clouds

Second NESUS workshop • September 2015 • Vol. I, No. 1

scaling frameworks that uses a combination of verti-
cal (adding more resources to existing VM instances)
and horizontal (adding more VM instances) scaling
to ensure that the application is scaled in a manner
that optimizes both resource usage and the reconfigu-
ration cost incurred due to scaling. Such scaling strate-
gies are encountered also in [8] where different scala-
bility patterns are used in combination with perfor-
mance monitoring to allow automatic scalability man-
agement.

The auto-scaling of application components is use-
less without techniques for load balancing the re-
quests among the scaled components. Usually load
balancing is considered among physical machines,
like in [9]. As Cloud applications are built from
components, a load balancing among software com-
ponents or services need to be considered. An energy-
aware load balancer is proposed in [10].

Scheduling. The scheduling problem is as a multi-
objective problem where the transfer, deployment and
energy consumption costs need to be simultaneously
minimized. Several approaches used in heteroge-
neous environments as presented in [11, 12, 13, 14]
can be applied.

The problem of finding the mapping which mini-
mizes the cost is NP complete and as a result schedul-
ing (meta-)heuristics should be used to find sub-
optimal solutions. Meta-heuristics such as those based
on neural networks or evolutionary algorithms or lin-
ear programming proved their efficiency in solving
cost problems found in scheduling problems [15].

Adaptive resource provisioning. The problem of
adaptive virtualized CPU provisioning has received a
lot of attention (for example, in [16, 17, 18]). However,
an automated adaptive resource provisioning system
as proposed on [19], based on feedback controllers
(customer add-on outside of the Cloud service itself),
was not reported yet. Current adaptive systems are
based on real-time monitoring, like in [20].

In [21] an automated framework for resource alloca-
tion is presented: it can adapt the parameters to meet
specific accuracy goal, and then dynamically converge
to near-optimal resource allocation (optimal in terms
of minimum costs). The proposed solution can han-

dle unexpected changes in the data distribution char-
acteristics and/or rates of the streaming application.
Resource allocation for streaming processing was con-
sidered also in [22] which proposed an elastic scaling
of data parallel operators.

A current challenge for Cloud providers is to auto-
mate the management of virtual servers while taking
into account both high-level quality of service require-
ments of hosted applications as well as the resource
management costs. In this context, the paper [23] pro-
poses an autonomic resource manager to control the
virtualized environment which decouples the provi-
sioning of resources from the dynamic placement of
virtual machines and which aims to optimize a global
utility function which integrates both the degree of
SLA fulfillment and the operating costs (a constraint
programming approach to formulate and solve the op-
timization problem).

Probabilistic models were extensively used to assess
the reliability of software systems at the architectural
level, like in [24, 25], and these should to applied also
to Cloud systems. The idea of [26] to reason at run-
time about the non-functional attributes of the sys-
tem and to perform accordingly some adaptations is
particularly interesting in the context of Autonomic
Clouds.

Service selection. Due to the tremendous number of
Cloud services and the lack of a standard for their
specification, manual service selection is a time costly
task. Automatic methods for matching the user needs
with the offers are therefore needed. In [27] for ex-
ample a method for finding semantically equal SLA
elements from differing SLAs by utilizing several ma-
chine learning algorithms is presented, together with
a framework for automatic SLA management. Themis
[28] is an implementation of a proportional-share auc-
tion that maximizes resource utilization while consid-
ering virtual machine migration costs; it uses a set of
feedback-based control policies to adapt the applica-
tion bid and resource demand to fluctuations in price.
A decision support system based on risk analysis was
proposed more recently in [29].

Service composition. Cloud service description lan-
guages should allow the automatically composition of

3

Dana Petcu 31

Second NESUS workshop • September 2015 • Vol. I, No. 1

Cloud service to achieve a certain goal. The paper
[30] formalizes the issue of automatic combination of
Cloud services. Moreover, a proof-of-the-concept im-
plementation is revealed to leverage a batch process
for automatically constructing possible combinations
of Cloud services, followed by a search for the best fit
solution.

In [31] is presented an approach, named Café (Com-
posite Application Framework), to describe config-
urable composite service-oriented applications and
to automatically provision them across different
providers. Components can be internal or external to
the application and can be deployed in any of the de-
livery models present in the Cloud. The components
are annotated with requirements for the infrastructure
they later need to be run on. A component graph
is used to capture the dependencies between compo-
nents and to match against the infrastructures offered
by different providers.

Service discovery. Software agents have been suc-
cessfully used in the recent years for service discov-
ery, brokering or composition. Cloudle [32] is such
an agent-based search engine for Cloud service dis-
covery proving that agent-based cooperative problem-
solving techniques can be effectively adopted for au-
tomating Cloud service composition. As reported in
[33], agents can be used also in the mechanism for ser-
vice migration between Clouds.

Self-configuration. An autonomic computing appli-
cation is expected to be composed of autonomic com-
ponents interacting with each other. An autonomic
component can be modeled in terms of a local and a
global control loops with sensors for self-monitoring,
effectors for self-adjustment, knowledge and planner
or adapter for exploiting policies based on self- and
environment awareness.

The authors of [34] proposed an automated line
for deploying distributed application composed of a
set of virtual appliances, which includes a decentral-
ized protocol for self-configuring the virtual applica-
tion machines. The solution named VAMP (Virtual
Applications Management Platform) relies upon a for-
malism for describing an application as a set of in-
terconnected virtual machines and on an engine for

interpreting this formalism and automating the appli-
cation deployment using infrastructure services. The
formalism offers a global view of the application to
be deployed in terms of components with the asso-
ciated configuration- and interconnection constraints
and with their distribution within virtual machines;
it extends OVF language, dedicated to virtual ma-
chines description, with an description language for
distributed application software architecture.

The above described approach is complemented by
the one from [35] where is exposed a mechanism that
requires zero manual intervention during the config-
urations on the IP addresses of the resources from a
Cloud center.

An automated approach to deploy pre-configured
and ready-to-run virtual appliances on the most suit-
able Cloud infrastructure is still missing. However,
in [36] is proposed an architectural approach using
ontology-based discovery to provide QoS aware de-
ployment of appliances on Cloud service providers.

The paper [37], that exposes the design of an adap-
tive framework for optimizing the execution of scien-
tific applications in the Cloud, uses a MAPE-K loop,
well known in autonomic computing, and relies on
the concept of utility for optimizing the configuration
of the Cloud stack on a per-job basis.

Self-healing. The policy-based, goal-based, or
utility-based approaches are reactive techniques that
enable the Autonomic Cloud to respond to problems
only when they occur [38]. For example, in [39] a
policy based management is used to evaluate the state
of the system against predefined rules and actuate
self-healing to return the system to the desired state
– focus is put on investigating the capability of the
system to recognize a fault and react to it. Alterna-
tively, proactive techniques like the ones proposed
in [40, 41] predict a set of environmental conditions
before they actually happen.

Reactive and proactive techniques are usually im-
plemented using multi-agent systems. In the context
of Autonomic Clouds we can distinguish between two
types of solutions. The first type of solutions exploits
the idea of building multi-agent controllers for auto-
nomic systems, which are capable to manage the sys-
tem and themselves, as in [42]. The second idea is

4

32 On Autonomic HPC Clouds

Second NESUS workshop • September 2015 • Vol. I, No. 1

No. Characteristic Target Proposed approach
1. Resources/services Auto-scaling Combine vertical with horizontal scaling

variability Use scaling patterns
Performance monitoring

Load-balancing At the physical machines level
At the software service level
At the application components level

Scheduling Optimize transfer costs
Optimize deployment costs
Optimize energy consumption

Adaptive resource Control-policy to adapt to price fluctuations
provisioning Use feedback controllers

3. Contextual behaviour Self-healing Policy-based approach to evaluate state against rules
Multi-agent controllers
VMs/services acting as agents

Self-configuration Use descriptors of the interconnected components
Component dynamic identification
Use pre-configurated appliances

Automatic pricing Self-adjust price according application requirements
3. Easy deployment & Optimal deployment Use patterns of architectural styles

management Selection Find semantically equal SLA
Auctions for mazimize utilization & reduce migration costs

Composition Description language to support composition
Automatically construct combinations & search for best fit
Dependency graphs for application components and their
annotation with infrastructure requirements

Discovery Agent-based search engine
4. Robust and Reliability Decouple resource provisioning from dynamic placement

fault tolerant Reason at run-time about the non-functional attributes
Use probabilistic models

Migration Agent-based mechanism

Table 1: Characteristics, targets and approaches for Autonomic Clouds (after [2])

to allow virtual machines and services to behave like
agents and to make decisions based on local policies
and local knowledge as in [43, 44].

Autonomic pricing mechanism. Most of the Cloud
service providers charge their clients for metered us-
age based on fixed prices. In [45] were exposed
pros and cons of charging fixed prices as compared
to variable prices. Deploying an autonomic pricing
mechanism that self-adjusts pricing parameters to con-
sider application and service requirements of users is

shown to achieve higher revenue than various other
common fixed and variable pricing mechanisms.

Summarize. Table 1 summarizes the main character-
istics and targets in Autonomic Cloud as well as the
existing approaches.

III. HPC Clouds

The Cloud paradigm is attractive for the HPC appli-
cations due to the promise of: (a) instant availability

5

Dana Petcu 33

Second NESUS workshop • September 2015 • Vol. I, No. 1

instead the long waiting queues of supercomputers;
(b) software stack that can be selected by the applica-
tion owner instead the need of a match with the in-
stalled OS or libraries; (c) larger capacity than offered
by the local or regional HPC centers; (d) abstractiza-
tion of the hardware resources through virtualization
and which provide a certain level of portability, in-
stead a strong dependence on the hardware architec-
ture; (e) service level agreements instead best effort.

However, there are several HPC requirements that
are not matching the Cloud concept and are hindering
its adoption in the HPC communities: (a) the need to
be close to the bar metal to obtain the highest possible
performance from the underlying machines instead
the use of virtualized environments; (b) the need to
use optimized HPC libraries that are hardware depen-
dent instead general purpose software; (c) the need of
tuned hardware for particular computations, includ-
ing combination of CPUs, GPUs and FPGAs, instead
commodity hardware; (d) the need for a large num-
ber of resources for well-defined time instead a small
number of resources for an indefinite time; (e) the
need for high throughput interconnections based on
userspace communication pathways requiring wired
data transfer instead virtualized networks transfers; (f)
the need for parallel file-systems instead distributed
file-systems.

The HPC applications of which performance is not
strongly affected by the differences between the Cloud
infrastructure services and the supercomputing cen-
ter services are the ones which do not have special
requirements in high-throughput interconnection and
storage. For example, parametric studies in which a
certain program is executed multiple times with dif-
ferent parameters (or bags of independent tasks) can
run in Cloud environment with a relative low lost in
performance compared with supercomputing environ-
ments. Moreover, new opportunities are offered by
the instant availability for parallel streaming applica-
tions or real time parallel applications.

The HPC-as-a-service (HPCaaS) concept makes a
compromise between the common understanding of
distributed Cloud services and the HPC requirements
which where enumerated above. It refers to a bare-
metal compute model similar to an in-house clus-
ter (therefore, named here cluster-on-demand). The

HPC cluster of Amazon EC21, Gompute2, Penguin-on-
Demand (POD)3, R-HPC4, Cyclone5, Salbacore6 are
few example of HPCaaSs. Dozens of popular open
source applications frequently used by the HPC com-
munity, including schedulers and load balancers, are
ready to be selected and executed in the acquired en-
vironments. GPGPUs are available at request. Data
transfer inside the clusters are not charged. High
throughput networks are available.

However, the HPCaaS offers are hardware depen-
dent and a HPC application owner still need to eval-
uate the services before the deployment for produc-
tion purposes. The scale-up and scale-out options are
rarely encountered (a counterexample is in the offer of
Cyclone). As the offers are quite different, the migra-
tion of parallel applications between various HPCaaS
provider sites remains an issue. Despite the adoption
of concepts of service level agreement adoption, the
fault tolerance remains an application provider prob-
lem. Self-configuration is far to be achieved and the
application provider that intends to consume a HP-
CaaS needs to have parallel programming knowledge.
A holistic vision of the evolution of HPC Clouds to-
wards a tight integration betweeb programming mod-
els, runtime middleware and virtualization infrastruc-
ture was presented recently in [46].

IV. Towards Autonomic HPC Clouds

In this section we discuss the requirements and ex-
pectations of future HPCaaSs compliant with the con-
cepts and techniques of autonomic computing.

IV.1 The concept of Autonomic HPC
Clouds

In most cases, the scalability of an HPC application
is predictable. This fact allows the supercomputing
centers to request as input parameter for the job sub-
mission descriptor the number of resources that will

1https://aws.amazon.com/hpc/
2http://www.gompute.com/
3https://pod.penguincomputing.com/
4http://www.r-hpc.com/
5http://www.sgi.com/products/hpc_cloud/cyclone/
6http://www.sabalcore.com/

6

34 On Autonomic HPC Clouds

Second NESUS workshop • September 2015 • Vol. I, No. 1

be allocated, as well as a time interval. While this
hypothesis is maintained by the current HPCaaSs, it
is not the case for most of other Cloud services that
are designed to support scale-ups and -outs and not
defined time intervals for resource allocations. The de-
sign of Autonomic HPC Clouds should foreseen that
a variable number of resources are possible, especially
to enable the Big Data or streaming data parallel pro-
cessing.

The hardware failures were considered until now a
minor problem in the HPC computing world. How-
ever, with the advent of the race for achieving
the petascale levels in HPC, the hardware and soft-
ware failure tolerance increased in importance. The
changes in the programming paradigms and lan-
guages that are foreseen for petascale systems to
coupe with failure tolerance are of high interest for
the HPC Cloud providers in conjunction with the pres-
sure to fulfill high quality service level agreements.
Self-* procedures are welcomed in this context to be
combined with the classical tools for HPC support.

The deployment and the control of the HPC ap-
plications and its resources is still far from being
hardware-independent. Moreover, few of the HPCaaS
providers are measuring the costs based on job sub-
mission rather on being based on the allocated hard-
ware.

Consequently, we consider that the four main char-
acteristics of Autonomic Clouds are relevant in the
definition of an Autonomic HPC Cloud. An HPC
Cloud is autonomic if: (1) involves computing and
software services which instance number varies; (2)
follows a contextual behavior through methods of
self-management, self-tuning, self-configuration, self-
diagnosis, and self-healing; (3) easy to manage and
operate the services and deployments; (4) presents it-
self as a robust and fault tolerant system.

IV.2 Requirements related to the architec-
ture

A similar framework with the one proposed in [3] to
evaluate the degree of adaptability supported by an
architectural style of distributed systems should be
adopted for the architectural styles of parallel appli-
cations (e.g. master-slave, bag of tasks, parametric

studies).
Currently, the targeted architecture HPCaaS is of

IaaS type. No offers exists yet for HPC oriented PaaS
or HPC based SaaS. Moreover, the variety of the HP-
CaaS services in terms of hardware support opens
the problem of portability of the HPC Cloud applica-
tions and the interoperability in case of building HPC
Clouds Federations or Multi-HPC-Clouds.

An abstract representation of the HPCaaS which al-
low an automatic deployment is needed to be defined,
standardized and adopted by HPCaaS providers is ur-
gently needed.

IV.3 Autonomic computing techniques
compliance with HPC Cloud

Auto-scaling and load balancing In order to take ad-
vantage of the elasticity characteristic of the Cloud, the
deployed applications need to be scale up and scale
down during their execution. However, the current de-
ployment style of most HPC applications is supposing
the allocation of a fixed number of hardware and soft-
ware resources. The introduction of automatic scaling
mechanisms in the parallel programming paradigms
and languages is necessary to be pursued.

The classic load balancers used in HPC environ-
ments are also assuming by default an estimation
of the number of requested resources and execution
time. In order to coupe with a variable number of re-
sources during execution or the undefined execution
time, or even with resource usage optimizations or
energy-aware resource consumption, the current HPC
load balancers should be revised and a good starting
point are the new proposals for Cloud specific load
balancers.

While horizontal and vertical scaling based on the
number of virtual machines (more identical VMs, re-
spectively more identical resources to existing VMs)
are a custom in classical Cloud services, the scal-
ing of HPC applications in heterogeneous environ-
ments composed of various computing, storage and
network devices is a challenge problem not yet inves-
tigated. Different scalability patterns used in combi-
nation with performance monitoring can also help in
HPC case the automatic scalability management.

7

Dana Petcu 35

Second NESUS workshop • September 2015 • Vol. I, No. 1

Scheduling The scheduling problem was intensively
studied by the HPC provider communities and be-
yond, and has been escalated with the Grid comput-
ing advent. In the context of the current trend to al-
low the portability of HPC applications from CPUs
to GPGPUs and viceversa via abstractions at the pro-
gramming level, or to take into consideration the en-
ergy consumption costs of interest for both the HPC
Cloud provider and the HPC application provider, the
existing scheduling techniques should be redefined.

A proof-of-concept framework was proposed in [47]
for self-adaptive resource scheduling ensuring a trade
off between performance and energy at real time on
multi-core or many-core based heterogeneous Clouds.

Adaptive resource provisioning Finding the an op-
timum quantity of HPC resources can be critical for
the automation in HPC Clouds. Being unaware of the
power of the available resources, the HPC application
provider is usually not able to estimate the application
needs of resource. Automatic frameworks for resource
provisioning and sizing for HPC applications in HPC
Clouds are therefore needed. Such framework should
use performance models of the application, perfor-
mance estimators according to the available resources
as well as performance monitoring date of previous
executed applications to build some performance es-
timators. Feedback controllers (customer add-on out-
side of the Cloud service itself) are also welcomed if
the application is not running for the first time in the
HPC Cloud environment. Beyond the performance es-
timators, the automated framework for resource allo-
cation should follow policies and rules (cost minimiza-
tion, energy consumption minimization, communica-
tion minimization volume, specific SLAs, or a combi-
nation of these criteria).

A proposal for an autonomous resource manage-
ment system with self-properties for HPC Cloud was
discussed in [48].

Service selection HPC applications are often using
special libraries. Few HPCaaS offers are including
nowadays the access to pre-installed HPC specific soft-
ware that enable the execution of particular applica-
tions (e.g. OpenFOAM provided by Cyclone). A mar-
ket place of such appliances can improve the quality

of the HPCaaSs.
The diversity of the HPCaaS due to the variation

of the underlying hardware poses the problem of the
right service for a certain HPC application. Moreover,
there is a lack of a standard for their specification. Au-
tonomic methods for matching the HPC application
needs with the offers are therefore needed.

Switching between computational resources from
different providers or inside a Heterogenous Cloud
in order to select the most suitable computational en-
vironment for an HPC application execution is a de-
sirable feature to avoid hardware or vendor lock-in.
In the case of HPC applications, the migration is hin-
dered by hardware incompatibility and the need to
tune the software for specific hardware to achieve high
performance. A proof-of-concept tool named ADAPT
[49] is trying to provide a solution by an autonomic
execution monitor that exploits feedback from the run-
time and resolves missing dependencies.

Service composition Often the HPC applications
are build from multiple programs depended on spe-
cific libraries and which are executed in a specific or-
der according to a particular workflow. This split in
various components offers the opportunities to play
with various configuration settings and to find an ’op-
timal’ combination (from a certain point of view, e.g.
response time, costs, energy etc). The approaches
that were proposed for the Autonomic Cloud are well
suited to be applied also in the case of the Autonomic
HPC Cloud.

Service discovery The number of the available HP-
CaaS is limited and their offer is still easy to be fol-
lowed by a human agent. The management tools be-
hind the HPCaaS are currently proprietary. If open-
source tools will be developed, it is possible that the
number of the HPCaaS will increase exponentially,
providing incomes to small computing centers. Then
the discovery of the new services will become a prob-
lem also for the Autonomic HPC Cloud.

Self-configuration An automated approach to de-
ploy pre-configured and ready-to-run virtual appli-
ances on the most suitable Cloud infrastructure is still

8

36 On Autonomic HPC Clouds

Second NESUS workshop • September 2015 • Vol. I, No. 1

missing. This fact is valid also for HPC Clouds. More-
over, the lack of virtualization layer (bar metal offers
in HPCaaS) is complicating the application deployer
task. The efforts to provide virtualization layers also
for GPUs (available nowadays only for a particular
hardware architecture) and to reduce the performance
impact of the virtualization software are further steps
towards an easy to manage configuration process.

An automatic I/O configurator for HPC applica-
tions was proposed in [50]; it utilizes machine learn-
ing models to perform black-box performance/cost
predictions.

Self-healing The HPC Cloud offer should provide
a certain quality stated in a service level agreement.
E.q. hardware and software services should be avail-
able 99.99% of the time. Faulty services should be
detected just in time and automatic reactive mecha-
nisms should be in place. The performance monitor-
ing of the services is therefore essential and current
techniques should be improved both in terms of the
number of sensors, but also in what concerns non-
intrusiveness and policies. Proactive techniques were
not approached yet in HPC Cloud context.

Autonomic pricing mechanism HPCaaS billings are
usually based on hardware allocation time, rather
than on job as expected in a supercomputing cen-
ter (with one counterexample: R-HPC is able to pro-
vide job-based bills). Therefore, most of the HPCaaS
providers charge their clients based on fixed prices.
Variable prices can be conceived based on the ur-
gency of the HPC tasks versus the current load of the
provider resources and the supplementary sofware
stack that is requested beyond the bar metal.

V. Expectations from on-going
research activities

Panacea, HARNESS, MIKELANGELO and Cloud-
Lightning are four European research and develop-
ment on-going initiatives that are working with Auto-
nomic Clouds, respectively Autonomic HPC Clouds.
Their progress will influence the future of these fields.

PANACEA7 proposes innovative solutions for a
proactive autonomic management of cloud resources,
based on a set of advanced machine learning tech-
niques and virtualization. PANACEA supports the
following properties of the Autonomic Cloud: (a) self-
healing against anomalies by recovering from multi-
ple node and link failures and using proactive reju-
venation of applications and servers for preventing
crashes and increasing the availability, predicting the
threshold violation of response time of servers; (b)
self-configuring by efficiently mapping user’s require-
ments onto distributed clouds and configuring on-the-
fly in the presence of anomalies, self-optimizing us-
ing proactive migration of virtual machines from one
cloud resource to another, maintaining the quality of
service of end-to-end flows; (c) self-protecting using
proactive reconfiguration of overlay networks to pro-
tect against security attacks.

HARNESS8 integrates heterogeneous hardware and
network technologies into data centre platforms, to in-
crease performance, reduce energy consumption, and
lower cost profiles for Cloud applications. It devel-
ops an enhanced PaaS software stack that brings new
degrees of freedom to cloud resource allocation and
optimisation. Technologies such as FPGAs, GPGPUs,
programmable network routers, and solid-state disks
promise increased performance, reduced energy con-
sumption, and lower cost profiles. Specialised tech-
nologies are virtualised into resources that can be
managed and accessed at the platform level. The
Cloud platform has access to a variety of resources
to which it can map the components. A flexible appli-
cation may potentially be deployed in many different
ways over these resources, each option having its own
cost, performance, and usage characteristics.

MIKELANGELO9 is addressing the issues of HPC
Clouds and targets a core bottleneck, the virtual I/O.
The work is concentrated on improvement of virtual
I/O in KVM.

CloudLightning10 proposes a new way of provision-
ing heterogeneous cloud resources to deliver services,
specified by the user, using a particular service de-

7http://projects.laas.fr/panacea-cloud/
8http://www.harness-project.eu/
9http://www.mikelangelo-project.eu/

10http://cloudlightning.eu/

9

Dana Petcu 37

Second NESUS workshop • September 2015 • Vol. I, No. 1

scription language. Due to the evolving complexity
of modern heterogeneous clouds, it proposes to build
our system based on principles of self-management
and self-organisation. The goal is to address energy
inefficiencies particularly in the use of resources and
consequently to deliver savings to the cloud provider
and the cloud consumer in terms of reduced power
consumption and improved service delivery.

VI. Conclusions

We defined the main characteristics of the Autonomic
HPC Clouds and we identified the key elements of
a roadmap to evolve HPC-as-a-Service offers to take
advantage of the Cloud and Autonomic Computing
concepts. The problems to be solved are complex and
the solutions are not straightforward. Partial solutions
are foreseen to be provided by ongoing research and
development initiatives.

Acknowledgment

The work related to Autonomic HPC Clouds is sup-
ported by the European Commission under grant
agreement H2020-6643946 (CloudLightning). The
CLoudLightning project proposal was prepared by
eight partner institutions, three of them as earlier part-
ners in the COST Action IC1305 NESUS, benefiting
from its inputs for the proposal. The section related
to Autonomic Clouds is supported by the Romanian
UEFISCDI under grant agreement PN-II-ID-PCE-2011-
3-0260 (AMICAS).

References

[1] J.O. Kephart, D.M. Chess, "The vision of auto-
nomic computing", Computer 36, pp. 41-50, 2003.

[2] D. Petcu, "Building automatic clouds with
an open-source and deployable platform-as-a-
service", in Advances in Parallel Computing 23, IOS
Press, pp. 3-19, 2014.

[3] R.N. Taylor, N. Medvidovic, P. Oreizy, "Architec-
tural styles for runtime software adaptation", in
Proceedings of WICSA/ECSA, 2009, pp. 171-180.

[4] M. Litoiu, M. Woodside, J. Wong, J. Ng, G. Iszlai,
"A business driven cloud optimization architec-
ture", in Proceedings of ACM SAC, 2010, pp. 380-
385.

[5] S. Venticinque, R. Aversa, B. Di Martino, D. Petcu,
"Agent-based cloud provisioning and manage-
ment. Design and prototypal implementation", in
Proceedings CLOSER, 2011, 184-191

[6] S. Dutta, S. Gera, A. Verma, B. Viswanathan,
"Smartscale: automatic application scaling in en-
terprise clouds", in Proceedings of IEEE CLOUD,
2012, pp.221-228.

[7] B. Karakostas, "Towards autonomic cloud config-
uration and deployment environments", in Pro-
ceedings of ICCAC, 2014, pp. 93-96.

[8] M. Ughetti, "Scalability patterns for platform-as-
a-service", in Proceedings of IEEE CLOUD, 2012,
pp. 718-725.

[9] C. Adam, R. Stadler, "A middleware design for
large-scale clusters offering multiple services",
IEEE Transactions on Network and Service Manage-
ment 3:1, 2006, pp. 1-12.

[10] A. Paya, D. Marinescu, "Energy-aware load bal-
ancing and application scaling for the cloud
ecosystem", IEEE Transactions on Cloud Computing,
2015, doi: 10.1109/TCC.2015.2396059.

[11] M.E. Frincu, N. M. Villegas, D. Petcu, H. Muller,
R. Rouvoy, "Self-healing distributed scheduling
platform", in Proceedings of CCGRID, 2011, pp.
225-234.

[12] M.E. Frincu, C. Craciun, "Dynamic and adaptive
rule-based workflow engine for scientific prob-
lems in distributed environments", in Cloud Com-
puting and Software Services: Theory and Techniques,
CRC Press, 2010, pp. 227-251.

[13] M.E. Frincu, "Dynamic scheduling algorithm for
heterogeneous environments with regular task
input from multiple requests", in Lecture Notes in
Computer Science 5529, 2009, pp. 199-210.

10

38 On Autonomic HPC Clouds

Second NESUS workshop • September 2015 • Vol. I, No. 1

[14] F. Micota, M. Frincu, D. Zaharie, "Population-
based metaheuristics for tasks scheduling in het-
erogeneous distributed systems", in Lecture Notes
in Computer Science 6046, 2011, pp. 321-328.

[15] A. Benoit, L. Marchal, J.F. Pineau, Y. Robert, F.
Vivien, "Scheduling concurrent bag-of-tasks ap-
plications on heterogeneous platforms", in IEEE
Transactions on Computers 59:2, 2010, pp. 202-217

[16] P. Padala, K.G. Shin, X. Zhu, M .Uysal, Z. Wang,
S. Singhal, A. Merchant, K. Salem, "Adaptive con-
trol of virtualized resources in utility computing
environments", in Proceedings of Eurosys, 2007, pp.
289-302.

[17] E. Kalyvianaki, T. Charalambous, S. Hand, "Self-
adaptive and self-configured cpu resource provi-
sioning for virtualized servers using kalman fil-
ters", in Proceedings of ICAC, 2009, pp. 117-126.

[18] S.M.Park, M.Humphrey, "Feedback-controlled re-
source sharing for predictable escience", in Pro-
ceedings of SC, 2008, article 13.

[19] H.C. Lim, S. Babu, J.S. Chase, S.S. Parekh, "Au-
tomated control in cloud computing: challenges
and opportunities", in Proceedings of ACDC, 2009,
pp. 13-18.

[20] F. Fargo, C. Tunc,Y. Al-Nashif, A. Akoglu, S.
Hariri, "Autonomic Workload and Resources
Management of Cloud Computing Services," in
Proceedings of ICCAC, 2014, pp.101-110.

[21] S. Vijayakumar, Q. Zhu, G. Agrawal, "Automated
and dynamic application accuracy management
and resource provisioning in a cloud environ-
ment", in Proceedings of GRID, 2010, pp. 33-40.

[22] S. Schneider, H. Andrade, B. Gedik, A. Biem, K.L.
Wu, "Elastic scaling of data parallel operators in
stream processing", in Proceedings of IPDPS, 2009,
pp. 1-12.

[23] H.N. Van, F. D. Tran, J.M. Menaud, "SLA-aware
virtual resource management for cloud infras-
tructures", in Proceedings of CIT, 2009, pp. 357-362

[24] A. Filieri,C. Ghezzi, V. Grassi, R. Mirandola, "Re-
liability analysis of component-based systems
with multiple failure modes", in Lecture Notes in
Computer Science 6092, 2010, pp. 1-20.

[25] I. Krka, L. Golubchik, N. Medvidovic, "Probabilis-
tic automata for architecture-based reliability as-
sessment", in Proceedings of QUOVADIS, 2010, pp.
17-24.

[26] I. Epifani, C. Ghezzi, R. Mirandola, G. Tambur-
relli, "Model evolution by run-time parameter
adaptation", in Proceedings of ICSE, 2009, pp. 111-
121.

[27] C. Redl, I. Breskovic, I. Brandic, S. Dustdar, "Au-
tomatic sla matching and provider selection in
grid and cloud computing markets", in Proceed-
ings of GRID, 2012, pp. 85-94.

[28] S. Costache, N. Parlavantzas, C. Morin, S. Kor-
tas, "Themis: economy-based automatic resource
scaling for cloud systems", in Proceedings of
HPCC, 2012, pp. 367-374.

[29] S. Gupta, V. Muntes-Mulero, P. Matthews, J. Do-
miniak, A. Omerovic, J. Aranda, S. Seycek, "Risk-
driven framework for decision support in cloud
service selection", in Proceedings of CCGRID, 2015,
545-554.

[30] D.K. Nguyen, F. Lelli, M.P. Papazoglou, W.J. Van
den Heuvel, "Issue in automatic combination of
cloud services", in Proceedings of ISPA, 2012, pp.
487-493.

[31] R. Mietzner, T. Unger, F. Leymann, "Cafe:
a generic configurable customizable composite
cloud application framework", in Lecture Notes in
Computer Science 5870, 2009, pp. 357-364.

[32] K. M. Sim, "Agent-based cloud computing", IEEE
Transactions on Services Computing 99, 2011, pp. 1.

[33] C.T. Fan, W.J. Wang, Y.S. Chang, "Agent-based
service migration framework in hybrid cloud", in
Proceedings of HPCC, 2011, pp. 887-882.

[34] X. Etchevers, T. Coupaye, F. Boyer, N. De Palma,
"Self-configuration of distributed applications in

11

Dana Petcu 39

Second NESUS workshop • September 2015 • Vol. I, No. 1

the cloud", in Proceedings of CLOUD, 2011, pp.
668-675.

[35] C. Hu, M. Yang, K. Zheng, K. Chen, X. Zhang,
B. Liu, "Automatically configuring the network
layer of data centers for cloud computing", IBM
Journal of Research and Development 55:6, 2011, 3:1–
3:10.

[36] A.V. Dastjerdi, S.G.H. Tabatabaei, R. Buyya, "An
effective architecture for automated appliance
management system applying ontology-based
cloud discovery", in Proceedings of CCGrid, 2010,
pp. 104-112.

[37] M. Koehler, S. Benkner, "Design of an adaptive
framework for utility-based optimization of sci-
entific applications in the cloud", in Proceedings of
UCC, 2012, pp. 303-308.

[38] J.O. Kephart, W.E. Walsh, "An artificial intelli-
gence perspective on autonomic computing poli-
cies", in Proceedings of POLICY, 2004, pp. 3-10.

[39] T. Lorimer, R. Sterritt, "Autonomic management
of cloud neighborhoods through pulse monitor-
ing", in Proceedings of UCC, 2012, pp. 295-302.

[40] V. Casola, E.P. Mancini, N. Mazzocca, M. Rak,
U. Villano. "Self-optimization of secure web ser-
vices", Computer Communications 31, 2008, pp.
4312-4323.

[41] M. Litoiu, "A performance analysis method for
autonomic computing systems", ACM Transac-
tions on Autonomous and Adaptive Systems 2:1,
2007, article 3.

[42] B.A. Caprarescu, D. Petcu, "A self-organizing
feedback loop for autonomic computing", in Pro-
ceedings of COMPUTATIONWORLD, 2009, pp.
126-131.

[43] K. Begnum, N.A. Lartey, L. Xing, "Cloud-
oriented virtual machine management with
MLN", in Lecture Notes in Computer Science 5931,
2009, pp. 266-277.

[44] B.A. Caprarescu, N.M. Calcavecchia, E. Di Nitto,
D.J. Dubois, "SOS cloud: self-organizing services
in the cloud", in Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecom-
munications Engineering 87, 2012, pp. 48-55.

[45] C.S. Yeo, S. Venugopal, X. Chu, R. Buyya, "Au-
tonomic metered pricing for a utility computing
service", Future Generation Computer Systems 26
(8), 2010, pp. 1368-1380.

[46] D. Petcu, H. Gonzalez-Velez, B. Nicolae, J.M.
Garia-Gomez, E. Fuster-Garcia, C. Sheridan,
"Next generation HPC clouds: a view for large-
scale scientific and data-intensive applications",
Lecture Notes in Computer Science 8806, 2014, pp.
26-37.

[47] J. Wood, B. Romoser, I. Zecena, Z. Zong,
"B-MAPS: a self-adaptive resource scheduling
framework for heterogeneous cloud systems", in
Proceedings of CAC, 2013, Article 19.

[48] M.E. Frincu, D. Petcu, "Resource management for
HPC on the cloud", in High-Performance Comput-
ing on Complex Environments, 2014, pp. 303-323.

[49] J. Slawinski, V. Sunderam, "Autonomic multi-
target deployment of science and engineering
HPC applications," in Proceedings of ICCAC, 2014,
pp.180-186.

[50] L. Mingliang, J. Ye, Z. Jidong, Z. Yan, S. Qianqian,
M. Xiaosong, C. Wenguang, "ACIC: Automatic
cloud I/O configurator for HPC applications," in
Proceedings of SC, 2013, pp. 1-12.

12

40 On Autonomic HPC Clouds

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Labeling connected componets in binary
images based on cellular automata

Biljana Stamatovic

University of Donja Gorica, Montenegro
biljana.stamatovic@udg.edu.me

Abstract

This short paper introduce an algorithm for labeling connected components in n-dimensional binary images based
on cellular automata, , n ≥ 2. Here is presented tree-dimensional binary images algorithm. The algorithm code was
implemented in NetLogo programming environment. The algorithm is local and can be efficiently implemented on
data-flow parallel platforms with an asymptotic complexity of O(L) on an L× L× L bynary image.

Keywords labeling connected components, cellular automata, data-flow

I. Introduction

Labeling of connected components has been intensively
studied. This is one of the most fundamental opera-
tions in pattern analysis, pattern recognition, computer
(robot) vision, and machine intelligence. Many algo-
rithms have been proposed for addressing this issue
[1, 2, 3, 4, 5, 6, 7, 8]. The labeling algorithms trans-
form a binary image in an image in which groups of
connected cells (pixels) are gruoped in disjoint compo-
nents with unique labels. So, the analysis of the image
can be performed on a higher level than the pixel level.

The cellular automata (CA) can be considered as an
alternative way of computation based on local data
flow principles. Also, the CA can be seen as a comput-
ing machine in the sense that it is able to transform an
input configuration, embedded in its initial state, to an
output configuration. Here, we supose that initial data,
pixels of image, are loaded inti CA cells. A CA can be
informally represented as a set of regularly and locally
connected identical elements. The elements can be only
in a finite set of states. The CA evolves in discrete time
steps, changing the states of elements according to a
local rule, which is the same for all elements. The new
state of each element depends on its previous state and
on the state of its neighbourhood. The characteristic
properties of CAs are therefore locality, discreetness

and synchrony. More definitions about connectivity
and CAs can be found in [9], [10].

II. Definitions and algorithm

We consider a CA as a 3D lattice network of unite cubes
(cells) whose centres are in integer lattice. For simplic-
ity, we suppose that the lattice has N = L × L × L
cells ci,j,k with positions determined by indices i, j, k =
1, ..., L in x, y and z directions, respectively, with L ≥ 3.
Each cell can exist in a finite number of states marked
by colors. The cells can change their states at the end
of time-steps that are discrete moments in time after
the computing of time-steps is completed. The state of
the cell ci,j,k in a time-step t is denoted by ci,j,k(t) and
the state of all lattice cells by Ct, t ≥ 0.

The initial configuration C0 is represented by a 3D
grid of cube cells and each cell can exist in two different
states denoted by white or black colors. Boundaries
of the grid are black. All the remaining cells of the
grid, are coloured (labeled) white with the probability
p and black with probability 1− p. The probabilities
are independent for each cell. Example of an initial
configuration is in Figure 1.

Two cells ci,j,k and cl,m,n are 6− neighbours if |i− l|+
|j−m| + |k− n| = 1. An ordered sequence of cells
c1, ..., cn is called 6− path if each cell ci is a 6-neighbour

1

Biljana Stamatovic 41

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 1: Initial grid configuration generated with p = 0.4.

of the next cell ci+1 in the sequence, i = 1, ..., n − 1,
n ≥ 2. Set of cells is 6− connected, if for any two cells
there exists a 6-path of cells, within the set, between
them. A maximum 6-connected set of white cells is
called a component. In [7] can be find definitions for 18
and 26 connectivity in 3D. For short notation, the rela-
tive positions of the cells ci+1,j,k, ci−1,j,k, ci,j+1,k, ci,j−1,k,
ci,j,k+1, ci,j,k−1 to the cell ci,j,k are denoted by E, W, N,
S, U, D, respectively.

The goal of our algorithm is to assign a unique label
to each of the components. The algorithm is similar
for 18 and 26 connectivities, for 2D labeling connected
components (4 and 8 - connectivity) and also can be
generalized for n-dimension, n > 3.

III. Algorithm and experimental results

Let i, j, k ∈ {0, 1, 2, ..., L− 1} and t ∈ N, t ≥ 0. Denote
by c(i,j,k)(t) the state of a cell (i, j, k) in time step t
and by c (t) an argument of a local transition function,
which is an ordered collections of 6-neighbours cell’s
states in time step t.

We use the terminology of colors. A cell is in state
"m" if it is coloured by color m. 0-color is white, 1-color
is black, m-color is a color with code m, m > 1, e.g. in
RGB implementation.

Let C0 be an initial configuration. We will define two
CAs Ai by their local transition functions ϕAi , i = 1, 2.

Step 1: Each component has the lowest down, right
and south cell. The CA A1 makes unique labeling,
by changing states of white cells whose E, S, D 6-
neighbours are black. The unique colors can be de-
termined from the cells’ positions and must be differ-
ent from white and black. The color we denoted by
col(i, j, k) for the cell (i, j, k). On this way all the lowest
down, right and south cells in all components are la-
beled by unique colors. Also, some other cells change
their states. The local transition function is defined by
ϕA1

(
ci,j,k(0)

)
= ci,j,k(1), where

ci,j,k(1) =

col(i, j, k), ci,j,k(0) = 0∧ ci+1,j,k(0) =
= ci,j−1,k(0) = ci,j,k−1(0) = 1

ci,j,k(0), otherwise

For the labeling the CA A1 makes one step. On
figure 2 is the configuration on the end of the step for
the initial configuration from figure 1.

Figure 2: Grid configuration from Figure 1 after first step of
the algorithm.

Step 2: Local transition function of the CA A2 is
defined by ϕA2

(
ci,j,k(t)

)
= ci,j,k(t + 1), t ≥ 0, where

ci,j,k(t + 1) =
{

max (c(t)) , ci,j,k(t) 6= 1
ci,j,k(t), otherwise

CA A2 will color every white component with dif-
ferent color (not black or white) using iteration, until
the state of the lattice becomes constant.

2

42 Labeling connected componets in binary images based on cellular automata

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Using the described CAs we have algorithm 1 for
the labeling connected components.

Data: Initial configuration C0
Result: Connected componets labeling for C0
ϕA1 ;
while exist cell with change do

ϕA2 ;
end

Algorithm 1: Algorithm for labeling 6-connected com-
ponents

On Figure 3 is the configuration on the end of the
algorithm for the initial configuration from Figure 1.

Figure 3: Grid configuration from Figure 1 on the end of the
algorithm.

The implementation of the algorithm is made in
NetLogo 5.0.4. The algorithm was extensively evalu-
ated on various test cases for different size of grids
and probabilities, i.e. densities of white cells in initial
configuration. We calculated the average time steps
required for 100 initial configurations of 31× 31× 31
grid for the different probabilities (Table 1). However,
the current implementation of the algorithm with Net-
Logo is limited with grid sizes and no possibility to
use variables in RGB notation.

Probability Mean value
0.2 18.11
0.25 30.25
0.3 69.92
0.35 131.44
0.4 87.13
0.45 75.55
0.5 68.82
0.55 68.43
0.6 68.16
0.65 67.35

Table 1: Average number of time steps on the 31× 31× 31
grid in 100 iterations with different probability of initial cell
coloring

IV. Conclusion and future
investigations

The proposed CA algorithm has several advantages,
e.g. it is not limited by the number of cells, its evo-
lution is inherently parallel, and it has a strong re-
semblance to the important approaches in the nature
like principles of cells or elementary particles. Com-
plexity of the algorithm depends on the component
shapes but an asymptotic complexity is O(L) on an
L× L× L binary image. The algorithm use iterative
function and can resolve the problem of stack over-
flow that could appear in recursive labeling which is
studied in [11]. Drawbacks of the algorithm are in
using global variables for stopping CA’s work. Lack
of global communication, implies problems related to
global synchronization, data manipulation and inabil-
ity for calculation of complex mathematical operations,
however, these difficulties can be resolved by dedicated
hardware resources.

The heterogeneous computing, supported today
with data-flow approaches, FPGAs, SoCs, GPUs and
manycore systems, are promising platforms for the
implementation of the efficient CA based algorithms.

3

Biljana Stamatovic 43

Second NESUS Workshop • September 2015 • Vol. I, No. 1

References

[1] Lifeng He, Yuyan Chao and Kenji Suzuki, "A New
Two-Scan Algorithm for Labeling Connected Com-
ponents in Binary Images,” in Proceedings of the
World Congress on Engineering , London, U.K., Vol
II, July 2012, p. 1141-1146.

[2] Lifeng He, Yuyan Chao, Kenji Suzuki and Kesheng
Wu, "Fast connected-component labeling," Pattern
Recognition, vol. 42, 2009, 1977 - 1987.

[3] T. Y. Kong and A. Rosenffeld„ Toplplogical algo-
rithms for digital image processing, Elsevier Science,
Amsterdam, Netherlands, 1996.

[4] R.E. Cypher, L. Snyder and J. L. C. Sanz, "Practi-
cal Algorithms for Image Component Labeling on
SIMD Mesh Connected Computers," IEEE Transac-
tions on Computers, vol. 39, 1990, 276 - 281.

[5] Fei Zhao, Huan zhang Lu and Zhi yong Zhang,
"Real-time single-pass connected components anal-
ysis algorithm," EURASIP Journal on Image and Video
Processing, vol 2013, 2013.

[6] Kenji Suzuki, Isao Horiba, and Noboru Sugie,
"Linear-time connected-component labeling based
on sequential local operations,” Computer Vision
and Image Understanding , Vol 89, 2003, p. 1-23.

[7] Qingmao Hu, Guoyu Qian and Wieslaw L. Nowin-
ski, "Fast connected-component labelling in three-
dimensional binary images based on iterative re-
cursion,” Computer Vision and Image Understanding ,
Vol 99, 2005, p. 414-434.

