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Abstract

This thesis proposes the development and implementation of a new programming model based
on execution relaxations, and focused on High-Performance Parallel Computing. Specifi-
cally, the main goals of the thesis are:

1.

Advocate a development methodology in which users define the basic computing units
(tasks), together with a set of relaxations in, possibly, multiple dimensions. These relax-
ations will be translated, at execution time, into expanded (and complex) scheduling oppor-
tunities depending on the underlying architectural features, yielding improvements in terms
of desired output metrics (e.g., performance or energy consumption).

Abstract away users from the complexity of the underlying heterogeneous hardware, dele-
gating the proper exploitation of expanded scheduling choices to a system software compo-
nent (typically referred as a runtime). This piece of software, armed with knowledge from
static architectural characteristics and dynamic status of the hardware at execution time,
will exploit those combinations considered optimal among those relaxations proposed by
the user for each task ready for execution.

Extend this abstraction in order to describe both computing systems, by means of executor
/ allocator hierarchies that describe the heterogeneous computing architecture, and applica-
tions, in terms of sets of interdependent tasks. In addition, the relations between executors
and tasks are categorized into a new fask-executor taxonomy, which motivates ambiguity-
free HPC programming frontends based on the STSE, Single Task - Single Executor classi-
fication, distinguished from fully-automated runtime backends.

Propose a new programming model (STEEL) based on previous ideas, that gathers features
considered to be basic for future task-based programming models, namely: performance,
composability, expressivity and hard-to-misuse interfaces.

. Specify an API to support the STEEL programming model, and a runtime implementation

leveraging techniques and programming paradigms supported by modern C++, illustrating
its flexibility, ease of use and performance impact by means of simple use cases and exam-
ples.

Hence, the proposed methodology stands for a clear and strict separation of concerns between
the involved actors in a parallel executions: user / codes and underlying hardware. This kind of
abstractions allows a delegation of the expert knowledge from the user toward the system software
(runtime) in a systematic way, and facilitates the integration of mechanisms to automate optimiza-
tions, adapting performance to the specificities of the heterogeneous parallel architecture in which
the code is instantiated and executed.

From this perspective, the thesis designs, implements and validates mechanisms to perform a
so-called complexity formalization, classifying many actions that are currently done by the user
and building a framework in which these complexities can be delegated to the runtime system. The
delegation of these decisions is already a step forward to next generation of programming models
seeking performance, expressivity, programmability and portability.
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Resumen

La presente tesis doctoral propone el diseiio ¢ implementacion de un nuevo modelo de progra-
macion basado en relajaciones de ejecucion y enfocado al ambito de la Computacion Paralela
de Altas Prestaciones. Concretamente, los objetivos principales de la tesis son:

1. Abogar por una metodologia de desarrollo en la que el usuario define las unidades basicas de
computo (tareas), junto con un conjunto de relajaciones en, posiblemente, multiples dimen-
siones. Estas relajaciones se traducirdn, en tiempo de ejecucion, en oportunidades expandi-
das (y complejas) de planificacién en funcién de la arquitectura subyacente, impactando asi
en métricas como rendimiento o consumo energético.

2. Abstraer al usuario de la complejidad del hardware subyacente, delegando la correcta ex-
plotacién de dichas posibilidades de planificacion expandidas a un componente software
de sistema (tipicamente conocido como runtime). Dicho software, dotado de conocimiento
tanto de las caracteristicas estdticas de la arquitectura subyacente como del estado puntual de
la misma en el momento de la ejecucién, explotard las combinaciones consideradas Optimas
de entre las relajaciones propuestas por el usuario para cada tarea lista para set ejecutada.

3. Extender dicha abstraccién para describir tanto sistemas de computo, en forma de jerarquias
de ejecutores y alojadores de memoria que en Gltimo término describen una arquitectura
de computo heterogénea, como aplicaciones, en forma de un conjunto de tareas interrela-
cionadas. Ademads, las relaciones entre ejecutores y tareas son clasificadas en una nueva
taxonomia tarea-ejecutor, la cual motiva frontends de programacién HPC sin ambiguedad
basados en la clasificacion STSE, Single Task - Single Executor, separada de backends run-
time totalmente automatizados.

4. Proponer un nuevo modelo de programacién (STEEL) basado en la clasificaciéon STSE que
aglutine ciertas caracteristicas consideradas basicas de cara al éxito de los futuros modelos
de programacién basados en tareas: rendimiento, facilidad de composicion, expresividad e
interfaces no permisivos ante fallos.

5. Especificar una API que dé soporte al modelo de programacidn, asi como una implementacién
runtime del mismo aprovechando técnicas y paradigmas soportados en el lenguaje C++ de
dltima generacidn, e ilustrar su uso, flexibilidad e impacto en el rendimiento a través de
ejemplos y casos de uso sencillos.

La metodologia que se propugna aboga por una clara y estricta separacion de conceptos entre
los actores basicos que componen una ejecucion paralela: usuario / cédigo y hardware subyacente.
Este tipo de abstracciones permite delegar el conocimiento experto desde el usuario hacia el soft-
ware de sistema, proporcionando asi mecanismos para mecanizar y automatizar su optimizacion,
y adaptar su rendimiento a la arquitectura paralela sobre la que se instanciaran los c6digos.

Desde este punto de vista, la tesis disefia, implementa y valida mecanismos para llevar a cabo
una formalizacion de la complejidad inherente a la programacion paralela heterogénea, clasifi-
cando aquellas acciones que en la actualidad se llevan a cabo por parte del usuario en el proceso
de desarrollo y optimizacién de cédigo, y proporcionando un marco de trabajo en el que dicha
complejidad puede ser delegada, de forma eficiente y consistente, a un runtime.
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Against the sneakiest undead lock
and hideous invisible bugs
who hide and never talk.

Through the fire in the chip
and bursts in the heap
that oblige to swap.

Let’s stand composed

with strongly typed shields.
Let’s relax the parallel demon
coding spells of STEEL.

Introduction

1.1 Fundamentals

In a world dominated by Information Technology and Computer Science, computers have been
transforming the society since their first physical implementations at the beginning of the previous
century, and it is likely that this transformation is not going to end anytime soon. Since the
advent of programmable computers, High-performance Parallel Computing (HPC) in particular,
and computer simulation in general, have played a crucial role supporting new developments in
science and engineering, driving technology and industry toward efficiency, and pushing science
to greater levels of knowledge in virtually all disciplines.

However, as it occurs in any technological human discipline, there are still a plethora of open
problems in HPC that need to be solved in order to keep extending its applicability to increasingly
important scientific and engineering challenges.

1.1.1 Challenges in High-performance Parallel Computing

Since the advent of silicon-based transistors, hardware advances based on physical features —
miniaturization, increasing transistor count and higher clock frequencies— and technical advances
—branch prediction, deep pipelines, speculative and out-of-order execution, deep cache hierarchies,
vector units— [69] managed to keep an exponential growth in microprocessor performance for
several decades, while respecting a purely sequential programming paradigm. This trend started
to show signs of stagnation when heat dissipation and energy efficiency in microprocessors became
an ever-growing problem. This power wall [ 1 1] problem was circumvented by architects by means
of parallelism, rather than clock frequency, which led to the popularization of parallel on-chip
microprocessors.

However, this multicore revolution brought its own set of problems to solve. In contrast to
the previous gold sequential era in which a two-fold increase of processing performance was just
a matter of waiting 18 months [132], parallel processing came with its own limitations with re-
gard to applicability and development productivity. Specifically, efficient parallel computation
trivially requires (i) application parallelizability —i.e., the application must inherently expose a
certain amount divisible work that can be computed independently (quantifiable with the Am-
dahl’s Law [71])—, and (ii) parallel programming knowledge —i.e., the programmer must be able
to partition and synchronize the workload— needed for the execution performance to scale with the
number of processing cores.

There is little that can be done regarding the parallelizability of an application, as it is an
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intrinsic property that cannot be circumvented. With respect to the latter requirement it is not a
surprise that parallel programming is hard, and generally involves a thorough design that requires
an advanced knowledge of (i) parallel actors (threads and processes) and (ii) synchronization tools
(locks, mutexes, condition variables, barriers, latches, futures), to avoid generally hard to debug
errors (deadlocks and livelocks) and race conditions.

Moreover, parallel architectures entail an additional (and typically harder to achieve) parallel
performance requirement, which is not whatsoever guaranteed even though program correctness
is attained. Parallel performance tuning typically requires an advanced knowledge about both
the underlying parallel architecture and the abstraction layers in between the source code and the
actual machine code that is being executed in the processor.

In addition, not only the sheer size of the underlying parallel platform makes the performance
problem even harder to attain, but also its complexity in terms of deep, wide and distributed mem-
ory hierarchies, and parallel/heterogeneous processors interconnected in complex topologies. In
particular, the memory wall problem [158] —illustrated by the fact that in many applications the
data movement is a few orders of magnitude more expensive (in terms of time and energy) than
computation— is aggravated in distributed systems, making it one of the major issues that limit the
scalability and performance of modern large-scale applications running on high-end supercomput-
ers.

Soon after the multicore chips became pervasive in practically every device, the increasing
hardware advances in GPU technology driven by entertainment industry (gaming and 3D anima-
tion), led to the generalization of these previously domain-specific hardware architectures into a
more general-purpose-oriented graphics processors. Nowadays, partly thanks to the development
of programming models, interfaces and open standards designed to target them, and also thanks
to its paramount performance-per-watt efficiency, general-purpose GPUs are already a common
component in any parallel system used for HPC purposes. In a broader sense, and in analogy
with the multicore revolution, the heterogeneous revolution was coined as other domain-specific
hardware, apart from GPUs, like FPGAs, DSPs and TPUs, gained popularity in HPC applications
and systems.

Motivated by the demands of large applications dealing with climate modeling, materials
science, energy research, astrophysical research, data analytics, or medical research applied to
drug discovery and protein folding, future exa-scale supercomputers aim at delivering a sustained
performance peak of 10'® floating point operations per second with power demands up to 20
MW [48]. In order to attain such numbers, the so-called exa-scale challenges require hardware
and software innovations to enhance performance/scalability, energy efficiency, programmability
and resiliency. With regard to execution performance, scalability and programmability, exa-scale
computers will demand unprecedented levels of scheduling complexity: hierarchical and mas-
sive levels of parallelism will need to be automatically managed, and data movement will require
a coherent orchestration across multiple and deep cache hierarchies. Moreover, the failure rate
probability due to soft and hard errors is expected to rise to levels that may cause exa-scale exe-
cutions not only be expensive, but also impractical. For this reason, execution resiliency is being
considered as a topic with major research interest [25, 1.

1.1.2 Addressing complexity through abstractions and hierarchies

Abstraction is used in this thesis as a mechanism to hide the complexity by means of modeling
and simplification, aiming at generality at a cost of neglecting the details, when needed. Computer
Science is a discipline deeply rooted in abstraction, and its success in society has partly derived
from the engineering effort of stacking multiple levels of abstraction layers in deep hierarchies, so
that highly abstract concepts in the human mind can be consistently instantiated as purely physical
processes that represent those ideas.

Regarding the challenges in parallel programming, it is worth noting that several levels of
parallelism are commonly handled in user-oriented applications running on devices such as smart-
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phones, tables and laptops. For instance, microprocessor pipelining, vector units, and compiler
technology can automatically enable instruction-level and data-level parallelism from a purely se-
quential program —i.e., the computer user does not need to learn parallel programming to benefit
from it through faster and more responsive applications—. Also, modern processors provide sup-
port for automatic and efficient memory management mechanisms in a multicore context with
deep memory hierarchies, not demanding the user to learn cache-coherent protocols. Similarly, in
a higher level, Operating Systems hide system-wide management work to the user while exposing
a simplified layer to developers to access some functionalities such as I/O, networking, file oper-
ations or memory management. All of these examples show how computers have evolved from
expert-oriented machines to pervasive and essential working tools for non computer experts.

From the point of view of application and software developer experts, a plethora of standard-
ized and general-purpose programming languages have been designed according to an abstract
computation machine. Downstream, during compilation, a program is translated into more spe-
cific microarchitecture-dependent machine instructions. Syntactic rules of a programming lan-
guage serve as a contract to be satisfied by both the programmer and the language implementation
in the form of a compiler and possibly an underlying runtime, imposing restrictions to the user
so that only syntactically-legal expressions are translated into an actual program. High-level lan-
guages are characterized by providing very clear, simple and readable syntactic rules while hiding
details of the computer architecture. However, high-abstractions usually come at the price of lack
of control and reduced performance.

Finally, from the point of view of parallel application developers, recalling the parallel pro-
gramming challenges and the role of abstractions, this thesis goes in the same direction to which
computer technology is going: toward greater levels of automatization and abstraction, to drive
HPC in particular, and parallel programming in general, toward being a technology usable to
non-HPC experts.

1.2 Programmability in HPC

In essence, Computer Engineering aims at automating some form of information processing —or
in other words, it addresses the problem of how efficiently automatize computation under limited
resources— As mentioned, the percolation of computers into all areas of modern society has not
only been based on the exponential growth in computation performance experienced during four
decades (i.e., a hardware achievement), but also on the simplification of computer interfaces (i.e.,
a software achievement).

In particular, the impact of High-performance Computing has become paramount in many
areas of science and engineering. Currently, it is a very specialized field with direct application in
a plethora of disciplines. However, HPC users should not be experts in HPC, nor in the specificity
of hardware or the underlying software infrastructure; as a technology meant to be used in such a
diverse set of disciplines should abstract away the complexities of both aspects. Ideally, focusing
on the programmability/portability perspective, a user of a parallel/heterogeneous resource should
be exclusively in charge of specifying the input configuration and/or data of the problem and let
the system seamlessly map the computation to the underlying parallel platform.

This is far from being the case in general HPC applications, in which computations are typi-
cally coupled in complex ways forming irregular parallel patterns, generating load-imbalanced ex-
ecutions, lack of efficiency, poor scaling and portability problems. Modern parallel programming
models, languages, patterns and paradigms have been proposed during the last decades to tackle
these issues, suggesting runtime-based solutions —in which some of the programming burden is
shifted from the user to an automatic runtime system— as potentially ideal to boost performance
while reducing development effort.

The following sections expose a non-comprehensive exposition of the characteristics of some
programming paradigms, models, systems and runtimes. Some key characteristics, challenges,
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appealing trends and limitations are presented to contextualize the developments presented in the
following chapters.

1.2.1 Paradigms

In this section, the imperative programming paradigm (in which object-oriented and procedural
sub-paradigms are commonly included) is put in contrast with the functional paradigm (which is
commonly included in the class of declarative paradigms), and their appeal and limitations are
addressed under a HPC perspective.

1.2.1.1 Functional paradigm

Lambda calculus (or A-calculus) was developed as an alternative model of computation to the
Turing machine model, and it focuses on function abstraction to model general computations, in
contrast to the state manipulation of Turing machines [35, 36]. In relation to programming, \-
calculus is the theoretical cornerstone of the functional programming paradigm, implemented in
many industry-standard popular languages such as C++ [138], Go [49], Scala [ 17], Clojure [70],
Rust [106], Haskell [80], ML [110] and Erlang [28]. Also, other mathematical frameworks such
as Type Theory [ 144] and Category Theory [96] have greatly influenced the design and implemen-
tation of modern functional programming languages toward a more clear, composable, verifiable
and robust development style [109].

From a closer-to-programming perspective, there is a set of properties that characterize modern
functional programming philosophy (see [42, 151]), which are briefly developed next.

Pure function abstraction and referential transparency. Functions without side-effects are
referred as pure, so their unique effect is its return value. By favoring a programming style based
on function purity, dependency tracking and state encapsulation becomes natural, while code read-
ability is also improved. These characteristics are of great appeal in parallel programming.

Function purity will be repeatedly addressed in the developments of this thesis, also in a less-
strict form, when considering third-party software interoperability. Specifically, a function may
inter-operate with a third-party program or library whose functionality —and state— may be altered.
Since its state may be hidden or not observable from the caller, it will be assumed that the third-
party program is well-behaved enough to keep considering purity de facto preserved (i.e., the
called third-party function is properly and safely encapsulating its state so that it cannot affect
whatsoever the state of the caller).

In addition, following A-calulus ideas, functions are considered first-class citizens, in the sense
that functions are mere values of a certain type that can be passed to other functions.

Function purity yields referential transparency property, which states that a function outputs
the same result regardless of the context. This permits the use of result memoization in runtime
implementations of functional languages, by which the result of a function call is cached to prevent
function recomputation.

Strong typing. Strongly-typed languages enforce strict rules in terms of what can be translated
into actual machine code. Motivated behind theoretical frameworks of Type Theory and Category
Theory, any data object belong to a specific abstract type that encompasses a finite or infinite
set of values. Types are also possibly endowed with properties and constraints from which more
complex compositional rules (to form composite types) and transformation rules (that limits the
set of all functions able to map values from one type to the other) are derived. Strongly-typed
languages favors robust interfaces, facilitates program verification, and enables the application of
logic rules to mathematically prove program correctness.
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Immutable data objects. Functional programming language implementations encourages —and
even enforces— the use of immutable data objects / structures. Immutable data forbids the existence
of shared and mutable states across parallel actors (e.g., threads or processes), thus thread-safety
is naturally preserved and the chances for unwanted data races are greatly reduced.

The inexistence of mutable data does not necessarily imply that expensive copies of data
objects are needed. With this regard, implementations of purely functional languages may em-
ploy internal mechanisms to store only the data differences (or state changes, or deltas) to allow
memory-friendly run-time data transformations, ultimately yielding programs with less memory
footprint.

Implicit control flow and lazy evaluation. Declarative-like paradigms (in which functional
paradigm is commonly included), encourages a style of programming in which the properties
of the different agents forming the program (e.g., data objects or functions) are declared. Loosely
speaking, it favors a model of execution in which the computational needs are pulled on demand
as the execution proceeds. In practice, it usually implies a clear separation between what the pro-
grammer expresses in the code and what is actually being computed. Lazy evaluation refers to
function evaluation only if its result is needed, and it also permits to express infinite structures in
computer programs regardless of the finitude of computers.

In relation to concurrency and parallelism, the previous ideas are reflected into an undefined
execution order in general, and a relaxed (i.e., opposite to user-specified) parallel execution.

Iteration via recursion. Contrary to imperative-like languages that use loops to implement it-
eration —which requires some form of state in the form of a counter—, functional programming
implements iteration by means of recursion. In practice, compiler and runtime implementations
of functional languages implement fail recursion techniques to avoid an overflow of the stack in
situations with deep recursions.

Monad pattern. Monads in Category Theory were applied to programming languages with the
goal of formalizing general side-effectful computations within a functional programming con-
text [111]. Applied to programming, monadic patterns are in essence a generic glue that enables
function composition in a scalable and generic way, providing a framework to develop software
handling side-effects without sacrificing functional purity. Several functional programming lan-
guages provide the most common built-in monads and also let the user to implement more complex
or application-specific monadic patterns.

1.2.1.2 Imperative paradigm

Imperative languages were first implemented matching actual hardware architecture implementa-
tions. In essence, the programmer writes commands that result into a program state change, which
directly influences state change of the physical machine —i.e., the program commands closely
resemble what the hardware actually executes—. Contrary to the functional paradigm, modulariza-
tion, composability and separation of concerns are important but not primary, hence favoring full
control of what the underlying hardware actually does. Some of the features of the imperative-
like paradigm (specially in relation to low-level and non-interpreted imperative languages) are
summarized next.

Non-strict encapsulation for full control of program state. Motivated by the need of modular-
ization and composability requirements, mandatory in any mid or large-scale software projects, a
set of subparadigms like structured, procedural, modular and object-oriented were distinguished
under the umbrella of the imperative paradigm, and they differentiate with respect to the different
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ways in which expressed computation is encapsulated (i.e., in terms of subroutines, modules, ob-
jects, etc.). In particular, object-oriented programming aroused as an approach for enhanced code
reusability and modularization over structured and procedural paradigms, by means of encapsula-
tion, inheritance and polymorphism.

In essence, imperative languages provide language semantics encouraging some form of mild
encapsulation without sacrificing control, in the sense that high levels of modularization and sep-
aration of concerns can be achieved, yet full control over the program state is still available to the
programmer.

Execution is mainly user-driven, control flow is explicit. Contrary to the declarative-style of
the functional paradigm, the imperative paradigm conforms a programming style based on user-
specified commands that explicitly define how the underlying execution is performed at run-time.
Despite its proximity to the actual hardware architecture, there are still several abstraction layers
that separate the computer code and the actual runtime execution. One of these layers is the
compilation process, and some knowledge regarding compilation is usually mandatory to achieve
high-performance executions.

With this regard, imperative languages are usually easier to learn and less abstract than func-
tional languages, and compiler technology has been greatly improved to close the gap between
simple and high-level imperative codes and high-performance runtime executions. Compiler-
targeted commands aiming at performance such as inlining, loop unrolling, pre-compiled tables,
and cache-friendly data layouts / memory allocations, are frequently employed by implementers
in compiled / non-interpreted languages like C or Fortran.

Fine-grained memory management. Memory management — in the form of explicit memory
allocations/deallocations and alignment, data layout design, and cache-aware data structures, is
usually required when programming high-performance applications in imperative and low-level
programming languages. Languages of this kind may also provide a memory model that abstracts
the memory model implemented in hardware, so it is usually desirable for the programmer to know
the specifications of this model, specially in concurrent and parallel applications meant to run on
cache-coherent multiprocessing architectures.

1.2.1.3 Generic paradigm

Generic programming patterns are applicable to either functional [ 10] and imperative paradigms.
This programming paradigm favors a style in which types are first abstracted (or relaxed) and
only instantiated (or specified) when needed. The goal is to provide generic algorithms which
are parametrized by a set of allowed types, so that maintainability and programming productivity
are enhanced. In languages supporting an imperative style like C or C++, genericity is typically
achieved by means of macros and templates, respectively. In functional languages like Haskell, full
genericity is a built-in feature (its type system Hask could be even viewed from a strict Category-
theoretic approach [109]). With this regard, all types (including functions) are essentially generic
by default and are implicitly parametrized, which can also be constrained and composed to form
hierarchical and richer type structures without sacrificing full genericity.

1.2.1.4 Appealing characteristics and limitations from a HPC context

In this section, functional and imperative paradigms are compared in the context of HPC. In par-
ticular, the great abstraction power of the functional paradigm (desirable for application scalabil-
ity and correctness) is compared with the great platform control and observability, easier to be
achieved from a imperative paradigm (desirable for execution performance).
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Few observations are made next, which reflect that functional languages offer great abstraction
power that encourages safer and verifiable programs, but at a price of sacrificing two aspects
crucial in HPC environments: (/) lack of execution control and (2) lack of platform monitoring.

Program correctness and safety. The functional paradigm offers an advantage with regard to
program verification and correctness. Specifically, program development is improved if errors are
caught as soon as possible (e.g., better at compile-time rather than at run-time). From the com-
pilation and runtime perspectives, the strong-typing characteristics of many functional-based lan-
guages naturally enable the possibility of static analysis and mathematical correctness (programs
can be thought as theorems).

Application development. From the developer perspective, functional programming languages
tend to favor syntactic terseness and facilitates program analysis through simpler equational rea-
soning —i.e., in functional languages, equal means equal, not assignment, so expressions can be
replaced by mere mathematical substitution—. In contrast, readability in imperative-like languages
may get obscured due to side-effectful assignments and operational reasoning, which demands
the developer to keep track of the eventual side-effects of every expression.

Regarding challenges in concurrency and parallelism, explicit synchronization mechanisms to
manage shared states in imperative languages typically harm developer productivity and program
correctness. Normally, keeping data invariants across threads in order to maintain thread-safety
while keeping the granularity of the shared data structures not too coarse (to get an acceptable
parallel performance), is a challenging task.

The inherent side-effect-free characteristic of purely functional languages opens the door to-
ward models in which the parallelism is automatically derived, not requiring developers to actually
specify it and manage thread safety.

The functional paradigm also favors a more scalable development: as composability, reusabil-
ity and separation of concerns are built-in features, by means function composition generalization
through monadic patterns. However, despite the richness and elegance of monadic abstractions,
they do require a certain amount of learning effort, and a considerable level of expertise is needed
even for mildly complex programs, in relation to the lesser development effort of equivalent im-
perative programs.

Previous observations are neatly summarized in the following paragraphs extracted from [109]:

“One of the forces that are driving the big change is the multicore revolution. The
prevailing programming paradigm, object oriented programming, doesn’t buy you
anything in the realm of concurrency and parallelism, and instead encourages dan-
gerous and buggy design. Data hiding, the basic premise of object orientation, when
combined with sharing and mutation, becomes a recipe for data races. The idea of
combining a mutex with the data it protects is nice but, unfortunately, locks don’t
compose, and lock hiding makes deadlocks more likely and harder to debug.”

“But even in the absence of concurrency, the growing complexity of software systems
is testing the limits of scalability of the imperative paradigm. To put it simply, side
effects are getting out of hand. Granted, functions that have side effects are often
convenient and easy to write. Their effects can in principle be encoded in their names
and in the comments. A function called SetPassword or WriteFile is obviously mutat-
ing some state and generating side effects, and we are used to dealing with that. It’s
only when we start composing functions that have side effects on top of other func-
tions that have side effects, and so on, that things start getting hairy. It’s not that side
effects are inherently bad — it’s the fact that they are hidden from view that makes
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them impossible to manage at larger scales. Side effects don’t scale, and imperative
programming is all about side effects.”

Execution control. Despite composability and modularity characteristics of functional-like pat-
terns may improve software scalability, it is not usually followed by performance scalability. Run-
time implementations of functional languages may hide from the user some performance-critical
data management operations (e.g., non-cache-friendly data manipulation, garbage collection) that
may greatly harm execution performance. In particular, note that data-persistence / immutabil-
ity restriction imposed in some functional languages may require alternate and less natural data
layouts and data structures representations, different from their imperative language representa-
tions, which could incur into prohibitive performance penalties. On the contrary, low-level im-
perative languages typically give access to the developer for finer-grained control of the hardware
resources, exposing user-defined data movement operations and explicit use of parallel synchro-
nization primitives for high-performance tuning. These observations reflect the fact that programs
written in purely functional languages are not competitive in resource-constrained scenarios de-
manding high-end performance (e.g., real-time systems and high-performance computers).

Platform observability for state-driven execution. Note that all programs ultimately run on
stateful physical machines (whose state does not exist in the abstract functional program). Hence,
the concept of purity is valid or applicable only within the program semantics. This obser-
vation poses serious limitations into the applicability of functional purity-based ideas in High-
performance Parallel Computing, in which the execution performance of a massively parallel
program is highly context-dependent. Specifically, any HPC-oriented runtime system must op-
erate with a consistent monitoring of the underlying hardware system state to mitigate usual load-
balancing, contention, starvation and data locality problems arising at run-time. In this sense,
modeling context-dependent computations from a functional approach is currently a research
topic [121, ]. On the contrary, the close-to-the-hardware nature of imperative-like languages
and their easier learning curve have greatly favor the development of context-aware programming
models, runtime systems and high-performance parallel applications.

1.2.2 Models, systems and runtimes

Parallel programming models are commonly conceptualized as bridges between applications —
that is, what the user intends to compute—, and hardware —the computing platform— (see [ 1]).
Essentially, they provide abstractions of a parallel computing platform, and they can be evaluated
based on (i) its capacity to achieve high-end performance (out-of-the-box, or after a performance
tuning stage); (ii) its generality of use for a range of applications and platforms; and (iii) its
abstraction power, or its ability to hide the details of the underlying platform [15]. In this thesis,
the concept programming model is used to indistinguishably refer to either programming styles
(usually referred to the different ways in which concurrency and parallelism can be expressed) and
programming systems (which refer to the actual programming interfaces by which applications are
expressed). With this regard, the programming model concept usually encapsulates a programming
style and a programming interface, as it is the case of the programming model presented in this
thesis.

According to the Berkeley Bridge idea [11], writing high-performance parallel applications
should be no more difficult than writing sequential applications. The work of this thesis departs
from the same hypothesis, arguing that the success of a programming model requires to consider
programming productivity, portability, maintainability and scalability on equal footing with exe-
cution performance and efficiency.

With regard to existing parallel programming models, OpenMP [30] is probably one the most
popular models targeting shared memory parallel processors. Designed to target C and Fortran
programs, OpenMP is an open standard whose implementations usually achieve a considerable
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out-of-the-box performance by simple loop parallelization through compiler pragmas, following a
fork-join and vector Single Instruction - Multiple Data (SIMD) model. Thanks to its popularity, the
simplicity of compiler directives and its design based on open standards, OpenMP was considered
as a reference for other models and frameworks targeting task parallelism and accelerators such as
OpenACC [156], OpenHMPP [10], HOMPI [47], XKAAPI [58] and OmpSs [51]. Interestingly,
the latter has influenced the incorporation of task-parallelism style into the OpenMP standard.

Other programming models targeting multicores were developed as the multicore architec-
tures and distributed platforms gained attention, for example Cilk [131], Loci [104], Chapel [29],
Charm++ [86], UPC [26], Co-array Fortran [112], OpenSHMEM [31] and X10 [32]. Those
targeting distributed architectures typically employ a PGAS abstraction layer and internal MPI-
based [62] mechanisms for inter-node communication. In particular, MPI is still the most popular
model for distributed computing and Single Program - Multiple Data (SPMD) parallelism, and it
is commonly used orthogonally with other models in large-scale applications, forming other (MPI
+ X) hybrid models where X is a model targeting intra-node computation (commonly OpenMP).

The so-called heterogeneity revolution was pioneered by proprietary NVIDIA CUDA pro-
gramming model [115]. The simplicity and great applicability of data-parallel patterns in many
scientific and data-centric applications, together with the unprecedented parallelism and perfor-
mance delivered by Single Instruction - Multiple Thread (SIMT)-based GPU architectures, se-
duced the HPC community soon after the first general-purpose GPUs were put on sale.

NVIDIA CUDA packs a vendor-specific API, a compiler and a runtime system highly tuned
to squeeze the maximum performance of their GPUs. Also, NVIDIA GPUs and CUDA (API and
runtime) are regularly improved and updated, and new hardware features of new GPUs can be
readily exploitable via new software updates timely delivered. In addition, CUDA is originally
envisioned to support heterogeneity: its compiler is able to output x86 code, and it will provide
full support for either x86, ARM and POWER architectures [41].

With equivalent ambitions with regard to heterogeneity, but aiming at open standards, Khronos
Group industry consortuim released OpenCL [137]. Over the last years, OpenCL has been imple-
mented for a wide variety of architectures, also demonstrating its appeal to a great number of hard-
ware vendors willing to leverage a stable and open-standardized language to develop applications
running on their devices. OpenCL is designed to operate in C programs and its implementations
are equipped with a Just-in-time (JIT) compiler for computational kernels and a runtime system.

CUDA and OpenCL are currently the main programming models used in GPU kernel devel-
opment. However, the programming and portability challenges derived from the need of effi-
cient orchestration of a heterogeneous computation —in terms of data movement across memory
spaces, heterogeneous kernel dispatching, and the need for data-computation overlap—, motivated
the development of other (mainly task-based) programming models and runtime systems on top
of CUDA and / or OpenCL, which could perform this kind of management transparently. For
instance, the already mentioned directive-based approaches [10, 47, 51, , 20, 58] also offered
support for GPU computing, while others like SGPU2 [119], StarPU [12], Qilin [103] and Har-
mony [46] enabled heterogeneous workload dispatching with (non-directive-based) custom task
definitions.

Some of the models just mentioned adopted a task-based style, arisen in response to the lim-
itations of imperative-like programming models based on coarse-grain, and bulk-synchronization
(employing fork-join and SPMD programming styles). The benefits of asynchrony and fine-grain
synchronization over previous styles favored computation expression in terms of a tasking / data-
flow computation | data-oriented workflow style, in which the execution is driven from data depen-
dencies that bind tasks, defined in a declarative way (unsurprisingly, the data-flow style is natural
in the functional programming paradigm [4]).

With this regard, HPX model [85] addresses the following issues that dampens performance
scalability in modern HPC systems, namely (1) processor starvation, (2) latencies due to access
to remote resources, (3) runtime overhead due to parallel synchronization, and (4) contention
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resolution. These problems are partially inherent to other classic parallel bulk-synchronous pat-
terns, based in global synchronization, message passing and fixed data distribution. HPX runtime
implementation revolves around several ideas taken from asynchronous, adaptive, and data-flow
patterns, pursuing executions driven by data locality, fine-grain synchronization of tasks derived
from dependency resolution, and hierarchical parallelism.

In particular, in fork-join and bulk-synchronous models, hierarchical or nested parallelism do
not easily scale due to the explicit use of synchronization barriers programmed statically —e.g.,
all actors need to wait for the slowest actor at every barrier—. In response to the limitations of
these models, the expression of the computation in the form of asynchronous tasks generated as
data dependencies are resolved, provides an on-demand and fine-grain synchronization of parallel
actors, which in turn yields a much more flexible orchestration of the workloads able to adapt to
dynamic changes in the parallel platform state.

Note that the task-asynchronous execution model also inherits some of the ideas from the
functional paradigm, in the sense that the when, where and how the computation is performed,
are loosen or relaxed from the perspective of the caller (i.e., the dispatcher of the asynchronous
computation). Specifically, the when is relaxed by means of asynchrony itself, while the where
and the how are decided by the recipient of the asynchronous call, possibly accounting for some
form of runtime state observation and workload characteristics. In other words, execution control
flow is implicit and uncertain for the caller, and resolved only when needed.

Moreover, this execution model naturally favors data-computation overlap and task paral-
lelism, that ultimately helps to reduce processor starvation and hide data transfer latencies. Also,
from a programmability perspective, task-asynchrony driven by data dependency detection favor
a sequential-style and less error-prone programming that enhances development productivity and
code readability (i.e., taskified code looks sequential and data dependencies can be automatically
detected at run-time).

1.2.2.1 1ISO C++11/14/17

C++ is a language developed and standardized in the eighties that first endowed C language with
object-oriented and generic programming features. Since its inception, it has achieved great suc-
cess in science and industry, both as a system-software and applications language, and also as
basis of many of the programming languages, libraries and runtime systems aforementioned in
this chapter. For instance, in relation to current challenges in parallel programming models,
SYCL [90, 88], Kokkos [52], PACXX [65] and Raja [74, 91] have adopted the benefits of C++ de-
parted from high-level C++ abstraction layers to aim at more performance-portable computational
kernels.

Latest 2011, 2014 and 2017 ISO! C++ standards (also referred as modern C++) have dramat-
ically improved the language by enhancing its expressivity and its capabilities in terms of generic
and functional programming patterns. Moreover, since C++11 standard, the language incorpo-
rated a memory model that provides native support for concurrency. Not only new syntax has been
added to it, but development guidelines of modern C++ are progressively discouraging (although
still supporting) classic object-oriented patterns in favor of compile-time polymorphism jointly
with generic and functional styles. Also, latest modern C++ 17 template meta-programming [2] —
through expanded constexpr syntax and fold expressions— have also radically reduced the compile-
time programming efforts and let the developers to yield very robust type-safe runtime systems
usable by means of high-level, expressive, and hard-to-misuse interfaces.

In particular, some of the guidelines and principles encouraged by modern C++ programming
are:

e Favor zero-cost, easy-to-read and high-level abstractions.

International Organization for Standardization.
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e Don’t pay for what you don’t use.
e Do computation at compile-time better that at run-time as much as possible.
o Check for errors at compile-time better that at run-time as much as possible.

o Minimize the possibility of resource leaks via ownership semantics.

Specifically, high-level yet zero-cost abstractions are provided through compile-time compu-
tations and highly expressive meta-programming idioms. By zero-cost it is meant that abstractions
based on compile-time computations do not necessarily add any cost at run-time. In particu-
lar, template meta-programming is itself a Turing-complete functional language interpreted by a
C++-compliant compiler. It is designed to express sophisticated generic programs and to build
higher-level domain-specific languages leveraged on transparent compile-time computations. The
resulting executables are meant to deliver excellent run-time performance. Apart from its multi-
paradigm functionalities, modern C++ can be thought as a high-performance and multi-layered
language: multiple high-level zero-cost abstractions can be stacked and integrated with lower-
level C-specific constructs.

1.3 Motivation

Based on the previously exposed programming paradigms, models, engines and frameworks, next
sections elaborate the departing hypothesis from which the developments of this thesis are derived,
in particular influenced by the need of enhanced programmability, higher abstractions, automati-
zation, expressiveness and portability.

1.3.1 HPC programmability is still unsolved

Regarding parallel programming, the tradeoff performance-and-control vs. programmability-and-
abstraction is currently very much present in programming languages and models. However, this
dychotomy is not a natural law, but just a manifestation of the fact that parallel programming in
general, and HPC in particular are essentially unsolved technical problems. They will be consid-
ered solved when developers without expertise in parallel programming are able to create programs
delivering near-optimal parallel performance. In other words, HPC software development will be
considered solved when there is no need for having HPC software experts.

The history of technology is full of examples in which human jobs are deprecated not because
machines could simply do the job, but also because they could do it better —i.e., faster, safer and
cheaper—. For instance, in the context of the automotive industry, driving will (soon) be considered
solved in the moment in which human drivers become not only unnecessary, but also forbidden
for safety and performance (with respect to road congestion) reasons.

From a programming and software standpoint, the HPC-programming solvability will be the
result from joint automatization and abstraction efforts able to dilute the mentioned performance
vs. abstraction tradeoff, thus fully decoupling the user problem —i.e., the application intended to
be solved by means of parallelism— from the solution or tool —i.e., the parallel platform—. This is
far from being the case in current programming models: the efficient use of the fool is itself an
unsolved problem, as in general it requires a considerable amount of expertise.

Programming models exposed in Section 1.2.2 have demonstrated the viability of promis-
ing programming patterns originally devised in the functional world, such as data-flow, task-
asynchrony, continuations, strong-typing and generic algorithms. However, there is not a sufficiently-
generic yet high-level programming model that permits the application developer to seamlessly
and efficiently exploit parallel resources without having any parallel programming knowledge. In
many of these models, parallel programming knowledge is still needed to ensure both correctness
and performance even for applications exposing moderately irregular parallel patterns. Moreover,
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most of the mentioned library-based programming models expose a considerable big API, which
introduces an additional programming effort.

With this in mind, this thesis aims at providing generality without sacrificing programmability
or potential for performance. The presented approach goes in the direction of generality also in-
spired by the success of other non-generic / application-based programming models and libraries
(targeting linear algebra, machine learning and data analytics applications), such as MAGMA and
PLASMA [5], TensorFlow [ 1] or Hadoop [155]. These application-tailored frameworks are able
to target heterogeneous and distributed parallel platforms, delivering high parallel performances
out-of-the-box without requiring the user to have any parallel programming background.

The success or failure of generic-oriented models in the road toward exascale will ultimately
depend on the mechanisms provided to the users to simply expose new application characteristics
that permit the runtime to choose and exploit them according to the underlying hardware charac-
teristics. Under these premises, the term programmability should be redefined or expanded, not
necessarily focusing on metrics like lines of code or development time, but rather on the amount,
variety and wealth of information that the user is able to expose and communicate to the under-
lying runtime. As an example of current model limitations, given a parallel application instance
and a parallel platform (most likely with some degree of heterogeneity), it is straightforward for
the user to expose tasks to the runtime in which the application can be decomposed. However,
it is still unclear how to optimally divide and distribute the computation so that performance is
maximized. For this reason, the user is still in charge of finding critical pararameters such as
task granularity (that ultimately determines potential inter-task parallelism) or intra-task threading
granularity, whose optimal value depends on the application size and obviously target platform.
This limitation not only has an impact on the development effort, but also implies a clear drawback
in terms of performance and/or portability: if the underlying platform changes, or the application
size is modified, a re-calibration of these manually-tuned parameters becomes mandatory, hence
the programmability is reduced.

The main user concern should be to execute the application as fast or efficient as possible with
minimal development effort. From this perspective, when facing a programming decision that
might have an impact on current or future executions with different input parameters, or future
executions in future platforms, a programming model should provide an interface by which the
user could expose ways to declare different execution possibilities that the runtime system might
take. In a sense, this is an effort toward (i) complexity formalization (complex development deci-
sions are systematically defined and delegated) and (ii) execution abstraction (how the execution
proceeds is abstracted away from user intent).

Execution relaxations refer to user-defined expressions aiming at expanding the actions that
the runtime system can take. The goal is to propose a programming paradigm in which the user
can define particular execution relaxations when application- and / or platform-sensitive decisions
may affect the performance and / or the portability. In summary, the fundamental idea is to provide
ways in which the user can systematically shift the cost of decision during development time to an
automatic system (i.e., the runtime), with the objective of decoupling the problem domain —i.e.,
the user application— from the solution domain —i.e., the parallel resources—, to ultimately push
the solution-domain-specific decisions to an automatic system. Noting that the user is extend-
ing or expanding the space of possibilities to be taken at run-time, a new parallel programming
paradigm by which user-defined execution relaxations yield runtime-driven expanded executions,
is proposed in this thesis.

In the following sections, a set of possible actions or operations that are (or could be) taken
at run-time are grouped in two categories. The first category (Section 1.3.2) encompasses a set of
operations, actions or mechanisms that some of the current programming models, runtimes, en-
gines or libraries exposed in Section 1.2.2 already implement and perform at run-time —i.e., actions
are taken dynamically, possibly considering dynamic information—. On the contrary, the second
category (Section 1.3.3) encompass another set of operations, actions or mechanisms that are not
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systematically managed in a runtime fashion in general-purpose parallel programming models, but
are typically managed solely by the developer in a manual or static fashion. This exposition moti-
vates the management of these mechanisms from a purely automatic runtime perspective, treated
jointly or in an isolated way.

1.3.2 Currently runtime-driven work

1.3.2.1 Task-to-processor mapping

The emergence of heterogeneous architectures in the last decade has motivated the development
of runtime systems supporting heterogeneous execution contexts. From the execution relaxations
rationale, this is the response given by HPC runtime system developers to the ambiguity that
the application developer has to face when multiple processing devices are available to run a
given application (or parts of it). With this regard, the exposition from the user side of several
kernel implementations for a task, targeting different architectures would be a kind of execution
relaxation, as the specific target device in which the task will be computed is relaxed and delegated
to the runtime.

From the performance point of view, task-to-processor mapping is commonly addressed from
the perspective of the task scheduling problem [34] under two different approaches: run-time /
online / dynamic vs. offline / static methods. From an offline or static point of view it is classified
as a NP-hard combinatorial optimization problem, which it is in practice exactly solvable only for
relatively few tasks running on relatively few processors. More realistic run-time task scheduling
scenarios require however online or dynamic scheduling approaches, in which tasks are scheduled
as they are generated. Even if the task Directed Acyclic Graph (DAG) representing the whole
application is fully known in advance (which is uncommon), fixing a static task-to-device sched-
ule in the application code would constraint too much the execution. Even if this assignment is
optimal for a certain problem size and given platform, and assuming the tasks have been perfectly
profiled for every target processor, those schedules may become too rigid to be successfully ap-
plicable in a run-time context, as they may not be able to adapt to the intrinsic uncertainty of
run-time conditions. On the contrary, dynamic task scheduling policies, even though suboptimal
and short-sighted (task DAG is usually not known in advance), are preferred over static algorithms
in realistic scenarios (a great number of tasks running on a massively parallel computer) due its
low complexity and run-time adaptability.

1.3.2.2 Transparent data and memory management

In a context with complex memory hierarchies and a multi-processing environment, it is com-
monly not practical for the programmer to imperatively specify the data movements across mem-
ory spaces. Automatic mechanisms such as cache policies, data coherency protocols, and memory
models based on virtual unified spaces that abstract distributed physical spaces (e.g., CUDA Uni-
fied Memory [115] and PGAS-based models [31]), let the user abstract away from data movement
decisions. Automatic memory allocation and reclamation policies are also examples that relieve
the programmer from the burden of dealing with memory management.

From the execution relaxations perspective, this is the response given by system developers
and library implementers to abstract away the complexity behind data movement and memory
management in architectures with several memory spaces. In this context, where the data is placed
and when is it fetched from a certain memory space is no longer important from the user applica-
tion point of view, as long as there is a well-implemented coherence protocol able to transparently
satisfy data visibility requests at user’s will respecting reasonable latency requirements. In other
words, data placement is relaxed and transparently managed at run-time.
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1.3.2.3 Out-of-order task execution and priorization

The computation re-ordering or out-of-order execution is not only considered from the task-
parallel perspective, but it has been implemented at microarchitectural level decades ago, as mi-
croprocessors started to be equipped with heterogeneous processing units and long instruction
pipelines. From a data-dependency scope, out-of-order considerations are motivated from the fact
that ordered computations expressed in the user code which are not ready to be done at a given
time should not block others that are ready. Automatic re-ordering has potentially a big impact
in instruction / task processing throughput depending on the amount of instruction / task paral-
lelism. Also, considerations about task importance from critical-path analysis [159] motivate the
prioritization of some instructions / tasks via reordering.

From the execution relaxations perspective, automatic re-ordering can be viewed as if the
user-defined order (of instructions / tasks, derived from source code) is relaxed, so that it can be
automatically managed at run-time aiming at latency hiding and performance improvement.

1.3.2.4 Task-wise variable voltage-frequency scaling

In a context in which tasks are sharing a computing resource and performance is the optimization
objective, an increase of clock frequency or voltage (see DVFES [153]) on the cores in which the
task is running may be beneficial —according to some application performance measure— for those
tasks that are more critical than others. Similarly, if energy efficiency and / or power capping
constraints enter into consideration, the decrease in clock frequency could be used to satisfy a
given energy-efficiency and / or power constraint.

DVES is implemented in modern hardware and many Operating Systems (OS) as a mechanism
to save power and to prioritize the execution of applications, being also a popular research field
in energy- and power-aware HPC contexts. From the execution relaxations perspective, DVFES ac-
tions are properly abstracted away from the user side, as they are not related to the user intent (i.e.,
the problem domain) and are automatically taken at run-time. Hence, core voltage and frequency
could be contemplated as relaxed from the user point of view (although this relaxation may not be
considered user-defined if it is implicitly equipped at OS-level).

1.3.3 Potentially runtime-delegable work

This section encompases instances that could be seen as possible execution relaxations, but are not
currently implemented in general-purpose-oriented parallel programming models.

1.3.3.1 Task-wise variable thread scheduling

Many of the aforementioned programming models consider each individual task as the minimum
scheduling unit, and an individual core as the basic execution target for ready tasks. Thus, task
codes are internally executed in a sequential fashion, and the runtime extracts and exploits par-
allelism by executing sequential tasks in parallel as data dependencies are satisfied. However, if
tasks are internally threadable, the classic task scheduling problem can be extended with this ad-
ditional degree of freedom [147, 99]. Armed with this extension, the runtime would not only be
in charge of mapping ready tasks to available cores, exploiting inter-task parallelism, but it would
also decide the degree of intra-task parallelism depending on the architectural and runtime states,
and on the specific features of each individual task (e.g., granularity, criticality).

From a theoretical perspective, the task scheduling problem belongs to the NP-hard class and
has been one of the most studied combinatorial optimization problems in the last decades, while
the moldable-/malleable-task variants have been lately studied from theoretic grounds [99] and
application-oriented research [105]. In particular, the problem of scheduling moldable tasks has
been considered from the static perspective as a combinatorial optimization problem.
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When a task is internally parallelizable —e.g., by host OS threads or lightweight GPU SIMT-
threads— a similar discussion regarding internal task performance can be exposed depending on
thread granularity: for a given task grain size there will be a specific amount of threads or thread-
granularity that will provide optimal performance. Specifically, in a DAG task-scheduling context,
tasks do not only exhibit data dependencies but they also share limited resources.

