
Title Identifying sources of global contention in constraint satisfaction search

Author(s) Grimes, Diarmuid

Publication date 2012-07

Original citation Grimes, D., 2012. Identifying sources of global contention in constraint
satisfaction search. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2012, Diarmuid Grimes
http://creativecommons.org/licenses/by-nc-nd/3.0/

Item downloaded
from

http://hdl.handle.net/10468/646

Downloaded on 2017-02-12T06:50:59Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/646


Identifying Sources of Global
Contention in Constraint Satisfaction

Search

Diarmuid Grimes

A Thesis Submitted to the National University of Ireland

in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy.

July, 2012

Research Supervisor: Dr. Richard J. Wallace
Research Supervisor: Prof. Eugene C. Freuder
Head of Department: Prof. James Bowen

Department of Computer Science,
National University of Ireland, Cork.





Contents

Abstract xv

Declaration xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11
2.1 Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . 11

2.1.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . 13

2.2 Search and Inference . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Variable and Value Ordering Heuristics . . . . . . . . . . . . . . 21

2.4 Restarting and Randomness . . . . . . . . . . . . . . . . . . . . . 24

2.5 Learning From Failure . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Constraint weighting methods . . . . . . . . . . . . . . . 28

2.6 Weighted Degree Heuristics . . . . . . . . . . . . . . . . . . . . 30

2.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . 32

2.7.2 Distribution Analysis and Correlations . . . . . . . . . . . 34

i



ii CONTENTS

3 Probing for Failure 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Initial Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Problems with embedded insoluble cores . . . . . . . . . 50

3.4.2 Analysis of various restart-cutoff combinations for RNDI
and WTDI . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Random Problems . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Structured Problems . . . . . . . . . . . . . . . . . . . . 70

3.5 Analysis of Weight Changes Produced by Each Strategy . . . . . 75

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.1 Variable Convection . . . . . . . . . . . . . . . . . . . . 84

3.6.2 Blame Assignment . . . . . . . . . . . . . . . . . . . . . 86

3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Exploration of alternative constraint weighting techniques 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Sampling Different Forms of Contention . . . . . . . . . . . . . . 91

4.2.1 Alternative Forms of Contention Experiments . . . . . . . 93

4.2.2 Analysis of Weight Distributions Produced by Unbiased
Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Sampling Based on Different Search Procedures . . . . . . . . . . 102

4.3.1 Analysis of Weight Profiles Produced by Different Sam-
pling Strategies . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Importance of Initial Choices . . . . . . . . . . . . . . . . . . . . 112

4.5 Further Analysis of the Nature of Unbiased Sampling . . . . . . . 115

4.5.1 Local Versus Global Contention . . . . . . . . . . . . . . 115

4.5.2 Search after Random Probing: Policy Measures and Heuris-
tic Actions . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 123



CONTENTS iii

5 Solving Dynamic CSPs Through Failure Reuse 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 Previous Techniques . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 Impact of small changes at the phase transition . . . . . . . . . . 132
5.6 New approach - Contention Reuse . . . . . . . . . . . . . . . . . 138

5.6.1 Stability of points of contention . . . . . . . . . . . . . . 138
5.6.2 DCSP search with weighted degree heuristics . . . . . . . 140
5.6.3 Insoluble Problems . . . . . . . . . . . . . . . . . . . . . 143
5.6.4 Probing with successive changes . . . . . . . . . . . . . . 145
5.6.5 Alterations Affecting the Solubility of a Problem . . . . . 147

5.7 Solution Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.7.1 Performance of an Algorithm Based on Solution Reuse:

Local Changes . . . . . . . . . . . . . . . . . . . . . . . 152
5.7.2 Nearest Solution Analysis . . . . . . . . . . . . . . . . . 154
5.7.3 Solution guidance for failure reuse . . . . . . . . . . . . . 158

5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Alternative restarting strategies 163
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Solver Description and Techniques Tested . . . . . . . . . . . . . 164

6.2.1 Restarting Parameters for weighted degree approaches . . 166
6.2.2 Randomized non-adaptive heuristic . . . . . . . . . . . . 167
6.2.3 Impact-Based Search . . . . . . . . . . . . . . . . . . . . 168

6.3 Full Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.1 Problem Sets . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 169
6.3.3 Experimental Results for Weighted Degree Approaches . . 170
6.3.4 Comparison with Impact-Based Search . . . . . . . . . . 177

6.4 Case Study I: Open Shop Scheduling Problems . . . . . . . . . . 180
6.4.1 Analysis of weight profiles . . . . . . . . . . . . . . . . . 186

6.5 Case Study II: Radio Link Frequency Assignment Problems . . . 191



iv CONTENTS

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7 A Generic Approach for Disjunctive Scheduling Problems 197
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2.1 Traditional CP approach (“Heavy Model”) . . . . . . . . 202
7.3 Light Weighted Model (LW) . . . . . . . . . . . . . . . . . . . . 206

7.3.1 Variable Ordering . . . . . . . . . . . . . . . . . . . . . . 207
7.3.2 Value Ordering . . . . . . . . . . . . . . . . . . . . . . . 208
7.3.3 Additional Features . . . . . . . . . . . . . . . . . . . . . 209
7.3.4 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . 210

7.4 Open Shop Scheduling . . . . . . . . . . . . . . . . . . . . . . . 212
7.4.1 Problem Description . . . . . . . . . . . . . . . . . . . . 212
7.4.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . 213
7.4.3 Implementation of our model . . . . . . . . . . . . . . . . 214
7.4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . 214

7.5 Job Shop Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 220
7.5.1 Problem Description . . . . . . . . . . . . . . . . . . . . 220
7.5.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . 222
7.5.3 Implementation of our model . . . . . . . . . . . . . . . . 223
7.5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . 223