[8] Christopher T. Johnston and Donald G. Bailey,
"FPGA implementation of a Single Pass Connected
Components Algorithm,” in 4th IEEE Interrnational
Symposium on Electroniic Design, Test and Appilca-
toins , DELTA 2008, Hong Kong, January 23-25,
2008, p. 228-231

[9] Biljana Stamatovic, Gregor Kosec, Roman Trobec,
Xiao Xuan and Sinisa Stamatovic, "Cellular Au-
tomata Supporting n-Connectivity," Mathematical
Problems in Engineering, Vol 2014, 2014.

[10] Biljana Stamatovic and Roman Trobec, "Data par-
allel algorithm in finding 2-D site percolation back-
bones,” in Proceedings of the First International Work-
shop on Sustainable Ultrascale Computing Systems
(NESUS 2014) , Porto, Portugal, 2014, p. 65-70.

[11] G. Borgefors, I. Nystrom and G.S.D. Baja, Con-
nected components in 3D neighbourhoods," in Pro-
ceedings of the 10th Scandinavian Conference on Image
Analysis, 1997, p. 567-572.

4

44 Labeling connected componets in binary images based on cellular automata

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Nature-Inspired Algorithm for Solving
NP-Complete Problems

Atanas Hristov

University of Information Science and Technology, Ohrid, Macedonia
atanas.hristov@uist.edu.mk

Abstract

High-Performance Computing has become an essential tool in numerous natural sciences. The modern high-
performance computing systems are composed of hundreds of thousands of computational nodes, as well as deep
memory hierarchies and complex interconnect topologies. Existing high performance algorithms and tools already
require courageous programming and optimization efforts to achieve high efficiency on current supercomputers. On
the other hand, these efforts are platform-specific and non-portable. A core challenge while solving NP-complete
problems is the need to process these data with highly effective algorithms and tools where the computational costs
grow exponentially. This paper investigates the efficiency of Nature-Inspired optimization algorithm for solving
NP-complete problems, based on Artificial Bee Colony (ABC) metaheuristic. Parallel version of the algorithm have
been proposed based on the flat parallel programming model with message passing for communication between
the computational nodes in the platform and parallel programming model with multithreading for communication
between the cores inside the computational node. Parallel communications profiling is made and parallel performance
parameters are evaluated on the basis of experimental results.

Keywords Artificial Bee Colony, High-Performance Computing, Parallel Algorithm, NP-complete problems,
message passing, multithreading

I. Introduction

Accelerating the development and deployment of ad-
vanced computing systems and cloud computing plat-
forms will require a comprehensive strategy inte-
grating efforts from invention to deployment. The
modern high-performance computing systems (HPCS)
are composed of hundreds of thousands of compu-
tational nodes, as well as deep memory hierarchies
and complex interconnect topologies. Existing high
performance algorithms and tools already require
courageous programming and optimization efforts to
achieve high efficiency on current supercomputers. On
the other hand, these efforts are platform-specific and
non-portable. Currently, most of the HPCS are based
on convectional sequential programming languages
like C, C++, FORTRAN, etc. In order to achieve bet-
ter parallel performance the flat parallel programing

model with message passing in distributed memory
systems, supported by the MPI standard and parallel
programming model with multithreading in shared
memory systems using the OpenMP programming
interface have been included as a template libraries.
The main disadvantages of the parallel programming
based on conventional programming languages are:
process synchronization, deadlocks, workload balanc-
ing, and thread concurrency. In order to improve this
situation, Intel provides a range of tools specifically
designed to help developers parallelize their applica-
tions. Three sets of complementary models for mul-
tithreading programming in shared memory systems
are supported by Intel: Intel Cilk Plus, Intel Threading
Building Blocks (Intel TBB) and Intel Array Building
Blocks (Intel ArBB). The main purpose of those models
is to increase the reliability, portability, scalability and
the parallel performance of the application during the

1

Atanas Hristov 45

Second NESUS Workshop • September 2015 • Vol. I, No. 1

multithreading execution [1, 2, 3].
The complexity class of decision problems NP-

complete can be used as a pattern for benchmarking
and parallel performance evaluation of HPCS. This
paper investigates the efficiency of Nature-Inspired
optimization algorithm for solving NP-complete prob-
lems, based on Artificial Bee Colony (ABC) metaheuris-
tic. Highly parallel version of the well-known N-
queens problem has been proposed based on ABC
optimization. The parallel version of the algorithm
have been proposed based on the flat parallel program-
ming model with message passing for communication
between the computational nodes in the platform and
parallel programming model with multithreading for
communication between the cores inside the computa-
tional node. The Intel Threading Building Blocks (TBB)
programming model has been chosen as a standard for
multithreading computations in shared memory sys-
tems. The Message Passing Interface (MPI) has been
chosen as standard for communication in distributed
memory systems.

II. Background

The complexity class of decision problems NP-
complete can be used as a pattern for benchmarking
and parallel performance evaluation of HPCS. The
main idea behind using NP-complete problems for
evaluation of the overall parallel performance of the
HPCS is that those problems cannot be solved in poly-
nomial time in any known way which require high
computational power and time. The N-queens prob-
lem belongs to the class of NP-complete problems,
requiring a brute-force algorithm for finding all pos-
sible solutions. The N-queens problem is formulated
as solving the task to place N queens on N x N chess-
board in such way that no queens attack each other,
i.e. on every row, column or diagonal, there is only
one queen. The complexity of this algorithm is O(N!),
which comes from the fact that there are (N2!)/(N!*(N2-
N)!) possible solutions to place the queens on the board
[4, 5, 6]. In order to provide efficient solutions for this
problem and to minimize the time and space complex-
ity, many various optimization techniques have been
proposed. In this paper we provide the experimental
results gained by solving N-Queens problem, using

Artificial Bee Colony (ABC) optimization. The ABC
algorithm belongs to the class of nature-inspired algo-
rithms, which simulate the behavior of the honey bee
swarms in the nature. The main advantage of ABC
algorithm is that uses only common control parame-
ters such as colony size and maximum cycle number.
The ABC algorithm is very powerful optimization tool
which provide a population based search procedure.
The ABC algorithm also combine local search methods,
by using artificial bees which fly around multidimen-
sional search space, with global search methods, by
using another kind of artificial bees which fly and
choose the food source randomly without any expe-
rience and memorize the new position if it is a better
than the one that is already in their memory. Thus lead
to balancing of the exploration and exploitation pro-
cess. The main idea behind using the ABC algorithm
for solving the N-Queens problem is that ABC is very
effective optimization algorithm for finding the best
optimized solution, which is declared according to the
position of the food source, and the amount of nectar
found in that solution. [7, 8, 9].

III. Resource planning while solving
NP-complete problems

During the resource planning process while solving
NP-complete problems two strategies can be applied:
static and dynamic [10]. In the static resource plan-
ning process, each node executes only one part of the
search tree. On Figure 1, an example of static resource
planning on octal-core platform is given.

The main problem with static resource planning
strategy is that the spatial search trees are highly un-
balanced. This can lead to significantly reduce of the
parallel performance of the application. This strategy
can be improved by simultaneously scanning of larger
number of subtrees in order to balance the load of
computational nodes.

Dynamic resource planning strategies for solving
NP-complete problems, allow scanning a large num-
ber of subtrees simultaneously, providing better load
balancing and higher parallel efficiency. In this paper
two dynamic strategies have been proposed. The first
strategy proposed a model in which the main process
searching in depth the spatial search tree and the gener-

2

46 Nature-Inspired Algorithm for Solving NP-Complete Problems

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 1: Static resource planning while solving NP-
complete problems.

ated subtrees from this process are distributed among
all available processes of the system.

Figure 2: Depth search dynamic resource planning strategy
while solving NP-complete problems.

On Figure 2, an example of dynamic resource plan-
ning by using depth search strategy on octal-core plat-
form is presented. Thus the probability of an unbal-
anced load significantly reduced, while potential par-
allel performance of the system dramatically increases.

Another strategy for dynamic resource planning is
by maintaining a list of nodes of the spatial search tree.

All problems and subproblems from the spatial search
tree are placed in the list and each process takes the
last unprocessed knot.

Figure 3: Maintaining a list of nodes dynamic resource
planning strategy while solving NP-complete problems.

On Figure 3, an example of dynamic resource plan-
ning by using maintaining a list of nodes dynamic strat-
egy is presented. This strategy provides an efficient
way to allocate the workload among computational
nodes of the system even in highly unbalanced trees
of the search space. Thus the efficiency of the parallel
algorithm, as well as the potential parallel performance
of the system does not depend on the balance of the
tree. The main disadvantage of this strategy is that it
requires additional system resources for maintenance
and searching in the list of nodes.

IV. Parallel implementation of ABC
algorithm

An effective resource utilization of the modern high
performance computing platforms is a subject for many
scientific research investigations. The resource man-
agement optimization for those platforms is an essen-
tial part for optimal resource allocation while solv-
ing NP hard problems. The proposed algorithm for
solving NP-Complete problems is based on Artificial
Bee Colony (ABC) metaheuristic. In this paper we
will present a nature-inspired approach for solving
the N-queens problem which belongs to the class of

3

Atanas Hristov 47

Second NESUS Workshop • September 2015 • Vol. I, No. 1

NP-complete problems. The ABC simulates the col-
lective behavior of the honeybees in nature. The basic
approach during implementation process is building
a computer model which will simulate the collective
behavior of the bees while collecting nectar. Parallel
computing model for solving N-queens problem based
on Artificial Bee Colony (ABC) metaheuristic is present
on Figure 4.

Figure 4: Parallel computing model for for solving N-queens
problem based on Artificial Bee Colony metaheuristic.

In the proposed parallel model the number of all
possible solutions should be determinate, which tech-
nically is the number of employed bees. Initially, a
random population is generated, followed by repeating
cycles of searching for employed, scout, and onlooker
bees. The employed bee makes a modification of its
initial food source in her memory and therefore finds
a new food source. If the amount and quality of the
nectar from the second position is better than, the em-
ployed bee forgets its initial food source. When the
employed bees finish the search process, they pass their
information to the onlookers located at the base. Then
each onlooker makes a calculation on the received in-
formation and determines the food source. In order
to implement the parallel algorithm for solving the
N-Queens problem, the IntelTBB programming model
and ABC metaheuristic have been used. The proposed
algorithm used dynamic resource allocation. The activ-

ities of each beehive simulate one processor, while the
actions of bees simulate threads. The number of bees
that simulate each thread depends on the architecture
of the target platform. The algorithm supports two
types of global data: table of available resources and a
table of unfinished tasks. The tables should be visible
to all bees as bees carry out direct access to the data
founded in the tables.

In the proposed algorithm, the bees are located in
beehive, so call beehive of the scout bees and beehive
of the onlooker and worker bees. Initially, the main
problem is divided in several sub-problems, which are
stored to the table of outstanding tasks. When the
algorithm is started, the beehive generates N number
of scout bees, where N represents the number of pro-
cessors in the system. Each scout bee checks whether
a processor is free or busy by execution of specific
task on it. If a free resource is found the scout bee
record the ID of the processor into the table of avail-
able resources. Also by executing specific piece of code,
the scout bee determinate the value of the processor,
which basically evaluate the suitability of the processor
to execute specific tasks. Depending of the suitability
of the processor, the scout bee gains a value to the
processor. Once these operations are done, the scout
bee returns to the beehive, where it is terminates. On
the next step, the beehive generates M number of on-
looker bees, where M is the optimal number of parallel
threads. After generation, the onlooker bees search
in to table of available resources. If the onlooker bee
finds a free resource, it takes the ID of the processor
and removes it from the table. The priority is given
to the processor with highest value from the table. If
the onlooker bee didn‘t find any free resource in the
table, the bee will return to the beehive and will be
terminate. Once the onlooker bee takes the available
resource it starts to behave as a worker bee. Thus ob-
tained K number of worker bees initially turned to the
table of outstanding tasks where they taking certain
sub-problem, remove it from the table and submit it for
execution by the processor which ID has been taken
from the table of available resources. Once the proces-
sor solves a sub-problem, it provides the solution to a
worker bee. The worker bee with the current solution
returns to beehive 2, where it is terminated.

4

48 Nature-Inspired Algorithm for Solving NP-Complete Problems

Second NESUS Workshop • September 2015 • Vol. I, No. 1

V. Experimental Results

The proposed algorithm for parallel solving of the
N-queens problem, based on metaheuristic ABC, is
verified and its effectiveness has been studied experi-
mentally based on multithreaded implementation us-
ing Intel Threading Building Blocks (TBB) program-
ming model. The target multiprocessor platform for
conducting experimental results is IBM Blade HS22
server with two quad-core processors Xeon Quad Core
2.00GHz, 6GB RAM, operating system Windows Server
2008. For implementation of the parallel algorithm and
TBB programming model, Intel Parallel Studio 2010
program environment have been used. Experimental
results were conducted for a different workload, i.e.
for different size of the chessboard: 8x8, 12x12, 14x14,
and 16x16. Also, two parallel versions of N-Queens
problem have been tested: the first one based on the
proposed ABC algorithm and the second one based on
well-known backtracking algorithm. On Figure 5 the
executional time while solving the N-Queens problem
using sequential, ABC, and backtracking algorithm is
given.

Figure 5: Executional time while solving the N-Queens
problem using sequential, ABC, and backtracking algorithm.

From the chart shown on Figure 2 can be concluded
that for size of the chessboard up to 10x10, the execu-
tional times of serial and parallel implementation of
the program are relatively close due to the very short
calculation time of the problem. The overall calculation
time for the mention size of the chessboard is in the
range of few milliseconds up to few seconds. On the
other hand, when the size of the chessboard increases,
the number of possible optimal and suboptimal solu-

tions growths exponentially. The execution time of the
sequential algorithm also growths exponentially, but
the potential parallelism of the application increases
for a given factor. This leads to very high executional
time for sequential algorithm, and slightly increases in
the parallel execution of the program.

Figure 6: Executional time while solving the N-Queens
problem using sequential, ABC, and backtracking algorithm.

On Figure 6 the speedup gained while solving the
N-Queens problem using ABC and backtracking algo-
rithm is given. When the size of the board increases
to 16x16, the speedup gained by program implementa-
tion on octal-core platform using backtracking search
algorithm is 3.68, while using ABC algorithm 5.2. The
main reason behind this is that the ABC algorithm has
better workload balance and better data structure in
the search space through creating tables with tasks
and adequate resources allocation of the relevant sub-
problems implementation.

VI. Conclusion and future work

An effective resource utilization of the modern high
performance computing (HPC) systems is a subject for
many scientific research investigations. The resource
management for those platforms is an essential part for
optimal resource allocation while solving NP complete
problems. An effective parallel algorithm strongly de-
termines the overall parallel performance of the high-
performance computing system. This paper suggests
an innovative algorithm for solving N-queens problem
on multi-processor platforms based on parallel meta-
heuristic "Artificial Bee Colony" (ABC) optimization.
The efficiency of the proposed algorithm was evaluated

5

Atanas Hristov 49

Second NESUS Workshop • September 2015 • Vol. I, No. 1

on the basis of the software tools of Intel Array Build-
ing Blocks build-in Intel Parallel Studio. The proposed
parallel implementation was developed on the basis of
Message Passing Interface (MPI) and Intel Threading
Building Blocks (TBB) programming models. Finally,
we applied the proposed algorithm on IBM Blade HS22
server with two quad-core processors. This allows us
to observe the behavior of the cluster while solving the
N-queens problem. From the experimental results we
conclude that the speedup gained by program imple-
mentation on octal-core platform using backtracking
search algorithm is 3.68, while using ABC algorithm
5.2. Future objectives of this research include imple-
mentation of our algorithm on very large-scale systems
and on the new generation of ExaScale machines.

Acknowledgment

The results reported in this paper are part of the re-
search project, Center of excellence "Supercomputing
Applications" - DCVP 02/1, supported by the National
Science Fund, Bulgarian Ministry of Education and
Science.

References

[1] Kristof P., Hongtao Yu, Zhiyuan Li, and Tian X.,
“Performance Study of SIMD Programming Mod-
els on Intel Multicore Processors,” in 26th Interna-
tional Symposium in Parallel and Distributed Process-
ing, Shanghai, China, 21-25 May 2012, pp. 2423-
2432.

[2] Wooyoung Kim and Voss M., "Multicore Desk-
top Programming with Intel Threading Building
Blocks," IEEE Software journal , vol. 28, no. 1, pp.
23-31, 2011.

[3] Newburn C.J., Byoungro So, Zhenying Liu, Mc-
Cool M., Ghuloum A., and Toit S.D., “Intel’s Array
Building Blocks: A retargetable, dynamic compiler
and embedded language,” in 9th Annual IEEE/ACM
International Symposium on Code Generation and Op-
timization, Chamonix, France, 02-06 April 2011, pp.
224-235.

[4] Khademzadeh A., Sharbaf M.A., and Bayati A.,
“An Optimized MPI-based Approach for Solving

the N-Queens Problem.,” in 7th International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Com-
puting, Victoria, BC,Canada, 12-14 November 2012,
pp. 119-124.

[5] P. Panwar, V. P. Saxena, A. Sharma, and V. Sharma,
" Load Balancing using N-Queens Problem," Inter-
national Journal of Engineering Research Technology ,
vol. 2, no. 1, 2012.

[6] Ayala A., Osman H., Shapiro D., and Des-
marais J.M., “Accelerating N-queens problem us-
ing OpenMP,” in 6th IEEE International Symposium
on Applied Computational Intelligence and Informatics,
Timisoara, Romania, 19-21 May 2011, pp. 535-539.

[7] Teodorovic D., Lucic P., and Markovic, G., “Bee
Colony Optimization: Principles and Applications,”
in 8th Seminar on Neural Network Applications in Elec-
trical Engineering, Belgrade, Serbia, 25-27 Septem-
ber 2006, pp. 151-15.

[8] Banharnsakun A., Achalakul T., and Sirinaovakul
B., “Artificial bee colony algorithm on distributed
environments,” in Second World Congress on Nature
and Biologically Inspired Computing, Fukuoka, Japan,
15-17 December 2010, pp. 13-18.

[9] Marinakis Y., Marinaki M., and Matsatsinis N., “A
hybrid discrete Artificial Bee Colony - GRASP al-
gorithm for clustering,” in International Conference
on Computers Industrial Engineering, Troyes, France,
6-9 July 2009, pp. 548-553.

[10] Xiaozhong G.,Gaochao Xu, and Yuan Z., “Dy-
namic Load Balancing Scheduling Model Based on
Multi-core Processor,” in Fifth International Confer-
ence on Frontier of Computer Science and Technology,
Changchun, Jilin Province, 18-22 August 2010, pp.
398-403.

6

50 Nature-Inspired Algorithm for Solving NP-Complete Problems

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Log File Analysis in Cloud with Apache
Hadoop and Apache Spark

Ilias Mavridis

Aristotle University of Thessaloniki, Greece
imavridis@csd.auth.gr

Eleni Karatza

Aristotle University of Thessaloniki, Greece
karatza@csd.auth.gr

Abstract

Log files are a very important set of data that can lead to useful information through proper analysis. Due to
the high production rate and the number of devices and software that generate logs, the use of cloud services for
log analysis is almost necessary. This paper reviews the cloud computational framework ApacheTM Hadoop R©,
highlights the differences and similarities between Hadoop MapReduce and Apache SparkTM and evaluates the
performance of them. Log file analysis applications were developed in both frameworks and performed SQL-type
queries in real Apache Web Server log files. Various measurements were taken for each application and query with
different parameters in order to extract safe conclusions about the performance of the two frameworks.

Keywords Log analysis, Cloud, Apache Hadoop, Apache Spark, Performance evaluation

I. Introduction

The log files are a rich source of information that can be
used for various purposes. However, the high produc-
tion rate and the diversity between the logs makes it
difficult to analyze. The log production rate can reach
to several TeraBytes (TB) or PetaBytes (PB) per day,
for example Facebook dealt with 130 TB of logs every
day [1] in 2010 and in 2014 they have stored 300 PB of
logs [2]. For these reasons conventional database solu-
tions can’t be used for the analysis, but cloud or even
interconnected cloud systems [3] required to achieve
scalability and elasticity. Many big companies like
Facebook, Amazon, ebay, etc. use cloud computing
to analyze logs. Also from academia there are many
papers which investigate cloud computing (mainly
Hadoop) to analyze logs [4] - [14].

Hadoop is the framework that has mainly been used
to store and analyze data. Hadoop was designed for
batch processing providing scalability and fault toler-
ance but not fast performance [15]. It enables applica-
tions to run in thousands of nodes with Petabytes of
data. Hadoop responds to the large amount of logs by

breaking up log files into blocks and distribute them
to the nodes of the Hadoop cluster. It follows a similar
strategy for computing by breaking jobs into a number
of smaller tasks that will be executed in nodes of the
cluster.

However, Hadoop’s performance is not suitable for
real-time applications [16] because it frequently writes
and reads data from the disk. Spark solves this prob-
lem by minimizing these data transfers from and to
disk by using effectively the main memory and per-
forming in-memory computations. Also it provides
a new set of high-level tools for SQL queries, stream
processing, machine learning and graph processing
[17].

Our work complements existing research by investi-
gating and comparing log file analysis in Hadoop and
Spark. The rest of the paper is organized as follows.
Section II provides an overview of related research.
Section III describes briefly what is log file and log file
analysis in cloud. Section IV outlines the two open
source computing frameworks Hadoop and Spark. Sec-
tion V describes the setting of our experiments. Section
VI presents the experimental results. Finally Section

1

Ilias Mavridis,Eleni Karatza 51

Second NESUS Workshop • September 2015 • Vol. I, No. 1

VII concludes this paper.

II. Related Work

There are many papers whose authors investigate and
propose the use of cloud computing to log file analysis.
Paper [4] discusses the differences between the tradi-
tional relational database and big data. The authors
claim that log files were produced in higher rate than
traditional systems can serve and show experimental
log file analysis through Hadoop cluster.

Paper [5] presents a weblog analysis system based
on the Hadoop HDFS, Hadoop MapReduce and Pig
Latin Language. The system aims to assist administra-
tor to quickly analyze data and take business decisions.
It provides an administrators monitoring system, prob-
lem identification and system’s future trend prediction.

Also in [6] the authors discuss a Hadoop based sys-
tem with Pig for web log applications. A web appli-
cation has been created to distributed store log files
on the Hadoop cluster, run MapReduce jobs and dis-
play results in graphical formats like bar charts. They
have conclude that by this way there is a significant
response time improvement and that MapReduce can
successfully and efficiently process large datasets.

In line with [5] and [6], paper [7] proposes a mass
log data processing and data mining method based on
Hadoop to achieve scalability and high performance.
To achieve scalability and reliability the log data are
stored in HDFS and it is used Hadoop’s MapReduce
for high performance. In this case also, the experi-
mental results show that the Hadoop based processing
improves the performance of querying.

The paper [8] presents a scalable platform named
Analysis Farm, for network log analysis, fast aggre-
gation and agile query. To achieve storage scale-out,
computation scale-out and agile query, OpenStack has
been used for resource provisioning, and MongoDB for
log storage and analysis. In experiments with Analysis
Farm prototype with 10 MongoDB servers, the system
managed to aggregate about 3 million log records in
a 10-minute interval time and effectively query more
than 400 million records per day.

A Hadoop based flow logs analyzing system has
been proposed in paper [9]. This system uses for log
analysis a new script language called Log-QL, which

is a SQL-like language. After experiments they con-
cluded that their distributed system is faster than the
centralized system.

Paper [10] presents a cloud platform for batch log
data analysis with Hadoop and Spark. The authors
propose a cloud platform with batch processing and in-
memory computing capabilities by combining Hadoop,
Spark and Hive/Shark. The proposed system manage
to analyze logs with higher stability, availability and
efficiency than standalone Hadoop-based log analysis
tools.

In paper [11] has been implemented a Hadoop
MapReduce-based framework to analyze logs for
anomaly detection. First they collect the system logs
from each node of the monitored cluster to the anal-
ysis cluster. Then, they apply the K-means clustering
algorithm to integrate the collected logs. After that,
they execute a MapReduce-Based algorithm to parse
these clustered log files. By this way, they can monitor
the distributed cluster status and detect its anomalies.

Log file analysis can also be used for system threats
and problem identification. Paper [12] presents a new
approach which uses a MapReduce algorithm for log
analysis to provide appropriate security alerts or warn-
ings. They achieve a significant improvement in re-
sponse time for large log file analysis and as a result
to a faster reaction by the administrator.

In [13] the authors describe an approach which uses
log file analysis for intrusion detection. The objective
of the paper is to enhance the throughput and scala-
bility by using Hadoop MapReduce and cloud com-
puting infrastructure. They describe the architecture
and implement performance analysis of an intrusion
detection system based on Cloud Computing. From
the experiments they conclude that the system fulfills
the scalability, fault tolerant and reliability expectations
which is designed for.

Finally [14] presents SAFAL, a Spatio-temporal An-
alyzer of FTP Access Logs collected by UNAVCO’s
data center. These logs contain massive amounts of
data like borehole seismic, strainmeter, meteorological,
and digital imagery data. The system was developed
using MapReduce/Hadoop in order to identify trends
in GPS data usage. They conducted several experi-
ments and found that SAFAL was able to analyze very
efficiently millions of lines of FTP access logs. Also

2

52 Log File Analysis in Cloud with Apache Hadoop and Apache Spark

Second NESUS Workshop • September 2015 • Vol. I, No. 1

the authors conclude that it could be possible to create
near real time maps by the analysis of the logs.

III. Log File Analysis

Log file analysis is the analysis of log data in order
to extract some useful information [17]. As the log
data come from many different systems in a variety of
forms, a proper analysis requires a good knowledge
of the system. It must be clear what is good and bad
for a specific system and what is suspicious or not.
Worth noting that a same value maybe is suspicious
for a system but completely normal for another one.

III.1 Log Files

Each working computer system collects information
about various operations. This information is stored in
specific files which called log files [19]. Log files consist
of log messages or simply log(s). A log message is what
a computer system, device, software, etc. generates in
response to some sort of stimuli [18]. The information
that pulled out of a log message and declares why the
log message generated is called log data [18].

A common log message includes the timestamp, the
source, and the data. The timestamp indicates the time
at which the log message was created. The source is
the system that created the log message and the data
is the essence of the log message. Unfortunately this
format is not a standard and so the log message can
be significantly different from system to system.

Figure 1: Apache web access log.

One of the most widespread types of log files in the
web is the log files that were produced by the Apache
HTTP Server [20]. Figure 1 shows the first three lines
of a real Apache web access log file.

As shown in Figure 1, the first element of every row
is the ip address of the client (e.g. 192.168.100.252) or
may be the name of the node which made the request
to the server. Then there are two dashes (- -) which
means that there is no value for this two fields [20]. The

first dash stands for the identity of the client specified
in RFC 1413 [21], and the second dash represents the
user id of the person requesting the server. The fourth
element in each of these log messages indicates the
date and time that the client’s request had been served
by the server and in the same brackets there is the
server’s time zone (e.g. +0700). Next in double quotes
is the request line from the client. The request line first
contains the method that has been used by the client
(e.g. GET), then there is the requested source (e.g./p4p/
report_detail_edit.php?name_t=3) and finally the
used protocol (e.g. HTTP/1.1). At the end of each
row there are two numbers that follows the request
line.The first number is the status code that the server
returns to the client (e.g. 200) and the last number
indicates the size of the object returned to the client
and is usually expressed in bytes (e.g. 8013).

III.2 Log Analysis in the Cloud

The rise of cloud computing and the growing require-
ment for processing and storing capabilities for log
analysis, resulted in the combination of cloud com-
puting and log analysis. It has emerged a new term,
the Logging as a Service (LaaS). There are some cloud
service providers that undertake to analyze the logs
for one of their clients [22]. Users of such services
can collect logs from various devices and software and
submit them to the cloud for processing, as shown in
Figure 2. The LaaS is a quite new cloud service but
there are already providers like [23] and [24] that offer
different service products. There are some features
and capabilities common to all and some others that
vary from provider to provider.

The main elements that LaaS has is the file uploading
from the user to the cloud, indexing of data (for fast
search, etc.), long-term storage and a user interface to
search and review the data [18]. Most providers also
supports various types of log formats and have their
own API [23] [24]. Moreover, the majority of providers
charge their services with the model "pay as you go",
where the user is charged depending on the use of
services has made.

On the other hand, there are differences in the
way that each provider has developed its system [18].
Some providers have built their services to another

3

Ilias Mavridis,Eleni Karatza 53

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 2: Logging as a Service (LaaS).

provider’s cloud, while others in their own cloud in-
frastructure. Also, although all LaaS providers offer
the possibility of long-term storage of data, the charges
are not the same and the highest possible storage time
differs also. Furthermore as it’s expected the charges
vary from provider to provider.

IV. The Computational Frameworks

The cloud computing frameworks that have been re-
viewed are the Hadoop and Spark. Hadoop is a well-
established framework that has been used for storing,
managing and processing large data volumes for many
years by companies like Facebook, Yahoo, Adobe, Twit-
ter, ebay, IBM, Linkedin and Spotify [25]. Hadoop is
based on MapReduce programming model which is
developed for batch processing. However the need for
real-time data analysis leads to a new general engine
for large-scale data processing, Spark. Spark was de-
veloped by AMPLab [26] of UC Berkeley and unlike
the Hadoop’s MapReduce, it uses the main memory,
achieving up to 100 times higher performance for cer-
tain applications compared to Hadoop MapReduce
[27].

IV.1 Apache Hadoop

Hadoop [28] is a framework for running applications
on large clusters built of commodity hardware. It
comes from Apache Nutch [29], which is an open
source search engine. Key element to develop Hadoop

were two Google papers, the first one was published
in 2003 and describes the Google Distributed Filesys-
tem -GFS [30] and the second one was published in
2004, and describes the MapReduce [31]. In February
2006 a part of Nutch became independent and created
Hadoop. In 2010 a team from Yahoo began to design
the next generation of Hadoop, the Hadoop YARN (Yet
Another Resource Negotiator) or MapReduce2 [32].

The YARN changed the resource management to
overcome the problems that had arisen, and also made
the Hadoop capable of supporting a wide range of
new applications with new features. The YARN is
more general than the MapReduce (Figure 3), in fact
the MapReduce is a YARN application. There are
other YARN applications like Spark [33], which can run
parallel to the MapReduce, under the same resource
manager.

Figure 3: Hadoop 1.0 to Hadoop 2.0 [33].

Hadoop at its core lies at the HDFS [34] and
the MapReduce computational model. However the
term is also used for a set of related programs that
used for distributed processing and processing of
large-scale data, such as HiveTM [35], MahoutTM [36],
ZookeeperTM [37] and others.

IV.1.1 Hadoop Distributed File System

The Hadoop distributed file system (HDFS) is created
as a file system with blocks. As shown in Figure 4, the
files are separated into blocks of a fixed size and stored
at different nodes of Hadoop cluster [34]. Because
the files are divided into smaller blocks, HDFS can
store files much bigger than the disk capacity of each
node. The stored files follows the write-once, read-
many approach and can not be modified. On the other

4

54 Log File Analysis in Cloud with Apache Hadoop and Apache Spark

Second NESUS Workshop • September 2015 • Vol. I, No. 1

hand there are the metadata files that describe the
system and are changeable. There is a dedicated node
called NameNode that stores all system’s metadata
and ensures that is always up to date.

Figure 4: HDFS architecture.

The HDFS is implemented with the master/slave
model. The NameNode is the master that manages
the file system namespace and determines the client’s
access to the files. The slaves are called DataNodes and
are responsible for storing the data and do anything
that NameNode dictates them.

For fault-tolerance, HDFS replicates each block of
a DataNode to other nodes [38]. To prevent disaster
from Namenode failure, there is a secondary NameN-
ode and replicas of the NameNode’s metadata. Also
worth noting that HDFS tries to respond to a read
request with the closer copy to the reader (Rack Aware-
ness) [34] in order to minimize the total bandwidth
utilization and the reading time.

IV.1.2 MapReduce

MapReduce is a batch-based, distributed comput-
ing framework presented by Google’s paper [31]. A
MapReduce program consist of the Map Phase and the
Reduce Phase [39]. Initially the data are processed by
the map function and produce an intermediate result
in the form of <Key, Value>. There can be many val-
ues with the same key. After that follows the reduce
function. The reduce function performs a summary
operation that process the intermediate results and
generates the final result.

In the original version of the Hadoop MapReduce
there are two types of nodes, the JobTracker (master)

and TaskTrackers (slaves). In each MapReduce cluster
there is a JobTracker that is responsible for resource
management, job scheduling and monitoring [40]. The
TaskTrackers run processes that were assigned to them
by the JobTracker.

With Hadoop Yarn the execution model became
more scalable and generic than the earlier version. The
new Hadoop Yarn can run applications that do not
follow the MapReduce model. With YARN, there is no
longer a single JobTracker that does all the resource
management, instead the ResourceManager and the
NodeManager manage the applications. The Resource-
Manager is allocating resources to the different applica-
tions of the cluster. The ApplicationMaster negotiates
resources from the ResourceManager and works with
the NodeManager(s) to execute and monitor the com-
ponent tasks [32].

IV.2 Apache Spark

Spark was developed in 2009 by AMPLab of UC Berke-
ley, and became an open source project in 2010 [41].
In 2013, the program was donated to the Apache soft-
ware foundation and in February 2014 the Spark was
a high-level program in the same foundation [42]. In
November 2014, the engineering team at Databricks set
a new record in large-scale sorting using Spark [43].

Spark extends the popular MapReduce model, sup-
ports more types of data processing and the combina-
tion of them, such as SQL-type queries and data flow
processing. For ease of use, Spark has Python, Java,
Scala and SQL APIs, and many embedded libraries.

One of the main features of Spark is the exploitation
of main memory [44]. It may accelerate an application
to one hundred times using memory and ten times
using only the disc compared to Hadoop MapReduce
cluster [41].

IV.2.1 Spark Ecosystem

Spark is a general purpose engine that supports higher-
level items specialized to a particular kind of process-
ing [41]. These components are designed to operate
close to the core, and can be used as libraries during
the development of a program.

The components of the Spark ecosystem are [41]:

5

Ilias Mavridis,Eleni Karatza 55

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 5: Spark ecosystem.

• Spark Core: Is the general execution engine for
the Spark platform and every other functionality
is built on top of it.

• Spark SQL: Is a Spark module for structured data
processing. It can act as a distributed SQL query
engine.

• Spark Streaming: Enables interactive and analyti-
cal applications across both streaming and histori-
cal data.

• MLlib: Is a scalable machine learning library.

• GraphX: Is a graph computation engine that en-
ables users to manipulate and perform parallel
processing in graphs.

IV.2.2 Resilient Distributed Dataset

Spark uses a new parallel and fault-tolerant data struc-
ture called Resilient Distributed Dataset (RDD) [45].
Spark automatically distributes the RDD data in the
cluster and performs parallel processing on them. The
RDDs can contain any object or class of Python, Java
or Scala.

The RDDs supports two types of operations, transfor-
mations which generate a new dataset from an existing
one, and actions which return a value after running a
computation on a dataset [46]. For example, map is a
transformation that passes each element of a RDD to a
function and results to a new RDD with the computed
values. On the contrary, reduce is an action that passes
each element of a RDD to a function and returns a
single value as a result.

To achieve efficiency Spark’s transformations are
"lazy" [47], which means that the computation of a new
RDD is not executed immediately after the command

is given. Instead, the transformations run only when
an action needs the transformation result. On the other
hand actions run immediately.

One of the most important capabilities of Spark is
persisting or caching a dataset in main memory [47].
By maintaining a RDD in main memory, each node
can perform much faster future computations in this
dataset, often more than ten times faster. Also the
cached RDD is fault-tolerant, which means that if a
partition of RDD is damaged, then it will automatically
recalculated with the proper transformations and will
be replaced.

V. Experimental Setup

We have conducted a series of tests to experimentally
evaluate the performance of the two frameworks. For
this purpose has been developed a cluster with virtu-
alized computing resources of Okeanos [48]. Okeanos
is an IaaS (Infrastructure as a Service) Service, devel-
oped by the Greek Research and Technology Network
[49]. It is offered to the Greek Research and Academic
community and provides access to Virtual Machines,
Virtual Ethernets, Virtual Disks, and Virtual Firewalls,
over a web-based UI.

In these experiments have been used 5 nodes, 4
slaves and 1 master. The slaves have configured with
2 cpu units, 6GB memory, 40GB disk space and the
master with 8 cpu units, 8GB memory and 40GB disk
space.

The log file that has been used to testing is a real
world log file. This file is an Apache HTTP Server log
which is accessible through internet and was found
after a relevant search. The log messages of this file
have the form shown in Figure 1. To perform the
experiments the two frameworks were installed to the
cluster in the same nodes. The programs were devel-
oped in the same language (java) for both frameworks
and the log files were saved in HDFS.

VI. Experimental Results

For each program, measurements were taken related
to the execution time and the number of active slave
nodes, the size of the input file and the type of pro-
gram.

6

56 Log File Analysis in Cloud with Apache Hadoop and Apache Spark

Second NESUS Workshop • September 2015 • Vol. I, No. 1

VI.1 Hadoop Expirements

We conducted different tests with different input file
sizes, number of active nodes and programs. As shown
in Figure 6 and Figure 7 the increment of the input file
size results in the increment of the program’s execution
time. We also observe an increment in execution time
when the number of active nodes is reduced, with a
particularly big increment when remains only one slave
node. These observations is completely reasonable
because by these ways the processing volume for each
node has been increased and as a result the processing
time.

Figure 6: Execution times of Hadoop programs with 1.1GB
input file.

Furthermore we see that the first program (blue)
takes considerably more time to run. This is due to
the nature of the program, because its Reduce phase
requires much more processing work than the Reduce
phase of the other two programs. And while Map
processes have almost the same execution times, the
big difference in Reduce process makes a difference in
the end.

Moreover we observe that there is a slight difference
in execution times between two or four nodes for the
smaller file. This makes sense because the file is rel-
atively small and two nodes have enough computing
power to execute the required processes. On the other
hand for the same reason we see that for the largest file
each additional node makes a difference in execution
time.

Figure 7: Execution times of Hadoop programs with 11GB
input file.

Finally in Figure 7 all four nodes were better ex-
ploited due to the large input file. At this case the
doubling of the active nodes leads to almost halve of
the execution time (differs for program to program).

VI.2 Spark Expirements

In correspondence to Hadoop’s experiments, relevant
experiments carried out in Spark. Spark programs can
run as a standalone Spark applications or executed
on YARN. For the following tests the programs run
as standalone Spark applications (both are supported
from the developed system).

Figure 8: Execution times of Spark programs with 1.1GB
input file.

7

Ilias Mavridis,Eleni Karatza 57

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 9: Execution times of Spark programs with 11GB
input file.

In these tests we generally observed that Spark’s
behavior is same as Hadoop. The increment of the size
of the input file or the reduce of active slaves increase
the program execution time especially when reamains
active only one node. This is reasonable because -as
explained previously- with these two ways the pro-
cessing volume for each node has been increased and
hence the processing time.

Furthermore in Figure 8 and Figure 9 we see that
the three programs that were tested have different exe-
cution times, and even maintain the finish order. The
third program (gray) has the less execution time, fol-
lows the first (blue) and finally the second (orange).
This is because the programs require a different num-
ber and type of calculations, so the simpler program
finishes first.

Also we observe that for input file of 1.1 GB there
is a small difference in execution time with two to
four nodes, because the file is relatively small and the
process required can be carried out with two nodes.
Same as Hadoop, for large file of 11 GB, each addi-
tional node makes a difference by contributing to the
execution process.

In addition these programs are executed with the
same input file in the same cluster but in a different
way. Figure 10 shows the difference in the execution
time according to whether the programs run on YARN
or standalone. The execution of Spark programs on
YARN offers additional features such as monitoring,
dynamic resource management of the cluster, security
through Kerberos protocol, possibility of parallel ex-

Figure 10: Spark on yarn and Spark standalone.

ecution of various programs (e.g. MapReduce, Hive)
and other features that are not supported by the stan-
dalone mode. However, as shown in Figure 10 the
execution of programs on YARN is quite slower than
standalone, that is because YARN has a quite complex
resource management and scheduling compared to the
Spark standalone and as a result there is a difference
in execution time.

As shown in Figure 10, there are two types of yarn
modes. In cluster-mode the driver runs in a process
of the master who manages YARN. On the contrary in
client-mode driver runs on client’s process [50].

VI.3 SQL-type Queries Experiments

Figure 11 presents the performance comparison of
Hadoop Hive and Spark SQL which are used for sql-
type queries. For the experiments that we have con-
tacted the Spark SQL runs in standalone mode and the
executed queries are about error counting. The execu-
tion time of Spark SQL improved significantly when
the table saved in main memory with the command
CACHE TABLE tableName. As shown in Figure 11
the performance of Spark SQL is better than Hive. This
happens because Spark SQL has a set of techniques to
prevent reads and writes to disk storage, caching of
tables in memory and optimizing efficiency.

VI.4 Overall Results

Various measurements have shown how systems react
to changes in the size of the input file, the type of

8

58 Log File Analysis in Cloud with Apache Hadoop and Apache Spark

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 11: Execution times of SQL-type queries.

executed program and available nodes in the cluster.
The two frameworks are highly configurable and their
performance may vary depending on their settings.
However by mainly maintaining presets and executing
the same program with the same input data we can
draw a conclusion.

To directly compare the two frameworks were exe-
cuted on both the same programs. The first program
is about error counting and the second is about er-
rors finding. Figure 12 shows the performance of
the frameworks for the first program, for input files
of 1.1 GB and of 11 GB. The Spark presents the best
performance, follows the Spark SQL, and then Hadoop
MapReduce and Hadoop Hive with big difference in
execution times. These results are in complete agree-
ment with what has been previously described and
confirm that the performance of Spark in most cases
is better than Hadoop. The same conclusion comes
from Figure 13 showing the performance of the second
program for both frameworks.

Figure 12: Execution times of count errors programs and
SQL-type queries.

Figure 13: Execution times of find errors programs and
SQL-type queries.

VII. Conclusions

This work aims to investigate the analysis of log files
with the two most widespread computing frameworks
in cloud computing, the well-established Hadoop and
rising Spark. In the two frameworks have developed,
executed and evaluated realistic programs for analyz-
ing logs.

The two frameworks have the common goal of par-
allel processes execution on distributed files or other
input files. The Hadoop is one of the first frameworks
for cloud computing, is widely used and is one of the
most active projects of the Apache foundation. Over
the years Hadoop evolved and improved in order to
meet the new era needs. These new needs led also to
the creation of Spark.

Spark is different from Hadoop’s MapReduce to two
key points, which give Spark better performance and
flexibility. The first is that Spark saves intermediate
results in memory instead of the disk, thus it dramat-
ically reduces the execution time. Secondly, Spark
except of MapReduce functions, supports a wide range
of new capabilities that can be combined to generate
new powerful programs.

The various experiments that have been carried out
show Spark’s best performance. However, the pro-
grams were implemented in such a way to make pos-
sible the comparison between the two frameworks.
As future work could be implemented programs that
make full use of Spark capabilities in order to evaluate
the performance of the framework for more complex

9

Ilias Mavridis,Eleni Karatza 59

Second NESUS Workshop • September 2015 • Vol. I, No. 1

log analysis programs.

Acknowledgment

The authors would like to thank Okeanos the GRNET’s
cloud service for the valuable resources.

References

[1] https://www.facebook.com/notes/facebook-
engineering/scaling-facebook-to-500-
million-users-and-beyond/409881258919

[2] https://code.facebook.com/posts/
229861827208629/scaling-the-facebook-data-
warehouse-to-300-pb/

[3] I.A. Moschakis and H.D. Karatza, "A meta-heuristic
optimization approach to the scheduling of Bag-of-
Tasks applications on heterogeneous Clouds with
multi-level arrivals and critical jobs," Simulation
Modelling Practice and Theory, Elsevier, vol. 57, pp.
1-25, 2015.

[4] B. Kotiyal, A. Kumar, B. Pant and R. Goudar, “Big
Data: Mining of Log File through Hadoop,” in
IEEE International Conference on Human Computer In-
teractions (ICHCI’13), Chennai, India, August 2013,
pp. 1-7.

[5] C. Wang, C. Tsai, C. Fan, Sh. Yuan, “A Hadoop
based Weblog Analysis System,” in 7th International
Conference on Ubi-Media Computing and Workshops
(U-MEDIA 2014), Ulaanbaatar, Mongolia, July 2014,
pp. 72-77.

[6] S. Narkhede and T. Baraskar, ”HMR log analyzer:
Analyze web application logs over Hadoop MapRe-
duce,” International Journal of UbiComp (IJU), vol.4,
No.3, pp. 41-51, 2013.

[7] H. Yu and D.i Wang, “Mass Log Data Processing
and Mining Based on Hadoop and Cloud Com-
puting,” in 7th International Conference on Computer
Science and Education (ICCSE 2012),Melbourne, Aus-
tralia, July 2012, pp. 197.