The problem of variable intra-task parallelism at run-time is relevant in general scenarios
in which a heterogeneous set of threadable tasks exhibit data dependencies between them. In
these applications, considerations in terms of task criticality and critical path analysis arise from
two sources: (/) tasks are heterogeneous in terms of computations and data granularity, and (2)
task inter-dependencies introduce limitations in potential task parallelism. Heuristically, a greater
amount of cores should be assigned to those critical and coarse-grained tasks in favor of less crit-
ical and finer-grained tasks in order optimize time-to-solution. These kind of decisions, however,
are still taken by the user / developer, that needs to decide the optimal value for a given operation
and architecture; in the case of delegating them to the runtime task scheduler, the decision is usu-
ally static and fixed for the overall computation. In both cases, an incorrect decision could imply
a dramatic impact on performance and / or energy efficiency.

Based on these observations, from the execution relaxations perspective it could be beneficial
to let the user relax the internal parallelism of the tasks, so that it can be automatically resolved at
run-time depending on the aforementioned factors.

1.3.3.2 Task partitioning

Heterogeneous architectures do not only expose task-to-device mapping ambiguity (which itself
motivated fask-to-processor relaxations in Section 1.3.2.1), but they also motivate issues regarding
data granularity. When the computation is (or can be) partitioned, the granularity of the tasks in
which the original task has been partitioned (i.e., children tasks) typically affects the amount of
available task parallelism. Also, it may also dampen the performance of the children tasks de-
pending on the devices to which they are maapped. From a theoretical approach, Divisible Load
Theory [149] emerged as a tool to model the problem of partitioning independent data into a set of
distributed processors with the goal of finding the best data distribution. Task scheduling on het-
erogeneous architectures has explored —either from theoretic, simulation and runtime scopes— the
impact of setting different task granularities adapted to the underlying characteristics of processors
—e.g. massively parallel GPUs demand a coarse data stream in order to maintain its SIMD proces-
sors busy, while more general purpose CPUs achieve its peak performance for finer granularities—.
However, these studies tend to focus on a specific application targeting a specific parallel system,
so little can be inferred in terms of generic solutions to the problem.

Following the execution relaxations rationale, the user should be able to relax data partitions
by specifying a set of granularities for certain applications and input sizes on certain platforms.
According to this philosophy, the user should be able to push these granularity-related ambiguities
to the runtime when there is no straightforward decision in this sense, and also when the same code
is supposed to be compiled and run in other platform (in which optimal performance could require
other granularities).

From a programmability perspective, some of the programming models presented in Sec-
tion 1.2.2 provide API calls to partition data (e.g., [ 2]) or support for explicit data-layout specifi-
cation (e.g., [52, ]). However, none of them provide the sufficient expressivity to let the user
relax data granularities, so that these decisions can be delegated to the runtime system for generic
task- and device-wise dynamic (and possibly hierarchical) data partitioning.

1.3.3.3 Task scheduling on hardware-specific extensions

The popularity of SIMD parallel patterns in many algorithms and HPC applications have encour-
aged hardware developers to extend the Instruction Set Architecture of microprocessors to include
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additional specialized vector processing units. In this regard, SSE, AVX2 and AVXS512 instruction
extensions implemented in CISC-based x86 architectures, have proven to be efficient mechanisms
to exploit SIMD parallelism, showing to be a competitive approach in relation to fork-join patterns
or GPU-based SIMT parallelism. Vector instructions have also became popular in simpler RISC-
based systems such as ARM —in the form of NEON and SVE [136]-, and POWER microarchi-
tectures. Concerning general-purpose GPU processors, modern NVIDIA Volta GPU architecture
is equipped with Zensor cores, which are specialized execution units able to perform very fast
mixed-precision matrix-multiplications in few cycles.

However, in these modern architectures —either RISC, CISC or GPUs—, due to the power de-
mands, scarcity of these units and the temperature and power constraints of the chip, it may not
be possible to use all of these processing units available in the chip simultaneously at design clock
frequency. Therefore, these specialized units are themselves a scarce resource whose concurrent
and efficient utilization could be contemplated as a scheduling problem. With this in mind, the
context in which a set of tasks is competing for processing resources —in this case vector or tensor
units—, opens the question about for which tasks should the user enable these processing resources,
so that the overall execution of these concurrent tasks is globally optimized. Moreover, noting that
incoming ARM SVE extensions admit variable vector length instructions at run-time, the previ-
ous question is widened (maybe even addressable under the mentioned moldable task scheduling
problem), and the programming ambiguity is translated to the user in the form of a more complex
task-to-vector-width scheduling decision. Hence, with regard to the execution relaxations point
of view, either this vector-width decision, together with the previous scheduling decisions —e.g.,
whether to enable tensor cores or not for a given task—, could be considered as possible execution
relaxations that the user could define and delegate to the runtime for automatic resolution.

1.3.3.4 Mixed precision computing

Mixed precision computations on heterogeneous and GPU platforms have shown practicality in
many applications (e.g., linear algebra [13] and computational physics [60, 38]) to speed-up com-
putations.

From the application developer perspective (who would ideally just aim at getting the result
from a computer simulation as soon as possible, using a parallel computer), and assuming that
how the computation is performed is a question that belongs to the solution domain (thus solvable
under the automatic runtime-oriented side), then task precision casting could be viewed as a pos-
sible execution relaxation. After compiling user-defined task-to-precision relaxations, in which
specific tasks could be annotated with a set of specific floating-point precisions on which they
could operate, final task-to-precision decisions could be automatically and dynamically taken by
the runtime, accounting for some pre-defined optimization goal(s).

1.3.3.5 Task-wise algorithmic reimplementation

A task reimplementation could be considered as a possible user-defined execution relaxation that
could be systematically delegated to the runtime. An algorithmic reimplementation could be worth
considering for those applications that expose a kind of algorithmic freedom. For example, an ar-
ray sorting may admit multiple implementations such as merge-sort, bubble sort, quick sort, radix
sort, etc. Each implementation exposes different characteristics in terms of average performance,
amount of parallelism or memory footprint, each of which may be more appealing that the oth-
ers depending on the underlying execution context and the problem size. This is also the case in
many linear algebra problems, in which the requirement (or the application problem domain) is
simple —e.g., solve a linear system—, but the algorithm yielding the best execution according to
some metric is uncertain (i.e., the application solution domain presents ambiguities). For instance,
depending on the problem size, sparsity of the matrices, condition number, required precision, and
underlying parallel architecture, it is not straightforward to anticipate the algorithm which would
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perform the system resolution in the fastest and / or most energy-efficient way.

1.4 Summary

The general objectives of this thesis and the chapter structure overview are exposed next. The core
hypothesis of this work is that the mechanisms just exposed, that are normally handled statically
by the user, can be delegated (and integrated with the already-automatized work) to an automatic
runtime system from a general-purpose programming model standpoint.

1.4.1 Objectives

The previous exposition of possible execution relaxation instances in Sections 1.3.2 and 1.3.3,
together with the current limitations regarding programming paradigms and parallel programming
models presented in Section 1.2, motivate the developments presented in this thesis.

The departing point is a set of appealing ideas from imperative and functional paradigms, to-
gether with already successfully proven patterns of modern parallel programming models, based
on task-asynchrony, data-flow, and high-level language abstractions. In summary, the general goal
is to address the current limitations regarding HPC development, aiming at enhanced programma-
bility and performance portability. Specifically, this thesis proposes a new programming paradigm
or framework in which the execution complexity can be expressed by the user for consequent del-
egation to an automatic system (i.e., the runtime), not letting this expressivity to harm or limit the
attainable performance.

This objective can be further particularized into three specific steps, namely:

1. Aim at highest-level abstractions regarding interfaces, encouraging composability, modular-
ity and reuse over monolithic designs, while also strictly respecting a full sequential devel-
opment style —i.e., without requiring the explicit use of any concurrent- or parallel-specific
actor, synchronization tool or expression— from the user side.

2. Propose new ways in which rich and high-performance computations can be attained with-
out the need of sacrificing high-level abstractions and sequential programming style.

3. Implement previous ideas in the form of an usable runtime framework and extract experi-
mental results that validate the proposed ideas.

1.4.2 Thesis organization

Chapter 2. Static relaxed execution. Motivation and limitations. This chapter motivates the use
of relaxed execution approaches from a static standpoint. Specifically, it explores the poten-
tial performance and energy consumption gains derived from hierarchical task partitioning
and variable intra-task threading for a task-based implementation. The obtained results mo-
tivate via simulation the relaxed execution approach and provide estimations for potential
gains. The chapter, however, ends by listing the drawbacks of the static execution, providing
a starting point from which a dynamic model can be developed.

Chapter 3. Dynamic relaxed execution. A programming model architecture. This chapter in-
troduces a programming model architecture for the relaxed execution paradigm. It proceeds
by introducing a new task-executor taxonomy, in which the abstract concept of task, execu-
tor and allocator are defined and combined in a systematic fashion. The chapter advocates
a new programming model paradigm following the STSE model and exposes how it can
be leveraged by means of scheduling execution expansions at run-time, in order to boost a
pre-defined output metric (e.g., performance).
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Chapter 4. STEEL. Design principles and implementation. This chapter exposes a detailed de-
scription of the STEEL programming model implementation, together with use cases of the
C++ API provided to the user to exploit the STSE model, including executor deployment.

Chapter 5. Use cases and experimental results. This chapter extends the description of the API
in terms of specific examples and use cases, and provide qualitative and quantitative results
for a number of applications in order to illustrate how changes in STEEL-leveraged codes
are translated and exploited into changes in execution paths by means of the underlying
runtime scheduler. These use cases stress specific aspects such as data management, task
execution management and executor hierarchy deployment.

Chapter 6. STEEL as a functional model. This chapter re-exposes Chapter 3 and Chapter 4
ideas in the form of a model written in functional language, showing the benefits —regarding
abstraction, composability and side-effect encapsulation— and limitations —regarding context-
aware executions— of an eventual purely functional implementation of the STEEL model.

Chapter 7. Conclusions. This chapter summarizes the contributions of this thesis, exposes future
enhancements to the current runtime implementation and motivates future research topics.



...grab Reality, take a slice.
The details, to be removed.
Build the model, smoothed.

If Nature throws her dice,
exposed is the fact

and rigor is attacked,

grab Reality, take a slice...

Static relaxed execution.
Motivation and limitations

This chapter develops relaxed execution ideas from a static perspective, using a well-known bench-
mark —the Cholesky factorization— as a driving and motivating example. The first goal of the chap-
ter is to state the problem of lack of task parallelism and processor starvation and to propose two
different solutions from combined optimization approaches under the light of the relaxed execution
paradigm. Secondly, these approaches are analyzed under a set of criteria, such as performance,
energy minimization, power constraints, and programmability.

Specifically, after introducing the motivation of the static approaches and the use case in Sec-
tion 2.1, two models are proposed and solved using two different approaches (approximate and
exact) in Sections 2.2 and 2.3, respectively. Finally, Section 2.4 summarizes the exposed results
and highlights the inherent limitations of the introduced static-based strategies, motivating its ap-
plication to future programming models and runtime systems.

2.1 Introduction

Although the ultimate goal of the thesis is to motivate a new parallel programming model meant to
be implemented for dynamic task scheduling scenarios, the following simulation-based approach
seeks to model these scenarios introducing simplifications in order to prioritize determinism and
result repeatability of simulated, cheaply-generated and high-quality schedules. With this regard,
data transfer and task execution delays are profiled and modeled as fixed —not subject to any
noise or variation—, neglecting any runtime-intrinsic stochasticity and parallel synchronization
overheads.

These simplifications will prove to be very useful in order to incorporate granularity consid-
erations —in terms of task grain size and task intrinsic thread parallelism— jointly with the classic
task-based scheduling decisions, such as task-to-processor mapping and out-of-order task exe-
cution. Note that some general-purpose task-based runtime systems already support heteroge-
neous task-to-processor mapping and out-of-order task execution (see Section 1.2.2); however, it
is still unclear how to estimate the potential benefits —in terms of performance and / or energy
consumption, for example— expected when some of the actions exposed in the previous chapter
are combined, in particular task-to-processor mapping (Section 1.3.2.1), task-to-threading (Sec-
tion 1.3.3.1), task partitioning (Section 1.3.3.2) and out-of-order task execution (Section 1.3.2.3).

In the following, departing from a well-known linear algebra use case presented in Sec-
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tion 2.1.2, Sections 2.2 and 2.3 expose two simulation models designed to provide estimations
for the potential benefits of future task-parallel runtime schedulers able to systematically make
task-aware partitioning and threading decisions at run-time.

2.1.1 Extensions to the classic task scheduling problem

In the following, two different scheduling extensions are considered, incorporating task granularity
and task thread parallelism as additional parameters into the classic task scheduling problem (see
Section 1.3.2.1). Specifically, Table 2.1 summarizes the characteristics of the analysis exposed in
the following sections. The goal of this analysis is to give estimations that quantify the potential
benefits of an hypothetical runtime task scheduler able to perform efficient (joint or independent)
granularity-aware and threading-aware task scheduling decisions.

Section 2.2 Section 2.3
Extension Variable data granularity Variable threading
Test platform  Heterogeneous SMP-GPU SMP
Approach Approximate iterative Exact MILP
Measurements Performance Power-constrained performance & energy

Table 2.1: Summary of the analysis for relaxed granularity.

2.1.1.1 Relaxing task granularity, heterogeneous scheduling and out-of-order execution

In Section 2.2, task granularity is considered as an additional degree of freedom appended to the
task scheduling problem —i.e., in this model, task partitioning decisions (see Section 1.3.3.2) are
considered jointly with task scheduling decisions (Section 1.3.2.1) and out-of-order task execution
(Section 1.3.2.3) in a heterogeneous processing context. Thus, task granularity is a tunable knob
by means of parametrized task partitioners: functions that, given a numeric value, decompose the
computation into a set of inter-dependent tasks whose execution yield an equivalent result. The
hierarchical characteristic of this extended scheduling-partitioning problem makes its formulation
as a linear model not practical (if not impossible); for this reason, an approximate iterative solver
is proposed, implemented and applied to it in order to provide performance estimations for this
extended task scheduling model.

2.1.1.2 Relaxing task threading and out-of-order execution

Similarly, in Section 2.3, the number of threads assigned to a task is considered as an additional
degree of freedom included to the task scheduling problem. As such, task threading decisions (see
Section 1.3.3.1) are jointly considered together with task scheduling decisions and out-of-order
task execution. In this approach, a linear model (or a linear program — ‘LP’) is proposed and
solved using a state-of-the-art solver engine, targeting power-constrained performance and energy
optimization.

2.1.2 A driving example: Cholesky factorization

The blocked Cholesky factorization decomposes an n X n symmetric positive definite matrix A
stored by s x s blocks of dimension b x b each, into A = LL” where L is a lower triangular
matrix. At run-time, the outer loop in the code depicted in Listing 2.1 that calculates the Cholesky
factorization divides the operation into a number of sub-tasks that, when executed under a task-
parallel paradigm, generate a task DAG as that shown in Figure 2.1. In the task DAG, nodes
correspond to different tasks, and edges denote data dependencies between them.
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Listing 2.1: C implementation of the blocked Cholesky factorization.

void cholesky (double *A[s][s], int b, int s) {
for (int k = 0; k < s; k++) {
chol (A[k][k], b, b); // Cholesky factor. (diag. block)

for (int J =k + 1; J < s; Jj++)
trsm (A[k][k], A[k][J], b, b); // Triangular solve

for (int 1 = k + 1
for (int j = 1
gemm (A[k][1
Ali][3

;o1 < s; i) |

+ 1; J < s; Jj++)

1, A[kI[3], // Matrix multiplication
1, b, b);

syrk (A[k][i], A[i][i], b, b); // Symmetric rank-b update

Figure 2.1: Fine-grain Cholesky task DAG.

n
P
v

Figure 2.2: Compute load trace (number of ongoing tasks) for the DAG in Figure 2.1.

Figure 2.3: (a) Task DAG in which the computation evolves from left to right, and (b) compute
load trace generated by the Cholesky factorization in Figure 2.1 in terms of number of tasks in
execution, for a problem size n = 16384, and block size b = 1024.

The Cholesky factorization is an appealing example for the purposes of this chapter: (i) it
exhibits different sub-task types (CHOL, SYRK, GEMM and TRSM) and complex data dependen-
cies among them, and (ii) it features different degrees of parallelism as the factorization evolves.
Consider, for example, how the DAG depicted in Figure 2.1 reduces the available task parallelism
(that is, the number of tasks that can be executed in parallel, typically related with the width of the
DAG) at the first stages of the factorization, and (in a much larger extent) at the last stages. This is
usually translated into processor load patterns like that shown in Figure 2.2, that represents a time-
line of an execution of the Cholesky factorization on a highly heterogeneous platform, composed
by 28 Intel Xeon cores and 3 different GPUs. The plot represents the number of active proces-
sors as the execution proceeds. Areas with reduced load illustrate workload imbalance, which
can be caused by two different factors: different processing capabilities of each processor type,
and lack of potential parallelism on specific stages of the execution. The first can be alleviated by
scheduling heuristics (e.g., mapping tasks in the critical path to fast processors), but the second
is inherent to the algorithm, and can be alleviated (as long as tasks are internally parallelizable)
by non-uniform task partitioning or variable intra-task threading in order to expose additional
parallelism at run-time.

Data block (or tile) size is a crucial parameter in task-parallel executions, as it ultimately de-
termines the amount of available parallelism, and the efficiency of each individual task execution.
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In Figure 2.1, block size is determined by b; note that, typically, larger block sizes usually imply
higher performance per individual task, and smaller block sizes tend to expose higher degrees of
parallelism, which naturally drives to better processor occupation. In addition, different block
(task) sizes are desired for different architectures, and even for different problem dimensions in
the same architecture.

In general, the blocked Cholesky factorization is a particular case of a more general situation
in which a set of heterogeneous and interdependent tasks require shared computational resources.
With this regard, execution performance may be seriously limited due to a complex interplay
between different factors, such as task granularity, task criticality, problem size, application inter-
task and intra-task parallelism, and available hardware concurrency.

Altogether, these observations motivate (i) the exploration in Section 2.2 of new techniques
that explore the impact of heterogeneous or non-uniform task partitioning on the performance
and resource occupation of heterogeneous architectures and (ii) the exploration in Section 2.3 of
the effect of per-task variable threading in terms of power-constrained performance and energy
optimization in a homogeneous parallel processor.

2.2 Heterogeneous scheduling-partitioning with HeSP framework

A simulation framework named Heterogeneous Scheduler-Partitioner (HeSP) that jointly addresses
the rask scheduling and partitioning problems in a simultaneous fashion is presented next. Based
on per-task and data transfers performance models, HeSP adds an additional degree of freedom
to typical task scheduling policies by considering a joint task partitioning / scheduling approach.
The framework proceeds by finding a set of task partitions that divides the initial workload into a
number of sub-tasks with different granularity, that better fit to the underlying hardware resources
at a given execution point. The approach drives to considerable performance improvements and
more efficient resource utilization.

HeSP is a simulation framework that approximately solves a task scheduling-partitioning
problem targeting heterogeneous architectures. At a glance, the input to this problem is (i) a
hardware platform description where several finite-size memory spaces are connected according
to a certain network topology, together with a (possibly heterogeneous) set of processors associ-
ated with them; and (ii) a single task to be computed in that platform. A solution to this problem
consists of (i) a set of tasks —presumably with different granularity—, related by arbitrary data
dependencies and equivalent to the input task, and (ii) a task-to-processor mapping, considering
performance as the optimization goal.

2.2.1 Features of the scheduling-partitioning simulation framework

Besides supporting recursive task partitioning, HeSP is designed to be a realistic framework that
simulates not only current heterogeneous architectures, but also state-of-the-art scheduling and
data management policies on task-parallel executions.

2.2.1.1 Task and data scheduling heuristics

HeSP implements different heuristics for task-to-processor assignments. Random Processor (R-P)
and Fastest Processor (F-P) selection policies consider such processor choices among idle proces-
sors at the time in which task is ready (or release) to be executed. The Earliest Idle Time Processor
(EIT-P) and Earliest Finish Time Processor (EFT-P) policies select the processor becoming idle
first, and the processor finishing first if that task is assigned to it, respectively. EFT-P estimates
the finishing time accounting for eventual data transfers if needed. Task scheduling order is spec-
ified by choosing between First-come First-served (FCES) or Priority-List (PL) choices. In PL, a
priority list is built by sorting tasks by their critical times in decreasing order. Critical times are
computed by averaging task processing time for all processors, and propagating them throughout
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the task DAG by a backflow algorithm. The combination of PL and EFT-P heuristics is practically
identical to the well-known HEFT scheduling algorithm [146].

2.2.1.2 Simulation of complex memory spaces

When several independent memory spaces are present, HeSP considers data movement for schedul-
ing decisions, considering individual memory spaces of each accelerator as software caches of a
main memory space, typically tied to CPUs. Common caching policies like write-through (WT),
write-back (WB) or write-around (WA) are used. When a task is about to be scheduled to a
processor and its data dependencies are not present in the local memory space, the required data
transfers are issued from the source memory space to the local memory space using prefetching
schemes.

2.2.1.3 Performance and data transfer models

HeSP estimates computing or transfer times relying on analytical models extracted a priori for
each task / data type and size mapped to any existing processor / interconnect in the system. These
estimations are considered when making both scheduling and partitioning decisions, jointly or in
an isolated fashion. The quality of these models will ultimately determine the accuracy of the
simulated scheduling results.

2.2.1.4 Recursive task partitioners

Task partitioners, specified for each partitionable task type, are just blocked algorithms (see, for
example, Figure 2.1 for the specific case of the Cholesky factorization) with an input parameter
that specifies the data granularity / degree of parallelism of the following partition. On a par-
titioner invocation, the corresponding emergent sub-tasks are managed by HeSP by introducing
them in the respective task DAG which the partitioned task belongs to. Figure 2.4, starting from
an initial CHOL task —Cholesky factorization—, illustrates how three successive task partitions —
corresponding to respective CHOL, TRSM and SYRK blocked algorithms— affect the prior task
DAG, and the corresponding data partitions they induce.

CHOL

TRSM

GEMM

>ONO

Q
C Q2

A
bia

Q1 task dependence- - - - »
data input ——»

data output

Q2| Q3 } data input/output

Figure 2.4: Three successive task partitions and corresponding partitioned data blocks. Tasks and
their related data dependencies —Q1, Q2 and Q3 quadrants— are shown only for the first partition
for the sake of clarity.

Note that any task can be partitioned again as long as its dependent data blocks can be divided
consistently, so an extremely hierarchical task DAG can be constructed by recursively partitioning
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Figure 2.5: A data block (Q2 quadrant) can be simultaneously divided according to different
tilings (yellow and blue tilings, corresponding to TRSM and SYRK task partitions in Figure 2.4).
Additional data block descriptors (green) are constructed to represent partial overlaps between not
nested data blocks.

its tasks. A task cluster is a set of tasks generated from a single task partitioning, being the source
task their parent. The DAG / graph depth indicates the maximum number of nested task clusters,
and the DAG / graph width refers to the maximum number of tasks that can be executed in parallel.
For instance, in the four task DAGs in Figure 2.4, the corresponding depths are O, 1, 2 and 2, and
their widths are 1, 1, 2 and 6. Dependencies between tasks, shown as dashed arrows, represent
RaW, WaR and WaW constraints.

2.2.1.5 Recursive data partitioning and data coherence management

New tasks generated after a partition reference to finer-grain input and output data dependencies,
which are partitions of the initial data block(s) of the parent task (see Figure 2.4). HeSP imple-
ments validate / invalidate mechanisms to ensure data coherency among different memory spaces
while handling asynchronous memory transfers. Since recursive task partitions induce correspond-
ing recursive data block partitions, the existing partitioned data blocks are organized in a directed
acyclic graph structure (data DAG onwards) in which nodes represent data blocks and directed
links represent nesting relations between them; for example, A — B means B is fully contained
in A and A is bigger than B.

Armed with the data DAG, validations and invalidations are propagated by top-bottom and
bottom-top mechanisms throughout this graph to maintain coherence. For instance, to ensure that
a task can start its computation and store the result in an output block O B, not only the block OB
must be invalidated on the remaining memory spaces in which the block may be present, but the
hypothetical data block partitions contained in OB and the bigger blocks in which OB may be
contained must be invalidated as well. Similarly, after a certain task has finished its computation
updating OB, both OB and all the blocks within OB must be validated in the memory space
corresponding to the processor assigned to that task.

In general, these data block partitions induced by task partitions form tree structures. However,
it is possible to have a pair of blocks which intersect partially, nested within a common bigger
parent block. This case shows up when two partitions of non-divisible grain sizes are applied to
the same data block (for example, quadrant Q2 in Figure 2.4). In this case, a new data block
descriptor which refers to its intersection is introduced in the data DAG as a common child node
of two intersecting blocks (see Figure 2.5). With this mechanism, together with the validate /
invalidate propagation mechanisms, data coherency is ensured for all possible data partitions and
hierarchical data graphs.

2.2.1.6 Approximate iterative solver

HeSP solves the scheduling-partitioning problem by iteratively searching for those hierarchical
task DAGs which best fit to a heterogeneous processing platform —according to performance
optimization— given a specific combination of the aforementioned scheduling heuristics —processor
selection heuristic and task ordering—. A schedule stage is followed by a partition stage for each
iteration, being the number of iterations a user-defined parameter.
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At the partition stage, HeSP chooses a candidate task to be partitioned or a candidate task
cluster to be merged back / re-partitioned with a different granularity. A global analysis of the
schedule-partition done in the previous iteration can provide useful information —i.e., bottleneck
identification, number of idle resources, or too fine grained tasks— to help the iterative process to
converge toward a better overall schedule-partition.

The partition procedure is based on two stages: (i) task selection to build the candidate list,
and (ii), sampling type to choose the final candidate. For (i), HeSP implements three different
policies: All, CP and Shallow. All selects all tasks of the previous step, CP selects only tasks
belonging to the critical path, and Shallow selects those tasks whose depth (i.e., number of task
clusters that contain it) is minimal. All existing task clusters are candidates to be merged back or
repartitioned. For each added candidate, a positive score is computed by subtracting the current
cost delay by an estimated cost after its eventual partition or merge, being this estimation based
on the available parallelism at its scheduling time of the previous step. For each candidate whose
data dependencies have a characteristic size d, a partition parameter p € (0, 1] is chosen such that
new tasks created after the eventual partition will depend on data blocks of size b = p x d'. The
more available parallelism is exposed, the smaller p is set in order to generate a higher amount of
parallel finer-grained tasks.

In the second stage (ii), a final selection among all candidates is done according to Hard or
Soft procedures. In Hard, the candidate with the maximum score is chosen; in Soft, the candidate
is randomly selected such that the selection probability equals the score divided by the sum of all
scores.

2.2.2 Performance results on heterogeneous architectures

In the following, HeSP is fed with model data and a heterogeneous platform description (MA-
CHINEI, see B.1), from which a Cholesky factorization execution in single precision is simulated.

2.2.2.1 Framework validation and evaluation of scheduling heuristics

The goal of the following first set of experiments is two-fold: (i) to validate the results ex-
tracted from HeSP by comparing them with an equivalent execution using a real task scheduler
(OmpSs [51]) and (ii) to illustrate the impact in performance of several scheduling policies in
HeSP when homogeneous or uniform task partitions are employed.

Each point in the line labelled as OmpSs in Figure 2.6 (left) corresponds to the best schedul-
ing performance out of 20 OmpSs executions for each grain size. These 20 trials were set to
let OmpSs Versioning scheduler [122] improve itself by gathering enough task execution delay
samples for each task type / size and processor. The other two curves —-HESP-REPLICA-PM and
HESP-REPLICA-RD- denote the performance attained by HeSP when applying the same task-to-
processor mapping extracted from the best OmpSs trial, using previously extracted performance
models (PM) and the real OmpSs task delays (RD), respectively, for each uniform tiling.

Differences in performance between HESP-REPLICA-RD and OMPSS points are a measure
of the OmpSs runtime overhead, while the differences between HESP-REPLICA-PM and HESP-
REPLICA-RD are mainly due to (i) the accuracy of the extracted performance models fed to HeSP,
and (ii) possible differences between OmpSs-internall task delay instrumentation module and the
instrumentation used to extract the performance models. In summary, the differences between the
replicated schedules are small enough and easily explainable to assert the validity of the following
results. In general, these observations reveal a qualitative matching between real and simulated
workloads for all problem sizes, with deviations that can be easily explained and should not affect
the quality of the following observations.

To introduce the context in which the heterogeneous or non-uniform partitioning approach
takes place and its potential benefits, Figure 2.6 (right) reports the performance obtained by run-

'A task cluster is a candidate to be merged if p = 1 or repartitioned if p < 1.



26 CHAPTER 2. STATIC RELAXED EXECUTION. MOTIVATION AND LIMITATIONS

HeSP validation - Cholesky ization (n=18900, Single Precision) HeSP
T T T T T T T T

ing policies perfor - Cholesky factorization (n=18900, Single Precision)
T T T T T T T T

—6—0mpS:
—— H:SpPrsRephcarRD —O—Fastest ——Earliest Idle Time Earliest Finish Time ~—&—Random

HeSP-Replica-PM 6000 )

5000 1

0 I I I I I I I I
4 5 6 7 8 9 10 " 12 13 14 15 3 6 9 12 15 18 21 24 27 30 33 36

Blocks per dimension (s) Blocks per dimension (s)

Figure 2.6: Left: Comparison between OmpSs and their simulated schedules. Right: Comparison
between different scheduling policies and block sizes in HeSP.

Table 2.2: Performance comparison for MACHINE].

MACHINE] (32, 768 X 32, 768 Cholesky factorization in single precision)

Best Uniform Best Found Non-uniform

Perf. Avg. load  Block Perf. Improve.  Avg. load Avg. DAG

Config. (GFLOPS) (%) size (GFLOPS) (%) (%) block size  depth
FCFS/R-P 345391 75.3 1024 4189.17 21.29 82.3 991.23 2
PL/R-P 4460.30 88.4 1024 4752.43 6.55 89.4 978.33 2
FCFS/F-P 2846.78 53.4 2048 3687.93 29.55 63.6 446.52 3
PL/F-P 3381.76 68.4 2048 3614.28 6.88 66.2 1165.70 3
FCFS/EIT-P 5650.10 91.3 1024 5747.87 1.73 923 1002.26 2
PL/EIT-P 6096.91 93.9 1024 6206.55 1.80 95.4 1009.91 2
FCFS/EFT-P 6581.96 233 2048 7569.34 15.00 63.9 412.15 5
PL/EFT-P (*) 7046.87 55.9 2048 8030.50 13.96 86.9 407.41 4

ning HeSP simulations using different scheduling policies for different uniform task partitions. It is
worth noting that: (i) the optimal tile size does not only depend on the underlying architecture and
problem size, but also on the selected scheduling policys; (ii) for every policy, performance curves
follow a similar pattern, exhibiting a peak performance in a frade-off tile size that best balances
potential parallelism and optimal individual task performance; and (iii) differences in performance
are relevant depending on the selected scheduling policy, being even more dramatic for large tile
sizes. These obvervations motivate the simulation of non-uniform partitioning schemes to estimate
their potential for performance maximization.

2.2.2.2 Impact of non-uniform partitioning in performance

This section illustrates the main performance improvements obtained with HeSP using All / Soft
configurations for task partitioning selection. Table 2.2 reports performance values on MACHINE1
using the best uniform and non-uniform partitions found by HeSP for different scheduling poli-
cies?, together with additional metrics that clarify many of the concepts exposed hereafter, includ-
ing average processor load, optimal / average block size and task DAG depth. The first observation
worth noting is the overall improvement attained for all non-uniform task partitions found by HeSP
and the overall reduction in the optimal average block size on non-uniform partitions.

Note the direct relation between the average processor occupancy and the improvements of
the non-uniform partitions. For example, EIT-P with uniform partitioning yields high proces-
sor occupancy (between 91% and 98.5%), so the potential benefit expected from additional ex-
tracted parallelism is poor, ranging between 0.76% and 2.02%. Contrary, uniform partitions on
EFT-P schedules yield better performance than EIT-P ones while still leaving more room for po-
tential parallelism. Although the quality of EFT-P uniform schedules could actually leave little

?In all cases, Write-Back caching is employed.
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Figure 2.7: Execution traces of best uniform partitioning on MACHINE1. Task scheduling (top)
and compute load (bottom).
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room for additional improvements, the greater processor availability they offer permits the it-
erative scheduler-partitioner to find finer-grain partitions (compare Figures 2.7 and 2.8) both in
terms of idle time (marked in light blue in the traces) and compute load, attaining remarkable net
improvements for MACHINE1 (between 13.96% and 15%). Note also that bigger performance
improvements do not only correspond with lower processor occupancy, but also with higher task
DAG depths (up to 5 in MACHINE1). This observation reinforces the importance of managing
multiple levels of task granularity, extending the idea of using only two degrees of granularity for
two types of processors introduced in other works [157].

Note the even better improvements, with simpler —i.e. less deep— partitions, attained by this
scheme when jointly applied with simpler schedulers —R-P/F-P— and naive FCFS task ordering.
Since bad scheduling decisions exhibit a smaller worsening global impact when applied to a bigger
set of smaller tasks, task partitions cooperating with a simple scheduler might alleviate its poor
performance: under highly heterogeneous scenarios and available resources, it could be safer to
partition a task rather than taking the risk of assigning it to the wrong processor.
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2.3 A MILP framework for power-constrained variable threading

As explained in Section 1.3.2.1, the task scheduling problem belongs to the NP-hard class and has
been one of the most studied combinatorial optimization problems in the last decades, while the
moldable- malleable-task variants have been lately studied from theoretical grounds [147], [23]. In
contrast, the following exposition exposes a Mixed-Integer Linear Program (MILP) model applied
to the same Cholesky application, in which an arbitrary number of threadable or moldable tasks
with dependencies and no convexity requirements are scheduled on a multiprocessor.

As in the previous section, this study ultimately targets modern task-based parallel program-
ming models and runtime task schedulers, mainly motivated by existing challenges in terms of
execution performance, programmability and developer productivity. The exposed model and its
implementation targeting a state of the art solver (Gurobi [63]) are able to return exact solutions
or high-quality bounds, thus providing useful information to runtime-scheduling developers when
tuning fask-to-threading policies in future task-based programming models.

Section 2.3.1, exposes a model and a MILP formulation that considers both makespan and
energy minimization® under a power constraint. In Section 2.3.2, different execution instances
of Cholesky factorization are simulated and solved on a modern 20-core processor as a test case,
exploring six different constrained optimization scenarios targeting power-limited execution per-
formance and energy. Finally, the improvements and execution trace characteristics of solutions
with constant and variable task-to-core(s) assignments are compared.

2.3.1 Model

This section exposes a model that simulates the allocation of a set of interdependent tasks struc-
tured in a DAG on a multiprocessor with N,,,, identical cores, where each task is internally
threadable, and the goal is to find a particular number of cores or thread configuration for each

3For the tested application, makespan minimization is equivalent to performance maximization.
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one, such that a given global metric —either makespan or consumed energy— is minimized. In this
context, each core can only process one simultaneous task, although several cores can co-operate
to process a single task. Cores are modeled as indistinguishable computational units, in the sense
that core identifiers or core placement in the die are not considered. With this abstraction, a task
allocation is only defined by the execution start time and the number of cores / thread configuration
employed, not taking into account any specific core binding. This core-independence assumption
also requires that the execution performances of any pair of subsets of cores —each subset running
a different task— are independent, so eventual inter-core coupled effects such as Last Level Cache
(LLC) contention or thermal-aware power capping policies are not considered. Eventual LL.C ac-
cess conflicts could in principle be detrimental to this assumption, but appropriate orchestration of
data placement in concurrent kernels to exploit shared caches could alleviate that. Nevertheless, a
detailed analysis of this problem is out of the scope of this study for the sake of simplicity.

For each specific task and threading configuration pair, the number of cores and dynamic
power consumption is fixed. A constant static power W;q is also modeled, which contributes
to the overall energy consumption in the background as the execution evolves, together with the
dynamic power due to task allocations. The power at any given moment is the aggregated power of
Widie plus the dynamic power of all the tasks that are being executed at that moment. With these
assumptions, execution delay and dynamic power of a given task instance are fully characterized
by the threading configuration assigned to it.

2.3.1.1 Mixed-Integer Linear Programming formulation

Based on these assumptions, a MILP model is exposed next, in which solutions are defined by a
set of binary variables representing task-to-threading-configuration assignments and a set of con-
tinuous variables representing task execution start times. The model definitions are the following.

Input parameters N,,q., Winaz, Widie, M2 The target multiprocessor is characterized by Np,qz
cores and a static power of W, € RT. Additionally, W,,., € R™ denotes the power budget and
M € R™ is an upper bound for the makespan.

Input sets 7', H, P, Q, O, D, N,W: The application is represented by the set of tasks 7" to be
allocated and H is the allowed threading configurations. For all pairs (¢,u) € T, the parameter
P is the precedence matrix, being P, = 1 if w computation must be preceded by ¢ and P, = 0
otherwise. () denotes the full precedence matrix, being ();, = 1 if ¢ precedes u anytime in the
DAG and @, = 0 otherwise. Note that () defines a partial order, and in particular, if Q;, = 0
and @, = 0 then the executions of ¢ and u can overlap.

In runtime scenarios, tasks are usually generated following a specific ordering, although out-
of-order execution is assumed to happen in general. The set O establishes a total order such that
for each (t,u) € T, Op < O, if task t was generated before u. From this total order, in-order
constrained execution can be imposed. Note that for application execution correctness, O inherits
the partial order of Q: Q¢ =1 = Oy < O,,.

Forallt € T and h € H the parameter Dy ), € R indicates the execution delay of task ¢
when it is scheduled using threading configuration A. The value N}, indicates the number of cores
required for the threading configuration h € H. Wy}, € R* indicates the required dynamic power
when t is scheduled with h.

Decision variables X, S: Forallt € T and h € H, binary variables X;; € {0,1} indicate
whether task ¢ is scheduled with threading configuration A or not. Also, forallt € T', S; € R>¢
denotes the scheduled start time of task .
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Auxiliary variables A, Q, &, C,,,,: Forall (t,u) € T, A, = 1 if the start time of task ¢ is
greater or equal than the start time of task u, and A;,, = 0 otherwise. Similarly, €2; , = 1 if the
start time of task ¢ is strictly less than the end time of task u, and 2;, = 0 otherwise. ®;,, ,
is a representation of the cubic term Ay €} , Xy, 5, and Chuep € R* denotes the makespan or
time-to-solution.

The model constraints are the following.

The makespan C);,,, is constrained by task end times:

Crnaz > St+ Y DinXep, VEET. 2.1)
heH

There is only one threading configuration i € H to be assigned for each task:

Z Xip=1, VteT. (2.2)
heH

Tasks depending on other tasks must wait for them to start:

Su>Si+ Y DynXen, V(t,u) €T | Py =1. (2.3)
heH

Auxiliary variables A, and € ,, are set following the definition in section 2.3.1.1 and together
with ®; , ;, are required to satisfy processor occupation and power budget constraints. Defined
from constraints (2.4), (2.6) and (2.8), they are set to 0 if task pair ¢, u cannot overlap —Expr. (2.5)
and (2.7)—.

Su > St — MAt’u,
Su < Sit M(1—Ay), 24)
At,u € {07 1}7 V(t,u) er ’ Qt,u =0A Qu,t =0.

Aty = 0, V(t7u) eT | Qt,u =1V Qu,t =1 (2.5)

)

St > Su + Z Du,th,h - MQt,ua
heH

St < Su+ > DunXup+M(1—Q), (2.6)
heH
Qt,u € {07 1}7 V(t,u) eT | Qt,u =0A Qu,t =0.

Qt,u = 0, \V/(t, U) S T ‘ Qtv“ =1V Qu,t =1. (27)
The auxiliary binary variables ®; ,, , are a representation of the product Ay £ , Xy, 4
D yn > Ay + Qi+ Xop — 2,

(I)t,u,h < At,uy (I)t,u,h < Qt,uy (I)t,u,h < Xu,h) (28)
D p €4{0,1}, VheH, VY(t,u)eT.

The number of cores required at each time S; must not exceed Nyq4:
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t occupancy overlap occupancy at St
D NnXen+ DD ®unNh < Npao, VEET. 2.9)
heH ueT he H
uFt

In constraint (2.9), the occupancy due to task ¢ at time .Sy is denoted by the first term, while the
second term represents the aggregated occupancy due to other tasks being run at the same time.
Similarly, the aggregated power at each instant Sy cannot exceed Wi,

t power overlap power at St
S WinXen+ > Y PrunWun +Wiae < Winaz, VEET. (2.10)
heH ueT he H
uF#t

Previous constraints assume no execution order for those tasks that can run concurrently. How-
ever, in-order execution can be enforced by setting

Sy > Sy, V(tu) eT | O; > O,. 2.11)

Finally, the Optimization targets are the following.
Time-to-solution minimization (performance maximization) is defined as:

min(Chnaz), (2.12)

while energy-to-solution minimization is defined as:

min (Z > WinDinXen + Cmaxwidze> . (2.13)

teT heH

2.3.1.2 Implementation

The previous MILP model has been implemented using Gurobi Optimization software v8.0 [63].
Some numerical considerations were taken: an epsilon is set to 1076 to enforce strict inequal-
ities in expressions (2.4) and (2.6), an integer feasibility tolerance to 10, and fixed M =
|T| maxy p,(Dy p,), being |T'| the number of tasks. External data in matrices D and W is set from
profiled executions of the task instances to be simulated. Similarly, dependencies represented in
matrices P and () are derived from the read / write requirements of the tasks.

Threading configuration In general, the concept of threading configuration encompasses a pair
of parameters: (A) core occupation —represented as /N, above— and (B) number of threads per core.
This concept can be particularized depending on the architecture and the application. For instance,
in Intel MIC architectures the scatter and compact parameters, or the number of threads per core
—up to 4— can be represented as the B-parameter of a threading configuration. In the following, the
terms threading configuration or core occupation are used indistinguishably, as all tested threading
configurations in this particular test case consider a single thread per core.

2.3.2 Experimental results

This section exposes the execution simulation results of a blocked Cholesky dense factorization in
double precision running on a high-end 20-core Intel®Xeon Gold 6138 @2GHz, with Thermal
Design Power (TDP) of 125 watts, featuring AVXS512 vector extensions.
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Figure 2.9: DAG of a blocked Cholesky factorization induced from a 6 x 6 tiling.

2.3.2.1 Optimization cases

Six optimization cases optimizing time and energy are simulated —Expr. (2.12) and (2.13)- with
power budgets —Expr. (2.10)—, 70 w, 100 w, and unconstrained (=~ TDP).

The factorization is performed by a blocked algorithm running on 6 x 6 sub-matrices that
evenly divides the target matrix, corresponding to a task dependency graph with 56 tasks (Fig-
ure 2.9). As in the previous HeSP simulation, these tasks are instances of four computations or
kernels, namely potrf (Cholesky factorization), gemm (general matrix-matrix multiplication),
syrk (symmetric rank-k update) and trsm (triangular solve with multiple right-hand sides).
Three problem sizes of the Cholesky factorization are tested and a set of instances for each size
are solved. Homogeneous threading schedules are used as a baseline and they correspond to sched-
ules in which there is only one allowed core occupation for each task —using the full pot rf task
as the baseline run for the 20-core case—. In heterogeneous threading schedules, several core oc-
cupations are allowed in the same schedule. Due to model limitations in the heterogeneous cases,
only four different core occupations (A/B/C/D) are allowed for each instance, in contrast to a sin-
gle and more general heterogeneous set (e.g. 1/2/3/.../20), in order to limit the search space and
resolution time of the linear program. Other combinations could be tested as well but only four
heterogeneous sets were chosen for the sake of simplicity. The particular values of the allowed
core occupations in both homogeneous and heterogeneous cases were chosen to be divisors of 20
—the full core availability of the CPU- to facilitate the packing of concurrent tasks.

Note that the amount of tasks and the DAG parallelism result from the tiling divisions of the
target matrix. Due to time limitations —the solver is exact and its complexity is not polynomially-
bounded—, the mentioned subdivision was chosen, from which most of the homogeneous-threading
solutions can be solved optimally under two hours. A further study exploring the trade-off between
greater task parallelism levels (corresponding to finer matrix subdivisions) and intra-task thread-
ing, for a fixed problem size, is out of the scope of this study, as it is impractical from the given
exact solving approach. Note that the relation between task granularity and intra-task parallelism
is explored nevertheless by maintaining the tiling fixed and varying the problem size.

2.3.2.2 Prior measurements and considerations

In [&], authors proposed and validated a highly accurate model for power and energy estimation
regarding blocked-dense Cholesky factorization on a Intel Xeon multiprocessor in which tasks are
single-threaded. In this line, the same model was adopted and extended in the present study to
consider multithreaded-tasks.

All the information needed to set the delay and power matrices for all the optimization cases
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Allowed core n = 6144 n = 12288 n = 24576
occupations  Unc. 100w 70w Unc. 100w 70w Unc. 100w 70w

Homog.

1 0.21 0.21 0.20 023 023 0.22 024 024 0.22

2 0.43 0.38 0.25 045 040 0.26 047 041 027

4 0.67 048 0.30 0.71 050 0.31 0.77 053 032

5 0.68 044 0.22 0.75 048 0.24 0.79 052 0.26

10 0.73 0.38 - 0.75 0.39 - 0.82 042 -

20 0.59 - - 0.64 - - 0.78 - -
Heterog.

4/5/10/20 075 055 0.28 082 059 0.29 088 0.62 0.31
2/5/10/20 0.75 0.54 0.30 0.81 056 0.32 0.88 0.60 0.34
2/4/10/20 0.75 054 031 0.81 057 032 0.86 0.61 0.34
1/4/10/20 0.75 0.54 031 0.80 057 033 0.85 0.61 0.34

Improv. (%) 2.96 14.49 433 850 17.88 7.07 6.58 15.64 7.67

Table 2.3: Performances in TeraFLOP/sec for each problem instance n x n and different power
constraints —unconstrained (#nc) and limited to 100 and 70 watt (w)—, considering homogeneous
and heterogeneous threading. Best values per problem size and power constraint are highlighted
in bold. Some power-constrained scenarios are not compatible with specific core occupations (-).

was gathered by combining the kernel set, size set, threading set and measure set, namely: potrf,
gemm, syrk, trsm} x {24576, 12288, 6144, 4096, 2048, 1024} x {1, 2,4, 5, 10,20} x {avg.
run time, avg. run power}, respectively. Kernel executions were run under Intel® MKL 2018
enabling AVXS512 vector instructions for highest performance. PMLib [17] framework together
with Intel RAPL were employed to gather power measurements.

As mentioned in section 2.3.1, the core-independence assumption requires that when two tasks
are simultaneously running on two separate subsets of cores, their performance or consumed power
are considered independent. To satisfy this simplification, automatic Intel Turbo Boost mode had
to be disabled and specific combinations of some run time variables —number of active cores, core
frequencies and usage of vector extensions— had to be avoided, so automatic processor-internal
power capping policies are not triggered. During this study, it was experimentally found and veri-
fied [75] that for this processor, setting the base frequency to 1.7GHz was sufficient to keep all the
active cores running AVX512-enabled MKL kernels while keeping their frequency stable. Upon
this, time and power measurements for each kernel were taken and a linear relation between power
and the number of the active cores was observed, from which previous power-modeling simpli-
fications can be validated. Specifically, power values were extracted from energy measurements
of PACKAGE_ENERGY_PACKAGEO counter exposed by Intel RAPL. The value W4, was taken
by extrapolating these linear relations to the origin —zero active cores— and averaging them for the
four kernels, resulting the value of 29.3 watt.

2.3.2.3 Performance maximization

Table 2.3 summarizes the simulated performances, in terms of TFLOP/sec, of the optimal or near-
optimal solutions found for each instance when minimization target (see Equation 2.12) is set. The
improvements relate the best found heterogeneous-threading performance with respect to the best
found homogeneous-threading performance for each problem size. In general, the heterogeneous
schedules consistently correspond to better solutions, yielding improvements between 2.96% and
17.88%.