7.6 Job Shop Scheduling with Sequence Dependent Setup Times . . . 225
7.6.1 Problem Description . . . . . . . . . . . . . . . . . . . . 225
7.6.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . 227
7.6.3 Implementation of our model . . . . . . . . . . . . . . . . 227
7.6.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . 228

7.7 Job Shop Scheduling with Maximal Time Lags . . . . . . . . . . 231
7.7.1 Problem Description . . . . . . . . . . . . . . . . . . . . 231
7.7.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . 232
7.7.3 Implementation of our model . . . . . . . . . . . . . . . . 233
7.7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . 233

7.8 No-Wait Job Shop Scheduling . . . . . . . . . . . . . . . . . . . 240
7.8.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . 240



CONTENTS v

7.8.2 Implementation of our model . . . . . . . . . . . . . . . . 242
7.8.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . 243

7.9 Job Shop Scheduling with Earliness/Tardiness Objective . . . . . 249
7.9.1 Problem Description . . . . . . . . . . . . . . . . . . . . 249
7.9.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . 250
7.9.3 Implementation of our model . . . . . . . . . . . . . . . . 253
7.9.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . 253

7.10 Analysis of different factors in model . . . . . . . . . . . . . . . 258
7.10.1 Experimental Setup and Benchmarks . . . . . . . . . . . 259

7.11 Weight analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.11.1 Weight profiles for OSPs . . . . . . . . . . . . . . . . . . 263
7.11.2 Weight profiles for the JSP and its variants . . . . . . . . 266

7.12 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 268

8 Conclusion and Future Work 271
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

8.1.1 Boosting the weighted degree heuristic through informa-
tion gathering . . . . . . . . . . . . . . . . . . . . . . . . 272

8.1.2 Blame assignment issue for constraint weighting . . . . . 273
8.1.3 Alternative preprocessing techniques . . . . . . . . . . . 273
8.1.4 Dynamic CSPs at the phase transition: impact of small

changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
8.1.5 Analysis of various restarting strategies in combination

with conflict-directed heuristics . . . . . . . . . . . . . . 274
8.1.6 Complementary performance between weighted degree and

impact-based search . . . . . . . . . . . . . . . . . . . . 275
8.1.7 Ability of constraint weighting to identify the critical vari-

ables in unary resource scheduling problems . . . . . . . 275
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Bibliography 279

A Full Experimental Analysis of Restarting Strategies: Benchmarks 305



vi CONTENTS



List of Figures

1.1 Sample CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Impact of Variable Ordering . . . . . . . . . . . . . . . . . . . . 3

2.1 Sample Sudoku Puzzle. . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Gini coefficient example: distribution of income. . . . . . . . . . 35

3.1 Standard deviation of RNDI experiments with different seeds. . . 64
3.2 Solution to a sample 4x4 OSP. . . . . . . . . . . . . . . . . . . . 71
3.3 Weight profiles: qk-15-5-add . . . . . . . . . . . . . . . . . . . . 74
3.4 Weight profiles: ehi-85 and composed instance sample . . . . . . 76
3.5 Average fail depth for RNDI and WTDI . . . . . . . . . . . . . . 77
3.6 Weight profiles: sample random binary instance . . . . . . . . . . 78
3.7 Gini coefficients for weight distribution . . . . . . . . . . . . . . 78
3.8 Top-down correlations for weighted-degree rankings across restarts 80
3.9 Top-down correlation statistics for RNDI . . . . . . . . . . . . . . 80
3.10 Top-down correlations for RNDI, short versus long runs . . . . . . 81
3.11 Weight profiles: sample open shop scheduling instance . . . . . . 82
3.12 Variable convection: WTDI example . . . . . . . . . . . . . . . . 85

4.1 Alternative forms of contention: Gini coefficients . . . . . . . . . 101
4.2 Alternative forms of contention: Ratio of discrimination . . . . . 102
4.3 Sampling strategies, weight profiles: random binary instance . . . 108
4.4 Sampling strategies, weight profiles: insoluble OSP instance . . . 108
4.5 Sampling strategies, weight profiles: soluble OSP instance . . . . 109
4.6 Sampling strategies, weight profile: queens-knights instance . . . 111
4.7 Importance of initial choices: random binary instance . . . . . . . 113

vii



viii LIST OF FIGURES

4.8 Importance of initial choices: OSP instances . . . . . . . . . . . . 114

5.1 Impact of small changes on search effort . . . . . . . . . . . . . . 134
5.2 Impact of small changes on stability of major points of contention 139
5.3 Stability of major points of contention across successive changes . 145
5.4 Contention reuse: 5ad condition . . . . . . . . . . . . . . . . . . 146
5.5 Contention reuse: 5r condition . . . . . . . . . . . . . . . . . . . 147
5.6 Contention reuse: changes affecting solubility. . . . . . . . . . . . 148
5.7 Nearest solution analysis: DCSPs of varying tightness . . . . . . . 156
5.8 Nearest solution analysis: 5ad condition . . . . . . . . . . . . . . 157
5.9 Nearest solution analysis: Extreme cases . . . . . . . . . . . . . . 158
5.10 Nearest solution analysis: Contention and solution reuse approach 159
5.11 Search performance for nearest solution extreme cases . . . . . . 160