[8] J. Wei, Y. Zhao, K. Jiang, R. Xie and Y. Jin, “Analy-
sis farm: A cloud-based scalable aggregation and

query platform for network log analysis,” in Inter-
national Conference on Cloud and Service Computing
(CSC), Hong Kong, China, December 2011, pp. 354-
359.

[9] J. Yang, Y. Zhang, S. Zhang and Dazhong He,
“Mass flow logs analysis system based on Hadoop,”
in 5th IEEE International Conference on Broadband Net-
work and Multimedia Technology (IC-BNMT), Guilin,
China, November 2013, pp. 115-118.

[10] X. LIN, P. WANG and B. WU, “Log analysis in
cloud computing environment with Hadoop and
Spark,” in 5th IEEE International Conference on Broad-
band Network and Multimedia Technology (IC-BNMT
2013), Guilin, China, November 2013, pp. 273-276.

[11] Y. Liu, W. Pan, N. Cao and G. Qiao, “System
Anomaly Detection in Distributed Systems through
MapReduce-Based Log Analysis,” in 3rd Interna-
tional Conference on Advanced Computer Theory and
Engineering (ICACTE), Chengdu, China, August
2010, pp. V6-410 - V6-413 .

[12] S. Vernekar and A. Buchade, “MapReduce based
Log File Analysis for System Threats and Problem
Identification,” in Advance Computing Conference
(IACC), 2013 IEEE 3rd International, Patiala, India,
February 2013, pp. 831-835.

[13] M. Kumar and Dr. M. Hanumanthappa, “Scalable
Intrusion Detection Systems Log Analysis using
Cloud Computing Infrastructure,” in 2013 IEEE
International Conference on Computational Intelligence
and Computing Research (ICCIC), Tamilnadu, India,
December 2013, pp.1-4.

[14] H. Kathleen and R. Abdelmounaam, “SAFAL:
A MapReduce Spatio-temporal Analyzer for UN-
AVCO FTP Logs,” in IEEE 16th International Confer-
ence on Computational Science and Engineering (CSE),
Sydney, Australia, December 2013, pp. 1083-1090.

[15] http://wiki.apache.org/hadoop/

[16] G.L. Stavrinides, H.D. Karatza, “A cost-effective
and QoS-aware approach to scheduling real-time
workflow applications in PaaS and SaaS clouds,”
in 3rd International Conference on Future Internet of

10

60 Log File Analysis in Cloud with Apache Hadoop and Apache Spark

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Things and Cloud (FiCloud’15), Rome, Italy, August
2015, pp. 231-239.

[17] https://databricks.com/spark

[18] Dr. A. A. Chuvakin, K. J. Schmidt, Chr. Phillips, P.
Moulder, Logging and Log Management: the authori-
tative guide to understanding the concepts surrounding
logging and log management, Elsevier Inc. Waltham,
2013.

[19] J. Pinto Leite, “Analysis of Log Files as a Security
Aid,” in 6th Iberian Conference on Information Systems
and Technologies (CISTI), Lousada, Portugal, June
2011, pp. 1-6.

[20] http://httpd.apache.org/docs/1.3/
logs.html

[21] http://www.rfc-base.org/rfc-1413.html

[22] D. Jayathilake, “Towards Structured Log Analy-
sis,” in 9th International Joint Conference on Com-
puter Science and Software Engineering (JCSSE 2012),
Bangkok, Thailand, May âĂŞ June 2012, pp. 259
264.

[23] www.loggly.com

[24] www.splunkstorm.com

[25] http://wiki.apache.org/hadoop/PoweredBy

[26] https://amplab.cs.berkeley.edu/software

[27] R. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S.
Shenker and I. Stoica, “Shark: SQL and Rich Ana-
lytics at Scale,” in SIGMOD 2013, New York, USA,
June 2013, pp. 13-24.

[28] http://wiki.apache.org/hadoop

[29] http://nutch.apache.org

[30] G. Sanjay, G. Howard and L. Shun-Tak, “The
Google File System,” in 19th ACM Symposium on
Operating Systems Principles, Lake George, NY, Oc-
tober 2003.

[31] J. Dean and S. Ghemawat, “MapReduce: Sim-
plified Data Processing on Large Clusters,” in
OSDI’04: Sixth Symposium on Operating System De-
sign and Implementation, San Francisco, CA, Decem-
ber 2004.

[32] http://hortonworks.com/hadoop/yarn/

[33] http://wiki.apache.org/hadoop/
PoweredByYarn

[34] http://hadoop.apache.org/docs/r2.4.1/
hadoop-project-dist/hadoop-hdfs/
HdfsUserGuide.html

[35] http://hive.apache.org/

[36] http://mahout.apache.org/

[37] http://zookeeper.apache.org/

[38] http://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html

[39] J. Dean and S. Ghemawat, "MapReduce: Simpli-
fied Data Processing on Large Clusters, " Commu-
nications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

[40] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit,
J. Chen and D. Chen, " G-Hadoop: MapReduce
across distributed data centers for data-intensive
computing, " Future Generation Computer Systems,
vol. 29, no 3, pp. 739-750, 2013.

[41] https://databricks.com/spark

[42] https://blogs.apache.org/foundation/
entry/the_apache_software_foundation_
announces50

[43] http://databricks.com/blog/2014/11/05/
spark-officially-sets-a-new-record-in-
large-scale-sorting.html

[44] https://spark.apache.org/

[45] M. Zaharia, M. Chowdhury, T. Das, Ank. Dave, J.
Ma, M. McCauley, M. J. Franklin, Sc. Shenker and
Ion Stoica, “Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Com-
puting,” in 9th USENIX conference on Networked

11

Ilias Mavridis,Eleni Karatza 61

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Systems Design and Implementation, CA, USA, 2012,
pp. 2-2.

[46] http://spark.apache.org/docs/latest/
programming-guide.html

[47] M. Zaharia, M. Chowdhury, M. J. Franklin, Sc.
Shenker and Ion Stoica, "Spark: Cluster Computing
with Working Sets,” in 2nd USENIX conference on
Hot topics in cloud computing, CA, USA, 2010, pp.10-
12.

[48] https://okeanos.grnet.gr

[49] Ev. Koukis and P. Louridas, “okeanos IaaS,” in
EGI Community Forum 2012 / EMI Second Technical
Conference, Munich, Germany, March 2012.

[50] http://docs.hortonworks.com/HDPDocuments/
HDP2/HDP-2.1.3/bk_using-apache-hadoop/
content/yarn_overview.html

12

62 Log File Analysis in Cloud with Apache Hadoop and Apache Spark

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

NekBone with Optimized OpenACC
directives

Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure
PDC Center for High Performance Computing,

KTH Royal Institute of Technology, Sweden, and

the Swedish e-Science Research Centre (SeRC)

(gongjing,markidis,michs,erwinl)@pdc.kth.se

Luis Cebamanos
The University of Edinburgh, UK

l.cebamanos@epcc.ed.ac.uk

Alistair Hart
Cray Exascale Research Initiative Europe, UK

ahart@cray.com

Misun Min, Paul Fischer
Argonne National Laboratory, U.S.A

mmin,fischer@mcs.anl.gov

Abstract

Accelerators and, in particular, Graphics Processing Units (GPUs) have emerged as promising computing
technologies which may be suitable for the future Exascale systems. Here, we present performance results of
NekBone, a benchmark of the Nek5000 code, implemented with optimized OpenACC directives and GPUDirect
communications. Nek5000 is a computational fluid dynamics code based on the spectral element method used for
the simulation of incompressible flow. Results of an optimized NekBone version lead to 78 Gflops performance
on a single node. In addition, a performance result of 609 Tflops has been reached on 16, 384 GPUs of the Titan
supercomputer at Oak Ridge National Laboratory.

Keywords NekBone/Nek5000, OpenACC, Spectral element method, GPUDirect

I. Introduction

There is a long history to employ GPUs to accelerate
Computational Fluid Dynamic (CFD) codes [1, 2, 3].
However, most implementations use the Nvidia par-
allel programming and computing platform; CUDA.
This means that developers need to rewrite their orig-
inal applications in order to obtain a substantial per-
formance improvement [4].

OpenACC [5] is a directive-based HPC parallel pro-
gramming model, using host-directed execution with
an attached accelerator device. In addition, GPUDi-

rect for communication enables a direct path for data
exchange between GPUs bypassing CPU host mem-
ory. In the paper, we extend the initial results [6, 7, 8]
on porting Nek5000 to GPU systems, to enhance
and optimize the performance on massively parallel
hybrid CPU/GPU systems. In this implementation,
the large-scale parallelism is handled by MPI, while
OpenACC deal with the fine-grained parallelism of
matrix-matrix multiplication.

The paper is organized as follows. In Section II
we give an overview of the Nek5000 and NekBone
code. In Section III we discuss in details regarding

1

Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Luis Cebamanos, Alistair Hart, Misun Min, Paul Fischer 63

Second NESUS Workshop • September 2015 • Vol. I, No. 1

optimized matrix-matrix multiplications and gather-
scatter operators. The performance results are pro-
vided in Section IV. Finally, we summarize the results
and further works.

II. Nek5000 and its NekBone benchmark

Nek5000 [9] is an open-source code for simulating in-
compressible flows using MPI for parallel communi-
cation. The code is widely used in a broad range of
applications. The Nek5000 discretization scheme is
based on the spectral-element method [10, 11]. In this
approach, the incompressible Navier-Stokes equations
are discretized in space by using high-order weighted
residual techniques employing tensor-product polyno-
mial bases.

In Nek5000, the derivatives in physical space can be
calculated using the chain rule [12],

∂U

∂xl
=

3

∑
m=1

∂U

∂rm

∂rm
∂xl

. (1)

Typically, this equation (1) is evaluated on the GLL
points of N. In the case of three-dimensional with
number of elements E, it creates an additional 9n
memory references and 36n operations, where n =
E · N3 is the total number of gridpoints. The
tensor-product-based operator evaluation can be im-
plemented as matrix-matrix products. This implemen-
tation of (1) makes possible to port the most time-
consuming parts of the code into a GPU-accelerated
system.

NekBone [13] is configured with the basic structure
and user interface of the extensive Nek5000 software.
NekBone solves a standard Poisson equation using
the spectral element method with an iterative conju-
gate gradient solver and exposes the principal compu-
tational kernel to reveal the essential elements of the
algorithmic-architectural coupling that is pertinent to
Nek5000. Consequently, the results from investigat-
ing the performance and profiling of NekBone can be
directly applied to Nek5000.

III. Optimized OpenACC
implementations

III.1 Matrix-Matrix Multiplications

The matrix-matrix multiplications are performed
through the direct operator evaluation based on Equa-
tion (1). Algorithm 1 shows the pseudo-code of

the local_grad_acc subroutine which computes the
derivatives of U using CCE compiler.

Algorithm 1 CCE version for the final optimized
derivative operations.

local_grad_acc
!$ACC DATA PRESENT(w,u,gxyz,ur,us,ut,wk,dxm1,dxtm1)
!$ACC PARALLEL LOOP COLLAPSE(4) GANG WORKER VECTOR
!$ACC& VECTOR_LENGTH(128) PRIVATE(wr,ws,wt)

do e = 1,nelt
do k=1,nz1
do j=1,ny1
do i=1,nx1

wr = 0
ws = 0
wt = 0

!$ACC LOOP SEQ
do l=1,nx1 ! serial loop, no reduction needed

wr = wr + dxm1(i,l)*u(l,j,k,e)
ws = ws + dxm1(j,l)*u(i,l,k,e)
wt = wt + dxm1(k,l)*u(i,j,l,e)

enddo
ur(i,j,k,e) = gxyz(i,j,k,1,e)*wr

$ + gxyz(i,j,k,2,e)*ws
$ + gxyz(i,j,k,3,e)*wt

enddo
enddo
enddo

enddo
!$ACC END PARALLEL LOOP
...

Algorithm 2 illustrates the use of OpenACC direc-
tives with PGI compiler. Here, the OpenACC direc-
tives KERNELS and LOOP VECTOR are used for an opti-
mized performances with the PGI compiler.

The other optimized implementation evaluated in
this paper is to call CUDA device functions from
within OpenACC kernels. This can be done using the
OpenACC directive !$acc host_data use_device.
The OpenACC construct host_data indicates the ad-
dress of device data available on the host, then the
arrays are listed in the use_device clause within the
host_data region. The compiler will generate code to
use the device copy of the arrays, instead of the host
copy. The interface implemented between OpenACC
and CUDA functions is provided below.

!$acc host_data use_device(w,u,ur,us,ut,gxyz,dxm1,dxtm1)
if (nx1.eq.8) then

call ax_cuf8<<<nelt,dim3(nx1,ny1,nz1)>>>(w,u,
$ ur,us,ut,gxyz,dxm1,dxtm1)

...
else if (nx1.eq.14) then

call ax_cuf14<<<nelt,dim3(nx1,ny1,nz1/2)>>>(w,u,
$ ur,us,ut,gxyz,dxm1,dxtm1)
else

call ax_cuf16<<<nelt,dim3(nx1,ny1,nz1/4)>>>(w,u,

2

64 NekBone with Optimized OpenACC directives

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Algorithm 2 PGI version for the final optimized
derivative operations.

local_grad_acc
!$ACC DATA PRESENT(w,u,gxyz,ur,us,ut,wk,dxm1,dxtm1)
!$ACC KERNELS
!$ACC& GANG

do e = 1,nelt
!$ACC& LOOP VECTOR(NZ1)

do k=1,nz1
!$ACC& LOOP VECTOR(NY1)

do j=1,ny1
!$ACC& LOOP VECTOR(NX1)

do i=1,nx1
wr = 0
ws = 0
wt = 0

!$ACC LOOP SEQ
do l=1,nx1 ! serial loop, no reduction needed

wr = wr + dxm1(i,l)*u(l,j,k,e)
ws = ws + dxm1(j,l)*u(i,l,k,e)
wt = wt + dxm1(k,l)*u(i,j,l,e)

enddo
ur(i,j,k,e) = gxyz(i,j,k,1,e)*wr

$ + gxyz(i,j,k,2,e)*ws
$ + gxyz(i,j,k,3,e)*wt

enddo
enddo
enddo

enddo
!$ACC END KERNELS
...

$ ur,us,ut,gxyz,dxm1,dxtm1)
endif
istat = cudaDeviceSynchronize()

!$acc end host_data

The utilization of shared memory in GPUs is very
important for writing optimized CUDA code since ac-
cess to shared memory is much faster than to global
memory. Shared memory is allocated per thread
block, therefore all threads in a block have access to
the same shared memory. On NVIDIA Kepler GPUs
with compute capability 3.x, shared memory has 32
banks, with each bank having a bandwidth of 64-bits
per clock cycle. Kepler GPUs are configurable where
either successive 32-bit words or 64-bit words are as-
signed to successive banks. This is particularly impor-
tant for cases with higher polynomial degree. Con-
sidering that our matrix-matrix operations use three
temporary arrays of size N3 a total of 64KB shared
memory is required for the case N = 14 with dou-
ble precision. An example of such implementation in
CUDA FORTRAN for polynomial degree 14 can be
seen in Algorithm 3.

Algorithm 3 CUDA FORTRAN version for the final
tuned derivative operations

subroutine local_grad_cuf14
real, intent(out) :: w(lx1,ly1,lz1,lelt)
real, intent(in) :: u(lx1,ly1,lz1,lelt)

real gxyz(lx1,ly1,lz1,2*ldim,lelt)

real, intent(in) :: dxm1(lx1,lx1)
real, intent(in) :: dxtm1(lx1,lx1)

real rtmp,stmp,ttmp,wijk1e,wijk2e
real, shared :: shdxm1(lx1,lx1)
real, shared :: shdxtm1(lx1,lx1)
real, shared :: shur(lx1,ly1,lz1)
real, shared :: shus(lx1,ly1,lz1)
real, shared :: shut(lx1,ly1,lz1)
integer e,i,j,k,l

e = blockIdx%x
k = threadIdx%z
j = threadIdx%y
i = threadIdx%x

if (k.eq.1) then
shdxm1(i,j) = dxm1(i,j)
shdxtm1(i,j) = dxtm1(i,j)

end if
call syncthreads()

rtmp = 0.0
stmp = 0.0
ttmp = 0.0
do l=1,lx1

rtmp = rtmp+shdxm1(i,l)*u(l,j,k,e)
stmp = stmp+shdxm1(j,l)*u(i,l,k,e)
ttmp = ttmp+shdxm1(k,l)*u(i,j,l,e)

enddo
shur(i,j,k) = gxyz(i,j,k,1,e)*rtmp

$ + gxyz(i,j,k,2,e)*stmp
$ + gxyz(i,j,k,3,e)*ttmp
rtmp = 0.0
stmp = 0.0
ttmp = 0.0
do l=1,lx1

rtmp = rtmp+shdxm1(i,l)*u(l,j,k+7,e)
stmp = stmp+shdxm1(j,l)*u(i,l,k+7,e)
ttmp = ttmp+shdxm1(k+7,l)*u(i,j,l,e)

enddo
shur(i,j,k+7) = gxyz(i,j,k+7,1,e)*rtmp

$ + gxyz(i,j,k+7,2,e)*stmp
$ + gxyz(i,j,k+7,3,e)*ttmp

call syncthreads()
...

3

Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Luis Cebamanos, Alistair Hart, Misun Min, Paul Fischer 65

Second NESUS Workshop • September 2015 • Vol. I, No. 1

III.2 GPUDirect Gather-Scatter operator

The Gather-Scatter operator is implemented by gs_op
routine in NekBone. Notice that we have already split
the gs_op routine with local gather and scatter opera-
tions on GPUs in [7]. In the implementation only the
non-local data need to be transferred between GPU
and CPU to conduct MPI communication. The non-
local data is exchanged with standard MPI subrou-
tines MPI_Irecv(), MPI_Isend(), MPI_Waitall()with
combination of MPI_Waitall. The modified gs_op op-
erator with local gather and scatter is described in Al-
gorithm 4.

Algorithm 4 Modified Gather-scatter operator
(adapted from [7]).

unew_l = u_l
! u_g = Q u_l Local Gather on GPU
!$ACC PARALLEL LOOP
u_g = 0
do i = 1, nl

li = lgl(1,i)
gi = lgl(2,i)
u_g(gi) = u_g(gi)+u_l(li)

enddo

gs_op(u_g,1,1,0) ! MPI communication between CPUs

! u_l = Q^T u_g Local Scatter on GPU
!$ACC PARALLEL LOOP
do i = 1, nl

li = lgl(1,i)
gi = lgl(2,i)
unew_l(li) = u_g(gi)

enddo

In [8] a new version of Gather-scatter operator with
GPUDirect is developed. The new version acceler-
ates all four parts of the gather-scatter routine: local-
gather, global-scatter, global-gather, and local-scatter,
whereas previous versions only accelerated the local
parts. Accelerating the global loops allows us to use
the GPUDirect pragmas, as the buffers are prepared
on the GPU. The local-gather and local-scatter loops
above are included into the tuned fgs_fields_acc. In
a similar manner, the global-scatter and global-gather
loops are also accelerated. In this new version, data
communication between CPUs is not necessary since
the GPU would efficiently perform the local additions
and does not need any information from other nodes.

IV. Performance Results

IV.1 Systems and compiler environments

We performed our simulations on few supercomput-
ing systems. Titan, a Cray XK7 system at the Oak
Ridge Leadership Computing Facility (OLCF), con-
sists of 18,688 AMD Opteron 6274 16-core CPUs and
18,688 Nvidia Tesla K20X GPU computing accelerator
with 6GB of GDDR5 memory each. Titan has a hybrid
architecture with peak performance of 27 Pflops and
40 PB of Lustre storage. The pair of nodes shares a
Gemini high-speed interconnect router in a 3D torus
topology. Curie is a PRACE Tier-0 system, installed at
CEA in France. The Curie system has total 144 hybrid
nodes. Each hybrid node has two 4-cores Westmere-
EP@2.67GHz CPUs and two Nvidia M2090. The com-
pute nodes are connected through a QDR InfiniBand
network and the topology of this InfiniBand network
is a full fat tree. Raven system at Cray has 8 XK7 com-
pute nodes with 8 NVIDIA Telsa K20 GPUs. A com-
pute node of Raven has one Opteron processor with a
total of 16 processor cores and 2 NUMA nodes with
a total of 16 GB of DDR3-1600 main memory. The
Opteron processors run at 2.1 GHz. Each GPU has 6
GB of GDDR5 memory.

Raven and Titan support GPU-Direct with both
Cray CCE and PGI compilers. The Curie system sup-
ports only the PGI compiler without GPU-Direct fea-
tures.

IV.2 Single GPU Performance tests

We optimized our GPU enabled code with CCE
and PGI compilers for the compute intensive matrix-
matrix multiplications routines, as discussed in a pre-
vious section using Algorithms 1–3. Figures 1–4 show
the single GPU performance tests on different plat-
forms. For all cases, the performance critically de-
pends on the computational workload on the GPU.
The more calculations are completed on the GPU, the
performance is higher. the performance increases as
the number of elements (E) increases and the perfor-
mance significantly increases with the polynomial or-
der (N). In addition, different compilers and versions
also affect the performance of NekBone.

On the Curie hybrid nodes the performance in-
creases around 5-10% with the optimized OpenACC
directives compared to the original case, see Figures 1
and 2. The maximum performance achieved is 43.6
Gflops with elements E = 4096 and polynomial order

4

66 NekBone with Optimized OpenACC directives

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 1: The performance with the total number of grid
points n = E · N3 for E = 32, 64, . . . 8096 and N =
8, 10, 12, 14, 16 on single node of Curie using PGI compil-
ers. Original OpenACC directives.

N = 16.
Figure 4 shows the performance on Titan with Cray

CCE, PGI, and PGI CUDA FORTRAN compilers. The
CUDA FORTRAN code is around 10% faster than the
OpenACC code. However, it is also important to high-
light the little effort required to port an application
like NekBone to GPU systems using OpenACC com-
pared to the CUDA porting process. Furthermore, the
small number of additional lines of code required to
port an application to OpenACC is not comparable
with the addition of CUDA kernels code. Such is the
case that is necessary to rewrite the CUDA code for
each polynomial order (N) case.

IV.3 Multi GPU Performance tests

From Figures 1 and 2, even without MPI communi-
cation we can identify that the performance of the
matrix-matrix multiplication kernels highly depends
on the order of polynomial (N) and number of ele-
ments (E). Larger values of N give better performance.
This effect could be cause due to the amount of work
per thread (which is proportional to N) is greater,
which either leads to better kernel efficiency or assists
to offset the latency cost of launching kernels. Also,
the MPI communication overlaps the less workload
of GPUs. Consequently, the degradation performance
with the increase of the number of GPUs for the strong
scalability is expected. The performance of OpenACC
version is quite different from the original MPI ver-

Figure 2: The performance with the total number of grid
points n = E · N3 for E = 32, 64, . . . 8096 and N =
8, 10, 12, 14, 16 on single node of Curie using PGI compil-
ers. Optimized OpenACC directives.

Figure 3: The performance with the total number of grid
points n = E · N3 for E = 32, 64, . . . 8096 and N =
8, 10, 12, 14, 16 on single node of Raven using CCE com-
pilers.

5

Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Luis Cebamanos, Alistair Hart, Misun Min, Paul Fischer 67

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 4: The performance with the total number of grid
points n = E ·N3 for E = 512 and N = 8, 12, 16 on single
node of Titan using CCE and PGI compilers.

sion where parallel efficiency 0.6 has been measured
for strong scalability between 32768 and 1048576 MPI
ranks [14].

Figure 5 shows the NekBone strong scaling perfor-
mance, measured in Tflops, with up to 256 GPUs as
a solid line, while the black dashed line represents
the ideal strong scaling on Curie. The parallel effi-
ciency with 256 GPUs was 69% compared when us-
ing 32 GPUs. In order to get better performance we
should use as many elements per node as we can fit
into GPU memory (6GB for the Tesla M2090 card).

Each Curie hybrid node has two sockets and each
GPU is bound to a socket. By the default both pro-
cesses are running on only one GPU. As a result, the
CUDA_VISIBLE_DEVICES variable should be set to 0 or
1 depending on the rank of the process. In addition, it
is necessary to bind the processes to the GPU to make
sure they run on the same socket that hosts the desired
GPU. However the binding of the processes still slows
down the application since both processes share some
resources. For instance, I/O operations are slower or
the MPI communications may behave differently. Fig-
ures 6 and 7 show the weak scaling results on Curie
where we can see how the curve representing the op-
timized version is growing apart as more GPUs are
used in the simulation.

For the test on Titan, 1024 elements and 16th-order
polynomials were used for a total of 4, 194, 304 points
per GPU. Figure 8 shows the NekBone weak scaling
performance, measured in TFlops, with up to 16, 384

32 64 128 256
0

1

2

3

4

5

6

7

8

Number of GPUs

TF
lo

ps

Optimized
Original
Ideal

Figure 5: Strong scaling results with total number points
are n = 1024 · 163 · 32 on Curie using PGI compilers.

124 8 16 32 64 128
0

1

2

3

4

5

6

#GPUs

TF
lo

ps

Optimized

Original

Ideal

Figure 6: Weak scaling results with n = 1024 · 163 per
GPU on Curie using PGI compilers.

6

68 NekBone with Optimized OpenACC directives

Second NESUS Workshop • September 2015 • Vol. I, No. 1

1 816 32 64 128 256
0

2

4

6

8

10

12

#GPUs

TF
lo

ps

Optimized

Original

Ideal

Figure 7: Weak scaling results with n = 1024 · 163 per
GPU on Curie using PGI compilers.

GPUs. The parallel efficiency on 16, 384 GPUs was
52.8% compared with single GPU and the maximum
performance obtained is 609.8 Tflops with optimized
OpenACC code. This good scaling results is achieved
by using the proper construction of the global commu-
nication and the code simplicity.

IV.4 GPUDirect tests

The Cray performance analysis tool CrayPat is used
to conduct the profiling analysis for the data commu-
nication. The tests are conducted on the Raven sys-
tem with 8 GPUs and the number of grid points is

n = 1024 · 163 per GPU. The total time on the MPI
communication is 2.52 sec with the modified gather-
scatter Algorithm 4, see Profiling by Function Group
Table using CrayPat below.

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function

100.0% | 11.864466 | -- | -- | 34739.0 |Total
|--
| 94.7% | 11.235358 | -- | -- | 30332.2 |USER
||---
|| 19.9% | 2.366802 | 0.000701 | 0.0% | 200.0 |dssum_acc_.ACC_
...
|| 1.3% | 0.152252 | 0.000371 | 0.3% | 200.0 |dssum_acc_.ACC_
...

With the Algorithm developed in [8], the total time
is reduced to 2.36 sec. This can be seen in the next
Table.

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function

100.0% | 11.806398 | -- | -- | 38739.0 |Total

Figure 8: Weak scaling performance with n = 1024 · 163
per GPU on Titan using CCE compilers.

|---
| 94.8% | 11.193856 | -- | -- | 34332.2 |USER
||--
|| 20.0% | 2.357107 | 0.000715 | 0.0% | 200.0 |fgs_fields_acc
...

V. Conclusions

A hybrid Nek5000 version was created to exploit
the processing power of multi-GPU systems by us-
ing OpenACC compiler directives. This work fo-
cused on advance GPU optimizing and tuning of the
most time-consuming parts of Nek5000, namely the
matrix-matrix multiplication operations and the pre-
conditioned linear solve operation. Furthermore, the
gather-scatter kernel used with MPI operations has
been redesigned in order to decrease the amount of
data transferred between the host and the accelerator.
The speed-up achieved using OpenACC directives is
1.30 with a 16th order polynomial on 16,384 GPUs
of the Cray XK7 supercomputer when compared to
16,384 full CPU nodes having 262,144 CPU cores in
total.

We have been able to compare performance results
of NekBone versions running with CUDA FORTRAN
and OpenACC. Although OpenACC has proven to be
a simpler solution for porting applications to GPUs,
our results demonstrate that CUDA is still more ef-
ficient and that in OpenACC there is still room for
improvement.

With a multi-GPU setup, the gather-scatter opera-
tor and the associated MPI communication can be im-
proved. The original gather-scatter operator was split

7

Jing Gong, Stefano Markidis, Michael Schliephake, Erwin Laure, Luis Cebamanos, Alistair Hart, Misun Min, Paul Fischer 69

Second NESUS Workshop • September 2015 • Vol. I, No. 1

into two parts. First a local gather on the GPU is per-
formed, followed by the transfer of the boundary val-
ues at the interfaces of the domain. Then the bound-
ary values need to be copied to a local CPU memory,
communicated via network to the memory of another
CPU, and then transferred back a memory of a remote
GPU to finally carry out a local scatter on the GPU.
This approach allows a considerable reduction in the
amount of data to be moved from the GPU and CPU
memory and vice versa.

In spite of the reduction in the amount of data
transferred, the additional transfers between the host
and accelerator have an effect on the achievable per-
formance. In the future, we will employ the tech-
niques such as overlapping of GPU kernels with host-
accelerator memory transfers to further increase the
performance of the OpenACC version of Nek5000.

Acknowledgments

This work is partially supported by EU under the
COST Program Action IC1305: Network for Sustain-
able Ultrascale Computing (NESUS) and the Swedish
e-Science Research Center (SeRC). We acknowledge
PRACE for awarding us access to resource CURIE
based in France at CEA as well as the computing time
on the Raven system at Cray and the Titan supercom-
puter at Oak Ridge National Laboratory. We would
also like to thank Brent Leback for the CUDA FOR-
TRAN code used in the paper.

References

[1] J. H. Chen, A. Adhere, B. De Supinski, M. De-
Vries, E. Hawkes, S. Klasky, W. Liao, K. Ma,
J. Mellor-Crummey, N. Podhorszki, et al., “Teras-
cale direct numerical simulations of turbulent
combustion using S3d”, Computational Science &
Discovery vol. 2, no. 1, 2009.

[2] D. C. Jespersen, “Acceleration of a CFD code
with a GPU”, Scientific Programming, vol. 18, no.
3-4, pp. 193-201, 2010

[3] C. K. Aidun and J. R. Clausen, “Lattice Boltz-
mann method for complex flows”, Annual Review
of Fluid Mechanics, vol. 42, pp. 439-472, 2010

[4] K. Niemeyer and C. Sung, “Recent progress and
challenges in exploiting graphics processors in
computational fluid dynamics”, The Journal of Su-
percomputing, vol. 67, no. 2, pp. 528-564, 2014.

[5] OpenACC standard,
http://www.openacc-standard.org

[6] J. Gong, S. Markidis, M. Schliephake, E. Laure,
D. Henningson, P. Schlatter, A. Peplinski, A. Hart,
J. Doleschal, D. Henty, and P. Fischer, Nek5000
with OpenACC, in Solving Software Challenges for
Exascale, the International Conference on Exascale
Applications and Software, EASC 2014 Stockholm,
Sweden, April 20-23, 2014, Stefano Markidis, Er-
win Laure (Eds.), Springer LNCS8759, 2015.

[7] S. Markidis, J. Gong, M. Schliephake, E. Laure, A.
Hart, D. Henty, K. Heisey, and P. Fischer, “Ope-
nACC acceleration of the Nek5000 spectral ele-
ment code”, International Journal of High Perfor-
mance Computing Applications, vol. 29, pp. 311-319,
2015.

[8] M. Otten, J. Gong, A. Mametjanov, A. Vose,
J. Levesque, P. Fischer, and M. Min “An
MPI/OpenACC Implementation of a High Order
Electromagneticcs Solver with GPUDirect Com-
munication”, accepted in International Journal of
High Performance Computing Applications.

[9] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier,
Nek5000 web page, Web page: http://nek5000.
mcs. anl. gov.

[10] A. T. Patera, “A spectral element method for fluid
dynamics: laminar flow in a channel expansion”,
Journal of Computational Physics, vol. 54, No. 3,
pp. 68-488, 1984

[11] H. M. Tufo and P. F. Fischer, “Terascale spectral el-
ement algorithms and implementations”, in Pro-
ceedings of the 1999 ACM/IEEE conference on Super-
computing (CDROM), ACM, 1999, p. 68.

[12] M. Deville, P. Fischer, and E. Mund, High-order
methods for incompressible fluid flow, Cambridge
University Press, 2002.

[13] NekBone: Proxy-Apps for Thermal Hydraulics,
https://cesar.mcs.anl.gov/content/software/
thermal_hydraulics

[14] Nek5000 strong scaling tests
to over one million processes.
http://nek5000.mcs.anl.gov/index.php/Scaling

8

70 NekBone with Optimized OpenACC directives

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Scheduler hierarchies to aid peta-scale cloud
simulations with DISSECT-CF

Gabor Kecskemeti

Laboratory of Parallel and Distributed Systems at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (MTA SZTAKI), Kende u. 13-17, Budapest 1111, Hungary

kecskemeti.gabor@sztaki.mta.hu

Abstract

IaaS cloud simulators are frequently used for evaluating new scheduling practices. Unfortunately, most of these
simulators scarcely allow the evaluation of larger-scale cloud infrastructures (i.e., with physical machine counts
over a few thousand). Thus, they are seldom applicable for evaluating infrastructures available in commercial cloud
settings (e.g., users mostly do not wait for simulations to complete in such settings). DISSECT-CF was shown to
be better scaling than several other simulators, but peta-scale infrastructures with often millions of CPU cores were
out of scope for DISSECT-CF as well. This paper reveals a hierarchical scheduler extension of DISSECT-CF that
not only allows its users to evaluate peta-scale infrastructure behaviour, but also opens possibilities for analysing
new multi-cloud scheduling techniques. The paper then analyses the performance of the extended simulator through
large-scale synthetic workloads and compares its performance to DISSECT-CF’s past behaviour. Based on the
analysis, the paper concludes with recommended simulation setups that will allow the evaluation of new schedulers
for peta-scale clouds in a timely fashion (e.g., within minutes).

Keywords Cloud computing, simulator, petascale, hierachical scheduling

I. Introduction

Cloud computing infrastructures [1] have rapidly de-
veloped into a commodity. Based on virtualisation
technologies, they offer simple and straightforward
management capabilities for virtual infrastructures.
As a result, users of Infrastructure as a Service (IaaS)
clouds can more rapidly respond to their ever changing
demand patterns, while they do not have to face the ev-
eryday issues that would arise with the maintenance of
physical infrastructures. Because of the many benefits
of IaaS clouds, their adoption has became widespread.

Unfortunately, this widespread use limits research
on the internal behaviour of IaaS clouds. To overcome
these limits, researchers often turn to cloud simulators
to analyse their new ideas [2]. These simulators al-
low rapid evaluation of many new scenarios; however,
they frequently have scaling issues of their own. Thus,
they restrain those scenarios that can be evaluated with
them. And even in cases when they scale well for the

larger-scale simulation needs of recent cloud infras-
tructures, they are too specialised for general research
(e.g., they do not allow simultaneous evaluation of
both cloud internals and user side behaviour).

DISSECT-CF (DIScrete event baSed Energy Con-
sumption simulaTor for Clouds and Federations [3])
was proposed as a general purpose, compact, highly
customisable open source cloud simulator with spe-
cial focus on the internal organisation and behaviour
of IaaS systems. Compared to other state-of-the-art
cloud simulators its performance is already amongst
the best. However, even DISSECT-CF has scaling issues
when it needs to simulate such large-scale computing
infrastructures as the front entries in the top500 super-
computers list1.

This paper analyses past DISSECT-CF behaviour
when simulating infrastructures similar to the ones
listed amongst the top500 supercomputers. Based on

1http://top500.org

1

Gabor Kecskemeti 71

Second NESUS Workshop • September 2015 • Vol. I, No. 1

the analysis, the paper concludes that the large amount
of physical machines (handled by a single virtual ma-
chine – VM – placement technique) cause the scaling
issues in the past simulator. Therefore, this paper
proposes a generic technique to organise scheduler hi-
erarchies in DISSECT-CF. These hierarchies allow the
reduction of the number of machines handled by a
single VM placement technique. In order to overcome
the inefficiencies that could be caused by the newly
introduced hierarchies, the simulator now introduces
several ways for interacting between the various levels
of the scheduler hierarchy: (i) automated high-level
VM request revocation, (ii) VM request rejection, (iii)
automated hierarchy setup and (iv) VM request prop-
agation though cloud boundaries.

Although the introduced hierarchies are good to in-
crease the scalability of the simulator and allow the
evaluation of larger-scale systems, the newly proposed
technique is still limited by several factors: (i) it cannot
support nodes with mixed accelerator-CPU constructs
– accelerator-CPU interactions cannot be handled with
the new hierarchical model because the new model
is limited to a hierarchy of a single kind of resource
(because of a limitation in DISSECT-CF)–, (ii) simi-
larly, inhomogeneous multi-cloud systems are still out
of scope, (iii) the automated hierarchy setup is de-
pendent on the kind of simulated workload – with
improper hierarchy setup, the simulation might still
face scalability issues–, and finally (iv) the relation be-
tween the actual layout of the simulated infrastructure
and the real one can become very detached (the auto-
matically introduced hierarchies usually have different
layout than the actual racks, clusters and data centres
in an IaaS).

The paper concludes with the analysis of the new hi-
erarchical scheduling. Using synthetic traces a compar-
ison is shown between the past and current simulator
with infrastructures ranging from a few thousand to
almost two million CPU cores. The behaviour of the
extended simulator is also compared to CloudSim [4],
revealing that DISSECT-CF has a performance advan-
tage between 5-136× over CloudSim. Even compared
to its past self, the new DISSECT-CF performs signif-
icantly better and its hierarchical scheduling mecha-
nism could provide up to four-fold performance in-
crease in smaller-scale infrastructure simulations, and

a performance improvement of over 92× is observable
for large-scale simulations.

The rest of the paper is structured as follows: the
paper continues with studying state-of-the-art simula-
tors to reveal their problems. Then, in Section III, the
paper introduces a new hierarchical VM scheduling
technique for DISSECT-CF. Next, the paper presents a
performance evaluation for the improved simulator in
Section IV. Finally, the paper provides its conclusive
thoughts in Section V.

II. Related Works

CloudSim [4] is amongst the most popular IaaS cloud
simulators. It introduces the simulation of virtualised
data centres mostly focusing on computational inten-
sive tasks and data interchanges between data centres.
An extension called NetworkCloudSim [5], improved
its support for in-data-centre network communications.
There is also an extension that simulates the energy
consumption of the physical machines in a data centre
based on specpower benchmarks [6]. CloudSim also
ignited an ecosystem around it adding performance
improvements, inter-cloud operations and GUI wrap-
pers for teaching [7, 8, 9, 10]. Despite its widespread
use and its healthy ecosystem, research done with
CloudSim is mostly limited to clouds with a few thou-
sand CPU cores. This limitation severely affects the
applicability of the results of CloudSim based simula-
tions.

The SimGrid framework [11] is another widely used
simulator for analysing distributed systems (e.g., grids,
peer-to-peer systems). This simulator is not focused
on clouds and only includes constructs to support
virtualisation (e.g., hypervisors and live migration –
[12]). Unfortunately, the lack of higher-level cloud
related constructs reduces the applicability of SimGrid
in most cloud simulation scenarios. Its users would
need significant expertise in every cloud management
issue so they can build and evaluate complete cloud-
like scenarios.

Next, an analysis of GroudSim, which is a simula-
tor developed at the University of Innsbruck [13, 14],
was performed. This simulator aims at runtime per-
formance, while it also integrates with the ASKALON
workflow system. Until recently this simulator fol-

2

72 Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF

Second NESUS Workshop • September 2015 • Vol. I, No. 1

lowed a black box model (i.e., it did not simulate
any internal details of the cloud management be-
haviour). Nowadays, GroudSim incorporates the
DISSECT-CF simulator to enable the simulation of in-
ternal IaaS behaviour [15]. However, the complex cross-
simulation synchronisation and workflow orientation
of GroudSim makes it less scalable than DISSECT-CF
alone.

While the previously mentioned simulators were
heavily influenced by past simulators of grids and/or
distributed systems, for performance reasons, they also
made compromises on the simulation of networking
functionalities. Such issues are resolved by simula-
tors like iCanCloud [16] and GreenCloud [17]. These
are built on network simulators (e.g., OMNeT++ or
NS2) to most accurately simulate network communi-
cations in cloud systems. Other than their networking
improvements, GreenCloud also offers precise energy
estimates for networking and computing components,
while iCanCloud is also user oriented and thus offers
support in the decision making regarding the use of
IaaS systems [18]. As these simulators are network
oriented, their use cases are different from the rest
of the simulators discussed in this section (e.g., they
are mostly used to evaluate localised phenomena thus
their scaling capabilities are not relevant).

Finally, there are some specialised simulators like
xSim [19] and SimMatrix [20]. These simulators are
proven to perform well for large-scale systems, but
their scope is limited. For example xSim is focusing
on the analysis of MPI workloads in exa-scale systems,
while SimMatrix is focused on many task computing.
Because of their over-specialisation these simulators
are not suitable for analysing general problems in large-
scale systems.

II.1 Problem Statement

After analysing the prior art, it can be concluded that
existing simulators have many drawbacks for those
planning to investigate scheduling in large-scale IaaS
systems (e.g., they do not provide foundations for
constructing scheduling hierarchies instead they expect
their users to construct the hierarchies on their own).
To fulfil the needs of such scheduling scenarios, the rest
of this paper reveals a new hierarchical virtual machine

Infrastructure Simulation
PMVM Network Node

Unified resource sharing

ResourceSpreader
Resource Consumption Resource Scheduler

Energy Modeling

Energy Meter
Power State Consumption Model

Event system
Timed Deferred Event

Infrastructure Management

IaaSService
VM Scheduling PM Scheduling Repository

Figure 1: The architecture of DISSECT-CF

scheduling technique to be applied by the DISSECT-CF
simulator. With the use of this technique researchers
will have better insights on infrastructure behaviour
even if significantly larger-scale systems are simulated
than it was previously possible by past simulators.

III. Generic Hierarchical Scheduling

III.1 Overview

DISSECT-CF [3] is a compact, customisable open-
source simulator with focus on the internal organisa-
tion and behaviour of IaaS systems. Figure 1 presents
its architecture. The figure groups the major compo-
nents with dashed lines into subsystems. Each subsys-
tem is implemented as independently from the others
as possible. There are five major subsystems each
responsible for a particular aspect of internal IaaS func-
tionality: (i) event system – for a primary time refer-
ence; (ii) unified resource sharing – to resolve low-level
resource bottleneck situations; (iii) energy modelling –
for the analysis of energy-usage patterns of individual
resources (e.g., network links, CPUs) or their aggrega-
tions; (iv) infrastructure simulation – to model physi-
cal and virtual machines as well as networked entities;
and finally (v) infrastructure management – to provide
a real life cloud like API and encapsulate cloud level
scheduling (the target of this paper’s improvements).

III.2 Scaling Bottleneck

Although the simulator was designed from the begin-
ning with high scalability in mind, the performance
of its VM placement mechanisms is dependent on the
number of physical machines registered at an IaaS
service. Thus, to reduce this bottleneck, but to allow

3

Gabor Kecskemeti 73

Second NESUS Workshop • September 2015 • Vol. I, No. 1

simulator developers to still design simple schedulers,
a new hierarchical solution was needed. This new
solution must allow the old scheduling mechanisms
to work without even knowing that they only play a
small role in a large-scale simulation, but the simu-
lator’s users should also have a chance to alter the
hierarchy and the way higher-level schedulers interact
with the original scheduling mechanisms.

III.3 Hierarchical Scheduling

III.3.1 Generic Scheduling

The new hierarchical scheduler concept of DISSECT-
CF is built around the following functionalities: (i)
schedulers should be able to propagate VM requests
amongst each others, (ii) higher-level schedulers
should be able to cancel requests, (iii) independently
from the level of the scheduler, the same scheduling
interface must be used (allowing to implement even
cross-cloud scheduling mechanisms). In the following
paragraphs, these functionalities are detailed.

VM propagation The hierarchical scheduler interface
is expected to be implemented by every entity in the
system who is planning to accept VM requests (ranging
from Physical Machines, to low-level VM schedulers to
even IaaS systems). This interface contains the follow-
ing operations: (i) VM request, (ii) VM termination,
(iii) VM migration, (iv) VM request cancellation and
(v) VM resource reallocation. With the “standardised”
interface it is not only possible to migrate VMs across
various VM managers but also possible to create feder-
ations of multiple IaaS systems. In the new hierarchy,
VM requests are propagated until they reach a physical
machine that can serve them. If there are no physi-
cal machine that can serve a request in a low-level
scheduler (one that directly interacts with physical ma-
chines), then the scheduler is allowed to queue the VM
request. If the VM request is handled by an entity that
does not directly interact with physical machines, then
based on a scheduling policy it must decide to which
lower-level scheduler it propagates the VM request (it
cannot queue the request on its own). The selection
of the lower-level scheduler can be accomplished by a
range of techniques. The simulator currently delivers

a random, a round robin and a weighted probabilistic
scheduler selection technique (where VM requests are
propagated to lower level schedulers that are less likely
to queue them).