Interestingly, greatest improvements correspond to the 100W-constrained case, reflecting that
homogeneous thread schedules are unable to fit in that particular power budget as efficiently as the
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heterogeneous ones do. It is also worth noting that the performances for all of the heterogeneous
threading cases are very similar for a given problem size, which suggests that the particular allowed
core occupations are not too important, as long as there is enough variety of threads the tasks are
allowed to take —four possibilities only in these cases—.

Figure 2.10 shows the resulting execution traces from four of the best found instances, corre-
sponding to homogeneous and heterogeneous schedules on two power budget cases. Note that in
the DAG depicted in Figure 2.9, the very beginning and the end of the application correspond to
stages in which the amount of task parallelism is reduced. In the homogeneous threading traces,
this inevitably causes some cores to be idle. Contrary, heterogeneous threading schedules are able
to alleviate processor starvation by increasing intra-task parallelism in those areas, minimizing
internal delays of serialized tasks.

Observe however that deviations from perfect intra-task strong scaling result in a reduction of
the performance per core —inversely proportional to the block area, in the shown traces—. For this
reason, in an opposite processor-contention scenario —task parallelism greater than available hard-
ware concurrency—, it is wiser to maximize performance per core rather than minimizing internal
task delays. Note that these two opposite scenarios —processor starvation caused by task serial-
ization versus processor contention— can occur in the same application, yet can be tackled by the
same variable intra-task threading approach, handling opposite policies —increasing and decreas-
ing intra-task threading, respectively—. This idea is reflected in the constrained and unconstrained
execution traces of Figure 2.10, in which the rigidity of the homogeneous configurations would
not permit an efficient adaptation of the tasks to the evolving characteristics of the application
execution.

Focusing on homogeneous threading, it is worth noting that best schedules correspond to a
number of threads per task that depends on the underlying constrained scenario —e.g.: homoge-
neous traces in Figure 2.10 correspond to 4 and 10 threads per task in power-constrained and
unconstrained, respectively—. As in current task-parallel runtimes tasks are usually run internally-
sequential —i.e., 1 thread executing each task—, this observation makes the idea of relaxing the
boundary between task- and data-parallelism more appealing, as intermediate degrees of these
parallelism paradigms (even fixed across the execution) can be exploited to improve efficiency.

2.3.2.4 Energy minimization

Table 2.4 summarizes the energy consumption of the best-found solutions for each instance con-
sidering energy optimization (that is, imposing Expression 2.13). It can be seen that best found
heterogeneous threading schedules consistently provide more energy-efficient schedules, with mi-
nor deviations among the four different allowed heterogeneous threading configurations, similarly
to what was shown in Table 2.3. However, although energy minimization is positively correlated
to makespan minimization, the improvements are more modest than the performance case mainly
for two reasons.

First, the room for optimization left by processor starvation was tackled by heterogeneous
threading by increasing intra-task parallelism, thus reducing internal task delays at the cost of
reducing performance per core and per watt —or in other words, increasing the energy cost per
computation—. Second, in power-constrained schedules, note that in Figure 2.10 some cores are
effectively idle due to power-constrained restriction. However, the static power they consume
contributes to the overall energy values exposed in Table 2.4. This affects to the relatively lower
improvements seen, as improved heterogeneous threading decisions weight less in terms of energy
footprint, compared to the performance-target case. Nevertheless, those idle cores could be effec-
tively disabled in practice, and an extended model exploring threading P/C-states decisions made
per core basis, done jointly with variable intra-task threading could provide better energy-efficient
schedules.
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(b) Homogeneous (top) and heterogeneous (bottom) threading traces (unconstrained).

Figure 2.10: Execution traces for best found homogeneous and heterogeneous threading sched-
ules. Tested problem size: 12288 x 12288.
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Allowed core  n = 6144, (10! j) n = 12288, (102 j) n = 24576, (103 j)

occupations  Unc. 100w 70w Unc. 100w 70w Unc. 100w 70w
Homog.

1 2.01 2.01 2.08 1.50 150 1.54 1.16 1.16 1.20

2 1.47 1.54 1.83 .13 1.18 141 0.87 090 1.09

4 1.21 135 1.64 092 1.03 1.26 0.70 0.78 097

5 1.26 144 194 093 1.06 143 0.70 0.80 1.08

10 1.23 1.51 - 098 1.20 - 0.72 0.89 -

20 1.62 - - 1.20 - - 0.79 - -
Heterog.

4/5/10/20 1.22 1.31 1.72 091 099 1.29 069 075 099
2/5/10/20 1.22 1.34 1.70 092 1.02 1.26 069 0.78 0.96
2/4/10/20 1.19 132 1.65 091 1.00 1.25 0.69 0.76 0.96
1/4/10/20 1.19 1.31 1.61 091 099 1.24 068 0.76 0.95

Improv. (%) 192  3.00 1.58 1.56 3.89 1.58 219 414 1.5

Table 2.4: Energy consumption in joule-basis (j) for each problem instance n X n and different
power constraints —unconstrained (unc) and limited to 100 and 70 watt (w)—, considering homo-
geneous and heterogeneous threading. Best values per problem size and power constraint are
highlighted in bold. Some power-constrained scenarios are not compatible with specific core oc-
cupations (-).

2.4 Summary

2.4.1 Related work

HeSP framework. In relation to the analysis exposed in Section 2.2, focusing on dense linear
algebra implementations, [157] propose a hierarchical directed acyclic graph strategy, creating a
two-level DAG hierarchy on systems featuring two types of computing platforms (CPU/GPU).
Similarly, [64] proposes an offline adaptation of the task grain size to the processor type and to
statically assign tasks to distributed compute nodes. On the other hand, [40] proposes an alter-
native approach in which computing resources are aggregated as needed in order to adapt the
computing capabilities to coarse grain kernels. The Versioning task scheduler for the OmpSs run-
time [122] defines multiple implementations per task, each one targeting a different processor
type, and decides at run-time where to map them based on historical runtime information.

HeSP extends the aforementioned efforts by exploring the global impact of arbitrary degrees
of task granularity on an arbitrary heterogeneous platform, adapting task sizes not only to the
individual processor capabilities, but also to the current degree of available parallelism dictated by
a specific algorithm.

The HeSP framework and its internal mechanisms toward joint scheduling / partitioning tasks
on heterogeneous architectures were presented. Insights reveal that important performance bene-
fits and improved processor loads can be extracted from the framework for a family of scheduling
policies. The extracted insights for the Cholesky factorization can be applied to other irregular
task-parallel implementations, or to arbitrary heterogeneous architectures.

The static, iterative, and global-scoped characteristics of HeSP algorithms have shown to be
useful to explore the practical performance bounds of a scheduling-partitioning problem for spe-
cific application-vs-platform pairs. The positive findings exposed in this study motivate a dynamic,
constructive and local-scoped exploration that would emulate more realistically the effect of par-
titioning policies done by an actual runtime scheduler, in which local run-time information would
be applied on a per-task basis to perform efficient task partitioning decisions.
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MILP approach. With regard to the analysis done in Section 2.3, the study of techniques to
efficiently schedule threads to cores at run-time has been a topic of interest since the rise of mul-
tiprocessing architectures, but mainly at the application level. [43], [54], [140] and [100] have
developed different thread scheduling approaches considering performance, energy and/or power
optimization goals on symmetric multiprocessors, some of them exploring the effect of SMT ca-
pabilities for internally-threadable cores. Specifically, [124], [100], [142] and [39] incorporated
Dynamic Voltage Frequency Scaling (DVES) techniques together with threading management de-
cisions, and exposed their joint impact on performance and energy optimization under power con-
straints. Regarding newer architectures, [101] and [124] explored threading policies in a context
of asymmetric / heterogeneous multiprocessors in power-constrained contexts, and [98] studied
the effects of different threading configurations on performance and energy for a set of bench-
marks running on the Intel MIC architecture. In general, previous works have demonstrated the
importance of thread management as a mechanism to assign computations to processors, exposing
remarkable results on power-aware performance- and energy-oriented optimizations.

Although similar goals were pursued in the present analysis —performance and energy-efficiency
improvement on power-constrained scenarios— it was directly focused on variable thread manage-
ment at task level, representing tasks as inter-dependent blocks of computation that compose the
application. In this context, [ 1 30] exposed performance and strong scaling measurements of FMM
kernels on different multiprocessing architectures, motivating kernel-aware thread management
for FMM-based applications. Similarly, in this chapter it was shown by simulation that threading
decisions at run time and task level can increase performance and alleviate energy consumption,
while eventually satisfying a given power budget.

2.4.2 Limitations of static approaches

All in all, the presented approaches expose some remarkable limitations.

2.4.2.1 Task DAG is static

Previous analysis assumed a fully known task DAG. However, in real scenarios, tasks can be
generated on-demand as some tasks are completed and other that were depending on them have
their dependencies resolved. Also, regarding dynamic task partitioning, the extra cost of unfolding
the computation into a set of inter-dependent tasks was not treated at all in this analysis. This
should be considered, specially for finer-grained tasks in which the cost of generation of multiple
tasks may affect the practicality of run-time task partitioning policies.

2.4.2.2 Runtime-specific behavior not treated

Mechanisms such as (i) task-queue management, that controls the production and consumption
rate of tasks, (ii) dynamic caching policies, and (iii) the effect of parallel synchronization primi-
tives, were not contemplated in previous static models. These mechanisms may greatly influence
the execution behavior and even limit the applicability of the proposed approaches.

2.4.2.3 Model dependence

Previous models ultimately require a prior and accurate task and data transfers profiling in order
to be able to anticipate the execution and data transfer costs. Even assuming that runtime-specific
stochastic effects are sufficiently small (which in most situations is far from true), the cost of
experimenting is usually higher than in runtime-scenarios: from a dynamic standpoint, the effect
of a scheduling policy can be straightforwardly evaluated by just executing the application.
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2.4.2.4 Model complexity limits the size of problem instances

On top of the NP-hard characteristic of the classic task scheduling problem, the presented com-
binatorial optimization problems expose in practice additional limitations in terms of how many
tasks, how many processors, and how many possible additional configurations (number of parametrized
partitions for each task and number of threading configurations) can be actually treated in these
models. It is the non-polynomial growth of the space of solutions what makes these problems not
solvable in a reasonable time, even for instances with relatively modest sizes.

2.4.3 Application to runtimes

The HeSP approach can be applied directly on actual task schedulers or programming models, in
order to implement recursive task partitioning capabilities as an additional degree of freedom. In
particular, the concept of parametrized partitioners could be implemented on the user interface
side, and coupled with a kind of a partitioning engine working in the background.

Concerning the MILP approach, the previous trace analysis provides interesting insights con-
cerning the design and implementation of future task-to-threading heuristics and smart scheduling
policies applied from a runtime scope. Note, however, that besides scheduling performance and
efficiency considerations, there is a potential benefit of these approaches in terms of programma-
bility: just being able to delegate these threading decisions to the runtime system is already a step
forward in the path toward more transparent, automated and user-friendly programming models.

In this hypothetical scenario, the programming model can provide a user interface as a mecha-
nism to declaratively expose the available threading configurations that a task running on a specific
device is allowed to take at run-time. Whether the underlying runtime scheduler is able to perform
this threading decisions in a smart way or not is a problem to be solved afterwards, but the relative
simplicity of the previous heterogeneous-threading traces —and their similarity compared to homo-
geneous cases— suggests that they can be affordable and accessible from runtime-based heuristics.
Although not directly applicable from a runtime approach, the exposed MILP model and the avail-
ability of powerful exact solvers can provide useful guidance to anticipate potential performance
and energy improvement bounds that can be expected from future task-threading schedulers.

The study in this chapter can be applied to other applications and architectures as well. From
a general application-based perspective, the allocation efficiency of a set of threadable, heteroge-
neous and interdependent tasks in a symmetric multiprocessor will be affected —in general— by the
task characteristics of the application: globally, the overall task parallelism and the heterogeneity
of the tasks; specifically, their individual intra-threading parallelism, granularity and criticality. In
these scenarios, task-oriented runtime-aware threading decisions are expected to fill the optimiza-
tion room left by the complex interplay of these application characteristics.

Diving into these generic characteristics, note that in the tested application, in spite of all the
tasks being threadable and interdependent, their heterogeneity in terms of the intrinsic compu-
tation is rather lacking —all tasks are O(n?), compute-bound kernels acting on matrix blocks of
the same size—. This fact makes that the heterogeneous threading decisions are mainly based on
the existence of available resources rather than on the intrinsic efficiency based on a computa-
tion / granularity-to-threading relation. From this argumentation, it is expected that the benefits
of variable intra-threading approach will be more clear for those applications in which the fask
heterogeneity is higher, so not only load balancing but also intra-task strong scaling-aware con-
siderations can be taken for efficient per-task threading decisions.

In terms of hardware, architectures that exploit SIMD parallelism managing larger numbers of
threads —e.g. Intel Xeon Phi and SIMT-based execution model in GPUs— are subject to a similar
analysis, as long as they support concurrent task execution and explicit partial processor allocation.

The extracted insights, despite the limitations of the models, motivate the design of a program-
ming model based on these ideas, and a runtime system able to efficiently navigate in this complex
and enriched decision space.
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from such abstract heights;
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Dynamic relaxed execution.
A programming model architecture

In this chapter, the execution relaxations paradigm is developed from a runtime or dynamic per-
spective, which permits to address some of the problems related with the static approach ex-
posed in the previous chapter. Those aforementioned ideas revolved around optimization-based
motivations, which permitted the formulation of a class of combinatorial optimization problems
solvable for a set of different optimization targets. On the contrary, issues about how an expanded-
execution-leveraged runtime can be actually implemented, and how users can benefit from a pro-
gramming framework in which execution relaxations can be expressed, were not addressed at all.

In this sense, the dynamic approach presented in this chapter moves toward a more realistic
conception of the expanded execution model, and focuses on programmability and software ar-
chitecture issues as central topics, keeping issues about performance optimization as second-tier
considerations. Apart from an improved realism, the dynamic model presented in this chapter is
equipped with more execution expansions than which were treated in the static approach.

This proposal shares the rationale of many of the task-based parallel programming models ex-
posed in Section 1.2.2, with respect to the ultimate goal of delegating issues related with parallel
programming from the user to an automatic system. To accomplish this goal, it is proposed a
programming framework architecture rooted on declarative-like principles, in which the execution
entry point is reduced to a single-yet-abstract task (representing the whole application) assigned to
an abstract and unique execution context or executor describing the complete parallel architecture.
Apart from this single-task assignment, the user is required to expose a set of execution oppor-
tunities or paths to the runtime system, so that those more promising execution paths in terms of
performance can be automatically explored and exploited. Moreover, an automatic mechanism to
infer the underlying architecture will permit to build an application-and-system-tailored tree-like
structure of executors, and thus complete a model of execution consisting of a set of tasks that are
automatically distributed at run-time across different execution contexts.

In summary, the goal of this chapter is to present a framework in which user-defined execution
relaxations yield runtime-driven execution expansions, which is built on top of general abstrac-
tions that need to be defined in advance (Section 3.1). In particular, a generic Task-Executor tax-
onomy —which resembles the instruction / data Flynn taxonomy [55]- is first presented to provide
a reasoning framework about how a generic computation (a complete application or any subset of
tasks) can be mapped to a generic architecture described as an executor or a set of executors. This
taxonomy will be the base to develop the different types of relationships between tasks (abstract
units of computation) and executors (abstract execution contexts), and will provide a conceptual

39



40 CHAPTER 3. DYNAMIC RELAXED EXECUTION. A PROG MODEL ARCHITECTURE

basis from which different runtime behaviors and currently statically-determined user decisions
can be exposed as potentially automatizable execution expansions to be resolved at run-time (Sec-
tion 3.2). These execution expansions are the base to explain how actual execution scheduling is
generalized, automatized, and ultimately decoupled from application development.

3.1 Core abstractions

As explained in Section 1.1.1, abstractions are fundamental to encapsulate complexity in different
and inter-related layers. The model architecture presented in this chapter is built on top of the same
abstraction dualism of the static approach, namely: the application (the computational problem
to be solved by the user), and the system (the machine that will solve it). Similarly, application
abstraction is divided into data (considered as the collection of all valid input data that can be
thought and every possible result to be expected), and computation (representing all the possible
algorithms and methods that transform the input information into the result). On the other hand,
the system abstraction is general enough to represent virtually any processing system, and it is
similarly composed by two equally relevant components: the execution context, representing any
set of processing devices that can cooperate, and the storage context, which encompasses any
subset of interconnected memory spaces.

Application abstraction. The task-asynchronous and data-flow models are the building blocks
for the following developments. As mentioned in Section 1.3, despite these models have succeeded
in expressing general computations from simple task dependency definitions, they still have seri-
ous limitations. Armed with this motivation, part of the following discussion aims at generalizing
tasks by means of featurizations, while still maintaining the asynchrony and data-flow character-
istics. In the following developments, a fask refers to a representation of an abstract computation,
in the sense that a whole application or a specific subroutine belonging to the application can be
considered as tasks. The boundaries of a given task (in terms of its input and output) are assumed
to be clearly defined in any case. Regarding data representation, general data structures are con-
sidered, being also decomposable, in the sense that they can reside in different storage contexts
divided into pieces.

System abstraction. Any parallel processing system is represented as a structure of more par-
ticular entities: executors and allocators. Executors are the fundamental recipients for tasks and
provide a context in which the actual workload abstracted by tasks can be instantiated in the form
of an actual execution. More specifically, an execuftor refers to an abstraction of an execution
context, referring to a single or a set of physical processing resources (i.e., an individual core,
SMP, GPU, a heterogeneous platform, etc.). Moreover, executors are composable into graph-like
structures following specific rules. Allocators are associated to executors and they also follow
composition relations directly derived from those of their associated executors. They abstract
physical storage contexts (memory spaces onwards), providing not only data storage, but also data
consistency and coherency guarantees in a transparent way, so that user data can be internally
stored, copied and moved consistently across memory spaces as the execution unfolds.

3.1.1 A Task-Executor taxonomy

The Task-executor taxonomy shown in Table 3.1 and illustrated in Figure 3.1 provides a frame-
work to reason about how generic computations or workloads can be mapped to generic parallel
architectures.

The term Multiple assumes a set of heterogeneous and inter-related entities; multiple tasks
refer to a heterogeneous set of computation units possibly related by data dependencies forming
a Directed Acyclic Graph (DAG), while multiple executors represent a set of heterogeneous and
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Single Task  Multiple Task

Single Executor STSE MTSE
Multiple Executor STME MTME

Table 3.1: Task-Executor taxonomy.

inter-connected devices that can communicate and synchronize. In addition, multiple tasks (or,
similarly, executors) can be contextually collapsed into a single one. The opposite is not true in
general, as not all tasks (or executors) can be decomposed into simpler inter-connected parts.

Specifically, a task is a unit of computation that in general reads an input datum, processes it,
and writes the result into an output datum. A task can be broadly characterized in terms of proper-
ties such as its algorithmic complexity, its data granularity (the amount of data to be processed) or
its computational intensity (in terms of the amount of computation required per data unit). Addi-
tional considerations such as its required numerical precision or criticality / importance in relation
to other tasks could also be considered for characterization.

Similarly, an executor can be characterized by the architectural characteristics of the device(s)
it refers to, such as processing power, bandwidth, memory hierarchy, instruction set architecture or
its degree of concurrency. Also, a set of executors tied by data interconnects can be represented by
a single executor whose parts can communicate and co-operate to resolve a single task. The caller
will be referred as the actor (either the user or other executor) that demands another executor (the
callee) to run a task.

In order to improve programmability and portability, the rationale is as follows: the appli-
cation execution entry point should always be STSE, so that parallel application programming
should aim at STSE-like front-ends regardless of the underlying system complexity. The remain-
ing combinations are backend-like, and they should be ideally hidden from the user and resolved
exclusively by an underlying system software or runtime. Specifically, STME, MTSE and MTME
classifications involve some form of ambiguity in terms of computation mapping and scheduling
that should be delegated to the underlying automatic runtime system. This rationale is not only
motivated by programmability and portability reasons, but also based on practicality reasons, from
the observation that the complexity of the performance-oriented application-to-system mapping in
HPC is scaling beyond practical human-made tuning.

In the following, some additional details of each class are exposed.

3.1.1.1 Single Task-Single Executor (STSE)

This classification refers to the execution entry point or interface: a single task representing the
whole application is mapped onto a single executor representing the whole computing system.
How the task is internally distributed into the different subsystems (homogeneous or heteroge-
neous units) is hidden from the user and potentially resolved automatically at run-time. A STSE
context exposes zero ambiguity to the user: at this level, there is not any decision from the user
that may impact performance or portability. From a programming perspective, the single executor
representing the entry point (or more precisely, the underlying executors encompassed by it) is
instantiated in a different way depending on the underlying system for which the source code is
compiled.

3.1.1.2 Single Task-Multiple Executor (STME)

This backend scenario arises when a single computation —representing the complete application
or a part of it—is free to be mapped to several available execution contexts (e.g., an SMP equipped
with multiple GPUs). In general, executors are considered heterogeneous in terms of computa-
tional capabilities. Hence, depending on the specific task characteristics (type, granularity, preci-
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STSE STME

MTSE MTME

Figure 3.1: Task-executor taxonomy.

sion, arithmetic intensity, etc.), and the run-time state of the executors (current load, temperature,
clock frequency, etc.), this classification exposes some form of mapping ambiguity to be resolved.

3.1.1.3 Multiple Task-Single Executor (MTSE)

In this scenario, several tasks can simultaneously share the resources represented by a single ex-
ecutor, so there is no mapping ambiguity to be resolved by the caller. Nevertheless, this clas-
sification exhibits an ordering ambiguity, as specific orders in which tasks are received by the
executor can have an impact in performance. These situations arise when a set of heterogeneous
and inter-dependent tasks motivate considerations about task importance / criticality. Additionally,
the presence or absence of data in the memory space(s) local to the executor related to incoming
tasks may also motivate a task reordering to minimize idle times or data transfer overheads.

3.1.1.4 Multiple Task-Multiple Executor (MTME)

In this classification, a set of inter-dependent heterogeneous tasks can be mapped to a set of hetero-
geneous and interconnected executors. Some tasks may be suitable for running in some executors
while others may be mapped only to a specific executor. This is a general task-scheduling prob-
lem scenario, already explored in the previous chapter, and considered in this case in relation to
executors.

3.1.2 Executor typology

The concept of executor refers to a handle to an execution context or a representation of a process-
ing environment, possibly endowed with some scheduling policies and a state, and its purpose is
to bridge computation to physical processing resources.

The purpose of executors is to serve as a layer between the requester of computational re-
sources (previously known as the caller) and the physical processing resources. Executors can be
composed into hierarchies, and classified into two major classes: fop and bottom. Recalling their
role as recipients for tasks, executors can be composed or stacked on top of others, so that tasks
can flow across several executors. All executors are assumed to behave as callable asynchronous
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entities (i.e., the caller does not need to wait for the result in order to make progress); this is
realized by simply endowing executors with task or work queues to which tasks are submitted.

3.1.2.1 Bottom executors

They refer to abstractions of single physical processing devices, for example a single CPU core, a
SMP, or an accelerator (GPU, Intel MIC, FPGA, etc.). They are named as bottom as they conform
the lowest level nodes in an executor tree hierarchy. The way in which sequential processors and
multiprocessors are abstracted through bottom executors is explained next.

Abstracting sequential processors. A bottom executor can abstract a sequential CPU core. In
this case, several tasks submitted to it will run sequentially respecting a tight submission order.
Several core executors representing different CPU cores in a die can be aggregated to form a
pool of uniform resources. This aggregation can be represented as a higher level executor (not
qualifying as a bottom kind), which can incorporate policies to manage the lower level executors.
In particular, the included bottom executors can share a task queue, own a task queue each, or other
combinations (for example, sharing queues and applying work-stealing strategies). The underlying
bottom executors run tasks independently, and from the perspective of the caller of the higher-level
executor, the submitted tasks are executed out-of-order in general.

Abstracting multiprocessors. A bottom executor can directly abstract a whole SMP processor,
so a task submitted to it can be run using several cores in parallel, following a fork-join model. In
general, distinct subsets of processing units can process different tasks while the processing units
within a subset cooperate to execute a task. How the incoming tasks are distributed into its subsets
is decided from its internal policies. In essence, these executors run tasks following the moldable
tasking model considered in the previous chapter. GPU processors can also be managed by a
bottom executor and managed under similar considerations as an SMP. In this case, the internal
executor policies would forward the task to an underlying runtime system (e.g., CUDA runtime or
OpenCL runtime) which would transparently manage the low level components of the GPU.

3.1.2.2 Top executors

They refer to executors that work as callers of other executors (either top or bottom). Diagram-
matically, they are represented by stacking them on top of other executors. Among top executors,
two sub-classes are distinguished depending on the number of callers: mappers and unfolders.

Mapper executors. This class refers to the executors that are stacked on top of several execu-
tors. Mapper executors (or mappers for short) offer a single-executor layer —without mapping
ambiguity— to its caller, so STSE and MTSE scenarios, being the single executor SE the mapper,
are viewed as STME or MTME from the mapper callees. A mapper executor can incorporate its
own mapping policies to forward incoming tasks to the callees executors. Specifically, the afore-
mentioned aggregation of bottom executors each managing a CPU core resulted into a mapper
executor.

Unfolder executors. This class refers to executors stacked on top of a single callee executor
(of any kind) and it provides a context in which tasks can be generated and delegated to that
callee executor. In practice, unfolder executors (or unfolders for short) provide a context in which
tasks can be decomposed into a set, in general heterogeneous, of (sub-)tasks. This set could be a
singleton set —i.e., an incoming task is replaced by other task which is then delegated—. A STSE
scenario from the unfolder caller perspective is transformed to a MTSE scenario from the unfolder
single executor callee, see Figure 3.2. Again, an unfolder executor can incorporate policies, for
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example to decide the granularity of the decomposed tasks depending on the runtime state of the
callee and the characteristics of the incoming task.

MTSE °
=

(@) (b)

Figure 3.2: (a) An unfolder executor converts a STSE to a MTSE or (b) to a MTME scenario.

3.1.3 User-defined task featurizations

The application encapsulates the computational problem that the user intends to solve. This single
problem resolution can be viewed as a single rask, whose execution processes input data and
generates output data. Similarly, a unit of information to be read, processed and / or generated as
result of a task, is referred as a datum.

As previously said, a task —by itself— cannot be executed, as tasks need execution environments
or contexts (represented by executors in this model). In addition, not all applications can be run
in any execution context, or equivalently, not all tasks can be associated to any executors. For
this to happen, tasks have to be featurized or enriched in order to become compatible with certain
execution contexts represented by executors. Specifically, tasks can be featurized by providing
partitions, reimplementations or kernel instantiations.

3.1.3.1 Task partition

Task partitioning is a restatement of the developments already introduced in Section 2.2. An
application (or task) can be in general decomposed or partitioned into a set of tasks forming a
DAG. As illustrated in Figure 3.3, a task partition could be one possible way to compute a given
problem, and a given application can be decomposed in multiple ways according to different levels
of data granularity.

3.1.3.2 Task reimplementation

For a given computational problem represented by a task, there can be different algorithmic instan-
tiations to solve it. These instantiations may differentiate in terms of algorithmic complexity, level
of concurrency, parallelization possibilities, heap and stack memory footprint, or arithmetic inten-
sity, among other characteristics. These several ways to represent a given application or workload
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Figure 3.3: Example of featurizations for tasks A, B and C in terms of kernel instantiations and
partitions.

are themselves tasks, and they are named as possible task reimplementations for a given source
task that is subject to be reimplemented or replaced.

3.1.3.3 Kernel instantiation

In general, there are many ways to instantiate the computation (abstracted by a task) in the form
of a program or algorithm into source code, and some might be more appropriate for a specific
processing architecture than others. These algorithmic instantiations into computational kernels
(just kernels onwards) are usually free functions typically delivered in the form of highly tuned
libraries targeting specific processing architectures. Figure 3.3 illustrates different examples in
which a task can be featured in terms of kernel instantiations. In general, any children task be-
longing to a partition or any task representing a reimplementation can be independently featured
by its own partitions, reimplementations, and kernel instantiations.

3.1.3.4 Task-executor compatibility

With regard to execution contexts, the STSE execution entry point aims at hiding architectural
details to the user by accepting, in general, an abstract definition of a computational problem —
i.e., not necessarily a specific kernel instantiation—. Consequently, the question regarding how
to formulate a computing problem according to a specific architecture-aware kernel instantiation
arises. In this sense, the bottom / top categorization for executors is not only useful to distinguish
about proximity of execution contexts to hardware, but it also imposes requirements for how ab-
stract the computational units assigned to them can be. Table 3.2 illustrates this statement: bottom
executors only allow tasks that expose actual instantiations —in the form of kernels— compatible
with the physical processing architecture managed by them. For example, a task exposing a GPU-
kernel instantiation will be allowed to run on a bottom executor handling a physical GPU. On the
contrary, the logical-and-not-physical characteristic of top executors only accepts abstract tasks
that can either be forwarded to other executors —if it is a mapper—, or be transformed in terms of
reimplementations or partitions —if it is an unfolder—.

Executor type Compatibility requirements for a task
Bottom Exposing a kernel instantiation compatible with the target processor
Unfolder Exposing at least one partition or reimplementation
Mapper Satisfying at least one requirement of a callee executor

Table 3.2: Task requirements to be satisfied depending on the executor type.

In the following, a number of task-to-executor compatibility restrictions are exposed in detail.
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Task thread forking. A task that exposes some degree of parallelism can be run by a bottom
executor managing a multiprocessor only if the user has declared a compatible kernel instantiation
for the multiprocessor. In that case, the bottom executor can decide the amount of resources to
devote to that kernel, and it can transparently block those resources in order to prevent simulta-
neous use of them. Related to parallel architectures, parallelism could be exploited at any level
(e.g., whether threads are cooperating in a SIMD, lock-step SIMT, task-parallel, or other fashion
is irrelevant in this context).

Architecture-dependent task executions. Similarly, according to section 1.3.3.3, a kernel in-
stantiation of a task could require the use of specific processing units accessible via extensions
exposed in the processor ISA (e.g., floating-point units, SIMD vector units, tensor cores, etc.).
Hence, a task featured with a kernel instantiation of this kind is only compatible with bottom
executors associated to processors that support this kind of characteristic.

Task unfolding. As mentioned, a task can be assigned to an unfolder executor if it exposes
at least one possible way of unfolding, either in terms of partitions or reimplementations. To
preserve correctness, it is assumed that the processing of the computational DAG after unfolding
yields equivalent results —according to some measurement— to the original task. For the sake of
generality, that equivalent DAG does not need to be known in advance (i.e., statically), as task
dependencies can be resolved as previous tasks are finished and new tasks are generated. Whether
the unfolding ultimately results in a complex connected DAG, a set of disjoint DAGs, or a single-
task DAG —as it is in the case of reimplementations—, is irrelevant in this context.

Task mapping. As specified in Table 3.2, a task can be assigned to a mapper executor as long
as it satisfies the requirements of any of the executors encompassed by the mapper executor. That
is, the compatibility requirement for a task to be run on a mapper is essentially forwarded or
propagated to the mapper callees.

3.1.4 Allocator typology

In a similar way in which executors and tasks reflect abstractions for different execution-contexts
and computations, respectively, this section focuses on how allocators associated to executors are
designed to abstract a wide variety of storage contexts, ranging from single memory spaces to a
cache-coherent set of memory spaces. In particular, a memory space is any physical device able
to store and retrieve data by means of system (OS) or library calls exposed by any third-party
program. These memory spaces do not necessarily need to be local to a processing device, but is
is assumed to exist an explicit mechanism —again, either by system or library calls— to send and
retrieve data from / to them.

The allocator typology is similar yer simpler than the exposed executor typology, and it is
directly derived from the way in which processing devices are tied to a set of memory spaces in
modern architectures. For each executor, a single or a set of memory spaces are allocated, and the
data associated to tasks mapped to an executor need to be visible in the memory spaces associated
to that executor. In other words, in this model architecture, task-executor locality naturally implies
data-to-storage context locality for the data to be processed by the task. The term allocator em-
ployed in this model, in general, refers to an active entity able to perform memory management
operations such as allocation and deallocation, data caching, eviction and reclamation, and request
/ satisfy data consistency and coherence operations [ | 35]. Similarly to executors, the typology dis-
tinguishes between bottom and top allocators, that differentiate according to the level of memory
management they are designed for, as detailed next.
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Figure 3.4: Executor and allocator hierarchies for a CPU-GPU architecture and associated data
management commands triggered if Main task reads datum D1, reads and outputs datum D3 and
outputs datum D2.

3.1.4.1 Bottom allocators

In particular, a single bottom allocator is associated to each bottom executor, abstracting away a
local memory space referred to the physical device handled by that bottom executor. Bottom allo-
cators are the simplest type of allocators, and they only perform memory allocation and dealloca-
tion operations. This bottom executor / bottom allocator coupling does not need to be one-to-one,
as several bottom executors may refer to a single bottom allocator. The latter situation arises when
a set of executors tied to CPU cores are associated to a shared RAM memory space. In theory, lo-
cal core caches in a multiprocessor could be handled by bottom allocators, but in practice there are
no explicit OS calls that permit cache-wise memory allocation, as data coherence in modern mul-
tiprocessors is controlled on-chip following a memory model implemented at microarchitectural
level [69, ]. The one-to-one bottom executor / bottom allocator coupling becomes otherwise
natural in a case in which an accelerator —a GPU or a FPGA, for example— has an associated local
memory space directly connected with the physical processor.

3.1.4.2 Top allocators

By definition, top executors encompass or include lower-level executors. Depending on the char-
acteristics of a top executor, either a top or bottom allocator will be associated to it. Top allocators
abstract several allocators (either top or bottom, or a mixture) and provide a data coherency layer
across the managed memory spaces. Figure 3.4 illustrates a simple executor hierarchy, its associ-
ated allocator hierarchy, and a set of data management commands to be satisfied by the different
allocators, associated to a set of data elements DI, D2 and D3 of the Main task.

Particularizing to fop executors, an unfolder executor stacked on top of other executor will
refer to the allocator associated to that executor. Equivalently, a mapper executor encompassing a
set of executors that ultimately refer to the same memory space will be associated to the bottom
allocator of that memory space. Contrary, a mapper executor encompassing a set of executors
referring to more than one memory space will refer to a top allocator responsible for data consis-
tency and coherency operations.

Finally, if the system exposes a set of memory spaces untied to any processing device (e.g.,
permanent storage drives such as hard-drives, flash memories, SSD storage, or non-volatile mem-
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ory drives), a bottom allocator is associated to them and any top allocator will implicitly aggregate
them to guarantee the visibility of data residing in those memory spaces from any level of the
executor tree. Moreover, whether the Single Executor at the program entry point belongs to the
top or bottom categories, it will always refer to a top allocator able to resolve coherence requests
across all untied allocators together with the allocator(s) referenced by its callee executor(s).

3.1.5 Hierarchical data-dependency resolution

A task is considered to be ready when all its read-only, read-write and write-only dependencies
are accessible within the local memory space(s) associated to the executor to which the task has
been assigned. The specific meaning of accessible is summarized in Table 3.3 depending on the
dependency kind. Data accessibility requirements are different from Data locality requirements in
general, in the sense that once accessibility is satisfied, data locality (i.e., data is local to a memory
space handled by the current executor) does not necessarily need to occur.

Dependency kind Conditions for a data object to be accessible

read-only The last writer has finished
read-write All readers and the last writer have finished
write-only Memory allocation is finished

Table 3.3: Necessary events for a task to be ready depending on the dependency kind.

When a task is ready in the context of an executor, the actual execution can start. Once the
resources managed by the executor have completed the task execution, the task is considered
resolved and other tasks waiting for its completion may become ready.

The existence of unfolder executors and reimplementable / partitionable tasks requires data
types featured with partitioning capabilities. A data partitioning is considered as a reversible action
(done within the context of an unfolder executor), in terms of the data transformation by itself and
the eventual changes in the processing of the partitioned data (again, according to certain measure
of equivalence). Partitionable data types must expose accessing modes so that data subregions can
be accessed by children tasks in which the original parent task is decomposed.

If the task has been assigned to an unfolder context, the dependency resolution is performed
before the actual partitioning or reimplementation is initiated. Once all tasks generated within
an unfolder context have been delegated to the unfolder callee, the partitioned task will not be
considered as finished unless all generated tasks have finished.

If the task has been assigned to a mapper, it is just forwarded to one of the compatible executors
handled by the mapper without the need of any dependency resolution. If the mapper encompass a
top allocator, then the eventual coherence requests required by dependency resolutions within the
contexts of the callee executors are resolved by the same top allocator. Contrary, if the mapper is
associated to a bottom allocator, those requests are delegated to the closest top allocator upstream
in the executor tree.

3.2 Scheduling execution expansions

This section explains how previous actors establish the scenario in which a runtime-driven ex-
panded execution model is defined. Section 3.2.1 introduces the concept of execution expansions,
that permits (in Section 3.2.2) to generalize the traditional concept of task scheduling. Finally, Sec-
tions 3.2.3 and 3.2.4 present some considerations regarding the general input and output spaces in
which schedulers act, together with diagrams that illustrate how simple hierarchies of executors
and task featurizations expand into execution paths accessible by the runtime.
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3.2.1 Execution expansions

The execution expansions are the proposed solution in this thesis to the problem stated in Sec-
tion 1.3, referring to the lack of automatic capabilities of current runtime systems. As mentioned,
the term scheduling does not only refer to task scheduling, but to a more general form in which the
abstract execution could be orchestrated in richer and multiple ways. In this sense, the term gener-
alized scheduling is used in the following to refer to general actions taken at run-time that, in any
way, diverts the execution of the program. Hence, the task scheduling term or task-to-processor
mapping is only a particular case that considers how tasks are diverted to processors by task-to-
processor actions. In this dissertation, the purpose is to expand current runtime behavior by means
of general scheduling decisions that are currently taken by the user guided from his / her intuition
and expertise —which comes at the price of higher development costs, ad-hoc and non-portable
performance tuning, and possibly suboptimal performance—, that could potentially be done by an
automatic agent while attaining new heights in terms of execution performance and efficiency.

As explained, the ability given to the user or programmer to increase the execution possibil-
ities of a parallel program is meant to tackle three problems at once, namely: (i) to reduce the
decision cost during parallel application development by declaring execution opportunities to the
runtime system; (ii) to let the runtime system access execution configurations too complex to be
represented in a user-written computer code, yet attaining new levels in terms of performance and
efficiency; and (iii) to provide a performance-portability development mindset in which an imple-
mentation of a parallel application —the implementation in mere computer code— is a higher level
abstraction able to be instantiated into many possible binaries depending on the target platform,
each of which is able to access many possible opportunities in terms of execution paths.

Execution expansion Introduced in Section Done in the context of

Heterogeneous dispatch 1.3.2.1 mapper executors

Memory management 1.3.2.2 top and bottom allocators

Out-of-order execution 1.3.2.3 any executor
Per-task clocking 1.3.2.4 bottom executors
Moldable task execution 1.3.3.1 bottom executors
Task partitioning 1.3.3.2 unfolder executors
Special vector/matrix processing 1.3.3.3 bottom executors
Mixed precision execution 1.3.34 unfolder and bottom executors

Task reimplementation 1.3.3.5 unfolder executors

Table 3.4: A summary of how specific runtime behaviors are expressed in the current model
architecture.

Section 1.3.2 exposed how a set of behaviors currently performed without user intervention in
a number of runtime systems. Additionally, Section 1.3.3 listed a set of decisions that are usually
carried out by users during the application development cycle in HPC. Table 3.4 summarizes
these behaviors and user-side static actions —viewed as execution expansions—, related with the
actors (executors and allocators) just presented in previous sections. The ability to expose these
behaviors and user-handled actions in terms of these presented actors is the first step toward the
automatization and full delegation of them to an automatic and generalized scheduler.

3.2.2 Generalized scheduling

The declaration from the user side of the previous execution expansions is meant to let the runtime
to fully control the execution. In particular, those execution paths are designed to be promising ex-
ecution opportunities to be selected by generalized schedulers. For every compatible task—executor
pair, there is an instance of a generalized scheduler that acts according to a set of available actions



50 CHAPTER 3. DYNAMIC RELAXED EXECUTION. A PROG MODEL ARCHITECTURE

or scheduling decisions. Specifically, generalized schedulers are designed to transparently make
decisions that guide the execution to (i) optimize some quality measure (e.g., time to solution,
energy cost per flop, etc.) and / or (ii) to satisfy some constraint (e.g., threshold power).

From the perspective of ambiguities at execution time, in the Single Task-Single Executor
(STSE) approach, the actor that assigns a task to the top-most executor is the user itself (see
Section 3.1.2). In this case, the user is not exposed to any degree of ambiguity, thus there is
not any decision to take that could impact neither performance nor portability. That top-most
executor could be the tip of a complex and deep executor tree, in which executors are endowed
with generalized schedulers that resolve all the ambiguities arisen at run-time, and exposed by
the user by means of featurizations during the application development process. Armed with this
model, and regardless of the underlying complexity, the user role at the development stage is not
to imperatively drive the execution, but to declaratively provide featurizations for the application
tasks to enrich the execution, so that the runtime has (and the generalized schedulers in particular
have) access to a wide set of execution options.

These generalized schedulers are the last necessary entities to complete the proposed model
architecture. Summarizing, from the executor hierarchy and the STSE paradigm presented in
Section 3.1.1, complex executor tree hierarchies can be built. As mentioned, the frontend con-
text is always STSE and it is connected downstream to a tree executor architecture with virtually
unlimited depth. This executor architecture imposes a clear fop-to-bottom directionality of the
computation flow, and this flow in every branch is in essence guided and molded by generalized
schedulers in every executor. On the other hand, task dependencies are resolved in general at any
level —as every executor but mappers do perform dependency resolution—. Lower-level executor
layers will typically be associated with finer data granularities —at least able to fit in local memory
spaces of bottom executors— while higher-level layers would involve coarse data management re-
ferring to several memory spaces, internally managed by fop allocators. As will be seen in next
chapters, specific user declarations may not only influence different execution paths in terms of
computation, but certain data operations related to data-management could also be altered from
specific user definitions.

3.2.3 Action spaces

In order to reason about how these rich executions can be generated from a STSE context, this
section explains how different paths can be branched depending on the typology of executors pre-
sented in Section 3.1 (see Figure 3.5). Specifically, in a deep-executor tree context, expanded
execution paths are composed at run-time while tasks flow downstream in the executor tree hierar-
chy, as each executor performs path execution branching according to its typology. Top executors
can be identified as those that perform rather strategic and high-level decisions, while bottom
executors will typically perform lower-level decisions in terms of architectural details, possibly
based on the precise run-time status of the physical devices. For this reason, top executors (actu-
ally, their schedulers) actions constraint the execution paths to be branched by bottom executors,
so that the decisions of fop executors (their schedulers) corresponding to high-level layers in the
executor hierarchy are expected to have more impact.

Figures 3.6, 3.7 and 3.8 illustrate the resulting execution paths from specific user-defined exe-
cution expansions. The following symbols are used hereafter:

Yellow star: Execution entry point (STSE).

Blue square: Execution branching due to scheduling.

Green circle: Sink of execution path(s), representing the execution on a processing device.
Yellow circle: Fixed decision without any further ambiguity.

Black path: A possible execution path.
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Figure 3.5: Example of an executor tree and action spaces corresponding to featurizations in
Figure 3.3. Incompatibility between a task and an executor results into empty action spaces (grey
boxes).

Red path: Chosen execution path.

Classical dynamic task scheduling algorithms are just a particular instance of the generalized
scheduling paradigm presented in this section. Figure 3.6 illustrates the execution paths available
for the scheduler to take when a task is able to be mapped to any one of the four underlying
devices. Trivially, one execution path will correspond to one task-to-executor assignment. If the
task is not able to be mapped to a specific executor —e.g., because it is a bottom executor that
manages a processor for which the task does not expose a specific kernel implementation—, the
spanned execution paths would be fewer.

Under the context of execution paths and executor architectures, Figures 3.7 and 3.8 illustrate
how runtime generalized scheduling can be viewed as a generalization of the previous runtime
task scheduling problem illustrated in Figure 3.6.

For instance, if a task is mapped to a bottom executor managing an SMP, the executor sched-
uler will choose one task-to-threading assignment among the set of the user-declared assignments.
Similarly, unfolder executors will choose one possible fask unfolding among the ones declared by
the user. Note that unfolder executors produce in general MTSE or MTME contexts from the
point of view of the executor callee(s). Downstream in the executor hierarchy, the execution of
each children task within this multi-task scenario will be subject to subsequent expanded execu-
tion depending on the typology of the following executors. In this sense, Figure 3.7 is an example
of how higher-level execution paths resulting from reimplementations and partitions branch into
lower-level forking paths.

Additionally, the existence of partially ordered (i.e., inter-dependent) parallel tasks sharing
resources pose ordering ambiguity that could be subject to a degree of ambiguity equal to the
number of possible task execution orders that do not violate task dependencies (i.e., also known
as toposorts); however this is not illustrated in Figure 3.7 for the sake of clarity.

User-defined execution relaxations can also be composed with hardware-defined execution
relaxations. Figure 3.8 illustrates this case by composing processor frequency clocking options
with user-defined task vectorization possibilities. The same composition can be applied under the
scope of a bottom executor managing an SMP.

3.2.4 State spaces

In all practical scenarios, scheduling decisions must be based on some form of input information
that is fed into policies that define the ultimate behavior of the scheduler. Depending on the in-
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Figure 3.6: Expanded execution paths (c) in a heterogeneous SMP-GPU system (a) resulting when
a single task is featured (b) with different kernel implementations for SMP and GPU architectures.
The red path illustrates a final decision of the Scheduler that optimizes some metric (e.g., time-to-
solution, provided the GPU B is the fastest device for that task).

formation source and policies (and hence, schedulers) can be classified according to the following
categories following an increasing level in sophistication:

Blind schedulers. This is the simplest case of scheduling in which the decisions are independent
both from the task to be mapped and the properties of the target devices. This could be a fixed or
a random decision.

Static schedulers. They are applied based on information not varying at run-time. For example,
information regarding the parameters of the task to be scheduled and the type of the target execu-
tors can be considered to make the decision. Additionally, performance or efficiency estimations
in terms of previous measurements of the task running on the target executors, in the form of a
table or in the form of analytic models built from interpolation, would also be encompassed by
this category. These policies are usually cheap and greedy: in complex and / or previously unseen
scheduling scenarios they are expected to fail, as the static information will be usually too narrow
to encompass all possible run-time scenarios. Common scheduling algorithms like HEFT [145]
belong to this category.

Dynamic stateless schedulers. They are endowed with policies that are applied based on some
form of run-time state of the target devices. They output scheduling decisions based on run-
time information of the target devices. They can also be equipped with some form of pre-defined
(static) information, but they are also referentially transparent, in the sense that either run-time and
possible static information are the only sources considered in the decision making. For example,
processor clock scaling decisions implemented in modern processing chips elevate or reduce the
processor clock frequency based on the internal temperature state of the chip.
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Figure 3.7: Executor architecture resulted from stacking an unfolder executor on top of a bottom
executor managing an SMP (a), together with task featurizations (b), result into expanded execu-
tion paths (c). It is assumed for simplicity that all fork kernel instantiations allow only for two
possibilities —either fork using two or four threads—. Paths in red refer to a particular execution in
which the main task is partitioned, and each resulting child is executed with two and four threads
respectively.