6.1 Sample predicate tree. . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 Results summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3 Best / uniquely best per problem set . . . . . . . . . . . . . . . . 172
6.4 Number of instances solved with different parameter settings. . . . 173
6.5 Boxplot comparison of WTDI and Geowtd . . . . . . . . . . . . . 174
6.6 Weight increase per variable with RNDI/WTDI on sample Bibd. . 176
6.7 Scatter plot of runtimes for Geoimpact versus Geowtd. . . . . . . 179
6.8 Number of unsatisfiable instances solved using two different models.186
6.9 Weight increase on sample OSP instance for different models . . . 187
6.10 Evolution of weights on task variables . . . . . . . . . . . . . . . 189
6.11 Number of constraints weighted in insoluble OSP instance . . . . 190
6.12 Individual results for RLFAP modified Scen11 Instances. . . . . . 193
6.13 RNDI weight spread for over-constrained RLFAP instances . . . . 194

7.1 Disjunctive Graph for sample 3⇥3 JSP. . . . . . . . . . . . . . . 202
7.2 Optimal solution to sample 3⇥3 OSP. . . . . . . . . . . . . . . . 213
7.3 Average runtimes on Taillard instances. . . . . . . . . . . . . . . 216
7.4 Average runtimes on Gueret-Prins instances. . . . . . . . . . . . . 217
7.5 Average runtimes on Brucker instances. . . . . . . . . . . . . . . 218
7.6 Light vs heavy Choco models for OSP: search effort . . . . . . . 218



LIST OF FIGURES ix

7.7 Optimal solution to sample 3⇥3 JSP. . . . . . . . . . . . . . . . . 221
7.8 Optimal solution to sample 3⇥3 SDST-JSP . . . . . . . . . . . . 226
7.9 Optimal solution to sample 3⇥3 TL-JSP. . . . . . . . . . . . . . . 232
7.10 Comparison with Artigues method on TL-JSPs . . . . . . . . . . 237
7.11 Performance analysis of LW-JTL . . . . . . . . . . . . . . . . . . 238
7.12 Optimal solution to sample 3⇥3 NW-JSP. . . . . . . . . . . . . . 241
7.13 Optimal solution to sample 3⇥3 ET-JSP. . . . . . . . . . . . . . . 251
7.14 Boxplot representation of Gini coefficients for sample OSPs . . . 264
7.15 Evolution of weights across restarts for sample OSPs . . . . . . . 265
7.16 Task weight versus Boolean weight for sample JSP variants . . . . 267



x LIST OF FIGURES



List of Tables

2.1 Two-way fixed-effects ANOVA summary . . . . . . . . . . . . . 34

3.1 Results For Instances of the Queens-Knights Problem . . . . . . 53

3.2 Results For Unsatisfiable Embedded Problems . . . . . . . . . . 55

3.3 WTDI: Analysis of restart and cutoff factors. . . . . . . . . . . . 58

3.4 WTDI: Analysis of restart and cutoff factors, final run. . . . . . . 59

3.5 WTDI: Analysis of restart and cutoff factors, only instances solved
on run to completion, final run. . . . . . . . . . . . . . . . . . . . 60

3.6 RNDI: Analysis of restart and cutoff factors. . . . . . . . . . . . 61

3.7 RNDI: Analysis of restart and cutoff factors, final run. . . . . . . . 63

3.8 Analysis of Variance for RNDI, Solution Run . . . . . . . . . . . 64

3.9 Results For Random Binary and k-Coloring Problems . . . . . . 66

3.10 Results For 50 Variable 6-Coloring Problem Set . . . . . . . . . 67

3.11 Results For Random Binary and k-Coloring Problems, Frozen
Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.12 RNDI Comparison of (Small R, Large C) with (Large R, Small
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.13 Results For Open Shop Scheduling Problems . . . . . . . . . . . 73

4.1 Search Efficiency with Different Sampling Strategies:
Random Binary Problems . . . . . . . . . . . . . . . . . . . . . 94

4.2 Alternative Measurements of Contention: dom/wdeg-nores. Open
Shop Scheduling Problems, # Solved. . . . . . . . . . . . . . . . 95

4.3 Alternative Measurements of Contention: dom/wdeg-nores. Open
Shop Scheduling Problem, Average Nodes. . . . . . . . . . . . . 96

xi



xii LIST OF TABLES

4.4 Alternative Measurements of Contention: RNDI. Open Shop Schedul-
ing Problems, # Solved. . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Alternative Measurements of Contention: RNDI. Open Shop Schedul-
ing Problems, Average Nodes. . . . . . . . . . . . . . . . . . . . 97

4.6 Alternative Measurements of Contention: WTDI. Open Shop Schedul-
ing Problems, # Solved. . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Alternative Measurements of Contention: WTDI. Open Shop Schedul-
ing Problems, Average Nodes. . . . . . . . . . . . . . . . . . . . 99

4.8 Top-down correlation coefficients for different weighting methods
across ten runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Search Efficiency with Information Gathered
under Different Search Procedures . . . . . . . . . . . . . . . . . 104

4.10 Average Nodes. Open Shop Scheduling Problems . . . . . . . . . 105

4.11 Top-down correlation coefficients for different sampling methods
across ten runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.12 Analysis of level of discrimination between successively ranked
variables on sample of soluble and insoluble scheduling problems. 110

4.13 Adherence to Policy Assessments . . . . . . . . . . . . . . . . . 117

4.14 Refutations per Depth in Search . . . . . . . . . . . . . . . . . . 118

4.15 Factor Analysis of Heuristic Search Performance . . . . . . . . . 120

5.1 Impact of Small Changes on Search Performance: Random Bi-
nary Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Impact of Small Changes on Search Performance: Scheduling
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Search Performance Correlations for Different Forms of Alterations136