Automated request cancellation and resubmission
As with many hierarchical schedulers in the past, it
could frequently happen that one of the low-level
schedulers gets overloaded with VM requests while
others are left with very little work to do (this is a likely
scenario with weighted probabilistic techniques). In
order to automatically avoid bottlenecks, DISSECT-CF
contains an automated request cancellation and resub-
mission technique. Upon submitting a VM request,
higher-level schedulers will tag the request with an ex-
piration time. This tag will be a timestamp after which
time the lower-level scheduler is not allowed to serve
the VM request, instead the request should be sent
back to the higher-level scheduler who sent it. This
tagging mechanism allows the low-level schedulers to
prioritise the almost expired requests (as a measure of
keeping service level objectives). Also, the high-level
schedulers could penalise those lower-level schedulers
that did not succeed in completing their designated
VM requests within the expected period of time. In
order to refrain VM requests from getting cancelled too
frequently, the high-level schedulers analyse the VM
throughput of each of their underlying schedulers and
they set up VM request termination times so requests
will expire with a small likelihood (in the current sim-
ulation setup, the resubmission rate is set up to be
around a single request out of every thousand).

VM request rejection As VM requests received by
lower-level schedulers are tagged with their expira-
tion times, the low-level schedulers can decide if they
are willing to queue such requests. When a tagged
request arrives, the scheduler will automatically re-
ject the request if its queue is significantly longer than
the queues of other schedulers with similarly sized
managed infrastructures.

III.3.2 Automated Hierarchy Formation

The simulator allows the precise definition of the hi-
erarchy of the schedulers during the construction of

4

74 Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF

Second NESUS Workshop • September 2015 • Vol. I, No. 1

IaaSServices, ensuring that it matches the real life hi-
erarchies set up in large scale cloud systems. However,
to allow investigations about the effect of different hi-
erarchies, this definition is not obligatory. If the user
prefers, the hierarchy can be automatically constructed.
The automatic hierarchies can even evolve during the
entire runtime of a simulation (allowing the user to
investigate several hierarchy adaptation scenarios and
their effect on runtime). Also, the simulator can save
an automatically determined hierarchy for later use, so
users will have a chance to reuse previously efficiently
working hierarchies (this option also allows users to
utilise the auto constructed hierarchies outside of the
simulated world and check the correctness of their
simulations in real life).

The simulator allows the creation of the following
kinds of schedulers (all these schedulers are also exem-
plified in Figure 2):

Regular schedulers. These schedulers have an
IaaSService as their parents and they manage
physical machines directly. These are the original
kinds of schedulers possible in the simulator.

Low-level schedulers. They manage physical machines
directly, but their parents are not IaaSServices.
Instead they are operating with a high-level sched-
uler.

High-level schedulers. They do not directly operate
with physical machines, they handle the VM re-
quests as discussed in the previous sub-section.
They can be classified into two subtypes:

Mid-level schedulers. They are placed in the mid-
dle of the hierarchy, they forward VM re-
quests from their parents to their directly
managed schedulers. They can either man-
age both high and low-level schedulers.

Ingress schedulers. They have an IaaSService
as their parents, and they can act as either
mid-level schedulers (if acting as an entry to
a hierarchy) or as regular schedulers (if no
hierarchy is needed).

Creating scheduler profiles. Before running the sim-
ulator with automated scheduling hierarchy man-
agement for realistic workloads, the hierarchy cre-
ation technique needs a profile for the user provided

low-level schedulers (for the schedulers integrated in
DISSECT-CF these profiles are already done). The pro-
file creation starts with the specification of the total
number of CPU cores – Cmax – the simulated infrastruc-
tures should have during the profiling session. Next,
several IaaSServices are created with varying number
of CPUs in each physical machine – cpm ∈ Cpm, where
Cpm = {∀x : (x ∈ N) ∧ (1 < x < Cmax)} – ensuring
that the complete size of the infrastructure is matching
the previously given total (e.g., with 8 CPU physical
machines the number of physical machines should be
Cmax/8). Then, on each IaaSService the same ran-
domly generated VM utilisation trace is executed (the
trace’s properties can be user defined). The execution
time – tex : Cpm → R – is recorded for all cases and
they are written to the profile for the user provided
low-level scheduler (examples of such profiles can be
seen in Figures 4 and 5). The profiling executed on
this way to ensure that the simulated infrastructure’s
size does not unnecessarily prolong the profiling pe-
riod, and instead, only the PM count related scaling
properties of the low-level scheduler do.

From the collected profile, the automated hierarchy
creator determines the optimal amount of physical
machines:

pmopt := Cmax/copt (1)

where tex(copt) = min
∀(cpm)

(tex(cpm))

The optimal amount of machines is calculated as the
ratio between the maximum amount of CPU cores used
during the profiling – Cmax – and the specific number
of CPU cores per machine – copt – which resulted in
the smallest profiling execution time. Each low-level
scheduler has a specific optimum value. Users can also
specify an operationally acceptable pm count range for
their scheduler relative to the pmopt value. The range
is specified with τ ∈]0..1] which shows the difference
allowed in the percentage of the execution time entries
in the profile compared to the minimum execution
time recorded for pmopt (i.e., tex(copt)). Thus:

Cacc := {∀cx : cx ∈ Cpm ∧ |1−
tex(cx)

tex(copt)
| < τ}(2)

PMacc := {Cmax/cx : cx ∈ Cacc} (3)

Where the set of Cacc defines all the CPU core num-

5

Gabor Kecskemeti 75

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Legend

VM Scheduler IaaS Service Physical Machine VM Request propagation Hierarchy management

Regular
Scheduler

PMPMPMPM
PMPMPMPM

IaaS
Service

Ingress Scheduler

Mid-level scheduler

Low-level
scheduler

Low-level
scheduler...

Mid-level scheduler

Low-level
scheduler

Low-level
scheduler...

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

IaaS Service

H
ierarchy

M
anager

Low-level
scheduler

Low-level
scheduler...

Ingress Scheduler

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

IaaS Service

H
ierarchy

M
anager

Figure 2: The kinds of scheduling hierarchies and schedulers possible in the new extended simulator

bers that resulted in profiling execution times within
the user specified range. While PMacc is the set
of PM numbers for which the profiling suggests ac-
ceptable scheduling performance according to the
user specified range. The hierarchy creator will use
only the minimum pml = min PMacc and maximum
pmh = max PMacc values from the PMacc set to deter-
mine under what conditions it does not need to alter
the previously constructed hierarchy.

Managing scheduler hierarchies using profiling re-
sults. When a new PM is registered in the infrastruc-
ture under the control of a high-level scheduler, the hi-
erarchy manager will register the PM in a round robin
fashion to the underlying schedulers. Once the super-
vised PM count for a particular low-level scheduler is
reached (i.e., it reaches over pmh), the hierarchy man-
ager realigns the PMs amongst the currently registered
schedulers (ensuring a uniform PM count distribution
amongst all its managed low-level schedulers). If it is
not possible to realign the PM set without violating the
maximum PM count limit set by the user, then the hi-
erarchy manager will create a new low-level scheduler
and start the realignment process again. This process
is repeated until the number of physical machines reg-
istered under a particular low-level scheduler reaches
pmopt.

As PMs belong to a particular low-level scheduler,
when they are deregistered, their past low-level sched-
uler will have a less balanced pm count. The hierarchy
manager will not react to this unbalance until the PM
count in one of the low-level schedulers reach pml . In
such case, first the hierarchy manager tries to realign

the PM set of all low-level schedulers so their man-
aged PM set will be equally sized. If this approach
still leaves some low-level schedulers with too low
PM counts then those schedulers are eliminated from
the system and their PMs are distributed amongst the
still remaining low-level schedulers by the hierarchy
manger. The elimination process is continued until the
PM set of each managed low-level scheduler is sized
around pmopt.

So far we have discussed the situation for high-level
schedulers that are directly in contact with low-level
ones. In some cases the number of their directly man-
aged schedulers reach the boundaries of the optimally
operated scheduler set size. In those cases they get
in touch with the hierarchy manager. The manager
will either create secondary schedulers alongside the
scheduler in question or eliminate one with similar
techniques discussed for low level schedulers. The dif-
ference: the profile created for these high-level sched-
ulers are defined in terms of the number of directly
managed schedulers instead of the number of super-
vised PMs in a low-level scheduler. In both cases the
hierarchy manager tries to equalise the number of
PMs under a particular scheduler before creating or
eliminating a high-level scheduler. The physical ma-
chine counts are also automatically determined and
realigned if some low-level schedulers are preferred
more than the others.

Finally, the hierarchy manager is operated alongside
the ingest scheduler, the top scheduler in the hierarchy.
This scheduler is the one that will be responsible for
receiving the VM management operations from the
IaaSService. Also, as future work, the automated

6

76 Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Sheet1

Page 1

9.50E+001

9.50E+002

9.50E+003

9.50E+004

9.50E+005

time →

N
u

m
be

r
o

f p
ro

ce
ss

o
rs

 u
se

d

Figure 3: Example synthetic workload

hierarchies can follow the rules of software defined
networking to have a more realistically constructed
data centre layout.

IV. Evaluation

IV.1 Simulation Setup

Throughout the evaluation section, the following ma-
chine was used for executing the simulations: AMD
Athlon FX 8120, 16 GB RAM, 128 GB SSD. The sim-
ulations were all set up and run in a controlled envi-
ronment, the machine was never executing anything
else just the simulators themselves. As workload traces
for peta scale infrastructures are not yet public, in all
the following cases the simulators were running a syn-
thetic workload with similar characteristics than the
one shown in Fig. 3. This synthetic workload has a
peak utilisation with the same number of nodes as
the simulated infrastructure has. This utilisation is
the result of a randomly generated amount of virtual
machine requests at a given time, and filling up the
VMs with as many jobs as many needed to reach the
expected utilisation profile at the given time instance
(e.g., a particular VM in the load could host no jobs
at all, but in some cases they can be filled up with
several hundred if the VM’s resources would not get
exhausted by that many jobs). Also, the number of
utilisation peaks can be configured and during the
evaluation runs it was set up to be between 4-10 (the
actual number of peaks was determined so it has had
a stabilising effect on the simulation runtime – i.e., the
number of peaks was set so the consecutive simula-
tion runs have had small variance in their runtimes).
Throughout this paper the following simulators were

used: (i) DISSECT-CF 0.9.5 – as the old reference point
that represents the latest stable release of the simulator
without any peta-scale optimisations, (ii) DISSECT-CF
0.9.6 – as the last released version, (iii) DISSECT-CF
0.9.7∗ – the simulator incorporating the hierarchical
extensions of this paper, and (iv) CloudSim 3.0.3 DVFS
extensions – the independent reference point. Finally,
it was ensured that independently from the simulator
used, the program that set up and run the simulations
was never consuming more CPU than 1% of the total
CPU consumption of a simulation (this step assured
that the below presented results are influenced mainly
by the investigated simulators and not by the addi-
tional code used for the evaluation).

The simulated results of the extended DISSECT-CF
simulator were validated by comparing its results to the
past validated DISSECT-CF 0.9.5 results as well as to
the results obtained from CloudSim 3.0.3 DVFS. After
executing a workload in a simulation, the termination
time of the last virtual machine was noted. These
times were compared with both past simulators. The
new simulations yielded final termination times within
0.05% of the older simulators, while significantly im-
proving on simulation performance.

IV.2 Measurements

During the first measurements, basic scaling proper-
ties were investigated for all simulators. For this ex-
periment, a 5000 core infrastructure was set-up in the
simulators. The composition of the infrastructure was
changed to range from a single node (with 5000 cores)
to 5000 nodes (with a single core each). This experi-
ment was designed to show the bottleneck situations
in both the simulator’s resource sharing mechanism
and in its default virtual machine scheduler. Also, this
experiment actually replicates the profiling technique
introduced in Section III.3.2.

Figure 4 reveals the results of this first experiment.
In the experiments utilising simulated infrastructures
with less than 10 hosts, the resource sharing mecha-
nism of the simulator is more dominant (i.e., the mech-
anism that determines how the resources of a single
physical machine are shared amongst the VMs it is
hosting). Similarly, experiments, with infrastructures
consisting of over 1000 hosts, were dominated by the

7

Gabor Kecskemeti 77

Second NESUS Workshop • September 2015 • Vol. I, No. 1

5000 cpus

Page 1

1 10 100 1000 10000
1000

10000

100000

1000000
0.9.5 0.9.6

0.9.7* CloudSim-3.0.3DVFS

No. hosts

S
im

ul
at

io
n

tim
e

(m
s)

Figure 4: Small-scale measurement utilising an infrastruc-
ture with 5000 CPU cores (distributed amongst a varying
number of hosts)

virtual machine scheduler’s performance (i.e., in these
cases it was very unlikely to have multiple virtual ma-
chines hosted in a single physical machine, thus the
assignment mechanism of the virtual machines to phys-
ical ones become more dominant in execution time).
As it can be seen, DISSECT-CF has a bigger overhead
for resource sharing than CloudSim: DISSECT-CF pre-
viously had a 33% performance loss if the 5000 cores
needed to be scheduled by the resource sharing mech-
anism of the simulator, while in case of CloudSim a
virtual machine scheduler has a 86% performance loss.
Next, the evaluation of DISSECT-CF 0.9.7 and its hier-
archical extensions show that an over 8.8× improve-
ment is achievable by just switching to the hierarchical
scheduler. Remarks: the hierarchy built up by the new
automated mechanism consisted of 10 low-level vir-
tual machine schedulers and one high-level scheduler
acting as ingress. Also the number of utilisation peaks
was set to 10 as that gave the most stable measure-
ments after evaluating the sample standard deviation
of the measured runtimes of simulations.

Because of performance issues, only the first exper-
iment was evaluated with CloudSim. The rest of the
simulations are compared to past DISSECT-CF versions
only as CloudSim based results were not obtainable in
feasible time.

Next, the above discussed experiment was repeated
with 50000 cores. This experiment was executed to
show how the simulator scales in a well defined and
controlled environment. The number of utilisation
peaks was kept at 10 in order to allow a more direct
comparison with the results from the previous exper-

50000 cpus

Page 1

1 10 100 1000 10000 100000
5000

50000

500000

5000000

50000000

0.9.5 0.9.6 0.9.7*

No. hosts

S
im
ul
at
io
n
tim
e
(m
s)

Figure 5: Medium-scale measurement using an infrastruc-
ture consisting of 50000 cores (distributed amongst a vary-
ing number of hosts)

PetaScale

Page 1

Sequoia K computer
100000

1000000

10000000

100000000
0.9.5 0.9.6 0.9.7*

S
im
ul
at
io
n
tim
e
(m
s)

Figure 6: Peta-scale measurement

iment. The hierarchy built up by the new automated
mechanism consisted of 50 low-level virtual machine
schedulers. The results of this second experiment are
shown in Fig. 5. As it can be seen, the hierarchical
extension now improves with over 111× compared to
the original DISSECT-CF 0.9.5 version. The figure also
reveals, that it is not recommended to use hierarchical
virtual machine schedulers in case there are too few
physical machines on which these schedulers can place
the requested VMs (e.g., performance degradation is
observable for simulations with less than 600 hosts –
the worst case degradation reaches 33%). In terms of
scaling, the 5000 node infrastructure performs 1.72×
better when there are more CPU cores supervised by
a single node (the 50000 core experiment executed
with 64VMs/ms – virtual machines processed per mil-
lisecond – while the 5000 core experiment achieved a
performance of 37VMs/ms).

Finally, two peta-scale experiments were also exe-

8

78 Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF

Second NESUS Workshop • September 2015 • Vol. I, No. 1

cuted. For these experiments, two of the top supercom-
puters were selected and their infrastructures were con-
structed in the simulator. The selected supercomputers
were chosen with two criteria: they should be listed
amongst the top 10 from the top500 supercomputers
list, and they should not have accelerators augment-
ing their computing power (this second requirement is
needed because the current simulator cannot handle
tasks running simultaneously on an accelerator and on
a CPU core). The two supercomputers fulfilling these
requirements:

• Sequoia – with 1,572,864 CPU cores in 98,304
nodes.

• K Computer – with 705,024 CPU cores in 88,128
nodes.

These two large-scale systems were simulated in the
various versions of DISSECT-CF with 4 utilisation
peaks for Sequoia and 6 utilisation peaks for the K
Computer. Figure 6 reveals the measured results. As
it can be seen, without the hierarchical extensions of
DISSECT-CF, the simulations complete in over 3 hours
(best case with the fastest 0.9.6 version without hier-
archical scheduling). Thus it is not realistic to expect
users of the simulators that they can execute hundreds
or even thousands of scenarios for their research. How-
ever, with the hierarchical extensions even the peta-
scale simulation reaches a manageable less than 4 min-
utes runtime. The automatically created hierarchy is
still only two levels deep for these large-scale infrastruc-
tures (the third level of the hierarchy would appear for
exa-scale simulations), but now consists of a little over
100 smaller infrastructure fragments. The resulting
performance increase is between 91-139× compared to
the original hierarchy-less simulations.

V. Conclusions and Future Works

This paper presented a new hierarchical VM schedul-
ing technique for the DISSECT-CF simulator. The new
scheduling technique is aimed at large-scale simula-
tions (in the current paper it is focused on simulating
peta-scale systems). The paper shows that the new
technique can successfully reduce the time required
for simulations on such scale. The observable perfor-
mance improvements are enabling the application of

the DISSECT-CF simulator during the evaluation of
even peta-scale cloud systems (e.g., systems similarly
constructed as the Sequoia or K computer present in
recent top500 lists).

Regarding future works, the results presented in this
paper is just the first step in many to enable a generic
cloud and distributed systems simulator to cope with
such large-scale systems like the commercially avail-
able Amazon EC2. In the following, the simulator is
intended to be improved with GPGPU support to fol-
low the trends of the accelerator based systems. Also,
further research is needed to identify the peculiarities
of the various interconnects in these large-scale sys-
tems. This new research will allow DISSECT-CF based
simulations to handle infrastructures with mixed inter-
connects or federation of infrastructures with different
interconnect technologies.

Acknowledgement

This work was partially supported by the European
Union’s Horizon 2020 programme under grant agree-
ment No 644179 (ENTICE), by the COST Program
Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS) and by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

Software availability

This paper described the behaviour and features of
DISSECT-CF version 0.9.7. Its source code is open and
available (under the licensing terms of the GNU LGPL
3) at the following website:
https://github.com/kecskemeti/dissect-cf

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “Above
the clouds: A berkeley view of cloud comput-
ing,” University of California at Berkley, Tech.
Rep. UCB/EECS-2009-28, February 2009.

[2] G. Sakellari and G. Loukas, “A survey of math-
ematical models, simulation approaches and
testbeds used for research in cloud computing,”
Simul. Model. Pract. Th., vol. 39, pp. 92–103, 2013.

9

Gabor Kecskemeti 79

Second NESUS Workshop • September 2015 • Vol. I, No. 1

[3] G. Kecskemeti, “DISSECT-CF: a simulator to fos-
ter energy-aware scheduling in infrastructure
clouds,” Simulation Modelling Practice and Theory,
to appear, DOI: 10.1016/j.simpat.2015.05.009, pp.
1–28, 2015.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
De Rose, and R. Buyya, “CloudSim: a toolkit for
modeling and simulation of cloud computing en-
vironments and evaluation of resource provision-
ing algorithms,” Software: Practice and Experience,
vol. 41, no. 1, pp. 23–50, January 2011.

[5] S. K. Garg and R. Buyya, “NetworkCloudSim:
modelling parallel applications in cloud simula-
tions,” in Fourth IEEE International Conference on
Utility and Cloud Computing (UCC). Victoria, NSW:
IEEE, December 2011, pp. 105–113.

[6] A. Beloglazov and R. Buyya, “Optimal online de-
terministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consol-
idation of virtual machines in cloud data centers,”
Concurrency and Computation: Practice and Experi-
ence, vol. 24, no. 13, pp. 1397–1420, Sept 2012.

[7] X. Li, X. Jiang, P. Huang, and K. Ye, “DartCSim:
An enhanced user-friendly cloud simulation sys-
tem based on CloudSim with better performance,”
in 2nd International Conference on Cloud Computing
and Intelligent Systems (CCIS), vol. 1. Hangzhou:
IEEE, Oct 2012, pp. 392–396.

[8] S. Sotiriadis, N. Bessis, N. Antonopoulos, and
A. Anjum, “SimIC: Designing a new inter-cloud
simulation platform for integrating large-scale re-
source management,” in 27th International Confer-
ence on Advanced Information Networking and Appli-
cations (AINA), 2013, pp. 90–97.

[9] Y. Shi, X. Jiang, and K. Ye, “An energy-efficient
scheme for cloud resource provisioning based
on CloudSim,” in IEEE International Conference
on Cluster Computing (CLUSTER). Austin, TX:
IEEE, Sept 2011, pp. 595–599.

[10] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli,
and M. Alsaleh, “Teachcloud: a cloud computing

educational toolkit,” Int. J. of Cloud Computing,
vol. 2, no. 2/3, pp. 237–257, 2012.

[11] H. Casanova, “SimGrid: A toolkit for the simula-
tion of application scheduling,” in First IEEE/ACM
International Symposium on Cluster Computing and
the Grid. Brisbane, Qld.: IEEE, May 2001, pp.
430–437.

[12] T. Hirofuchi, A. Lèbre, L. Pouilloux et al., “Adding
a live migration model into SimGrid, one more
step toward the simulation of infrastructure-as-a-
service concerns,” in 5th IEEE International Con-
ference on Cloud Computing Technology and Science
(IEEE CloudCom), Bristol, UK, December 2013, pp.
96–103.

[13] S. Ostermann, K. Plankensteiner, R. Prodan, and
T. Fahringer, “Groudsim: an event-based simu-
lation framework for computational grids and
clouds,” in Euro-Par 2010 Parallel Processing Work-
shops, ser. Lecture Notes in Computer Science, vol.
6586. Springer, 2011, pp. 305–313.

[14] S. Ostermann, K. Plankensteiner, D. Bodner,
G. Kraler, and R. Prodan, “Integration of an event-
based simulation framework into a scientific work-
flow execution environment for grids and clouds,”
in Towards a Service-Based Internet, ser. Lecture
Notes in Computer Science. Poznan, Poland:
Springer, 2011, vol. 6994, pp. 1–13.

[15] G. Kecskemeti, S. Ostermann, and R. Prodan,
“Fostering energy-awareness in simulations be-
hind scientific workflow management systems,”
in Utility and Cloud Computing (UCC), 2014
IEEE/ACM 7th International Conference on, Dec
2014, pp. 29–38.

[16] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero,
J. Carretero, and I. M. Llorente, “Design of a new
cloud computing simulation platform,” in Compu-
tational Science and Its Applications-ICCSA 2011, ser.
Lecture Notes in Computer Science. Santander,
Spain: Springer, 2011, vol. 6784, pp. 582–593.

[17] D. Kliazovich, P. Bouvry, and S. U. Khan, “Green-
Cloud: a packet-level simulator of energy-aware

10

80 Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF

Second NESUS Workshop • September 2015 • Vol. I, No. 1

cloud computing data centers,” The Journal of Su-
percomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[18] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero,
G. G. Castañé, J. Carretero, and I. M. Llorente,
“iCanCloud: A flexible and scalable cloud in-
frastructure simulator,” Journal of Grid Computing,
vol. 10, no. 1, pp. 185–209, 2012.

[19] C. Engelmann, “Scaling to a million cores and
beyond: Using light-weight simulation to under-
stand the challenges ahead on the road to exas-
cale,” Future Gener. Comp. Sy., vol. 30, pp. 59–65,
2014.

[20] K. Wang, K. Brandstatter, and I. Raicu, “Simma-
trix: Simulator for many-task computing execu-
tion fabric at exascale,” in Proceedings of the High
Performance Computing Symposium. Society for
Computer Simulation International, 2013, p. 9.

11

Gabor Kecskemeti 81

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop• September 2015 • Vol. I, No. 1

NUMA impact on network storage protocols
over high-speed raw Ethernet

Pilar González-Férez† and Angelos Bilas‡

†Universidad de Murcia, Spain, pilar@ditec.um.es
‡FORTH-ICS and University of Crete, Greece, bilas@ic.forth.gr

Abstract

Current storage trends dictate placing fast storage devices in all servers and using them as a single distributed
storage system. In this converged model where storage and compute resources co-exist in the same server, the
role of the network is becoming more important: network overhead is becoming a main limitation to improving
storage performance. In our previous work we have designed Tyche, a network protocol for converged storage that
bundles multiple 10GigE links transparently and reduces protocol overheads over raw Ethernet without hardware
support. However, current technology trends and server consolidation dictates building servers with large amounts
of resources (CPU, memory, network, storage). Such servers need to employ Non-Uniform Memory Architectures
(NUMA) to scale memory performance. NUMA introduces significant problems with the placement of data and
buffers at all software levels.

In this paper, we first use Tyche to examine the performance implications of NUMA servers on end-to-end
network storage performance. Our results show that NUMA effects have significant negative impact and can
reduce throughput by almost 2x on servers with as few as 8 cores (16 hyper-threads). Then, we propose extensions
to network protocols that can mitigate this impact. We use information about the location of data, cores, and NICs
to properly align data transfers and minimize the impact of NUMA servers. Our design almost entirely eliminates
NUMA effects by encapsulating all protocol structures to a “channel” concept and then carefully mapping channels
and their resources to NICs and NUMA nodes.

Keywords NUMA, memory affinity, network storage, Tyche, I/O throughput

I. Introduction

Technology trends for efficient use of infrastructures
dictate that storage converges with computation by
placing storage devices, such as NVM (Non-Volatile
Memory) based cards and drives, in the servers them-
selves. With converged storage, compute servers are
used as a single distributed storage system, in a depar-
ture from traditional SAN (Storage Area Network) and
NAS (Network Attached Storage) approaches. In this
model, where computation and storage are co-located,
the role of the network becomes more important for
achieving high storage I/O throughput.

For efficiency and scalability purposes modern
servers tend to employ multiple resources of each kind,

namely processors, memories, and storage/network
links, in Non-Uniform Memory Access (NUMA) archi-
tectures (Figure 1).

Scaling networked storage throughput on such
servers is becoming an important challenge. NUMA
servers use multiple processor sockets with memory
attached to each socket, resulting in non-uniform laten-
cies from processor to different memories. In NUMA
architectures each I/O device is attached to a specific
NUMA node via an I/O hub (Figure 1). Processors,
memories, and I/O hubs are connected through high-
speed interconnects, e.g. QPI [1]. I/O requests as
well DMA transfers to and from devices are routed
through the memory-processor interconnect. Access-
ing remote memory (in a different NUMA node) incurs

1

Pilar Gonzalez-Ferez,Angelos Bilas 83

Second NESUS Workshop• September 2015 • Vol. I, No. 1

Memory-0 Memory-1

Processor-0

Core-1Core-0

Core-2 Core-3

Processor-1

Core-5Core-4

Core-6 Core-7

QPI 0

PCIe x8

QPI 1 QPI 1

I/O hub-0 I/O hub-1

NIC 0 NIC 1 NIC 2 NIC 3 NIC 4 NIC 5

N
U

M
A

no
de

 0

N
U

M
A

no
de

 1

QPI 0

Figure 1: Internal data paths in NUMA servers.

significantly higher latency than accessing local mem-
ory [2, 3], up to a factor of 2x. In addition, it consumes
throughput from the inter-processor link(s). Thus, for
I/O performance and scalability purposes, it is im-
portant to explore how the network protocol can be
designed to cater for affinity among memory, process-
ing cores, and network interfaces (NIC) for data and
protocol data structures.

In our previous work Tyche [4, 5] we examine the
design of network storage protocols over raw Ethernet
to achieve high throughput without hardware sup-
port. We argue that raw Ethernet is cost-effective
and Tyche delivers high I/O throughput and low I/O
latency using several techniques: bundling multiple
NICs transparently, copy-reduction, storage-specific
packet processing, RDMA (remote direct memory
access)-type communication primitives, memory pre-
allocation, and transparent NIC bundling.

In our previous work we observe that NUMA affinity
is an important issue that spans the whole I/O path
and has a significant performance impact.

Therefore, in this work, we use Tyche to analyze in
detail the impact of NUMA affinity on networked stor-
age access. In addition, we examine whether we can
mitigate these performance effects on NUMA servers
by properly re-designing the network protocol.

We evaluate this issue on two Linux servers with 8
cores (16 hyper-threads) and 6 x 10GigE Myricom 10G-
PCIE-8A-C NICs attached to each server. We analyze
the data traffic transferred through the QPI links with
the Intel R© Performance Counter Monitor (PCM) [6].

Our results show that NUMA effects indeed have a
very large negative impact on performance and they

 0

 1

 2

 3

 4

 5

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Writes - 128 kB

Id-1
Wo-1

Id-2
Wo-2

Id-3
Wo-3

(a) 128 kB writes

 0

 1

 2

 3

 4

 5

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Reads - 128 kB

Id-1
Wo-1

Id-2
Wo-2

Id-3
Wo-3

(b) 128 kB reads

Figure 2: FIO [7] throughput with direct I/O, random writes
and reads, 128kB and several threads, with (Id) and without
(Wo) Tyche affinity over and 1, 2 and 3 NICs. Note that
curves for Id-1, Wo-1 and Id-2, Wo-2 are overlapping.

can reduce throughput by almost 2x. Our re-designed
protocol that detects and uses NUMA affinity across
buffers, threads, and NICs, improves I/O throughput
by up to 85%.

This behavior is shown in Figure 2 for two configu-
rations: Ideal (Id) case that allocates all the resources
in NUMA node 0, and Worst (Wo) case that allocates
them in node 1. We use 1, 2, and 3 NICs, all of them
attached to the node 0. For 1 and 2 NICs, there is
no difference in performance between both configura-
tions. However, when using 3 NICs Ideal significantly
outperforms Worst up to 23.7%. When using 6 NICs,
this difference is larger. For instance, when the in-
house micro-benchmark zmIO [8] is run with direct
I/O and random 64kB read requests, Tyche obtains
only 3.61 GB/s when no affinity is applied, whereas it
achieves 6.67 GB/s when NUMA is taken into account.
Additionally, our analysis shows that this difference in
performance is reflected in QPI traffic. With NUMA
affinity, data traffic mainly comes through the local
QPI-1 link. Without NUMA affinity, a large amount of
traffic comes through QPI-0 links or the remote QPI-1,
and performance drops significantly. Sections IV and V
present these results in more detail.

To mitigate these NUMA effects at high network
throughput, we carefully design the send and receive
paths. We encapsulate important structures and flow
control in a “channel” concept that essentially corre-
sponds to the end-to-end I/O path. We map channels
to NICs and to NUMA nodes and allocate their re-
sources in the same node where the NIC is attached.

2

84 NUMA impact on network storage protocols over high-speed raw Ethernet

Second NESUS Workshop• September 2015 • Vol. I, No. 1

N
IC

buffers for
requests
and data

tx_ring

N
etw

ok layer
Physical
devices

Kernel Space

Tyche
block layer

Send path (Initiator) Receive path (Target)

not_ring

rx_ring

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

Tyche network
layer

Tyche
block layer

VFS
File System

Ethernet Driver

Block storage device

Ethernet Driver

buffers for
requests
and data

Tyche network
layer

Figure 3: Overview of the send and receive path from the
initiator (client) to the target (server).

I/O requests can use any channel. We dynamically
detect the appropriate channel for each request, based
on the location of the request data, and we direct each
request accordingly. This approach aligns buffers and
NICs and almost entirely eliminates NUMA effects.

Overall, results show that network storage protocols
for modern servers with multiple resources need to be
designed for NUMA affinity to achieve high network
throughput. Otherwise, when affinity is not taken into
account, performance is significantly downgraded.

The rest of this paper is organized as follows. Sec-
tion II presents the necessary background on Tyche.
Section III describes how Tyche deals with NUMA
affinity. Sections IV, V and VI present our experimental
results. Finally, we present related work in Section VII
and we draw our conclusions in Section VIII.

II. Background

Tyche [4, 5] is an end-to-end network storage protocol
on top of raw Ethernet that achieves high I/O thro-
ughput and low latency without hardware support
(Figure 3). Tyche presents the remote storage device
locally by creating at the client (initiator) a virtual local
device that can be used as a regular device. Tyche is in-
dependent of the storage device and supports any file
system. It provides reliable delivery, Ethernet-framing,
and transparent bundling of multiple NICs.

To reduce message processing overhead, Tyche uses
a copy reduction technique based on virtual memory
page remapping, reduces context switches, and uses

RDMA-type operations. The server (target) avoids all
copies for writes by interchanging pages between the
NIC receive ring and Tyche. The initiator requires a
single copy for reads, due to OS-kernel semantics for
buffer allocation. Tyche reduces overheads for small
I/O requests by avoiding context switches for low de-
grees of I/O concurrency and by dynamically batching
messages for high degrees of I/O concurrency. Tyche
does not use RDMA over Ethernet, instead our proto-
col uses a similar, memory-oriented abstraction that
allows us to reduce messaging overhead by avoiding
packing and unpacking steps that are required over
streaming-type abstractions, such as sockets. Addition-
ally, there are several optimizations, such as avoiding
dynamic memory allocations, that are typical in net-
work protocol implementations.

Tyche uses small request messages for requests and
completions, and data messages for data pages. A
request message corresponds to a request packet that
is sent using a small Ethernet frame. A data message
corresponds to several data packets that are sent using
Jumbo Ethernet frames of 4 or 8kB.

Tyche uses the concept of a communication “chan-
nel” to establish a connection between initiator and
target. Each channel allows a host to send/receive
data to/from a remote host. A channel is directly asso-
ciated to the NIC that uses for sending/receiving data.
Although a channel is mapped to a single NIC, several
channels can be mapped to the same NIC. Tyche is
able to simultaneously manage several channels, and
it creates at least a single channel per NIC.

Each channel has two pre-allocated buffers, one for
each kind of message, for sending and receiving mes-
sages. The initiator handles both buffers by specifying
in the message header its position on them, and, on its
reception, a message is directly placed on its buffer’s
position. At the target, the buffer for data messages
contains lists of pre-allocated pages for sending and
receiving data messages, and for issuing I/O requests
to the local device. The initiator has no pre-allocated
pages, it uses the pages of the I/O requests.

The initiator send path can operate in two modes. In
the “inline” mode (Figure 3), the application context
issues requests to the target with no context switch. In
the “queue” mode, requests are inserted in a queue
at the block level, and a thread dequeues them and

3

Pilar Gonzalez-Ferez,Angelos Bilas 85

Second NESUS Workshop• September 2015 • Vol. I, No. 1

issues them. There is no other difference. Regarding
performance, the inline mode outperforms the queue
mode for small requests; the queue mode significantly
outperforms the inline mode when there are many
outstanding writes of large size. The target uses a
work queue for sending completions back, because
local I/O completions run in an interrupt context that
cannot block.

At the receive path, a network thread per NIC pro-
cesses packets and messages. When several channels
are mapped to the same NIC, this thread will process
packets for all the channels. At the block layer, several
threads per channel process I/O requests.

III. Protocol design for NUMA affinity

To achieve high throughput in a NUMA architecture
such as the one depicted in Figure 1 we need to con-
sider affinity among different resources [2, 3]. In the
I/O path, there are four resources related to NUMA
affinity: application buffers, protocol data structures,
kernel (I/O and NIC) data buffers, and NIC location
in server sockets. The placement of threads plays a
role as well, and it affects application threads, protocol
threads, work queues, and interrupt handlers. Tyche
orchestrates affinity of memory and threads by consid-
ering the system topology and the location of NICs. It
creates a communication channel per NIC, and asso-
ciates resources exclusively with a single channel.

Each channel allocates memory for all purposes and
pins its threads to the same NUMA node where its NIC
is attached. For instance, in the architecture of Figure 1
a channel mapped to NIC-0 uses memory in Memory-0
and runs its threads in cores within Processor-0.

The NIC driver uses per NIC data structures: a
transmission ring and two receive rings. We force the
allocation of these rings in the same node where the
NIC is attached as well, making them part of the NIC
channel.

We implement a NUMA-aware work queue because
in the Linux kernel we use it is not possible to apply
affinity during assignment of tasks to work queues.
Our work queue launches a thread per core that is
pinned in its corresponding core. The target submits
completion messages to the work queue by using its
NUMA information. Conceptually, there is a work

NIC driver
buffers

Application

Buffers

Application
buffers

Application
buffers

Block layer
Affinity-aware Scheduler

Buffers

NIC 0 NIC 3

VFS + FS +
Buffer cache

NIC driver
buffers

N
U

M
A

no
de

 1

Ch
an

ne
ls

Ch
an

ne
ls

I/O requests

NIC 1 NIC 4 NIC 5NIC 2

NIC driver
buffers

NIC driver
buffers

NIC driver
buffers

NIC driver
buffers

N
U

M
A

no
de

 0

Figure 4: Affinity-aware scheduler selecting a channel for
two I/O requests in a Tyche system with six NICs, three per
NUMA node, and three channels per NIC.

queue per channel.

There are a few remaining parts of the end-to-end
path that are not affinity-aware: In the Linux kernel (a)
it is not possible to control placement of buffer cache
pages, (b) controlling application thread placement
may have adverse effects on application performance,
and (c) it is not possible to control placement of device
I/O completions (on the target side). Next, we discuss
how we deal with (a) and (b), whereas our results show
that the impact of (c) is not significant.

To deal with affinity of I/O request buffers that are
allocated before the request is passed to Tyche, we
use an “assignment” approach. We allow requests
to arrive with pre-allocated buffers, anywhere in the
system. Then, we dynamically detect where buffers are
allocated, we identify a NIC that is located in the same
NUMA node as the request buffers, and we assign
the request to a channel that uses this NIC. For this
purpose, Tyche implements a scheduler to select a
channel through which the next I/O request will be
issued. If there are several channels on this node, it
uses a fairness metric, by default equal kBs to each
channel, to select one of them. Figure 4 depicts a Tyche
system composed of six NICs, three per NUMA node,
three channels per NIC, and the scheduling of two I/O
requests. Our evaluation contrasts this affinity-based
scheduling to a simple round-robin approach that does
not consider buffer location and merely distributes I/O
requests to channels in a round-robin manner.

4

86 NUMA impact on network storage protocols over high-speed raw Ethernet

Second NESUS Workshop• September 2015 • Vol. I, No. 1

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 1 Nics - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(a) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 2 Nics - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(b) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 3 Nics - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(c) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 1 Nics - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(d) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 2 Nics - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(e) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 3 Nics - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(f) 128 kB reads

Figure 5: QPI traffic, in GB/s, for Ideal (Id) and Worst (Wo), with FIO, 128 kB requests, and random writes and reads, and
1, 2 and 3 NICs.

IV. Experimental environment

Our experimental platform consists of two systems
(initiator and target) connected back-to-back. Both
nodes have two, quad core, Intel(R) Xeon(R) E5520
CPUs running at 2.7 GHz. The operating system is
the 64-bit version of CentOS 6.3 testing with Linux
kernel version 2.6.32. The target node is equipped with
48 GB DDR-III DRAM, and the initiator with 12 GB.
The target uses 12 GB as main memory, and 36 GB as
ramdisk. Each node has 6 Myricom 10G-PCIE-8A-C
cards that are capable of about 10 Gbits/s throughput
in each direction.

We use the open-source Intel R© Performance
Counter Monitor (PCM) [6], that provides core-level
CPU information, and supports different kind of met-
rics. We use the estimation of data traffic transferred
through the Intel R© QuickPath interconnect links. For
each node, the tool provides data traffic for “QPI-1”
(inside the same node), and for “QPI-0” (traffic coming
from a remote node). We analyze Q1-No0, Q1-No1,
Q0-No0 and Q0-No1, that correspond to the traffic for
QPI-1 and QPI-0 in NUMA nodes 0 and 1, respectively.
The traffic coming through “QPI-0” link is the traffic

between processors (Figure 1), Q0-No0 corresponds to
the data traffic to Processor-0 from Processor-1, and
Q0-No1 to the traffic in the other direction. The tool
does not provide the traffic between I/O hubs.

We use two micro-benchmarks: FIO (Flexible I/O) is
a workload generator with many parameters, including
number of threads, synchronous and asynchronous
operations, request size, access pattern, etc. [7]. zmIO
is an in-house benchmark that uses the asynchronous
I/O API of the Linux kernel to issue concurrent I/Os
with minimal CPU utilization [8]. In this work we start
from the Tyche version implemented in Linux kernel
2.6.32 [4]. Tyche uses the queue mode (see Section II)
to avoid lock contentions [4].

V. Degradation of I/O throughput due
to NUMA

We first perform an analysis for the impact of NUMA
effects on the throughput of networked storage I/O
and the associated QPI traffic.

We use the baseline version of Tyche that has no
support for NUMA effects. We examine the extent of

5

Pilar Gonzalez-Ferez,Angelos Bilas 87

Second NESUS Workshop• September 2015 • Vol. I, No. 1

NUMA impact on throughput as follows. We attach 1,
2, or 3 NICs to NUMA node 0 and create one channel
per NIC with round-robin scheduler. Given that all
the NICs are on the NUMA node 0, the role of the
scheduler is minimal. Then, we create two extreme
configurations: Ideal and Worst. In Ideal, we manually
allocate memory and threads for Tyche and the bench-
mark in node 0 where the NICs are also attached. In
Worst, we allocate all memory and threads for Tyche
and the benchmark in NUMA node 1.

We use FIO with direct I/O, random reads and
writes of 128kB, and 60s of runtime. We run the test
with 1, 4, 8, 16, and 32 application threads. The storage
device is accessed in a raw manner (no file system). Fig-
ure 2 provides throughput, in GB/s, achieved by Tyche
as a function of the number of application threads.

To analyze the QPI traffic due only to our networked
storage protocol and exclude traffic due to the storage
device, the target does not use the ramdisk during this
test, and it completes the requests without performing
the actual I/O. Figure 5 depicts, in GB/s, the traffic
through each QPI-node link at the target during the test
execution as a function of the number of application
threads.

Regarding performance, with 1 and 2 NICs, both
configurations obtain the same throughput, and there
is no difference between them. With 3 NICs, Ideal
significantly outperforms Worst by up to 23.7%. As we
explain below, the reason is a bottleneck that appears
on the QPI path followed by the data.

Regarding the QPI analysis, with Ideal, since both,
NICs and resources, are in NUMA node 0, the QPI
traffic is only through Q1-No0 (the Q1 link at NUMA
node 0), and the throughput provided by this link is
quite similar to the throughput provided by Tyche.
There is no data traffic through Q0-No0, Q0-No1, and
Q1-No1.

With Worst, the behavior is rather different, and the
QPI traffic is through Q1-No1 (the Q1 link at NUMA
node 1). The data goes through QPI-1 that connects
I/O hub-1 with Processor-1 (Q1-No1) and through the
QPI link that connects the I/O hubs (this traffic is not
reported by the tool).

With 1 or 2 NICs, the data traffic generated does not
saturate this path and the system achieves maximum
performance. With 3 NICs, the amount of data traffic

Table 1: Configuration of the tests run for the NUMA study.
RR stands for round robin scheduling

Test
NUMA affinity Channel

Tyche Application scheduler
Ideal Yes Yes Affinity-aware
TyNuma Yes No RR
Worst No No RR

generated saturates this path and QPI-0 becomes the
bottleneck. QPI and Tyche throughput drop by up to
26.2% and 23.9%, respectively.

VI. Improvement due to protocol NUMA
extensions

We now analyze the impact of NUMA effects depend-
ing on memory placement applied by Tyche and the
application. To perform this analysis, we evaluate three
configurations: Ideal, TyNuma and Worst. Table 1 sum-
marizes these configurations. With Ideal, we manually
configure the NUMA placement of the application:
half of the application threads and their corresponding
resources are allocated in each NUMA node. With
TyNuma and Worst, we run the application without
any affinity hint.

To perform this set of experiments, we use six NICs,
three on each NUMA node, and we open one channel
per NIC. Now, the target uses the ramdisk, and it
performs the actual I/O. Consequently, at the target,
there is data traffic due to the network traffic and due
to the copy of the ramdisk, and we are not able to
distinguish between them. Therefore, we only analyze
the QPI traffic at the initiator.

To achieve maximum performance, NUMA affin-
ity should be applied not only by Tyche but also by
the application. Therefore, the performance achieved
depends also on the placement performed by the ap-
plication. In addition, it is interesting to see if our
protocol extensions can hurt performance for hand-
tuned applications. For this reason, we examine two
cases: (a) Regular applications that are not tuned for
NUMA. For this purpose we use zmIO that allocates
resources (threads and buffers) without any particular
attention to NUMA. (b) Hand-tuned applications. For

6

88 NUMA impact on network storage protocols over high-speed raw Ethernet

Second NESUS Workshop• September 2015 • Vol. I, No. 1

this purpose we use FIO that allocates resources in a
balanced manner.