Dynamic stateful schedulers. They are an extension of the previous dynamic schedulers, in
which a varying internal state is considered on top of other sources of information —either run-
time or static—. This internal state can change and is supposed to enrich the run-time information
of the devices with some form of higher-level and abstract representation of the environment, so
that this additional insight can yield smarter actions. This internal state is itself supposed to evolve
across the execution —this change resembling a training or learning process—, so the application of
a dynamic stateful policy may yield different results in different times for the same run-time state
and static information. These policies are the most sophisticated ones, and require the design of a
complex iterative training process aiming to make the internal state to a scheduler representation
able to yield high-quality scheduling actions. For example, machine learning algorithms based on
reinforcement learning [83, ] belong to this category.
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Figure 3.8: Resulting expanded execution paths (¢) when a bottom executor manages a physical
core (a) that exposes an ISA with vector extensions and frequency clocking manipulation, and
the user provides custom a vectorized kernel instantiation for the task (b). The resulting execu-
tion paths are the cross-product of the available user-defined vectorization options and hardware-
available frequency clocking options (1GHz, 2GHz, 3GHz). The path in red expresses the joint
decision of running the vectorized kernel at 3GHz.

3.2.4.1 Executor run-time states

Noting the importance of dynamic scheduling in modern systems and platforms, in the following
it is exposed how the visibility of an executor state is translated to schedulers belonging to any
kind of executor, and in general how the exposed executor tree architecture naturally imposes a
hierarchical run-time state representation for all levels of any executor tree.

Bottom Executors. As bottom executors manage physical processing devices, their dynamic
schedulers must have access to those hardware metrics that can better characterize the state of the
processing device at a given time. In particular, metrics such as overall utilization, current clock
frequency, cache utilization, or temperature could be considered. It is expected that this informa-
tion is combined with static information, in terms of characteristics of the task to be scheduled,
and dynamic information regarding the executor task contention (i.e., the number of tasks assigned
to it pending to be executed).

Top Executors. Schedulers of top executors, belonging either to unfolders and mappers, refer
to run-time states that are a mere aggregation of the run time states of the physical devices that
ultimately lie at the bottom of the executor tree. Noting this, the run-time state information of
executors has a clear bottom-to-top directionality, in opposition to the computation flow. In the
context of an arbitrary executor tree, and regarding the responsibility of schedulers belonging to
high-level executors, this run-time state composition naturally implies a wide view of the state of
the system, necessary to perform those high-level decisions with a considerable potential impact.

3.24.2 Data-dependent scheduling

In certain applications, the performance of a task may strongly depend on the actual data to be
processed. In particular, the motivation of the reimplementation execution extension is rooted
on this observation. For example, in practical scenarios, linear algebra computations processing
matrices that exhibit some degree of sparsity are more efficiently when executed as sparse-based
algorithmic variants. Similarly, many computational physics applications based on adaptive de-
composition of the simulation domain are another example in which the execution path is strongly
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guided by data properties. Hence, based on the importance of this kind of applications in HPC, it
seems reasonable to equip the proposed generalized schedulers with the capacity of being sensi-
ble to data-dependent information. As explained in the following chapters, apart from execution
expansion definitions, the user will also be allowed to expose specific function declarations that
can be composed with the previously mentioned run-time and static information, so that the gen-
eralized scheduling can be additionally guided from data-dependent information.

3.3 Summary

The goals of this section were to establish the basic building blocks from which a programming
model can be implemented. The task-executor taxonomy served as a starting point from which
rich executor trees abstracting parallel computing architectures can be defined by composition.

Taking into account what this model architecture exposes, the role of the HPC application
programmer do not consists of a possibly cumbersome and non-portable parallel programming
application development, in which decisions concerning low level parallel programming direc-
tives are tightly coupled to considerations of the problem kind / size / heterogeneous system /
optimization goal. Contrary, in this model, the expertise of the user translates into decisions about
which featurizations are meaningful for some optimization goals, application characteristics, and
architecture characteristics of the computing platform.

3.3.1 Related work
3.3.1.1 C++ executors

The concept of executor as an abstraction of an execution context is not novel. With regard to
C++ language, there are several proposals [73, 95, 94, 72] aiming to incorporate executors to the
C++ standard targeting a generalization of the context in which a general computation is mapped.
In particular, executors provide a unified layer in which a set of behaviors can be expressed and
exploited. For example, executors could provide (i) placement semantics to control where and
how the execution is performed; (ii) control relations between threads —e.g., whether the call to
the executor is synchronous, asynchronous or deferred—; and (iii) semantics for chaining context-
dependent computations. These proposals are meant to be generic, composable with parallel STL
algorithms [77] and serve as cornerstones from which more complex and application-dependent
computations can be built upon. In the long term, executor proposals are the first step toward en-
abling heterogeneous computations and networking capabilities in future C++ language standards.

The executors developed in this thesis share the fundamental point of C++ executors pro-
posals, in the sense that all executors are abstractions of execution contexts; however they are
fundamentally different for several reasons. Note that C++ executor proposals are meant to en-
hance the expressivity and capabilities of a general-purpose multi-paradigm language, while the
proposed model is an HPC-oriented framework in which user-defined execution relaxations can
be expressed to ultimately leverage generalized schedulers to drive fully automatized executions.

Looking at some of the differences, composability can be thought as the key characteristic
of the presented executors, as they are endowed with tight composition rules that specify how
the different executor categories compose with each other. Other key element of the presented
executors is that they are strongly parametrized, so that they can be instantiated as application-
and-system-specialized contexts by means of user-defined execution relaxations and architectural
features. Also, these executors are meant to be deployed at the beginning of the program, and
compose into an executor tree built from the constraints that the system (ultimately, the hardware)
and the user application impose.
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3.3.1.2 C++ allocators

The concepts of executors and execution contexts have a clear correspondence with the concepts
of allocators and allocation or storage contexts. Contrary to C++ executors, C++ allocators have
been a part of the standard for several decades, and are implemented as a fundamental component
of STL containers. C++ allocators have been recently upgraded in the latest C++17 standard to
ease their use and extend its capabilities for runtime polymorphism, but their core functionalities
—i.e., providing an interface for custom memory allocation— are essentially the same.

On the contrary, although the allocators presented in this chapter also provide contextual mem-
ory allocation, their mechanism are fundamentally different. In particular, the presented allocators
are always paired with executors —so that memory space locality is derived from executor locality—
and always associated to one or several physical memory spaces. Additionally, top allocators are
essentially software memory controllers, as they provide context-aware and fully transparent allo-
cation and movement capabilities together with consistency and coherence guarantees. In general,
these allocators ensure that data associated to a task running in an executor context can be accessed
after task resolution.

3.3.1.3 Model of computation and execution

Among the programming models exposed in Section 1.2.2, many of them [58, 51, 12, 88, 85]
provide some level of support for task asynchronous and data-flow computations. This is also
the main model of computation and execution in the proposed architecture with an additional
subtlety: the task concept that is presented in this chapter refers to a more abstract entity than
what is considered a task in current programming models. The presented abstract tasks need to be
instantiated (i) by user-defined featurizations and (ii) by association to an executor context. It is at
that point when a task can be actually executed.

Also, as specified in Section 1.2.2, several of the exposed models are designed to support
heterogeneous execution —e.g., simultaneous use of a CPU and a GPU(s)-. This is also a pos-
sible model of execution in the presented architecture, enabled by the use of a mapper executor
encompassing a set of bottom executors tied to different processing devices.

3.3.1.4 Managing granularity

In this context, the concept of granularity is interchangeably used to refer to either rask / data
granularity —i.e., how much of computation and/or data needs to be processed—, and thread gran-
ularity —i.e. the amount of processing load in terms of number of threads—. Usually, both are
strongly related, as coarse-grain data-parallel tasks will perform better when several threads are
dedicated to its computation. This problem was illustrated in detail in Chapter 2.

Although several programming models provide explicit mechanisms to choose the granularity
associated to a certain computation (e.g., let the user pick (a) the amount of partitions in which a
for loop is divided for parallelization, or (b) a proper size for data blocks), no model lets the user
to relax and to expose granularity decisions in order to delegate them to the runtime.

There are however some approaches aiming at collapsing too fine-grained tasks into coarser
tasks for efficiency purposes. For example, approaches based on kernel fusion [152] or kernel
batch execution (employed in some application-specific kernel libraries [ 1 3]) have been proposed
to decrease the runtime overhead due to excessively fine-grained tasks.

Automatic control of thread granularity in SMPs is also performed in some well-known run-
time systems of kernel libraries [76], in which the amount of threads can be decided at run-time
based on the kernel parameters. In this case, assumed that this thread management is properly
done, the features exposed by the model presented in this chapter in terms of forking within a
bottom executor, would not be needed.

In summary, despite the performance impact of these decisions is strongly dependent on the
granularity of the tasks, there is still no mechamism in current programming models to let the user
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relax and expose a set of available threading granularities from which the runtime can pick.

3.3.2 Contributions

The contributions of the proposed model architecture are the result of following the trend of mov-
ing the complexity (and responsibility) from the user to the runtime to simultaneously target prob-
lems of programmability, portability and performance. In a more specific terms, several key con-
tributions are exposed in the following.

Systematic complexity parametrization and delegation. Regarding the presented model ar-
chitecture, task granularity is meant to be runtime-driven by means of generalized schedulers
associated to unfolder executors. Similarly, thread granularity is also runtime-driven by general-
ized schedulers associated to bottom executors, from the set of options exposed by the user. More
generally, there is no programming model in which all the exposed execution expansions can
be declared for runtime delegation. In other words, there are no mechanisms in current parallel
programming frameworks to systematically parametrize and delegate the application- and system-
dependent complexities occurring in typical HPC executions, in which most of the decisions are
done statically and incrementally by the user during the application development and optimization
processes.

The proposed architecture do not only offers the user to expose and delegate to the runtime
any decision that is currently performed statically, but also to compose several decision sets.

A computation-execution classification framework. The proposed task-executor taxonomy is
meant to provide a framework for composing generic scenarios in terms of computation and ex-
ecution. From this idea, the motivation for STSE-like frontends was developed, and the executor
classes and their composition rules could be proposed.

Encapsulation of complexity. The complexities of the hardware platform are encapsulated by
executor abstractions, classified and related by hierarchical structures. Executor composition rules
enable the achievement of as many layers of abstraction as demanded, so a reduced number of
higher-level execution contexts can be built from a greater number of lower-level executors, until
the point in which the whole parallel platform can be reduced to a single abstract execution entity
which represents the execution entry point.

Generalized schedulers of executors in the same layer would typically provide similar opera-
tions with a similar level of abstraction, while generalized schedulers in different layers will relate
to more strategic or more architecture-level decisions. For efficient dynamic generalized schedul-
ing, proper platform and run-time state visibility are naturally propagated bottom-to-top during
executor composition.

Motivated by the potential benefits of the conceptual framework just presented, the next chap-
ter exposes the design principles and programming interface of a runtime system that implements
these ideas.
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He caressed a holy crate

but his fingers altered its state.

“You touch, you pay, you take away”
they said.

He offered his soul in exchange.
Of its access, he was not afraid,
as for stateless ghosts in disarray
there is no mutex to take.

STEEL. Design principles and implementation

The STSE model and the concept of user-defined execution relaxations have been implemented
into the Single Task / Expanded-Execution-Leveraged Programming Model (STEEL-PM) and run-
time system implementation STEEL-RT, programmable via an Application Programming Inter-
face (API). The goal of this chapter is to present the STEEL-API architecture for application
developers and to compare this proposal with other approaches in the literature with similar ob-

jectives.
‘ ' STEEL-RT

M template library

Application developer

- Data transfer libraries
- OS libraries
- Kernel libraries
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Figure 4.1: Diagram of STEEL programming model implementation.

Figure 4.1 illustrates the basic components of the STEEL programming model implementa-
tion. The fundamental principle is that the user (or, similarly, the application developer) exposes
execution opportunities that might be worth being considered to fully exploit the underlying hard-
ware resources. These opportunities are exposed by means of the aforementioned relaxations
(or task featurizations). Consequently, the compiler outputs an expanded execution-leveraged
executable, in which all those relaxations are explored and exploited by the underlying runtime
system.

As a side etymological note for the sake of disambiguation, the term expanded execution is not
referred here as if the execution is extended in time. On the contrary, it is the runtime execution
action space —or the set of execution opportunities— that is expanded or broaden.

The chapter is structured as follows. Section 4.1 introduces some principles that were followed
during the implementation. Some knowledge of basic syntax of C and C++ is welcomed, and the
reader is encouraged to review some basic C++ syntax exposed in Appendix A before studying
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the contents of Section 4.2, that illustrates with examples the developed API. Finally, Section 4.3
summarizes the fundamental contributions and relates them with state-of-the-art programming
models and runtimes, in terms of their expressivity, programmability, and runtime capabilities.

4.1 Introduction

This section illustrates the guiding principles that were taken into account in its design (Sec-
tion 4.1.1). In addition, the scope in which this programming model is intended to operate
is summarized, in terms of both systems —architectures— and the kind of target computations —
applications—, also highlighting the scope of the current implementation (Section 4.1.2). Finally,
an overview of the implementation architecture is provided in Section 4.1.3, together with a set
of basic guidelines related to the implementation language in which STEEL-PM is written (Ap-
pendix A), in order to properly understand some syntactic details exposed throughout the chapter.

4.1.1 Implementation requirements

This section is introduced in first place in order to understand the basic architecture and design
principles that guided the development of STEEL-API and STEEL-RT. Note that these principles
are not specific to the model architecture presented in Chapter 3. On the contrary, they are general
principles that, from the opinion of the author, constitute crucial guidelines concerning the devel-
opment of any programming model implementation designed for HPC application developers.

STEEL-RT can be considered as a middleware runtime library that bridges a parallel architec-
ture with the user application. As such, its design principles are rooted on run-time performance,
composability and orthogonality, high-level abstractions and hard-to-misuse user interfaces, as
exposed next.

Run-time performance

Performance is the most crucial aspect of a runtime library meant to be used for High-Performance
Parallel Computing, as the ultimate goal of an application developer targeting parallel application
is to extract as much performance as possible from the parallel hardware. In terms of task-based
concurrent runtime systems, performance can be reduced by several factors. The typical sources
of performance dampening are resource-contention and resource-starvation — i.e., too much or too
low utilization of resources—. These problems can be themselves caused by others, like lack of
data locality, lack of parallelism, too fine-grained workloads, poor scheduling, or too expensive
parallel synchronization operations, among others.

Composability and orthogonality

Composability (in terms of ease of adding new functionalities or scaling-up software) and orthog-
onality (referring to encapsulation and separation of concerns) are crucial aspects for software
scalability and robustness. The STEEL-PM implementation is required to be highly scalable in
terms of several factors, namely: applications (what the user can express), architectures (from low-
level device architectures to heterogeneous and distributed systems), relaxed abstractions (either
application-dependent or exposed by hardware), and external kernel libraries (to reuse and exploit
highly tuned kernel implementations).

Related to run-time performance, an additional requirement is that new additional functionali-
ties do not introduce unnecessary run-time overhead. This requirement is sometimes paraphrased
as “don’t pay for what you don’t use”. With regard of concurrency and its intrinsic program-
ming challenges, it is expected that adding new features do not potentially harm neither program
correctness nor parallel performance.
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As mentioned in Sections 1.2.1.2 and 1.2.1.4, although object-oriented programming patterns
are established as a good solution over previous procedural patterns in terms of encapsulation and
separation of concerns, they expose inherent problems in terms of concurrency.

On the contrary, as explained in Section 1.2.1.1, the ever-increasing presence of functional
patterns in modern programming languages is partly motivated by the inherent composability and
orthogonality properties of pure functions and the lack of global state.

Generic programming patterns have also proven to be an excellent approach when aiming
at more composable software designs (see Section 1.2.1.3). Generic algorithms are feature-
parametrized by design, which usually implies that adding a new feature results to minimal code
modifications.

High-level yet expressive abstractions

A software program can be regarded as an abstraction layer that bridges a user intent with some
form of computation performed in complex hardware devices; higher-level abstractions naturally
imply easier interfaces. However, high-level abstractions should not be foo abstract so that the
programmer’s intent is obscured. Hence the goal is to find a proper balance between both, also
not sacrificing control, thus allowing users to express low-level computations when the situation
demands it.

Hard-to-misuse interfaces

Similarly, the main goal of an API is to provide a service while abstracting the programmer from
the complexities of the service. The number of ways in which an interface can be misused di-
rectly harms programmer productivity and makes the programming learning process unnecessar-
ily harder. Moreover, the importance and complex details of concurrency and parallel computing
development in modern software has motivated the rise of programming languages for which
programs are not only easy to write, but also more likely to be correct after the first successful
compilation. In the context of concurrent and parallel programs this objective acquires extreme
importance, as the usually non-deterministic nature of the concurrent execution may make the
debugging process of run-time errors cumbersome.

In particular, type-safety is a built-in feature of strongly-typed languages, in which the pro-
gramming syntax is heavily constrained toward respecting specific relations between data types
and discouraging implicit conversions between data of different types. Consequently, strongly-
typed languages and APIs drastically restrict their chances of being misused, reducing the possi-
bilities of generating incorrect programs.

In the cases in which run-time errors are expected and / or unavoidable, an efficient mecha-
nism for error handling must also be present. A concurrent or parallel program, to be considered
robust, must be able to safely retrieve as much information related to the error as possible. How-
ever, in a parallel context, this is harder to be satisfied than in a sequential program, as invariants
that guarantee concurrent correctness can be easily broken, yielding more errors and potentially
causing the program to crash without offering any useful information about the primary error.

Modern C++

Based on the design principles just presented, and the language characteristics exposed in Sec-
tion 1.2.2.1, STEEL-RT and its API are built on top of ISO C++ 2017 [78]. Specifically, its
multiparadigm characteristics in terms of functional and generic programming, together with its
low-level concurrency constructs, make it an adequate choice for implementing the STEEL-PM
in the form of a high-performing runtime system underneath a high-level abstract interface [138].
Other not-modern idiomatic characteristics of C++ such as RA/l idiom (see Appendix A) will also
play an important role for transparent garbage-collector-free memory resource management.
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4.1.2 Current scope

As exposed in Section 1.1.1, the proposed programming model is designed with the goal of ab-
stracting away certain details of physical processing and storage devices —through executor and
allocator abstractions— as well as computation and data —through abstract tasks and hierarchical /
partitionable data structures—.

It is worth differentiating the kind of applications and platforms targeted by STEEL-PM. As
the implementation (API and runtime) is fully written in Standard C++, there are no limitations
in terms of the programs that can be written in this model. However, the STEEL-PM execution
model (Section 3.1.3) consider fasks as the main units of computation, so the target applications
are those that are decomposable into tasks.

STEEL-PM partially assumes already high-performing computational kernels in the form of
specialized libraries or manually highly-tuned implementations. Hence, the target problem is re-
stricted to programming and performance scalability in contexts in which multiple interdependent
tasks share parallel computing resources. In this scenario, unless otherwise stated, STEEL-RT is
designed to dispatch computational kernels with state-of-the-art performance.

Table 4.1 divides computing architectures into four different levels according to their scale. In
relation to the previous chapter, STEEL-PM is intended to provide abstractions for managing the
last three levels, while the smallest level is handled within the kernel context. With this regard,
the efficient use of the lowest-level processing elements (Arithmetic-Logic units, Control units,
Floating-Point units, ...) depends on how the compute kernels are implemented and compiled,
so this is not a concern from STEEL-RT. Contrary, the efficient use of the rest of the levels is
direct STEEL-RT responsibility. The last level is marked with an asterisk (¥*) because, although
distributed systems are meant to be targeted by top-class executors, the current implementation
does not support them yet.

Similarly, Table 4.2 distinguishes four levels of data storage abstractions, with close one-to-
one correspondence with those of Table 4.1. In the same line, efficient management of on-chip
elements of data storage —e.g., registers, caches, memory controller unit— relies on how efficient
the memory management is done in the underlying kernel implementations and compilations.
Equivalently, as exposed in Section 3.1.4, bottom allocators are designed to provide data manage-
ment functionalities to local DRAM spaces associated to processing devices (e.g., CPUs, GPUs),
while top allocators provide an additional layer for data coherence and consistency across different
memory spaces. Identically to Table 4.1, distributed computing architectures are not supported in
the current implementation.

Scale Processing elements Efficiency managed within
Smallest ALUs, CUs, FPUs... Compiled kernels / external libraries
Small CPU, GPU, FPGA. .. Bottom executors
Middle Heterogeneous systems Top executors
Large  Distributed computing clusters Top executors™

Table 4.1: Four scales regarding processing systems.

Scale Storage elements Efficiency managed within
Smallest Registers, Caches, . .. Compiled kernels / external libraries
Small Local RAM Bottom allocators
Middle  Intra-node memory spaces Top allocators
Large  Distributed memory spaces Top allocators*

Table 4.2: Four scales regarding data storage systems.
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4.1.3 STEEL implementation architecture

Figure 4.2 depicts a global overview of the programming model architecture, together with some
of the actors and software building blocks involved. The purpose of this model is to implement
the ideas exposed in Chapter 3 under the requirements presented in Section 4.1.1.

The STEEL-RT template library represents the central element of this programming model.
First, it consists of a set of generic functionalities parametrized by support templates, which have
to be instantiated by low-level functionalities in the process of increasing its portability —i.e., aug-
ment the number of platforms and backend libraries on which applications can run. Secondly,
the core library is also parametrized by application-related functionalities —templates referring to
tasks and data structures, which are instantiated by declarative-like user definitions that follow the
STEEL-API rules. From the user (application developer) side, three basic events can be distin-
guished, namely: installation, compilation and execution.
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Figure 4.2: STEEL Programming model implementation architecture.
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4.1.3.1 Install-time

The installation process is performed by the STEEL installer, which checks that the target compute
platform and the installation options defined by the user (application developer) are compatible
with the set of supported functionalities. If that is the case, an installation package is created, which
encompass platform information (i.e., processing devices, topology, enabled kernel libraries) that
fully instantiates the STEEL-RT support templates. Along with platform-dependent headers and
macros, library binaries that wrap calls to third party kernel libraries may be built in this step.

4.1.3.2 Compile-time

At this step, user-defined application definitions in terms of (i) task featurizations and (ii) custom
data structures are meant to instantiate STEEL-RT task and data templates. If defined by the
user, the execution tree is interpreted and strictly checked for compatibility against application
definitions. Otherwise, a default executor tree is inferred from the user-defined task featurizations.
In any case, the executor tree will abstract away the target platform expressed in the headers
generated after installation.

In summary, all information regarding application and system platform is merged by a C++
compiler supporting the latest standard to date (ISO C++ 17) [78]. At this point, library wrappers
built at installation step may be linked. Note that only a small subset of all the code exposed in
STEEL-RT template library may be instantiated —i.e., actually converted to executable machine
code—.

In particular, the compilation stage does not only pursue the minimization of run-time errors by
carrying out strict type-related checks, but also the minimization of run-time overhead is extremely
important. For example, at compile-time not only task-to-executor compatibility is checked: a
prior compile-time task-to-executor dispatching is implicitly performed, due to the fact that at
scheduling time a task will only be able to be mapped to a compatible executor. In particular, a
scheduler associated to a mapper executor that encompass a set of executors, when dispatching
a task, will in general have a view of a subset of executors compatible with the compile-time
featurizations of that task: if the task can only be mapped to a single executor, no ambiguity
would have to be resolved and no additional scheduling runtime overhead will be required.

This follows the aforementioned principles of (1) “don’t pay for what you don’t use” and (2)
“move the computation from run-time to compile-time as much as possible” .

4.1.3.3 Run-time

At this stage, the execution entry point consists of a STSE program. The whole application is
simply represented as a single task to be fed by input data and expected to run in a single executor
able to exploit all the compatible processing and memory resources in the platform. The executor
tree can be considered as a pure function whose return type is just the result of the computation.
The executor tree could potentially be composed of many executors, each with its own threads
and internal states, but these complexities are inaccessible by the user, who can only interact
with it dispatching or assigning a single task —representing the whole application, and in general
decomposable into other tasks—, into it.

As mentioned, for each task arriving at each executor, and from the scheduler perspective,
it is fully known at compile-time the dimensionality of either input (state) and output (action)
spaces (see Sections 3.2.3 and 3.2.4). An empty action space is equivalent to a task-executor
incompatibility, and results into a compile-time error. An action space composed by a single
element for a task-executor pair guarantees that no scheduling needs to be done at run-time.

An action space greater than one requires some form of runtime scheduling to resolve the
ambiguity. If the schedulers of all executors are endowed with dynamic stateful scheduling policies
(see Section 3.2.3), their internal states can evolve as the execution proceeds, and they can be saved
after each completed execution. With this idea, these internal states could be used to progressively
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perform better (with respect to some metric of quality or reward) overall expanded schedules
guiding the execution in order to favor those more promising execution paths, thus ultimately
pursuing that successive executions of the binary under the same or similar application parameters
progressively yield better results.

4.2 STEEL programming interface

The STEEL-API consists of two parts: (1) the callable interface, which consists of a set of tem-
plate functions and template types to be called and used by the user, respectively; and (2) the callee
interface, which comprises a set of rules that the user must follow in order to define template func-
tions and template types that are called and used by STEEL-RT.

Specifically, the deployment and use of executors and the guarding of data objects via guards
belong to the first part, while the definition of computational kernels and data structures belong
to the second. The following sections expose the interface details starting from prior definitions
regarding basic namespaces and enumerations (Section 4.2.1), followed with the rules for basic
definition of tasks (Section 4.2.2), executor usage (Section 4.2.3), data structures definition (Sec-
tion 4.2.4), and a set of auxiliary functions (Section 4.2.5). Finally, Section 4.2.6 exposes some
compile- and run-time safety considerations and Section 4.2.7 explains how the execution of a task
is expanded by defining specific featurizations.

4.2.1 Prior definitions

This section introduces some namespaces —in terms of what they encapsulate—, and enumerations
—used for parametrization of types, functions and interfaces—, that will be presented along the
following sections.

4.2.1.1 Namespaces

The STEEL-API exposes a set of types and functions for the user. All the following namespaces
are contained within the main st eel namespace: executor, dep, sched, app, and detail.
In particular, executor encapsulates functions related to executor deployment and execution
contexts; dep encapsulates both types and functions for dependency handling; sched exposes
a series of template types to support different features for execution and scheduling relaxation.
All user type and function definitions must be contained within the app namespace, which in
practice encapsulates the callee interface (which is user-defined and STEEL-RT-called). Finally,
detail encapsulates some STEEL-RT internal template-predicates defined to provide compile-
time assertions that ensure compilation correctness of user-defined types and functions.

4.2.1.2 Enumerations

STEEL provides a set of useful enumerations, see Listing 4.1; dep: : kind provides identifiers
for read-only (in), read-write (1nout), and write-only (out) data dependencies. dep: :view
identifies two possible data visibility modes for accessing remote or non-local data:

dep: :view: :map refers to mapped data resolution via internal (OS or external-library-defined)
memory-mapping mechanisms, while dep: :view: : copy refers to local data resolution, in
which data is copied to a local memory space. pt ype provides identifiers for run-time values re-
ferring to fundamental data types. This enumeration is useful to provide data casting capabilities
at run-time for mixed-precision computations. In particular, enumeration values in line 11 re-
fer to char, unsigned char, short, unsigned short, int, unsigned int, long,
unsigned long,half, float, double, void, and user-defined type (ud), respectively.
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Listing 4.1: Persistent enumerations.

namespace steel {
namespace dep {
/+ Dependency kind identifiers. */
enum class kind {in, inout, out};

/* Dependency visibility identifiers. =/
enum class view {map, copy};

} /* namespace dep */

/x Identifiers for fundamental types. */
enum class ptype {c, uc, s, us, i, ui, 1, ul, h, £, d, v, ud};
} /* namespace steel x/

Listing 4.2: Enumerations for system-supported architectures and backends.

namespace steel::support {
/* Supported executor/processor architectures. */

enum class arch {...};

/* Supported devices that parametrize executors. */
enum class device {...};

/* Supported backends for memory management. x/
enum class backend {...};

} /* namespace steel::support =*/

Moreover, Listing 4.2 exposes sets of identifiers used to tag currently supported processor
architectures and backend libraries for memory management. These identifiers also permit the
user to enable his / her own execution relaxations and to endow STEEL-RT for additional memory-
management capabilities.

The STEEL post-install system-header will expose several enumerations used to identify cer-
tain available system-wide objects, processing devices, memory spaces and secondary backends
(see Listing 4.3). Together with these enumerations, a set of traits will be defined for each of the
values in the enumerations.

A set of user-defined enumerations within app are defined after a successful compilation (see
Listing 4.4). They refer to identifiers for user-defined tasks (app: : impl) and data structures
(app::data::impl).

4.2.2 Task definition

The previously introduced app: : impl enumeration encompasses user-defined task identifiers
that refer to all different kinds of tasks that compose the application. This section explains how a
task can be fully defined by means of the following attributes:

Listing 4.3: Post-install system enumerations.

namespace steel::sys {

/* [...] = Comma-separated non-empty set of backend processors. =/
enum class processor {...};
/x [o..] Comma-separated non-empty set of memory spaces. x/

enum class memspace {...};

} /% namespace steel::sys =/
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Listing 4.4: Post-compile application enumerations.

namespace steel::app {
/* [...] = Comma-separated non-empty set of implementation identifiers. =/
enum class impl {...};
namespace data {

/* [...] = Comma-separated set of data structures implementation identifiers. x/
enum class impl {...};
/x [...] = Comma-separated set of subregion data accessing identifiers. =/
enum class access {...};
} /* namespace data =/
o/ steel::app */

Listing 4.5: Required type definitions for task traits.

namespace steel::app {
class traits<impl::X> {
public:
/ * [...] = Comma-separated set of types. =/
using arg_t = std::tuple<[...]>;
/* [...] = Comma-separated set of dependency kind enumerations. =/
1sing arg_kind_t = util::kind sequence<[...]>;
[...] /+* Other definitions. =/

/* namespace steel::app */

e Argument types, dependency kinds in stateless t rait s class and task creation viamake_task.

e Task featurization via stateless kernel class definition.

e Scheduling feed: static and data-dependent information within t raits class scope.

4.2.2.1 Dependencies and task construction

A task identified as app: : impl: : X (or just X for simplicity) must provide type definitions for
arg._t and arg_kind_t within a traits class specialized by X (see Listing 4.5). There are no
requirements for the types in the arg_t std: :tuple. The sequence arg_kind_t must have
the same number of dep: : kind enumerations as types defined in arg_t, and each dependency
kind will correspond one-fo-one to those types.

The correct definition of types and dependency kinds in X traits will permit the creation of
a X task instance via the make_task call in Listing 4.6, whose return type is movable but not
copyable. The following sections illustrate how task construction via make_task is expected to
be carried out in only two contexts, namely: (i) in the main scope, and (ii) within the kernel body
of a task restricted to run in an unfolder executor context.

4.2.2.2 Featurization

The previous t raits class definition (see Listing 4.5) enables the creation of a task instance. In
order for a task to be run on an executor, the user must first define a kernel stateless class.

Listing 4.6: Creation of task object of type X.

using namespace steel;

/ * [...] Comma-separated set of objects of types in
app::traits<app::impl::X>::arg_t. =/

auto taskX = make_task<app::impl::X>([...]);
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Listing 4.7: Skeleton for user-defined task featurization.

namespace steel::app {

/+ Definition of kernel template class (already pre-set in steel library). =*/
template <impl::Impl, sys::processor ProcessorId>

class kernel : public std::false_type {};

/* User—defined restricted partial specialization of kernel class. =*/

template <sys::processor ProcessorId>
requires [user—-defined compile-time predicate on ProcessorId]

class kernel<impl::X, ProcessorId> : public std::true_type {
public: /* Public scope (visible from STEEL-RT functions). x/
using expand = /% Definition depending on feature and ProcessorId. =/;
/+x PT = a type defined from ’expand’ definition.
[...] = ¢ a-separated set of objects of types
app::traits<app::impl::X>::arg_t. */
static void run(PT param, [...]) {

/+ Function body. =/
}
i

} /x namespace steel::app */

Specifically, a task implementation app: : impl: : X is featured by partially specializing the
kernel class with a task identifier (line 9 of Listing 4.7). This definition could be unconstrained
or constrained over a farget processor identifier ProcessorId via requires keyword (line
8) followed by a compile-time predicate. This way of task featurization through constraints relies
on C++ Concepts, which is an idiom to constrain template parameters using compile-time pred-
icates [061]. In the next section, it will be shown how specific definitions for expand type and
run static function can be defined to enable the execution of a task instance in different execution
contexts. In all cases, these definitions must be in the pub1ic class scope of a app: :kernel,
so that they are accessible at compile-time by STEEL meta-programs and callable by STEEL-RT
at run-time.

Finally, in order to enable compile-time compatibility between user-defined task identifications
app: :impl and different execution contexts, a pub1ic derivation from a std: : true_type
of all kernel definitions is necessary (e.g., see lines 9 and 4 of Listings 4.7 and 4.9, respectively).

4.2.2.3 Featurization for a bottom executor

Skeletons for task featurizations of a task identifier app: : impl: : X are illustrated in Listings
4.8, 49, 4.10 and 4.11. Basically, the user must provide a type definition for expand, to be
referenced by a STEEL-RT scheduler, for which there are several ways to do it. Also, the user
must define a static function void run in which the computation is expressed, either by means
of a call to an external library or by C++ code.

In the simplest case (Listing 4.8), the user just restricts the kernel execution to all processors
satisfying the constraint in line 3 (also referred to the set of all valid or compatible processors). The
expand definition in terms of sched: : just<ProcessorId> (line 7) restricts the execution
to a valid ProcessorId without expanding any execution parameter.

In the next case (Listing 4.9), the user declares its own sequence of options at compile-time by
employing the std::integer_sequence type and the STEEL template sched: :relax.
From the definition in Listing 4.9, STEEL-RT spans an expanded scheduling action space whose
size equals the number of elements in the sequence defined in my_opts. When the task is ready
to be executed, STEEL-RT invokes the run function (line 13) passing the scheduling result as
param, whose type T1I is derived from expand definition.
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Listing 4.8: Definition of a bottom executor kernel without expanding any option.

namespace steel::app {
template <sys::processor ProcessorId>

requires [user—-defined compile-time predicate on ProcessorId]
class kernel<impl::X, ProcessorId> : public std::true_type {
public:

/* Mandatory type definition. x/
using expand =

/* Kernel definition. [...] = Arguments of arg_t tuple. x/

static void run([...]) {
/* Kernel body. */

} /* namespace steel::app =/

Listing 4.9: Definition of a bottom executor kernel and expansion of scheduling options.

namespace steel::app {

template <sys::processor ProcessorId>

requires [user-defined compile-time predicate on ProcessorId]
class kernel<impl::X, ProcessorId> : public std::true_type {

/* User declares its own set of options. TI is an integral type. */
using my_opts = std::integer_sequence<TI, UserOptions...>;

public:
/+ Mandatory type definition. */

using expand = sched::relax<my_opts>;

/* Kernel definition. [...] = Arguments of arg_t tuple. x/
static void run(TI param, [...]) {

/+ Kernel body. User diverts the execution depending on [param] value. x/
}
i
} /* namespace steel::app =/

The user is also free to provide multiple sequences of options, as specified in Listing 4.10. In
this case, the STEEL-RT spans an expanded scheduling action space with as many dimensions
as number of sequences, and an action space resulting from the cross-product of all values in the
sequences. The number of sequences is in practice unlimited, as it depends on the maximum
number of recursive template instantiations in the compiler.

In some cases, a kernel execution may need an opaque type to be retrieved by STEEL-RT
before execution. They could be architecture-dependent types set at install- or compile-time, or
library-dependent handle types defined in an external library header. In any of these previous
cases, the sched: : fix is used to define expand (see Listing 4.11) and sched: : fix_relax
(to be exposed in Section 4.2.7), from which a type for param kernel argument is also defined.

4.2.2.4 Featurization for an unfolder executor

The skeleton of a kernel able to run in an unfolder executor context is shown in Listing 4.12. In
addition to a param argument to be passed together with the internal arg_t arguments, the run
function must also accept a reference to a delegate executor (see line 16).

Specifically, aut o& qualifier refers to the type of the executor on which the unfolder executor
that will run the task is stacked. In this example, the type of the param argument is derived from
expand and matches TI. Equivalently to Listing 4.10, a multidimensional set of options could
be used.
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Listing 4.10: Skeleton for a bottom executor kernel and a expansion of multidimensional options.

template <sys::processor ProcessorId>
requires [user-defined compile-time predicate on ProcessorId]
class kernel<impl::X, ProcessorId> : public std::true_type {

/* User declares its own sets of options. TA, TB, TC, ... are integral types. =/
using my_opts_a = std::integer_sequence<TA, ValuesA...>;
using my_opts_b = std::integer_sequence<TB, ValuesB...>;
using my_opts_c = std::integer_sequence<TC, ValuesC...>;
/* [...] = Possibly more sequence definitions */
[...]
public:
/* Mandatory type definitions. =/
using expand = sched::relax<my_opts_a, my_opts_b, my_opts_c, ...>;

/* Kernel definition.

[,,,] = Possibly more parameters. [...] = Arguments of arg_t tuple. x/
static void run(TA paramA, TB paramB, TC paramC, [,,,], [...]1) {
/* Kernel body. User diverts the execution depending
on [param] value which has the type std::tuple<TA, TB, TC, ...>. */

}
bi

} /* namespace steel::app */

Listing 4.11: Definition of a bottom executor kernel using a built-in argument expansion.

namespace steel::app {
template <sys::processor ProcessorId>
requires [user-defined compile-time predicate on ProcessorId]
class kernel<impl::X, ProcessorId> : public std::true_type {
public:
/* Mandatory type definitions. x/
using expand = sched::fix<[Type derived from ProcessorId]>;
/+x PT = type derived from expand definition. [...] = Arguments of arg_t tuple. x/
static void run(PT param, [...]) {
/* Kernel body. */
}
i
} /x namespace steel::app */
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Listing 4.12: Skeleton for a kernel to be run on an unfolder executor.

namespace steel::app {
template <sys::processor ProcessorId>

requires constraint<ProcessorId>::support_device == support::device::abstract

class kernel<impl::X, ProcessorId> : public std::true_type {

private:
/+ User declares its own set of options for unfolding. TI is an integral type. =/
using my_opts = std::integer_sequence<TI, UserUnfoldingOptions...>;

public:
/* Mandatory type definition. =/

using expand = sched::relax<my_opts>;

/+ Kernel definition, to be called by STEEL runtime.
.] = Arguments of arg_t tuple. */
static void run(auto& delegate, TI param, [...]) {

/* Kernel body.

User divert the execution depending on [param] value and
creates and forwards t [delegate] with a form
delegate( std::make_tas Y>> (..) ) o/

Section 5.2 will detail how the format of Listing 4.12 can be used to express data partitions
and reimplementations, also possibly with mixed precision computations.

4.2.2.5 Featurization for a mapper executor

As specified in Table 3.2, tasks will be free to be run on several executors encompassed by a
mapper executor if the task exposes a kernel definition compatible with at least one executor.
For this reason, there is no need for a user-defined kernel constrained for mappers, as previous
featurizations in Sections 4.2.2.3 and 4.2.2.4 will implicitly restrict a task instance to be run by a
mapper executor.

4.2.2.6 Scheduling feed

As mentioned in Section 3.2.4, expanded schedulers that equip executors perform task scheduling
actions based on certain information exposed by the task. In Section 3.2.4.2, it was mentioned why
the scheduling could be influenced by data-dependent information. In terms of the STEEL-API
interface, the user must define a compile-time value feedback for any task X, which specifies the
kind of feedback that a task instance with arg_t arguments is able to provide to the STEEL-RT.

As specified in Listing 4.13, if feedback is set to static or static_data, the cor-
responding static_feed_t type and get_static_feedback function definitions must be
given. Similarly, if feedbackissettodataor static_data, the corresponding data_feed._t
type and get_data_dependent_feedback function definitions must be provided. Finally,
if feedback is set to none, there is no need to provide these types and function definitions.
If defined, static_data and data_feed_t must satisfy a STEEL compile-time predicate
sched: :is_castable_to_numeric_v, that asserts that values of these types can be trans-
formed into an array of numerical values to be interpretable by a expanded scheduler. For ex-
ample, a tuple of heterogeneous numeric types (e.g., char, int, float, etc.) will qualify that
predicate.
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Listing 4.13: Type and function definitions for feedback-based scheduling.

namespace steel::app {

struct traits<impl::X> {
/* Scheduling feedback definition in the set [static, data, static_data, none]. x/
static constexpr sched::feed_kind feedback = FEEDBACK_KIND;

/* Scheduling feedback type for data-dependent feedback.
Required if feedback is [data] or [static_data]. =*/
using static_feed_t = SFT;

/* Scheduling feedback type for data-dependent feedback.
Required if feedback is [static] or [static_data] x/
using data_feed_t = DFT;

/+ Definition of function callable from a STEEL runtime scheduler
to get static information. Required if feedback is [data] or [static_datal.
[...] = Arguments of arg_t tuple. */
static static_feed_t get_static_feedback([...])
/* Function body. A set of parameters is extracted from task arguments

—~—

and then returned.x/

/* Definition of function callable from a STEEL runtime scheduler to get
data-dependent information. Required if feedback is [data] or [static_data].
[...] = Arguments of arg_t tuple. =/

static static_feed_t get_data_dependent_feedback ([...]) {

/* Function body. A set of parameters is extracted from data in task
arguments and returned.x/
}
bi

} /% namespace steel::app =/

Listing 4.14: Deployment of a bottom executor.

using namespace steel;
/* Deployment of a Bottom executor tied to processor P. x/
auto& execRefP = executor::deploy<sys::processor::P>();

4.2.3 Executor deployment and use

As explained in Section 4.1.3, the information about the available processing hardware and mem-
ory spaces is gathered at install time, restricting the kind of bottom executors that can be deployed
at run-time. Top executors are always deployed on already deployed top or bottom executors.

4.2.3.1 Deployment of a bottom executor

For each sys: : processor identifier declared in line 3 of Listing 4.3, only one bottom executor
can be deployed. Let P be an element in sys: : processor, then an executor is built according
to line 2 of Listing 4.14 and a reference (&) to it is returned. If another executor is asked for
deployment over the same processor more than once, a run-time exception is thrown. Features of
executors depend on the hardware and the installation process, and they are embedded at compile-
time in the executor type (hidden in aut o qualifier in line 2 of Listing 4.14).

4.2.3.2 Deployment of a top executor

Listing 4.15 exposes how an unfolder executor is deployed on top of a bottom executor (lines 4
and 7) or on top of another top executor (line 10).
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Listing 4.15: Deployment of a Unfold executor.

using namespace steel;

/+ Deployment of a Bottom executor tied to processor P. */
auto& executorBottomA = executor::deploy<sys::processor::A>();

/* Deployment of a Unfolder executor on top of previous executor. =/
auto& execRefU = executor::deploy( executorBottomA );

/+ Deployment of another Unfolder executor on top of the previous. =/
auto& anotherexecRefU = executor::deploy( execRefU );

Listing 4.16: Deployment of different Mapper executors.

using namespace steel;

/* Deployment of a Bottom executor tied to processor P. */
auto& execBottomA = executor::deploy<sys::processor::A>();
auto& execBottomB = executor::deploy<sys::processor::B>();
auto& execBottomC = executor::deploy<sys::processor::C>();
/* [...] = Possibly more bottom executor deployments. */

/+ Deployment of a Mapper encompassing Bottom executors. =/
auto& execMapper = executor::deploy(execBottomA, execBottomB, execBottomC);

/+ Deployment of a Unfolder on top of a Bottom tied to processing device X. x/
auto& execBottomX = executor::deploy<sys::processor::X>();
auto& execUnfoldX = executor::deploy (execBottomX) ;

auto& execBottomY = executor::deploy<sys::processor::Y>();
/* Deployment of a Mapper encompassing both Top and Bottom executors. =/
auto& execMapper2 = executor::deploy (execMapper, execUnfoldX, execBottomY);

Mapper executors are meant to be used for heterogeneous dispatching, hence they can be
deployed on several Top or Bottom executors in any combination, as specified in lines 11 and 20
of Listing 4.16).

4.2.3.3 Batch and conditional deployment

A set of executors satisfying a condition can be deployed and wrapped into a single mapper ex-
ecutor using the deploy_only function. In Listing 4.17, four mappers executors are deployed
(i) from a set of cores in the form of a thread pool (line 2); (ii) from all CUDA GPU devices
(line 3); (iii) from all SMP processors in a NUMA system (line 4); (iv) from all processors able
to execute tasks by forking threads (line 5); and (v) from all lowest-level processors that can be
handled by a bottom executor (e.g., all CPU cores and GPUs) (line 6). A similar template function
deploy_first isalso provided, to which the same template parameters can be passed. Contrary
to deploy_only, deploy_first only deploys the first non already deployed bottom executor
satisfying the template parameter.

4.2.3.4 Forwarding a task to an executor

Task objects are non-copyable types and they can only be moved. Listing 4.18 shows —in lines
4 and 9, respectively— two ways in which a task can be dispatched to an executor referenced by
execRef. The second way (line 9) immediately dispatches the task to the executor without the
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Listing 4.17: Deploy and group executors based on a condition.

using namespace steel;

auto& mapperOnThreadPool = executor::deploy_only<executor::sequential>();

auto& mapperOnCudaGpus = executor::deploy_only<executor::cuda_device> () ;

auto& mapperOnSmpNodes = executor::deploy_only<executor::multicore>();

auto& mapperOnForkers = executor::deploy_only<executor::forker>();

auto& mapperOnLowest = executor::deploy_only<executor::all_lowest>();
Listing 4.18: Two possible ways for task construction and running.

/+ Task creation. [...] = objects from which the task X can be built. =/

auto taskX = make_task<app::impl::X>([...]);

/+ Dispatch created task to executor. */

execRef ( std::move (taskX) );

/* Warning. taskX object is invalid in this scope and must not be used. =/

/* Create and dispatch task instance Y.

[...] = objects from which the task Y can be built. */

execRef ( make_task<app::impl::Y>([...]) );

need of naming the task object (thus eliminating the possibility of using an invalid object), so this
way is encouraged for simplicity and safety reasons.

4.2.4 Definitions for custom data structures

The argument types within arg_t type, defined in app: :traits, can be of any type, but in
real applications tasks could refer to data arguments that cannot fit in the program stack —i.e.,
heap allocation is required—. For these cases, the user can define its own heap-allocatable data
structures within the app namespace by means of app: :data: :traits template interface,
parametrized with a app: :data: :impl enumeration type that identify the user-defined data
structure. Moreover, the user can express different data-accessing modes useful to refer to sub-
regions of data meant to be used by partitionable kernels, and different casting modes useful to
represent data in a compatible type representation (e.g., floating point conversions in different
binary representation such as 16, 32, and 64-bit, for mixed-precision applications).

The following requirements will need to be satisfied for those user-defined data structures so
that STEEL-RT can entirely manage the associated data objects. Specifically, managed refers to
the ability to manage allocation / deallocation, concurrent access, and movement across memory
spaces in a transparently fashion at run-time and without user intervention.

4.2.4.1 Heap-allocatable data

This section exposes the required interface in terms of types and free functions that the user is
responsible to define, so that a data descriptor object (data object or datum terms are used in the
following) can be entirely managed by the STEEL runtime.

The first type defined in line 5 of Listing 4.19 is descriptor_t, which must include an
address_t type able to store a memory location in the form of a pointer. In practice, this
can be a void*, a std: :any, or any other type from which a void* can be returned, thus
get_address can be defined (line 8). After this is considered, the user is free to declare any type
that parametrize the data structure ([ . . .]), to be used to access the data. Specifically, an object
of type descriptor_t is a standalone datum, in the sense that all the information encapsulated
must be accessible through the address_t value and the parameters with types [...].