5.4 Solution Counts for Sample Instances . . . . . . . . . . . . . . . 137

5.5 Correlations of Heuristic Measurements . . . . . . . . . . . . . . 137

5.6 Search Performance of Weighted Degree Approaches . . . . . . . 141

5.7 Search Effort Correlations for Weighted Degree Approaches . . . 142

5.8 Search Performance Correlations: Soluble versus Insoluble Ran-
dom Binary DCSPs . . . . . . . . . . . . . . . . . . . . . . . . . 143



LIST OF TABLES xiii

5.9 Search Performance Correlations: Soluble versus Insoluble Schedul-
ing DCSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.10 Search Performance for Random Problems where Alterations Changed
the Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.11 Search Performance for Scheduling Problems where Alterations
Changed the Solubility . . . . . . . . . . . . . . . . . . . . . . . 149

5.12 Search Performance on Scheduling Instances . . . . . . . . . . . 150
5.13 Solution Reuse Search Performance: Random DCSPs . . . . . . 153
5.14 Solution Reuse Search Performance: Scheduling DCSPs . . . . . 154
5.15 Solution Stability Comparison . . . . . . . . . . . . . . . . . . . 161

6.1 Full Results By Runtime . . . . . . . . . . . . . . . . . . . . . . 171
6.2 Full Results By Problem Type . . . . . . . . . . . . . . . . . . . 175
6.3 Number of Instances Solved: Impact-Based Search Comparison . 178
6.4 Taillard Open Shop Scheduling Problems (Aux-Task model) . . . 182
6.5 Gueret-Prins Open Shop Scheduling Problems (Aux-Task model) 183
6.6 Results For Open Shop Scheduling Problems (Task-Only model) . 185
6.7 Results For RLFAP Modified Scen11 Problems . . . . . . . . . . 192

7.1 Table of Notation. . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.2 Sample 3⇥3 Job Shop Instance. . . . . . . . . . . . . . . . . . . 202
7.3 Results (Time) For Hard Open Shop Scheduling Problems . . . . 219
7.4 APRDs on JSPs: LW-JSP versus SGMPCS . . . . . . . . . . . . 224
7.5 SDST-JSP: Comparison with state-of-the-art exact methods. . . . 229
7.6 SDST-JSP: Comparison with state-of-the-art incomplete techniques.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.7 Sample 3⇥3 Job Shop Instance with maximum time lag constraints.232
7.8 TL-JSP. APRD comparison with AHL11 and CLT08 on easy flow/job

shop with time lag instances. . . . . . . . . . . . . . . . . . . . . 234
7.9 TL-JSP. PRD comparison with CLT and AHL on hard job shop

with time lag instances. . . . . . . . . . . . . . . . . . . . . . . 236
7.10 TL-JSP, optimality and failure to improve on initial upper bound. 237
7.11 LW-JTL: Initialization of upper bound with greedy job insertion

heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240



xiv LIST OF TABLES

7.12 NW-JSP: Comparison of NW-JSP and TL-JSP models. . . . . . . 244
7.13 NW-JSP: Runtime comparison with vdB09 for proofs of optimal-

ity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.14 NW-JSP: APRD comparison with state of the art on “easy” in-

stances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7.15 NW-JSP: comparison with state of the art on “hard” instances. . . 248
7.16 NW-JSP: comparison with new model. . . . . . . . . . . . . . . 248
7.17 Sample 3⇥3 Job Shop Instance with due dates and earliness/tardiness

penalties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.18 ET-JSP - Random Problems, Number Proven Optimal . . . . . . 255
7.19 ET-JSP - Random Problems, Upper Bound Sum . . . . . . . . . 256
7.20 ET-JSP - GA Problems, Normalized upper bounds . . . . . . . . 257
7.21 Analysis of algorithm components - OSP, JSP, SDST-JSP, ET-JSP 260
7.22 Analysis of algorithm components - Time lag JSPs . . . . . . . . 262



Abstract

Much work has been done on learning from failure in search to boost solving of
combinatorial problems, such as clause-learning and clause-weighting in boolean
satisfiability (SAT), nogood and explanation-based learning, and constraint weight-
ing in constraint satisfaction problems (CSPs). Many of the top solvers in SAT use
clause learning to good effect. A similar approach (nogood learning) has not had
as large an impact in CSPs. Constraint weighting is a less fine-grained approach
where the information learnt gives an approximation as to which variables may be
the sources of greatest contention.

In this work we present two methods for learning from search using restarts,
in order to identify these critical variables prior to solving. Both methods are
based on the conflict-directed heuristic (weighted-degree heuristic) introduced by
Boussemart et al. and are aimed at producing a better-informed version of the
heuristic by gathering information through restarting and probing of the search
space prior to solving, while minimizing the overhead of these restarts.

We further examine the impact of different sampling strategies and differ-
ent measurements of contention, and assess different restarting strategies for the
heuristic. Finally, two applications for constraint weighting are considered in
detail: dynamic constraint satisfaction problems and unary resource scheduling
problems.
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Chapter 1

Introduction

The central thesis defended in this dissertation is that:

Most constraint satisfaction problems contain globally difficult elements which
can be identified through repeated involvement in failures during search. These el-
ements can then be used to both solve problems efficiently and provide valuable
feedback to the user.

In this chapter we firstly provide some background and motivation before in-
troducing the research presented in this dissertation. We then outline the main
contributions of the dissertation.

1.1 Background

For many real-world problems, the number of potential solutions is too large for
the problem to be solved by brute-force search. An example of such a problem
would be creating a timetable for a university. This involves scheduling a room
and a lecturer for each course lecture over all courses. This is subject to constraints
such as the capacity of the room must be greater than or equal to the number
of students in the lecture, a room/lecturer cannot be assigned to two lectures at
the one time, etc. Obviously, each lecture can start at any time and take place in
any room of capacity greater than the number of students in the lecture, thus the
number of potential solutions can be enormous.