Do protocol extensions for NUMA help perfor-
mance? We perform the analysis with zmIO, because
when zmIO is run without affinity hint, it allocates 99%
of writes and around 75% of reads to a single NUMA
node (node-0). Therefore, almost all writes issued to
channels allocated in node 1 have their resources allo-
cated in node 0, and for reads, this rate is only 50%.
Consequently, with zmIO, performance also depends
on the request type.

We run zmIO with random reads and writes, direct
I/O, request sizes of 64 kB, 128 kB, and 512 kB, and a
runtime of 60 s. The remote storage device is accessed
as a raw device (no file system). We run 1, 8, 16, and
32 application threads. Since this test is base on time,
each time a different amount of data is read or writ-
ten. Figure 6 provides throughput, in GB/s, achieved
by Tyche as a function of the number of application
threads. Figure 7 depicts the percentage of the total
traffic through each QPI-node link as a function of the
application threads and configuration.

For writes, Figure 6 shows that only by apply-
ing the right placement, Ideal configuration, Tyche
achieves its maximum throughput, being 6.77 GB/s
with 32 threads and 512 kB request size. Figure 7
shows that with Ideal, almost all the data traffic comes
through the QPI-1 link, having a similar amount of
traffic both nodes.

With Worst (the opposite case), Tyche only obtains
up to 4.67 GB/s again with 32 threads and 512 kB
request size. Indeed, by applying affinity, Ideal out-
performs Worst by up to 85%. Figure 7 shows that for
writes, Worst only has data traffic through the QPI-1
link on node 0, since almost all the user requests are
allocated in this node. There is no data traffic through
QPI-1 on node 1, and there is a significant amount of
traffic through QPI-0 as well.

With TyNuma, Tyche only achieves up to 5.00 GB/s
again with 32 threads and 512 kB request size. Ideal
improves throughput up to 37.60%. Figure 7 shows
that TyNuma behaves like Worst, and the data traffic
through the QPI-1 link is mainly on node 0.

For writes, due to the QPI data traffic (see Figure 7),
Worst and TyNuma are not able to provide better per-

formance. TyNuma outperforms Worst because, at the
Target, TyNuma is applying NUMA affinity, whereas
Worst is not.

For reads, Ideal and TyNuma achieve up to
6.86 GB/s and 6.78 GB/s, respectively, whereas, Worst
only up to 4.79 GB/s. Ideal improves throughput by
up to 84.8% comparing with Worst.

As we can see in Figure 7, this difference in per-
formance between Ideal and Worst is due to the QPI
traffic. With reads, Ideal has all the data traffic through
the QPI-1 links, having both nodes the same amount
of traffic. However, Worst has up to 33% of the total
traffic coming through QPI-0.

When comparing Ideal and TyNuma, there only is
a small difference in throughput and they exhibit a
quite similar behavior. However, regarding QPI traffic,
TyNuma behaves more similar to Worst. With TyNuma,
at the initiator the QPI traffic is quite similar to with
Worst, but at the target, the QPI traffic is the same as
with Ideal. At the target, Ideal and TyNuma are ap-
plying memory and threads placement, and having a
quite similar behavior. With Worst, the target does not
apply affinity, so a significant amount of traffic goes
through QPI-0 links and consequently the throughput
drops significantly. At the initiator, since application
buffers are allocated there, QPI traffic with TyNuma be-
haves like with Worst, since, with both, the application
is not applying NUMA affinity, and the application
buffers are only allocated at the initiator.

Note that with only 4 threads, all of them, and their
resources, are allocated in NUMA node 0, for this
reason, with Ideal, there is only data traffic through
the QPI-1 link of node 0.

Do protocol extensions for NUMA hurt performance
for hand-tunned applications? We analyze the QPI
traffic with FIO. When we run FIO with no affinity
hint, FIO, by itself, makes a quite balanced distribution
of resources. Consequently, even selecting the channel
in a round-robin order, around 50% of the requests are
issued through a channel allocated in the same node
where the request’s buffers are allocated.

We use FIO with random reads and writes, direct
I/O, a 256 MB file size, and 4 kB, 128 kB, and 512 kB
request sizes. We run 1, 4, 8, 16, and 32 application
threads. Each thread has its own file and makes 30

7

Pilar Gonzalez-Ferez,Angelos Bilas 89

Second NESUS Workshop• September 2015 • Vol. I, No. 1

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

zmIO - Writes - 64 kB

Ideal
TyNuma

Worst

(a) 64 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

zmIO - Writes - 128 kB

Ideal
TyNuma

Worst

(b) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

zmIO - Writes - 512 kB

Ideal
TyNuma

Worst

(c) 512 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

zmIO - Reads - 64 kB

Ideal
TyNuma

Worst

(d) 64 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

zmIO - Reads - 128 kB

Ideal
TyNuma

Worst

(e) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32
T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Threads

zmIO - Reads - 512 kB

Ideal
TyNuma

Worst

(f) 512 kB reads

Figure 6: Throughput, in GB/s, achieved by Tyche depending on the affinity, with zmIO for 64 kB, 128 kB and 512 kB
requests, and random writes and reads.

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 64 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(a) 64 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(b) 128 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(c) 512 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 64 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(d) 64 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(e) 128 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(f) 512 kB reads

Figure 7: Percentage of QPI for Tyche depending on the affinity, with zmIO for 64 kB, 128 kB and 512 kB request size, and
random writes and reads.

iterations over it, thus, with all the request sizes, the
same amount of data is always read or written. We use
XFS as the file system. Figure 8 provides throughput,

in GB/s, achieved by Tyche as a function of the number
of application threads. Figure 9 depicts the percentage
of the total traffic through each QPI-node link as a

8

90 NUMA impact on network storage protocols over high-speed raw Ethernet

Second NESUS Workshop• September 2015 • Vol. I, No. 1

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Writes - 4 kB

Ideal
TyNuma

Worst

(a) 4 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Writes - 128 kB

Ideal
TyNuma

Worst

(b) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Writes - 512 kB

Ideal
TyNuma

Worst

(c) 512 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Reads - 4 kB

Ideal
TyNuma

Worst

(d) 4 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Reads - 128 kB

Ideal
TyNuma

Worst

(e) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Threads

FIO - Reads - 512 kB

Ideal
TyNuma

Worst

(f) 512 kB reads

Figure 8: Throughput, in GB/s, achieved by Tyche depending on the affinity, with FIO for 4 kB, 128 kB and 512 kB request
size, and random writes and reads.

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 4 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(a) 4 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(b) 128 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(c) 512 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 4 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(d) 4 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(e) 128 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(f) 512 kB reads

Figure 9: Percentage of QPI for Tyche depending on the affinity, with FIO for 4 kB, 128 kB and 512 kB request size, and
random writes and reads.

function of the application threads and configuration.

Figure 8 shows that with Ideal, Tyche obtains its
maximum throughput, being 6.67 GB/s for writes

and reads, with 32 threads and 512 kB request
size. Whereas, with Worst, Tyche obtains only up
to 4.21 GB/s and 4.07 GB/s for writes and reads, re-

9

Pilar Gonzalez-Ferez,Angelos Bilas 91

Second NESUS Workshop• September 2015 • Vol. I, No. 1

spectively, also with 32 threads and 512 kB request
size. Indeed, by applying the right placement (Ideal
configuration), Tyche improves throughput up to 76%
(32 threads and 128 kB writes) when comparing with
the Worst configuration.

As we can see in Figure 9, this difference in perfor-
mance is due to the QPI traffic, as explained for reads
with zmIO. With Ideal, almost all the traffic comes
through the QPI-1 link, and both nodes have a similar
amount of traffic. But with Worst, a significant amount
of traffic, up to 48% of the total, comes through the
QPI-0 link.

Note that although Ideal exhibits perfect placement,
for writes, there is traffic at QPI-0 due to cacheline
invalidations to the remote NUMA node. With reads,
this type of traffic is not present.

TyNuma behaves similar to Ideal due to the QPI
traffic at the target, as explained for zmIO. The target
applies affinity for both Ideal and TyNuma, so they be-
have quite similar. In Worst, the target does not apply
affinity, therefore a significant amount of traffic goes
through QPI-0 and the throughput drops significantly.

This behavior is presented also for small requests.
For 4 kB requests, memory placement has also a sig-
nificant impact, and Ideal improves throughput up to
66.2% and 44.6% for writes and reads, respectively,
compared to Worst. Again, there is a small difference
in performance between Ideal and TyNuma.

VII. Related work

A lot of work has been done for NUMA-aware process
scheduling and memory management in the context
of many-core processors and systems. Regarding I/O
performance, for instance, Mavridis et al. propose
Jericho [9], an I/O stack that consists of a NUMA-
aware file system and a DRAM cache organized in
slices mapped to NUMA nodes. Their results show
that Jericho improves performance up to 2× by doing
more than 95% of memory accesses local. Zheng et
al. [10] propose a scalable user-space cache for NUMA
machines. By partitioning the cache by processors, they
break the page buffer pool into a large number of small
page sets and manages each set independently. Note
that, in this work, we show that NUMA placement
is a key aspect to achieve maximum throughput with

network storage protocols as well.
Regarding NUMA and networking, Moreaud et

al. [11] study NUMA effects on high-speed networking
in multi-core systems and show that placing a task
on a node far from the network interface leads to a
performance drop, and especially bandwidth. Their
results show that NUMA effects on throughput are
asymmetric since only the target destination buffer ap-
pears to need placement on a NUMA node close to the
interface. In our case, NUMA affects both sides, target
and initiator.

Ren et al. [12] propose a system that integrates an
RDMA-capable protocol (iSER), multi-core NUMA tun-
ing, and an optimized back-end storage area network.
They apply NUMA affinity by using the numactl utility
for binding a dedicated target process to each logical
NUMA node, and achieve an improvement of up to
19% in throughput for write operations. In contrast, Ty-
che applies NUMA affinity, at both initiator and target,
by defining channels that are mapped them to NICs
and to NUMA nodes, and their resources are allocated
in the same node where the NIC is attached. This ap-
proach almost entirely eliminates NUMA effects, and
achieves an improvement of up to 85%.

Dumitru et al. [13] also analyze, among other as-
pects, the impact of NUMA affinity on NICs capable
of throughput at the range of 40 GBits/s, without,
however, to propose a solution. Pesterev et al. [14]
analyze NUMA effects on TCP connections by propos-
ing Affinity-Accept that ensures that all processing for
a given TCP connection to occur on the same core.
They reduce time spent in the TCP stack by 30% and
improves overall throughput by 24%. They use the
NICs to spread incoming packets among many RX
DMA rings to ensure packets from a single flow al-
ways map to the same core. However, our study shows
that even the NIC resources should be allocated in the
same NUMA node where the NIC is attached to obtain
maximum performance.

VIII. Conclusions

Here, we analyze and evaluate the impact of NUMA
affinity on the network layer supporting the converged
storage paradigm over high-speed Ethernet. We an-
alyze the impact of memory placement by studying

10

92 NUMA impact on network storage protocols over high-speed raw Ethernet

Second NESUS Workshop• September 2015 • Vol. I, No. 1

the amount of data traffic through the Intel R© QPI
links. This analysis shows that NUMA effects can
have a large negative impact on performance, reducing
network throughput up to 2x.

To mitigate NUMA effects, we encapsulate all pro-
tocol data structures and flow control in “channels”
that essentially correspond to the structures required
to serve a request through the full end-to-end I/O
path. Then, we carefully map channels to NICs and
NUMA nodes to ensure proper affinity. Our approach
improves throughput by up to 85%, to a large extent
eliminating inter-processor QPI traffic and NUMA ef-
fects.

Acknowledgment

We thankfully acknowledge the support of the Euro-
pean Commission under the 7th Framework Programs
through the NanoStreams (FP7-ICT-610509) project,
the HiPEAC3 (FP7-ICT-287759) Network of Excellence,
and the COST programme Action IC1305, ’Network
for Sustainable Ultrascale Computing (NESUS)’.

References

[1] An Introduction to the
Intel R© QuickPath Interconnect.
http://www.intel.com/content/www/us/en/io/quickpath-
technology/quick-path-interconnect-
introduction-paper.html, 2009.

[2] Matthew Dobson, Patricia Gaughen, Michael
Hohnbaum, and Erich Focht. Linux Support for
NUMA Hardware. In Ottawa Linux Symposium,
2003.

[3] Christoph Lameter. Local and Remote Memory:
Memory in a Linux/NUMA System. In Ottawa
Linux Symposium, 2006.

[4] Pilar González-Férez and Angelos Bilas. Ty-
che: An efficient Ethernet-based protocol for con-
verged networked storage. In Proceedings of the
IEEE Conference on MSST, 2014.

[5] Pilar González-Férez and Angelos Bilas. Reducing
CPU and network overhead for small I/O requests

in network storage protocols over raw Ethernet. In
Proceedings of the IEEE Conference on MSST, 2015.

[6] Thomas Willhalm (Intel). Intel R© Performance
Counter Monitor - A better way to measure
CPU utilization. https://software.intel.com/en-
us/articles/intel-performance-counter-monitor,
2012.

[7] FIO Benchmark. http://freecode.com/projects/fio.

[8] zmIO Benchmark.
http://www.ics.forth.gr/carv/downloads.html.

[9] Stelios Mavridis, Yannis Sfakianakis, Anastasios
Papagiannis, Manolis Marazakis, and Angelos
Bilas. Jericho: Achieving Scalability through Op-
timal Data Placement on Multicore systems. In
Proceedings of the IEEE Conference on MSST, 2014.

[10] Da Zheng, Randal Burns, and Alexander S. Szalay.
Toward millions of file system iops on low-cost,
commodity hardware. In Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis, 2013.

[11] Stéphanie Moreaud and Brice Goglin. Impact of
NUMA effects on high-speed networking with
multi-opteron machines. In Proceedings of the In-
ternational Conference on Parallel and Distributed
Computing and Systems, 2007.

[12] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and
Thomas Robertazzi. Design and Performance
Evaluation of NUMA-aware RDMA-based End-
to-end Data Transfer Systems. In Proceedings of
international conference for High Performance Com-
puting, Networking, Storage and Analysis, 2013.

[13] Cees de Laat Cosmin Dumitru, Ralph Koning. 40
Gigabit Ethernet: Prototyping Transparent End-
to-End Connectivity. In Proceedings of the Terena
Networking Conference, 2011.

[14] Aleksey Pesterev, Jacob Strauss, Nickolai Zel-
dovich, and Robert T. Morris. Improving net-
work connection locality on multicore systems. In
Proceedings of the 7th ACM European Conference on
Computer Systems, 2012.

11

Pilar Gonzalez-Ferez,Angelos Bilas 93

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

Evaluating data caching techniques in
DMCF workflows using Hercules

Francisco Rodrigo Duro†, Fabrizio Marozzo∗, Javier Garcia Blas†

frodrigo@arcos.inf.uc3m.es, fmarozzo@dimes.unical.it, fjblas@arcos.inf.uc3m.es

Jesus Carretero†, Domenico Talia∗, Paolo Trunfio∗
jesus.carretero@uc3m.es, talia@dimes.unical.it, trunfio@dimes.unical.it

† ARCOS, University Carlos III, Spain
∗ DIMES, University of Calabria, Italy

Abstract

The Data Mining Cloud Framework (DMCF) is an environment for designing and executing data analysis
workflows in cloud platforms. Currently, DMCF relies on the default storage of the public cloud provider for any
I/O related operation. This implies that the I/O performance of DMCF is limited by the performance of the default
storage. In this work we propose the usage of the Hercules system within DMCF as an ad-hoc storage system for
temporary data produced inside workflow-based applications. Hercules is a distributed in-memory storage system
highly scalable and easy to deploy. The proposed solution takes advantage of the scalability capabilities of Hercules
to avoid the bandwidth limits of the default storage. Early experimental results are presented in this paper, they
show promising performance, particularly for write operations, compared to the performance obtained using the
default storage services.

Keywords DMCF, Hercules, data analysis, workflows, in-memory storage, Microsoft Azure

I. Introduction

In the last decade, most of the scientific computing
problems are increasing their needs to process large
quantities of data. Large simulations, data visualiza-
tion, and big data problems are some of the application
areas leading the trends in scientific computing. This
evolution is moving needs from a computing-centric
power point of view to a data-centric approach. Cur-
rent trends in High Performance Computing (HPC)
also include the use of cloud infrastructures as a flexi-
ble approach to virtually limitless computing resources.
Given this current scenario, a solution that combines
HPC, data analysis, and cloud computing is becoming
more and more necessary.

According to their elastic feature, cloud computing
infrastructures can serve as effective platforms for ad-
dressing the computational and data storage needs of
most big data applications that are being developed
nowadays. However, coping with and gaining value
from cloud-based big data requires novel software tools
and advanced analysis techniques. Indeed, advanced
data mining techniques and innovative tools can help
users to understand and extract what is useful in large
and complex datasets for making informed decisions
in many business and scientific applications.

The Data Mining Cloud Framework (DMCF), devel-
oped at University of Calabria, is an environment for
designing and executing data analysis workflows in

1

Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trunfio 95

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

cloud platforms. Currently, DMCF uses the storage
provided by the cloud provider for any I/O related
job. This implies that the I/O performance of DMCF
is limited by the performance of the default storage.
Moreover, it is influenced by the contention that oc-
curs when other I/O tasks are concurrently executed
in the same region. Finally, the cost of using persistent
storage service to store temporary data should be also
taken into account.

The solution proposed here consists in using Her-
cules as the default storage system for temporary data
produced in workflows. Hercules is a distributed in-
memory storage system, easy to deploy and highly
scalable. This system has been developed in the AR-
COS research group, at University Carlos III Madrid,
and it has also been proved in traditional HPC cluster
with promising results.

This novel approach has three main objectives. The
first one is taking advantage of the scalability of Her-
cules to avoid the bandwidth limits of the default
storage. When the number of Hercules I/O nodes
increases, the total available aggregated bandwidth
usable by worker nodes is enhanced. The second ob-
jective is to allow the deployment, thanks to the easy
deployment of Hercules, of an ad-hoc and indepen-
dent in-memory storage system to avoid the contention
produced during peak-loads in the cloud storage ser-
vice. The last objective is the independence from the
cloud platform used. While each cloud infrastructure
have different APIs to access their storage services,
Hercules has interfaces for commonly used APIs (like
POSIX-like, put/get, MPI-IO) in order to imply minor
modifications to existing code.

The main focus of this work is to deploy Hercules
on a cloud infrastructure together with DMCF and to
evaluate their performance with respect to the cloud
storage service in different scenarios. This preliminary
evaluation is aimed at demonstrating the capabilities
of Hercules to be used as temporary storage of data
analysis applications developed using DMCF.

The remainder of the paper is structured as follows.
Section II describes the main features of DMCF. Section
III introduces Hercules architecture and capabilities.
Section IV emphasizes the advantages of integrating
DMCF and Hercules and outlines how this integration
will work. Section V presents preliminary results of the

Infrastructure

Figure 1: Architecture of Data Mining Cloud Framework.

performance achieved by Hercules in the Azure cloud
infrastructure and compares the results with Azure
Storage. Section VI briefly presents other research
work in the same field. Finally, section VII concludes
the work and give some future research related to the
presented work.

II. Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) [6] is a
software system designed for designing and execut-
ing data analysis workflows on Clouds. A Web-based
user interface allows users to compose their applica-
tions and to submit them for execution to the Cloud
platform, following a Software-as-a-Service (SaaS) ap-
proach.

The architecture of DMCF includes different compo-
nents that can be grouped into storage and compute
components (see Figure 1). The storage components
include:

• A Data Folder that contains data sources and the re-
sults of knowledge discovery processes. Similarly,
a Tool Folder contains libraries and executable files
for data selection, pre-processing, transformation,
data mining, and evaluation of results.

• Data Table, Tool Table and Task Table contain meta-
data information associated with data, tools, and
tasks.

• The Task Queue contains the tasks that are ready
for execution.

2

96 Evaluating data caching techniques in DMCF workflows using Hercules

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

The compute components are:

• A pool of Virtual Compute Servers, which are in
charge of executing the data analysis tasks.

• A pool of Virtual Web Servers that host the Web-
based user interface.

The DMCF architecture has been designed to be
implemented on top of different Cloud systems. The
implementation used in this work is based on Microsoft
Azure1.

A user interacts with the system to perform the fol-
lowing steps for designing and executing a knowledge
discovery application:

1. The user accesses the Website and designs the
workflow through a Web-based interface.

2. After submission, the system creates a set of tasks
and inserts them into the Task Queue on the basis
of the workflow.

3. Each idle Virtual Compute Server picks a task
from the Task Queue, and concurrently executes
it.

4. Each Virtual Compute Server gets the input
dataset from the location specified by the work-
flow. To this end, a file transfer is performed from
the Data Folder where the dataset is located to the
local storage of the Virtual Compute Server.

5. After task completion, each Virtual Compute
Server puts the results on the Data Folder.

6. The Website notifies the user as soon as her/his
task(s) have completed, and allows her/him to
access the results.

The set of tasks created on the second step depends
on how many data analysis tools are invoked within
the workflow. Initially, only the workflow tasks with-
out dependencies are inserted into the Task Queue. All
the potential parallelism of the workflow is exploited
by using all the needed Virtual Compute Servers.

DMCF allows to program data analysis workflows
using two languages:

1http://azure.microsoft.com

• VL4Cloud (Visual Language for Cloud), a visual
programming language that lets users develop
applications by programming the workflow com-
ponents graphically.

• JS4Cloud (JavaScript for Cloud), a scripting lan-
guage for programming data analysis workflows
based on JavaScript [6].

Both languages use two key programming abstractions:

• Data elements, denoting input files or storage
elements (e.g., a dataset to be analyzed) or out-
put files or stored elements (e.g., a data mining
model).

• Tool elements, denoting algorithms, software tools
or complex applications performing any kind of
operation that can be applied to a data element
(data mining, filtering, partitioning, etc.).

Another common element is the Task concept, which
represents the unit of parallelism in our model. A task
is a Tool invoked in the workflow, which is intended
to run in parallel with other tasks on a set of Cloud
resources. According to this approach, VL4Cloud and
JS4Cloud implement a data-driven task parallelism.
This means that, as soon as a task does not depend
on any other task in the same workflow, the runtime
asynchronously spawns it to the first available virtual
machine (VM). A task Tj does not depend on a task
Ti belonging to the same workflow (with i 6= j), if Tj
during its execution does not read any data element
created by Ti.

III. Hercules

Hercules [3] is a distributed in-memory storage system
based on the key/value Memcached database [4]. The
distributed memory space can be used by the applica-
tions as a virtual storage device for I/O operations and
has been specially adapted in this work for being used
as in-memory shared storage for cloud infrastructures.
Our solution relies on an improved version of Mem-
cached servers, which provides an alternative storage
solution to the default storage service.

As can be seen in the Figure 2, Hercules architecture
has two levels: worker library and servers. On top

3

Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trunfio 97

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

!"#$% !"#$& !"#$'

!"#$%# &"'%

()*+,-.%%'&%/0"#$

(%#123%- 456,&"'% 7 (%#123%- 456,&"'% !"#

()*+*,

"-./012340# 567*,8

(092"2/0- 4:;1"1< =1>?@+0?-

!"#$?+&

(092"2/0- ;"2$+0?-

(092"2/0- -:#@1:;3@0-/"#/A9"B

)01#:#@0?209"?"C01

(092"2/0- ;"2$+0?-

)01#:#@0?209"?"C01

D0?01:2)01#:#@0?20 B43C:?

E>FGH7I

,@/01

(092"2/0-

H>2"4AJF

D0?01:2)01#:#@0?20 B43C:?

E>FGH7I

,@/01

(092"2/0-

H>2"4AJF

K012340# 4:;1"1<

Figure 2: Hercules architecture. On the top the worker side,
a user-level library. On the bottom the server side with the
Hercules I/O nodes divided in modules.

is the worker user-level library with a layered design.
Back-ends are based on the Memcached server, extend-
ing its functionality with persistence and tweaks. Main
advantages offered by Hercules are: scalability, easy
deployment, flexibility, and performance.

Scalability is achieved by fully distributing data
and metadata information among all the nodes, avoid-
ing the bottlenecks produced by centralized metadata
servers. Data and metadata placement is completely
calculated in the worker-side by a hash algorithm. The
servers, on the other hand, are completely stateless.

Easy deployment and flexibility at worker-side are
tackled using a POSIX-like user-level interface (open,
read, write, close, etc.) in addition to classic put/get
approach existing in current NoSQL databases. The ex-
isting software requires minimum changes to run with
Hercules. The layered design allows for performing
any future change with the minimum required effort.
Servers can be deployed in any kind of Linux systems
at user level. Persistence can be easily configured us-

!"#$%&

'()$!*%

+)$,%$&-

+)$,%$&.

+)$,%$&

/0.

+)$,%$&-

+)$,%$&.

+)$,%$&

/0.

1%$2#3%'&

/)4%&-

1%$2#3%'&

/)4%&.

1%$2#3%'&

/)4%&50.

+)$,%$6&

1%$2#3%'&

/)4%&-

+)$,%$6&

1%$2#3%'&

/)4%&.

+)$,%$6&

1%$2#3%'&

/)4%&/0.

+)$,%$6&

1%$2#3%'&

/)4%&7

'89:;<=>&. '89:;<=>&7 '89:;<=>&?

Figure 3: Deployment scenarios for the combination of Her-
cules and DMCF infrastructures.

ing the existing plugins or developing new ones. An
MPI-IO interface is also available for legacy software
relying on MPI as communication system.

Finally, performance and flexibility at server-side are
targeted by exploiting the parallel I/O capabilities of
Memcached servers. Flexibility is achieved by Hercules
due to its easiness to be deployed dynamically on as
many nodes as necessary. Each node can be accessed
independently, multiplying the total throughput peak
performance. Furthermore, each node can serve re-
quests in a concurrent way thanks to a multi-threading
approach. The combination of these two factors results
in full scalability: both when the number of nodes
increases and when the number of workers running
on each node increases.

IV. Integration between DMCF and
Hercules

The final objective of this joint research work is the
integration of DMCF and Hercules. As can be seen
in Figure 3, Hercules and DMCF can be configured
in more than one deployment scenarios to achieve
different levels of integration.

The first scenario shows the current approach of
DMCF, where every I/O operation is done against
the cloud storage service offered by the cloud provider,
which is Azure Storage in this work. While this storage
service is suitable for persistent data, it could be ineffi-
cient for temporary data. The main benefits of a cloud
storage service are the convenience of using every tool
offered by the same provider and the persistence op-
tions offered, even in different geographical regions.

4

98 Evaluating data caching techniques in DMCF workflows using Hercules

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

Nevertheless, there are, at least, four disadvantages
about this approach. First, proprietary interfaces and
tools to access the storage service offered by different
providers. Second, the performance offered by this
services could have limitations that can not be avoided
and performance could not be stable when there are
peaks of use by other users. Third, the storage ser-
vices are offered in a closed configuration, and can not
be customized to the necessities of users at any time.
Fourth, the cloud philosophy is tightly related with the
pay-per-use concept. However, it does not make sense
to pay for temporary data as if it was persistent data.

The second scenario, and the first contribution of this
paper, is to use Hercules as the default storage for tem-
porary generated data. Temporary data is becoming
more and more popular in data analysis and many-
task based applications. Most of these applications
are developed as a sequence of tasks that communi-
cate by using temporary files. Hercules I/O nodes
can be deployed on as many VM instances as needed
by the user depending on the required performance
and the characteristics of data. Even the instance type
can be configured according to the necessities of each
different application. As stated in Section III, Hercules
offers different user-level interfaces such as POSIX-like,
put/get, and MPI-IO, allowing a more flexible deploy-
ment of legacy applications than the default cloud
storage service. Cost-wise it is needed to better study
the competition between using a persistence-focused
service against launching Hercules I/O node instances
as temporary storage.

The third scenario shows an even tighter integration
of DMCF and Hercules infrastructures. In this scenario
Hercules I/O nodes share virtual instances with the
DMCF workers. If the data needed by the DMCF
worker is stored inside the Hercules I/O node running
in the same instance, it will not be necessary to use the
network for accessing data, and every I/O operation
will be completely local. This functionality, paired with
the improved data placement algorithm that stores all
the data related with one file in the same Hercules I/O
node, and with a DMCF scheduler that co-locates the
tasks in the nodes where the data is stored, can lead to
even better performance, exposing and exploiting data
locality.

Before implementing the system integration, we

need to analyze the potential performance improve-
ment that Hercules can offer on a public cloud infras-
tructure, specially against Azure Storage, which is the
storage service chosen in the current DMCF imple-
mentation. This preliminary evaluation is presented in
Section V.

V. Evaluation

As mentioned before, to demonstrate the capabilities of
Hercules in accelerating the I/O operations of DMCF
workers, we evaluated the performance of the Azure
Storage service against our proposed solution. For
this purpose, we have designed and implemented a
simple benchmark, referred from now on as Filecopy
Benchmark. In this benchmark, a configurable num-
ber of workers perform two simple tasks per worker:
the first one is writing files to the configured storage
(Azure Storage or Hercules) and, after the write task
is complete, a read task starts over the data written
previously. The benchmark is fully configurable in
terms of:

• Number of worker nodes: each worker node is a VM
deployed in Azure.

• Number of workers per node: worker processes run-
ning in the same node in parallel. This parameter
is important to evaluate how the storage solutions
will behave in multi-core architectures and how
they perform when different worker processes
share the same network interface.

• File size: the total size in MegaBytes (MB) of the file
can be configured to simulate different problem
sizes.

• Chunk size: in Azure storage, a BLOB object is di-
vided into blocks (maximum block size of Azure
Storage is 4 MB, not enough for large files). The
Java library used for accessing to Azure Storage,
automatically divides a block object in the re-
quired number of block objects. In addition to
this behavior, our implementation divides a file
into different BLOB objects. Chunk size parameter
is the size of each of the block objects that are part
of a complete file. In Hercules, it corresponds to

5

Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trunfio 99

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

Table 1: Azure instance type characteristics.

Type Cores RAM (GB) Bandwidth (Mbps)1 Price (e/h)

A0 1 0.75 <100 0.017
A1 1 1.75 ∼240 0.050
A2 2 3.50 ∼480 0.101
A3 4 7.00 ∼960 0.202
A4 8 14.00 ∼1700 0.408
D1 1 3.50 ∼480 0.097
D2 2 7.00 ∼900 0.194
D3 4 14.00 ∼1600 0.388
D4 8 28.00 ∼2000 0.776

the buffer size of the POSIX write operation. Inter-
nally, Hercules divides the files in blocks adapted
to the key-value hashmap of Memcached.

The computing resources used during the evaluation
are completely based on Microsoft Azure. Table 1
shows the characteristics of the different instance types
used during our evaluation. All the resources used
were located on the "Western Europe" region and the
OS installed on the VMs was Ubuntu 14.04 LTS. It is
also worth to be noted that, as the objective of the
research work is to use Hercules as temporary storage,
persistence features are disabled.

V.1 Chunk size evaluation

For the first evaluation case, we have fixed the file
size to 128 MB, to have a file size that is big enough
to show the performance with different chunk sizes.
The chunk size will vary during the evaluation and
we have used the five standard (A0-A4) instance types.
Figure 4(a) shows the performance achieved during the
write operations and Figure 4(b) the read operations
performance. As it can be seen in these figures, Azure
Storage performs much better for read (up to 72 MB/s)
than for write operations (up to 38 MB/s). Also, the
performance increases with the chunk size, achieving
the best performance around the 32 MB mark. Finally,
it is interesting to note how the performance varies

1Bandwidth measured experimentally using iperf tool between
two VMs of the same instance type in the same region.

0

10

20

30

40

50

60

70

80

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Chunk Size

Azure Storage Filecopy Benchmark (128 MBytes)

Chunk size scalability - WRITE operations

A0 A1 A2 A3 A4

(a) Throughput of Azure Storage by using the Filecopy Benchmark
(128 MBytes) for evaluating the block size for writes.

0

10

20

30

40

50

60

70

80

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Chunk Size

Azure Storage Filecopy Test (128 MBytes)

Chunk size scalability - READ operations

A0 A1 A2 A3 A4

(b) Throughput of Azure Storage by using the Filecopy Benchmark
(128 MBytes) for evaluating the block size for reads.

Figure 4: File copy benchmark configured for evaluating the
Azure Storage performance depending on the block object
size.

with the instance type used: as expected, the most
expensive instances have the better performance.

V.2 Hercules I/O nodes scalability

The next phase in the evaluation process is the mea-
surement of the performance difference between Azure
Storage and Hercules using different configurations.
Also, we evaluate how Hercules scales its performance
as the number of deployed I/O nodes increases. Based
on the preliminary nature of this evaluation, our bud-
get was limited to VMs running with a maximum

6

100 Evaluating data caching techniques in DMCF workflows using Hercules

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

number of 25 cores in total. After some quick band-
width evaluation cases (results showed in Table 1), we
selected D1 and D2 instances as the best performers
in network bandwidth per core ratio. D1 instances
achieve a peak performance of 60 MB/s using one core
while D2 tops at around 115 MB/s with two cores, man-
aging to reach almost the best possible performance
of the available Gigabit virtual network interface. This
is 2x the bandwidth available per core compared with
Standard ’AX’ instance types. In the future, it would
be interesting to evaluate the performance achieved by
Hercules running in the A8 and A9 network optimized
instances with Infiniband network, and 56 and 112 Gi-
gabytes of RAM respectively. This network optimized
instances should be the optimal option for running
Hercules I/O nodes.

The final selection for this test is 8 VMs (D1 in-
stances) as worker nodes and up to 8 VMs (D2 in-
stances) as Hercules I/O nodes. Figure 5 plots the file-
copy benchmark results, configuring the experiment
with a file size of 512 MB, with 32 MB of chunk size
and executing one read/write operation per worker
node (one worker process per node) which implies a
4096 MB problem size (512 MB x 8 worker nodes). We
have compared four different cases. The first one is
the performance obtained by Hercules using between
1 and 8 I/O nodes. The second case is Azure Storage
baseline approach, using the default access pattern
offered by the Java API, without any optimizations.
Third case is Azure Storage applying some optimiza-
tions to the code, specially important is setting up
the BlobRequestOptions object property setConcurrentRe-
questCount with 8 threads per process, using 8 concur-
rent threads to parallel access to Azure Storage. The
last case can not be directly compared with the per-
formance achieved by Hercules, because it uses the
reserved D2 instances as worker nodes, instead of us-
ing them as I/O nodes, to show the peak performance
achievable by Azure Storage with fully working Giga-
bit interface, hence the dotted line. In the Hercules
case, the peak performance is limited by the aggre-
gated bandwidth available worker-side (8x60 MB/s
∼480 MB/s) not by the server-side 8x115 MB/s (∼920
MB/s).

Figure 5(a) shows the performance evolution as the
number of Hercules I/O nodes increase compared

0

100

200

300

400

500

600

1 2 4 8

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Hercules I/O nodes

Filecopy benchmark

Hercules I/O Nodes Scalability - WRITE

8 clients x 512MB = 4GB

Hercules Azure Naïve Azure Parallel Azure Parallel D2

(a) Throughput of Hercules by using the Filecopy Benchmark for
evaluating the scalability of I/O nodes for writes. We set up the
experiment with 8 worker nodes, writing 512 MBytes each one (4
GBytes in total).

0

100

200

300

400

500

600

1 2 4 8

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

#Hercules I/O nodes

Filecopy benchmark

Hercules I/O Nodes Scalability - READ

8 clients x 512MB = 4GB

Hercules Azure naïve Azure Parallel Azure Parallel D2

(b) Throughput of Hercules by using the Filecopy Benchmark for
evaluating the scalability of I/O nodes for reads. We set up the
experiment with 8 worker nodes, reading 512 MBytes each one (4
GBytes in total).

Figure 5: File copy benchmark configured for evaluating the
Hercules I/O nodes scalability. 8 worker processes running
on 8 worker nodes access 4 Gigabyte of data. Hercules
performance is up to 2x better than Azure Storage in write
operations while performing nearly as good as Azure Storage
in the best read cases.

to the different Azure Storage approaches. The fig-
ure clearly demonstrates how Hercules performance
tops near the 400 MB/s mark, which is near the maxi-
mum theoretical peak performance of 8x60 MB/s (∼480

7

Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trunfio 101

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

MB/s). This peak performance achieved using 8 I/O
nodes for parallel access is nearly 2x the performance
achieved by Azure Storage in any of the configurations.
Some interesting sights in the Azure Storage side are
how both the baseline and the parallel approach per-
formance is nearly identical caused by only being one
core available in D1 instances. Also, it is interesting
how the D2 instances performance using parallel ac-
cesses is even lower, exposing the deficiencies of Azure
Storage performance in write operations.

In Figure 5(b), which depicts the read operations
performance, can be clearly seen how the Hercules
performance evolves as the number of I/O nodes
available increases. With only one I/O node avail-
able, the performance is ∼100 MB/s, the maximum
offered by the network interface of the I/O node (D2
instance). As the number of I/O nodes increases, the
performance evolves, reaching a peak performance
of ∼400 MB/s, again near the theoretical up mark of
480 MB/s and near the performance of Azure Storage
that slightly outperforms Hercules in this case. Azure
Storage performs at the peak performance of the avail-
able network, with same performance in naive and
parallel approaches using D1 instances while perform-
ing marginally better when D2 instances are used as
worker nodes.

Third evaluation case is an evolution of the previous
test for a scenario with higher congestion using the
same infrastructure (8 D1 instances as worker nodes
and 8 D2 instances as Hercules I/O nodes). In this
case, instead of having 1 worker running on each node,
we launched 4 workers running in parallel on each of
the worker nodes, keeping the problem size in 4096
MB. For this purpose, each worker process writes, and
then reads, a 128 MB file, with the same chunk size of
32 MB.

Figure 6(a), showing the performance in write op-
erations, reports a very similar behavior of Hercules
compared to the previous test case, but achieving a
lower peak performance. At the same time, Azure
Storage performance with D1 instances increases and
the difference between Hercules and Azure Storage
is narrowed to a 50% difference in favor of Hercules.
Furthermore, using more than one process per node in
the dual-core D2 instances, doubles the performance
obtained by Azure Storage than Hercules in this special

0

100

200

300

400

500

600

700

1 2 4 8

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

#Hercules I/O nodes

Filecopy benchmark

Hercules I/O Nodes Scalability - WRITE

8 clients x 128MB x 4 ppn = 4GB

Hercules Azure Naïve Azure Parallel Azure Parallel D2

(a) Throughput of Hercules by using the Filecopy Benchmark for
evaluating the scalability of I/O nodes for writes. We set up the
experiment with 8 clients and 4 process per node, writing 128 MBytes
each process (4 GBytes in total).

0

100

200

300

400

500

600

700

1 2 4 8

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Hercules I/O nodes

Filecopy benchmark

Hercules I/O Nodes Scalability - READ

8 clients x 128MB x 4 ppn

Hercules Azure Naïve Azure Parallel Azure Parallel D2

(b) Throughput of Hercules by using the Filecopy Benchmark for
evaluating the scalability of I/O nodes for reads. We set up the
experiment with 8 clients and 4 process per node, reading 128
MBytes each process (4 GBytes in total).

Figure 6: File copy benchmark configured for evaluating
the Hercules I/O nodes scalability. 32 worker processes
running on eight worker nodes (4 processes per node) access
4 Gigabyte of data. Hercules performance is up to 2x better
than Azure Storage in write operations while performing
nearly as good as Azure Storage in the best read cases.

case.

On the other hand, on Figure 6(b), related with read
operations, the peak performance of Hercules is even
higher than the previous case, fully utilizing the ∼480

8

102 Evaluating data caching techniques in DMCF workflows using Hercules

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

MB/s of the available aggregated bandwidth at client-
side and surpassing the peak throughput performance
of Azure Storage accessed from D1 instances. When
Azure Storage is accessed by D2 instances with more
than one process reading in parallel from different files,
the performance is almost doubled, in a similar way
seen in the write operations.

As conclusions of the last two cases, we can empha-
size how the aggregated throughput of the workers
accessing to the Hercules storage system approaches
the theoretical maximum bandwidth available in ev-
ery studied case, showing the scalability capabilities
of our proposed solution. The performance in write
operations is between 1.5x and 2x the performance
achieved by Azure Storage with a similar architecture,
while the performance in read operations in first case
is marginally in favor of Azure and in the second case
is comparable.

V.3 Worker nodes strong scalability

The last test cases focus on evaluating the behavior
of our solution with an increasing number of worker
nodes accessing the Hercules storage system. The
objective is to evaluate the impact of the congestion
against Azure Storage. The test cases are equivalent to
the previous test cases, with Hercules using always 8
I/O nodes, while Azure Storage is evaluated using the
native approach and the optimized parallel implemen-
tation. The aim of this test is to study a strong scala-
bility scenario, where an increasing number of worker
nodes perform the same total work: writing 8x512 MB
files, a total problem size of 4096 MB, and then reading
them. As expected, as the number of worker nodes
increases, the total available bandwidth increases at
the same pace, leading to better peak throughput per-
formance, but the bottleneck continues at client-side.

Figure 7 shows the same trends already explained in
the previous test cases. In Figure 7(a), which represent
the aggregated throughput in write operations, can be
seen how Hercules is always reaching the theoretical
peak performance of each configuration, and how its
performance is better than Azure Storage in every case,
even doubling the performance in the most favorable
one.

In the read operations performance case, Figure 7(b),

0

100

200

300

400

500

600

1 2 4 8

A
g

g
re

g
a

te
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

worker nodes

Filecopy Benchmark

Strong Scalability - WRITE

512 MB x 8 files - 8 Hercules I/O nodes

Hercules Azure Azure Parallel

(a) Throughput varing the worker nodes from 1 to 8, writing 8 files
(512 MBytes) per node. We set up the experiment with 8 I/O nodes
in case of Hercules.

0

100

200

300

400

500

600

1 2 4 8

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

worker nodes

Filecopy Benchmark

Strong Scalability - READ

512 MB x 8 files - 8 Hercules I/O nodes

Hercules Azure Azure Parallel

(b) Throughput varing the worker nodes from 1 to 8, reading 8 files
(512 MBytes) per node. We set up the experiment with 8 I/O nodes
in case of Hercules.

Figure 7: File copy benchmark configured for comparing
Azure Storage and Hercules performance with an increasing
number of worker nodes accessing to the storage concur-
rently. Hercules is configured with 8 I/O nodes and from
1 to 8 worker nodes access to the storage systems concur-
rently. Hercules performance is up to 2x better than Azure
Storage in write operations while performing nearly as good
as Azure Storage in most cases.

again Hercules takes advantage of the available band-
width in every case and competes really well with
Azure Storage but the case of 8 clients where the Azure
Parallel performance is better.

9

Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trunfio 103

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

From the results of the evaluation, we can conclude
that Hercules is capable of fully utilize the available
bandwidth of every infrastructure where it has de-
ployed. Furthermore, the scalability is assured in any
case, on one hand when the number of I/O nodes
deployed increases and, on the other hand, when the
number of concurrent worker nodes scales and the
congestion is higher. Compared to Azure Storage, our
proposed solution is up to 2x better in performance
during write operations and competes on equal con-
ditions on read operations. Furthermore, should be
noted that every test case evaluated in this work uses
the best possible configuration for Azure Storage, as
explained at the beginning of this section, and it could
be predicted the same performance for Hercules in
other scenarios while Azure Storage is expected to be
penalized.

The potential of our proposed solution is clearly ex-
posed in this preliminary benchmark evaluation. How-
ever, we are still working on test cases with a greater
number of workers and I/O nodes to better show the
scalability capabilities of the Hercules storage system
deployed on a cloud infrastructure. Our final objec-
tive is to find the limitations in performance of Azure
Storage and to evaluate how many number of Her-
cules I/O nodes are needed to achieve a comparable
performance.

VI. Related work

The continued growth in popularity of many-task com-
puting has caused many researchers to focus on re-
search to improve the performance of storage systems,
one of the major bottlenecks in this type of paradigms.

Previous solutions for providing in-memory storage
are Parrot, Chirp, and AHPIOS. Parrot [7] is a tool to
adapt existing systems using a remote I/O through
the POSIX interface and Chirp [8]. Chirp is a user-
level filesystem for collaboration across distributed
platforms such as clusters, clouds, and grid computing
systems.