The remaining functions get _element _count, get _byte_count, is_contiguous and
make_allocatable are used for allocation and memory copying purposes. If DS is completely
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Listing 4.19: Basic traits for a user-defined data structure with identifier DS.

namespace steel::app::data {

class traits<data::impl::DS> {

public:
/+ Definition of the data descriptor. [...] = Any sequence of types. */
using descriptor_t = std::tuple<address_t, [...]>;

/* Retrieve the void* from the address_t element. =*/
void % get_address (const descriptor_t& datum);

/+ Interface for retrieving the number of elements encompassed in a datum. =/
static std::size_t get_element_count (const descriptor_té& datum);

/* Interface for retrieving the size of a datum in bytes. x/
static std::size_t get_byte_count (const descriptor_t& datum);

/* Predicate to check whether the information stored in datum
/

is in a compact memory region. =/

static bool is_contiguous (const descriptor_té& datum);

/* Return the fundamental type of datum, if exists. =/
static ptype get_ptype (const descriptor_t& datum);

/* Make a tabula-rasa version of datum. =/
static descriptor_t make_allocable (const descriptor_t& datum);

/* Data copy between descriptors. =/
static void copy(descriptor_t& destinDatum, const descriptor_t& sourceDatum,
copy_function_t copyCallback) ;

/+ Data casting between descriptors. =/
static void copy_cast (descriptor_t& destinDatum, const descriptor_té& sourceDatum,
cast_function_t castCallback);
bi

} /* namespace steel::app::data =/

composed by a set of uniform objects, the function get _element _count (line 11) retrieves the
number of objects and get _byte_count (line 14) returns a multiple of the number of objects.
Function is_contiguous (line 18) returns a t rue value only if all the information encom-
passed by datum is contained within the memory range spanned from its address_t value and
the bytes returned by get _byte_count (datum).

The function get _ptype is used to return a run-time type identifier that refers to a type to
which the pointer returned by get_address can be casted to. If that type is not a fundamental
type, the return value can be ptype: : custom.

Finally, the function make_allocatable (line 24) returns an allocatable or tabula-rasa
version of the input datum (with the address set to nullptr or 0x0). In particular, if datum is
contiguous, the returned type corresponds to another datum with the same parameters but the zero-
ed address. Otherwise, the parameters must also be modified so that the returned descriptor object
is a compacted version of the input datum. A detailed explanation about this compacting process
is deferred to Section 5.2.2 as it requires a prior explanation of data partitions in Section 4.2.4.3.
In particular, data compactions will be required to enable the use of persistent storage spaces, and
to improve cache-locality and data movement performance.

A general datum is said to be allocatable if it satisfies the STEEL-RT internal predicate of
Listing 4.20. This predicate is designed to verify valid user-definitions of the make_allocatable
function.

Functions in lines 27 and 31 are needed for copying and casting data between two objects.
These definitions will be needed only if 1s_contiguous returns false for one or both objects.
If the data structure is one such that it will always return t rue for all objects, these functions
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Listing 4.20: Internal runtime predicate to check whether a data object is allocatable.

namespace steel::detail {
template <app::data::impl DS>
bool is_allocable(const app::data::traits<DS>::descriptor_t& datum) {
return app::data::traits<DS>::is_contiguous (datum) &&
(datum == make_allocable (datum)) ;
}

} /* namespace steel::detail x/

Listing 4.21: Function types for copying and copy, copy-cast user definitions.

namespace steel {

ing copy_function_t std::function<void(void*,voidx*,std::size_t)>;

ng cast_function_t = std::function<void(voidx,voidx,ptype,ptype,std::size_t)>;
} /o namespace steel x/

u

namespace steel::app::data {
/+ Definition for always-contiguous data objects. x*/
static void traits<data::impl::DS>::copy (
descriptor_t& dstDatum, const descriptor_t& srcDatum,
copy_function_t copyCallback) {
copyCallback (get_address (dstDatum), get_address (srcDatum),
get_byte_count (dstDatum)) ;

/

}

/+ Definition for always-contiguous data objects. =/
static void traits<data::impl::DS>::copy_cast (
descriptor_t& dstDatum, const descriptor_té& srcDatum,
cast_function_t castCallback) {
castCallback (get_address (dstDatum), get_address (srcDatum),
get_ptype (dstDatum), get_ptype (srcDatum), get_element_count (dstDatum));
}

} /* namespace steel::app::data */

can be reduced to Listing 4.21 definitions in lines 8 and 16. The type definitions of functions
copy_function_t and cast_function_t are defined in lines 2 and 3.

Section 5.2.2 will expose in detail some other examples for simple 2D data buffers, for which
non-contiguous objects can exist.

Finally, as descriptors themselves are not meant to be used as valid type-arguments, it is re-
quired another type that /ifts a user-defined type into a app: : data: : impl tagged-type. Specif-
ically, the definition of descriptor_t for DS enables the definition of a fag-lifted descrip-
tor template type called handle_t<DS>, which ultimately can be used to define for a task
app::impl::X a app::traits<app::impl::X>::arg_t that refer to heap-aware ar-
guments (see Listing 4.22).

4.2.4.2 Data guarding

The process of data guarding enable concurrent access of user-defined data objects from differ-
ent execution contexts provided by executors. Lines 3 to 7 of Listing 4.23 show the template
signature of the handle pure function, which in practice returns a guard that wraps a data de-
scriptor object with identifier app: :data: :impl: :DS. This function requires an allocation
context by means of the top allocator referenced by an executor. Identifiers dep: :view: :map
and dep: :view: : copy specify the visibility mode when the datum is not local to a process-
ing device. The dep: :view: :map option results into a mapped or on-demand visibility, by
which data regions are implicitly copied to the local memory space as page faults occur. The
dep::view: :copy option specifies a local visibility for the data, which implies that a full
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Listing 4.22: Basic traits for a user-defined data structure with identifier DS.

0NN AW =

namespace steel::app {
/* Template type handle_t 1lifts user-defined

5 into app::data::
g_t definition (1li

mpl-tagged
= 12) . %/

types, so that they can be used as task arguments in
template <app::data::impl DS>
using handle_t = util::tag_t<DS, data::traits<DS>::descriptor_t>;

class traits<impl::X> {
public:

/* Definition task arguments as —aware data handles.

~ 0
T
)
o]
Q
z

[...] = Any sequence of types. */
using arg_t = std::tuple<handle_t<DS_A>, handle_t<DS_B>, [...]>

endency kinds of arg_t elements. =/

util::kind_sequence<DepKind_A, DepKind_B, [...]>;

Listing 4.23: Interface for dependency initialization.

SO0 R W~
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namespace steel::dep {
template <
typename ExecutorT, /* Executor type to provide an allocation context. x/
typename InitT, /+ A type from which a data

/

criptor object can be built. x/

app::data::impl DS, /* Data identifier. x/
dep: :kind DepKind, /* Dependency kind of data {in, inout, out} =/
dep::view View /* Placement mode for accessing {map, copy}. */

>
auto handle (ExecutorT& , const InitT);

} /* namespace steel::dep =/

copy of the data must be present in the local memory space before the execution starts.

In this line, a set of data acquisition actions are exposed in Table 4.3, classified according to the
dependency kind and the data visibility specified during data guarding. In the runtime side, data
guarding with mapped visibility require a binding between a pair of memory spaces with software
or hardware support for data coherence. In addition, as executors are organized hierarchically,
the visibility modes in nested executor contexts must also be hierarchically composable —e.g., a
dependency guarded as copy or map in an executor context could be independently guarded in
a lower-level executor context (either the whole dependency or subregions of it)-. Hence, as
subregions of an already guarded-as-mapped data dependency may be also guarded as mapped in
a lower-level executor, the corresponding actions would be either inheriting the existing binding
or create a new binding (see dep: : view: :map column).

dep::view: :copy dep::view: ::map
dep::kind::in Copy to main memory Inherit binding or create new
dep::kind::inout Exclusive copy to main memory Inherit binding or create new
dep::kind: :out Allocate on main memory Allocate on main memory

Table 4.3: Data acquisition actions depending on the dependency kinds (dep: :kind::in,
dep::kind: :inout and dep: :kind: :out (read-only, read-write and write-only, respec-
tively), and the visibility mode (dep: :view: :copy, dep: :view: :map). The guarding is
associated to an executor context, and the main memory refers to the main memory space of that
executor context.

Similarly, when a task execution has finished, a set of data publication actions are summarized
in Table 4.4, which are internally done by STEEL-RT to ensure correct data visibility across sev-
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Listing 4.24: Dependency initialization from a string.

using namespace steel;

{ /* Start of scope. *x/

/ [...] = A context with an executor reference ’'execRef’. */
[...]

/* Create a depende [execRef] 1is a deployec

executor under 1 the dependency is expected to be acc d. */

auto dataGuardl = dep::handle<DS_A, DepKind_A, Place>(execRef, "stringDesc");
/*%% Create a dependency from another descriptor. xxx/

/* User-initialized descriptor. =/

app::data::traits<DS>::descriptor_t userDatum = /% Custom initialization. x/;

/* Build a dat

a guard from the descriptor and an executor. =/
auto dataGuard2 =

dep::handle<DS_B, DepKind_B, Place> (execRef, userDatum);

execRef ( make_task<app::impl::X>(dataGuardl, dataGuard2) );
} /* End of scope. x/

eral memory spaces and to manage the use of the system memory resources. In case of map visibil-
ity, a synchronization before unbinding is needed to ensure the visibility of read-write and write-
only data. In case of copy visibility, the data is registered as a candidate datum to be evictable, so
it can be saved to other memory space before eviction according to some cache-eviction policy.

dep::view: :copy dep::view: :map
dep::kind::in Register as evictable Unbind if not inherited
dep::kind::inout  Register as evictable  Synchronize and unbind if not inherited
dep::kind: :out Register as evictable Synchronize and unbind

Table 4.4: Data publication actions depending on the dependency kinds (dep: :kind: :in,
dep::kind::inout and dep: :kind: :out (read-only, read-write and write-only, respec-
tively), and the visibility mode (dep: :view: : copy, dep: :view: :map).

One possible use of handle template function is exposed in Listing 4.24, in which a data
descriptor is built from a string (line 8). This instruction is considered legal only if the user has
provided a function definition to build a data descriptor object from a string (see Listing 4.25).
The returned datum object must be allocatable. Secondly, a guard can also be built from a plain
descriptor created by the user (see lines 12 and 15 of Listing 4.24).

Assuming that app: :impl: :X exposes aDS_Aand DS_Bas arg.t =std::tuple
<handle_t<DS_A>, handle_t<DS_B>> in its traits, previous guard creations (lines 8 and
15 of Listing 4.24) permit a task app: : imp1l: : X construction and executor dispatching as ex-
pressed in line 17. Finally, at the end of the scope (line 18) the destruction of dataGuardl
and dataGuard?2 are triggered, which will automatically block until the task app: : impl: : X
instance is finished.

Note that functions in lines 5 and 8 of Listing 4.25 are opposite operations. The function
get_string._descriptor isnotused for guard initialization but will be required in the context
of file operations (see Section 4.2.5.2).

4.2.4.3 Data accessing

This section exposes the additional interface to be defined by the user so that subregions or
pieces, combined with possible representations, can be accessed individually and concurrently.
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Listing 4.25: String conversions for DS data identifier.

namespace steel::app::data {

class traits<data::impl::DS> {

public:
/* Pure function to transform a string into a descriptor. =/
static descriptor_t get_descriptor (const std::string filename);

/+ Pure function to transform a string into a descriptor. x/
static std::string get_string_descriptor (const descriptor_t& datum);
i

} /+ namespace steel::app::data =/

Listing 4.26: Subregion access.

using namespace steel;

{ /+ Start of scope. */

/

/x ... = A context with an executor reference ’'execRef’. =*/

/* Creation of a parent guard. =x/

auto parentGuard = /* Initialize via dep::handle, execRef and a data descriptor. */;
/* User initialization of sub-data descriptors. x/
using subdata_desc_t = app::data::traits<app::data::impl::DS>::subdata_descriptor_t;
subdata_desc_t childDescriptorA = /+ Initialize */;
subdata_desc_t childDescriptorB = /x Initialize «/;

/+ Get references of children guards. */

auto& childGuardA = parentGuard.get (childDescriptorA);

auto& childGuardB = parentGuard.get (childDescriptorB);

/* Creation and dispatch of a task Y with child dependencies. x/
execRef ( make_task<app::impl::Y>(childGuardA, childGuardB) );

/

f scope. */

Section 4.2.4.4 introduces the STEEL interface exposed to let the user perform custom memory
allocation inside a kernel context.

Function handle in line 2-9 of Listing 4.23 is not only used to enable concurrent access
and full STEEL-RT management to heap-allocatable task arguments. With additional function
definitions, the user can access to subregions of a data guard by means of the get method, and
those subregions will acquire their own protections for finer-granularity concurrent access.

Listing 4.26 illustrates how to accomplish this goal. Assuming a parentGuard (line 8)
already constructed (by any of the methods exposed in Listing 4.24), and descriptors that fully
characterize subregions of data (lines 12-13), references to children guards can be created (lines
16-17). From them, a task app: :impl: :Y that take these subregions as dependencies can be
built and dispatched (line 20). Additionally, at the end of the scope (line 22), the deletion of
parentGuard object will ensure that all children dependencies have been resolved —i.e., task
instance app: : impl: : Y has finished—.

In order for the code in Listing 4.26 to work, and assuming app: :data::impl::DS to
be the type of the parent data descriptor, the user must provide the subdata_descriptor_t
type and a function definition key_to_descriptor, as exposed in lines 5 and 8 of Listing 4.27,
respectively.

Section 5.2 will expose how this functionality can be applied to specific data structures such
as bi-dimensional arrays, in which bi-dimensional subregions of data can be expressed for data-
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Listing 4.27: User definitions for subregion access.

namespace steel::app::data {
class traits<data::impl::DS> {
public:
/x Type definition for sub
using subdata_descriptor_t

cterization. =/
e

/* Function to build data descriptors of sub regions of a parent descriptor. */

static descriptor_t key_to_descriptor(
const descriptor_té& parentDesc, const subdata_descriptor_t& childDesc);
i

} /* namespace steel::app::data */

Listing 4.28: Interface for context-aware RAIl-based memory allocation.

using namespace steel::executor;
template <typename ExecutorT> /x Executor type to provide an allocation context. =/
auto raw_allocate (ExecutorT& execRef, std::size_t bytes)

’

partitioning and mixed-precision purposes.

4.2.4.4 Custom memory allocation

Users can leverage the STEEL-internal RAIlI-based allocation mechanisms to request the creation
of raw data buffers —i.e. not identified by a app : : imp1—inside the scope of an unfolder executor.
Listing 4.28 exposes the function signature raw_allocate which performs a data allocation in
the storage context abstracted by the fop allocator internally referenced by an ExecutorT object.

Line 7 of Listing 4.29 invokes this function and returns a temporary buffer object whose data
can then be used. At the end of the scope (line 11), RAIl-idiom guarantees a proper release of
memory resources in a transparent fashion.

4.2.5 Auxiliary interface

In order to complete the full STEEL-RT API function definitions, auxiliary functions related to
input / output and to the execution entry point are exposed next.

Listing 4.29: Context-aware RAII-based memory allocation from user side.

using namespace steel;
{ /» Start of scope. */
/* [...] = A context with an executor reference ’'execRef’. x/

[...]

/* Memory allocation request within the storage context referenced by execRef. x/
auto temporaryBuffer = executor::raw_allocate( execRef, nBytes );

/* Access to the actual data. =*/

void % dataPtr = temporaryBuffer.get ();

/

~
*
a
19}
o
o
—
—
o)
Q
o
t

ed memory in dataPtr. =/
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Listing 4.30: Function for parsing program arguments.

using parse_map_t = std::map<std::string, std::string>;
parse_map_t steel::build_parse_map(int argc, charxx argv);

Listing 4.31: Identification by mount-point of a persistent-storage memory space identified as MS.

namespace steel::sys {
struct traits<memspace::MS> {

static constexpr bool is_persistent = true;
static constexpr const charx source_path = "[PATH_MOUNT_POINT]";
/+* Other definitions ... x/

bi

} /* namespace steel::sys =/

4.2.5.1 Parsing main program arguments

The arguments passed to a C/C++ program by command line can be parsed by build_parse_map
function, as specified in line 2 of Listing 4.30. This function returns a C++-standard associative
container std: : map that interprets command line arguments in the form ——parameter_name
= parameter_value as key-to-value pairs.

4.2.5.2 Data dependencies in persistent memory spaces

System-dependent memory spaces expose a set of traits defined at install-time. Memory spaces
associated to persistent storage devices, either in the form of hard-disk, solid-state, or non-volatile
memory, are qualified as persistent and expose a compile-time path identification in its traits (see
lines 3-4 of Listing 4.31), which is used to uniquely associate file names to them.

Previous source-path association to a memory space and the use of handle_dependency
function exposed in Listings 4.23 and 4.24, enable the treatment of binary files as data dependen-
cies to be safely accessed by tasks.

Specifically, line 6 of Listing 4.32 creates a data guard, so it can be directly read
(dep: :kind: :1in), read-written (dep: :kind: : inout) or written (dep: : kind: : out) by
tasks concurrently. Depending on the dep: : view identifier, data access is performed either
as mapped (dep: :view: :map) —using internal OS mechanisms of file mapping—, or as copy
(dep: :view: : copy) letting STEEL-RT to make a full copy when data are requested in a dif-
ferent memory space. Persistent memory space in which the file is stored is identified by matching
FULL_PATH_FILENAME against source_path definition of all persistent memory spaces identified
at install-time.

Recalling the RAIl-nature of a data guard exposed in Section 4.2.4.2, at the end of the scope

Listing 4.32: Guarding a binary file as a data dependency.

using namespace steel;
/* [...] = A context with an executor reference ’'execRef’. x/
[...]

{ /* Start of sc */

/* Treat a file as a task dependency. =/
auto fileGuard = dep::handle<app::data::impl::DS, DepKind, Place>(
execExec, "[FULL_PATH FILENAME]");

} /* End of scope. */
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Listing 4.33: Run of a STEEL program from command line.

$ ./steel_binary \
——input=/media/spaceA/dataX.bin \
—-—-inoutput=/media/spaceB/dataY.bin \
——output=/media/spaceC/dataz.bin

(line 9), a proper release of resource is transparently performed, first blocking until all tasks
no longer need to access the guarded data. Second, if DepKind is dep: :kind: :inout or
dep: :kind: :out, data is synchronized back to ensure visibility from the persistent storage.

Finally, memory spaces qualified as persistent in its traits can be accessed from any allocation
context of an executor scoping node- or lower-level execution contexts.

4.2.5.3 Example of a STSE program

An example of a main program that illustrates the STSE paradigm is exposed in Listing 4.34,
which is compiled into a steel binary executable. This program could correspond to an ap-
plication requiring three arguments with read-only, read-write and write-only access modes. These
arguments are meant to be task dependencies of the whole application viewed as a Single Task - ST,
and correspond to different user-defined data structures identified as app: : data: : impl: : DSX,
app::data::impl::DSY and app: :data: :impl: :DSZ, respectively.

In Listing 4.33, three arguments corresponding data dependencies are passed to the executable.
Each of the files are located in three different persistent memory spaces with different mount points
(/media/spaced, /media/spaceB and /media/spaceC) which must be referenced in
the corresponding memory space traits defined at install-time.

Arguments in command line are passed as argc and argv parameters at program entry point
(line 5 of Listing 4.34) and parsed (line 9). Secondly, in line 11 a system-wide executor is deployed
automatically from the system information defined at install-time and the application information
defined at compile-time.

Data guards are built (lines 14-26) from the files specified in the arguments. Specifically, data
in dataX.bin file is treated as a read-only datum located in memory space A (line 14), and from
dep::view: :copy acopy to local memory space is needed in order for the task to be ready to
run. Contrary, data in dataY.bin, as required by dep: : view: :map, is mapped to the local
memory space and transferred on page-fault basis when needed (line 19). Finally, dataZ .binis
considered as a write-only dependency which will require an allocation in local memory space (as
required by dep: : view: : copy), without requiring any fetch from space C.

Lines 29-30 of Listing 4.34 leverage the STSE pattern: an application-wide Single Task - (ST)
is created and asynchronously dispatched to the system-wide Single Executor - (SE). Under the
hood, multiple tasks could be created and transparently dispatched across several executor con-
texts, depending on the user-defined relaxations by which the given application has been featured.
Similarly, data is distributed possibly across a deep memory hierarchy in a coherent and transpar-
ent way. Finally, the caller thread blocks at the end of the scope (line 31) until data guarded by
previous guards are no longer accessible —or equivalently, until the computation finalizes—.

In lines 7 and 35 optional (although recommended) calls wrapped in initialization and final-
ization macros are performed to handle eventual exceptions triggered from any thread.
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Listing 4.34: Example of the main entry point of a STSE program.

83

#include <steel.hpp>
using namespace steel;

/* Program entry point. =*/
int main(int argc, charx* argv) {
/+ Optional initialization of exception-aware scope. */
STEEL_TRY () ;
{ /» Start of scope. x/
const auto pMap = build_parse_map (argc, argv);
/* Deploy system-wide single executor. =/
auto& mainExec = executor::deploy_main();

/+ Treat binary file referenced in —--input as a read-only dependency. =/
auto readOnlyGuard = dep::handle<
app::data::impl::DSX, dep::kind::in, dep::view::copy> (
mainExec, pMap["-—input"]);

/+ Treat binary file referenced in —--inoutput as a read-write dependency. */
auto readWriteGuard = dep::handle<
app::data::impl::DSY, dep::kind::inout, dep::view::map> (
mainExec, pMap["--inoutput"]);

/* Treat binary file referenced in --output as a write-only dependency. =/
auto writeOnlyGuard = dep::handle<
app::data::impl::DSZ, dep::kind::out, dep::view::copy>(
mainExec, pMap["--output"]);

/x Create task and dispatch it to the executor. =/
mainExec (
make_task<app::impl::T>(readOnlyGuard, readWriteGuard, writeOnlyGuard)) ;
} /% End of scope. Blocking until computation is finished. x/

/* Finalization of exception-aware scope. Eventual exceptions
from any thread are handled. =/
STEEL_CATCH() ;

/* End of main scope. Executors are destroyed and all resources released. «*/
return 0;

}
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Listing 4.35: Compile-time predicate to check application-processor compatibility.

namespace steel::detail {
template <app::impl X, sys::processor ProcessorId>
constexpr bool are_compatible_v = app::kernel<X, ProcessorId>::value

} /* namespace steel::detail «*/

4.2.6 Internal safety patterns

Robustness is a crucial characteristic in any runtime system. In this section, different patterns that
endow STEEL-RT with compile- and run-time safety mechanisms are exposed.

4.2.6.1 Compile-time task-executor compatibility

Every template function exposed to the user by STEEL-API is equipped with C++ Concepts-based
(see Section A.2) predicates that impose restrictions for the instantiable template parameters.

In particular, previous commands for executor deployment return references (&) to executor
objects internally managed by the STEEL runtime. A task can only be mapped to an executor if
that executor type satisfies the compile-time predicate specified in the requi res that precedes a
task kernel definition. This predicate can be based on any characteristic related to the processor
architecture encompassed by the executor or on any information referring to specific third-party
kernel libraries. Specific examples for this cases will be exposed in Section 4.2.7.

Specifically, when the compiler parses an instruction corresponding to atask app: : impl: : X
being dispatched to an executor object associated to a processor identifier sys: :processor
: :Processorld, the predicate defined in Listing 4.35 is evaluated to check the task-executor
compatibility. Note that : : value is a constexpr boolean value inherited either from
std::true_type or std::false_type, which correspond to base classes of existing or
non-existing app : : kernel definitions, respectively (See Listing 4.7).

In the context of an executor tree, the mentioned application-to-processor compatibility is
transferred to the associated bottom executor, and transitively toward higher-level executors up-
stream in the executor tree. Ultimately, as all the user-defined and system identifiers for proces-
sors are compile-time variables, the previous constraints are translated into a final constraint that
verifies whether the main implementation that represents the application or single task (ST) is
compatible with the entry-point executor (SE) and the full executor tree.

4.2.6.2 Compile-time legal task construction

The make_t ask function is a free function endowed with C++ concept-based semantics to ensure,
at compile-time, that any call to it is legal according to the user definitions in the application traits.
Lines 9 to 17 of Listing 4.36 define a predicate equal_impl_args_v, built on top of other three
clauses (lines 11, 13-14 and 17) which ensures that a task construction is legal with respect to
the number of arguments passed in the call and the number of elements defined in arg_t and
arg_kind_t types belonging to the traits of task X (See Listing 4.5).

4.2.6.3 Exception-safety at run-time

STEEL runtime uses standard C++ exceptions [138] to capture situations in which the execution
cannot continue due to an error happening at run-time. Moreover, any exception thrown from the
user code —either from kernel definitions or copy / cast functions of custom data structures—, is
captured by the STEEL runtime and then retrieved to the user before shutting down safely.
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Listing 4.36: Compile-time verification for legal use of make_task.

namespace steel {

/* Declaration of make_task function. */
template <app::impl Impl, typename... Args>
auto make_task (Args& ...);

namespace detail ({

/* Internal compile-time predicate to assert legal make_task calls. */

template <app::impl Impl, typename... Args>

constexpr bool equal_impl_args_v =
/* 1lst condition: arg_t must be a tuple. x/
util::is_instantiation_of_v<std::tuple, app::traits<Impl>::arg_t> &&
/+ 2nd condition: # of elements of arg_kind_t and arg_t must match. */

app::traits<Impl>::arg_kind_t::size() ==
std::tuple_size_v<app::traits<Impl>::arg_t> &&

/+ 3rd condition: # of arguments passed and # of elements of arg_kind_t
must match. =/
app::traits<Impl>::arg_kind_t::size() == sizeof...(Args);

} /* namespace detail =*/

} /* namespace stee */

4.2.6.4 Executor lifetime

Once the user requests an executor deployment via executor: : deploy calls, the STEEL run-
time internally builds the executor object and returns a reference (&) to it. With this design, the
lifetime of executor objects is neither restricted to a scope {...} nor to deployment ordering, but
managed internally to relieve the user from an unnecessary complexity. Note that complex hier-
archies of executors can be built, and each executor can manage its own set of threads that may
be actively running a task or not. Also, the fact that all executors are asynchronous makes the
executor callers —in general- unaware of whether a task is running, has finished, or has thrown
an exception. Designing the STEEL runtime to manage executor objects guarantees a proper and
transparent release of resources, thread joining, data cleanup, executor destruction, and exception
handling.

4.2.6.5 Future contract-based support

C++23 ISO specification will probably enable the use of Contracts [57, ], which are an id-
iomatic feature that ensures run-time correctness and facilitates static verification of programs.
STEEL-RT will integrate this feature to strengthen the user-side API exposed to STEEL-RT. For
example, the STEEL-RT internal is_allocatable predicate (see Listing 4.20), among others,
can be used to define the STEEL-RT internal contracts to ensure that the user has provided correct
function definitions in data_traits (Listing 4.19).

4.2.7 Cases for user-defined relaxations

This section exposes specific instances of the general definitions presented in Listings 4.9, 4.10,4.11
and 4.12. The following examples correspond to specific user-defined instantiations of the tem-
plate class kernel, which are themselves constrained by C++ Concepts [61] and STEEL-API-
internal constraint template (which serves as a proxy template-type to evaluate the existence
of platform-dependent features defined at install-time). The user must provide a type named
expand within the scope of every definition of a kernel class, as a specialization of any of the
following template types just, £ix, relax and fix_relax. Thus, the definition of expand
type is interpreted in the compilation process to deduce the size of the action space required for
scheduling the kernel execution. Specifically, these auxiliary template types are parametrized ac-
cording Listing 4.37: sched: : just (which restricts the execution to ProcessorId results
into a singleton action space) sched: : £ix (for a library- or architecture-dependent parame-
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Listing 4.37: Auxiliary template types for user-defined expand type.

namespace steel::sched {

/+ No options expanded, just restrict execution to a processor. =/
template <sys::processor ProcessorId>
struct just;

/* "expand’ option is a library-dependent value. =*/
template <support::ext_library ExtLib>

struct fix;

/+ "expand’ options are the cross product of values in user-defined sequences. x/
template <typename... SequenceT>

struct relax;

/* "expand’ options are library-dependent values combined with
user-defined s

juence values. */
template <support::ext_library ExtLib, sys::processor ProcessorId, typename... SequenceT>
struct fix_relax;

} /* namespace steel::sched =*/

ter to be required, sched: : relax (to expand the action space from a user-defined sequence)
and sched::fix relax (to expand the action space from either a library- or architecture-
dependent and a user-defined sequence.

4.2.7.1 Threading relaxation and external libraries

This section exposes how to express variable-thread scheduling capabilities in terms of two back-
ends: OpenMP and CUDA. The existence of an SMP and NVIDIA GPUs target platform and the
availability of the corresponding OpenMP and CUDA libraries in the system enable the definition
of internal enumeration identifiers support: :ext_library: :cpu_threads and
support::ext_library::cuda_threads atinstall-time.

Listing 4.38 shows the required definitions to enable variable-thread scheduling for a task with
identifier app: : impl: : X running with OpenMP. The template type sched: : relax is spe-
cialized with the user-defined SMP partitions (core_partitions type) that the task is allowed
to occupy (see line 9 of Listing 4.38). In this case, when ready to be run, the kernel is allowed to
run on all the SMP (1/1), on just half of it (1/2), or on a quarter (1/4) of the total number of cores.
As other tasks could be run simultaneously in the same SMP, STEEL-RT internally manages the
allocation of tasks to avoid core over-subscription via waiting for resource acquisition and thread
binding only to idle cores.

Similarly, Listing 4.39 shows the definitions to relax the CUDA-specific number of thread
blocks and number of threads per block that parametrize the execution of a CUDA kernel (lines
9 and 10) [115]. Internally, STEEL-RT runs this function from a thread handled within a bottom
executor assigned to a NVIDIA GPU, being this thread previously attached to a CUDA Stream at
program initialization.

Several threads (and streams) will be in general associated to the same GPU, so multiple
different CUDA kernels could be running concurrently at a given time on the same device. STEEL-
RT tracks which and how many kernels are running at a given time in the GPU and, equivalently
to the OpenMP case, a thread assignment decision will be based on the kernel characteristics —e.g.
granularity—, and the current state of the GPU. Contrary to the previous OpenMP case, how the
physical GPU resources are assigned to kernels is entirely resolved by the CUDA runtime.
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Listing 4.38: Relaxing number of threads for a OpenMP kernel.

namespace steel::app {

template <sys::processor ProcessorId>

requires /x Kernel definition if ProcessorId is a multicore cpu. x/
constraint<ProcessorId>::support_device == support::device::cpu &&
constraint<ProcessorId>::parallelism > 1

class kernel<impl::X, ProcessorId> : public std::true_type {

private:
/+ Define set of allowed core partitions: 1/1, 1/2 and 1/4. */
using core_partitions = std::index_sequence<l, 2, 4>;

public:

/* Mandatory type definition. =/
using expand =
sched::fix_relax<support::ext_library::cpu_threads, ProcessorId, core_partitions>;

/+ Kernel definition.
Allowed ’"nThreads’ values deduced from core_partitions and ProcessorId parallelism.
[...] = Arguments of arg_t tuple. =/

static void run(unsigned nThreads, [...]) {
omp_set_num_threads (nThreads) ;
/* OpenMP kernel body. */

}

i

} /* namespace steel::app x/

Listing 4.39: Relaxing number of threads for a CUDA kernel.

namespace steel::app {
template <sys::processor ProcessorId>
requires
constraint<ProcessorId>: :support_device == support::device::gpu &&
constraint<ProcessorId>::has_ext_library<support::ext_library::cuda_threads>
class kernel<impl::X, ProcessorId> : public std::true_type {

private:
/+ Define set of allowed number of blocks =/
using n_blocks = std::index_sequence<l, 16, 64>;

using threads_per_block = std::index_sequence<64, 256, 1024>;

public:
/* Mandatory type definition. =/
using expand = sched::fix_relax
<support::ext_library::cuda_threads, ProcessorId, n_blocks, threads_per_block>;

/* Kernel definition. ’'param’ type is deduced from ’expanded’ definition.
[...] = Arguments of arg_t tuple expanded. =/
static void run(unsigned nBlocks, unsigned nThreadsPerBlock, [...]) {

/+ Set [kernelArgs] from [...]. */

/* CUDA kernel call. */
my_kernel<<<nBlocks, nThreadsPerBlock>>>([kernelArgs]);

/* Calling thread must block until my_kernel is finished. x/
cudaStreamSynchronize (cudaStreamPerThread) ;
}
bi
} /+ namespace steel::app */
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Listing 4.40: Example calling a kernel library requiring a built-in type.

namespace steel::app {

template <sys::processor ProcessorId>

requires
constraint<ProcessorId>::has_ext_library<support::ext_library::cusolver>

class kernel<impl::X, ProcessorId> : public std::true_type {

public:
/* Mandatory type definition from built-in. =*/

using expand = sched::fix<support::ext_library::cusolver>;

/* Kernel definition. ’'param’ type is deduced from ’'expand’ definition.
.] = Arguments of arg_t tuple. */
static void run(auto param, [...]) {
/* Get custom handle set by STEEL scheduler. «/
auto cusolverHandle = std::get<cusolverDnHandle_t> (param);

/* Get handle for local memory allocation. x/
auto localAllocCallback = std::get<local_allocator_callback_t> (param);

/+* Allocate temporary buffer. Set [requiredMemory] from [...]. */
auto tempBuffer = localAllocCallback ([requiredMemory]) ;

/* Set [kernelArgs] from [...] and tempBuffer. =/

/+* A generic call [cusolverCall]. */

cusolverCall (cusolverHandle, [kernelArgs]);

/% Calling thread must block until my_kernel is finished. */
cudaStreamSynchronize (cudaStreamPerThread) ;

} /+* End of scope. Memory in tempBuffer is released. =/

} /* namespace steel::app =/

Regarding the use of some third-party CUDA-based kernel libraries, kernel calls may not re-
quire explicit threading decisions, so there is no relaxation that the user can expose to the STEEL-
RT. However, these kernel calls might require opaque types to be passed to kernel calls and / or re-
quire temporary memory allocation. This may be the case for some calls to popular cuBLAS [113]
or cuSOLVER [114] libraries. Listing 4.40 shows an example for a cuSOLVER kernel call that
requires a specific opaque handle type cusolverDnHandle_t (see [| 14]) and a prior memory
allocation (line 19). The mandatory type expand is defined from a sched: : £ix template type
specialized for support::ext_library: :cusolver identifier, set at STEEL install-time if
the cuSOLVER library is detected in the system.

4.2.7.2 Vectorization relaxation

Listing 4.41 exposes a case in which the user defines the available options in terms of possible
vector extensions featured by the architecture. For example, the definition of the expand type in
line 11 could be internally set to a sequence of options such as {sse, avx2, avx512} (inthe
case of a Intel Skylake-X architecture [75]), associated with different extensions for instruction
vectorization.

Similarly, in Listing 4.42 the user exposes a kernel that could potentially be running in two
different modes with respect to the use of Tensor cores in modern NVIDIA Volta GPUs.
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Listing 4.41: Relaxing kernel execution via vector extension.

namespace steel::app {
template <sys::processor ProcessorId>

requires
constraint<ProcessorId>::support_device == support::device::cpu &&
constraint<ProcessorId>::vector_ext::size() > 0

class kernel<impl::X, ProcessorId> : public std::true_type {

public:

/+ User defines vectorization options from supported extensions
provided in the processor encompassed by the executor. */
using expand = sched::relax<constraint<ProcessorId>::vector_ext>;

/* Kernel definition. ’'vExt’ refers to a particular vector extension.
[...] = Arguments of arg_t tuple. =/
static void run(auto vExt, [...]) {

/+ Kernel body. Divert execution depending on vExt allowed values. =/
}
bi
} /% namespace steel::app */

Listing 4.42: Relaxing a cuBLAS kernel execution via CUDA tensor cores.

namespace steel::app {
template <sys::processor ProcessorId>
requires
constraint<ProcessorId>::tensor_ext::size() > 0 &&
constraint<ProcessorId>::has_ext_library<support::ext_library::cublas>
class kernel<impl::X, ProcessorId> : public std::true_type {
private:
/* User enables options from supported extensions
provided in the processor encompassed by the executor. */
public:
/+ Mandatory type definition. =*/
using expand = sched::fix relax
<support::ext_lib::cublas, Processorld, constraint<ProcessorId>::tensor_ext>;

/* Kernel definition. ’'param’ value refers to whether use or not tensor cores.
[...] = Arguments of arg_t tuple. x/
static void run(auto param, [...]) {

cublasHandle_t cbHandle = std::get<cublasHandle_t> (param);
using tensor_opt_t = typename constraint<ProcessorId>::tensor_ext::value_type;
auto useTensorCores = std::get<tensor_opt_t>(param);
/+ Kernel body. Divert execution depending on useTensorCores. x/
}
bi

} /* namespace steel::app x/




O 01NN AW~

90 CHAPTER 4. STEEL. DESIGN PRINCIPLES AND IMPLEMENTATION

Listing 4.43: Kernel for task partitioning.

namespace steel::app {
/* Partial specialization =/

template <sys::processor ProcessorId>

requires ProcessorId == sys::processor::unfolder
class kernel<impl::X, ProcessorId> : public std::true_type {
private:

/* User enables allowed partition granularities. */

using my_opts = std::index_sequence<2, 4>;

/+ Data argument type. =*/

using data_t = util::tag_t<data::impl::DS, traits<data::impl::DS>::descriptor_t>;

/* Return size parameters of 2d dimensional data. =/
int get_size_x(const data_t& dh) {

return /+ Size parameter x in dh descriptor. =*/; }
int get_size_y (const data_t& dh) {

return /* Size parameter y in dh descriptor. x/; }

public:

/* Mandatory type definition. =/
using expand = sched::relax<my_opts>;

/* Kernel definition.
[ .] = Arguments of arg_t tuple expanded. =*/
static void run(auto& delegate, unsigned nPartitions, data_té& dataArg) {
/* Create parent data guard from which children data is with ’copy’ visibility.x*/
auto parentGuard = dep::handle<DS, dep::kind::inout, dep::view::copy>();
/+ Number and size of partitions is set from ’'nPartitions’ (which is either 2 or 4)x/
auto grainSizeDimX = get_size_x(dataArgs) / nPartitions;
auto grainSizeDimY = get_size_y(dataArgs) / nPartitions;
for (auto j = Ou; J < nPartitions; ++3j) {
for(auto 1 = Ou; i1 < nPartitions; ++1i) {
/* Create children tasks on partitioned data
and forward them to ’'delegate’ executor. =/
delegate ( make_task<impl::X>( parentGuard.get (
{ixgrainSizeDimX, j*grainSizeDimY, grainSizeDimX, grainSizeDimY}) ) );

}
} /+* End of scope. Thread blocks until all children tasks have finished. x/
Vi
/

} /* namespace steel::app */

4.2.7.3 Task partitioning

Listing 4.43 exposes a kernel instance of a task app: : impl: : X for data partitioning, that once
running in the context of an unfolder executor (see constraint in line 4) generates and delegates
children tasks to a lower-level executor (referenced by delegate in lines 24 and 35). It is as-
sumed, for the sake of simplicity, that the kernel receives one argument (e.g. with a data-identifier
app::data: :impl: :DS in read-write mode.)

In order for the parentGuard.get () instruction to be legal for the compiler, the user must
define a key_to_descriptor function in the traits associated to app: :data: :impl: :DS,
as exposed in Section 4.2.4.3 and Listing 4.27. In particular, regarding lines 35-36 of Listing 4.43
in which two integers are passed —representing the shift from the parent origin address and the
grain size of the data partitions—, an array of integers could be used as the key (see Listing 4.44).

Chapter 6 will provide specific examples exposing how other access patterns can be built.

4.2.7.4 Task reimplementation

Similarly, Listing 4.45 explains how the user can express possible reimplementations
—app::impl::Y and app: :impl: :Z—of a parent task app: : impl: : X. Line 9 defines the
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Listing 4.44: User definitions for subregion access.

namespace steel::app::data {
class traits<impl::DS> {
public:

/* Type definition to characterize a 2D data tile. */
using subdata_descriptor_t = std::array<int, 4>;
/+ Function to build data descriptors of sub regions of a parent descriptor. */

static descriptor_t key_to_descriptor (const descriptor_t& parentDesc,
const subdata_descriptor_t& child2DTileDescriptor) {
/* Return a descriptor referring to the 2d tile. x/

/* namespace steel::app::data =/

sequence of options, representing the first option to not-reimplement. New data guards need to be
created in any case, and in the particular cases in which STEEL-RT decides to perform a reimple-
mentation, some reimplementation-specific data transformations might also be needed (lines 22
and 26).

4.2.7.5 Precision casting

Listing 4.46 assumes, for the sake of simplicity, that the task app: : imp1 : : X kernel receives one
argument (e.g. with data-identifier app: :data: : impl: :DS and read-write mode) in double
precision. The options defined in line 9 refer to not performing the cast (app: :cast::identity)
or cast data to single precision (app: :cast::to_singlef). In any case, a new data guard
needs to be created (lines 18 and 24) to be forwarded to the new task instance. In the case of
casting, the guard needs to be created with dep : : viewcopy visibility, and a data subguard that
will represent the casted-data to single precision is returned by get (ptype: : £) (line 26). In
Section 5.2.5 will expose how data partitions, together with precision casting can be expressed
within the same kernel.

4.2.7.6 Other feasible combinations

At this point, it is clear that the execution possibilities can be either expressed by the user, defined
by the architecture details of the encompassed devices, or defined by internal built-in types pro-
vided from third party libraries. Also, it became clear that some task featurizations will lie under
the scope of bottom executors (e.g., threading, vectorization...) while others lie into higher-level
unfolders (e.g., partitioning, reimplementation, precision casting...). In particular, thanks to se-
quence composition exposed in Listing 4.10, the user is also free to compose different features
associated with bottom-execution contexts and to unfolder-executor contexts. With this regard,
Chapter 6 will expose some particular examples illustrating how this featurization composition
can be done in both contexts.

4.3 Summary
To put some of the concepts exposed in previous sections into a wider and a contextual scope,

Section 4.3.1 briefly exposes some of the main characteristics of STEEL-PM, put into context in
Section 4.3.2 with regard to some of programming model approaches presented in Chapter 1.
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Listing 4.45: Allow different reimplementations for a task.

namespace steel::app {

/* Partial specialization =/
template <sys::processor ProcessorId>

requires Processor == sys::processor::unfolder
class kernel<impl::X, ProcessorId> : public std::true_type {
public:

/* User-defined reimplementations. =/

using allowed_reimplements = util::impl_ sequence<impl::X, impl::Y, impl:

/* Mandatory type definition. =/
using expand = sched::relax<allowed_reimplements>;

/+ Kernel definition.
[...] = Arguments of arg_t tuple expanded. =/
static void run(auto& delegate, app::impl chosenImpl, ...) {
if (chosenImpl == impl::X) {
/* Reimplementation not requested. Relaunch same task. =*/
delegate ( make_task<impl::X>([...]) );

} else if (chosenImpl == impl::Y) {
/* Reimplementation to Y requested. Relaunch same task. x/
/* Create new guards [newGuardsY...] from [...] x/
delegate ( make_task<impl::Y>([newGuardsY...]) );

} else if (chosenImpl == impl::7Z) {
/+ Reimplementation to Z requested. Relaunch same task. =/
/* Create new guards [newGuardsZ...] from [...] x/
delegate ( make_task<impl::Z>([newGuardsZ...]) );

}
}

} /* namespace steel::app */

1Z2>;

Listing 4.46: Example for floating point down-casting.

namespace steel::app {
/* Partial specialization =/
template <sys::processor ProcessorId>

requires ProcessorId == sys::processor::abstract
class kernel<impl::X, ProcessorId> : public std::true_type {
private:

/* Assuming there are two options

no casting or cast to single precision floating point. =/

using my_opts = util::cast_sequence<cast::identity, cast::to_singlef>;
public:

/* Mandatory type definition. =*/

using expanded = sched::relax<my_opts>;

/* Kernel definition. */
static void run(auto& delegate, cast castKind, data_t& inoutArg) {
if (castKind == cast::identity) {
/* Casting requested. Guard again and relaunch the same task. x/
auto newGuard = dep::handle
<DS, dep::kind::inout, dep::view::map>(delegate, inoutArqg);
delegate ( make_task<impl::X> (newGuard);

} else if (castKind == cast::to_singlef) {
/* Casting requested. Create new guard, represent it
as [newGuards...] from [...] =/

auto newGuard = dep::handle<DS, dep::kind::inout, dep::view::copy>
(delegate, inoutArg);
delegate ( make_task<impl::X> (newGuard.get (ptype::£f)) );

}
i
} /% namespace steel::app x/
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4.3.1 STEEL-PM main characteristics

The ultimate aim of STEEL-PM is to lower the programmability barrier of HPC application de-
velopment without sacrificing performance. With this goal in mind, user-defined relaxations are
essential. However, there are some advantages with regard to the programming styles characteris-
tic of STEEL-PM that are worth mentioning.

4.3.1.1 Declarative style

Sections 4.2.2 and 4.2.4 exposed specific rules that the user must follow for task and data defini-
tions. With regard to fask featurizations, the corresponding definitions follow a declarative style,
in the sense that, to some extent, the user no longer commands what to compute, but exposes dif-
ferent options that define how a task can be computed. Consequently, the burden of non-portable
application- and system-dependent performance tuning is delegated from the user to the runtime.
Imperative style is however applied at a lower level in kernel definitions, in an unfolder executor,
when tasks are created and delegated, and in kernels within bottom executor.

4.3.1.2 Inversion of Control (InC)

One of the characteristics of STEEL-API is that it is partially based on the IoC principle, by which
the framework calls the application code instead of the more traditional opposite approach. This
is a clear pattern in the interface explained in Sections 4.2.2 and 4.2.4: the user must define types
and functions —related to kernel computations, task partitions and data structures—, with specific
naming so that they are visible and called from compilation and runtime side.

The IoC principle is also known as the Hollywood Principle: “Don’t call us, we’ll call you”,
and although it was first introduced in the context of Object-Oriented programming [107, 79] as a
mechanism to enhance modularity and extensibility of classes, in this context it is not applied to
user-defined classes (hence not from an Object-Oriented approach), but rather to pure functions be-
longing to template interfaces app: : kernel and app: :data: :traits. Specifically, user-
defined static void run functions (callable within an executor context), are preprocessed
at compile-time, so that they can internally treated as continuations, following a Continuation-
Passing-Style [141] by STEEL-RT.

4.3.1.3 Minimal callable interface

In relation to the set callable STEEL-API functions —i.e., functions meant to be called from user
code at run-time—, unlike other large interfaces of some programming models [12, 84, 90], it is
worth noting that it is designed to be very small.

At a glance, the basic functionalities consist on task creation (make_task), executor deploy-
ment (executor: :deploy) and run (call operator () of deployed executor references), task
unfolding and kernel executions (static void run within app::impl: :kernel defini-
tions), data wrapping for partitioning (executor: :handle, and get), and custom allocation
(executor::raw_allocate).

4.3.1.4 Full sequential style

Moreover, note that there is no need for using any concurrency-related special syntax at any point.
Deployed executors are essentially thread-safe interfaces that only accept objects returned by
proper tasks —i.e., objects returned from a make_task function—. Otherwise, the compilation
will fail. Also, the compilation will only succeed if for all task-to-executor dispatching happening
in a program —i.e., in main context and any delegation within an unfolder executor scope—, there
ultimately exist a compatible executor anywhere in the executor tree headed by the executor to
which the task is delegated.
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Executor deployment and task creation are thread-safe although in principle there is no reason
to call them concurrently. Also, executor: :handle is not thread-safe (neither data-related
functions executor: :handle and get). However this is not a problem since static void
run functions are called within a single thread managed by STEEL-RT.