1
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w
 {1,2,3}

x
 {1,2,3}

Cwx: !={(2 3)}

y
 {1,2,3}

Cwy: !={(1 1)}

z
 {1,2,3}

Cwz: !={(1 3)}Cxy: !={(3 1)}

Cxz: !={(2 1)}

Cyz: =={(1 1) (2 3)}

Figure 1.1: Sample CSP with extensional constraints:“==” for allowed tuples,
“!=” for disallowed tuples

One method which has been used quite successfully to handle such problems
is to model them as a constraint satisfaction problem (CSP) and use constraint
programming techniques to solve them. A CSP consists of a set of variables V =

{V1, . . . , Vn}, having domains {D1, . . . , Dn} containing the set of possible values
that the variable may take in a solution; and a set of constraints C = {C1, . . . , Cm}
over the variables defining what combinations of variable-value pairs are allowed.
The search space is then defined by the combinations of all variables and values.
A solution to the problem is a set of assignments {V1 = a1, . . . , Vn = an} where
ai 2 Di and such that all constraints are satisfied.

One commonly used approach for solving CSPs is to use depth-first search,
where the order in which the tree is explored is decided by search heuristics. A
heuristic is a method for selecting the “best” option, where the best is defined in
terms of some associated metric. Heuristics are used throughout constraint satis-
faction, be it in choosing the next variable to assign, choosing a value to assign to
the current variable, choosing which constraints to check for consistency, etc. The
choice of heuristic can have a huge impact on the search effort required to solve a
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problem. Most variable ordering heuristics aim to minimize the (probable) search
space below the choice point, i.e. they try to simplify the underlying problem.
These heuristics follow the Fail-First principle of Haralick and Eliot [97] which
states that “to succeed, first try where you are most likely to fail”. The variable
which most constrains the underlying search space is expected to work best in
general.

We illustrate the impact different variable orderings can have on search with
a toy problem, depicted in Figure 1.1, consisting of four variables w, x, y, z, each
with initial domain size 3. The constraints define what pairs of values are allowed
(e.g. “== {(1 1)}”), or not allowed (e.g. “!= {(2 3)}”). For example the constraint
between w and x states that all variable-value pairs are allowed except (w =

2, x = 3), while the constraint between y and z states that the only variable-
value pairs allowed are (y = 1, z = 1) or (y = 2, z = 3). Figure 1.2 shows
the search trees explored with chronological backtracking and depth first search
for two different variable orderings: w, x, y, z and z, y, w, x. The latter ordering
results in exploration of a much smaller search tree to find a solution.

w

x

y

z

ROOT

1

1

1 2

1 2 3

3

1 2 3

2

1 2

1 2 3

3

1 2 3

3

1 2

1 2 3

3

1 2 3

2

1

1

1
(a) w, x, y, z

z

y

w

x

ROOT

1

1

1 2

1
(b) z, y, w, x

Figure 1.2: Impact of variable ordering. Depth-first search trees, chronological
backtracking. Nodes in red are failed nodes, nodes in green are solution nodes.
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1.2 Motivation

This work addresses two difficulties when using constraint programming to solve
a problem. The first is that the user is often not an expert in the field, thus imple-
menting a domain-specific heuristic for their problem may be beyond their capa-
bilities. By creating an efficient generic heuristic, which is problem independent,
we can remove some of the burden from the user.

The second bottleneck is with regard to search itself, in particular the impact of
“thrashing” on the amount of search effort required to solve a problem. Thrashing
refers to redundant search, where we repeatedly search over variables which are
independent of the cause of failure. In the toy problem introduced earlier, there
is no solution involving w = 1 due to conflicts with y and z. However, using
the ordering w, x, y, z, in Figure 1.2(a), we repeatedly search over the variable
x which is independent of the conflict. This increases the size of the refutation
(i.e. the subtree searched) required to prove that the assignment (w = 1) does not
occur in any solution to the problem. Now suppose instead of variable x, there are
k variables of domain size 3 which are independent of the conflict between w = 1

and y and z. Then, searching over these variables before y and z would result in a
refutation of size 3

(k+2), compared to the minimal refutation of size 9.

If the key variables can be identified and moved to the top of the search tree,
this should reduce the amount of thrashing encountered, leading to a faster, more
efficient method for solving the problem. Indeed, it has been shown that many
real-world instances contain small sets of variables (known as backdoors) whose
assignment results in a simplified problem which can be solved in polynomial
time [227]. These variables are said to capture some hidden structure within the
problem.

One method to improve search performance is to incorporate some form of
learning, e.g. learn from the failures encountered during search. In the problem
solving domain, learning from failure often involves avoiding certain areas of
search when a condition is triggered recognizing the current state as a bad state
from previous experience in solving. However, for constraint satisfaction prob-
lems, it can be somewhat different in that, rather than avoid an area of search
which was a source of contention in past experience, often we would like to tackle
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this area of contention as early as possible (Fail-First principle), with the hope that
we can either prove the problem insoluble quickly or we can minimize the search
space beneath the current choice point.

In this work, we combine two topics which have been the focus of much recent
research in the area of CSP solving, both of which address the issue of thrashing.
The first topic concerns search heuristics which use information from previous
search states to guide subsequent search, e.g. the impact-based heuristics of Re-
falo [169] and the conflict-directed heuristics of Boussemart et al. [29]. We con-
centrate on the latter heuristic, which focuses search on areas of contention by
weighting constraints that cause failure during constraint propagation, and choos-
ing the variable with the largest sum of its constraints’ weights.