AHPIOS (Ad-Hoc Parallel I/O system for MPI ap-
plications) [5] is a fully scalable system for I/O parallel
MPI applications. AHPIOS relies on dynamic par-
titions and elastic demand partitions for distributed
deployment applications. AHPIOS provides different

memory caches levels. Hercules shares many of its
features: (1) the user-level deployment without special
privileges, transparency using a widely and easy de-
ployment by using simple commands, (2) Hercules is
designed to achieve high scalability and performance
by leveraging many compute nodes as possible for
I/O nodes, (3) Hercules uses main memory for tempo-
ral storage in order to improve performance in access.
Costa et al. [1, 2] propose using the file attributes
of MosaStore to provide communication between the
workflow engine and file system by using hints. The
workflow engine can provide these hints directly to
the file system or file system can infer patterns by ana-
lyzing the data. The MosaStore approach is radically
different from Hercules, because it uses a centralized
metadata server rather than a focus on easy deploy-
ment and fully distributed as is our proposal. This
server could became a bottleneck in large-scale sys-
tems.

The AMFS framework [9] offers programmers a sim-
ple scripting language for scripting execution of par-
allel applications in memory. Hercules shares with
AMFS and treatment approach distributed metadata.
A difference in AMFS must explicitly specify which
data is to memory and what will be persistent while
the goal is to be able to offer Hercules persistence
transparently to the programmer.

HyCache+ [10] is a distributed storage middleware
that allows effectively use the network bandwidth of
the high-end massively parallel systems. HyCache +
acts as main storage of recently accessed data (meta-
data, intermediate results for the analysis of large-scale
data, etc.), and only exchange data asynchronously
with the remote file system. One of the similarities
between HyCache+ and Hercules is fully distributed
metadata approach, the usega of computer network
rather than the network shared storage, and high scala-
bility. HyCache+ is totally based on POSIX while Her-
cules offers the possibility of using a POSIX interface
and get/set operators. HyCache+ focuses on improv-
ing parallel file systems, while Hercules is designed
to accelerate workflow execution engines, facilitating
the exploitation of data locality in current cloud-based
applications.

There are also studies that focus on the study of
performance storage platforms in the cloud. Zhao et

10

104 Evaluating data caching techniques in DMCF workflows using Hercules

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

al. [11] compares the I/O performance of S3FS, HDFS,
and FusionFS [12]. As demonstrated in the experimen-
tal evaluation conducted in this paper, the performance
obtained by Hercules equals or exceeds S3FS.

VII. Conclusions and future work

In this work we have presented the integration of the
Hercules system and the Data Mining Cloud Frame-
work in order to design and evaluate an ad-hoc storage
system for temporary data produced inside data anal-
ysis workflow applications.

The evaluation results discussed in this paper clearly
demonstrate the potential performance of Hercules,
which is able to use more than 80% of the available
bandwidth in every case and showing its scalability ca-
pabilities in every evaluated scenario. The performance
achieved by Hercules is up to 2x the performance of
Azure Storage in write operations while our proposed
solution has been proved competitive in any scenario
with read operations against the cloud storage service
evaluated here.

Given the good results of this preliminary evaluation,
our objective in the near future is to evaluate Hercules
in more complex scenarios, with an increasing number
of workers and I/O nodes, to better know the potential
capabilities to work together with DMCF, and in ad-
dition to investigate the limitations of Azure Storage.
Furthermore, it will be interesting to evaluate Hercules
against Azure Storage in scenarios where Azure Stor-
age is expected to have worse performance: changing
the chunk size, changing the file size, changing the
access patterns, etc.

After this first analysis of the capabilities of Hercules
in complex cases, we will continue working in the inte-
gration of Hercules and DMCF, and in the evaluation
of the price/performance ratio reached by Hercules
in contrast with different cloud storage services. The
final objective of our joint research is a fully working
DMCF solution using Hercules as temporary storage
for real data analysis applications.

Acknowledgement

This work is partially supported by EU under the COST
Program Action IC1305: Network for Sustainable Ul-

trascale Computing (NESUS). This work is partially
supported by the grant TIN2013-41350-P, Scalable Data
Management Techniques for High-End Computing Systems
from the Spanish Ministry of Economy and Competi-
tiveness.

References

[1] Samer Al-Kiswany, Abdullah Gharaibeh, and
Matei Ripeanu. The case for a versatile storage
system. Operating Systems Review, 44(1):10–14,
2010.

[2] L.B. Costa, H. Yang, E. Vairavanathan, A. Bar-
ros, K. Maheshwari, G. Fedak, D. Katz, M. Wilde,
M. Ripeanu, and S. Al-Kiswany. The case for
workflow-aware storage:an opportunity study.
Journal of Grid Computing, pages 1–19, 2014.

[3] Francisco Rodrigo Duro, Javier Garcia Blas, and
Jesus Carretero. A hierarchical parallel storage
system based on distributed memory for large
scale systems. In Proceedings of the 20th European
MPI Users’ Group Meeting, EuroMPI ’13, pages
139–140, New York, NY, USA, 2013. ACM.

[4] Brad Fitzpatrick. Distributed caching with mem-
cached. Linux J., 2004(124):5–, August 2004.

[5] Florin Isaila, Francisco Javier Garcia Blas, Jesús
Carretero, Wei-Keng Liao, and Alok Choudhary.
A Scalable Message Passing Interface Implemen-
tation of an Ad-Hoc Parallel I/O System. Int. J.
High Perform. Comput. Appl., 24(2):164–184, May
2010.

[6] Fabrizio Marozzo, Domenico Talia, and Paolo
Trunfio. Js4cloud: script-based workflow program-
ming for scalable data analysis on cloud platforms.
Concurrency and Computation: Practice and Experi-
ence, pages n/a–n/a, 2015.

[7] Douglas Thain and Miron Livny. Parrot: Trans-
parent user-level middleware for data-intensive
computing. Scalable Computing: Practice and Expe-
rience, 6(3), 2005.

[8] Douglas Thain, Christopher Moretti, and Jeffrey
Hemmes. Chirp: a practical global filesystem

11

Francisco Rodrigo Duro, Fabrizio Marozzo, Javier Garcia Blas, Jesus Carretero, Domenico Talia,Paolo Trunfio 105

Second NESUS Workshop • September 2015 • Vol. 1, No. 1

for cluster and grid computing. Journal of Grid
Computing, 7(1):51–72, 2009.

[9] Zhao Zhang, Daniel S. Katz, Timothy G. Arm-
strong, Justin M. Wozniak, and Ian Foster. Par-
allelizing the execution of sequential scripts. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 31:1–31:12, New York, NY,
USA, 2013. ACM.

[10] Dongfang Zhao, Kan Qiao, and Ioan Raicu.
Hycache+: Towards scalable high-performance
caching middleware for parallel file systems. In
IEEE/ACM CCGrid, 2014.

[11] Dongfang Zhao, Xu Yang, Iman Sadooghi,
Gabriele Garzoglio, Steven Timm, and Ioan Raicu.
High-Performance Storage Support for Scientific
Applications on the Cloud. ScienceCloud’15, June
2015.

[12] Dongfang Zhao, Zhao Zhang, Xiaobing Zhou,
Tonglin Li, Ke Wang, D. Kimpe, P. Carns, R. Ross,
and I. Raicu. FusionFS: Toward supporting data-
intensive scientific applications on extreme-scale
high-performance computing systems. In 2014
IEEE International Conference on Big Data (Big Data),
pages 61–70, Oct 2014.

12

106 Evaluating data caching techniques in DMCF workflows using Hercules

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Analyzing Power Consumption of
I/O Operations in HPC Applications

Pablo Llopis, Manuel F. Dolz,
Javier García-Blas, Florin Isaila,

Jesús Carretero

University Carlos III, Spain
{pllopis,mdolz,fjblas,

florin,jcarrete}@arcos.inf.uc3m.es

Mohammad Reza Heidari,
Michael Kuhn

University of Hamburg, Germany
{heidari,kuhn}@informatik.uni-hamburg.de

Abstract

Data movement is becoming a key issue in terms of performance and energy consumption in high performance
computing (HPC) systems, in general, and Exascale systems, in particular. A preliminary step to perform I/O
optimization and face the Exascale challenges is to deepen our understanding of energy consumption across the
I/O stacks. In this paper, we analyze the power draw of different I/O operations using a new fine-grained internal
wattmeter while simultaneously collecting system metrics. Based on correlations between the recorded metrics and
the instantaneous internal power consumption, our methodology identifies the significant metrics with respect to
power consumption and decides which ones should contribute directly or in a derivative manner. This approach has
the advantage of building I/O power models based on a previous set of identified utilization metrics. This technique
will be validated using write operations on an Intel Xeon Nehalem server system, as writes exhibit interesting
patterns and distinct power regimes.

Keywords HPC, I/O operations, power analysis, system metrics, statistical analysis.

I. Introduction

Modern scientific discoveries have been driven by an
insatiable demand for high computing performance.
However, as we progress on the road to Exascale sys-
tems, energy consumption becomes a primary obstacle
in the design and maintenance of HPC facilities. A
simple extrapolation shows that an Exascale platform
based on the current most energy efficient hardware
available in the Green500 [1] would consume 120 MW.
The power wall being set to 20 MW [2], this system
would still exceed this limit by a factor of five, thus
turning it economically unfeasible due to its projected
TCO. Indeed, systems will need to reach an energy
efficiency of 50 GFLOPS/Watt to face the Exascale chal-
lenge. Actually, hardware vendors are already trying
to provide more energy-efficient parts and software
developers are gradually increasing power-awareness

in the current software stack, from applications to op-
erating systems. For example, recent advances in pro-
cessor technologies have enabled operating systems
to leverage new energy efficient mechanisms such as
DVFS (Dynamic Voltage and Frequency Scaling) or
DCT (Dynamic Concurrency Throttling) to limit power
consumption of computing systems.

Data movement has been identified as an extremely
important challenge among many others on the way
towards the Exascale computing [2]. The low perfor-
mance of the I/O operations especially in I/O-intensive
scientific domains and simulations continues to present
a formidable obstacle to reaching Exascale comput-
ing in the future large-scale systems. CPU speed and
HDD capacity are boosted approximately by factors of
400 and 100 every 10 years, respectively. HDD speed,
however, develops at a slower pace and can only be
increased by a factor of 20 every 10 years. This issue

1

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 107

Second NESUS Workshop • September 2015 • Vol. I, No. 1

triggers a special interest in optimizing storage sys-
tems in data centers, and motivates the need for more
research to improve the energy efficiency of storage
technologies. Therefore, a first step to develop I/O
optimizations is to further understand how energy is
consumed in the whole I/O stack.

Due to the key role of power constraints, future Exas-
cale systems are expected to work with a limited power
budget, and be able to allocate power to different sub-
systems dynamically. In this scenario, the capability
of predicting power consumption based on data move-
ment and I/O operations is a useful resource. In this
paper, we take advantage of a new internal wattmeter
to deeply analyze the power drawn at every single
wire leaving the PSU and feeding the hardware com-
ponents of a server platform. While some existing
works have focused on studying power consumption
of system components such as storage devices, CPUs
and memory [3], we offer a detailed view of the whole
I/O stack power usage across all system components,
from operating system mechanisms down to storage
devices.

Given the foregoing, this paper makes the following
contributions:

• Leveraging our power measurement and system
metrics frameworks, we can benefit from data ex-
ploration and analysis to provide insights into the
relation between power and data movement of
I/O operations.

• We present a methodology that identifies key sys-
tem metrics which are greatly correlated with
power usage during data movement and I/O op-
erations.

• Using our methodology, we conclude the most
useful metrics in practical terms and narrow
them down to a subset that can reflect the power
consumption resulting from the data movement
across the I/O stack.

The rest of this paper is structured as follows: In
the second section, we present some related works
about power analysis and modeling. In Section III, we
detail our data acquisition framework, which consists
of a power measurement and a system data collection
framework as well as a detailed description of our

new wattmeter. Section IV describes the proposed
methodology for analyzing the data acquired from
our software and hardware frameworks. Section V
presents the results of applying our methodology and
provides key insights into how the system consumes
power when performing write operations. Finally, the
conclusion section summarizes of our contributions
and suggests some future works.

II. Related Work

Current approaches for analyzing power usage and
estimating energy consumption fall into different cat-
egories: power modeling at the hardware level [4, 5],
power modeling at the performance counters level [6],
and power modeling at the simulation level [7, 8, 9].

Simulation techniques are commonly used for eval-
uating both performance and energy consumption.
Prada et al. [8] describe a novel methodology that
aims to build fast simulation models for storage de-
vices. The method uses a workload as a starting point
and produces a random variate generator that can be
easily integrated into large-scale simulation models.
A disk energy simulator, namely Dempsey [10], reads
I/O traces and interprets both performance and power
consumption of each I/O operation using the DiskSim
simulator. Dempsey was only validated on mobile
disk drives. This solution predicts energy consump-
tion using the simulated disks characteristics instead of
system metrics. Manousakis et al. [5] present FDIO, a
feedback-driven controller that improves DVFS for I/O-
intensive applications. This solution relies on the node
being instrumented for obtaining fine-grained power
measurement readings. Their feedback controller de-
tects I/O phases, quickly switches the CPU frequency
to all possible states and then selects the optimal set-
ting regarding its power/performance ratio. El-Sayed
et al. [11] demonstrated that energy-optimized adap-
tive policies result in higher quality energy/runtime
tradeoffs than the static (constant) policies. While our
work also describes the physical instrumentation to
obtain fine-grained power readings, we use this instru-
ment to analyze data movement patterns and detect
power regimes. Our proposed model does not require
having this kind of invasive instrumentation in order
to predict energy consumption. Lewis et al. [6] uses

2

108 Analyzing power consumption of I/O operations in HPC applications

Second NESUS Workshop • September 2015 • Vol. I, No. 1

the node temperature to predict energy consumption.
The authors discuss the interaction of the different
components for their modeling. The authors propose
using read and writes per second metric (obtained by
iostat) for modeling I/O workloads. Allalouf et al. [4]
develop a scalable power modeling method that esti-
mates the power consumption of storage workloads
(STAMP). The modeling concept is based on identi-
fying the major workload contributors to the power
consumed by the disk arrays. Deng et al. [12] model
the flash memory based storage systems constructed as
a RAID by leveraging the semantic I/O. In a contribu-
tion similar to ours, the authors calculate the cost and
energy consumption of storage devices for running a
variety of workloads, categorized by their dominant re-
quirements [13]. In contrast, our solution predicts the
energy consumed by the complete I/O stack (including
CPU and memory consumption) for single/multi core
access patterns, in addition to the storage devices. For
estimating energy consumption, some works also fo-
cus on system performance counters [14, 15, 16]. These
works propose linear models that are able to provide
run-time power estimations, and are validated with
instrumented hardware. Other works concentrate on
reducing energy consumption of individual storage de-
vices. Zhu et al. [17] optimize disk energy consumption
by tuning cache-replacement strategies that increase
idle time and reduce disk spin-ups.

Our work focuses on exploring, analyzing, and mod-
eling the power consumption of the operating system’s
I/O stack across all components. Like Li et al. [18], we
aim to build models that help better understand and
reduce the energy consumption of the storage stack.
Unlike most works mentioned in this section, we do
not provide a generic power model for computation,
or limit our analysis to a single system component, but
focus on energy consumption caused by data move-
ment patterns across the memory hierarchy and I/O
stack.

III. Data Acquisition Framework

In this section, we describe the power performance
measurement framework that we use to instrument
our platform to perform the I/O analysis in detail.
Specifically, we leverage our pyprocstat tool for trac-

Gathering
System Metrics

pyprocstat pmlib

ArduPower
Meter

LMG
Meterprocfs sysfs

Operating
SystemHardware

Figure 1: Ontology of system metrics used in our measure-
ment framework.

ing procfs and sysfs system metrics and the PM-
Lib framework to support both external and internal
wattmeter devices. However, we will focus on the data
obtained from the internal wattmeter, as this device
provides more fine-grained measurements and is able
to detect rapid power variations. We use the external
wattmeter only for validation purposes. Figure 1 de-
picts the ontology of our framework, divided in both
system and power measurement categories with their
corresponding tools.

III.1 System metrics collection framework

We instrument our platform to gather live system met-
rics in order to analyze workload behaviours and de-
tect the correlation of the system activities with power
consumption. These data traces can be easily correlated
with power consumption traces for further exploration
and analysis, as demonstrated in Section V.

While common UNIX tools such as top and iostat
are able to gather live system information, they are
not well-suited for our purposes. Our goal is to obtain
traces that are aggregated into a time series consisting
of different system metrics. Scripting existing tools
in order to generate the resulting data traces is not
very practical, since this method ends up launching
processes several times and causing unnecessary over-
heads. Similarly, data stemming from performance
counters gathered with the Linux perf framework are
limited because their main objective is timing function

3

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 109

Second NESUS Workshop • September 2015 • Vol. I, No. 1

calls and counting function calls, with limited support
for inspecting runtime values. Hence, they are better
suited to other tasks such as profiling and performance
debugging.

Instead, we develop pyprocstat [19], an easy to use,
low-overhead, modular and flexible tool specifically
built for our purposes. This tool consists of different
modules, each of which is in charge of gathering infor-
mation from different parts of the system. These mod-
ules usually collect information directly from kernel-
provided interfaces such as procfs and sysfs, providing
system data with a low overhead. In this paper, we
collect system information from I/O devices, virtual
memory, interrupts and per-CPU utilization, adding
up to a total of 120 different system metrics.

III.2 Power measurement framework

To measure power consumption, we leverage the PM-
Lib framework, a well-established package for inves-
tigating power usage in HPC applications [20]. Its
implementation provides a general interface to utilize
a wide range of wattmeters, including i) external de-
vices, such as commercial PDUs, WattsUp? Pro .Net,
ZES Zimmer Lmg450, etc., ii) internal wattmeters, di-
rectly attached to the power lines leaving from PSU,
such ArduPower, iii) commercial DAS from National
Instruments (NI) and iv) integrated power measure-
ment interfaces such as Intel RAPL, NVIDIA NVML,
IPMI, etc. The PMLib client side provides a C library
with a set of routines in order to measure the applica-
tion code. The traces obtained can be easily integrated
into existing profiling and tracing frameworks such as
Extrae+Paraver [21] or VampirTrace+Vampir [22].

III.2.1 ArduPower as a low-cost internal wattmeter

In this section, we describe our new internal
ArduPower wattmeter in detail. ArduPower has been
conceived as a low-cost DAS to measure the instanta-
neous DC power consumption of the internal compo-
nents in computing systems wherever the PSU output
power lines are accessible [23]. In general, it offers a
spatially fine-grained power measurement by provid-
ing 16 channels to monitor the power consumption of
several parts, e.g., mainboard, HDD and GPU cards
etc., simultaneously, with a sampling rate varying from

Computer

Ethernet

External wattmeter
ZES Zimmer LMG450

Arduino + Sensing shield
Internal wattmeter

Mainboard

HDDs

Power tracing
daemon

server
Power tracing

Power
supply

unit

Application node

Figure 2: Power measurement setup combining both internal
ArduPower and external Lmg450 wattmeters.

480 to 5,880 Sa/s, depending on the number of selected
channels. The total production cost of the wattmeter is
approximately 100e, so it can be easily accommodated
in moderate-/large-scale HPC platforms in order to in-
vestigate power consumption of scientific applications.
As shown in Figure 3, ArduPower wattmeter consists
of two basic hardware components: a shield of 16 cur-
rent sensors and an Arduino Mega 2560 processing
board detailed below.

Sensing shield ArduPower comprises a self-
designed shield, responsible for sensing the DC
currents passing through the wattmeter and
providing the outputs to the processor board of
the Arduino. It consists of 16 Allegro ACS713
current sensors [24], each of them converting the
DC current passing through it to a proportional
voltage. The Hall-effect elements provide a
highly accurate, low noise output voltage signal
proportional to the applied DC current, sensing
up to 20 A with a total output error of ±1.5% and
a low internal resistance of 1.2 mΩ.

Microcontroller ArduPower also comprises an Ar-
duino Mega 2560 processing board that is con-
nected directly to the power sensing shield. It ben-
efits from one Atmel ATmega2560 [25] as a high-
performance low-power 8-bit AVR RISC-based mi-
crocontroller running at 16 MHz and combining
256 KiB ISP flash memory, 8 KiB SRAM and 4 KiB
EEPROM. The complete board of Arduino Mega
2560 has 16 analog inputs supported by a 10-bit
ADC, 4 UARTs (hardware serial ports) and a USB
link.

4

110 Analyzing power consumption of I/O operations in HPC applications

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Figure 3: ArduPower wattmeter, power sensing shield and
Arduino Mega 2560 processing board.

The sensing shield is placed on the top of Arduino
Mega 2560 to let an analog to digital converter (ADC)
read the outputs of the 16 current sensors and trans-
form them into digital values. The Arduino board
communicates with the target tracing server through
a serial USB link and sends the measured DC current
values to a PMLib server in order to calculate the in-
stantaneous power consumption.

IV. Data Exploration and Methodology

Our goal is to explore the data to understand how the
electrical power is consumed in a computing system
to perform I/O operations. The analysis should re-
veal the system metrics which are correlated with the
specific I/O operations and are useful for modeling
the power usage related to data movement and I/O
operations. In order to measure data movement, we
perform simple sequential write I/O operations while
collecting data as detailed in section III. To carry out
this micro benchmark, we leverage fio [26], which is a
commonly used micro benchmarking tool developed
by the lead developer and maintainer of the Linux
block IO subsystem.

In spite of the apparent simplicity of these opera-
tions, write I/O operations exhibit interesting irregular
patterns due to the way the operating system manages
data while it moves across the I/O stack, as depicted in
Figure 4. However, read I/O operations do not exhibit
these patterns and, therefore, this is why this work
entirely focuses on write I/O operations.

We identify different power and performance

0 10 20 30

11
0

12
0

13
0

14
0

15
0

16
0

Time (s)

Po
we

r (
W

)

Figure 4: Power regimes during a sequential write of a 4 GiB
file.

regimes that correspond to temporal regions in these
I/O operations. Figure 4 shows that for a simple
write I/O operation, the power consumption can vary
significantly. This is due to the fact that the system
transitions between different power and performance
regimes while data moves from main memory and is
written to disk. This shows that a simple straw-man
approach to modeling writes using average power and
write duration as input would not be sufficient, espe-
cially for short write operations. This also motivates
the need to have a way for estimating the power con-
sumption of I/O operations.

Using the data collected as a time series, we design
a methodology in order to detect highly correlated
metrics with regard to power consumption, follow-
ing a similar approach as in [27]. Identifying these
metrics is important for developing new power usage
models that are more sophisticated than the afore-
mentioned straw-man approach. This methodology
leverages the Pearson’s correlation and consists of the
following steps:

1. For each collected system metric, we calculate its
correlation with power consumption.

2. For each collected system metric, we compute the
derivative and calculate its correlation with power
consumption.

3. Every correlation whose absolute value is below
than an empirically determined threshold t is dis-
carded.

4. The union from both correlations results in a table
of system metrics that are relevant for power usage

5

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 111

Second NESUS Workshop • September 2015 • Vol. I, No. 1

during data movement of I/O operations.

Note that in the design of the methodology, we have
taken several aspects into account. First, some metrics
are cumulative values, and therefore monotonically
increasing with time, e.g, number of interruptions oc-
curred since boot. Others are defined as a rate or
instantaneous value and might vary with time accord-
ingly, e.g., power consumption varies depending on the
load of the machine. Therefore, a methodology should
be aware of this fact in order to avoid correlations of
metrics of different nature, and convert cumulative
time series to instantaneous values so all metrics can
be compared. The transformation from accumulated
to instantaneous values is normally performed by sub-
tracting the previous observation rt−1 from the current
one rt at the time t.

Second, since data movement has a direct impact
on the power consumption, metrics that are measured
in quantities of data should be transformed into the
rates of movement by computing their corresponding
derivatives. For example, as shown in Figure 5, the
dirty memory metric measures the number of bytes
in memory that must be written back to the disk at a
given time1. However, the page dirtying rate (or speed)
needs to be derived from the dirty memory metric in
order to be compared with the power consumption
properly. By calculating the dirtying rate, it is possible
to measure the amount of data that any user-space
application is writing to main memory. Information
closely related to data movement can be obtained from
the available system metrics. We believe this is a fun-
damental step when developing a methodology that
identifies most correlated metrics with regard to the
power usage.

V. Analysis of System I/O Operations

In this section, we perform an analysis of I/O op-
erations using our measurement framework and the
proposed methodology described in Section IV for se-
quential I/O writes. First, we describe the hardware

1Note that the absolute value of the derivative is computed in
order to superimpose positive and negative rates on a single normal-
ized plot.

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

N
or

m
al

iz
ed

 P
ow

er
 v

s
di

rt
y

m
em

or
y

Power
Dirty memory
|d/dt(Dirty)|

Figure 5: Dirty memory, |d/dt(dirty memory)| and power
consumption of a sequential write of a 20 GiB file.

setup and the software configuration that have been
used for this work in detail.

V.1 Configuration setup

Target platform. The analysis and evaluation have
been carried out on a server platform, denoted as Ne-
halem, equipped with 2× Intel Xeon X5560 (total of
8 physical cores) running at 2.80 GHz, 12 GB of RAM
memory, and a Seagate Barracuda 500 GB S-ATA II
HDD, equipped with a Supermicro PSU 720W 80+
Gold (≈82% energy efficiency).

Software instrumentation framework. We use
pyprocstat [19] to gather system metrics and obtain
time series that describes live system information.
We configure this tool to use the following built-in
modules: meminfo (collects data from /proc/meminfo),
stat (collects CPU utilization data, interrupts, context
switches, etc from /proc/stat), vmstat (collects
virtual memory data from /proc/vmstat), and io
(collects I/O data from sysfs).

Power measurement framework. As mentioned be-
fore, we use the PMLib software package to investigate
power usage of HPC applications. Power measurement
can be controlled by the applications using a collection
of routines that allow the user to query information on
the power measurement units, create counters associ-
ated with a device where power data is stored, start,
continue and terminate power sampling, etc. All this

6

112 Analyzing power consumption of I/O operations in HPC applications

Second NESUS Workshop • September 2015 • Vol. I, No. 1

information is managed by the PMLib tracing server,
which is in charge of acquiring data from the devices
and sending back the appropriate answers to the invok-
ing client application via the proper PMLib routines
(see Figure 2).

Wattmeters. We use the ArduPower wattmeter con-
nected to all the power lines leaving from the PSU
and feeding the different components of the server
machine. We leverage 16 channels of ArduPower to
measure the 3.3 V, 5 V and 12 V lines from a 24 ATX
motherboard connector, 2× 4-pin connectors, and a
4-pin Molex connector. We avoid ground and negative
voltage lines. On the other hand, we also employ an
external ZES Zimmer Lmg450 wattmeter measuring
Nehalem in order to verify that the internal measure-
ments are well correlated with the external ones. This
wattmeter can measure up to 20 Sa/s.

V.2 Analysis of write operations

Applying our proposed methodology, we obtain one
power usage time series and 120 system metric time
series for every benchmark run. Figure 6 depicts the
correlations of all the 120 system metrics with power
consumption during a sequential write of a 4 GiB file
on Nehalem. The top plot shows the direct correla-
tions, while the bottom plot takes the derivative of
the data before computing the correlation with power.
Indeed, the bottom plot clearly shows that only one
system metric is highly correlated with power (B4)
and the rest have a very low correlation. Table 1 lists
the most significant system metrics. As it is shown
in the table, those metrics which have values below
our empirically obtained threshold of 0.75 have been
discarded.

Where cpu_system is the system CPU utilization,
Dirty is the number of dirty memory pages, softirq
is the number of Linux software IRQs, procs_running
is the number of running processes, and cpu_user is
the user mode CPU utilization. Not surprisingly, CPU
utilization is highly correlated with power usage since
the CPU is the most power intensive component during
these operations. Interrupts are also highly correlated
with the I/O power usage. However, we argue that
the most relevant system metric for write operations

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●
●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (s)

N
or

m
al

iz
ed

 P
ow

er
 v

s
di

rt
y

m
em

or
y

Power
Dirty memory
softirq
cpu_system

Figure 7: Power consumption vs. dirty memory for the
sequential write of a 4 GiB file.

is the derivative of the number of dirty pages. While
the system CPU utilization shows a slightly higher
correlation, we can hardly use this metric to reflect the
level of power consumption used by I/O operations
since the system CPU utilization correlates with the
power consumption of other workloads running on the
machine and, in consequence, this metric is not useful
for decoupling I/O from other workloads. Similarly,
the number of running processes cannot be considered
a good metric due to its nature. Therefore, we conclude
that the page dirtying rate, d/dt(Dirty), is the best
system metric to reflect the I/O-related power usage.
Figure 7 clearly shows how well the Dirty system
metric describes data movement with regard to power
consumption.

VI. Conclusions

In this paper, we leverage a power and system tracing
framework in order to deeply analyze power usage due
to data movement across the I/O stack. Among power
consumption measurements collected in this frame-
work, we also gather system metrics obtained from
the procfs and sysfs file systems. Next, we present
a new methodology to determine which system met-
rics are highly correlated to power consumption. We
validate this technique by performing write operations
on an Intel Xeon Nehalem server system instrumented
with ArduPower and Lmg450, a fine-grain internal DC
wattmeter and one external AC wattmeter, respectively.

Several aspects are taken into account in designing

7

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 113

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Table 1: Correlation of system metrics to power for a sequential write.

Metric Corr(data) Corr(d/dt(data)) Corrplot Tile
cpu_system 0.94 -0.20 D16
Dirty 0.08 0.92 B4
softirq 0.87 -0.12 C27
procs_running 0.84 -0.17 B27
cpu_user 0.77 -0.12 D22

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A

B

C

D

(a) Raw system metrics.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A

B

C

D

(b) Derivative system metrics w.r.t. time.

Figure 6: Correlation plot between power usage and system metrics for a 4 GiB write.

the methodology. First, some of the metrics measured
are reported as accumulated values, e.g., number of
interruptions occurred since last read of a counter or
the number of dirty pages at a given time. Due to
their nature, some metrics do not appear to have direct
impact on the power consumption; however, if their
derivatives are computed, their instantaneous rates of
change can correlate better with power consumption.
In other words, the presented methodology can deter-
mine if a metric is highly correlated to power in the
direct or derivative mode.

The analysis results demonstrate that only a small
portion of the metrics, such as the CPU utilization,
the rate of change in the number of dirty pages, soft-
ware interruptions and number of processes running,
have direct impacts on the power consumption and,
due to their strong correlation, they can eventually be
incorporated into I/O power models.

For future works, we plan to refine our methodol-

ogy in order to analyze the correlations at the PSU
wire levels, as obtained from the internal ArduPower
wattmeter, and extend our benchmark suite to com-
prise more I/O operations with different configura-
tions. We also aim to automatically build I/O power
models using the methodology presented in this pa-
per.

Acknowledgements

The work presented in this paper has been partially
supported by the EU Project FP7 318793 “EXA2GREEN”
and partially supported by the EU under the COST
Programme Action IC1305, “Network for Sustainable
Ultrascale Computing (NESUS)” and by the grant
TIN2013-41350-P, Scalable Data Management Techniques
for High-End Computing Systems from the Spanish Min-
istry of Economy and Competitiveness.

8

114 Analyzing power consumption of I/O operations in HPC applications

Second NESUS Workshop • September 2015 • Vol. I, No. 1

References

[1] The Green500 Editors. Green500. http://www.
green500.org/, 6 2015. Last accessed: 2015-8.

[2] US Department of Energy. Top Ten Exascale Re-
search Challenges. Technical report, Department
of Computer Science, Michigan State University,
February 2014. http://science.energy.gov/
~/media/ascr/ascac/pdf/meetings/20140210/
Top10reportFEB14.pdf.

[3] Anne-Cecile Orgerie, Marcos Dias de Assuncao,
and Laurent Lefevre. A survey on techniques for
improving the energy efficiency of large-scale dis-
tributed systems. ACM Comput. Surv., 46(4):47:1–
47:31, March 2014.

[4] Miriam Allalouf, Yuriy Arbitman, Michael Factor,
Ronen I. Kat, Kalman Meth, and Dalit Naor. Stor-
age modeling for power estimation. In Proceedings
of SYSTOR 2009: The Israeli Experimental Systems
Conference, SYSTOR ’09, pages 3:1–3:10, New York,
NY, USA, 2009. ACM.

[5] Ioannis Manousakis, Manolis Marazakis, and An-
gelos Bilas. Fdio: A feedback driven controller for
minimizing energy in i/o-intensive applications.
In Proceedings of the 5th USENIX Conference on Hot
Topics in Storage and File Systems, HotStorage’13,
pages 16–16, Berkeley, CA, USA, 2013. USENIX
Association.

[6] Adam Lewis, Soumik Ghosh, and N.-F. Tzeng.
Run-time energy consumption estimation based
on workload in server systems. In Proceedings of
the 2008 Conference on Power Aware Computing and
Systems, HotPower’08, pages 4–4, Berkeley, CA,
USA, 2008. USENIX Association.

[7] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin
Niu, Yuan Xie, Yiran Chen, and Hai Li. A hy-
brid solid-state storage architecture for the per-
formance, energy consumption, and lifetime im-
provement. In 2010 IEEE 16th International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 1–12, Jan 2010.

[8] Laura Prada, Javier Garcia, Alejandro Calderon,
J. Daniel Garcia, and Jesus Carretero. A novel
black-box simulation model methodology for pre-
dicting performance and energy consumption in
commodity storage devices. Simulation Modelling
Practice and Theory, 34(0):48 – 63, 2013.

[9] Timo Minartz, JulianM. Kunkel, and Thomas Lud-
wig. Simulation of power consumption of energy
efficient cluster hardware. volume 25, pages 165–
175. Springer-Verlag, 2010.

[10] John Zedlewski, Sumeet Sobti, Nitin Garg,
Fengzhou Zheng, Arvind Krishnamurthy, and
Randolph Wang. Modeling hard-disk power con-
sumption. In Proceedings of the 2Nd USENIX Con-
ference on File and Storage Technologies, FAST ’03,
pages 217–230, Berkeley, CA, USA, 2003. USENIX
Association.

[11] Nosayba El-Sayed and Bianca Schroeder. To check-
point or not to checkpoint: Understanding energy-
performance-i/o tradeoffs in hpc checkpointing.
In IEEE International Conference on Cluster Comput-
ing (CLUSTER), pages 93–102. IEEE, 2014.

[12] Yuhui Deng, Lijuan Lu, Qiang Zou, Shuqiang
Huang, and Jipeng Zhou. Modeling the aging
process of flash storage by leveraging semantic
i/o. Future Generation Computer Systems, 32(0):338
– 344, 2014.

[13] Yan Li and D.D.E. Long. Which storage device
is the greenest? modeling the energy cost of i/o
workloads. In IEEE 22nd International Symposium
on Modelling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 100–
105, Sept 2014.

[14] Gilberto Contreras and Margaret Martonosi.
Power prediction for intel XScale R© processors
using performance monitoring unit events. In
Low Power Electronics and Design, 2005. ISLPED’05.
Proceedings of the 2005 International Symposium on,
pages 221–226. IEEE, 2005.

[15] Dimitris Economou, Suzanne Rivoire, Christos
Kozyrakis, and Partha Ranganathan. Full-system

9

Pablo Llopis Sanmillan, Manuel Dolz, Javier Garcia Blas, Florin Isaila, Jesus Carretero, Mohammad Reza Heidari,Michael Kuhn 115

Second NESUS Workshop • September 2015 • Vol. I, No. 1

power analysis and modeling for server environ-
ments. International Symposium on Computer
Architecture-IEEE, 2006.

[16] Tao Li and Lizy Kurian John. Run-time model-
ing and estimation of operating system power
consumption. In Proceedings of the 2003 ACM SIG-
METRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS
’03, pages 160–171, New York, NY, USA, 2003.
ACM.

[17] Qingbo Zhu, F.M. David, C.F. Devaraj, Zhenmin
Li, Yuanyuan Zhou, and Pei Cao. Reducing En-
ergy Consumption of Disk Storage Using Power-
Aware Cache Management. In In Proceedings of
IEE Software, pages 118–118, Feb 2004.

[18] Jing Li, Anirudh Badam, Ranveer Chandra, Steven
Swanson, Bruce Worthington, and Qi Zhang. On
the energy overhead of mobile storage systems. In
Proceedings of the 12th USENIX Conference on File
and Storage Technologies, FAST’14, pages 105–118,
Berkeley, CA, USA, 2014. USENIX Association.

[19] Pablo Llopis. A powerful and modular tool for
gathering live system information as time series.
https://github.com/pllopis/pyprocstat.

[20] S. Barrachina, M. Barreda, S. Catalán, M.F. Dolz,
G. Fabregat, R. Mayo, and E.S. Quintana-Ortí.
An integrated framework for power-performance
analysis of parallel scientific workloads. In EN-
ERGY 2013, The 3rd International Conference on
Smart Grids, Green Communications and IT Energy-
aware Technologies, pages 114–119, 2013.

[21] Paraver: the flexible analysis tool. http://www.
cepba.upc.es/paraver. [Last access: June 2015].

[22] The vampir performance analysis tool-set. https:
//www.vampir.eu/. [Last access: June 2015].

[23] Manuel F. Dolz, Mohammad Reza Heidari,
Michael Kuhn, and Germán Fabregat. ArduPower:
a low-cost wattmeter to improve energy efficiency
of HPC applications. In 5th International Green &
Sustainable Computing Conference, Las Vegas, NV,
USA, December 2015. To appear.

[24] LLC Allegro MicroSystems. ACS713: Fully In-
tegrated, Hall Effect-Based Linear Current Sen-
sor IC with 2.1 kVRMS Voltage Isolation and a
Low-Resistance Current Conductor. http://www.
allegromicro.com, 2015. [Last access: June 2015].

[25] Atmel Corporation. ATmega2560: 8-bit At-
mel Microcontroller with 16/32/64KB In-System
Programmable Flash. http://www.atmel.com/
devices/atmega2560.aspx, 2015. [Last access:
June 2015].

[26] Jens Axboe. Flexible i/o tester. http://freecode.
com/projects/fio.

[27] M. F. Dolz, J. Kunkel, K. Chasapis, and S. Catalán.
An analytical methodology to derive power mod-
els based on hardware and software metrics. Com-
puter Science - Research and Development, 2015.

10

116 Analyzing power consumption of I/O operations in HPC applications

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

FriendComputing: Organic application
centric distributed computing

Beat Wolf, Loïc Monney, Pierre Kuonen

University of Applied Sciences Western Switzerland, HES-SO//Fribourg
beat.wolf@hefr.ch

Abstract

Building Ultrascale computer systems is a hard problem, not yet solved and fully explored. Combining the
computing resources of multiple organizations, often in different administrative domains with heterogeneous
hardware and diverse demands on the system, requires new tools and frameworks to be put in place. During
previous work we developed POP-Java, a Java programming language extension that allows to easily develop
distributed applications in a heterogeneous environment. We now present an extension to the POP-Java language,
that allows to create application centered networks in which any member can benefit from the computing power and
storage capacity of its members. An accounting system is integrated, allowing the different members of the network
to bill the usage of their resources to the other members, if so desired. The system is expanded through a similar
process as seen in social networks, making it possible to use the resources of friend and friends of friends. Parts of
the proposed system has been implemented as a prototype inside the POP-Java programming language.

Keywords Java, distributed computing

I. Introduction

Scientific and commercial applications face an increase
of computational resource requirements. This can be
observed in various domains, such as medical research
applications, material simulations, weather forecasts
or multimedia processing. In all those domains the
data to be analysed is produced at increasing speeds,
with data processing applications not being able to
keep up with the analysis. In the past, mainly large
organizations have addressed these types of analysis
as they had access to large computing infrastructures.
The constant improvements of computers as well as
the reduction of their prices, has attracted the interest
of small organizations to tackle this type of calcula-
tions. Nevertheless, the constantly increasing amounts
of data produced as well as the complexity of the types
of analyses to perform still restricts many small orga-
nizations to really address this domain.

Several technologies emerged over the past years to
assist these organizations to cope with the demands

of modern applications. Especially, technologies like
cloud computing enabled these organizations to ex-
pand their computing infrastructure for cases where
it is not sufficient. While for many organizations this
is an acceptable solution, it is not a solution for all
use cases. This is especially true for organizations
working with sensitive data, for example medical data,
that may not be allowed to be sent to any remote loca-
tion. This problem is even more emphasized when the
cloud provider is located in a different jurisdiction, a
likely scenario in regards to currently popular cloud
providers like Amazon.

Various commercial and academic computing grids
have been created in the last decades. They regroup the
infrastructures of several organizations into a single
grid, available for use to all members. Grids such as
the Open Science Grid (OSG) [1] or the Worldwide
LHC Computing Grid (WLCG) [2] come in the form
of traditional grids which can be used for a multitude
of applications by various users. Other grids, like
Folding@Home [3] and the BOINC [4] based grids are

1

Beat Wolf, Loïc Monney,Pierre Kuonen 117

Second NESUS Workshop • September 2015 • Vol. I, No. 1

application specific, generally used by a single user
providing the analysis tasks.

The main drawback of the approach of the grid
is due to the fact that the code must be adapted to
different operating systems and hardware present in
the grids. This leads to costly IT developments that are
often beyond the capacity of these small organizations.
This problem has been largely reduced in the clouds
thanks to the virtualization.

In addition, the setup and maintenance of a grid
environment is a complicated task and many organiza-
tions do not have the necessary technical knowledge to
do so. A use case which is quite common is that multi-
ple partners need a significant amount of computing
power to perform the same type of analysis. In such a
situation the partners often use the same software to
perform their analysis and could benefit from using
each other’s infrastructure to do so. It is this particular
use case that we address in this poster.

II. Friend computing

The concept of friend computing is to create an appli-
cation centered network of so called "friends", which
share the same goal. Multiple users of a certain soft-
ware which performs computationally complex analy-
ses can group together and benefit from each other’s
infrastructure. The group is expanded through a pro-
cess similar to how social networks work. Any new
member gets invited by an existing member and once
part of the network can access the computing power
of every other installation. This approach is similar
to the friend-to-friend computing as presented in [5],
with the main difference that in [5], authors focus on
data sharing only. In [6] the authors have shown that
friend-to-friend computing can also been applied for
sharing computing resources, an idea on which we
expand upon.

We based our first prototype implementation of
friend computing on POP-Java [9], an extension of
the Java programming language which implements the
POP (Parallel Object Programming) model [7]. The
POP programming model was initially implemented
as an extension of the C++ language, called POP-C++
[8]. POP-Java was chosen as it offers an excellent base
for the concept of friend computing.

The POP-Java language has as one of its main fea-
tures the possibility to create objects on remote com-
puters, making it possible for the programmers to
combine local and remote objects. By default POP-
Java will either use any available computer in a locally
configured POP-Java network, or a specific computer
defined by the programmer. The introduction of Friend
computing allows the programmer to search for a com-
puting resource in the friend network automatically,
with the ability to specify certain criteria such as pro-
cessing power or storage space. This can also be used
to bring calculations to the place where the data is
stored, which can reduce privacy concerns in cases
where the data itself is sensitive.

The concept of friend computing was also ap-
proached from a commercial viewpoint, giving the
users of a network an incentive to make their resources
available. Because of this an accounting system was
integrated, in which every member of the network
logs the usage of their resources by other members.
This makes it possible to bill the different users of the
network based on their usage, increasing the incen-
tive to participate in the network as well as giving the
possibility to monetize their infrastructure.

III. Prototype

We created a prototype of the concept of friend comput-
ing using POP-Java. It consists of an extended version
of the POP-Java language, as well as an example appli-
cation using those features. This prototype application
was used to verify the correct implementation of the
POP-Java implementation which includes the friend
computing extension.

The prototype allows the creation of new friend
networks, allowing to define an ID and purpose of
the friend computing network. This newly created
network can then be extended by inviting new mem-
bers to the network. To get invited, the joining party
needs to provide an IP address to a member of the net-
work and have the prototype application running. The
prototype application will show a notification of the
network invitation, and upon accepting sets up the re-
quired friend computing network configurations. Once
a member of the network, any member can launch a
simple calculation, in this case the factorization of a

2

118 FriendComputing: Organic application centric distributed computing

Second NESUS Workshop • September 2015 • Vol. I, No. 1

number. When the calculation is launched, available
resources inside the friend computing network are au-
tomatically discovered and the calculations distributed
over multiple computers.

Any usage of the resources is journaled and can later
be used to bill the individual members of the network
(if so wished).

IV. Conclusion

We showed a concept on how to approach distributed
software development in an Ultrascale world. The
ability to dynamically grow a distributed computing
network based around a specific application with the
possibility to bill other members based on their usage is
an interesting approach to use ultrascale systems. Our
current prototype has only been verified on a small
scale network and further tests will show how it scales
to larger numbers. Further work will be required to
scale the current concept to Ultrascale systems, but the
current concept already allows for the design of very
large distributed applications. This is especially true
if like in every object orientated application, the scope
of every object is limited as much as possible. This
reduces not only the complexity of the application, but
also the complexity of the network traffic between the
different distributed objects.