4.3.1.5 Compilation and portability

As specified in Figure 4.2, STEEL-PM applications strictly adhere to standard C++, so only a
C++17 compliant compiler is needed (e.g., GNU GCC [56] or LLVM Clang [97]). In order to
exploit specific platform characteristics (e.g., GPUs), external dependencies such as libraries and
additional compilers may also be needed. In addition, specific support templates may need to
be instantiated by a STEEL-RT maintainer so that at install-time the platform characteristics and
external software components can be properly detected.

As mentioned in [160], this compiler-free' approach offers some benefits over the library-
or compiler-dependent approaches. Generic programming mechanisms based on C++ template
metaprogramming and template specializations provide sufficient expressive power to construct
high-level compositions exposing greater compilation optimization possibilities such as inlining
or evaluation of constant expressions which can result into high-performance binaries. Addition-
ally, better interoperability with third-party programming models and lower development effort
are other benefits derived from simply relying on already well-established, portable and robust
compilers.

4.3.1.6 Purity of user-defined functions

One of the intents of STEEL-PM is to expose a parallel programming framework in which the
user does not have to deal with any issue related to concurrency, for example dealing with race-
conditions, deadlocks, etc. As exposed in Section 1.2.1.1, function purity is a simple and thread-
safe per se characteristic that is recommended in all user-defined functions, as a way to provide
safety —they are callable from STEEL-RT at any time and possibly concurrently—.

Since there is no mechanism in C++ to assert no-side-effect computation of these user-defined
functions, their purity is encouraged but not forced. For example, although user-defined kernels
running bottom executors are meant to represent computational kernels, in practice there is no
constraint to express any kind of computation —effectful or not— within them.

Consequently, STEEL-PM leaves room for controlability, so that developers can for example
spawn a set of threads within an unfolder executor kernel to speed-up the deployment of tasks to
the lower level executor. In this case, as guard objects returned by executor: : handle are not
thread-safe, the user would need to provide protection mechanisms to ensure that the correspond-
ing .get calls are safe. Note however that there is no requirement whatsoever to perform any
concurrency-related operation within unfolder executor contexts, and internal STEEL-RT imple-
mentation is featured with mechanisms to maintain a proper balance between production rate and
consumption rate of tasks.

As a final note regarding Section 4.2.6, the only situation in which the user is encouraged to
sacrifice purity is in the case of runtime exceptions happening in kernel functions.

4.3.2 Related work

As exposed in Section 1.2.2, many frameworks and runtimes have been implemented aiming at
increasing programmability and portability without sacrificing performance, and in the majority
of these cases, modern C++ plays a central role. In the following, it is first exposed a set of task-

' Compiler-free characteristic refers to the fact that unlike other programming models, STEEL-PM does not expose
any intrinsic programming language that would demand a custom compiler.
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oriented, general purpose and pattern-oriented programming frameworks, based on modern C++
constructs, that exhibit some similarities with the STEEL-PM presented in this chapter.

Interestingly, task-based and pattern-based frameworks have been greatly influenced from
functional and declarative programming paradigms; for example, the functional composability
between either patterns and tasks is key to chain computations in a correct way. Also, it is com-
monly assumed that either tasks and patterns are essentialy pure or side effect-free functions, so
that parallelism can be expressed more naturally.

Pattern-based models are however more constrained than task-based ones, in the sense that
not all applications can be expressed in the form of patterns. Some algorithms that compose the
target application may not expose a representation transformable to a simple pattern. On the con-
trary, task-based models can represent virtually any application in the form of DAG- or stream-like
computations. Also, in task-based models it is common that dependencies between tasks cannot be
computed at compile-time, as the flow of task generation may depend on the output data. However,
the generality of computation models based on tasks comes with the price of a higher programma-
bility barrier in the corresponding programming models. As in pattern-based models a minimal
or no knowledge of concurrency / parallelism is required, in task-based programming models it
is common to require some form of concurrency-dependent language constructs to explicitly do
coarse-grain synchronization or to manually compose computations for fine-grain synchronization
—e.g., employing some form of CPS-style and futurization based techniques—.

4.3.2.1 Task-oriented and general purpose models

Several interesting projects related to system software focusing on HPC runtimes and frameworks
have been conducted since the first standarization of modern C++ in 2011. In addition, the apeal
of task-parallelism has guided the philosophy of several of them.

HPX [84, 85] is an open-source multi-platform implementation of the ParalleX execution
model. It is written using modern C++ and Boost [133] libraries and aims at targeting modern
heterogeneous and distributed systems on which applications of any scale can run. Also, HPX
exposes a rather big API that follows latest C++ standard to date and it already implements several
features proposed for future standarization. Internally, HPX manages its own set of internal light-
weight threads, and implements mechanisms for automatic load balancing. From the programming
perspective, HPX encourages a of programming style oriented to task-based models and asyn-
chronous data-flow chaining of computations employing advanced generic- and functional-based
patterns based on coroutines and asynchronous composition through futures and continuations.
HPX has also demonstrated that task-asynchronous executions are able to attain excellent scala-
bility properties in large peta-scale simulations [68].

SYCL programming model aims at simplifying HPC application development by providing a
modern C++ API from which the capabilities of OpenCL-programmable processing devices can
be exploited. In addition, SYCL device compiler follows a single-source paradigm to enhance
compilation portability. ComputeCpp [102] and trySYCL [50] are respectively proprietary and
open source implementations of SYCL. A computational kernel implemented in a SYCL program
can be instantiated as machine code for different target architectures by means of LLVM Interme-
diate Representation [97] mechanisms and SPIR / SPIR-V cross APIs [90]. This approach shares
some similarities with the STSE model exposed in this thesis: in the STEEL-PM implementation,
the full application and the application- and system-dependent runtime is instantiated for multiple
target platforms by means of template specializations. However, recall that computational kernels
in STEEL-PM are in general assumed to be external components, that can also be orthogonally
appended (and also subject to relaxation) to STEEL-RT, as it was exposed in Section 4.1.2.

In a similar line of SYCL, PACXX [65] Programming Accelerators with C++ is a program-
ming model that uses C++14 language features together with a Clang-based / LLVM-IR [97]
compiler and a runtime system for automatic memory management. PACXX aims at providing a
unified programming environment that eases development of kernels meant to be run in CUDA
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or OpenCL backends targeting accelerators programmable with intermediate representation lan-
guages NVVM-IR [116] or SPIR [89], also following the single-source paradigm.

Kokkos [57] is a C++ library focusing on performance portability of computational kernels
on a wide set of manycore architectures. To achieve this, Kokkos looks at performance problems
in kernel execution operating on multidimensional arrays, and proposes an interface to abstract
fine-grain data parallelism and memory access patterns, so the data layout can be modified de-
pending on the optimal pattern associated to a specific architecture. Similar to STEEL, Kokkos
uses memory spaces and execution spaces concepts to abstract where data is residing and how a
kernel is parallelized, respectively. Also, similar to STEEL, execution and memory spaces are
paired at compile-time, so threads associated to an execution space are prevented from accessing
outer memory spaces without the need of runtime checks. Kokkos has shown excellent perfor-
mance results without sacrificing portability for a set of computational kernels running on CPU,
GPU and Xeon Phi architectures, and general guidelines based on Kokkos were exposed in order
to migrate legacy codes to more performance-portable ones.

Raja [74, 91] proposes a performance-portability model motivated by performance-portability
and programmability issues appearing in a set of multiphysics applications. Its goal is to provide
a way to perform high-level performance optimization and —in a very similar line of STEEL-PM—
encapsulating architecture-specific and other programming model-specific constructs. One of the
main concerns of Raja is the code disruption caused by architecture-specific optimizations and
the main starting point of the proposed model is to abstract the loop. In the target applications,
the computation is characterized by a set of nested loops, and they propose a way to make code
adaptations to newer architectures and models less disruptive and with minimal impact. They
propose to abstract the inner loop, where most of the computational workload is performed, and
propose a set of language constructs on top of modern C++ in which loop computations, execution
policies, and data attributes can be generalized and specified.

UPC++ [160] is a Partitioned Global Address Space (PGAS) extension for C++. Specifically,
it is an object-oriented PGAS model meant to extend functionalities of UPC [26] by providing
remote asynchronous function execution, multidimensional arrays and easier interoperability with
other programming models such as MPI, OpenMP and CUDA. UPC++ has demonstrated that the
level of performance and scalability of UPC can be achieved in large distributed systems, thus
opening the door of efficient PGAS programming for C++ applications. Equivalently to STEEL-
PM, UPC++ uses a compiler-free approach, by which rich and generic programming patterns are
used to express PGAS idioms at compile-time.

4.3.2.2 Pattern-oriented approaches

Programming frameworks based on patterns / skeletons rely on the importance of composabil-
ity, readability and genericity oriented to architecture-independent code, toward achieving high-
performance and scalable parallel programs [123, ]. In addition, C++ template metaprogram-
ming techniques provide language constructs aimed at genericity and composability rooted on a
strongly-typed functional language, able to express generic parallel algorithms [22].

In particular, parallelized versions of C++ Standard Template Library algorithms have been
proposed [77] and are already implemented as part of some programming models (HPX, SYCL)
and by C++ compiler vendors (Intel and Microsoft). STL comprises a large set of algorithms and
patterns of general use applicable to STL containers.

The Standard Template Adaptive Parallel Library (STAPL) [24] is a general purpose library
in C++ to enable SPMD and nested parallelism in shared memory and distributed architectures,
also oriented toward genericity and productivity / programmability. STAPL provides execution
and communication abstractions and has reported good scalability and performance portability of
a set of parallel algorithms applied to distributed data structures.

RaftLib [18] is another template library that targets parallel stream-like computations under
high productivity programming patterns. RaftLib is equipped by internal mechanisms for au-



4.3. SUMMARY 97

tomatic parallelization to extract pipeline and task parallelism at run-time. Also, it provides a
dynamic monitoring system in order to improve execution performance at run-time.

Similarly, Generic Reusable Parallel Pattern Interface (GRPPI) [45] is a compile-time library
targeting stream- and data-like patterns that employs advanced C++ metaprogramming techniques
to chain computations with minimal runtime overhead. GRPPI is also composable with several
backends (native C++ threads, OpenMP and TBB) and has demonstrated clear benefits in terms
usability / programmability (lines of code) with respect to language constructs of the backends,
and without incurring into additional performance overhead.

With regard to proprietary pattern-based models, CUDA Thrust [19] and Intel Threading
Building Blocks [150] target pattern-based applications optimized for their architectures and rely-
ing on modern C++ programs. Intel TBB also supports (and encourages) task parallelism.

Other approaches like Kanga [92], SkePU [53], SkeTo [143], Muesli [37], FastFlow [7],
Delite [139] and MalLLBa [6], share the same aims targeting performance-portable pattern-based
high-level abstractions via skeletons, but differ in the target applications, target data structures,
compute backends or internal runtime characteristics (queuing management, lock-based / lock-
free synchronization, etc.).

In [44], PARSEC benchmarks were programmed in the form of patterns to build the PZARSEC
benchmark suite. In addition, a comprehensive study is done regarding programmability and per-
formance measurements for these benchmarks on three shared memory parallel architectures of
a set of (/) pattern-based models (SkePU, FastFlow and TBB), (2) task-based (OmpSs) and (3)
three backends (sequential execution, using pthreads, and OpenMP). In summary, for the tested
cases it has shown that pattern-based frameworks need in general less lines of code with excellent
performance results.

STEEL-PM exposes several similarities with pattern-based programming frameworks while
still maintaining the generality of the task-based computational models. The first (and most evi-
dent) one is the problem statement —the need for generic, composable and high-level parallel pro-
gramming interfaces— and the solution approach —the use of advanced programming mechanisms
consisting on C++ templates and metaprogramming—. The second common feature is that STEEL
executors can be regarded as a kind of skeletons: in essence, they are generic, computation-
parametrizable, and composable containers that channel computations with a clear top-bottom
directionality; being the top layer the actual user-level frontend, and the bottom layer referring to
the compute backends and parallel hardware.
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Love deep,
work hard,
sail the sea.

Save heap,
burn the card,
be lock-free.

Use cases and experimental results

This chapter instantiates a subset of the interface exposed in Chapter 4, particularizing the use of
STEEL-PM by means of well-known data- and compute-related use cases. A set of real codes
following STEEL-API are provided together with real execution traces on a high-end heteroge-
neous platform with 40-core CPU parallelism, two GPUs (MACHINE2, see B.2) and four different
memory spaces (one non-volatile -NVME—- in which the original data is residing and three local
RAM spaces, one for CPU-bound RAM —CPU-RAM- and one for each GPU —GPU-RAM-).

The goal of this chapter is not to expose detailed performance analysis, but to demonstrate a
set of STEEL-RT features from specific examples in the simplest possible way. As the tested cases
were chosen from simplicity and clarity considerations, eventual performance improvements de-
rived from user-defined relaxations are not treated in this chapter. Indeed, the potential benefits of
user-defined relaxations would demand a more detailed and deeper study targeting more complex
and challenging applications.

5.1 Driving examples

2D data buffers and two linear algebra operations are used as driving examples to expose some
STEEL functionalities. As mentioned in Sections 4.2.2 and 4.2.4, user-defined tasks and data
structures must be defined in app and app: : data namespaces, respectively, being app within
the steel namespace.

5.1.1 2D buffers

User-defined data structures are specified in terms of traits in app: : data. Current STEEL-
RT implementation supports multi-dimensional arrays, implemented as specific template instantia-
tions of data: :traits for identifiers app: :data: :impl: :buffer_1d, : :buffer_2d,
: :buffer_3d, and so on, for which corresponding handle_t template type instantiated by them
(recall Listing 4.22) dim_1d_t, dim_2d_t and dim_3d_t exist. The following examples illus-
trate different features for the 2D particular case (corresponding to data: :impl: :buffer_2d
identifier), exposing different accessibility modes (to access data subregions), and different cast-
ing possibilities that can be considered orthogonally with several API- and runtime-specific fea-
tures exposed in the previous chapter, such as data visibility modes —dep: :view: : copy and
dep::view: :map—.
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Listing 5.1: C implementation of the tiled Matrix-multiplication.

void tiled_matrix _multiply (double xA[s][s], double *B[s][s], double %C[s][s],
int b, int s) {
for (int k = 0; k < s; k++) {
for (int 1 = 0; 1 < s; i++) {
for (int j = 0; 3 < s; j++) |
matrix_multiply (A[i][k], B[k1[]jl, CIil[]J], b, b);
}
}
}
}

5.1.2 Linear algebra kernels

5.1.2.1 Matrix multiplication

Matrix multiplication is a well-known computational kernel fundamental in a broad set of appli-
cations. It is a common yet simple benchmark in many architectures or programming models, and
it features some basic characteristics that will guide the description of STEEL features from the
perspective of data and task management.

General matrix multiplication operates the matrices A x B + C' — C' with respective dimen-
sions m X k, k x n, m x n (Figure 5.1). It can be decomposed into smaller matrix multiplications
with a tiled matrix multiplication algorithm (Listing 5.1). These possible decompositions are il-
lustrated in Figures 5.2 and 5.3.

,,,,,,,,,,,,,

Figure 5.1: Representation of a matrix multiplication operation.

DAG for 2x2 Blocked GEMM

Figure 5.2: Representation of a 2 x 2-tiled matrix multiplication operation and associated task
DAG.

Listing 5.2 implements the type characteristics of the matrix multiplication task identified
with app: :impl: :gemm. Line 6 declares that the task features three arguments typed as 2-
dimensional buffers, while line 8 specifies a sequence of dependency annotations in correspon-
dence with the previous tuple.

5.1.2.2 Cholesky factorization

In addition, Cholesky factorization, which served as a driving use case in Chapter 2, will serve
again as an example from which executor deployment management in Section 5.4 will be pre-
sented.
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DAG for 4x4 Blocked GEMM
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Figure 5.3: Representation of a 4 x 4-tiled matrix multiplication operation and associated task
DAG.

Listing 5.2: Definition of type characteristics (traits) for the gemm task.

namespace steel::app {
template <>
class traits<impl::gemm> {

public:

/+ Tuple of arguments. x/

usi arg_t = std::tuple<dim_2d_t, dim_2d_t, dim_2d_t>;

/ * ociated dependency kind. =x/

using arg_kind_t = util::kind_sequence<dep::kind::in, dep::kind::in, dep::kind::inout>;
i
} /% namespace steel::app */

Listing 5.3 implements the type characteristics of the app: :impl: :potrf task, also in
terms of type traits. Line 6 declares that the task features one argument: a data handle representing
a 2-dimensional buffer. Line 8 specifies a (singleton) sequence of dependency annotations for the
arguments in arg_t tuple —in this case a single read-write argument. Lines 11 and 12 present two
function signatures whose bodies are omitted for the sake of brevity. These auxiliary functions are
intended to be callable from user-defined kernel instantiations.

5.2 Data management. Visibility, access modes and OOC computa-
tion

Using impl: : gemm as a driving example, this section exposes a set of use cases differentiating

between how data- and compute-related operations are expressed.

Considerations about latency and bandwidth in parallel computing systems with deep and
wide memory hierarchies open considerations about the placement of computation that impacts

Listing 5.3: Definition of type characteristics (traits) for the pot rf task.

namespace steel::app {
template <>
class traits<impl::potrf>{

public:
/* Tuple of argument. x/
usi arg_t = std::tuple<dim_2d_t>;
/4 ociated dependency kind. x/
using arg_kind_t = util::kind sequence<dep::kind::inout>;
/* Auxiliary functions callable from user code. =*/

static std::tuple<int, int> get_parameters(const dim_2d_t& matrix);
static void % get_pointer (const dim_2d_t& matrix);
bi

} /* namespace steel::app */
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Listing 5.4: Main entry point of a imp1l : : gemm program employing copy visibility.

/+ Run example: ./binary_name \
-—input-a=/mnt/nvme/ina/1024-1024-d.bin \
input-b=/mnt/nvme/inb/1024-1024-d.bin \
-—inoutput=/mnt/nvme/inout/1024-1024-d.bin «/
#include <steel.hpp>
using namespace steel;

void main (int argc, charxx argv) {

const auto pMap = build_parse_map (argc, argv);

auto& mainExec = executor::deploy_main();

auto inMatAGuard = dep::handle
<app::data::impl::buffer 2d, dep::kind::in, dep::view::copy>
(mainExec, pMap["--input-a"l);

auto inMatBGuard = dep::handle
<app::data::impl::buffer 2d, dep::kind::in, dep::view::copy>
(mainExec, pMap["--input-b"]);

auto inOutGuard = dep::handle
<app::data::impl::buffer_2d, dep::kind::inout, dep::view::copy>

(mainExec, pMap["--inoutput"]);

mainExec ( make_task<app::impl::gemm> (inMatAGuard, inMatBGuard, inOutGuard) );

execution performance. Specifically, given a pair of physically separated memory spaces, one
remote and the other local to a processing device, it is an open question whether the data must
be (1) fully copied to the local memory space before the computation starts —following a copy
visibility model- or (2) mapped to the local memory space, so the data is remotely streamed (or
pulled from the remote to the local memory) as the execution proceeds —following a map visibility
model—.

5.2.1 Dependency visibility

Listing 5.4 shows how to wrap a data dependency, setting the visibility as a copy visibility by
means of the variable dep: : view: : copy. The program can be executed according to the com-
mand in lines 1-4, in which three files representing read-only and read-write data present in the
NVME memory space are guarded. Traces in Figure 5.4 represent the data copy and the single
kernel execution operations corresponding to Listing 5.4. The first three blocks in the top trace
correspond to data copies from the the NVME memory space to local CPU-RAM, performed by the
main thread. The final block in the trace corresponds to the copy of the result of the computa-
tion (illustrated as the kernel_run region in bottom trace) from local CPU-RAM to the original
NVME memory space.

Assuming a case in which matrices are guarded via dep: : view: :map, the corresponding
trace would lack the blocks in the top trace, and data would be internally transferred to local CPU-
RAM on a page-fault basis during kernel execution (that is, the kernel start would not be blocked
until all data is present in local CPU-RAM).

5.2.2 2D access modes

Accessing modes are ways to access to subregions of a given multidimensional data object. List-
ing 5.5 illustrates a block access mode identified with data: :access: :block, which in gen-
eral is used to refer to contiguous multidimensional subregions of a given region of the same
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Data copy @ gemm.prv #21
MAIN ‘ — — — —
BOTTOM-8

438,571,733 ns 458,848,085 ns

Task execution @ gemm.prv #21

MAIN
BOTTOM-8

438,571,733 ns 458,848,885 ns

[ done

[ dependency_acquire
B dependency_release
B kernel_run

Figure 5.4: Basic execution traces illustrating data copies (top) and kernel execution (bottom).
Legend only corresponds to bottom trace colors.

Listing 5.5: Example of data: :access: :block mode to partition a matrix into quadrants.

/+ Function callable by STEEL-RT from an unfolder context. Defined inside a kernel classx/
static void run(auto& dlg, dim_2d_t& matrix) {
/* Create acc_block_t type alias. */
using acc_block_t =
data::traits<data::impl::buffer_2d>::access_type<data::access::block>;

/* Wrap matrix into a data guard. =*/
auto matGuard =
dep::handle<data::impl::buffer_2d, AnyDepKind, AnyDepView> (dlg, matrix);

auto [nRows, nColumns] = get_parameters (matrix);
int blockRows = nRows / 2;

int blockColumns = nColumns / 2;

/+ Create references to guarded quadrants. =/

auto& upLeftQuadrant =
matGuard.get (acc_block_t ({0, 0, blockRows, blockColumns}));
auto& upRightQuadrant =
matGuard.get (acc_block_t ({0, blockColumns, blockRows, blockColumns}));
auto& downLeftQuadrant =
matGuard.get (acc_block_t ({blockRows, 0, blockRows, blockColumns}));
auto& downRightQuadrant =
matGuard.get (acc_block_t ({blockRows, blockColumns, blockRows, blockColumns}));

/x [...] Operate on guarded quadrants. =/

dimension. In 2D, variables of type acc block_t define the 2D origin and row / column count
(acc_block_t = [origin row, origin column, row count, column count]).

Interleave-like access (identified as data: :access: : interleave) refers to non-contiguous

subregions with a specific separation in each dimension. This access mode is also known in litera-

ture to refer to a strided or non-unit strided data layout. In 2D, variables of type acc_interleave_t

define the 2D origin and a row / column separation (acc_interleave_t = [origin row, origin
column, row separation, column separation]). Listing 5.6 exposes an interleave access to refer to
the real and imaginary parts of a matrix of complex numbers.

Any subregion of a dep: :kind: :in, : : inout or : : out argument can be resolved as ei-
therdep: :view: :copyanddep: :view: :map (noted as AnyDepKind and AnyDepView).
In case of dep: :view: : copy, a new copy or allocation (depending on dep: : kind) to a con-
tiguous block / interleaved regions in local memory is performed. Figure 5.5 illustrates these two
accessibility modes used in previous listings.

When a task has finished manipulating read-write and / or write-only data objects, data is
guaranteed to be visible again from the original data scope (i.e., if the original data object was
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Listing 5.6: Example of data: :access: :interleave mode to interleave matrix elements.

/* Function callable by STEEL-RT from an unfolder context. Defined inside a kernel classx*

static void run(auto& dlg, dim_2d_t& matrix) {

/* Create acc_interleave_t type alias. =/
using acc_interleave_t =
data::traits<data::impl::buffer_2d>::access_type<data::access::interleave>;
/* Wrap matrix into a data guard. */
auto complexMatrixGuard =
dep::handle<data::impl::buffer_2d, AnyDepKind, AnyDepView> (dlg, matrix);

/+« {0,0,1,0} and {1,0,1,0} arrays specify real and

imaginary interleaved regions, respectively. */
auto& realMatrix = complexMatrixGuard.get (acc_interleave_t ({0,0,0,1}));
auto& imagMatrix = complexMatrixGuard.get (acc_interleave_t ({0,1,0,1}));
/* [...] Operate on guarded realMatrix and imagMatrix. =/

[...]

guarded with dep: : view: : copy, then the updated subregions are transparently copied back to
the original data object).

In addition, the copy visibility can be used to perform an out-of-place subregion casting, so that
a casting from the underlying data type to another compatible data type is performed during data
resolution. In Listing 5.7, assuming that the original matrix stores floating point double precision
data, the previous block accessing mode of Listing 5.5 could be composed with a down-casting to
generate 2D data subregions in floating point single precision.

Note that, although this subregion casting is only compatible with copy visibility, the user is
free to perform an in-place casting in a bottom executor context (e.g., for precision down-casting
the user can receive a data object referring to a double precision buffer, but casting the double
precision data to single precision during computation).

5.2.3 2D data partitions

Listing 5.8 shows a kernel instantiation executable on an unfolder executor. Departing from List-
ing 5.4, with mainExec representing a particular unfolder executor on top of a bottom executor
representing a CPU core, traces in Figure 5.6 reflect the associated data copies (in main and un-
folder thread) and kernel executions, distinguished by green flags, in executor contexts (bottom
and unfolder). First three copies in main thread reflect data copies from NVME to local CPU-RAM
while the last one illustrate the update of the result back to the NVME space. Copies in unfolder
thread reflect the compaction of subregions in original data into contiguous blocks in memory,

With regard to the bottom trace, the kernel running on the unfolder executor partitions, wraps
data subregions into blocks, and dispatches 8 imp1 : : gemm tasks (marked with green flags) run-
ning on finer-grained matrices (corresponding to divm = divn = divk = 2), which are run
sequentially on a bottom executor handling a CPU core!.

5.2.4 Out-of-core Computation (OOCC)

Out-of-core computation refers to the execution model in which the data to be processed is too big
to fit in the local memory of a processing device. Essentially, in the OOCC model, non-volatile
or disk-like memory spaces are treated as main memory spaces, and closer-to-processor memory

IThe first kernel running on the bottom executor takes longer due to the initial Intel MKL execution initialization
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2D buffer

Resolution as view::map

_—————— e

Resolution as view::copy

Figure 5.5: An example of accessibility modes for a 2D data buffer, corresponding to Listings 5.5
and 5.6. Guarding the origin data object as copy (dep: : view: : copy) implies a resolution of
the subregions into newly-allocated smaller and contiguous 2D data objects in memory. Guarding
the origin data object as map (dep: :view: :map) implies a resolution of the subregions into
smaller and non-contiguous 2D data objects in memory, without any allocation.

space levels are considered as caches. Since STEEL-RT implements a data cache coherence proto-
col which treats disk-like memory spaces indistinguishably from other processor-local and volatile
memory spaces, out-of-core functionality is intrinsically implemented.

An example to illustrate OOCC functionality in STEEL-RT is presented next. This use case
consists of a 2048 x 2048 impl: : gemm execution in double precision, which requires 100MB
(33MB per matrix), so the original problem is decomposed into 8 sub-imp1 : : gemm operating on
1024 x 1024 submatrices (resulted from divm = divn = divk = 2 values in Listing 5.8),
each submatrix requiring 8MB, thus each sub-imp1 : : gemm requiring 24MB when the submatri-
ces are resolved with dep: :view: : copy. In order for the initial 2048 x 2048 matrices to not
be loaded into local CPU-RAM (thus avoiding a runtime failure due to lack of memory) the data
guarding in Listing 5.4 must be done with map visibility (i.e., dep: : view: :map).

In relation to main code in Listing 5.4 is also assumed a executor configuration in which the
main executor is an unfolder on top of a mapper encompassing a uniform set of bottom executors,
each handling a sequential CPU core belonging to a SMP with a local CPU-RAM. Thus the main
executor is an abstraction of thread pool to which partitioned tasks (in this case, 8 impl: : gemm
tasks operating on 1024 x 1024 matrices) are delegated.

If the SMP local CPU-RAM is restricted to 32MB, not all sub-impl : : gemm not tied by de-
pendencies would be able to actually run in parallel due to RAM contention. This is precisely
illustrated in Figure 5.7, in which the execution of 8 impl: : gemm kernels is done by differ-
ent threads (i.e., there is processing availability) but it is effectively serialized due to the lack of
memory availability. In particular, the dependency_reacquire_taskwise regions in the bottom trace
reflect the situation in which the dependencies of each kernel (which are at first resolved one after
another) have to be reacquired altogether (i.e., task-wise), after failure to reserve memory in a full
or nearly full local CPU-RAM.

Copies (top trace) triggered by the unfolder thread are done as unfolder kernel proceeds, while
copies in bottom threads illustrate both data evictions to a fallback memory space (in this case, the
NVME space) and data copies of the kernel data.
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Listing 5.7: Example of data: :access: :block mode to partition and cast quadrants.

/* Function callable by STEEL-RT from an unfolder context. Defined in

static void run(auto& dlg, dim_2d_t& matrix) {

= a Kernel Classx

/+ Create acc_block_t type alias. =/
using acc_block_t =
data::traits<data::impl::buffer_2d>::access_type<data::access::block>;
/* Wrap matrix into a data guard. */
auto matGuard =
dep::handle<data::impl::buffer_2d, AnyDepKind, AnyDepView> (dlg, matrix);

auto [nRows, nColumns] = get_parameters (matrix);
int blockRows = nRows / 2;

int blockColumns = nColumns / 2;

/+ Create references to guarded quadrants. x/

auto& upLeftQuadrant = matGuard.get
(acc_block_t ({0, 0, blockRows, blockColumns}), ptype::f);
auto& upRightQuadrant = matGuard.get
(acc_block_t ({0, blockColumns, blockRows, blockColumns}), ptype::f);
auto& downLeftQuadrant = matGuard.get
(acc_block_t ({blockRows, 0, blockRows, blockColumns}), ptype::f);
auto& downRightQuadrant = matGuard.get
(acc_block_t ({blockRows, blockColumns, blockRows, blockColumns}), ptype::f);

/* [...] Operate on guarded quadrants. =*/

5.2.5 Joint relaxation of visibility, granularity and precision

Given a general application or kernel, to be run on a device in a heterogeneous parallel platform
with a deep and wide memory hierarchy, for a given optimization objective (e.g., execution time) it
is in general uncertain whether its data dependencies (or some subset) must be copied or mapped.
In particular, this optimal decision would in general depend on the original data placement prior
to execution, the granularity of the data, the current occupation of the memory spaces and the
contention of the interconnect buses. In summary, a static decision taken by the user with this
regard would not be flexible enough to adapt to all possible runtime situations. Following the
user-defined execution relaxations paradigm, the user should be able to relax and delegate these
decisions so that the runtime can take them automatically depending on the particular runtime
states and application characteristics.

Listing 5.9 illustrates a synthetic example (i.e., not necessarily reflecting a real-world case)
example in which the data visibility, granularity and precision of block subregions of a 2D buffer
are relaxed in a composed way, in the context of a synthetic kernel instance with identifier
app: :impl: : X, run in an unfolder executor. In this case, STEEL-RT runtime decides the gran-
ularity (whether to divide the matrix into 2 x 2,4 x 4 or 8 x 8) 2D blocks, according to sequence
in line 8), passing it as chosenDivision variable in line 38. Similarly, STEEL-RT decides the
visibility (whether it is dep: :view: :copy or dep: :view: :map, according to sequence in
line 10), passing it as chosenView variable; and the floating point precision in which blocks are
casted (according to the option sequence in line 12, whether it is casted to half-, simple or double
precision).

Since dep: :view are compile-time parameters in dep: :handle functions, and in this
case it is decided at run-time, a function dispatch in lines 27-31, to a function defined in lines
36-57, is needed.
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Listing 5.8: Unfolder kernel for imp1l: : gemm.
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namespace steel::app {

template <sys::processor ProcessorId>

requires ProcessorId == sys::processor::abstract
class kernel<impl::gemm, ProcessorId> public std::true_type {
private:

/* Define the allowed granularities.

*/

using divs_m = std::index_sequence<2, 4>;
using divs_n = std::index_sequence<2, 4>;
using divs_k = std::index_sequence<2, 4>;

/+ Compile definitions for access mode =/
using acc_block_t =
data::traits<data::impl::buffer_2d>::access_type<data::access::block>;

public:
/* Relax partition granularity according to user-defined sequences. */
using expand = sched::relax<divs_m, divs_n, divs_k>;

/* Function callable by STEEL-RT from an unfolder context. =/
static void run(auto& dlg, int divm, int divn, int divk,
const dim_2d_té& inMatA, const dim_2d_té& inMatB, dim_2d_t& inoutMat) {

/* Guard matrix arguments. */
auto aGuard = dep::handle

<data::impl::buffer_2d, dep::kind::in, dep::view::copy>(dlg, inMatA);
auto bGuard = dep::handle
<data::impl::buffer_2d, dep::kind::in, dep::view::copy>(dlg, inMatB);

auto cGuard = dep::handle

<data::impl::buffer_2d, dep::kind::inout, dep::view::copy>(dlg, inoutMat);

auto [m, n, k] = traits<impl::gemm>::get_parameters (inMatA, inMatB, inoutMatC);
auto mSize = m / divm;
auto nSize = n / divn;
auto kSize = k / divk;
/* Decompose GEMM computation in blocks. =/
for (auto kk = 0Ou; kk < divk; ++kk) {
for (auto mm = Ou; mm < divm; ++mm) {
for (auto nn = Ou; nn < divn; ++nn) {
auto& aBlock = aGuard.get
(acc_block_t ({mm = mSize, kk * kSize, mSize, kSize}));
auto& bBlock = bGuard.get
(acc_block_t ({kk = kSize, nn * nSize, kSize, nSize}));
auto& cBlock = cGuard.get
(acc_block_t ({mm+mSize, nn*nSize, mSize, nSize}));

dlg ( make_task<app::impl::gemm>(aBlock, bBlock, cBlock) );

}
bi

} /+ namespace steel::app x/
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Listing 5.9: A synthetic example for composing data-dependent orthogonal relaxations.

namespace steel::app {

template <sys::processor ProcessorId>
requires ProcessorId == sys::processor::abstract
class kernel<impl::X, ProcessorId> : public std::true_type {
private:
/+ Define the allowed granularities. x/
using div_opt = std::index_sequence<2, 4, 8>;
/* Define the allowed visibility modes. =*/
using view_opt = util::view_sequence<dep::view::copy, dep::view::map>;
/+ Define the allowed precision casting modes. =/
using prec_opt = util::ptype_sequence<ptype::h, ptype::f, ptype::d>;

/+ Compile definitions for access mode =/
using acc_block_t =
data::traits<data::impl::buffer_2d>::access_type<data::access::block>;

public:
/+ Relax partition granularity according to user—-defined sequences. */
using expand = sched::relax<div_opt, view_opt, prec_opt>;

/* Function callable by STEEL-RT from an unfolder context. =/
static void run(auto& dlg,
int chosenDivision, dep::view chosenView, ptype chosenPrec,
dim_2d_t& matrix) {

if (chosenView == dep::view::copy) {
run_detail<dep::view::copy>(dlg, chosenDivision, chosenPrec, matrix);
} else if (chosenView == dep::view::map) {

run_detail<dep::view: :map>(dlg, chosenDivision, chosenPrec, matrix);

private:

/* Function called from previous public run method, parametrized with dep::view.

template <dep::view View>

static void run_detail (auto& dlg,
int chosenDivision, ptype chosenPrec,
dim_2d_t& matrix) {

/* Guard matrix arguments. =*/
auto matGuard = dep::handle
<data::impl::buffer 2d, ArbitraryDepKind, View>(dlg, matrix);

/* Calculate block rows and block columns. x/
int bRows = rows / chosenDivision;
int bCols = columns / chosenDivision;

for (auto mm = Ou; mm < chosenDivision; ++mm) {
for (auto nn = Ou; nn < chosenDivision; ++nn) {
auto& dataBlock = matGuard.get
(acc_block_t ({bRows * mm , nn * bCols, bRows, bCols}, chosenPrec));
/* [...] = Delegate tasks to dlg executor operating on dataBlock =/
[...]

}
bi

} /* namespace steel::app */

*/
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Data copy @ gemm.prv #18

MAIN
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Task execution @ gemm.prv #18
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Figure 5.6: Execution traces for task and data partition. Basic execution traces illustrating data
copies (top) and kernel execution (bottom) corresponding to Listing 5.8. Legend only corresponds
to bottom trace colors.

Data copy @ gemm.prv #12
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Task execution @ gemm.prv #12
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Figure 5.7: Data copy (top) and kernel execution (bottom) traces, in which the kernel executions
are serialized due to contention in the memory space local to the SMP. Legend only corresponds
to bottom trace colors.

5.3 Task management: parallelism and heterogeneity

5.3.1 Task- versus thread-parallelism

This section illustrates a set of execution traces for a matrix multiplication of size 16384 x 16384
and block size 1024 x 1024 running on MACHINE2 (see B.2). Three cases are exposed next in
order to (i) expose basic tracing examples to illustrate the parallel execution of DAGs illustrated
in Figures 5.1, 5.2, 5.3, and (ii) to introduce some performance issues and subtleties regarding two
levels of parallelism (i.e., fask and thread-level parallelism), repeatedly mentioned in this thesis.
The corresponding executor hierarchy of the first case is an unfolder executor on top of a mapper,
which itself handles a set of bottom executors tied to CPU cores. The second and third cases are
extracted from an executor hierarchy consisted of an unfolder executor on top of a bottom executor
handling the full multicore processor. Following the STSE model, the main impl : : gemm is run
in the context of the main executor (i.e., the unfolder), following the kernel defined in Listing 5.8

Figure 5.8 illustrates an execution trace in which each task is run with a single thread on
each core. The first stage in which the parallelism is reduced is not due to the application —
blocked imp1l: : gemm DAG exposes uniform parallelism— but caused by the compaction of the
initially non-compacted 2D sub-regions (note that the input matrices are linear in memory, and the
subsequent 2D blocks are compacted according to a dep: : view: : copy mode, see lines 24-30
of Listing 5.8). Similarly, these compactions are performed as copies from non-compacted 2D
subregions previously moved to the same local CPU-RAM according to the dep: : view: : copy
specified in lines 15-25 of Listing 5.4. Note that in order to perform these 2D compactions from
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non-volatile NVME memory space, it would be enough to just set the visibility mode in the same
lines (15-25) as dep: :view: :map.

Task parallelism @ task_gemm.prv

—— |
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Task execution @ task_gemm.prv
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Figure 5.8: Execution traces with 1 thread per task. Top trace corresponds to instantaneous
multiprocessor occupation (in [0-40] range). Bottom trace corresponds to task execution stages
(kernel_run events) in red. First stage with lack of parallelism corresponds to 2D-subregion
compaction.

Task parallelism @ mix_gemm.prv

APPL 1
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Task execution @ mix_gemm.prv
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Figure 5.9: Execution traces with 10 threads per task. Up to 4 (= 40 / 10) tasks can run con-
currently. Top trace corresponds to instantaneous multiprocessor occupation (in [0-40] range).
Bottom trace corresponds to task execution stages (kernel_run events) in red. First stage with
lack of parallelism corresponds to 2D-subregion compaction.

As traces of Figures 5.8, 5.9 and 5.10 were normalized to the same duration, differences in
performance (or equivalently, overall duration of red kernel_run events) demonstrate that, with
regard to parallelism, both its quantity and its quality matter. In other words, best performing
execution (Figure 5.8) corresponds to a purely task-parallel execution (zero intra-task parallelism,
recalling the vocabulary of Section 2.3), in spite of lacking task parallelism in the first 2D-data
compaction stage. On the contrary, fork-join-based executions (Figures 5.9 and 5.10), demon-
strate that not an increased level of processor occupation necessarily involves an increase in per-
formance.

5.3.2 Support for task moldability

Task-wise variable threading or task moldability was motivated in Section 1.3.3.1, explored stat-
ically in Section 2.3, and treated in the context of bottom executors on top of multicores and
GPUs in Section 3.1.2. In the following, the simplicity of impl : : gemm application permits to
demonstrate the support for task moldability in STEEL-RT in the simplest way.
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Task parallelism @ thread_gemm.prv #1
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22,257,597,126 ns 31,481,476,832 ns

Task execution @ thread gemm.prv #1
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Figure 5.10: Execution traces with 40 threads per task. Tasks are run sequentially. Top trace cor-
responds to instantaneous multiprocessor occupation (in [0-40] range). Bottom trace corresponds
to task execution stages (kernel_run events) in red.

Specifically, sections 1.3.3.1 and 2.4, illustrated the motivation behind task-wise thread schedul-
ing decisions, potentially desirable in a context in which a set of heterogeneous and inter-dependent
tasks share the resources (memory and processing) of a (possibly heterogeneous) parallel archi-
tecture. On the contrary, impl : : gemm application is very simple (in terms of parallelism) and
homogeneous (it decomposes into other imp1 : : gemm) and in this example related to moldability
is only tested on an homogeneous (SMP) architecture. As the goal of this chapter is not expose
any detailed performance analysis, but demonstrate a set of STEEL-RT features from specific ex-
amples in the simplest way possible, considerations about eventual performance improvements
derived from run-time task moldability scheduling decisions are left for future work.

The following exposition illustrates the support for task moldability in STEEL-RT, and it is
based on the hierarchy of Figure 5.11.

AL
(7}
5
Il

Figure 5.11: Executor hierarchy for the moldability case.

When this executor hierarchy is instantiated to the multicore architecture in Section B.2, and
the moldable kernel defined in Listing 5.10, then the bottom executor handles a SMP with 40
cores with two worker threads. These threads pull tasks from the bottom executor task queue
and executes them in a fork-join fashion (hence the worker threads are also referred as forker
threads), with a number of threads decided by STEEL-RT, and relaxed by the user according to
the occupations defined in line 11 of Listing 5.10.

The expanded-execution performed in STEEL-RT in terms of task parallelism, thread paral-
lelism per task, and task execution events is illustrated in Figure 5.12. These traces correspond
to an execution of a blocked 16384 x 16384 impl: : gemm in double precision with block size
4096 x 4096. During kernel_schedule events the number of threads is automatically set by
STEEL-RT, and a strict thread-to-core binding is performed to avoid core oversubscription (which
is desirable in compute-bound kernels).

In this case, since only two threading possibilities (either occupy half —20 cores— or full —
40 cores— SMP) are considered, the two worker threads are able to run tasks in parallel only if
their tasks were scheduled with 20 cores. Otherwise, if at a given moment 20 cores (i.e., threads)
are assigned to a given forker thread and the other forker thread is running a task with 40 cores
(i.e., threads), then the former will block until the latter is finished. This blocking is reflected in
resource_acquire events in the bottom trace of Figure 5.12 (resource meaning the processing
resource), also directly correlated with task and thread parallelism traces (top and middle traces,
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Listing 5.10: Definition for moldable imp1 : : gemm kernel targeting BLAS library.

namespace steel::app {
template <sys::processor ProcessorId>

requires /x Kernel definition if Pro sorId is a multicore cpu. =/
constraint<ProcessorId>::support_device == support::device::cpu &&
constraint<ProcessorId>::parallelism > 1
class kernel<impl::gemm, ProcessorId> : public std::true_type {
private:
/+ Define set of allc« d core partitions as
1/1 and 1/2. 100 nd 50% multicore occupation. =/
using core_occupations = std::index_sequence<l, 2>;

public:

Mandatory type definition. =/
using expand =
sched::fix_relax<support::ext_library::cpu_threads, ProcessorId, core_occupations>;

/* Moldable kernel definition, callable by STEEL-RT. x/
static void run(unsigned nThreads,
const dim_2d_té& matA, const dim _2d_t& matB, dim_2d_t& matC) {

const auto [mm, nn, kk, xLead, yLead, zLead, pt] =
traits<impl::gemm>::get_parameters (matA, matB, matC);
auto [aPtr, bPtr, cPtr] = traits<impl::gemm>::get_pointers (matA, matB, matC);

/* Execute GEMM. =/
wext::blas::call_gemm
(nThreads, mm, nn, kk, xPtr, xLead, yPtr, ylLead, zPtr, zLead, pt);

bi

} /% namespace steel::app =/

respectively). Finally, once the task running on 40 cores finishes, a resource_release event
marks the release of the multicore. Note that resource_release and kernel_schedule
events are present in the bottom trace but they are barely visible because their duration is neg-
ligible in an execution dominated by kernel execution (kernel_run) and resource acquisition
(resource_acquire) stages.

5.3.3 Support for heterogeneous computation

As explained in Section 4.2.2.5, heterogeneous computation is automatically enabled when the
platform exposes at least two heterogeneous processors (e.g., a SMP and a GPU) and the user
provides compatible kernel implementations for them —i.e., a c1lass kernel definition for which
the predicate after requires, evaluated on the corresponding processor identifiers
sys::processor, is satisfied. With this regard, Listing 5.11 exposes the kernel definition to
enable a imp1 : : gemm execution on GPU using cuBLAS library.

A 16384 x 16384 problem size and 1024 x 1024 blocks was performed on the heterogeneous
platform specified in Appendix B.2, abstracted as a two-level executor hierarchy composed by an
unfolder executor on top of a mapper handling all CPU cores and all GPUs. The corresponding
execution traces are shown in Figure 5.13. The top-most thread in top trace (representing data
copies) marks NVME-to-local CPU-RAM copies, while bottom-most thread in top trace marks 2D
data compactions in local CPU-RAM. In addition, GPU threads (second and third) also trigger
data copies from- and to local CPU-RAM, to respectively acquire and publish data in their GPU-
RAM memory spaces. All data copies are managed in all memory spaces implicitly handled by
STEEL-RT (NVME, local CPU-RAM in respective SMPs, and local GPU-RAM in respective GPUs),
following a directory-based cache protocol.

Similarly to traces in Figure 5.8, in the task execution trace of Figure 5.13 (bottom), a first
stage with lack of parallelism is due to compaction, followed by a stage where all the parallelism
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Figure 5.12: Execution traces with moldable tasks. Runtime decides the number of threads for
each task, occupying the full or half of the multicore. Traces correspond to task parallelism (top
trace, values in [0, 1, 2]), thread parallelism per task (middle trace, values = [0, 20, 40]), and
execution events (bottom trace) with associated legend.

of the execution is exploited, and a third stage in which all the threads of the bottom executors
(handling CPU cores and GPUs) have finished, but the unfolder thread is updating the results of
all tasks into its single read-write data object. After the unfolder thread has finished, the final
result is copied back to the original NVME memory space (shown as the last block of the main
thread in top trace). Note also that, as impl: : gemm kernels are extremely data-parallel, they
are well-fitted to GPUs, which is reflected in the higher performance in corresponding GPUO and
GPU1 threads of bottom trace.

5.4 Hierarchical executor deployment

Previous examples relied on tasks being managed by the default executor, deployable by means
of the executor: :deploy main function, which abstracts a basic executor hierarchy derived
from user-defined kernel class specializations.

In this section, after introducing application-related code for the Cholesky factorization, the
executor deployment interface is exposed to show how a more explicit and controlled executor de-
ployment can be used to target some platform architectural features, also illustrating how minimal
differences in code result into substantial qualitative differences in the execution traces obtained.

5.4.1 STEEL implementation for the Cholesky factorization

Listing 5.12 shows a sample code for the Cholesky factorization of a symmetric positive definite
matrix leveraging the STEEL API. In line 8, the executor representing the complete system is
deployed and a reference to it taken. The actual computation following the STSE model is depicted
in line 14, in which a single Cholesky factorization task —pot r £ following LAPACK naming [9]-
is created and asynchronously delegated to the system executor previously created.