Since these weights represent a likelihood of failure, choosing the variable
with largest weight-sum is clearly following the Fail-First principle. Handling
these contentious variables higher in the search tree increases the likelihood of
detecting failures early in the subsequent search. In extreme cases the heuristic
can identify insoluble cores in problems [105][91]. It has been shown to be one of
the most effective general purpose heuristics [29].

The second topic of research concerns the use of restarting strategies combined
with an element of randomization for problem solving. Such techniques generally
randomize the search heuristics through random tie-breaking, e.g. rapid random-
ized restarts (RRR) of Gomes et al. [82]. In this case one maintains a degree of
confidence in the selections made while still allowing for search diversification.
Randomized restarting has been shown to be especially effective at dealing with
problems which display a heavy-tailed runtime distribution [82]. However these
methods do not learn from their failed search attempts. Furthermore, there is an
implicit assumption that the heuristic being randomized is a good heuristic for the
problem. If this is not the case, then randomly selecting from its top choices will
not improve performance.

More recently, restarting approaches have been proposed which combine some
form of learning with solving. For example, the SAT solver Chaff [155] combines
restarting with clause weighting and clause learning. A similar approach has been
proposed for combining nogood recording and conflict-directed heuristics with
restarts in the CSP domain [135]. Refalo also proposed combining restarting with
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the impact-based heuristics [169]. Gomes refers to these types of approach as
”deterministic randomization” [80] where the behaviour of search, although de-
terministic, is so complex as to appear random.

Both restarting and the weighted-degree heuristics are employed to reduce the
amount of thrashing in search, where large unpromising parts of the search space
are traversed systematically. Randomized restarting allows one to “jump out” of
possibly unpromising subtrees, by restarting with a randomized heuristic which
will result in search traversing a different part of the search space. The weighted-
degree heuristic avoids thrashing by moving contentious variables up the order-
ing, i.e. selecting contentious variables, identified through their participation in
constraint failures, higher in the search tree after backtracking.

Our approach works on the assumption that elements representing sources
of global difficulty exist and can be identified. Using the terminology of Joslin
and Clements [115], globally difficult elements are elements which are difficult
across large parts of the search space while locally difficult elements are difficult
only in the context of a particular state of search. These authors point out that
identification of difficult elements through static analysis of the problem is some-
times possible but interactions between constraints can be quite complex. Often
it is only through search that these intricate relations come to the fore. We use
constraint weights to identify the difficult variables. Randomized (“deterministi-
cally”) restarting results in the traversal of different parts of the search space, and
thus variables with a high weight after a number of restarts are likely to be sources
of global contention.

1.3 Overview of Dissertation

In Chapter 2 we provide the general background for the work presented in the
dissertation. We describe the constraint satisfaction problem, along with popu-
lar solving techniques such as lookahead algorithms and variable/value ordering
heuristics before focusing on the two main areas related to this dissertation: ran-
domized restarting and learning in search. With regard to the latter, we primarily
focus on methods for learning from failure.

In Chapter 3, we introduce two novel approaches for identifying sources of
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global contention in a problem. Our first method combines the benefits of restart-
ing with the weighted degree heuristic, and is based on the results of Zhan [237]
who found that most problems are either suited to rapid restarts or require inten-
sive search exploration. The incorrect choice of algorithm (with/without restart-
ing) can have disastrous consequences for the amount of search effort required to
solve a problem.

Our second approach, random probing, uses the restarted search mainly for
unbiased information gathering, regarding the critical variables in the problem.
It performs a number of random probes of the search space, updating constraint
weights. We show that both approaches can improve on the basic (non-restarting)
use of the heuristic, and provide insight into the behaviour of search for both
methods. In particular, we identify a key factor when combining the weighted
degree heuristic with restarting, which we refer to as “variable convection”.

Chapter 4 examines some alternative methods for determining contention with
the aim of improving the quality of information learnt. We find that sampling
contention directly related to failures was consistently better than sampling all
instances of constraints removing values. However, this was less clear when com-
bined directly with the heuristic, as opposed to the unbiased information gathering
of random probing. We also found that incrementing weights based on the num-
ber of values removed by a constraint, generally improved the performance of
the weighted-degree heuristic, but had a negative impact when combined with the
random probing approach.

We next assess the quality of information produced by two other constraint
weighting strategies: a local search technique and a weaker form of consistency
checking in constructive search. The motivation is two fold. Firstly, passing fail-
ure information from local search to a constructive search algorithm has been
previously proposed in a number of different ways (e.g. [60], [147]). Secondly,
both alternatives are much faster than the method used in Chapter 3, thus if there
was little fall-off in terms of quality of information learnt, our method could be
improved by incorporating one of these alternatives. However, we found that the
quality of information learnt by these alternatives was generally poorer for the
problems tested.

In Chapter 5, we introduce a new method for solving dynamic constraint sat-
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isfaction problems (DCSPs). Our method reuses information regarding the major
bottlenecks of a problem to solve perturbed versions of the problem. We com-
pare with a state-of-the-art method for solving DCSPs (“local changes” [209]),
and investigate why our approach outperforms local changes for DCSPs at the
phase transition. We also present analysis of the impact of problem alterations at
the phase transition, and find that even relatively few alterations can have a dras-
tic impact on a number of features of a problem, e.g. search effort, number of
solutions, fail-firstness.

Chapter 6 compares the two approaches of Chapter 3 with alternative methods
for combining the conflict-directed heuristics with restarts across a large sample of
problems. We also compare these two techniques with other popular approaches
for general purpose problem solving and provide insight into the performance
of each approach. We present detailed analysis for a subset of problems, namely
open shop scheduling problems [196] and radio link frequency allocation prob-
lems (“RLFAPs”) [37].