Other open works include the improvement of the
resource discovery protocol. While the currently used
resource discovery protocol, which is the one used by
POP-Java, works well when searching for resources
with a certain amount of RAM or CPU power, in the
context of friend computing it would be helpful to
be able to search for computing nodes which have
certain data stored locally. This would allow bringing
the computations to the data instead of the other way
around, greatly reducing data confidentially issues that
can arise in distributed systems.

The prototype and POP-Java in general also does not
yet handle firewalls and systems behind a NAT. Includ-
ing support for those would greatly help adoption on
a larger scale including commercial applications like
GensearchNGS [10], an genetic diagnostics application
which served as the initial inspiration for this project.

References

[1] R. Pordes, et al.. The open science grid. Journal of
Physics: Conference Series. Vol. 78. No. 1. IOP
Publishing, 2007

[2] D. Bonacorsi and T. Ferrari, WLCG Service Chal-
lenges and Tiered architecture in the LHC era., IFAE
2006. Springer Milan, 2007. 365-368.

[3] S. M.Larson, et al., Folding@ Home and Genome@
Home: Using distributed computing to tackle previously
intractable problems in computational biology. 2002

[4] D.P. Anderson, Boinc: A system for public-
resource computing and storage, Proceedings. Fifth
IEEE/ACM International Workshop on Grid Com-
puting. IEEE, 2004

[5] B. Popescu, et al., Safe and Private Data Sharing with
Turtle: Friends Team-Up and Beat the System, Security
Protocols, 2006

[6] U.Norbisrath, et al., Friend-to-friend computing in-
stant messaging based spontaneous desktop grid, Pro-
ceedings - 3rd International Conference on Internet
and Web Applications and Services, ICIW 2008

[7] T. A.Nguyen and P. Kuonen, A model of dynamic
parallel objects for metacomputing, The 2002 Inter-
national Conference on Parallel and Distributed
Processing Techniques and Applications, 2002.

[8] C. D.Jiogo et al., Parallel Object Programming in POP-
C++: A Case Study for Sparse Matrix-vector Multipli-
cation, Proceedings of the 20th European Confer-
ence on Object-Oriented Programming (ECOOP06),
France, 2006

[9] B. Wolf et al., POP-Java : Parallélisme et distribution
orienté objet, ComPAS 2014 : confÃl’rence en paral-
lélisme, architecture et systèmes, 2014

[10] B. Wolf et al., DNAseq Workflow in a Diagnostic Con-
text and an Example of a User Friendly Implementation,
BioMed Research International, vol. 2015

3

Beat Wolf, Loïc Monney,Pierre Kuonen 119

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Multilevel parallelism in sequence
alignment using a streaming approach

Beat Wolf1,2, Pierre Kuonen1, Thomas Dandekar2

1 University of Applied Sciences Western Switzerland, HES-SO//Fribourg
2University of Würzburg//Germany

beat.wolf@hefr.ch

Abstract

Ultrascale computing and bioinformatics are two rapidly growing fields with a big impact right now and even more
so in the future. The introduction of next generation sequencing pushes current bioinformatics tools and workflows
to their limits in terms of performance. This forces the tools to become increasingly performant to keep up with
the growing speed at which sequencing data is created. Ultrascale computing can greatly benefit bioinformatics
in the challenges it faces today, especially in terms of scalability, data management and reliability. But before
this is possible, the algorithms and software used in the field of bioinformatics need to be prepared to be used in a
heterogeneous distributed environment. For this paper we choose to look at sequence alignment, which has been an
active topic of research to speed up next generation sequence analysis, as it is ideally suited for parallel processing.
We present a multilevel stream based parallel architecture to transparently distribute sequence alignment over
multiple cores of the same machine, multiple machines and cloud resources. The same concepts are used to achieve
multithreaded and distributed parallelism, making the architecture simple to extend and adapt to new situations. A
prototype of the architecture has been implemented using an existing commercial sequence aligner. We demonstrate
the flexibility of the implementation by running it on different configurations, combining local and cloud computing
resources.

Keywords Ultrascale systems, NESUS, Template

I. Introduction

In the field of bioinformatics the advance of next gen-
eration sequencing (NGS) technologies increased the
amount of data produced at a very high speed. They
produce the sequencing data at a higher speed, with
longer sequences that have increasingly better quality.
The amount and speed at which the data is produced
increased much faster than the capacities of computers
evolved during the same time. This makes it challeng-
ing for sequence laboratories to analyse the produced
data in a reasonable amount of time. While in the be-
ginning of DNA sequencing the produced data could
still be analysed by hand, the amounts of data pro-
duced today for one sample can range from 10 giga
base pairs in whole exome sequencing to hundreds

in the case of whole genome sequencing. Powerful
computing infrastructures are needed to analyse this
type of data.

Ultrascale computing presents itself as a possible
solution to many of the issues faced in bioinformat-
ics. But to benefit from the possibilities of ultrascale
computing, many algorithms and tools used need to
be adapted to work in such a distributed environment.
While much effort is spent to distribute and parallelize
various tools, they are often tied to a specific environ-
ment, be it a grid or a cloud. In this paper we look at
the issue of sequence alignment and create a generic
way to distribute the workload over a heterogeneous
distributed system. This work can be used as the basis
of future work to bring bioinformatics data processing
to ultrascale systems.

1

Beat Wolf, Pierre Kuonen,Thomas Dandekar 121

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Sequence alignment is an active topic of research,
with various approaches taken to solve the issue. The
basic idea of sequence alignment is to find the best
position of a sequenced read on an already known
reference genome. The complexity of the task comes
from the size of the reference genome, the amount of
sequences to be aligned and the fact that the sequenced
genome does not perfectly match the reference genome.
As an example, the he human reference genome is 3
Giga base pairs long. Millions of sequences with a
typical length between 100 and 1000 base pairs are
then aligned against this reference. The differences
between those sequences and the reference can range
from simple single nucleotide mismatches to compli-
cated insertions or deletions.

Various approaches exist to the problem of sequence
alignment, an overview of the different techniques can
be found at [1]. While the different alignment tools
approach the issue from different angles, they do all
have in common that they find the optimal placement
of a single sequence on the reference genome. They do
so by looking only at one sequence at a time, without
any expectations of the order at which the sequences
are aligned. This makes sequence alignment an ideal
candidate for parallel processing. Every sequenced
read can be processed independently and in any order.
The order in which they are input for the alignment
and their output order also does not matter. In fact
most alignment algorithms make use of multi-core
systems through multithreading to speed up the align-
ment. Some, like the recently released tool nvBowtie,
even use GPUs to make use of the thousands of cores
of a GPU to accelerate sequence alignment. The use
of parallel processing does not stop here, but also ex-
tends to distributed systems. Examples of such tools
are Crossbow [3], Cloudburst [4], ScalaBLAST [5] or
custom frameworks like the one presented in [6].

In this paper we explore a possible architecture
which uses parallelism on multiple levels. It is used to
distribute the sequence alignment over multiple cores,
multiple computers in the same network and cloud
resources. While several of the previously mentioned
tools support some of those approaches, none combine
all of them at once. A stream based approach is used to
distribute the workload over all the different systems.
The way a remote computer and a local thread are

integrated into the alignment process is very similar in
this architecture. A prototype of the system has been
implemented in a commercial NGS data analysis soft-
ware, GensearchNGS [9]. The proposed architecture
is verified by measuring its scalability over multiple
heterogeneous computing nodes and the flexibility of
the design is discussed. While the sequence alignment
algorithm distributed in this example is a custom one
used by GensearchNGS, the architecture and design of
the distribution is not restricted to that algorithm.

II. Methods

The implementation of the distributed sequence aligner
uses Java 6+ as the programming language. The com-
munication with remote installations is done through
DIRMI, a replacement for the by default in Java inte-
grated remote method invocation library RMI. DIRMI
was chosen over RMI as it allows for bidirectional
connections to remote objects, making it possible to
work behind a NAT while using remote computing
resources.

The developed sequence aligner can be run locally
using the multiple available cores of a machine and
distributed over multiple computers with the software
installed and running. For this prototype the installed
software is GensearchNGS. Additionally, the user can
also dynamically launch remote cloud instances of the
aligner. The integration of cloud resources, for the
moment using the Amazon AWS EC2 cloud service, is
done through the generic Java clouds library jclouds.
It allows for easy integration of cloud instances on
various clouds, making it possible to launch and de-
stroy cloud computing instances from inside Java. The
aligner which is distributed is based on the aligner
used in GensearchNGS [7]. The aligner uses a hash
based index for the initial seed detection. The seeds
are evaluated used a custom heuristic algorithm with
the final alignment being performed by the Gotoh [2]
algorithm, ideally suited for gapped alignment. While
for this implementation of the distributed alignment
we use this specific algorithm, the architecture could
also be applied to other existing alignment algorithms.

The dataset used to test the prototype comes
from the genome comparison & analytic testing
project (GCAT) [8], which provides standardized

2

122 Multilevel parallelism in sequence alignment using a streaming approach

Second NESUS Workshop • September 2015 • Vol. I, No. 1

datasets to test different NGS data analysis soft-
ware. The illumina-100bp-pe-exome-150x dataset has
been used, which is available on the GCAT website
(http://www.bioplanet.com/gcat/). The dataset con-
tains 45’038’905 read pairs with an average read length
of 100 bp. For the benchmarks in this paper, only the
first 5 million read pairs have been used.

III. Architecture

The architectural choices are based on a typical sce-
nario. Small genetic research laboratories often do
not have the required infrastructure to perform big
sequence alignments. But what they do have is a mod-
est computing infrastructure with multiple multi-core
desktop systems used for data analysis. A common
evolution for those laboratories is to start NGS data
analysis using targeted sequencing for a specific set of
genes. Later they expand to whole exome analysis and
in the end doing whole genome sequencing. While
targeted sequencing can be done using a modest desk-
top computer, moving to whole exome and especially
whole genome sequencing data quickly brings labora-
tories to their limits. Thus the goal of the proposed
architecture is to optimally use the existing resources
but also provide the option to expand the infrastruc-
ture when needed to outside resources. Possible op-
tions to expand to outside resource are, depending on
the laboratory policies, cloud computing services like
Amazon.

The core concept of the architecture is based on the
idea of using stream processing for sequence align-
ment. As shown by [6], using stream processing for
DNA sequence alignment can greatly increase the total
processing time. This comes mainly from that fact, that
uploading the data to a remote computing resource
and analysing it can be done at the same time, drasti-
cally reducing the overall analysis time.

The concept of stream processing was not only used
to integrate the remote computing resources, but to
connect all parts of the system together, including local
alignment threads. The core system, as shown in figure
1, is composed of 3 main elements: The Data reader,
the Sequence aligner and the alignment Writer. For
this implementation we choose to use BlockingQueues

to communicate between the different elements. It

Data reader

Writer

Raw data

Output le

Sequence

aligner

Output

Input

Figure 1: Overall stream based aligner architecture, connect-
ing the different system elements through queues

is this choice of using Queues for the communica-
tion between the different parts that made the archi-
tecture very flexible. The Data reader reads the in-
put data provided by the sequencer, usually in the
FASTQ file format, and puts the individual reads on
the Queue to be aligned. The different local threads
implementing the Sequence aligner take those se-
quences from the queue and align them against the
reference sequence. After having aligned a sequence,
the Sequence aligner puts the created alignment in a
different queue, the one containing the finished align-
ments. The alignment Writer takes the aligned se-
quences from the output queue and writes them into
an alignment file, typically a SAM or BAM file. All the
different elements of the system are run in their own
thread.

Using queues to communicate between the differ-
ent parts of the aligner makes it extremely flexible
and scalable. This is shown in figure 2 which ex-
pands the basic local parallelization to work in a
distributed environment. The addition of Sequence

aligner and Distributed client allow to easily dis-
tribute the work to a remote machine. In fact, Sequence
aligner and Distributed client can run simultane-
ously on the same machine, performing some align-
ment work locally while distributing other. It is even
possible to have a Distributed server which in turn
distributes the alignment workload further with its
own Distributed client. This flexibility allows for
interesting configurations which adapt to various real
life situations discussed later.

To be able to connect to a remote machine, all that
is required is that the remote machine is running the
Distributed server object, accessible by the client
machine. In the context of this prototype every user

3

Beat Wolf, Pierre Kuonen,Thomas Dandekar 123

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Sequence

aligner

Output

Input

Output

Input

Network

Distributed

client

Distributed

server

Figure 2: Integration of remote computing resources

of the GensearchNGS application has the option to
let other users in the same network connect to his in-
stallation and use it to perform sequence alignment.
The different installations discover each other using a
custom automatic service discovery protocol. When
starting the sequence alignment, the different local
sequence alignment threads are created, and the re-
mote Distributed server objects are automatically
connected.

This concept has been expanded to include cloud
computing. This has been done through the integration
of the JClouds library, which allows to initialize cloud
resources on demand. When starting the sequence
alignment, the user is provided with the choice of how
many cloud instances of the sequence aligner he wants
to execute. Depending on his choice, a certain number
of cloud resources are started, running a preconfigured
image with the software preinstalled and executed
upon booting. Once connected to the Distributed

server object, there is no cloud specific code to per-
form the alignment. The system only sees an object
that takes raw sequences from the input queue and
puts aligned sequences back on the output queue.

The previously described possibility to create
Distributed server objects which in turn distribute
the workload further using Distributed client al-
lows to handle particular limitations certain cloud
providers have. In certain cloud environments it is
desirable to only start a single cloud instance with
a public IP address. Any additional cloud resource
is then instantiated in a private network inside the
cloud, only accessible from the outside through the
public instance. Instead or additionally to a local se-
quence aligner in the Distributed server object, the
Distributed server can run multiple Distributed

client objects. This allows the public cloud instance

to route the incoming raw sequencing stream from
the outside to the multiple instances in the private
network.

Another interesting side effect of this architecture
is that it allows to perform sequence alignment on
machines which are normally not powerful enough
to handle the alignment. Aligning against the human
reference sequence using the GensearchNGS aligner re-
quires approximatively 5 GB of RAM. Especially older
desktop systems do not always have that amount of
RAM. The discussed architecture makes it possible to
launch the sequence alignment locally on those ma-
chines, but without creating local Sequence aligner

objects.

IV. Results & Discussion

To demonstrate the flexibility and performance of our
architecture, we tested the prototype using multiple
configurations. To do this, four typical configurations
have been tested. The first one tested the performance
using a single laptop. The second configuration added
a second desktop computer located in the same net-
work to speed up the calculations The third configu-
ration expanded upon the second one by adding one
instance of an Amazon AWS EC2 virtual machine. The
fourth configuration uses no local alignment on the
laptop which starts the alignment process, but offloads
all of the alignment to two instances in the Amazon
AWS EC2 cloud. In this configuration, the laptop only
does the work of reading the raw data and saving
the aligned sequences in the output file. The config-
urations of the tests have been chosen to represent a
typical scenario in a small genetics laboratory. Figure
3 shows how the different computers used for the four
configurations are connected.

The work laptop is equipped with an Intel Core i7-
3520M dual core CPU, clocked at 3.6 Ghz with 8 GB
of RAM. The desktop computer uses an Intel Core I7
870 with 4 cores clocked at 3.6 Ghz, also with 8GB
of RAM. The Amazon AWS EC2 cloud instances of
the aligner are launched on a virtual server of type
c3.xlarge, which has a CPU of type Intel Xeon E5-2680
with 4 cores and 7.5 GB of RAM. The laptop and the
desktop computer are connected with a 1 Gb/s switch,
and both of them are connected to the internet with a

4

124 Multilevel parallelism in sequence alignment using a streaming approach

Second NESUS Workshop • September 2015 • Vol. I, No. 1

XX X X X X X X X X X X X
XX X X X X X X X X X X X

XX X X X X X X X X X X X
XX X X X X X X X X X X X

XX X X X X X X X X X X X

Internet

Desktop Laptop

Amazon AWS EC2

Figure 3: Topology of all elements used in the benchmark
configurations.

Figure 4: Alignment times on all 4 example configurations

100Mbs (up and down) connection.
Figure 4 shows the benchmark times for the dis-

tributed alignment on the different configurations. The
measured times contain only the time required for
the sequence alignment, not including initialization
times which is about 3 minutes. Those initialization
times contain the time required to load the reference
sequence into memory as well as starting the cloud
instances.

The raw times for the different configurations set-
tings were: 1’163 seconds for configuration one, using
only the laptop. 478 seconds for configuration 2, which
used the laptop and the desktop computer. 339 seconds
for the configuration 3, using the laptop, the desktop
computer as well as one cloud instance. Configuration
4 finished in 1’096 seconds, using the laptop as a base
station but doing all alignment work on two cloud
instances.

Looking at the benchmark results we can conclude
that the proposed architecture adapts well to all tested
configurations. In the various configurations the dif-
ferent systems were well saturated, without slower
systems badly affecting the overall performance. Load
balancing is indeed a side-effect of the chosen design
where every computing resource, be it a local thread
or a remote computer, takes sequences to align out of
a common queue. As long as I/O speeds permit, every
computing resource is provided with the amount of
work needed to saturate it.

The way remote computing resources are handled,
be it in the local network or in the cloud, also per-
mits for any amount of computers to fail. As long as
at the computer launching the alignment and at least
one computing resource which performs the alignment
keep running, the alignment will successfully finish.
This is achieved by keeping a local copy of every se-
quence sent to a remote computer. This local copy
is only deleted once a successful alignment has been
received for the sequence. If the remote computer dis-
connects, all the local copies of the sequences which
have been sent to him but for which no alignment has
been found yet, are put back in the input queue. They
are then recovered and aligned by another computing
resource which is still running.

V. Future work

While the developed prototype nicely shows the abil-
ity of the architecture to adapt to various situations
and distribute the workload over all systems in the
example configurations, there are still issues to be ad-
dressed. The first issue being the bandwidth required
to distribute the workload over multiple computers, es-
pecially if they are located in a remote cloud. While the
amount of data sent to the remote resource has already
been minimized as much as possible, including effi-
cient encoding of DNA sequences, not every possible
optimization has yet been done to reduce the band-
width requirements. A home internet connection will
quickly saturate, putting an upper limit to the cloud
instances that can be used simultaneously. While the
internet connection of a genetic laboratory is usually
higher than a standard home internet connection, the
exact bandwidth requirements and limitation still need

5

Beat Wolf, Pierre Kuonen,Thomas Dandekar 125

Second NESUS Workshop • September 2015 • Vol. I, No. 1

to be evaluated and optimized. Once this step is done,
the architecture will be compared to other distributed
aligners like the previously mentioned ones [3, 4, 5, 6].

The second issue is the one of data security and
confidentiality in distributed systems. In many data
laboratories the data privacy rules restrict or forbid
the usage of remote resources for any patient data.
This is currently an active topic of research and no
particular security measures were taken to improve
the data security in this prototype. The two main
features related to datasecurity and are planned to be
implemented are: encrypting all data sent to and from
the cloud and pooling multiple samples to be aligned
simultaneously.

VI. Conclusion

We presented a generic architecture for stream based
multilevel parallel alignment. The architecture uses
the same concepts to distribute the alignment over
multiple cores on one system and over multiple com-
puters. The implemented prototype is able to adapt
to various real life situations, using locally available
computing resources or extend them using cloud re-
sources. The effortless combination of the different
distribution methods is a unique feature of this proto-
type, showing the potential for bioinformatics software
to optimally use existing infrastructure and extend it if
needed. While the implemented prototype has been in-
tegrated into a commercial NGS data analysis software,
GensearchNGS, the proposed architecture is applicable
to other alignment algorithms. The current implemen-
tation and its source code is not publicly accessible,
but we have plans to release it at a later date under
the GNATY (GensearchNGS Analysis Tools librarY)
project. GNATY is in the process of being published
and is free of access. Future work will include the
optimization of the architecture as well as addressing
the issue of datasecurity in the cloud related to DNA
sequencing data.

References

[1] Li, H., & Homer, N. (2010). A survey of sequence
alignment algorithms for next-generation sequencing,
Briefings in Bioinformatics, 11(5), 473-83.

[2] O. Gotoh, An improved algorithm for matching bio-
logical sequences, Journal of Molecular Biology 162,
705-708, 1982.

[3] B. Langmead, M. C. Schatz, J. Lin, M. Pop and S. L.
Salzberg, Searching for SNPs with cloud computing,
Genome biology, 10:R134, 2009.

[4] M. C. Schatz, CloudBurst: highly sensitive read map-
ping with MapReduce, Bioinformatics, 25, 11, 1363-
1369, 2009.

[5] C. S. Oehmen and D. J. Baxter, ScalaBLAST 2.0:
rapid and robust BLAST calculations on multiprocessor
systems, Bioinformatics, 29, 6, 797-798, 2013.

[6] S. A. Issa et al., Streaming Support for Data Inten-
sive Cloud-Based Sequence Analysis, BioMed research
international, vol. 2013, Art.no. 791051, 2013.

[7] B. Wolf, P. Kuonen and D. Atlan, Distributed DNA
alignment, a stream based approach, Doctoral Work-
shop on Distributed Systems, Bern, Switzerland,
Proc., 39-41, 2012.

[8] G. Highnam et al., An analytical framework for opti-
mizing variant discovery from personal genomes, Na-
ture Communications, 6, Art.no. 6275, 2015.

[9] B. Wolf et al., DNAseq Workflow in a Diagnostic Con-
text and an Example of a User Friendly Implementation,
BioMed Research International, vol. 2015

6

126 Multilevel parallelism in sequence alignment using a streaming approach

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Exploiting Heterogeneous Compute Resources
for Optimizing Lightweight Structures

ROBERT DIETZE, MICHAEL HOFMANN, GUDULA RÜNGER

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
{dirob,mhofma,ruenger}@cs.tu-chemnitz.de

Abstract

Optimizing lightweight structures with numerical simulations leads to the development of complex simulation
codes with high computational demands. The optimization approach for lightweight structures consisting of fiber-
reinforced plastics is considered. During the simulated optimization, independent simulation tasks have to be
executed efficiently on the heterogeneous computing resources. In this article, several scheduling methods for
distributing parallel simulation tasks among compute nodes are presented. Performance results are shown for the
scheduling and execution of synthetic benchmark tasks, matrix multiplication tasks, as well as FEM simulation tasks
on a heterogeneous compute cluster.

Keywords Numerical simulations, scheduling, heterogeneous clusters

I. INTRODUCTION

The development of complex simulations in science and engi-
neering leads to various challenges for application program-
mers, especially when targeting at future ultrascale comput-
ing systems [4]. The sustainability and portability of applica-
tion codes represent important non-functional requirements,
which can be provided, for example, with an appropriate
methodology for the development process as well as technical
support in the form of dedicated programming libraries [7].
By encapsulating the data exchange operations of coupled
simulations, it is possible to achieve a flexibly distributed
execution of the simulation components on distributed sys-
tems. However, for compute-intensive simulations also the
efficient utilization of various computing resources, such as
HPC servers or clusters, is important.

As an application example for complex simulations, we
consider the optimization of lightweight structures based
on numerical simulations which are studied in the research
project MERGE1. The simulations cover the manufacturing
process of short fiber-reinforced plastics and the characteriza-
tion of their mechanical properties for specific operating load

1MERGE Technologies for Multifunctional Lightweight Structures,
http://www.tu-chemnitz.de/merge

cases [6]. For solving the optimization problem, the simula-
tions are performed several times with different parameter
sets in order to develop an optimal set of parameters. The
efficient execution of the simulations on HPC platforms leads
to a task scheduling problem with the following properties:

• The tasks are independent from each other and the num-
ber of tasks is usually in the order of tens or hundreds.

• Since each task represents an execution of the same par-
allel simulation application, all tasks behave almost the
same. This means that the expected parallel runtime is
the same for all tasks and can be determined previously,
for example, with separate benchmark measurements.

• The compute resources to be utilized are hierarchically
organized and can comprise several compute clusters.
Each cluster consists of several compute nodes and each
node contains several compute cores.

• The compute resources are heterogeneous in the sense
that each compute node has an individual performance.

• A parallel task can be either a shared-memory applica-
tion that can be executed only on a single node including
several cores or a distributed-memory application that
can be executed on a cluster including several nodes.

1

Robert Dietze, Michael Hofmann,Gudula Ruenger 127

Second NESUS Workshop • September 2015 • Vol. I, No. 1

In this article, we investigate the use of scheduling algo-
rithms for assigning simulation tasks to compute resources
with the goal to reduce the total parallel runtime of the en-
tire set of simulations. We employ task and data parallel
scheduling methods and propose a new scheduling algorithm
called WATER-LEVEL method. The WATER-LEVEL method
is designed as a trade-off between task and data parallel ex-
ecutions and is based on a best-case estimation of the total
parallel runtime of all tasks. All presented methods were
implemented to solve to scheduling problem described above.
We show performance results with different simulation tasks
on a heterogeneous compute cluster.

The rest of this article is organized as follows: Section II
presents the application example from mechanical engineer-
ing. Section III describes the approaches for scheduling
the execution of the simulations on heterogeneous compute
resources. Section IV shows corresponding performance
results. Section V discusses related work and Sect. VI con-
cludes the article.

II. SIMULATION AND OPTIMIZATION OF

LIGHTWEIGHT STRUCTURES

The numerical optimization of lightweight structures con-
sisting of fiber-reinforced plastics can be performed by a
simulation approach which is described in the following.

II.1 Simulation of fiber-reinforced plastics
The lightweight structures can be manufactured by injection
molding, which represents one of the most economically
important processes for the mass production of plastic parts.
The parts are produced by injecting molten plastic into a
mold, followed by a cooling process. Fillers, such as glass
or carbon fibers are mixed into the plastic to improve the
mechanical properties, such as the stiffness or the durability
of the parts. Besides the properties of the materials used,
the orientation of the fibers and the residual stresses within
the parts have a strong influence on the resulting mechanical
properties. Thus, determining the mechanical properties of
such short fiber-reinforced plastics requires to consider both
the manufacturing process and specific operating load cases
for the potential use of the plastic parts.

The manufacturing process can be simulated with compu-
tational fluid dynamics (CFD) that simulates the injection
of the material until the mold is filled. The input data of

the CFD simulation include the geometry of the part, the
material properties, such as the viscosity or the percentage
of mixed in fibers, and the manufacturing parameters, such
as the injection position or pressure. The simulation results
describe the fiber orientation and the temperature distribution
within the part. These result data are used for simulating
the subsequent cooling process with an approach based on
the finite element method (FEM) that computes the residual
stresses within the freezed part.

The simulation of the manufacturing process is followed by
an evaluation of the resulting part. Mechanical properties are
determined by simulating the behavior of the manufactured
part for specific operating load cases of its future use. These
simulations are also performed by FEM simulations using
boundary conditions that correspond to the given load cases.
The FEM application code employs advanced material laws
for short fiber-reinforced plastics and uses the previously
determined fiber orientation and residual stresses within the
part as input data. The final simulation results describe the
behavior of the part, for example, its deformation under an
applied surface load.

II.2 Optimizing manufacturing parameters

The goal of the simulation process is not only to simulate
one specific manufacturing process of a plastic part but to
optimize the properties of the lightweight structures. This is
done by an optimization process that varies selected material
and manufacturing parameters, such as the fiber percentage
or the injection position. The optimization is executed by re-
peatedly selecting specific values for the variable parameters
and then simulating the manufacturing process and the load
cases for the selected parameter configurations as described
in the previous subsection. Thus, there are a number of
simulation tasks to be executed (i. e., one for each parameter
configuration to be simulated) that are independent from each
other. The specific number of independent simulation tasks
strongly depends on the number of variable parameters or on
the optimization method employed and is usually expected
to be in the order of tens or hundreds.

Figure 1 (left) shows an example of a plastic part, which
is a plate made of short fiber-reinforced plastics with a hole
on one side. The plate is clamped on two sides and a circular
surface load is applied leading to the shown deflection in
force direction. The shown optimal injection point leads to a
fiber orientation within the plate that minimizes the deflec-

2

128 Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures

Second NESUS Workshop • September 2015 • Vol. I, No. 1

−0.05

0

0.05

−0.1 −0.05 0 0.05 0.1

Figure 1: Left: Clamped plate with hole, applied surface load (arrow), and optimal injection point (green). Right: Contour
plot of the objective function including the obtained minimum (green).

Figure 2: Overview of the optimization process.

tion. Figure 1 (right) shows a contour plot of the objective
function for the corresponding optimization problem. The
function values were determined during a Kriging-based op-
timization method [12]. This method creates an arbitrary
number of candidate points for the optimal solution which
are then recursively improved. The candidate points can be
computed independently from each other, thus leading to a
number of simulation tasks that can be executed at the same
time. Figure 2 gives an overview of the optimization pro-
cess. The repeated execution of the simulation tasks is the
most time consuming part of the optimization process. Thus,
performing these computations efficiently on HPC platforms
is required and can be supported by an appropriate schedul-
ing method for the parallel execution of simulation tasks on
various compute nodes.

III. DISTRIBUTING SIMULATIONS ON

HETEROGENEOUS HPC PLATFORMS

The optimization process described in Sect. II leads to in-
dependent numerical simulations that need be executed effi-
ciently on HPC platforms. In the following, we describe a cor-
responding scheduling problem and present several schedul-
ing algorithms for utilizing heterogeneous HPC clusters.

III.1 Scheduling problem

Task model: The independent numerical simulations are
given as nT parallel tasks T1, . . . , TnT . We assume that the
parallel runtime of the simulations was previously determined
with benchmark measurements on a specific reference com-
pute node. Thus, for each task Ti, i ∈ {1, . . . , nT}, the given
function ti(p) specifies the parallel runtime of the simula-
tion when using p processor cores. Furthermore, it is known
whether the tasks are capable of being executed either on a
single node only (e. g., for OpenMP-based codes) or on a
cluster of nodes (e. g., for MPI-based codes).

Machine model: The compute resources of the HPC plat-
form to be used consist of nN compute nodes N1, . . . , NnN .
For each node Nj, j ∈ {1, . . . , nN}, its number of processor
cores pj and a performance factor f j (with respect to the
reference compute node) is given. The nodes are grouped
into nC clusters C1, . . . , CnC such that each cluster is a subset
of nodes and each node is part of exactly one cluster. Each
cluster has to be able to execute an appropriate parallel task
(e. g., MPI-based) on all its nodes.

Schedule: The goal is to determine an assignment of the
given tasks to the compute resources of the HPC platform
such that the total runtime for executing all tasks (i. e., the
makespan) is minimized. For each task, the resulting sched-
ule contains the compute resources to be used (i. e., nodes
and utilized numbers of cores) and the estimated start time.
Furthermore, for each task, the list of tasks that utilize the
same compute resources immediately before is given. With
this information, it will be possible to wait for their com-
pletion, especially if the runtimes in practice differ from the
estimated runtimes.

3

Robert Dietze, Michael Hofmann,Gudula Ruenger 129

Second NESUS Workshop • September 2015 • Vol. I, No. 1

III.2 Task and data parallel executions

Scheduling parallel tasks requires to determine the number
of parallel cores to be used by each task. The following task
and data parallel schemes will be used as reference methods:

Pure task parallel: This scheduling strategy uses only one
core for each task and, thus, allows the execution of as
many tasks as possible at the same time. The scheduling
is performed by creating a list of all cores, using the core
from the front of the list for the task to be scheduled
next and then moving this core to the back of the list.

Pure data parallel: This scheduling strategy uses as many
cores as possible for each task. Depending on the prop-
erties of the tasks (see Sect. III.1), either all cores of a
node or all cores of a cluster are used as compute re-
sources. The scheduling is performed by creating a list
of all compute resources (i. e., either nodes or clusters),
using the compute resource from the front of the list
for the task to be scheduled next and then moving this
compute resource to the back of the list.

Both methods schedule the tasks in their given order and
use the compute resources in a round-robin scheme indepen-
dently from their performance or utilization. We study the
following adaptations to create further variants of the task
and data parallel scheduling methods: The tasks are sorted
in descending order based on their sequential runtimes to
favor an early execution of long running tasks. Furthermore,
scheduling a task is now performed by selecting the compute
resource that provides the earliest finish (EF). This strategy
replaces the round-robing scheme and is especially important
for heterogeneous compute resources. Overall, we consider
four task and data parallel scheduling variants, i. e., the origi-
nal methods (TASKP and DATAP) and the variants with the
earliest finish (TASKP-EF and DATAP-EF).

III.3 WATER-LEVEL method

In addition to the task and data parallel execution schemes
described in the previous subsection, we present a further
strategy for assigning tasks to compute resources which we
call WATER-LEVEL method (WATERL). The method uses the
given runtime functions of the tasks and the performance fac-
tors of the compute nodes to determine the compute resources
for a each task. For realistic tasks, we assume the following

Figure 3: Scheduling of one task (yellow) either on two (left)
or three (right) cores, previously scheduled tasks (gray), and
optimally executed remaining tasks (blue).

behavior: The parallel runtime of a task decreases for increas-
ing numbers of parallel cores until an optimal number of
cores is reached and, thus, a higher number of parallel cores
(up until the optimal number) should be preferred. However,
the decreasing of the parallel runtime is usually restricted
by parallelization overheads (e. g., due to communication or
synchronization) and, thus, a lower number of parallel cores
should be preferred. Therefore, the WATER-LEVEL method
increases the number of cores for a task only up until an
estimation of the resulting makespan reaches a minimum.
This estimation is determined by assigning a task temporarily
to a specific number of cores and assuming all remaining
tasks can be executed optimally in parallel on the compute
resources. Support for heterogeneous compute resources is
achieved by taking the performance factors f j, j = 1, . . . , nN ,
of the compute nodes into account for the estimation.

Figure 3 shows an illustration of the WATER-LEVEL strat-
egy in which the current task to be scheduled (yellow) will
use either two (left) or three (right) cores. All remaining
tasks (blue) are assumed to be executed optimally in paral-
lel on all cores (i. e., distributed like “water” over the “task
landscape”). In this case, the current task would be assigned
to three cores since the estimation of the resulting makespan
(i. e., the “water level”) reaches a minimum.

The pseudocode of the WATER-LEVEL method for tasks
that can be executed only on single compute nodes is shown
in Figure 4. The method starts by determining the total
work W required for executing all tasks sequentially (line 4).
Scheduling the tasks proceeds similar to the task and data
parallel methods of the previous subsection: The tasks are
sorted in descending order based on their sequential runtimes
to favor an early execution of long running tasks (line 5)
and a loop iterates over all tasks in the sorted order (line 7).

4

130 Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures

Second NESUS Workshop • September 2015 • Vol. I, No. 1

1 input : tasks Ti, i = 1, . . . , nT , with runtimes ti(p)
2 input :nodes Nj, j = 1, . . . , nN , with pj cores
3 output : compute resource and start time for each task
4 seq. work W = ∑nT

i=1 ti(1)
5 sort Ti, i = 1, . . . , nT in descending order of ti(1)
6 // assume T1, . . . , TnT are sorted
7 for i = 1, . . . , nT do
8 W = W − ti(1)
9 minimal makespan m∗ = ∞

10 for j = 1, . . . , nN do
11 p = 0
12 repeat
13 p = p + 1
14 select p cores of Nj as resource R with start time s
15 estimate makespan m with optimally parallelized

seq. work W and task Ti assigned to resource R
16 if m < m∗ then
17 m∗ = m ; R∗ = R ; s∗ = s

18 until p ≥ pj or ti(p) is minimal

19 use resource R∗ and start time s∗ for task Ti

Figure 4: Pseudocode of the WATER-LEVEL method for
tasks that can be executed only on single compute nodes.

In each iteration for the current task Ti, i ∈ {1, . . . , nT},
the sequential work W of all remaining tasks is calculated
(line 8). Then, two loops iterate over the compute nodes
(line 10) and their number of cores (line 12) to determine
the compute resources for the task Ti that lead to a minimal
makespan. The inner loop stops earlier if the parallel runtime
ti(p) reaches a minimum for the current number of cores p.
It depends on the given runtime function whether and how
this minimum can be determined.

For tasks that can be executed only on a single compute
node, a compute resource R consists of a specific node and
the number of cores to be used on that node. The final
schedule also requires the corresponding start time s on the
compute resource (line 14). The selected compute resource R
is temporarily used for task Ti and the resulting makespan m
with optimally parallelized work W of the remaining tasks is
estimated (line 15). If this estimated makespan m is smaller
than the current minimal makespan m∗, then the correspond-
ing compute resource R and start time s are stored (line 17)
such that they can be later used for the task Ti (line 19).

Nodes Processors Cores GHz
cs1,cs2 Intel Xeon E5345 2× 2× 4 2.33
sb1 Intel Xeon E5-2650 1× 2× 8 2.00
ws1,. . . ,ws5 Intel Xeon X5650 5× 2× 6 2.66

Table 1: List of the compute resources used.

For tasks that can be executed on a cluster of nodes, the
pseudocode shown in Fig. 4 has to be modified. The clusters
C1, . . . , CnC have to be provided as input and loops over the
clusters and their cores replace the lines 10 and 12. Ad-
ditionally, a compute resource R for the current task Ti,
i ∈ {1, . . . , nT} will then contain a subset of the nodes
of the current cluster and the numbers of cores to be used
on each of these nodes. In general, the distinction between
the two kinds of tasks could also be performed on a per task
basis in an implementation of the WATER-LEVEL method.

IV. PERFORMANCE RESULTS

The task and data parallel methods as well as the WATER-
LEVEL method have been used for the scheduling of different
simulation tasks. In the following, we present performance
results on a heterogeneous compute cluster.

IV.1 Experimental setup
The heterogeneous compute cluster used consists of 8 com-
pute nodes, each with two multi-core processors. Table 1 lists
the nodes and their specific processors. The parallel runtime
of the tasks required for the scheduling is determined with
separate benchmark measurements on the reference compute
node cs1. The performance factors of the other compute
nodes are derived from the sequential runtimes of a task on
those compute nodes. In the following subsections, we show
total parallel runtimes for executing a number of tasks ac-
cording to the determined schedules. Starting the tasks is
performed by a Python script running on a separate front-end
node of the cluster using SSH connections to the compute
nodes to be utilized. Each schedule is executed 5 times and
the average result is shown.

IV.2 Benchmark tasks
As synthetic benchmark, we employ “sleep” tasks that per-
form no computations, but only wait for a specific time

5

Robert Dietze, Michael Hofmann,Gudula Ruenger 131

Second NESUS Workshop • September 2015 • Vol. I, No. 1

0
50

100
150
200
250
300
350
400
450

1 4 8 12 16 20 24 28 32

R
un

tim
e

[s
ec

on
ds

]

Number of tasks

Sleep tasks

x = 1.0, TASKP
x = 1.0, DATAP
x = 1.0, WATERL
x = 0.95, TASKP
x = 0.95, DATAP
x = 0.95, WATERL

Figure 5: Parallel runtime of different scheduling methods
using sleep tasks without (x = 1.0) and with parallelization
overhead (x = 0.95) executed on node cs1.

t(p) = 50s ·
[

x · 1
p + (1− x) · (log p + p)

]
. The runtime

comprises of a fraction x which decreases linearly with the
number of cores p (e. g., computation) and a remaining part,
which increases logarithmically and linearly (e. g., paralleliza-
tion overhead).

Figure 5 shows parallel runtimes of sleep tasks with x =
1.0 (i. e., without parallelization overhead) and x = 0.95
(i. e., with parallelization overhead) executed on node cs1
depending on the number of parallel tasks using different
scheduling algorithms. The TASKP method achieves the
same results for both kinds of tasks, because the tasks are
always executed sequentially. The runtime shows a step-wise
increase after every 8 additional tasks, since with these task
numbers all 8 cores of the compute node are equally utilized.
The DATAP method uses always the maximum number of 8
cores for each task and shows strong differences between the
two kinds of tasks. With x = 1.0, the parallel runtime of a
task decreases linearly and the minimum runtime is achieved
using the maximum number of cores. However, with x =
0.95, using the maximum number of cores leads to a strong
increase of the runtime due to the increasing parallelization
overhead. The WATER-LEVEL method achieves a trade-off
between the TASKP and DATAP method. With x = 1.0,
the optimal result of the DATAP method is achieved. With
x = 0.95, the runtime results are close to the runtime results
of the TASKP method, but show a different shape with a more
continuous increase instead of the step-wise increase.

0

10

20

30

40

50

60

1 4 8 12 16 20 24 28 32 36 40
R

un
tim

e
[s

ec
on

ds
]

Number of tasks

Matrix multiplication tasks

TASKP
TASKP-EF
DATAP
DATAP-EF
WATERL

Figure 6: Parallel runtime of different scheduling methods
using matrix multiplication tasks executed on nodes cs1 and
ws1 with a total of 20 cores.

The matrix multiplication operation (DGEMM) from the
OpenBLAS library is used as parallel benchmark tasks that
can be executed on one compute node only. The number
of cores utilized is controlled with the environment vari-
able OPENBLAS_NUM_THREADS. The matrix size is set
to 4000× 4000. Figure 6 shows parallel runtimes depend-
ing on the number of parallel tasks using different schedul-
ing algorithms and the compute nodes cs1 and ws1. The
TASKP methods shows a step-wise increase similar to Fig. 5.
Additionally, there is a slight increase between each step
since the matrix multiplication tasks on the same compute
node influence each other. Selecting the compute nodes ac-
cording to the earliest finish (TASKP-EF) causes an earlier
utilization of the faster node ws1 and thus, decreases the run-
time for specific task numbers. The DATAP method shows
a strong increase of the runtime due to the parallelization
overhead caused by always using the maximum number of
cores. The DATAP-EF method (i. e., with earliest finish) se-
lects the faster compute node ws1 more often, thus leading to
a smaller runtime. The results of the WATER-LEVEL method
demonstrate the trade-off between the task and data parallel
schemes. With small numbers of tasks, the runtime of the
WATER-LEVEL method is equal or below the best data paral-
lel scheme and for higher numbers of tasks, the runtime of
the WATER-LEVEL method is similar to the best task parallel
scheme.

6

132 Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures

Second NESUS Workshop • September 2015 • Vol. I, No. 1

0

10

20

30

40

50

1 20 40 60 80 100 120

R
un

tim
e

[s
ec

on
ds

]

Number of tasks

FEM simulation tasks

TASKP-EF
DATAP-EF
WATERL

Figure 7: Parallel runtime of different scheduling methods
using FEM simulation tasks executed on all nodes listed in
Table 1 with a total of 92 cores.

IV.3 FEM simulation tasks

An OpenMP parallel FEM code [3] is used as simulation
tasks in the optimization process for lightweight structures
as described in Sect. II. Figure 7 shows parallel runtimes
depending on the number of parallel tasks using different
scheduling algorithms and all compute nodes listed in Ta-
ble 1. The data parallel scheme with the DATAP-EF method
leads to strongly increasing runtimes, which is caused by the
low speedup achieved with the parallel FEM code. Thus,
using a data parallel execution with high numbers of cores is
only advantageous if there are few FEM simulation tasks (i. e.,
about twice the number of compute nodes). The task parallel
scheme with the TASKP-EF method often leads to the small-
est runtimes, but shows a steep increase if the number of tasks
approaches the total number of cores. The WATER-LEVEL

methods leads to the same results as the DATAP-EF method
for small numbers of tasks. However, for higher numbers of
tasks, the WATER-LEVEL methods is up to a factor of two
slower than the TASKP-EF methods. This behavior is caused
by the less efficient parallel execution of the FEM code that
favors an execution with small numbers of cores. In contrast
to that, the WATER-LEVEL method assumes an optimal par-
allel execution of the unscheduled tasks for the estimation
of the makespan. Since this estimation differs strongly from
the actual parallel runtime of the tasks, the schedule of the
WATER-LEVEL method differs significantly from the faster
task parallel schedule.

V. RELATED WORK

Scheduling is a popular problem in computer science involv-
ing different application areas and approaches [9]. One of
those areas is the scheduling of sequential or parallel tasks
to be executed on a given set of hardware resources (e. g.,
processors) while additional dependencies between the tasks
may restrict their execution order. Determining an optimal
schedule (e. g., with minimal Makespan) for tasks with de-
pendencies is an NP-hard problem that is usually solved with
heuristics or approximation algorithms [8]. The layer-based
scheduling algorithm from [5] decomposes a set of tasks with
dependencies into layers of independent tasks and schedules
each layer separately with a so-called list scheduling algo-
rithm. Since the simulation tasks in our optimization process
are independent, we can omit a decomposition into layers.

List scheduling algorithms add priorities to the single tasks
and assign the tasks in descending order of their priority
to the processors. Algorithms, such as Largest Process-
ing Time (LPT) [2] and Longest Task First (LTF) [14], use
the given runtime of the tasks as priorities, thus scheduling
compute intensive tasks first. Algorithms for heterogeneous
architectures, such as Heterogeneous Earliest Finish Time
(HEFT) [13] and Predict Earliest Finish Time (PEFT) [1],
also take the runtime of the tasks on individual processors
into account for the priorities. The proposed WATER-LEVEL

method is also a list scheduling algorithm that prioritizes
the tasks according to their runtime. However, the WATER-
LEVEL method uses only the sequential runtime as priority
and uses the individual processor speeds of a heterogeneous
architecture for the allocation of cores by parallel tasks and
for the selection of compute nodes.

