30 research outputs found

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Breakout group allocation schedules and the social golfer problem with adjacent group sizes

    Get PDF
    The current pandemic has led schools and universities to turn to online meeting software solutions such as Zoom and Microsoft Teams. The teaching experience can be enhanced via the use of breakout rooms for small group interaction. Over the course of a class (or over several classes), the class will be allocated to breakout groups multiple times over several rounds. It is desirable to mix the groups as much as possible, the ideal being that no two students appear in the same group in more than one round. In this paper, we discuss how the problem of scheduling balanced allocations of students to sequential breakout rooms directly corresponds to a novel variation of a well-known problem in combinatorics (the social golfer problem), which we call the social golfer problem with adjacent group sizes. We explain how solutions to this problem can be obtained using constructions from combinatorial design theory and how they can be used to obtain good, balanced breakout room allocation schedules. We present our solutions for up to 50 students and introduce an online resource that educators can access to immediately generate suitable allocation schedules

    Confidence-based Reasoning in Stochastic Constraint Programming

    Get PDF
    In this work we introduce a novel approach, based on sampling, for finding assignments that are likely to be solutions to stochastic constraint satisfaction problems and constraint optimisation problems. Our approach reduces the size of the original problem being analysed; by solving this reduced problem, with a given confidence probability, we obtain assignments that satisfy the chance constraints in the original model within prescribed error tolerance thresholds. To achieve this, we blend concepts from stochastic constraint programming and statistics. We discuss both exact and approximate variants of our method. The framework we introduce can be immediately employed in concert with existing approaches for solving stochastic constraint programs. A thorough computational study on a number of stochastic combinatorial optimisation problems demonstrates the effectiveness of our approach.Comment: 53 pages, working draf

    Scheduling reach mahjong tournaments using pseudoboolean constraints

    Get PDF
    Reach mahjong is a gambling game for 4 players, most popular in Japan, but played internationally, including in amateur tournaments across Europe. We report on our experience of generating tournament schedules for tournaments hosted in the United Kingdom using pseudoboolean solvers. The problem is essentially an extension of the well-studied Social Golfer Problem (SGP) in operations research. However, in our setting, there are further constraints, such as the positions of players within a group, and the structure of the tournament graph, which are ignored in the usual formulation of the SGP. We tackle the problem primarily using the SAT/pseudoboolean solver clasp, but sometimes augmented with an existing local search-based solver for the SGP

    Applications of matching theory in constraint programming

    Get PDF
    [no abstract

    Combinatorial optimisation for sustainable cloud computing

    Get PDF
    Enabled by both software and hardware advances, cloud computing has emerged as an efficient way to leverage economies of scale for building large computational infrastructures over a global network. While the cost of computation has dropped significantly for end users, the infrastructure supporting cloud computing systems has considerable economic and ecological costs. A key challenge for sustainable cloud computing systems in the near future is to maintain control over these costs. Amid the complexity of cloud computing systems, a cost analysis reveals a complex relationship between the infrastructure supporting actual computation on a physical level and how these physical assets are utilised. The central question tackled in this dissertation is how to best utilise these assets through efficient workload management policies. In recent years, workload consolidation has emerged as an effective approach to increase the efficiency of cloud systems. We propose to address aspects of this challenge by leveraging techniques from the realm of mathematical modeling and combinatorial optimisation. We introduce a novel combinatorial optimisation problem suitable for modeling core consolidation problems arising in workload management in data centres. This problem extends on the well-known bin packing problem. We develop competing models and optimisation techniques to solve this offline packing problem with state-of-the-art solvers. We then cast this newly defined combinatorial optimisation problem in an semi-online setting for which we propose an efficient assignment policy that is able to produce solutions for the semi-online problem in a competitive computational time. Stochastic aspects, which are often faced by cloud providers, are introduced in a richer model. We then show how predictive methods can help decision makers dealing with uncertainty in such dynamic and heterogeneous systems. We explore a similar but relaxed problem falling within the scope of proactive consolidation. This is a relaxed consolidation problem in which one decides which, when and where workload should be migrated to retain minimum energy cost. Finally, we discuss ongoing efforts to model and characterise the combinatorial hardness of bin packing instances, which in turn will be useful to study the various packing problems found in cloud computing environments

    Identifying sources of global contention in constraint satisfaction search

    Get PDF
    Much work has been done on learning from failure in search to boost solving of combinatorial problems, such as clause-learning and clause-weighting in boolean satisfiability (SAT), nogood and explanation-based learning, and constraint weighting in constraint satisfaction problems (CSPs). Many of the top solvers in SAT use clause learning to good effect. A similar approach (nogood learning) has not had as large an impact in CSPs. Constraint weighting is a less fine-grained approach where the information learnt gives an approximation as to which variables may be the sources of greatest contention. In this work we present two methods for learning from search using restarts, in order to identify these critical variables prior to solving. Both methods are based on the conflict-directed heuristic (weighted-degree heuristic) introduced by Boussemart et al. and are aimed at producing a better-informed version of the heuristic by gathering information through restarting and probing of the search space prior to solving, while minimizing the overhead of these restarts. We further examine the impact of different sampling strategies and different measurements of contention, and assess different restarting strategies for the heuristic. Finally, two applications for constraint weighting are considered in detail: dynamic constraint satisfaction problems and unary resource scheduling problems

    Proceedings of CSCLP 2007: Annual ERCIM Workshop on Constraint Solving and Constraint Logic Programming

    Get PDF
    Ce fichier regroupe en un seul document l'ensemble des articles acceptés pour la conférence CSCLP 2007Constraints are a natural way to represent knowledge, and constraint programming is a declarative programming paradigm that has been successfully used to express and solve many practical combinatorial optimization problems. Examples of application domains are scheduling, production planning, resource allocation, communication networks, robotics, and bioinformatics. These proceedings contain the research papers presented at the 12th International Workshop on Constraint Solving and Constraint Logic Programming (CSCLP'07), held on June 7th and 8th 2007, at INRIA Rocquencourt, France. This workshop, open to all, is organized as the twelfth meeting of the working group on Constraints of the European Research Consortium for Informatics and Mathematics (ERCIM). It continues a series of workshops organized since the creation of the working group in 1997, that have led since 2002 to the publication of a series of books entitled ”Recent Advances in Constraints” in the Lecture Notes in Artificial Intelligence, edited by Springer-Verlag. In addition to the contributed papers collected in this volume, two invited talks were given at CSCLP'07, one by Gilles Pesant, Ecole Polytechnique de Montreal, Canada, and one by Jean-Charles R égin, ILOG, France. The editors would like to take the opportunity to thank all the authors who submitted a paper, as well as the reviewers for their helpful work. CSCLP'07 has been made possible thanks to the support of the European Research Consortium for Informatics and Mathematics (ERCIM), the Institut National de la Recherche en Informatique et Automatique (INRIA) and the Association for Constraint programming (ACP)

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    corecore