Based on the findings of the previous chapter, a new approach for solving
machine scheduling problems is introduced in Chapter 7. The algorithm combines
a number of generic AI techniques such as constraint weighting and restarts, with
simple propagation (bounds consistency). It uses no domain-specific heuristics or
propagators. Although this has been one of the most heavily studied areas in CP
[17], with many dedicated heuristics and constraint propagators, we find that our
method outperforms many state-of-the-art, dedicated, techniques. We show how
our method can be easily extended to handle side constraints and the alternative
objective of minimizing earliness/tardiness penalties, which can cause difficulty
for the standard CP techniques,.

The final chapter presents conclusions of the dissertation and future directions
for research in this area.

1.4 Summary of Contributions

The main contributions of the dissertation are as follows:
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• Boosting conflict-directed heuristics. We introduce two basic methods
for improving the performance of weighted-degree heuristics. Both meth-
ods incorporate restarting, albeit with different purposes, and are developed
with the overall goal of producing the best learning procedure for general
problem-solving with conflict-directed heuristics. We empirically show the
benefits of these methods, and provide insight into to the behavior of conflict
directed search with both, identifying advantages and disadvantages.

• Alternative methods of assessing contention. We investigate different meth-
ods of extracting contention information, and we propose methods for im-
proving the quality of the information extracted through better quantifica-
tion of the information. However, we show that although all methods im-
prove over a non-learning approach, methods based solely on failure infor-
mation perform best.

• Alternative methods of generating weights. We assess the quality of in-
formation produced by different constraint-weighting procedures, in both
local and complete search algorithms. We show that some methods are more
susceptible to local sources of contention.

• A contention-resuse approach for solving dynamic constraint satisfac-
tion problems. We introduce a new method for solving dynamic constraint
satisfaction problems (DCSPs), based on identifying the major points of
contention, and examine the impact of problem changes at the phase transi-
tion. We show that the contention based approach outperforms a traditional
solution reuse method for problems at the phase transition.

• We investigate combining previously proposed universal restarting strate-
gies with the heuristic, and provide insight as to the interaction of the heuris-
tic with each restarting strategy. We also compare with other popular general
purpose heuristics.

• A generic approach for solving scheduling problems. We introduce a new
approach to solving scheduling problems which, rather than using domain-
specific propagators and heuristics, combines a number of generic solving
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techniques. We show that this can outperform state-of-the-art, dedicated,
approaches on a number of scheduling problem types.



Chapter 2

Background

In this chapter we review the basic concepts used in constraint programming. We
first provide a formal definition of the constraint satisfaction problem, followed by
an overview of the standard techniques for solving these problems such as back-
tracking search, lookahead algorithms, and variable and value ordering heuristics.
We then review the two main topics that motivate this dissertation: randomized
restarting and learning from search.

2.1 Constraint Satisfaction Problems

Definition 2.1.1. A finite Constraint Satisfaction Problem (CSP) is defined as a
tuple of the form (V ,D ,C ) where: V = {V1, . . . , Vn} is a finite set of variables
which must be assigned values; D = {D1, . . . , Dn} is the set of finite domains
for those variables consisting of possible values which may be assigned to the
variables; and C = {C1, . . . , Cm} is the finite set of constraints over subsets of
the variables. Each constraint Ck expresses a relation Rel(Ck) among domain
values that that can be assigned to the variables in the scope of the constraint,
Vars(Ck), stating what combinations of variable-value pairs are allowed.

An example of a CSP is that of post-enrolment university timetabling, where
we require the assignment of a room and timeslot to each class (event) for a weekly
period. In CSP terms, there are two variables ri and ti for each event i. The do-

11
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main of ri is the set of rooms, while the domain of ti is the set of timeslots. The
constraints on this problem are as follows:

• Two events with a common student/lecturer cannot be assigned the same
timeslot.

• A room cannot be assigned two events in the same timeslot.

• The capacity of the room cannot be less than the number of students in the
event.

In some cases we may have a metric for ranking the solutions and for defining
the optimal solution. A constraint optimization problem (COP) is a CSP with an
additional metric (objective function) for ranking the solutions. An optimal solu-
tion is one which minimizes/maximizes the objective function. In the timetabling
example above, one objective function would be to minimize the number of con-
secutive events a student must attend, over all students.

A related problem to the CSP is that of propositional satisfiability (SAT). A
SAT problem is typically defined in conjunctive normal form (CNF), where a
CNF formula is a conjunction of clauses and a clause is a disjunction of literals
(Boolean variables and their negations). The problem involves finding if there is
an assignment to the variables that make the formula true.

Constraint Programming (CP) is a paradigm for solving CSPs and COPs. It
is commonly viewed as a two-stage process composed of modeling and search.
Modeling involves defining the problem in terms of variables, constraints and ob-
jectives. Search involves defining how the set of possible solutions to the problem
is to be explored.

Constraints of a standard CSP can be defined in two ways. Extensional con-
straints state a list of allowed (or unallowed) tuples e.g. Cij = {(1,2) (2,3) (3,1)
(3,3)} which means that if variable Vi is assigned the value 1 then variable Vj

must take the value 2 in a consistent assignment on this constraint. Intensional
constraints are defined in terms of predicate function(s) on the variables in the
scope of the constraint, e.g. Cij ⌘ Vi = Vj , which means that if variable Vi is
assigned a value a, then variable Vj must also take the value a. Note that this con-
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straint could also have been defined extensionally by listing all tuple pairs of the
form (a,a).