Scheduling parallel tasks with dependencies can also be
performed with a two-step approach consisting of an alloca-
tion step and a scheduling step. The scheduling step assigns
the parallel tasks to specific processors and is usually based
on a list scheduling algorithm. The allocation step deter-
mines the number of processors for each parallel task. This
step is usually performed iteratively starting with an initial
allocation (e. g., one processor per tasks) and then repeat-
edly assigning additional processors to tasks (e. g., to shorten
the critical path). Examples for such algorithms are Critical
Path Reduction (CPR) [10] and Critical Path and Allocation
(CPA) [11]. The WATER-LEVEL method performs the alloca-
tion of cores only once for each task during the list scheduling
and, thus, omits repeated allocation and scheduling steps.

7

Robert Dietze, Michael Hofmann,Gudula Ruenger 133

Second NESUS Workshop • September 2015 • Vol. I, No. 1

VI. CONCLUSION

In this article, we have proposed the WATER-LEVEL schedul-
ing method for parallel tasks without dependencies on hetero-
geneous HPC platforms. The method performs an iterative
assignment of tasks to compute resources and uses a best-case
estimation of the makespan to determine the number of cores
to be used for each task. Performance results for benchmark
tasks demonstrate a good trade-off between task and data
parallel execution schemes. However, for simulation tasks
with low parallel efficiency, the best-case estimation may
differ strongly from the actual runtimes achieved. This disad-
vantage might be solved by using the given parallel runtimes
of the tasks for a better estimation of the makespan.

Acknowledgment
This work was performed within the Federal Cluster of Excel-
lence EXC 1075 “MERGE Technologies for Multifunctional
Lightweight Structures” and supported by the German Re-
search Foundation (DFG). Financial support is gratefully
acknowledged.

REFERENCES

[1] H. Arabnejad and J.G. Barbosa. List scheduling algo-
rithm for heterogeneous systems by an optimistic cost
table. Transactions on Parallel and Distributed Systems,
25(3):682–694, 2014.

[2] K.P. Belkhale and P. Banerjee. An approximate algo-
rithm for the partitionable independent task scheduling
problem. In Proc. of the 1990 Int. Conf. on Parallel
Processing, (ICPP’90), pages 72–75, 1990.

[3] S. Beuchler, A. Meyer, and M. Pester. SPC-PM3AdH
v1.0 - Programmer’s manual. Preprint SFB/393 01-08,
TU-Chemnitz, 2001.

[4] L. A. Bongo, R. Ciegis, N. Frasheri, J. Gong, D. Ki-
movski, P. Kropf, S. Margenov, M. Mihajlovic,
M. Neytcheva, T. Rauber, G. Rünger, R. Trobec,
R. Wuyts, and R. Wyrzykowski. Applications for ultra-
scale computing. Supercomputing Frontiers and Inno-
vations, 2(1):19–48, 2015.

[5] J. Dümmler, T. Rauber, and G. Rünger. Program-
ming support and scheduling for communicating par-

allel tasks. J. of Parallel and Distributed Computing,
73(2):220–234, 2013.

[6] M. Hofmann, F. Ospald, H. Schmidt, and R. Springer.
Programming support for the flexible coupling of dis-
tributed software components for scientific simulations.
In Proc. of the 9th Int. Conf. on Software Engineering
and Applications (ICSOFT-EA 2014), pages 506–511.
SciTePress, 2014.

[7] M. Hofmann and G. Rünger. Sustainability through
flexibility: Building complex simulation programs for
distributed computing systems. Simulation Modelling
Practice and Theory, Special Issue on Techniques And
Applications For Sustainable Ultrascale Computing Sys-
tems, 2015. (to appear).

[8] J.T. Leung, editor. Handbook of Scheduling: Algo-
rithms, Models, and Performance Analysis. CRC Press,
2004.

[9] M.L. Pinedo. Scheduling: Theory, algorithms, and
systems. Springer.

[10] A. Radulescu, C. Nicolescu, A.J.C. van Gemund, and
P.P. Jonker. CPR: Mixed task and data parallel schedul-
ing for distributed systems. In Proc. of the 15th
Int. Parallel and Distributed Processing Symposium
(IPDPS’01), pages 1–8. IEEE, 2001.

[11] A. Radulescu and A.J.C. van Gemund. A low-cost
approach towards mixed task and data parallel schedul-
ing. In Proc. of the Int. Conf. on Parallel Processing
(ICPP’01), pages 69–76. IEEE, 2001.

[12] M. Strano. A technique for FEM optimization under
reliability constraint of process variables in sheet metal
forming. Int. J. of Material Forming, 1(1):13–20, 2008.

[13] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Task
scheduling algorithms for heterogeneous processors. In
Proc. of the 8th Heterogeneous Computing Workshop
(HCW’99), pages 3–14. IEEE, 1999.

[14] J. Turek, J.L. Wolf, and P.S. Yu. Approximate algo-
rithms scheduling parallelizable tasks. In Proc. of the
4th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 323–332. ACM, 1992.

8

134 Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

Chameleon c© C2HDL Design Tool In Self-Configurable Ultrascale Computer
Systems Based On Partially Reconfigurable FPGAs

Anatoliy Melnyk, Viktor Melnyk, Lyubomyr Tsyhylyk

Intron Ltd, Ukraine
aomelnyk@intron-innovations.com vmelnyk@ intron-innovations.com l.tsyhylyk@gmail.com

Abstract

The FPGA-based accelerators and reconfigurable computer systems based on them require designing the application-
specific processors soft-cores and are effective for certain classes of problems only, for which these soft-cores
were previously developed. In Self-Configurable FPGA-based Computer Systems the challenge of designing the
application-specific processors soft-cores is solved with use of the C2HDL tools, allowing them to be generated
automatically. In this paper, we study the questions of the self-configurable computer systems efficiency increasing
with use of the partially reconfigurable FPGAs and Chameleon c© C2HDL design tool, corresponding to the goals
of the project entitled "Improvement of heterogeneous systems efficiency using self-configurable FPGA-based
computing" which is a part of the NESUS action. One of the features of the Chameleon c© C2HDL design tool is
its ability to generate a number of application-specific processors soft-cores executing the same algorithm that differ
by the amount of FPGA resources required for their implementation. If the self-configurable computer systems are
based on partially reconfigurable FPGAs, this feature allows them to acquire in every moment of its operation such
a configuration that will provide an optimal use of its reconfigurable logic at a given level of hardware multitasking.

Keywords self-configurable computer systems, field-programmable gate arrays, high-performance computing,
reconfigurable computing, C2HDL design tools.

I. Introduction

Today one of the most promising areas of activity in
the field of high performance computing is creation of
the reconfigurable computer systems (RCCS). RCCSs
compete with other types of high-performance com-
puter systems due to high speed characteristics of the
modern field-programmable gate arrays (FPGAs) - the
hardware base of a reconfigurable computing envi-
ronment (RCE) of RCCS, and due to advances in the
design technology of application-specific processors to
be synthesized in RCE of RCCS.

Co-functioning of a computer system based on
general-purpose processors with application-specific
processors synthesized in RCE, whose structure con-
siders executed algorithms features, allows increas-
ing its overall performance by 2-3 orders of magni-
tude. The reconfigurability and ability to synthesize
an application-specific processor (ASP) with a new
structure and functionality in RCE allows changing

the functional commitment of a created thereby RCCS
with preserving its high performance in the new class
of problems.

Along with high performance ensured by the RCCS,
there are also challenges associated with their applica-
tion. These particularly are significant timing expenses
for task distribution between the processing units, of-
ten lack of IP cores required for implementation in the
RCE which forces to develop them from scratch, and
high additional requirements to the RCCS users quali-
fication, as they, besides modeling and programming,
must perform a system analysis, design the ASPs archi-
tecture, perform their synthesis and implementation in
RCE.

Deprived of the above mentioned problems are self-
configurable computer systems (SCCS), where these
labor-intensive and time-consuming tasks are fully au-
tomated and replaced from the operator to the com-
puter system. Taking into account the necessity of fur-
ther improvement of the computer means performance

1

Anatoliy Melnyk, Viktor Melnyk,Lyubomyr Tsyhylyk 135

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

and extension of the reconfigurable devices application
in computer systems, further development in the field
of self-configurable computer systems is a topical task
of scientific research and engineering.

II. Related Work

The concept of the self-configurable FPGA-based com-
puter systems design, the method of information pro-
cessing in them, and their structure are proposed
in paper [1]. The issue of labor-intensive and time-
consuming tasks, which is a characteristic for RCCS,
is removed from SCCS owing to the new method of
information processing applied in it.

The software tools that should be used in a SCCS as
its components are available today. In this regard, we
may consider an approach to the development of com-
putational load balancing systems between a general-
purpose computer and the hardware accelerator pro-
posed in [2]. The IP cores’ generators [3], [4], IP cores’
libraries [5], and system level design tools and solu-
tions available on the market could be used for the
ASP design on the basis of its algorithm description by
a high-level programming language [6] - [8].

III. Problem Statement

Implementation of the SCCS basing on partially recon-
figurable FPGAs enables organization of multiple-task
execution in the reconfigurable environment. This op-
portunity is provided as the subprograms of different
tasks are executed independently in FPGA’s different
reconfigurable regions, and each of them is loaded into
the FPGA as a partial configuration after initialization
of the respective program. Such SCCS operation has a
number of advantages, among which - the actual mul-
titasking, an effective use of the reconfigurable logic
and rationalization of energy consumption. At the
same time, this mode of the SCCS operation imposes
additional requirements for the generating system to
create the application-specific processors HDL-models.
Depending on the workload of the computer system,
the amount of available for one separate task recon-
figurable logic resources at a time can range from a
maximum value that corresponds to all FPGA dynamic
part resource, to the minimum value that corresponds

to one or a number of reconfigurable regions, and vice
versa. The question arises to organizing dynamic re-
allocation of the reconfigurable logic resources and
replacing some running application-specific processors
with others performing the same tasks but differing by
the equipment volume. This should be done to provide
an effective use of resources and the required level of
multitasking.

To address this challenge it is necessary, during
the program compilation, for each subprogram exe-
cuted in the reconfigurable environment, to generate a
number of application-specific processors HDL-models
ASPM

{
ASPMopt, ..., ASPMmin

}
, where ASPMopt is

an optimum HDL-model that uses all the space-time
properties of an algorithm given by the subprogram
and to be implemented requires the largest amount of
the reconfigurable logic resources among the ASPM
models; ASPMmin is an HDL-model that to be imple-
mented requires the minimum amount of the resources.
In this regard, we propose the Chameleon c© C2HDL
design tool, which for each algorithm, given by the
ANSI C program, can generate a set of application-
specific processors VHDL soft-cores that differ by the
amount of equipment to be implemented.

The paper structure is the following:

Section IV shows the principles of information pro-
cessing in SCCS and its structure organization.

Section V highlights the partially reconfigurable FP-
GAs operation features.

Section VI introduces the characteristics and features
of the Chameleon c© C2HDL design tool.

Section VII shows an example of application of the
Chameleon c© C2HDL design tool in the SCCS for cre-
ation of a set of FFT processors VHDL models.

In our experiment the reconfigurable environment of
the SCCS is built on the Altera FPGA, therefore created
processors models are targeted at being implemented
in this FPGA and differ mainly by the number of the
embedded DSP blocks they use. The duration of these
FFT processors VHDL models generation and their
technical characteristics are shown.

Section VIII concludes the paper.

2

136 Chameleon c© C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

IV. Self-Configurable Computer Systems
And The Method Of Information

Processing In It

The self-configurable computer system is the computer
system with reconfigurable logic where the program
compilation includes automatically performed actions
of creation of configuration. and which acquires that
configuration automatically in the time of program
loading for execution [1]. The SCCS automatically
executes: 1) computational load balancing between
the general-purpose processor and reconfigurable en-
vironment (RCE); 2) creation of an application-specific
processor (ASP) HDL-model. Loading of the config-
uration files obtained after logical synthesis into the
RCE is carried out by the operating system in parallel
with loading of the computer subprogram executable
file into its main memory after program initialization
[1].

The method of information processing in the SCCS
consists of three stages: compiling the program, its
loading, and execution. The user creates a program
Pin written in a high-level programming language and
submits it into the SCCS. During compiling the SCCS
automatically performs the following actions: divides
this program into the general-purpose processor’s sub-
program PGPP and RCE’s subprogram PRCE, performs
PGPP compilation, generates PGPP executable file obj,
creates ASP’s HDL-model ASPM to perform PRCE sub-
program, performs ASP’s logic synthesis, and stores
the obtained executable file obj and configuration files
of RCE conf =

{
con fq, q = 1...KFPGA

}
, where KFPGA

is the number of FPGAs forming RCE, into the sec-
ondary memory.

These actions are performed in the SCCS with the
following means:

1. The computational load balancing system for load
balancing between a general-purpose processor
and RCE. This system automatically selects frag-
ments from the program Pin whose execution in
the RCE reduces its execution time, and divides
the program Pin into the PGPP subprogram replac-
ing the selected fragments in there by instructions
for interaction with the RCE, and the PRCE sub-
program, formed from the selected fragments. An

example of such a system is described in [2]. This
system creates the RCE subprogram in x86 assem-
bly language, thus it must be supported by the
means for the assembly language code translation
into a high-level language to be used in the SCCS.
The tools of this type are available on the market,
for example Relogix Assembler-to-C Translator [9]
from MicroAPL.

2. A compiler for compiling PGPP subprograms from
the language that they are represented in into the
object codes obj that can be directly executed by
the general-purpose processor.

3. A generating system for the ASPs HDL-models
creation. The system automatically generates mod-
els ASPM from the RCE subprograms PRCE, like
Chameleon c© [7], [10], that is discussed in this
article, or Agility Compiler [11] and DK4 Design
Suite [12] from Celoxica, or CoDeveloper from
Impulse [13].

4. Logic synthesis tools and FPGA configuring tools
for the ASPs HDL-models logic synthesis during
the program compilation stage and FPGA config-
uring during the program loading stage. These
tools are available from the FPGA vendors, for ex-
ample, Vivado Design Suite, ISE, Alliance, Foun-
dation from Xilinx; Quartus II, Max + II from
Altera.

From the conf and obj files a combined executable
file is formed and stored into the secondary mem-
ory. At the stage of the program loading after its
initialization, the SCCS loads the executable file obj
of the general-purpose processor’s subprogram into
the main memory using a conventional loader and, at
the same time, loads the configuration files conf ={

con fq, q = 1...KFPGA
}

into the RCE and thus creates
an ASP in there using the FPGA configuring tools.
Then, the stage of the program execution is performed.

The major part of the SCCS basic software means
represents a compiler which combines the computa-
tional load balancing system, a compiler for GPPs sub-
programs compilation, a generating system for ASPs
HDL-models creation, and ASPs logical synthesis tools.

The reconfigurable environment of the SCCS can be
realized on the base of partially reconfigurable FPGAs,

3

Anatoliy Melnyk, Viktor Melnyk,Lyubomyr Tsyhylyk 137

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

which gives an opportunity to organize the hardware
multitasking there and brings a number of other ben-
efits. The partially reconfigurable FPGAs operation
features are briefly highlighted below.

V. Partially Reconfigurable FPGAs
Operation Features

The ability to reconfigure a part of an FPGA circuitry
after its initial configuration while the other parts re-
main unaffected is referred to as partial reconfiguration.
The direct benefits of using this ability is a significant
reduction of the duration of reconfiguring and reduc-
tion of the memory size required for the configuration
storage (the size of the bit-stream is directly propor-
tional to the number of resources being configured).
Also, this ability opens new possibilities for the recon-
figurable logic application in computers, particularly,
it allows organizing hardware multitasking in FPGA
and embodying the concept of Virtual Hardware, that
is combined extremely well with the concept of SCCS
design.

Partial reconfiguration is carried out in FPGA by
downloading partial configurations files after its initial
configuration, and thus - during the operation. These
files specify only the configuration of the FPGA parts
called Reconfigurable Partitions or Reconfigurable Re-
gions, each of them contains separate device’s modules.
Reconfigurable partitions contain a certain amount of
equipment and have a clearly defined location and
boundaries in the FPGA circuitry. In this regard, the
device needs a modular structure. The modules loaded
into the reconfigurable partitions are called Reconfig-
urable Modules.

Partial reconfiguration can be static, when the device
is not active during the reconfiguration process (while
the partial configuration data is sent into the FPGA, the
rest of it is stopped and brought up after the configura-
tion is completed), and dynamic, also known as active
partial reconfiguration, which enables changing the
part of the FPGA while the rest of it is still operating.

Besides one or more reconfigurable regions, a par-
tially reconfigurable FPGA also contains a static region
which remains unchanged during partial reconfigura-
tion. For example, partial reconfiguration controller,
memory and interface logic can operate in this region.

The Partial Reconfiguration Controller automates the
mentioned process. The user can develop a controller
by himself or can use ready available on the market
solution. The controller can also be external to the
FPGA device.

Two modes of the partial reconfiguration are used:

• Module-based - implies creation of a reconfig-
urable module and, with the help of relevant soft-
ware, generation of its partial configuration code.
This code completely replaces the previously syn-
thesized reconfigurable module in the selected
reconfigurable region. Note that this approach
requires interfaces interoperability of all reconfig-
urable modules that operate in one reconfigurable
region.

• Difference-based - implies introducing small
changes to the scheme of the previously synthe-
sized reconfigurable module. Partial configuration
code contains information about the differences
between the structures of the existing and new
modules operating in the reconfigurable region,
and is formed by "fusion" of the binary codes of
the previously loaded to the FPGA configuration
with the new one, for example, using XOR oper-
ation. This approach makes it possible to signifi-
cantly reduce the size of configuration code. It is
used, for example, to replace the contents of table
operating device, memory contents, etc. This ap-
proach is especially interesting for implementation
of evolutionary algorithms.

Partial reconfiguration design flow and mechanisms
are being continuously improved. For example, in Vir-
tex, Virtex-II, Virtex-II Pro and Virtex-E FPGAs from
Xilinx, the configuration can be changed only by full
columns of the reconfigurable matrix, and their num-
bers have to be multiples of 4 (4, 8, 12, ...). In Virtex-4
FPGAs this restriction is eliminated, while it is pos-
sible to change the configuration of an arbitrary rect-
angular area of the matrix, with some restrictions on
its height. In modern Xilinx FPGAs (today it is 7th
generation: Artix-7, Kintex-7, Virtex-7 and Zynq-7000
SoC) the minimum regions whose configuration can
be changed independently are called Reconfigurable
Frames. The width of the reconfigurable frames is one

4

138 Chameleon c© C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

element (there are different types of elements, includ-
ing CLB, BRAM, DSP), while the height - the one clock
region or input/output block. Some examples are as
follows: in the Xilinx FPGAs 7th generation devices
[14] - CLB: 50 x 1; DSP48: 10 x 1; RAM: 10 x 1; in the
UltraScale devices [15] - CLB: 60 x 1; DSP48: 24 x 1;
RAM: 12 x 1.

A partial configuration file consists of a certain num-
ber of configuration frames (not to be confused with
the reconfigurable frames). The configuration frame is
the minimum unit of information of this file and sets a
configuration for one reconfigurable frame.

In the Altera FPGAs, the partial reconfiguration is
implemented similarly.

VI. Chameleon c© C2HDL Design Tool

The Chameleon c© C2HDL design tool is initially tar-
geted for use in the heterogeneous ultrascale computer
systems. It is intended for the ASP’s HDL-model auto-
matic generation from the algorithm described in the
ANSI C language [7], [10]. The developer, specifying
an algorithm of the data processing on ANSI C, in
return gets a fully debugged and synthesizable VHDL
RTL model of the device that implements the described
algorithm. The architecture of the device is fully opti-
mized for the executed algorithm and maximally uses
its ability for paralleling. The obtained VHDL design
may be further implemented in the FPGA by any FPGA
design solution, e.g. the Xilinx Vivado Design Suit or
Altera Quartus II.

Besides the algorithm of the data processing, the
input information for the Chameleon c© C2HDL de-
sign tool are also the ASP’s interface specification and
technical characteristics, for example, desired perfor-
mance or algorithm execution time boundaries. The
platform for the ASP synthesis is configurable proces-
sor architecture configured according to the following
input parameters: the number of Functional Units,
an instruction set for each Functional Unit, the size
and content of the instruction and data memory, the
communication network structure.

The basic scheme of the Chameleon c© C2HDL de-
sign tool operation is shown in Figure 1.

The Chameleon c© C2HDL design tool features:

1. Short generation time. For example, generation
of the FFT processor VHDL model with 50 Func-
tional Units takes several minutes on a conven-
tional PC.

2. Desired pre-set level of the algorithm paralleliza-
tion.

3. Quick search of the appropriate level of paralleliza-
tion to achieve the desired ASP’s performance or
power consumption.

4. The architecture of the ASP is tested and verified,
which eliminates the probability of synthesis and
operation errors.

Thus, this tool can be effectively used in the SCCS,
and the example of its usage is shown in the next
section.

VII. Experimental Results

We have used the Chameleon c© C2HDL design tool
as one of the basic software means of the SCCS com-
piler. The SCCS hardware platform is realized on the
base of the conventional personal computer running on
the Windows OS and the reconfigurable environment
built on the Cyclone V FPGA from Altera. The RCE
subprogram chosen for the experiment represents the
algorithm of the 64-point Fast Fourier Transformation
in the ANSI C language, its code is given in Figure 2.
This program has been submitted to the input of the
Chameleon c© C2HDL design tool, and a set of the
RTL VHDL-models of the 64-points FFT processors,
whose structures contain a different number of Func-
tional Units, has been automatically generated. As
a most productive the one containing 15 Functional
Units was determined by the Chameleon c© C2HDL de-
sign tool; in all the models a number of these modules
is determined automatically. The Functional Units are
implemented in the Cyclone V FPGA as an embedded
DSP blocks in relation 1x1.

Depending on the workload, the SCCS operating
system can choose the FPGA partial configuration that
contains an appropriate by the equipment amount or a
performance FFT processor, and replace the operating
in the RCE instance of the processor to another on

5

Anatoliy Melnyk, Viktor Melnyk,Lyubomyr Tsyhylyk 139

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

Figure 1: Basic Scheme of Chameleon c© C2HDL Design Tool Operation.

the run. Table 1 shows, the technical characteristics
of the FFT processors VHDL-models generated with
Chameleon c© C2HDL design tool, and synthesised in
the Cyclone V 5CSEMA5F31C6 device by the Quartus
II 13.1.0 Web Edition.

Number of
the Functional
Units

LUT uti-
lization

Maximum
Frequency
(MHz)

Command
count

FFT time
(us)

1 1.809 204.08 1900 9.31
2 2.380 200,32 1015 5,07
4 3.054 216,8 575 2,65
7 4.806 174,52 388 2,22
8 4.858 190,73 352 1,85
10 6.715 171,85 311 1,81
13 9.200 149,7 190 1,27
15 10.198 138,48 180 1,30

Table 1: Technical Characteristics of FFT Processors.

Basing on this data, the SCCS operating system can
choose which FFT processor configuration to acquire
at a certain moment of its operation, depending on

the actual workload. For example, the configuration
consuming 1809 LUTs executes FFT in 9.31 us, and
configuration consuming 9200 LUTs - in 1.27 us.

The time required by the SCCS for the FFT pro-
cessors VHDL-models generation generally increases
linearly with increasing the number of parallel Func-
tional Units (see Figure 3). The main part of the gen-
eration time is spent on the algorithm parallelization
and schematic optimization.

VIII. Conclusions

Implementation of the SCCS basing on partially recon-
figurable FPGAs enables organization of the simulta-
neous multiple-task execution in the reconfigurable en-
vironment of the SCCS as the subprograms of different
tasks are executed independently in different reconfig-
urable regions of the FPGA. Such SCCS operation has
a number of advantages, among which, besides the
actual multitasking - effective use of the reconfigurable
logic and rationalization of energy consumption. At

6

140 Chameleon c© C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

Figure 2: Program of 64-Point FFT Algorithm in ANSI C.

the same time, this mode of the SCCS operation im-
poses additional requirements for the generating sys-
tem to create the application-specific processors HDL-
models. The question arises to organizing dynamic
re-allocation of the reconfigurable logic resources and
replacing some running application-specific processors
with others performing the same task but differing by
the equipment volume. This should be done to provide
an effective use of resources and the required level of
multitasking. To address this challenge, it is neces-
sary, during the program compilation, for each subpro-
gram executed in the reconfigurable environment, to
generate a number of application-specific processors
HDL-models. We propose in this regard to use the
Chameleon c© C2HDL design tool.

In the article we consider the SCCS structure and
the method of information processing in it, the par-
tially reconfigurable FPGAs operation features, and the
Chameleon c© C2HDL design tool operation and fea-
tures among which short generation time, desired pre-
set level of the algorithm parallelization, automatic gen-
eration of tested and verified ASP HDL models. One of
the features of the Chameleon c© C2HDL design tool is
its ability to generate a number of application-specific
processor soft-cores executing the same algorithm dif-

fering by the amount of FPGA resources required for
their implementation. For the self-configurable com-
puter systems based on partially reconfigurable FPGAs
this feature allows acquiring in every moment of its op-
eration configuration that will provide an optimal use
of its reconfigurable logic at a given level of hardware
multitasking.

To estimate the benefit, we have experimented with
the Chameleon c© C2HDL design tool as one of the
basic software means of the SCCS compiler. The SCCS
hardware platform is realized on the base of the con-
ventional personal computer running on the Windows
OS and the reconfigurable environment built on the
Cyclone V FPGA from Altera. Chosen for the experi-
ment RCE subprogram represents the algorithm of the
64-point Fast Fourier Transformation in the ANSI C
language. This program has been given to the input
of the Chameleon c© C2HDL design tool, and a set of
the RTL VHDL-models of the 64-point FFT processors
has been automatically generated. The experimental
results have shown that the Chameleon c© C2HDL de-
sign tool generates a set of FFT processors with high
technical characteristics in very short time, and satis-
fies the basic requirements for a generating system of
the SCCS to provide its effective operation.

7

Anatoliy Melnyk, Viktor Melnyk,Lyubomyr Tsyhylyk 141

Second International Workshop On Sustainable Ultrascale Computing Systems • September 2015 • Vol. I, No. 1

Figure 3: Time Required for 64-Point FFT Processors VHDL-Models Generation.

References

[1] A. Melnyk, V. Melnyk, "Self-Configurable FPGA-
Based Computer Systems," Advances in Electrical
and Computer Engineering, vol. 13, no. 2, pp. 33-38,
2013.

[2] V. Melnyk, V. Stepanov, Z. Sarajrech, "System of
load balancing between host computer and recon-
figurable accelerator," Computer systems and compo-
nents, Scientific Journal of Yuriy Fedkovych Chernivtsi
National University, vol. 3, no. 1, pp. 6-16, 2012.

[3] "A Proven EDA Solutions Provider makes
all the difference". [Online]. Available:
http://www.aldec.com/en.

[4] Xilinx Core Generator. Xil-
inx Inc. [Online]. Available:
http://www.xilinx.com/ise/products/coregen_overview.
pdf - 2005.

[5] Melnyk, A, Melnyk, V. "Organization of libraries
of standardized and custom IP Cores for high-
performance hardware accelerators", Proceedings
of IV-th all-Ukrainian conference "Computer Tech-
nologies: Science and Education", Ukraine, Lutsk,
9-11 October 2009. -P. 113-117.

[6] Genest, G. "Programming an FPGA-based Super
Computer Using a C-to-VHDL Compiler: DIME-
C", Adaptive Hardware and Systems, 2007. AHS
2007. Second NASA/ESA Conference, 5-8 Aug.
2007. - P. 280 - 286.

[7] "Chameleon - the System-Level Design
Solution," [Online]. Available: http://intron-
innovations.com/?p=sld_chame

[8] ANSI-C to VHDL Compiler. [Online]. Avail-
able: http://www.nallatech.com/FPGA-Development-
Tools/dimetalk.html.

[9] "Relogix Assembler-to-C translator," [Online].
Available: http://www.microapl.co.uk/asm2c/

[10] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L.
"Chameleon - system for specialized processors
high-level synthesis", Scientific-technical maga-
zine of National Aerospace University "KhAI",
Kharkiv, 2009. N5, pp. 189-195.

[11] Agility Compiler for SystemC. Electronic
System Level Behavioral Design & Syn-
thesis Datasheet. 2005. [Online]. Avail-
able: http://www.europractice.rl.ac.uk/vendors/
agility_compiler.pdf

[12] Handel-C Language Reference Manual For DK
Version 4. Celoxica Limited, 2005. - 348p.

[13] Impulse CoDeveloper C-to-
FPGA Tools. [Online]. Available:
http://www.impulseaccelerated.com/products_
universal.htm

[14] Vivado Design Suite User Guide. Partial Reconfig-
uration. UG909 (v2015.2) June 24, 2015.

[15] UltraScale Architecture. Online. Available:
http://www.xilinx.com/products/technology/ultra-
scale.html

8

142 Chameleon c© C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Book paper template • September 2015 • Vol. I, No. 1

HPC in Computational Micromechanics
of Composite Materials

(Poster Summary)

Radim Blaheta, Alexej Kolcun, Ondřej Jakl, Kamil Souček, Jiří Starý, Ivan Georgiev

Institute of Geonics, Czech Academy of Sciences, Ostrava, Czech Republic
Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria

[blaheta, kolcun, jakl, soucek, stary]@ugn.cas.cz, ivan.georgiev@parallel.bas.bg

I. Introduction

By micromechanics we understand analysis of the
macroscale response of materials through investiga-
tion of processes in their microstructure. Here by the
macroscale, we mean the scale of applications, where
we solve engineering problems involving materials.
Examples could be analysis of aircraft constructions
with different composite materials and analysis of rock
behaviour and concrete properties in geo- and civil en-
gineering applications. Analysis of bio-materials with
many medicine applications is also rapidly developing.
Different applications are distinguished by different
characteristic size. At macroscale the materials mostly
look as homogeneous or they are idealized as homo-
geneous or piecewise homogeneous. A substantial
heterogeneity is hidden and appears only after more
detailed zooming view into the material. This hidden
heterogeneity can be called microstructure. In metals
it is created by crystals and grains, in composite ma-
terials by matrix and inclusions, in concrete by gravel
and mortar or iron reinforcement, in rock by mineral
composition and possible grouting, etc. When the ratio
between the characteristic dimensions on macro and
microstructure subjects is sufficiently large, then we say
that the scales are well separated. In this case, it is not
possible to perform the macroscale analysis going into
the microstructure details, but it is possible to analyse
the macroscopic problems with the use of effective (ho-
mogenized) material properties, which are obtained by
testing smaller samples of materials. In computational
micromechanics, the testing of such samples means

solution of boundary value problems on test domains
involving the microstructure with loading provided by
suitable boundary conditions.

In this work, we focus on X-ray CT image based
micromechanics of geomaterials and concrete with the
use of continuum mechanics and finite element (FE)
computations of the microscale strains and stresses,
see [2]. This means that basic information about the
microstructure is provided by the analysis (segmenta-
tion) of 3D images of real samples. This information
should be complemented by information on local mate-
rial properties, i.e. material properties of the individual
material constituents.

There is a strong need for high performance comput-
ing (HPC) at several levels of computational microme-
chanics, namely at:

• analysis of CT scans,

• high resolution finite element solution of bound-
ary value problems,

• solution of inverse problems for determination or
calibration of local material properties.

This contribution deals with the second point, i.e.
solution of high resolution FE systems with tens or
hundreds million degrees of freedom (DOF). We report
about the performance of in-house solvers exploiting
the Schwarz domain decomposition method with aggrega-
tion, c.f. [3], and outline possible future development
in the area of ultrascale computing, which is necessary
for building efficient solution methods for inverse mate-
rial identification problems, see [4] and work in progress.

1

Radim Blaheta, Alexej Kolcun, Ondrej Jakl, Kamil Soucek, Jiri Stary,Ivan Georgiev 143

Book paper template • September 2015 • Vol. I, No. 1

II. High resolution FE systems

In the analysis of heterogeneous materials with mi-
crostructure (composites) (see [2]), our test sample do-
main Ω is a cube with a relatively complicated mi-
crostructure. Its FE mesh is constructed from data
obtained from industrial CT scanning, performed at
the CT-lab of the Institute of Geonics. Two types of
composites are considered in this work: A coal-resin
geocomposites and reinforced concrete composites. See
Tab. 1 for the main characteristics of the resulting FE
problems (benchmarks).

Benchmark Discretization Size in DOF Data size

GEOC-2l 257 × 257 × 1025 203 100 675 33.5 GB
FIBER-3 401 × 401 × 401 193 443 603 32.2 GB

Table 1: Benchmark problems: Name, discretization, size of
the resulting linear system and storage requirements.

The elastic response of a representative volume Ω
is characterized by homogenized elasticity C or com-
pliance S tensors (S = C−1). The elasticity and com-
pliance tensors are basically determined from the rela-
tions

C〈ε〉 = Cε0 = 〈σ〉 and S〈σ〉 = Sσ0 = 〈ε〉, (1)

respectively. Here 〈σ〉 and 〈ε〉 are volume averaged
stresses and strains computed from the solution of
elasticity problem

−div(σ) = 0, σ = Cmε, ε = (∇u+(∇u)T)/2 in Ω,
(2)

with boundary conditions

u(x) = ε0 · x on ∂Ω and σ · n = σ0 · n on ∂Ω, (3)

respectively. Above, σ and ε denote stress and strain
in the microstructure, Cm is the variable local elasticity
tensor, u and n denote the displacement and the unit
normal, respectively. The use of pure Dirichlet and
pure Neumann boundary conditions allows us to get
a upper and lower bounds for the upscaled elasticity
tensor, see e.g. [4].

III. GEM solvers

GEM is an in-house FE software described in detail

in [1], which makes use of linear tetrahedral finite
elements for discretization. Arising systems of lin-
ear equations are processed by solvers based on the
preconditioned conjugate gradient (PCG) method, with
stabilization in the singular case [3]. PCG uses overlap-
ping domain decomposition preconditioners. To solve the
benchmarks, we employ two types of GEM solvers:

GEM-DD solver uses one-level additive Schwarz domain
decomposition preconditioner with subproblems
replaced by displacement decomposition incom-
plete factorization, see ref. in [3]. The resulting
preconditioner is symmetric positive definite even
for the singular case.

GEM-DD+CG solver implements two-level Schwarz
domain decomposition preconditioning, arising
from the GEM-DD above by additive involvement
of a coarse problem correction. The coarse problem is
created by a regular aggressive aggregation with
3 DoF’ per aggregation. In the singular case, the
coarse problem is also singular with a smaller null
space containing only the rigid shifts. The coarse
problem is solved only approximately by inner
(not stabilized) CG method with a lower solution
accuracy – relative residual accuracy ε0 ≤ 0.01.

IV. Computing resources

The computations were performed on two parallel
platforms:

Enna 64-core NUMA multiprocessor, Institute of Geon-
ics AS CR: eight octa-core Intel Xeon E7-8837 /
2.66 GHz processors; 512 GB of DDR2 RAM; Cen-
tOS 6.3, Intel Cluster Studio XE 2013.

Anselm multicomputer (cluster, 209 compute nodes),
IT4Innovations National Supercomputing Center:
two octa-core Intel E5-2665 / 2.4 GHz processors
per node; 64 GB RAM per node; Infiniband QDR
interconnection, fully non-blocking, fat-tree; Bullx
Linux Server 6.3 (Red Hat clone), Intel Parallel
Studio 13.1.

2

144 HPC in Computational Micromechanics of Composite Materials

Book paper template • September 2015 • Vol. I, No. 1

V. Computational experiments

Table 2 shows the timings of the GEM-DD+CG solver
(with coarse grid problem applied) obtained for the
coal-resin geocomposite benchmark GEOC-2l both on
Enna and Anselm, and demonstrates the impact of
the coarse grid size on the time of the solution. The
stopping criterion ‖r‖/‖b‖ ≤ ε, based on the relative
residual accuracy, was 10−5. On Enna, the best results
(2483.6 s) were observed with aggregation 9× 9× 9.

Sd

Enna Anselm
DD + CG DD + CG DD + CG DD + CG
9× 9× 9 9× 9× 18 9× 9× 27 9× 9× 27

It Titer # It Titer # It Titer # It Titer

4 751 13719.0 858 15757.6 997 18518.4 997 12671.4
8 690 6237.7 800 6960.8 917 8062.9 917 5803.9

16 585 2717.4 674 4010.6 777 4815.6 777 2576.6
32 585 2483.6 622 2923.8 708 3452.5 708 1157.5
64 627 3637.0 627 558.8

128 652 358.5
256 631 299.6
512 649 333.5

Table 2: Timings of the GEOC-2l benchmark with pure
Neumann boundary conditions and achieved by the GEM-
DD+CG solver on the multiprocessor Enna and multicom-
puter Anselm: Iteration counts (# It) and wall-clock time (in
seconds) for the solution time (Titer) are provided now for
different sizes of CG problem involved in computations and
for various numbers of subdomains (# Sd).

The experiments confirm the advantage of multicom-
puters (systems with distributed memory) for greater
number of subdomains, when the multiprocessors in
general suffer from the memory-processor bandwidth
contention. Thus, while on Enna the scalability fades
out at about 32 cores, the turning point on Anselm is
around 256 processing elements, when the small size
of subdomains deteriorates the ratio between computa-
tion and communication. In absolute figures, we were
able to solve the benchmark 8 times faster on Anselm
than on Enna. A part of Anselm’s advantage is to be
credited to its newer Intel Sandy Bridge CPU architec-
ture, which outperforms Enna’s Westmere CPU in our
applications by 20 - 40 % (separate test).

A bit surprising decrease of the number of iterations
with increasing number of subdomains (processors) as

reported in the above Tables, can be explained by the
fact that smaller subdomain problems are solved more
accurately in our implementation.

Anselm/GEOC-2l best time in Table 2 (299.6 s with
256 processing elements and aggregation 9× 9× 27)
was surpassed by another experiment (not shown in
the table): aggregation 15× 15× 31, 910 iterations, 512
subdomains (32 compute nodes employed), 249.8 s.

The experiments carried out on the fiber-reinforced
concrete FIBER-3 benchmark delivered similar results.
So far, just Enna has been used for computations, con-
firming limited scalability on its multi-processor archi-
tecture. We observed great importance of the coarse
grid and its proper dimensioning for efficient solution
(computing times of GEM-DD are multiples of the
computing times of GEM-DD+CG).

VI. Conclusions and future work

Micromechanics leads to large-scale problems, as il-
lustrated by the presented benchmarks. The compu-
tational requirements can be further substantially in-
creased in the case of an inverse analysis for identification
local material properties (see e.g. [4]).

At the IT4Innovations National Supercomputing
Center, there is a new massively parallel computer
available, called Salomon. This multi-computer (clus-
ter) has 1008 compute nodes and we plan to employ it
in future experiments.

The approach described so far employs classical do-
main decomposition philosophy. Both facts, computa-
tional demands and availability of massively parallel
computers, motivate further research in algorithms,
which are efficient from the point of view of arithmetic
operations and (even more important) from the point
of view of communication.

In the future, we plan to test the effect of communi-
cation avoiding (CA) algorithms. For example, using
the same ingredients as in our domain decomposition
solvers, we can employ CA conjugate gradients and
a deflation type implementation of the aggregation
based coarse space.

Acknowledgement: This work was supported
by the European Regional Development Fund in
the IT4Innovations Centre of Excellence project

3

Radim Blaheta, Alexej Kolcun, Ondrej Jakl, Kamil Soucek, Jiri Stary,Ivan Georgiev 145

Book paper template • September 2015 • Vol. I, No. 1

(CZ.1.05/1.1.00/02.0070) and the COST NESUS project
with an additional CZ MEYS LD15105 support.

References

[1] R. Blaheta, O. Jakl, R. Kohut, J. Starý: GEM - A
Platform for Advanced Mathematical Geosimulations.
In: R. Wyrzykowski et al. (eds.): PPAM 2009, Part
I, LNCS 6067, Springer-Verlag, 2010, pp. 266-275.

[2] R. Blaheta et al: Material parameter identification
with parallel processing and geo-applications. In: R.
Wyrzykowski et al. (eds.): PPAM 2011, Part I, LNCS
7203, Springer-Verlag, 2012, pp. 366-375.

[3] R. Blaheta, O. Jakl, J. Starý, E. Turan: Parallel solvers
for numerical upscaling. In: P. Manninen, P. Oster
(eds.): PARA 2012, LNCS 7782, Springer-Verlag,
2013, pp. 375-386.

[4] R. Blaheta, R. Kohut, A. Kolcun, K. Souček, L. Staš,
L. Vavro: Digital image based numerical micromechan-
ics of geocomposites with application to chemical grout-
ing. International Journal of Rock Mechanics and
Mining Sciences 77, 2015, pp. 77-88.

4

146 HPC in Computational Micromechanics of Composite Materials

List of Authors

Barbosa, Jorge, 11

Bilas, Angelos, 83

Blaheta, Radim, 143

Carretero, Jesus, 95, 107

Cebamanos, Luis, 63

Ciegis, Raimondas, 23

Dandekar, Thomas, 121

Dietze, Robert, 127

Dolz, Manuel, 107

Fischer, Paul, 63

Frasheri, Neki, 1

Garcia, Javier, 95, 107

Georgiev, Ivan, 143

Gong, Jing, 63

Gonzalez-Ferez, Pilar, 83

Gonçalves, Pedro, 11

Hart, Alistair, 63

Hofmann, Michael, 127

Hristov, Atanas, 45

Isaila, Florin, 107

Jakl, Ondrej, 143

Karatza, Eleni, 51

Kecskemeti, Gabor, 71

Kolcun, Alexej, 143

Kuhn, Michael, 107

Kuonen, Pierre, 117, 121

Lančinskas, Algirdas, 7

Laure, Erwin, 63

Llopis, Pablo, 107

M., Pilar, 7

Markidis, Stefano, 63

Marozzo, Fabrizio, 95

Mavridis, Ilias, 51

Melnyk, Anatoliy, 135

Melnyk, Viktor, 135

Min, Misun, 63

Monney, Loïc, 117

Morla, Ricardo, 11

Petcu, Dana, 29

Reza, Mohammad, 107

Rodrigo, Francisco, 95

Ruenger, Gudula, 127

Schliephake, Michael, 63

Soucek, Kamil, 143

Stamatovic, Biljana, 41

Stary, Jiri, 143

Talia, Domenico, 95

Trunfio, Paolo, 95

Tsyhylyk, Lyubomyr, 135

Wolf, Beat, 117, 121

Žilinskas, Julius, 7

	Preamble
	Publishing informations
	Preface

	 Table of Contents
	Second NESUS Workshop (NESUS 2015)
	Parallel Processing For Gravity Inversion
	Neki Frasheri

	Solution of Bi-objective Competitive Facility Location Problem Using Parallel Stochastic Search Algorithm
	Algirdas Lancinskas

	A Scheduler for Cloud Bursting of Map-Intensive Traffic Analysis Jobs
	Ricardo Morla

	Distributed Parallel Computing for Visual Cryptography Algorithms
	Raimondas Ciegis

	On Autonomic HPC Clouds
	Dana Petcu

	Labeling connected componets in binary images based on cellular automata
	Biljana Stamatovic

	Nature-Inspired Algorithm for Solving NP-Complete Problems
	Atanas Hristov

	Log File Analysis in Cloud with Apache Hadoop and Apache Spark
	Ilias Mavridis

	NekBone with Optimized OpenACC directives
	Jing Gong

	Scheduler hierarchies for enabling peta-scale cloud simulations with DISSECT-CF
	Gabor Kecskemeti

	NUMA impact on network storage protocols over high-speed raw Ethernet
	Pilar Gonzalez-Ferez

	Evaluating data caching techniques in DMCF workflows using Hercules
	Francisco Rodrigo Duro

	Analyzing power consumption of I/O operations in HPC applications
	Pablo Llopis Sanmillan

	FriendComputing: Organic application centric distributed computing
	Beat Wolf

	Multilevel parallelism in sequence alignment using a streaming approach
	Beat Wolf

	Exploiting Heterogeneous Compute Resources for Optimizing Lightweight Structures
	Robert Dietze

	Chameleon© C2HDL Design Tool In Self-Configurable Ultrascale Computer Systems Based On Partially Reconfigurable FPGAs
	Anatoliy Melnyk

	HPC in Computational Micromechanics of Composite Materials
	Radim Blaheta

	List of Authors