Listings 5.13 and 5.14 implement wrapper code to forward (OPENMP or CUDA) kernel calls
to final external libraries or implementations. Internally, the we xt namespace exposes useful types
and wrapper functions of calls to external libraries —in this case LAPACK/Intel MKL and NVIDIA
cuSOLVER libraries—. In line 13 of Listing 5.14, the variable handle has a type that encapsulates
the cuSOLVER opaque type cusolverHandle_t, which at run-time stores a cuSOLVER han-
dle associated to a particular GPU device together with an allocator associated to the local RAM
of that device, needed to perform a memory allocation prior to the Cholesky computation on the
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Listing 5.11: Definition for a GPU impl : : gemm kernel targeting cuBLAS library.

namespace steel::app {
template <sys::processor ProcessorId>
requires /x Kernel definition if ProcessorId is GPU and cuBLAS is installed. =/

constraint<ProcessorId>::support_device == support::device::gpu &&
constraint<ProcessorId>::has_ext_library_v<support::ext_library::cublas>
class kernel<impl::gemm, ProcessorId> : public std::true_type {
public:

/* Mandatory type definition. x/
using expand = sched::fix<support::ext_library::cublas>;

/* Moldable kernel body definition, callable by STEEL-RT. x/
static void run(cublasHandle_t ch,
const dim_2d_t& matA, const dim_2d_t& matB, dim_2d_t& matC) {
/* Get kernel parameters and pointers. =/
const auto [mm, nn, kk, xLead, yLead, zLead, pt] =
traits<impl::gemm>::get_parameters (matA, matB, matC);
auto [aPtr, bPtr, cPtr] = traits<impl::gemm>::get_pointers (matA, matB, matC);

/* Execute GEMM. =/
wext::cublas::call_gemm
(ch, mm, nn, kk, xPtr, xLead, yPtr, yLead, zPtr, zLead, pt);
}
Vi

} /* namespace steel::app */

Listing 5.12: Main program running Cholesky factorization with STSE paradigm.

#include "steel.hpp"
using namespace steel;

void main(int argc, char*x argv) {
const auto pMap = build_parse_map (arg, argv);
auto& mainExec = executor::deploy_main();
auto matrixGuard = dep::handle
<app::data::impl::buffer_2d, dep::kind::inout, dep::view::copy>

(mainExec, pMapl[" inoutput"]);

executorRef ( dep::make_task<user::impl::potrf> (matrixGuard) );
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Figure 5.13: CPU-GPU heterogeneous execution traces of data copies (top trace) and kernel exe-
cutions (bottom trace).

GPU (see [ 14]). This in-kernel allocation is done within wext : :cusolver: :call_potrf
function.

Listing 5.15 exposes the tiled Cholesky implementation, that allows app: : impl: :potrf
tasks to run on unfolder executors. Lines 22 to 44 express the actual function body of the Cholesky
blocked algorithm, (already presented as a C implementation in Listing 2.1) run by the partitioner
executor thread, which forwards the computation through asynchronous calls via d1g.

5.4.2 Leveraging STEEL to exploit heterogeneity. A step-by-step use case

The composability property of executors enable the construction of complex executor hierarchies.
In particular, this section exposes how four incrementally complex executor hierarchies are cre-
ated. The target application is a Cholesky factorization identified as impl: : pot rf, and the tar-
get heterogeneous architecture is MACHINE?2, replacing one of its Tesla V100 by a Nvidia GeForce
GTX 1080 to gain heterogeneity. Note that the blocked Cholesky factorization decomposes the
computation in terms of BLAS-3 and LAPACK tasks, namely impl: :potrf (factorization of
diagonal blocks), imp1 : : gemm (general matrix-matrix multiplication), impl : : syrk (symmet-
ric rank-k update) and impl: :trsm (triangular system solve with multiple right-hand sides).
In the following Listings that expose executor deployments, the use of using namespace
steel: :executor is assumed.
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Listing 5.13: Definition for a moldable impl: : pot rf kernel targeting LAPACK library.

namespace steel::app {
template <sys::processor ProcessorId>
requires /x Kernel definition if ProcessorId is a multicore cpu. =/
constraint<ProcessorId>::support_device == support::device::cpu &&
constraint<ProcessorId>::parallelism > 1
class kernel<impl::potrf, ProcessorId> {
private:
/+* Define set of allowed core partitions as
1/1 and 1/2. 100% and 50% multicore occupation. =/
using core_occupations = std::index_sequence<l, 2>;

public:
/* Kernel body definition, callable by STEEL-RT. x/
static void run(unsigned nThreads, dim_2d_té& matrix) {
auto [n, nLead, pt] = traits<impl::potrf>::get_parameters (matrix);
auto ptr = traits<impl::potrf>::get_pointer (matrix);
wext::lapack::call_potrf (nThreads, n, ptr, nLead, pt);
}
bi

} /* namespace steel::app */

Listing 5.14: Definition for a GPU impl: : potrf kernel targeting cuSOLVER library.

namespace steel::app {

template <sys::processor ProcessorId>
requires /x Kernel definition if ProcessorId is GPU and cuSOLVER is installed. =/
constraint<ProcessorId>::support_device == support::device::gpu &&
constraint<ProcessorId>::has_ext_library_v<support::ext_library::cusolver>
class kernel<impl::potrf, ProcessorId> : public std::true_type {
public:
/* Mandatory type definition. =/
using expand = sched::fix<support::ext_library::cusolver>;

/* Kernel body definition, callable by STEEL-RT. x/
static void run(auto handle, dim_2d_t& matrix) {
auto [n, nLead, pt] = traits<impl::potrf>::get_parameters (matrix);
auto ptr = traits<impl::potrf>::get_pointer (matrix);
wext::cusolver::call_potrf (handle, n, ptr, nLead, pt);
}
Vi
} /% namespace steel::user »*/
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Listing 5.15: Implementation of the unfolder kernel for impl: :potrf.

117

namespace steel::app {
template <sys::processor ProcessorId>
requires ProcessorId == sys::processor::abstract
class kernel<impl::potrf, ProcessorId> : public std::true_type {
private:
using div_opt = std::index_sequence<4, 8, 16, 32>;

/+ Compile definitions for access mode. */
using acc_block_t =
data::traits<data::impl::buffer_2d>::access_type<data::access::block>;

public:
/+ Relax partition granularity according to user-defined sequences. x/
using expand = sched::relax<div_opt>;

static void run(auto& dlg, unsigned div, dim_2d_t& matrix) {
auto mGuard = dep::handle
<data::impl::buffer_2d, dep::kind::inout, dep::view::copy>(dlg, matrix);
const auto n = traits<impl::potrf>::get_parameters (matrix);
const auto bSize = n / div;

/* Cholesky blocked algorithm =/
for (auto k = Ou; k < div; ++k) {
auto& kkGuard = mGuard.get (acc_block_t ({kxbSize, kxbSize, bSize, bSize}));
/* POTRFE =*/
dlg( make_task<impl::potrf> (kkGuard) );
for (auto 1 = k + 1; i < div; ++1) {
auto& ikGuard = mGuard.get (acc_block_t ({ixbSize, kxbSize, bSize, bSize}));
/* TRSM «/
dlg( make_task<impl::trsm>(kkGuard, ikGuard) );
}
for (auto 1 =k + 1; i < div; ++1) {
auto& ikGuard = matGuards[{ixbSize, k*bSize, bSize, bSize}];
for (auto j =k + 1; J < i; ++3) {
auto& jkGuard = mGuard.get (acc_block_t ({jxbSize, kxbSize, bSize, bSize}));
auto& ijGuard = mGuard.get (acc_block_t ({ixbSize, jxbSize, bSize, bSize}));
/* GEMM x/
dlg( make_task<impl::gemm> (ikGuard, JjkGuard, ijGuard) );
}
auto& iiGuard = mGuard.get (acc_block_t ({ixbSize, ixbSize, bSize, bSize}));
/* SYRK =/
dlg( make_task<impl::syrk>(ikGuard, iiGuard) );

}
bi

} /* namespace steel::app =*/
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Listing 5.16: Deployment of an unfolder on top of all available sequential processors (Fig. 5.14).

auto& mainExecutor = deploy( deploy_only<sequential>() );

|

Step 1: Exploiting task-parallelism with a Partitioner-Pool hierarchy

The first hierarchy enables homogeneous task parallelism on individual cores of one of the SMP
sockets in the target architecture by mapping individual tasks to them. The unfolder executor dele-
gating tasks to a set of bottom executors serves as the single-executor entry point (See Figure 5.14
and Listing 5.16).

Figure 5.14: An executor hierarchy that unfolds and maps tasks to a core pool. UE: unfolder
executor. ME: mapper executor. BE: bottom executor.

The trace in Figure 5.15 exposes a task-parallel execution in 20-core SMP for n = 4096 and
nb = 512. Note how the runtime transparently deploys 20 execution threads (one per line in the
trace) and maps (sub-)tasks to them managing data dependencies.

Step 2: Adding CPU-GPU heterogeneity with a Partitioner-heterogeneous execution

To enable heterogeneous computation by means of a single GPU exploitation, another bottom
executor tied to a GPU device could be appended to the previous hierarchy. In this case, only
tasks generated by the partitioner that provide a GPU-compatible kernel class specialization can
be mapped to that bottom executor (see Figure 5.16 and Listing 5.17).

The corresponding execution trace in Figure 5.17 exposes reports a real heterogeneous execu-
tion of 16 threads running on an SMP (single socket, bottom rows) and 4 CUDA streams running
in the Geforce GTX1080 GPU (top rows). Observe how, in this case, a simple change in user
code yields substantial changes in terms of thread deployment and, even though not visible in the

Figure 5.15: Step 1. Execution trace for a single-socket / multi-core execution. Task colors:
POTRF: magenta. GEMM: blue. SYRK: orange. TRSM: green.
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Figure 5.16: An executor hierarchy encompassing a CPU-GPU platform with uniform partitioning.
UE: unfolder executor. ME: mapper executor. BE: bottom executor. GF: NVIDIA GeForce GPU.

Listing 5.17: Deployment of a CPU-GPU hierarchy (Fig. 5.16).

auto& mapperOnCpuGpu = deploy( deploy_only<sequential> (), deploy_first<cuda_device>() );
auto& mainExecutor = deploy( mapperOnCpuGpu ) ;

traces, data transfer and heterogeneous device management.

Step 3: Heterogeneous task partitioning with tied partitioner executors

On heterogeneous systems, optimal performance for different devices usually correspond to dif-
ferent task granularities. For CPU-GPU systems, GPU typically demands coarser tasks than indi-
vidual CPU cores in order to fully saturate its resources. With the STEEL-API, previous executor
hierarchy can be expanded by associating an unfolder executor to generate fine-grained partitions
to the CPU cores, and setting a coarse-grain partitioner as the main executor (Figure 5.18 and
Listing 5.18). Only those tasks that provide a kernel specialization compatible for unfolder
executors will be processed by the fine-grained partition executor. In this case, the decision is
to allow only the potrf tasks to include that feature, and thus only diagonal Cholesky factor-
izations will be partitioned and mapped to individual cores. This is a common strategy found in
literature [16].

Listing 5.18: Deployment for heterogeneous partitioning (Fig. 5.18).

auto& cpuUnfolder = deploy( deploy_only<sequential> () );
auto& mapperHeterog = deploy( deploy_first<cuda_device> (), cpuUnfolder );
auto& mainExecutor = deploy( mapperHeterog );

The associated execution trace in Figure 5.19 corresponds to a heterogeneous CPU-GPU ex-
ecution with the same thread setting as in the previous step, for a problem size n = 16384. Task

Figure 5.17: Step 2. Execution trace for a heterogeneous CPU-GPU execution.
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Figure 5.18: An executor hierarchy encompassing a CPU-GPU platform with non-uniform par-
titioning. UE: unfolder executor. ME: mapper executor. BE: bottom executor. GF: NVIDIA
GeForce GPU.

- ] mm
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Figure 5.19: Step 3. Excerpt of the factorization using a heterogeneous-partitioning strategy.

granularity is heterogeneous: nb = 4096 in the first partitioning level, nb = 512 in the second
partitioning level. The trace correspond to the last steps of the Cholesky factorization. Note how
task granularity differs on GPU threads (top four rows) and CPU threads (bottom rows); actually,
the fine-grained tasks observed in three successive groups of the CPU correspond to three pot rf
tasks decomposed automatically by STEEL-RT into smaller tasks following the double-partitioner
hierarchy.

5.4.2.1 Step 4: Heterogeneous forking by means of multiple forker executors

Finally, the previous hierarchy is expanded by appending an SMP and a GPU (NVIDIA Volta
V100), each of which handled by an independent bottom executors (See Figure 5.20 and List-
ing 5.19).

The execution trace for the same problem dimension and thread granularities as those for
the previous step is shown in Figure 5.21. The first row corresponds to the thread-forking tasks
for the second SMP (socket). Thus, those tasks will be internally threaded using, in this case, 20
threads. Rows 2 and 3 correspond to two CUDA streams delivering tasks to the GTX1080, and the
following 4 rows to the corresponding CUDA streams associated to the V100 GPU. The remaining
threads correspond to individual cores in the first CPU socket.

Note that the aim of this section is neither to provide absolute performance results nor a thor-
ough performance optimization procedure. Optimization techniques (number of threads per task;
task partitioning granularity on unfolder executors; advanced locality-aware policies to assist map-
per executors, ...) have been previously applied in the literature and can be also integrated into
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Figure 5.20: An executor hierarchy encompassing a CPU-GPU platform with non-uniform par-
titioning and forking. UE: unfolder executor. ME: mapper executor. BE: bottom executor. GF:
NVIDIA GeForce GPU. VI00: NVIDIA Volta GPU.

Listing 5.19: Deployment for heterogeneous partitioning and forking (Fig. 5.18).

NN R W~

auto& heterogMapper = deploy(
deploy_first<cuda_device> (),
deploy_first<multicore> (),
deploy_first<cuda_device>() );
auto& finePartitioner = deploy( deploy_only<sequential>() );
auto& coarseMapper = deploy( heterogMapper, finePartitioner );
auto& coarsePartitioner = deploy( coarseMapper ); /+ mainExecutor =/

STEEL-RT. Nevertheless, the goal was to illustrate how simple modifications in user codes can be
performed to expose sophisticated executor hierarchies (hence, complex heterogeneous architec-
tures) and yield dramatic changes in the underlying runtime execution.

5.5 Summary

This chapter has exposed by means of simple data-related and compute-related and executor de-
ployment cases a set of functionalities of STEEL-RT and its API. Data-related cases revolved
around some of the concepts exposed in Chapter 4, in particular data visibility, data partition,
and accessing modes were jointly exposed in the form of codes written according to STEEL-API,
and a set of simple execution traces. In particular, both data- and compute-related cases showed
how the STSE model —in which a single executor (abstracting the full parallel platform) receiving
a single task (representing the full application), reading and manipulating data residing in a non-

Figure 5.21: Step 4. Execution trace for a complex executor hierarchy exploiting full heterogene-
ity.
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volatile memory space—, yield rich parallel executions with minimal incremental additions in code.
Regarding the executor API, it has been shown how explicit executor deployment together with
specific task featurizations could help to expand the execution possibilities accessible at run-time
in terms of heterogeneous executions, heterogeneous partitioning, or runtime task moldability.
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into a functional program.

STEEL as a functional model

In this chapter, part of the abstract model explained in Chapter 3 and the STEEL-API exposed in
Chapter 4, are represented in terms of a model written in functional language. As mentioned, one
of the motivations of STEEL-PM is to increase programmability by letting the user abstract away
and delegate the execution control flow to a runtime system. In particular, Chapter 4 explained
how abstraction is raised by means of declarative patterns that express execution opportunities to
be exploited by the runtime. Also, as application correctness at run-time and debuggability are
major concerns, specially in concurrent and parallel scenarios, these patterns are also designed to
favor proper side-effect encapsulation (see Section 1.2.1.4).

In a broader sense, functional programming patterns are central elements in STEEL-PM in
three clear ways, namely:

Template metaprogramming. As explained in Chapter 4, the building process of applications
following STEEL-API rules strongly relies on a two-way interaction between user code and
STEEL-API template code, in the sense that user declares functions to be called by STEEL-RT,
and implicitly instantiates functions in the STEEL-RT template library. In essence, this interaction
between user code and STEEL-RT code is parsed by the C++ compiler under strong typing and
functional rules. The compilation process ultimately results in a binary executable, built from spe-
cific template instantiations that represent application-platform bindings. In other words, STEEL-
API can be contemplated as a small domain-specific language, built from stricter functional C++
template metaprogramming language rules, designed to develop HPC applications under the exe-
cution relaxations paradigm.

STSE model and pure functions. The Single Task-Single Executor model partially relies on the
idea that all the computational components or building blocks of an application can be abstracted
away into a single task with specific input and output arguments. This is done by declaring ways
—in terms of user-defined pure functions— in which the application building blocks can be decom-
posed and executed in different architectures. On the other hand, the STSE model relies on the
idea that different execution contexts can be composed and accessed via a single interface —the
top-most executor—, which is a de facto pure function from the user perspective —i.e., the eventual
state changes of the components abstracted by the top-most executor during a task execution are
not accessible by the user under any circumstance—.

123
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Execution flow is declared, not imposed. Execution flow is constrained in two ways: (i) by
the deployed executor tree and (ii) by specific user declarations (i.e., execution relaxations). Both
constraints are imposed at compile-time, so that the flow of execution or workflow is driven by
the runtime system across the deployed executors. This is a declarative-like paradigm shift, as the
user no longer specifies —at least in a direct sense— how the application execution is mapped to the
underlying hardware.

With these ideas in mind, in the functional model presented next, these three characteristics
are clarified thanks to a more terse and concise functional notation. Thus, the primary goal of
this chapter is to present a functional model that clearly captures the relations and dependencies
between some of the modules —executors, tasks, scheduling policies, etc.— explained in previous
chapters. Moreover, the secondary goal is to express with greater precision how the different
stages of the development process —development, installation, compilation and execution— are
related with some important functions.

This chapter is structured as follows. Section 6.1 exposes some basic concepts of functional
programming. Section 6.2 introduces the functional model of STEEL in three separated parts.
First, Section 6.2.1 explains how execution paths from an execution context are generated (or
bursted) from user-defined functions, and ultimately composed from an executor tree hierarchy.
Second, Section 6.2.2 exposes how asynchronous delegation of tasks related by data dependencies
is expressed in the context of an executor. Finally, Section 6.2.3 gathers previous ideas to build a
functional framework that helps to visualize how a single task running on the top-most executor
of the tree results into an asynchronous and expanded flow of computation. Finally, the last Sec-
tion 6.3 exposes some limitations of the current model, which will motivate future improvements
focused on a purity considerations.

6.1 Introduction

In the following, some notation and fundamental ideas are presented. They are general concepts
in the functional programming paradigm, and the exposed ones are a minimal subset of what can
be found in a standard library of a functional language implementation. The specific implemen-
tations of the following types, data structures and functions depend on programming language
specifications and are irrelevant in the context of this chapter.

As a side note, runtime implementations of purely functional programming specifications usu-
ally exploits referential transparency (see section 1.2.1.1), which implies that once a function is
applied, its result may be memoized. Consequently, eventual calls of a function with the same
arguments returns the value computed in the first call, not function re-application —recall that “="
operator in functional programming is used under equality semantics—.

6.1.1 Basic elements

The basic elements to be exposed in this section consist of types, functions, functors and monads.
After exposing their syntax and rules, a set of data structures —pair, set, list, stream, tree— will be
defined.

6.1.1.1 Types

[T

Type definition is expressed by the “::” syntax, in the line of Haskell notation [80], so that the
expression A :: B defines a type A from another defined type B.

Types can be defined by composition to form algebraic data types using “+ and “x” opera-
tors:
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Sum types: A :: B 4 C defines type A as a sum type of types B and C, so that values of type A
can be either of type B or C. The operator “|” is often used instead of “+”. The cardinality —i.e.,
the number of elements— of type A is the sum of the cardinalities of B and C'.

Product types: A :: B x C defines type A as a product type of types B and C, so that values of
type A are a composition of values of types B and C'. The cardinality of type A is the product of
the cardinalities of B and C'.

Type constraint: A type definition based on other types can be constrained with an expression
inside parenthesis in the form ( Constraint = Type name ) after “::”. For example, a type A
defined from existing data types B and C, enforcing B to be an integer, could be expressed as

A = (Integral = B)B x C.

Recursive types: Types can be defined recursively, in the sense that the defined type could exist
in the expression that defines that type. For example, type A :: B + A represent values that can
take a value of type B or a value that can be either B or A. This is useful to express recursive data
structures, for example graphs composed by nodes that reference other nodes.

6.1.1.2 Functions

Function signatures: A single-valued function of type F' mapping values of type A into values
of type B defines its type as (F' :: A — B). The type of a function is also named as signature.
Functions receiving multiple parameters have signatures built by chaining the types of the argu-
ments. (e.g., (F :: A — B — ... — () is a function returning values of C' from multiple
arguments of types A4, B, ...).

In particular, “—” is an operator that defines a function type from the two types, and in this
infix form the types at each left and right side represent the function input and output respectively.
The “—" operator can also be used in prefix form with parenthesis (e.g., (—)(AB) = A —
B).

Function implementation: A function implementation is expressed with “=", with the function
body at the right of “=". The arguments are represented within parenthesis at the left of “=" and
they follow function signature definitions, so the previous implementation of f € F' is expressed
as f(a,b) = ‘body’, and consequently a € A and b € B are implicitly assumed.

Function application: In functional programming, functions are considered first-class citizens,
in the sense that functions are just values of a certain type (or signature) that can be passed to other
functions. Also, operator “—" is right-associative and function application is left-associative, so
functions with several inputs can be subject to partial application. For example, a function F'
receiving two arguments F' :: A — B — (C can be thought as a function receiving one
argument of type A and returning a function of type (B — C), F :: A — (B — C).

To express the independence of a specific function implementation on an input parameter, an

underscore “_” is used. Regarding the previous example, f(a,-) = ‘body’ means that the input
value of type B is discarded.

Function composition: Two functions can be composed to form a third function as long as the
output type of the first function matches the input type of the second function. The operator “o” in
infix form receives the first function to be applied on the right and the second on the left, and has

a signature

ox(B—0(C)— (A—B)— (A— (O),
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and different equivalent syntax, e.g.,if f € (A — B)andg € (B — C)and h € (A — C)
its composition,

gof=()gf=g(f)=nh.

The first and second expressions correspond to infix —in between arguments— and prefix —
preceding arguments— notations, respectively.

Lambdas: Lambdas are anonymous functions present in a function implementation. A lambda
with input arguments argy, args, . . ., and implementation body is defined as A(argi, args, . . .)(body).
Lambdas are values of a type or signature that can be inferred from the types of args —which can
derived from the body in which the lambda is expressed— and the return type of the body definition.

6.1.1.3 Functors

A functor F' consists of a type parametrization (or a type constructor), and a function F'Map.
Type constructor of functor F' defines (“:::””) a new type F' A from a primordial type A.

F::A— FA.

It is often said that the type A is embellished by a functor F' to the type F' A.
Function F'M ap maps (or lifts) functions between two types to functions between respective
embellished types,

FMap:: (A— B) — (FA — FB),

Functor rules: In order for the type constructor together with F'Map to qualify as a Functor,
first, "M ap definition must preserve identity,

FMap(Id) = Id,

i.e., the identity function Id :: X — X such that Id(a) = a, has to be mapped to the identity
function acting on embellished types F' X, Id :: FX — FX that satisfies Id(fa) = fa.

Secondly, F'M ap must preserve function composition between any two composable functions
fandg,

FMap(fog)=FMap(f)oFMap(g).

6.1.1.4 Monad pattern

One of the definitions of the monad pattern (see Section 1.2.1.1) is based on three definitions in
terms of a functor and two functions that must obey particular rules, as explained next.

Type constructor: As said, a functor is a type parametrization to be instantiated by a type, so
the values of the new type are a form of encapsulation of the values of the original type X. A
monadic fype constructor defines a monadic type M X from other type X. Values of type M X
are monadic values that encapsulate values of the primitive type X.

Unit function: Together with a functor, an implementation of a Unit function is required, which
returns monadic values from values of the original type,

Unit : X — M X.
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Bind function: Also, an implementation of a Bind function with signature

Bind: MX — (X — MY) — MY,

needs to be provided. Specifically, Bind is a function that receives a monadic value M X and
a continuation function with signature (X — MY). Internally, the Bind implementation
unwraps the input monadic value and passes the contained value to the continuation, so a new
monadic value of type M Y is returned. The Bind function is alternatively expressed using the
infix operator *“>>=".

Monad rules: In particular, Bind and Unit implementations associated to a type constructor
have to satisfy three monad rules in order for them to qualify as a monad.
First, Unit is a left-identity for Bind

Bind(Unit(a), \(x)(f(2))) = f(a), ©.1)
Secondly, Unit is a right-identity for Bind
Bind(ma, A(z)(Unit(x))) = ma, (6.2)
Third, Bind is associative

Bind(Bind(ma, f), g) = Bind(ma, A\(x)(Bind(f(x), g))). (6.3)

Previous rules provide a fixed framework that permits composability of any pair of functions
that return monadic values M X and M Y, and will be particularly useful when composing exe-
cution contexts and asynchronous computations.

Monad patterns do not only represent a generic abstraction layer for function composition;
they are also useful for proper encapsulation of side-effects (see Section 1.2.1.1). In this sense,
it will be exposed how some features of the relaxed execution model —e.g., executor composition
and hierarchical task partitioning— can be expressed in terms of monadic patterns.

6.1.2 Data structures

This section explains how common data structures and related functions to be used in subsequent
developments can be expressed from a functional programming approach. These data structures
and functions are simply enough to be typically built-in types present in standard libraries of many
functional languages. As said, the specific implementation details of these functions and subtleties
concerning type constraints are irrelevant and omitted for the sake of brevity and simplicity.

6.1.2.1 Pair

A pair type is a product type of any two types X and Y, X x Y. Its values are expressed as (z, y),
wherez € X,y €Y.

Element access: F'st and Snd functions act on pairs (returning the first and the second element,
respectively) and present the following signatures and definitions:

Fst: X XY — X
Fst({(a,b)) =a
Snd:: X xY —Y
Snd({a,b)) = b.

6.4)
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6.1.2.2 Set

A data type representing a Set data structure that stores unique values of type X without any
particular order is referred as Set X. Values of type Set X are expressed within brackets —e.g.,
{1, z2,...}—. For implementation performance reasons, some functions applied on Set X values
require type X to be a fotally ordered data type. This constraint on X is not specified on the
following function signatures acting on sets for the sake of clarity, as the implementation details
with regard to algorithmic complexity are out of the scope of the discussion.

Set composition: To compose two sets of same type, the binary infix operator “:” is used. The

@,

fact that set structures do not refer to any order makes ““:” commutative on any pair of sets,

wSetX — Set X — Set X

(6.5)
a:b=b:a Va,be SetX.
Note that the empty set {} is the identity element of the *“:”” operator.
Function Singleton creates a singleton set from an element,
Singleton :: X — Set X
(6.6)

Singleton(a) = {a},

enabling element insertion into a Set.

Map: A function map acting on a function F' :: X — Y and a Set Set X presents the signature

Map : (X —Y) — Set X — SetY,

and creates a secondary Set Set Y by mapping via f € F the images of the elements of the input
Set. Note that the output Set could be smaller than the input Set if f(z1) = f(x2) for some pair
x1, X2 in the input Set and f € F.

Filter: Similarly, a function filter receives a predicate on X and a Set X and returns another Set
including the elements that satisfy the predicate, having a signature

Filter :: (X — Bool) — Set X — Set X.

Fold: A function to fold or reduce a SetY into a single value of type X has a signature:

Fold: (X —Y —X)— X — SetY — X, (6.7)

where the first argument (X — Y — X)) is a function that returns an element X from a pair
X and Y, the second argument X represents the type of the initial value, and the third argument
SetY represents the set to be reduced.

6.1.2.3 List

A List is a functor that, for a type X, creates a type List X representing an ordered set of X
elements. Its definition is recursive,

List X :: Void+ X x List X,
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meaning that a list is either empty (V oid) or has a head element coupled (x) with another list
representing the tail. Specifically, Void type is a special type with a single possible value “[|”.
Values of type List X are expressed with brackets —e.g., [x1, tail]-.

Although lists can store repeated elements, the way lists are used in the following discussion
consists on storing different elements in a specific ordering, so a list in this context can be viewed
just as a set endowed with a specific ordering.

In analogy to the Set structure, functions

Map :: (X —Y) — List X — ListY,

Filter :: (X — Bool) — List X — List X,

Fold:: (X —Y — X) — X — ListY — X,

@,

and the infix concatenation operator “:

©w List X — List X — List X

are assumed to exist.
Additionally, Head and T'a:l functions are defined as:

Head :: List* X — X
Head([x,tail]) = x

Tail :: List X — List X
Tail([z,...]) = [...]-

(6.8)

The type List* X refers to non-empty lists. In the following, Head receiving a general list
with type List X is assumed to perform an intermediate pattern matching to assert that List X is
convertible to List* X, which will be omitted for simplicity.

6.1.2.4 Stream

A Stream is a functor that embellishes a type X to represent an infinite ordered sequence of
elements of type X,

Stream X :: X x Stream X.

Similarly to List, Head and T'ail functions return the head and the rest of the stream, respec-
tively,

Head :: Stream X — X
Tail :: Stream X — Stream X.

The fact that a stream abstracts an infinite sequence of elements does not imply that its ma-
nipulation is not practical in a real computer program. Functional-based lazyness and recursion
characteristics permit the manipulation of these infinite abstractions in a real finite computer.
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6.1.2.5 Tree

A tree structure stores elements of type X into a hierarchy accessible from one root node. The
associated T'ree data type can be defined as a recursive sum type

Tree :: X + SetTree, (6.9)

which means that a particular tree € T'ree is either a leaf node storing a value of type X or a Set
of trees —a non-leaf node that encompasses other tree values—.

6.2 Functional relaxed execution model

In this section, the previously exposed functional concepts are applied to translate most of the
ideas presented in Chapters 3 and 4 into a functional programming model.

First, Section 6.2.1 exposes how executor composition can be used to generate a set of hi-
erarchical execution paths. Next, Section 6.2.2 presents how asynchronous computations can be
composed, and in particular how the execution of a list or a stream of dependent tasks can be
represented in the context of an unfolder executor. Finally, in Section 6.2.3, run-time scheduling
concepts are introduced and joined with previous concepts. Particularly, scheduling functions will
collapse a subset of execution paths —representing abstract execution possibilities— into particular
paths that instantiate real executions.

6.2.1 Execution path composition

This section exposes, by means of a functional language, how a set of execution paths associated
to a task and a particular executor are generated. As explained in previous chapters, executor
composition and specific user definitions lead to execution path expansions (see Section 3.2.1).
According to the STSE model, it is explained how executor composition endowed with monadic
patterns enable executor path composition, from which a rich ensemble of execution paths are
expanded by user definitions.

Following the naming of previous chapters, a type £X categorizes executors and regarding
a function acting on executor-typed values, a type constraint (Bottom = FEX) is used to re-
strict the function application only to bottom executors values. Equivalently, (Mapper = EX)
and (Unfolder = EX) clauses force the type FX in the following expression to be a mapper
executor and unfolder executor only, respectively.

6.2.1.1 Burst bottom executor paths

An execution feature is represented by a type F'F’ whose values represent capabilities exposed
within an execution context represented by a bottom executor. For example, features of a bottom
executor may refer either to (/) architectural features of the processing device it is referring to
—e.g., floating point units, instruction set extensions, etc.— and (2) software features —e.g., GPU-
specific libraries, DVFS API, etc.—. These features are defined in a function F'eatures, which
maps every instantiable bottom executor in the system to a Set of execution features:

Features :: (Bottom = EX)EX — Set E'F. (6.10)

In the STEEL-PM implementation, these functions are defined at install-time for all the pro-
cessing devices of the target platform.

In addition, type 7' is used to represent tasks that can be run on any executor. Values of T'
represent user-defined task identifiers, so with respect to Chapter 4 definitions, 1" can be thought
as the app: : impl enumeration type.
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The Allowed function represents these constraints, and it is a predicate that depends on a task
t and an execution feature, with function signature

Allowed :: T — EF — Bool. (6.11)

Its implementation is user-defined, and it is equivalent to the template constraint preceding a
user-defined kernel class (see Section 4.2.2).

As a side note, regarding that different execution features could simultaneously characterize a
task execution, the composition of simultaneous features is also considered a feature. For instance,
when single and double floating-point processing capabilities are available and two sets of vector
extensions are also available, the four combinations between floating-point capabilities and vector
extensions are implicitly considered as elements of E' F' type. The construction of a set of this kind
of composite features from other basic features is omitted from the sake of brevity.

From the previous definitions, a Burst function is defined as a map that generates a Set of all
possible execution features allowed for a given task ¢ € 7' running on an executor constrained to
be a bottom executor (Bottom = EX). It presents a signature

Burst :: (Bottom = EX)EX — T — T x Set EF, (6.12)

and definition,

Burst(e,t) = ((t, Filter(Allowed(t), Features(e))). (6.13)

In other words, Burst(e, t) returns a set of execution possibilities or paths that the runtime is
free to take when a task ¢ is running on an bottom executor e.

6.2.1.2 The Burst Monad

Any executor hierarchy spans a set of execution possibilities for a given task ¢ € 7. This set of
hierarchical execution possibilities can be modeled as a tree structure of type ExzT'ree. Values
of type EzI'ree can be defined as a particular tree structure (see Definition 6.9) with execution
features representing leaf nodes, so the E'xT'ree type can be defined as a recursive sum type in the
form

ExTree :: EF + Set ExTree. (6.14)

[T 2]

The infix concatenation operator “:” can be particularized to compose trees from E'F’ values
and other trees:

2 EF — Set ExTree — Set ExTree

ef : tree = Singleton(ef) : tree

:: Set ExTree — EF — Set ExTree
tree:ef =ef : tree (6.15)

© ExTree — ExTree — ExTree

a:b={a,b}

b:a=a:b,

€@,

where the operator “:” in the right-hand side of the first definition refers to the Set concatenation
operator (see Definition 6.5).

From these definitions, recalling the Monad triple in Section 6.1.1.4, a Burst Monad associated
to a task type 7" can be first defined from a type constructor B that embellishes type T' with a tree
type ExT'ree
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B::T — T x ExTree. (6.16)

Secondly, a Unitp function

Unitg : T — T x ExTree

. (6.17)
Unitp(t) = (¢ {}),
and finally a Bindp function, receiving a monadic value mt and a continuation f
Bindg :: T x ExTree — (T — T x ExTree) — T x ExTree 6.18)

Bindg(mt, f) = (Fst(f(Fst(mt))), Snd(mt) : Snd(f(Fst(mt)))).

In particular, regarding to the first monad law 6.1,

Bindp(Unitg(a), \(x)(f(z))) = (Fst(f(Fst(Unitg(a)))),
Snd(Unitg(a)) : Snd(f(Fst(Unitg(a)))))
= (Fst(f(a)),{} : Snd(f(a))) = f(a)

so 6.1 is satisfied.
With respect to the second monad law (6.2),

Bindg(mt, \(x)(Unitp(z))) = (Fst(Unitg(Fst(mt))),
Snd(mt) : Snd(Unitg(Fst(mt))))
= (Fst(Unitg(t)), Snd(mt):{})
= (t, Snd(mt)) = mt,

so it is also satisfied.
Regarding the third monad law, the left hand side of the equivalence in (6.3) expands into

Bindg({(F'st(f(Fst(ma))), Snd(ma) : Snd(f(Fst(ma)))),g).

Aliasing f(F'st(ma)) = a € T x ExTree for clarity, the previous expression develops into

Bindp({(F'st(a), Snd(ma) : Snd(a)),g) =

6.19
(F'st(g(Fst(a))), Snd(ma) : Snd(a) : Snd(g(F'st(a)))). (6-19)
Similarly, the right hand side of the equivalence in (6.3) expands into
(F'st(Bindg(f(Fst(ma)),g)), Snd(ma) : Snd(Bindg(f(Fst(ma)),g))).
Applying the « alias, it transforms into
(F'st(Bindp(a, g)), Snd(ma) : Snd(Bindp(a, g))) = 6.20)

(F'st(g(Fst(a))), Snd(ma) : Snd(a) : Snd(g(F'st(a)))),

which is equal to the left hand side expression in (6.19). Consequently, it can be concluded that
Bindp (6.18) and Unit g (6.17) definitions for the type constructor (6.16) satisty the three monad
laws (Definitions 6.1, 6.2 and 6.3).

As a side note, from a Category Theory reasoning, it could be demonstrated that Burst is a
monad by simply noting that it follows the same structure as the well-known Writer monad [67].
Specifically, note that values of ExT'ree type that embellish the original type, together with the
previous concatenation operator ““:”” definition and the identity element “{ }”, form a monoid [109].
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Paths from a bottom executor: The burst function for bottom executors (Definitions 6.12
and 6.13) partially applied to a bottom executor e, burst(e), is a function with signature 7' —
T x Set E'F that can be seen as a monadic function 7' — T x ExTree, because T' x Set EF'-
typed values can be converted according to Definition 6.14 into 7' X ExTree-typed values. Thus,
signature 6.12 can be redefined as a function that returns monadic values

Burst :: (Bottom = EX)EX — T — T x ExTree. (6.21)

Hence, the bursted execution paths that represent all the execution options when a task t € T'
is associated to a bottom executor can be represented by a monadic value of type T' x EzT'ree.
Specifically, the return value consists of a pair of a task and a shallow tree composed of the user-
allowed execution features exposed by the Features function applied on that bottom executor.

6.2.1.3 Burst mapper executor paths

The previous definition of the Burst Monad enables the composition of Burst functions of a set
of bottom executors. This composition results into an aggregation of execution paths from a set
of bottom executors encompassed by a mapper executor. Consequently, the burst function Burst
restricted to mapper executors (M apper = E X ), which encompass a set of executors defined in
a function M apped

Mapped :: (Mapper = EX)EX — Set EX, (6.22)

with signature

Burst :: (Mapper = EX)EX — T — T x ExTree. (6.23)

Its implementation can be defined from previous Fold definition (Definition 6.7), particular-
izedfor X =T x ExTreecandY = (T — T x EzTree).
Specifically, the first argument type (X — Y — X)) translates into

T x ExTree — (T — T x ExTree) — T x ExTree,

which matches the signature of Bindp (Definition 6.18). The second argument is the initial
monadic value built from Unitp, and the third argument is the Set of Burst functions to be
folded, which is the result of partial application of Burst on each of the elements of Set FX

Burst(e,t) = Fold(Bindpg, Unitg(t), Map(Burst, Mapped(e))), (6.24)

The result of this function is an execution tree of paths composing the nodes bursted by the
mapped executors in M apped(e). Note that implementations 6.13 and 6.24 make function Burst
polymorphic (behavior depending on Mapper or Bottom type constraints). Thus, the recursive
definition 6.24 allows other EX types that qualify as M apper included in Mapped(e) (i.e., not
necessarily Bottom).

6.2.1.4 Burst unfolder executor paths

By definition, an unfolder executor delegates a set of tasks Set 1" to any executor with type EX D
defined in Delegate function,

Delegate :: (Unfolder == EX)EX — EXD. (6.25)

To represent the execution paths bursted from an unfolder executor, the execution paths for
each task 7" in a Set " have to be composed.
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Specifically, a function Burst associated to an unfolder executor has a signature:

Burst :: (Unfolder == EX)EX — T — T x ExTree. (6.26)
In order to calculate the bursted execution paths resulted from a task partition on a context of
an unfolder executor, provided a user-defined function
MakeTaskList :: T — ListT, (6.27)
A function BurstTaskList presents a signature (with the (Unfold = EX) constraint im-
plicitly assumed)
BurstTaskList :: EX — T — (T — ListT) — T x ExTree, (6.28)

and implementation

BurstTaskList(e,t, f) = Fold(A\(mt',t')(Bindg(mt', Burst(Delegate(e),t'))),
Unitp(t), (6.29)
f#)),

where the first argument of Fold has signature (1" x ExTree — T — T x ExzT'ree), the
second argument is a monadic value Unit(t), and the third argument is the List T" to be folded.

If the user wants to expose a set of valid task partitioning possibilities or parameters (with type
PP) for a given task, so that the runtime is free to choose among a set of partitions, a function
Partition Parameters with signature

PartitionParameters :: T — Set PP (6.30)

must first be implemented. Then, for each valid pair of a T" and a PP, a function to generate
a set of tasks from partition parameters, with signature

Partition .: T — PP — ListT (6.31)

must also be provided.
Another version of BurstTaskList, BurstTaskList Param, receiving a partition parame-
ter and composing the result monad with other monadic value, would have a signature

BurstParamCompose :: EX — T — T x ExTree — PP — T x ExTree, (6.32)
and can be implemented as

BurstParamCompose(e, t, mt, pp) = Bindg(mt,

6.33
BurstTaskList(e, t, \(t')(Partition(t', pp)))). (635

With previous definitions, an final implementation for Burst targeting unfolder executors
(Definition 6.26), can be implemented as
Burst(e,t) = Fold(BurstParamCompose(e,t),Unitg(t), PartParameters(t)), (6.34)

which returns a monadic value representing the bursted execution paths for a task ¢ being
executed by an unfolder executor.
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In definition 6.34, the F'old function presents a signature
(BT — X — BT)— BT — Set X — BT,
with

BT =T x ExTree,

and

X =PP.

Note that partial application of BurstParamCompose results into a function with signature
BT — PP — BT, thus correctly matching the signature of the first argument of F'old.

6.2.1.5 Summary

The Burst Monad consisting on the triple type constructor (6.16), Unitp function (6.17), and
Bindg function (6.18), enabled the composition of a set of polymorphic Burst functions, for each
kind of executor bottom executor, mapper executor and unfolder executor, that return a monadic
value consisting on a task identifier of type 7" and a tree of execution paths ExTree.

In Table 6.1, the associated references to Burst and required user definition for each executor
type are summarized. Note that Burst function for mapper executors does not require additional
user-definitions, which is illustrated by the fact that task featurization for mapper executors is
implicit and derived from the lower-level executors (See section 4.2.2.5).

Burst Burst Required user-defined
Signature Implementation  function signatures
bottom executor (6.21) (6.13) (6.11)
mapper executor (6.23) (6.24)
unfolder executor (6.26) (6.34) (6.30, 6.31)

Table 6.1: References to Burst function definitions and signatures of required user-defined imple-
mentations.

As a final note, recall that in Section 3.1.3 task reimplementations are also possible user-
defined relaxations to be done in the context of unfolder executors. Despite that, in this section
only partitions resulted into lists of tasks were mentioned, because it is the most general scenario
in an unfolder executor: a task reimplementation results into a particular singleton-list case. In
the following, whenever task partitioning is mentioned, task reimplementation is also implicitly
considered.

6.2.2 Asynchronous and data-flow computations

Asynchronous call abstractions and Continuation-Passing-Style patterns have provide great utility
to chain computations irrespective of their termination [ 108, ]. As mentioned in Section 1.2.2,
these patterns are used to enable high levels of parallelism in several runtime systems.

With this regard, the future abstraction, implemented as a built-in feature in many program-
ming languages and frameworks [138, 59, 49, , 70], is used within STEEL-RT to compose
asynchronous executions of tasks seamlessly. In particular, this abstraction is completely STEEL-
RT-internal, so the user does not need to know any interface of future objects —and not even what
a future is—.

In previous section, tasks were only elements by which a mere execution feature filtering
(Definition 6.11) on the features exposed by a bottom executor (Definition 6.10) was done.
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In practice, and according to STEEL-PM, a task identifier is also associated to a kernel function
that returns output data of type D from input data of type D.

Kernel :: D — D, (6.35)

whose implementation is user-defined. In relation to section 3.1.3, values of type Kernel are
equivalent to task instantiations.

Moreover, in order for a set of tasks to be concurrently distributed across several execution
contexts —so that task parallelism is enabled—, a way to asynchronously dispatch the tasks to dif-
ferent contexts has to be provided.

In this sense, a future represents an abstraction of a computation that has not necessarily been
completed. A future type is associated to another type and wraps its values into future values.
In order for a kernel instantiation to be asynchronous, the previous Kernel signature has to be
upgraded to a futurized kernel with signature

AsyncKernel :: D — FutD, (6.36)

in which F'utD represents a future type derived from D type.

Contrary to function 6.35, AsyncKernel function is an abstraction automatically constructed
by STEEL-RT at compile-time.

In practical scenarios, kernel instantiations receive input data to be returned by other instan-
tiations, so there are dependency relations that serialize the executions. In order to maintain the
asynchronous properties across kernel compositions —i.e., if f and g are inter-dependent asyn-
chronous kernels, its composition h = g(f) must also be asynchronous—, a way to systematically
compose futurized kernels has to be provided.

6.2.2.1 Future monad

The Future monad enables composition of asynchronous computation. Type Fut D in signa-
ture 6.36 actually represents a type constructor for the future monad F'ut that lifts a data type D
to a future type F'ut D. In general, the future monad is based on a Functor that embellishes any
type X:

Fut::: X — FutX. (6.37)

A Unitr function exposes a signature

Unitp :: X — FutX, (6.38)

and a Get :: FutX — X function could also be provided to retrieve the value encapsulated
by a future monadic value. In general, application of Get on a future will block until the function
responsible for computing the wrapped result of type X has finished.

An actual implementation for Unit would wrap a value x € X into a ready future monadic
value —i.e., by definition, Get(Unit(x)) never blocks for any x—. A ready future is also said to be
resolved.

An implementation of Bindp function with signature

Bindp :: FutX — (X — FutY) — FutY, (6.39)

unwraps a future representing the result of an unfinished computation and injects it in the
continuation (X — F'utY’), so a new future F'utY is returned.

AsyncKernel with signature 6.36, can be defined internally in STEEL-RT from a user-
defined implementation for Kernel and Unitr,

AsyncKernel = \(d")(Unitp(Kernel(d'))).



6.2. FUNCTIONAL RELAXED EXECUTION MODEL 137

6.2.2.2 Function composition

From previous definitions, the futurized versions of functions X — Y and Y — Z result into
feX — FutY and g € Y — FutZ, and the bind function of the future monad provides a
way to seamlessly compose an asynchronous function h € X — FutZ, from f and g:

h(z) = Bindp(f(x),g).

A function j(y1, y2) with signature

(Y1 — Yy — FutZ)

can be composed with a set of functions

kl,k‘g S Kl,KQ = (X1 — FutYl), (XQ — Futh)

to form a function m with signature

X1 — X9 — FutZ

by nesting Bindp calls:

m(z1,x2) = Bindr(k1(21), A1) (Bindr (ka(22), Ay2) (7 (41, ¥2)))))-

Application of m immediately returns a future of the result, and this composition can be easily
generalized to multiple arguments X1, Xo, ..., X, by deeper Bindp nesting to compose multiple
functions.

This composition of futures represents a when-all abstraction, which is a way to encapsulate
a set of pending results that can be computed concurrently. To this encapsulation, a continuation
function (in previous example j) that represents a computation that requires all the values to pro-
ceed, can be attached. In general, the return value of this function, built from composition of n
k; functions and j function that gathers the results, returns an abstract future that becomes ready
when all the futures F'utYy, ..., FutY,, become ready.

A similar when-any abstraction represents an abstract computation that encompass a set of
results but only requires a single ready future in order to be ready —i.e., it becomes resolved when
any of the encapsulated futures is resolved—. Its implementation details are out of the scope of this
discussion, as asynchronous non-redundant tasks in DAG structures can be sufficiently modeled
with when-all abstraction.

6.2.2.3 Data guarding

The process of data guarding seen in the previous chapter consisted of guarding a data handle —i.e.,
building a data guard from a data argument— and providing ways of accessing to subdata elements
(see Section 4.2.4). The returned subdata elements consist of representations of data subregions
that provide protection against concurrent access.

As a side note, for the sake of simplicity, the previous scenario in which a data may depend
on multiple input and output arguments is reduced into a data that just accepts a single datum D
and outputs another datum of the same type. Note that this simplification is just syntax-related for
the sake of clarity and generality is not sacrificed: no restriction was imposed to type D, so a set
of multiple arguments can be thought of a list of elements belonging to D. Also, the possibility
of expressing task dependencies by fine-grain synchronization characteristic of data-flow pattern
is still intact but hidden in the abstract data type D.

Guard D represents the state of the guard container that changes when access to a subdata
element is retrieved and consequently passed to a task.



138 CHAPTER 6. STEEL AS A FUNCTIONAL MODEL

In particular, four helper functions related to Guard D type are assumed to exist. First, a
function

Getd :: T — Guard D — Fut D x Guard D, (6.40)

returns a subdata element contained in Guard D wrapped in a future that represents the input
dependence of a task T'. Secondly, a function

Setd :: Guard D x Fut D — Guard D (6.41)

inserts a data future representing a pending result of a task execution into the state guard.
Finally,

CreateGuard :: D — Guard D (6.42)

initializes a Guard D state from a datum, and

ReturnGuard :: Guard D — Fut D (6.43)

aggregates the pending output data that has been stored in a guard by Setd function and re-
trieves a future that represents a when-all aggregation of them.

As a side note from Category Theory, Guard functor together with Setd and Getd function-
alities can be grouped as an instance of the well-known State monad [67], which is designed to
provide general composition rules for functions that read and modify a generic state. In this sense,
previous and ongoing developments can be translated in terms of a State functor and specific
Unit and Bind functions, but formulation in terms of Guard D and Getd / Setd functions is
preferred to remark the similarity with the STEEL-API functions.

6.2.2.4 Finite list of tasks

Section 6.2.3 will expose how functions Fxecute Async with signature

EzxecuteAsync:: EX — T — D — Fut D (6.44)

abstract the asynchronous execution of a task into any executor context. Meanwhile, it is assumed
that these functions partially applied to pairs e € EFX and t € T return an AsyncK ernel function
object with type D — Fut D.

Since the goal of this section is to express how a set of tasks are executed asynchronously, in
the following it is exposed a specific implementation of Execute Async when EX is constrained
to an unfolder executor.

By definition, an unfolder executor is always stacked on top of a delegate executor (see Sec-
tion 3.1.2), and according to the present functional model it is defined in the implementation of a
function

Delegate :: EX — EX. (6.45)

Assuming a function implementation for M akeT askList (6.27), which returns a list of tasks
generated after a task partition, then

ExecuteAsync(ue, t,din) =
EzxecuteList Async(Delegate(ue), M akeT askList(t), CreateGuard(din)),
(6.46)

where ExecuteList Async has a signature
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FExecuteListAsync :: EX — ListT — Guard D — Guard D,

with recursive implementation

ExecuteList Async(e, [t, tail], gd) = ExecuteListAsync(e, [tail], u(e,t, gd)). (6.47)

Function p returns an updated Guard D that is passed to the next recursion and is defined as

u(e, t, gd) = Setd({Snd(Getd(t, gd)),
Bindp(Fst(Getd(t, gd)), Execute Async(e, t)))).

Finally, an end-case (empty list) implementation returns the Guard D state unaltered,
ExecuteList Async(-,[], gd) = gd.

6.2.2.5 Infinite stream of tasks

Many applications are more conveniently expressed in terms of an infinite sequence of operations.

An unfolder executor context is not only used to unfold a finite list of children tasks, but also to
unfold an infinite stream of tasks. Specifically, the user must implement a function M akeStream
with signature

MakeStream :: T — StreamT

which creates a stream of tasks, in which tasks are in general fed from data generated by
previous tasks, and possibly from initial data encapsulated in a guard returned by C'reateGuard.
In particular, ExecuteStream presents a signature

ExecuteStream :: (Unfolder = EX)EX — T — D — Stream Fut D

which returns an infinite stream of futures. It can be implemented from a helper function
DataStream with signature

DataStream :: EX — StreamT — Guard D — Stream Fut D,

as

EzxecuteStream(ue, t,din) = DataStream(Delegate(ue),
MakeStream(t), CreateGuard(din)).

Additionally, DataStream can be implemented recursively as

DataStream(e, st,dg) = (Fst(v(e, Head(st),dyg)),
DataStream(e, Tail(st), Snd(v(e, Head(st),dg)))),

where v with signature (EX — T — Guard D — Fut D x Guard D), first calculates
the output future

fdo = Bindp(Fst(Getd(t,dg)), Execute Async(e,t)),
and returns a Fut D x Guard D pair

ve,t,dg) = (fdo, Setd(dg, fdo)).

Finally, the user is free to channel the returned Stream Fut D in any way, and eventually
finalizing the stream computation when a terminate condition is met.
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6.2.2.6 Relation with STEEL API

Previous definitions provide a functional model for a typical task partition in the context of an
unfolder executor. CreateGuard function is a direct analogy of the guard creation mechanism
explained in Section 4.2.4. The inner workings of C'reateGuard, from the perspective of STEEL-
RT, involve the wrapping of a subdata element into future values that also encapsulate the neces-
sary information needed for data-hazards prevention.

Moreover, Getd reflects the behavior of the member function get of a STEEL-PM data guard
with a minor difference. In this case, Getd is a simplified version, in the sense that it directly as-
sociates a task identifier with a future encapsulating its single input data. Contrary, in STEEL-API
each argument of the task has to be encapsulated by respective guards, and the access to subdata
elements encompassed by the guard is done by user-defined keys (see details in Sections 4.2.4
and 4.2.7).

On the other hand, in the simplified functional model just presented, an explicit ReturnGuard
function is needed to aggregate the partial data returned by children tasks into a future value that
represents the result of the partitioned task, which is then returned to the caller of the unfolder
executor. In STEEL-API, RAII semantics for data guards make this wrapping hidden from the
user view.

Finally, the functional model for unfolding an infinite stream is not explicitly translated into
stream-like structures in STEEL-API, but the imperative nature of the built-in language in which
STEEL-PM is built upon (C++), makes the implementation of stream-like computations indistin-
guishable from the finite-partitioned task —i.e., both cases consist on an asynchronous delegation
of tasks inside a loop in which tasks are unfolded and delegated—.

6.2.2.7 Summary

In this section it was exposed a preliminary implementation for Execute Async designed for un-
folder executors in terms of the well-known future abstraction and user-defined M akeT askList
function, together with additional helper functions Getd, Setd, CreateGuard and ReturnGuard,
whose functionality was related to explanations in Chapter 4. It was also exposed, for the sake of
generality, a function FxecuteStream in which task is not partitioned, but unfolded into a stream
of future data elements.

The implementation FxecuteAsync is said to be preliminary because it does not take into
account eventual partition possibilities declared by the user. In this line, the next section exposes
an implementation that does consider this. Also, Fxecute Async implementations will be defined
for the rest of the executor kinds.

6.2.3 Scheduling and execution of tasks

In this section, previous developments regarding execution path creation and asynchronous com-
putations are merged to define a set of Ezecute Async functions for each executor type. Equiva-
lently to Burst functions, Fxecute Async functions expose the same signature EX — T —
D — Fut D with only the E X type constrained for each executor type.

Moreover, a set of functions for each executor type BottomSchedule, M apperSchedule and
UnfolderSchedule are used to model the internal workings of STEEL-RT in terms of schedul-
ing. As explained in Section 3.2, the concept of scheduling employed in this development is
generalized or broaden from the classic concept consisting on the mere assignment of work to
resources (see Section 3.2.2). In this line, scheduling functions have the inverse effects of Burst
functions implemented in Section 6.2.1: for a specific executor-task pair, they reduce a set of
execution possibilities generated by corresponding Burst calls. In the particular case of the
M apperSchedule function, it will assign the execution of a task to an executor, hence recov-
ering the classic scheduling semantics. On the contrary, BottomSchedule could select one of the
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allowed bursted execution features, while Un folderSchedule could pick a particular partition
granularity or reimplementation.
6.2.3.1 Execution in a bottom executor

In relation to Section 4.2.2, a Relax K ernel function corresponds to user-defined kernel instanti-
ations meant to be run in bottom executors,

RelaxKernel :: T — EF — D — D. (6.48)

During compilation, these functions are internally transformed to asynchronous functions with
signature

RelaxAsyncKernel :: T — EF — D — Fut D. (6.49)

where the output data type D is internally embellished at compile-time to a F'ut D. Addition-
ally, the second argument of type E'F’ refers to the param appearing for example in Listings 4.9
and 4.10, whose value is meant to be set internally by a STEEL-RT scheduler.

In this line, the BottomSchedule function represents this scheduling action, which outputs a
specific execution feature F'F' from a shallow tree generated by the Burst function (6.13).

BottomSchedule :: T x ExTree — EF. (6.50)

Then an Execute Async associated to a bottom executor can be defined with signature

ExecuteAsync :: (Bottom = EX)EX — T — D — Fut D, (6.51)

and implementation

ExecuteAsync(e,t,din) = RelaxAsyncKernel(t, BottomSchedule(Burst(e,t)), din).
(6.52)
In summary, Execute Asyncreturns a future to the result of the user-defined kernel Relax Kernel,
whose execution is particularized by the result returned by calling

BottomSchedule(Burst(e,t)).

6.2.3.2 Execution in a mapper executor

Similarly, the M apperSchedule function assigns a task to an executor encompassed by a mapper
executor, based on the possibilities expanded by the associated Burst function.

MapperSchedule :: T x ExTree — Set EX — EX (6.53)

An equivalent Fxecute Async particularized for mapper executors with signature

EzxecuteAsync :: (Mapper = EX)EX — T — D — FutD (6.54)

is implemented as:

ExecuteAsync(e, t,din) =
Execute Async({MapperSchedule(Burst(e,t), Mapped(e)),t), din).
(6.55)

In this case, the execution is simply forwarded to the executor selected by calling to M apperSchedule.
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6.2.3.3 Execution in an unfolder executor
The scheduling function Un folder Schedule picks a specific list of tasks from the set of possibil-
ities expanded by the corresponding Burst function.

UnfolderSchedule :: T' x ExTree — Set ListT — ListT. (6.56)

Then, Execute Async with signature restricted for unfolder executors

ExecuteAsync :: (Unfolder = EX)EX — T — D — Fut D (6.57)

can be implemented as

ExecuteAsync(ue,t,din) =
ExecuteList Async(Delegate(ue),
Un folderSchedule(Burst(e,t),n(t)),
CreateGuard(din)),

(6.58)

where 77 generates all the possible partitions (in the form of a Set List T') for a task ¢:

n(t) = Map(Partition(t), Partition Parameters(t)).

In essence, Definition 6.58 applies FrecuteList Async (Definition 6.47) to a list that rep-
resents a specific partition (or to a singleton list representing a reimplementation), decided by
Un folderSchedule based on the possibilities returned from Burst.

6.3 Summary

In the following (Section 6.3.1), the relation of a subset of functions previously listed with func-
tions exposed in the STEEL-API is shown, stressing the moment —during compilation or execution—
in which these functions are called.

Secondly, some limitations of the previous functional model are exposed in Section 6.3.2. It is
worth noting that these limitations are exclusive of the functional model —in close relation with its
functional purity—, and do not pose any problem from the implementation perspective in terms of
the STEEL-PM implementation presented in the previous chapter, as it is not a purely functional
implementation.

6.3.1 Relation with STEEL-PM

Among all the set of functions previously exposed, it is summarized next a subset of functions
whose utility relates to what was explained in Chapters 3 and 4. These functions are classified by
(i) their main usage, (ii) the implementer and (iii) the caller.

6.3.1.1 System — Executor matching

In Table 6.2, Features, Mapped and Delegate functions endow each of the executor types —
bottom, mapper, unfolder— with their respective attributes.

In particular, function Features is implemented as a template specialization of a parametrized
function belonging to the runtime support template functions. Functions of this set are meant to
be specialized to account for newer architectural characteristics of processing devices (see Fig-
ure 4.2), and defined from the detected hardware characteristics during installation. Eventual bot-
tom executors to be instantiated at compile-time will then expose these characteristics as execution
features to be considered in a user-defined kernel implementation of a task.
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Functions M apped and Delegate establish the relations between executors, fully characteriz-
ing the executor tree. Consequently, their implementer is the user if the executor tree is explicitly
built by composing executor references from deploy calls. On the contrary, if the executor tree is
automatically inferred by deploy_main call, the implementer is said to be the compiler, as these
functions —hence the full executor tree— are derived from a metaprogram executed at compile-time.

Function Usage Implementer Caller

Features (6.10)  Device arch. detection Installer Compiler
Mapped (6.22)  Executor arch. definition User or compiler Compiler
Delegate (6.25) Executor arch. definition  User or compiler Compiler

Table 6.2: Related functions for matching system platform with executor properties and tree ar-
chitecture.

6.3.1.2 Application development

Table 6.3 summarizes functions related to application development. In these functions, the user
—or application developer— plays a role either as the implementer or as the caller.

First, Fxecute Async represents both the program entry point and the runtime binding be-
tween executors, in the sense that tasks flow across the executor tree by internal Fxecute Async
calls. Its caller is the user in the program entry point case —when dispatching the main task to the
top-most executor— and in the unfolder case —when dispatching tasks to a delegate executor—. On
the contrary —dispatching a task from a mapper context—, then the runtime is the caller. In relation
to the STEEL-API, calls to execRef (see Listing 4.18 in Section 4.2.3) perform an equivalent
functionality.

Functions Allowed and Partition Param(eters), in second and third rows, represent featur-
ization options and they are resolved (or called) at compile-time. These functions return a set of
execution possibilities to be resolved by the runtime and their definition is equivalent to the setting
of the type expanded in Listings of Section 4.2.2, which is a type interpreted by the compiler.

Functions Relax K ernel and Partition are equivalent to the user-defined run functions de-
fined within a kernel class, each representing a kernel to be run on an unfolder executor and a
task partition (or reimplementation), respectively.

As explained in Section 6.2.2, the four remaining functions provide data guarding, partitioning,
and fine-grained task-synchronization capabilities. These functions have clear correspondence to
the API exposed in Section 4.2.4. For ReturnGuard and Setd, the caller is marked as the Run-
time* and not the user because their equivalent STEEL-RT functions counterparts are implicitly
triggered by the runtime. In other words, RAlIl-semantics and the internal mechanism of get
interface in the objects returned by handle functions make the STEEL-API-equivalent counter-
parts of ReturnGuard and Setd functions invisible from user code.

6.3.1.3 Functions in runtime scheduling

In Table 6.4 STEEL-RT internal functions related to execution path generation (or bursting) and
scheduling are shown.

First, Burst function is polymorphic, with implementations depending on the executor type,
and always resolved (or called) at compile-time. Hence, all the execution path possibilities for a
given task — executor pair do not have to be computed at run-time each time a task is dispatched to
an executor. Secondly, as explained in Section 6.2.3, scheduling functions for each executor type
are resolved during execution to select one of the options generated by their corresponding Burst
function.
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Function Usage Implementer Caller

FExecute Async (6.52,6.55,6.58) Task execution RT-developer User/Runtime

Allowed (6.11) Task featurization User Compiler
PartitionParam (6.30) Task featurization User Compiler
RelaxKernel (6.48) Kernel execution User Runtime
Partition (6.31) Task unfolding User Runtime
CreateGuard (6.42) Data part. & sync. RT-developer User

ReturnGuard (6.43) Data part. & sync. RT-developer Runtime*
Getd (6.40) Data part. & sync. RT-developer User

Setd (6.41) Data part. & sync. RT-developer Runtime*

Table 6.3: Related functions during the application development process.

Function Usage Implementer Caller

Burst (6.13,6.24,6.34) Generate execution paths RT-developer Compiler
BottomSchedule (6.50) Select execution feature ~ RT-developer Runtime
MapperSchedule (6.53) Select executor RT-developer Runtime

UnfolderSchedule (6.56)  Select partition / reimpl. ~RT-developer ~Runtime

Table 6.4: Related functions during runtime task scheduling.

6.3.2 Model limitations

The functional model presented in this chapter had the sole purpose of providing an alternative
functional representation —yet using the same concepts when possible— to what was exposed in
Chapters 3 and 4. However, from a stricter theoretical lens, this model presents several loop-
holes that should be highlighted. Specifically, some limitations of the model in terms of its purity
(see Section 1.2.1.1) are exposed next. These limitations would need to be resolved in order to
implement STEEL-PM in a pure functional language —e.g., Haskell-, to endow the current im-
plementation with more functional-like features, or to permit the model to be subject to formal
verification tools.

6.3.2.1 Future wrappers are not immutable

Section 6.2.2 exposed how tasks related by data dependencies encapsulated in Guard contain-
ers are synchronized in the STEEL model. The main purpose of these containers is to serve as
concurrent-safe storage for subdata regions belonging to larger data. In particular, a basic inter-
face via Getd and Setd was exposed, by which future objects wrapping subdata elements can be
retrieved and injected in the Guard D object as new tasks are delegated to a lower-level executor.

Despite this model represents with fair accuracy the task synchronization model followed by
STEEL-RT, it is not purely functional. Specifically, future objects are wrappers of a shared and
mutable state, and their usage clearly violates referential transparency: by design, the state en-
capsulated by a future —i.e., the result of a computation— depends on time —e.g., despite Getd ::
Guard D — Fut D function is referentially transparent, extracting the value from the returned
future is not—.

6.3.2.2 Executors are stateless

As mentioned in Section 3.2, in an executor tree architecture, executors are abstractions of muta-
ble execution contexts —i.e., each executor holds a varying state—. In an executor tree, executor
state visibilities are propagated bottom-top, so that schedulers in higher-levels in the hierarchy
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perform scheduling decisions based on the actual executor contention underneath —e.g., processor
occupations, length of work queues storing pending tasks, data distribution, etc.—. However, in the
functional model presented, executors are stateless: the only effect of an Ezxecute Async call is to
return the futurized result.

In order to account for that, a kind of state representation for executors should be defined,
in a way in which executor states are only writable by scheduling functions applied to them.
Additionally, the states of the lower-level executors would be propagated bottom-top so that they
can be accessed by upper executors above.

This problem is however a particular case of the general limitations exposed in Section 1.2.1.4,
regarding the difficulty to account for a self-referential execution state within a functional program.

6.3.2.3 Scheduling is static

In relation to the previous section and developments in Section 3.2.4, the scheduling functions just
presented in this chapter (see Section 6.2.3) are static —i.e., their output is based on information
(expanded execution paths) not varying at run-time—. As mentioned, static schedulers are inher-
ently short-sighted and greedy, so they are not expected to be competitive in the kind of scenarios
in which an implementation of STEEL-PM is intended to operate. Ideally, all the executor states
which might be influenced by the scheduler decision, together with a representation of the work
queue pending to be dispatched, should be fed to the scheduler input.

6.3.2.4 Related work

The previous issues could be re-evaluated under the light of several existing approaches in func-
tional programming.

In relation to the mutability of futures, the continuation abstraction, based on the CPS pat-
tern [141, ], could be employed instead of futures. In particular, the continuation monadic
pattern [67] could be used to compose asynchronous computations in a pure way.

The problem of synchronization in a multiple task context has been already treated from a
functional approach. For example, in [66] it is exposed how a context in which tasks in a OS
kernel running concurrently can be modeled in terms of Resumption and State monads; the former
used to model concurrency [ 120] and the latter to model read-modify operations on a general state.
Additionally, a purely functional implementation of an OS kernel is shown, in which operations
like task preemption, process forking, synchronization and message passing are considered.

In [87], it is exposed how data-oriented workflows and a set of dependent tasks related by a
DAG can be modeled with a set of functional constructs based on lambda-calculus. Although it
does not target any HPC-related application, some of these ideas could be considered to enable
fine-grained task synchronization in a purely functional way.

Related to making executors stateful and enhancing scheduling, so that the scheduling is ex-
plicitly sensible to computational effects, developments that explore incremental [27] and adap-
tive [3] functional programming patterns could also provide utility.

In this line, also in relation with Section 1.2.1.1, recall that the monad pattern, originally
devised as a mathematical concept within Category Theory and then applied to Functional Pro-
gramming Theory, was successfully accepted as a mechanism to incorporate side-effects and a
systematic framework for scalable function composition into functional programming languages.
Its category-theoretic dual, the comonad [96], is a pattern that when applied to programming
language theory, it is able to model contextual computations [109]. In this sense, several the-
oretical works [93, , , ], have exposed the appeal of comonadic patterns to program
environment- or context-dependent computations from a purely functional approach.

Any HPC-oriented runtime system must work and respond in strongly context-dependent situ-
ations, as the underlying hardware system must be constantly monitored in order to mitigate usual
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load-balancing, contention and data locality problems. For this reason, any purely functional run-
time system intended to work as a middleware for HPC applications would presumably need to
incorporate comonadic patterns as a core component.

In relation to an hypothetical purely functional representation of STEEL-PM, comonadic pat-
terns could be employed to approach the previously mentioned problems, as they are related with
a form of environment or context —either in the form of task dependencies or in the form of the
underlying hardware state and stateful scheduling—. Specifically, asynchronous computations of
inter-dependent tasks could be modeled in terms of the Store and Stream comonads, following the
line of [14&].
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Conclusions

User-defined execution relaxations are fundamentally a new approach to HPC application devel-
opment. The core idea consists of declaring relaxations to let the runtime system access to new
regions in the space of execution possibilities. These regions may be worth exploring for two rea-
sons: (i) to steer the execution according to some optimization criteria, and (i) to widen or to make
more flexible the execution, so that it can be automatically adapted to other application instances
or environments (e.g., different application parameters or parallel computing platforms).

To view the user-defined execution relaxations from a bigger picture, simultaneously encom-
passing performance, efficiency, programmability and portability considerations, this chapter sum-
marizes the contributions of this thesis, also briefly exposing future extensions of the current
STEEL-RT implementation and interface, together with future research paths.

7.1 Contributions

A high-level, general-purpose parallel programming model. The proposed programming model
and interface do not require any low-level programming instruction nor the use of any parallel
tool for synchronization, yet the API has shown to be general enough to let the user (implicitly)
represent generic parallel programs instantiated to different parallel contexts: departing from the
task-asynchronous and data-flow execution models, the computation of parallel tasks is derived
from a code that looks sequential, yet different levels of parallelism are accessible and automati-
cally unfolded by the runtime. Also, the proposed STSE model, in which the execution entry point
is reduced to a single task, representing the full application, that is assigned to a single executor,
representing the complete parallel system, is one of the main contributions of the thesis. Never-
theless, the use of C++- concurrent and parallel programming tools is still available (although in
general discouraged, regardless of the scale target platform) when needed by the user.

A development paradigm in which user-defined execution relaxations yield runtime-driven
rich execution expansions. The proposed parallel programming model lets the user to express
execution relaxations to remove the decision cost from the development stage, and to expose
execution opportunities to be automatically exploited at run-time. Results presented in Chapter
5 show how either simple and incremental task featurizations and platform-dependent executor
deployment were enough to yield rich executions.
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Decoupling between runtime scheduling and application development. The exposed inter-
face showed user-oriented mechanisms to formalize execution complexity which, once declared
and compiled, they are translated and interpreted by a runtime system. This decoupling between
runtime scheduling and application development follows a declarative philosophy, in which the
when, the where and the how, regarding task execution, are no longer important during application
development. In this model, the user just cares about writing or reusing the fundamental build-
ing blocks (or kernels) of the application, and expressing their dependencies. In this model, the
execution orchestration is deferred during development as a problem to be solved by the runtime.
Although complex, this task orchestration is a highly parametrized and well-defined problem (thus
subject to full automatization) where inputs (i.e., the useful information needed to take a decision)
and outputs (i.e., the set of actions to take) are clearly defined for all user-defined relaxations.

Strongly-typed, clear and exception-safe API. The proposed model and runtime system im-
plementation rely on a strongly-typed, hard-to-misuse and exception-safe interface. Also, RAII-
based patterns have shown to be of great importance in user code, guaranteeing a deterministic,
automatic and safe release of resources without the need of any unpredictable garbage collection-
based mechanisms. Also, the proposed STEEL-RT-callable interface encourages the use of free
functions within parametrized stateless structures, although the user is still free to have its own
state.

A feature-scalable and portable framework. The principles of parallel programming are the
same whether the target platform is a supercomputer or a hybrid CPU-GPU system: same prob-
lems (although in different scales) in terms of memory management, load balancing, runtime
overhead and resource starvation arise in both scenarios. Portability demands that the program
should look nearly the same regardless of the target system. What needs to be different is the ac-
tual execution that is performed under the hood by the runtime system. The proposed hierarchical
executor-allocator architecture and the API deeply based on generic programming clearly follow
this philosophy: the entry point is always a single executor regardless of the platform, which can
be automatically identified at install-time. Also, it was shown how heterogeneous processors and
deep-memory hierarchies could be seamlessly exploited from the STSE model.

7.1.1 Execution relaxations-leveraged programmability

Figure 7.1 illustrates the traditional development process of HPC applications. Three loops can
be distinguished, for which knowledge of concurrency and parallel programming knowledge are
mandatory. The first correctness loop abstracts the development process seeking program correct-
ness, which, once attained, is typically followed by a sort of performance evaluation which should
highlight the main bottlenecks that harm the application performance. The correctness stage is
much harder when dealing with concurrency and parallelism, due to their inherent difficulties
(e.g., non-deterministic race conditions, deadlocks, or livelocks).

Second coarse optimization and third fine optimization loops require direct intervention from
the user side by means of profiling, and code optimization actions, which ultimately lead to a
high-performing program execution.

Coarse optimization loop commonly involves major changes that greatly impact performance
and may involve ad-hoc testing (e.g., software refactors, changes in data-layouts and changes in
parallel synchronization patterns). Fine optimization loop may refer to minor changes in code
not requiring testing (e.g., platform-dependent parameter tuning, data granularity fixing, thread
parallelism tuning, or addition of compiler-oriented hints for performance).

In general, optimization loops reflect incremental optimizations tuned for specific application
and system-dependent parameters and characteristics. They rely on some form of feedback (sym-
bolized by the Performance report node), in the form of performance metrics or execution traces,
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that need to be properly interpreted by the application developer to identify sources of perfor-
mance drops. This analysis may lead the developer to the identification of performance problems
requiring major changes.

Major Performance High-performance
Test change report execution

\ optimization loop
Correctness

loop
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Bug Debug Profile Minor
change
O User action
O Computer output Application
instance

Figure 7.1: Diagram of traditional development process. Execution optimization is achieved by
means of incremental application- and system-dependent optimizations. Correctness loop may
involve debugging concurrency-related and non-deterministic errors.

Analogously, Figure 7.2 illustrates the development process proposed by the execution relax-
ations paradigm. Contrary to traditional development, the only user actions present in the opti-
mization process are the user-defined execution relaxations (represented by the Relax execution
node). Based on some knowledge of the general properties of the application and the architec-
tural characteristics of the platform, the user would decide to incrementally relax the execution
accordingly.

In practice, the featurization loop would not need to be traversed many times, as in practice
there are not many opportunities for relaxed execution (e.g., concerning data / thread granularity,
task reimplementation, heterogeneous task dispatching, or relaxed task precision). It is indeed
restricted by the properties of the application and the architectural features of the parallel platform.
In this featurization loop it could also be considered coarse and fine featurizations, but they are not
illustrated for the sake of clarity. A coarse featurization could refer to adding entire new features
which might require testing (e.g., adding a new architecture-specific kernel reimplementations for
an abstract task), while a fine featurization could involve adding few parameters to incrementally
widen or relax an already defined feature.

The process of relaxing the execution could be viewed as adding tunable knobs that represent
how much actions, runtime decisions and in essence responsibility is delegated from the user to
the runtime. Minimal feature relaxation would yield very constrained executions close to what
other runtimes can do. Adding relaxations incrementally is done in response of needs of explo-
ration in the state space of possible execution possibilities. Also, features are composable and in
general orthogonal by design —i.e., making the runtime sensible to other features on top of others
is easily doable under the STEEL-API-, and it is encouraged to expand and enrich the execution
possibilities to which the runtime has access.

In addition, an application may be featurized by a set of architecture-dependent features that
may or may not be instantiated for a specific target platform. With this regard, the same code
reflecting all featurizations for an application will be instantiated differently according to the ex-
ecutor tree that has been deployed during compilation, also based on the architectural features on
which STEEL-RT was installed.
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An user-defined relaxation could also be motivated from observations regarding a bad con-
vergence during the automatic optimization loop, which is composed entirely by an automatiz-
able sequence (Expanded execution — Internal profiling — Convergence analysis). In this
sequence, an internal profiling could be generated based on some user-defined optimization ob-
jectives and some metrics of execution quality which could be automatically extracted from ap-
plication monitoring (e.g., time-to-solution, energy efficiency, average parallelism, peak power).
Similarly, optimization convergence is also easily detectable in an automatic way.

One important feature of runtime expanded executions is that they are non-deterministic. In
particular, repeatedly performing expanded executions could be thought as a kind of execution
path sampling: in each repetition the runtime can explore more execution possibilities, so that over
time the system gains knowledge regarding the paths that maximize the optimization requirements
defined by the user. In general, a greater number of relaxations would increase the search space
to be explored during the optimization loop, which could lead to longer automatic optimization
times. Since state spaces and action spaces are totally parametrized by the application and the
underlying platform, the only problem left concerns the design of generalized scheduling agents,
working in a cooperative and hierarchical way, able to dynamically feed from these state spaces to
yield generalized scheduling actions.

Relax Convergence High-performance
Test execution analysis execution

Featurization

loop

Correctness

loop

Expanded Internal

execution profiling

O User action
Application

O Computer output
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Figure 7.2: Diagram of STEEL-PM-based development process. Execution optimization is
achieved by means of incremental featurizations and automatic profiling and execution path ex-
ploration. Correctness loop is also simplified because the STEEL-PM interface favors a sequential
style and encourages pure functions.

7.1.2 Performance portability

To enhance portability of an application for a set of different systems, the user may declare wider /
more relaxed execution opportunities to let the runtime explore a different set of relaxed schedul-
ing configurations. If the executor tree is automatically deployed, it will reflect an architecture
dependent on both the user-defined application relaxations and the parallel architecture charac-
teristics. Hence, at compilation, simpler / complex executor trees will be delivered on simple /
complex parallel platforms.

As mentioned, the user augments the available parallel platforms targetable for a given appli-
cation by providing new ways to map the computational kernels of the application to those targets
(e.g., by architecture-tuned kernel implementations): the more featurized a task into application
kernels, the more portable it will be. In the same line, the more relaxed an application is for a
given platform, more number of execution paths will be accessible to the runtime.
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With regard to previous development diagrams, it could be observed that the optimization loop
of Figure 7.1 achieves optimization by sacrificing portability, as those optimizations are normally
application and platform dependent (see Figure 7.3). Contrary, the featurization loop of Figure 7.2
offers benefits in terms of both portability and programmability, delegating the optimization prob-
lem of efficient execution orchestration to an automatic system (i.e., the runtime) (see Figure 7.4).
This second paradigm may be impractical if the complexity is not sufficient, as applications with
simple parallel patterns running on not too complex parallel platforms may be easily optimizable
by experienced application developers. On the contrary, this approach may start to be beneficial in
parallel scenarios in which the execution orchestration complexity goes beyond the capacity and
available time of experts.
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Figure 7.3: Diagram exposing ad-hoc performance tuning for each application instance / platform
instance.
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Figure 7.4: Diagram exposing STEEL-PM tuning based on general application / platform featur-
izations and automatic performance tuning.
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7.2 Future work

Several features will be included in future STEEL-RT implementations, oriented toward (i) en-
hanced scheduling, (ii) extended portability to other compute backends, (iii) resiliency, (iv) im-
proved maintainability / usability and (v) benchmarking.

7.2.1 Stateful, generalized and multi-objective expanded execution

Current STEEL model and runtime implementation will be extended for multi-objective, model-
free, and stateful generalized scheduling functionalities, aiming at out-of-the-box yet state-of-
the-art performance from a purely STSE approach, limiting the user intervention exclusively
to execution relaxations. Note that current STEEL-RT generalized schedulers are already fully
parametrized, meaning that their state spaces —i.e., input— and action spaces —i.e., output— are
already fully defined at compile-time based on the executor characteristics (and its place in the
hierarchy) and the user-defined relaxations, respectively. What remains to be done is to connect
these inputs and outputs by means of automatically trainable agents from previous execution ex-
periences, which would ideally cooperate and converge to better solutions as they acquire more
knowledge. Regarding Chapter 2, training agents through modeling and simulation will likely
acquire great importance to decrease the cost and / or increase the speed of the training process
(eventually helping to reduce the convergence time of the automatic optimization loop of Fig-
ure 7.2).

7.2.2 Distributed layer and additional communication backends

Current STEEL runtime implements a data coherency layer able to automatically manage data
across three kinds of memory spaces: non-volatile or disk-like memory spaces, multicore RAM
—also NUMA-aware— and device RAM tied to CUDA-capable GPU devices. With regard to intra-
node communication, STEEL runtime will be extended to handle OpenCL-capable devices. Con-
cerning distributed systems, an additional inter-node communication layer will be incorporated
following patterns based on task asynchrony, one-sided communications and PGAS models. Ad-
ditional research will be required to assess the scalability of the STSE model and the potential of
distributed yet expanded executions.

7.2.3 Support for resiliency

Regarding execution resiliency, a kind of task-checking could be viewed as a possible user-defined
execution relaxation, which could provide runtime support for resiliency under the STSE model.
This could be beneficial in situations in which a set of interdependent tasks are run on a set of
interconnected processors that might fail due to soft errors. The open question that could be
addressed under the relaxed execution paradigm could be “How often do we have to verify the
result of a partial computation in a system with non-zero failure probability?”.

If the verification is made occasionally and / or it is rather lightweight (e.g., the correctness
check of a computation is not too expensive and / or it is performed only once for every million
tasks) the runtime would incur in just a little checking overhead and low memory footprint to store
the checked execution states. If soft errors are rare, this situation would be acceptable. However,
in the case of too frequent failures, the runtime would need to discard a lot of invalid results too
frequently before recovering the latest (and probably old) valid execution state.

On the contrary, if the runtime performs a frequent and / or costly checking (e.g., the result
of every task is checked and this verification is relatively expensive), the runtime would incur
into a significant overhead and a lot of memory footprint, which could cause an unacceptable
performance degradation if errors are rare. However, in the case of failure, the amount of corrupted
and useless results that would demand a re-computation would be small, which could be desirable
in situations in which errors are common.
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Thus, in the context of an user-defined relaxed checking and runtime-expanded task verifi-
cation, given (i) a soft error failure probability for all kernel-processor pairs (possibly estimated
or learned from previous experience), (ii) a set of functions known as user-defined task checkers
for each verifiable task kernel (which would be basic predicates that tell if the result of a task
execution is valid or not), and (iii) user-defined-runtime-callable functions to store the result of a
validated computation, the expanded execution runtime schedulers would decide whether to check
a task (hence incur into an additional cost due to checking and saving the result) or not (hence
take the risk of letting future tasks to operate on corrupted results). This automatic runtime deci-
sion could be based on some prior user-defined objective (e.g., time-to-solution, energy efficiency
maximization, or some criteria based on execution robustness-vs-performance tradeoff) and prior
experience gathered by the runtime from similar scenarios.

7.2.4 1ISO C++20 improvements

New ISO C++ language standard incorporates a set of features of great interest for future STEEL-
RT improvements. First, C++20 will enable Coroutines, which provide support for implementing
stackless resumable functions. They will affect both the runtime and the API parts of current
STEEL-PM implementation, as they will serve as the main mechanism for task generation and for
modeling lazy and stream-like computations. Secondly, C++20 Modules will be incorporated to
improve compilation times and to simplify the current build architecture, which mainly relies on
expensive header file inclusions for template instantiations. Finally, C++ Concepts (already used
partially in the interface) will be extensively used to enhance runtime robustness and to simplify
to greater extent the usage of STEEL-APIL.

7.2.5 Raising abstractions

Current STEEL-RT implementation exposes a purely C++ frontend interface, and its header-only
characteristic comes with the price of a quite sophisticated compilation process that could ob-
scure and harm the initial quest for high-level abstractions. Despite the evolution of C++ into a
language focused on high-level yet zero-runtime-cost abstractions, it is commonly classified as a
system-software rather than an application-level language. For this reason, regardless the inter-
facing improvements just exposed in Section 7.2.4, the API proposed in this thesis will be further
lifted toward higher levels of abstractions, so that the future frontend-API layer of STEEL-RT
would fully hide the current compilation and build mechanisms, and the C++-like syntax of kernel
definitions, task featurizations, or executor deployment. This frontend will also provide additional
safety and error-checking layers and clearer report of compilation errors. Specifically, these addi-
tional layers could be implemented in a high-level and interpreted language such as Python; and
education- and research-oriented tools such as JupyterLab [82] could be employed to popularize
the use of the current framework, for example by introducing the concept of execution relaxations
and their effects in an interactive way.

7.2.6 Benchmarking

A set of benchmarks will be implemented in order to assess how STEEL-RT responds to realis-
tic workloads. In particular, highly-coupled | HPC-characteristic workloads will be considered
for study in favor of less challenging and easy parallelizable loosely-coupled / data-centric work-
loads. Despite it was already demonstrated how rich executions are achievable (actually expanded)
by means of user-defined execution relaxations, it remains to be proven whether it is possible to
achieve high-performance in these realistic applications using a programming style purely based
on a STSE-frontend and the declarative patterns presented in this thesis. In addition, the practi-
cality must as well be assessed, i.e.: to what extent the general execution efficiency is achieved and
how much effort —in terms of programming and automatic training— will be required for that.
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Benchmark suites like NAS [14] and more modern Rodinia [33] or PARSEC [21] have been
used to measure parallel performance for well-known computational kernels and applications,
some of which will be considered to evaluate STEEL-RT performance. The goal of these suites is
to provide a wide range of realistic workloads requiring different parallel execution and communi-
cation patterns. Ultimately, benchmark suites motivate parallel computing research regarding both
hardware architectures and parallel programming techniques.

In future benchmarks targeting STEEL-PM, the problem domain will be broadly classified
according to two dimensions: execution predictability and arithmetic intensity. With regard to
the first dimension, applications will be distinguished according to how (i) deterministic / data-
independent or (ii) non-deterministic / data-dependent are their algorithms. Secondly, applications
will be classified according to their arithmetic intensity, which refers to the relation between the
number of processing operations and data movement operations.

Those applications requiring low arithmetic intensity will face more challenges regarding par-
allel scalability, as the saturation of the computing units will be harder to achieve due to com-
munication bottlenecks. Applications exhibiting an algorithmic freedom (see Section 1.3.3.5), for
which a set of implementations with different arithmetic intensity demands may be employed,
will be benchmarked to study the effect of the proposed algorithmic reimplementation runtime
decisions presented in Section 3.1.3.2. Also, algorithms with data-dependent parallel patterns (in
which tasks are generated depending on previous results) will be more challenging in general, and
mechanisms exposed in Section 4.2.2.6 for data-feedback-driven execution will be employed to
assist the runtime.

Numerical linear algebra applications (e.g., dense / sparse and direct / iterative solvers) will
provide an excellent test-bed to explore these two dimensions, together with mixed-precision con-
siderations. Also, several applications from computational physics / engineering / vision and bi-
ology will be implemented to explore the effect of particle-, grid-, stencil- and wave-front-based
algorithms, jointly considered with stream-like, adaptive and hierarchical patterns from a STSE
standpoint.
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Prerequisites of C++

This appendix exposes a minimal subset of C++ on which most of the STEEL-API exposed in
Section 4.2 is based.

A.1 Interfaces

C++ namespaces provide named-encapsulations for types and functions. In particular, the C++
standard library exposes a set of types and functions within the namespace std, and the entire
STEEL-API and STEEL-RT implementation is encapsulated in st ee 1 namespace.

Structures (struct) and classes (class) are also designed to provide encapsulation, not
only to types and functions, but also serving as building blocks for Object-Oriented programming.
Functions defined within the scope of a class or struct are called member functions, and
a static qualifier in the function signature indicates that the function is not tied to any class
object, neither tied to any non-static data member of the class. Structures and classes in which all
functions are stat ic-qualified, can be thought of as interfaces. In particular, if its functions do
not have side effects —i.e. they are free or pure functions—, the interface is considered pure. As it
will be exposed, the STEEL-API relies mainly on these kind of classes.

Structures and classes working as interfaces offer an additional benefit with respect to names-
paces, in the sense that they can be parametrized with types and compile-time values via the
template qualifier.

The parameters (types or values) exposed after the template express a set of instantiation
possibilities for the structure or class definition that comes after it. A template class that is not
instantiated will not generate any run-time code by the compiler: only template instantiations for
specific types and / or values will generate actual run-time code by the compiler.

As STEEL-RT is deeply rooted on functional and generic patterns, STEEL-API requires the
user to provide template and (optionally but recommended) pure interfaces. For this reason,
classes and structures definitions presented in the STEEL-API within the user namespace app
are encouraged to be stateless by design —i.e. they only expose static functions with no side effect,
or at least with nor-observable side effect—.

By not-observable side effect it is meant that if there is any side effect, it cannot be accessible
by any means within the user code (see Section 1.2.1.1). For example, the user might provide a
pure function in which a call to an external third-party runtime library is done. As this internal
library is expected to carry its own internal state, this is hidden and not-observable from the user
side, hence the user function is de facto pure. As mentioned in Section 4.1.2, regardless of its in-
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Listing A.1: Basic example constexpr and interface constrained parametrization.

enum class my_enum : int {foo=13, bar=21}; /% Enumeration definition =/
/+ Compile-time predicate restricting template parameters. =/
template <my_enum EnumValue, typename T>
constexpr bool my_predicate =
EnumValue == my_enum: :bar && std::is_floating_point_v<T>;

/+ Interface parametrization constrained by my_predicate. */
template <my_enum EnumValue, typename T>
requires my_predicate<EnumValue, T>
class interface {

static int rand() { return /+ Random integer =*/; }
public:

static int get_rt(int a) { return a x rand(); }

static constexpr int get_ct (int a) { return a / (int)EnumvValue; }
bi

void main(void) {
/* User sets an integer in command line. =/
int userInteger; std::cin >> userInteger;

/* Forbidden call (compilation error is returned). =*/

int a = interface<my_enum::foo, char>::get_rt (userInteger);

/* Run-time call will successfully compile. =/

int b = interface<my_enum: :bar, double>::get_rt (userInteger);

/* Valid call valuable at compile-time. %/

constexpr int b = interface<my_enum::bar, float>::get_ct (42);
static_assert(b == 2); /* Assertion available at compile time. */

ternal management of state and resources, the use of third-party libraries for computational kernels
is encouraged in STEEL model.

Also, the user might require a call to request a managed memory allocation to STEEL-RT.
The fact that STEEL-RT might recycle a pointer or request an actual memory allocation to the
OS, is also considered invisible from the user side. Contrary, if the user modifies global variables
defined outside the scope of a user-defined kernel, this is discouraged —though allowed, as it is in
C++ language-— as it breaks the functional-based guidelines of STEEL-PM development.

A.2 Template specializations and constraints

Templates are the main mechanism in which powerful generic programming patterns can be ex-
pressed in C++. Apart from structures and classes, types, values and functions can be parametrized
by templates. A template instantiation is done during compilation following certain strongly typed
and functional rules. Moreover, template definitions can be further constrained by the user by
means of C++ Concepts idiom [61], which has been recently approved for standardization in up-
coming ISO C++20 language. With this regard, a requi res preceding a compile-time predicate
can be written after a template parametrization, as exposed in line 9 of Listing A.1. This compile-
time predicate can be based on any predefined constant expression constexpr or any compile-
time predicate depending on the internal properties or a type (line 4). In this case, a constexpr
qualifier is used in lines 4, 14 and 28 for compile-time evaluation.

Regarding Section 4.1.1, in lines 9 and 29 it is exposed two important idiomatic features —
requires and static_assert— that can be employed to ensure correct use of an interface
at compile-time. In particular, in Section 4.2 it is shown that requires qualifier is used to
constraint the execution of a task depending on compile-time information exposed by an executor.
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A.3 Frequently used types

The STEEL-PM application developer will be asked to expose type definitions to be visible to
STEEL-RT. The using qualifier is used to define a type or a template-type, which could be
defined from an external template-type.

Also, strongly-typed enumerations, defined by enum class, are extensively used within
STEEL-RT and STEEL-API for template value specializations.

Specializations of standard template-types such as std: : tuple—to represent a set of hetero-
geneous types—, std: : function-to represent a callable object—, and
std: :integer_sequence—to represent a compile-time sequence of integral values— are also
pervasive in STEEL-RT and STEEL-API. In particular, specializations of integer sequences ac-
quire great importance to define compile-time sets of enumeration values.

A.4 Resource Acquisition Is Initialization

Another feature of great importance in STEEL-API is the use of the Resource Acquisition Is Ini-
tialization (RAII) idiom [ 138, 81]. RAII patterns endow variables with ownership semantics that
allow to deterministically and automatically control their lifetime in a safe way. One of the ar-
eas in which RAII exhibits great importance is in the context of safe, efficient and automatic
management of memory resources. In particular, standard smart pointers std: :unique_ptr,
std::shared ptrand std: :weak_ptr are particular instances in which RAII permits to de-
terministically handle allocated memory without the need of any garbage collection mechanism.
With this regard, RAII is a response to two of the mentioned guidelines: (1) “Don’t pay for what
you don’t use” —e.g., there is no need for garbage collecting if memory can be deterministically
released—, and (2) “Minimize the possibility of resource leaks via ownership semantics”.

Other benefits of RAII are related to safety in concurrent programming. Thanks to RAII
patterns, STEEL-API provides a safe and clear way for the user to protect arbitrary data objects
for concurrent access, while also making STEEL-RT to properly detect data dependencies between
tasks.
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Platforms

This appendix summarizes the main characteristics of the two machines used through the docu-
ment: MACHINE] and MACHINE2.

B.1 MACHINEI]

MACHINE] is a heterogeneous platform equipped with 2x 14 core Intel Haswell CPUs, 2x
NVIDIA Geforce GTX980 GPUs and 1x NVIDIA Geforce GTX950 GPU. Tables B.1 and B.2
report the hardware and software features of the platform, respectively.

Intel Xeon E5-2695 v3  NVIDIA Geforce GTX980 NVIDIA Geforce GTX950

Number of devices 2 2 1
Arch Haswell Maxwell Maxwell
Frequency 2,300 1,126 1,024
Local RAM GB 2 x 32 DDR4 4 GB GDDR5 2 GB GDDR5
Peak GB/sec 119.2 224 106
Core count 14 (per socket) 2048 CUDA cores 768 CUDA cores
System bus QPI
System bus BW GB/sec 9.6
PCle PCle Gen3 x16
PCle bandwidth GB/sec 16

Table B.1: Characteristics of the processing devices in MACHINE].

Dependency Version
OS distribution Debian 4.9
Linux kernel 4.9.0
Build system CMake 3.13
Compiler GNU GCC 8.2
Supported compute backends OpenMP 4.5, CUDA 10.0
Execution tracing Extrae 3.7

Table B.2: Software used in MACHINE?2.
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B.2 MACHINE2

MACHINE? is a heterogeneous platform equipped with 2x 20 core Intel Skylake CPUs and 2x
NVIDIA Volta GPU (experimental results in Section 5.4.2 replaced one of the Volta GPUs by a
GeForce 1080). Tables B.3 and B.4 report the hardware and software features of the platform,

respectively.

Intel Xeon Gold 6138 NVIDIA V100

Number of devices 2 2
Arch Skylake Volta
Frequency 2,000 1,455
Local RAM GB 2 x 48 DDR4 32 HBM
Peak GB/sec 119.2 900
Core count 20 (per socket) 5120 CUDA cores
System bus QPI
System bus BW GB/sec 19.2
PCle PClIe Gen3 x16
PCle bandwidth GB/sec 16
Non-volatile storage (Fast) Samsung 970 EVO NVMe
Capacity 900 GB
Non-volatile storage (Slow) INTEL SSDSC2KB240G7
Capacity 240 GB

Table B.3: Characteristics of the processing devices in MACHINE?2.

Dependency Version
OS distribution Debian 4.9
Linux kernel 4.9.0
Build system CMake 3.13
Compiler GNU GCC 8.2
Supported compute backends OpenMP 4.5, CUDA 10.0
Execution tracing Extrae 3.7

Table B.4: Software used in MACHINE?2.
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