An assignment is a set of tuples {(V1, a), (V2, b), . . . , (Vk, h)}, each tuple con-
sisting of a different instantiated variable and the value that is assigned to it. A
consistent assignment is an assignment which does not violate any constraint cov-
ered by it. A solution to a problem is a consistent assignment to all variables
{(V1, a), (V2, b), . . . , (Vn, x)}, i.e. an assignment of a value to every variable such
that no constraint is violated.

We define a neighbor of a variable Vi to be any variable Vj that shares a con-
straint with Vi, i.e. if 9 Ck 2 C s.t. Vi, Vj 2 (Vars(Ck)), then Vi and Vj are
neighbors. Finally CSPs are often described in terms of the maximum arity over
all constraints, where the arity of a constraint is the number of variables in its
scope. In this work we focus mainly on binary CSPs, where the maximum arity
over all constraints is 2. A non-binary CSP, or n-ary CSP, is a CSP that has at least
one constraint of arity > 2.

2.1.1 Complexity Theory

A decision problem is a problem which is formulated as a yes or no question. An
instance of the problem is a given input. A decision problem is said to be in the
class P (Polynomial time), if there exists a deterministic Turing machine which
can decide whether an instance of the problem is a yes or no instance in time
polynomial in the size of the input.

A problem is said to be in the class NP (Non-determinstic Polynomial) if there
is a non-deterministic Turing machine which can verify a yes instance in time
polynomial in the input size. The non-deterministic Turing machine operates as a
two step process. In the first step, a certificate is guessed and in the second stage
it is verified in polynomial time whether, given the input and the certificate, the
instance is a yes instance. A problem is said to be in co-NP if an instance can
be verified by a non-deterministic Turing machine to be a no instance in time
polynomial in the size of the input.

A polynomial reduction f of a problem X to a problem Y is a reduction such
that for every instance x of X there is an instance f (x) of Y which can be computed
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in polynomial time, and such that x is a yes instance of X if and only if f (x) is
a yes instance of Y. A problem is said to be in the class NP-hard if all problems
in NP can be polynomially reduced to it. A problem is said to be in the class
NP-complete if it is both in NP and in NP-hard. This means that if there is a
polynomial algorithm for an NP-hard problem, then there is also a polynomial
algorithm for all NP problems. Similarly, if any problem in NP is proven to be
intractable, then all NP-hard problems are also intractable.

A pseudo-polynomial time algorithm is one which can verify that an instance
of a problem is a yes instance in time bounded by a polynomial function of the
size of the input and the magnitude of the largest number appearing in the input.
An NP-hard problem is said to be NP-hard in the strong sense if it cannot have a
pseudo-polynomial time algorithm (unless P=NP). The CSP is in the complexity
class NP-hard [141]. For further details on complexity theory of decision prob-
lems, the reader is pointed to (Garey and Johnson [69]).

2.2 Search and Inference

Search strategies for solving a CSP typically fall into one of two categories: local
and constructive search algorithms. Local search algorithms start with a complete
assignment to the variables in the problem, usually generated by a random as-
signment or a fast heuristic method. This initial assignment may violate a number
of constraints, and so is iteratively improved by changing a variable assignment
in each iteration. This process continues until either a solution is found or some
iteration limit is reached.

Local search approaches are typically extremely fast, however the main draw-
back is that they are incomplete, i.e. there is no guarantee that a solution will be
found. Furthermore they cannot prove infeasibility if no solution exists. Examples
of local search methods are tabu search [79], simulated annealing [125], etc. For a
more detail description of constraint-based local search techniques, see (Van Hen-
tenryck and Michel [203]).

Constructive search algorithms start with the null assignment (no variable is
assigned a value) and then systematically perform the following three steps:
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1. Select a variable

2. Assign the variable a value

3. Checks if the assignment is consistent

Algorithm 1: CBT
Input : A CSP in the form (V ,D ,C )

Output: solution or insoluble

solution = Assign(V , D , C , {})1

if solution 6= false then2

return solution3

else return insoluble4

function Assign(futureVars, D , C , assignment)5

if futureVars = ; then6

return assignment7

Vi = Select variable from futureVars8

futureVars futureVars � {Vi}9

result false10

while Di 6= ; do11

di = SelectValue(Di)12

consistent Check consistency of {Vi  di}13

if consistent = true then14

assignment assignment [ {Vi  di}15

result Assign(futureVars, D , C , assignment)16

if result = false then17

assignment assignment � {Vi  di}18

Di Di � {di}19

else20

return result21

else22

Di Di � {di}23

return result24

These are repeated until either all variables have been assigned or an incon-
sistency has been detected. In the latter case, the value selected is removed from
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the current domain of its variable and a new value is tried. If all the values in a
variable’s domain fail, it performs a backtrack i.e. it “backs” up to the preceding
variable.

The simplest form of constructive search is chronological backtracking (CBT)
with depth first search (Algorithm 1). The recursive function “Assign” (line 5)
starts with an empty assignment and then extends this by repeatedly selecting an
unassigned variable (line 8) and assigning it a value (line 12) until either it has
found a complete consistent assignment (line 7), or a branch of search has failed
(line 14).

2.2.1 Filtering Methods

Local consistencies

Local consistencies are consistencies defined over local parts of the CSP, i.e. de-
fined typically over subsets of the variables and subsets of the constraints of the
problem. These remove values which cannot be part of a solution to the problem
(in its current state). In this work we are mainly concerned with arc-consistency
(AC) [223, 141] and bounds-consistency (BC) [205]. Let P be a binary CSP and
Vi,Vj 2 Vars(Cij).

Definition 2.2.1. A value di 2 Di is supported on Cij iff 9 dj 2 Dj s.t. (di, dj) 2
Rel(Cij).

Definition 2.2.2. A (binary) CSP P is arc-consistent iff every value in every vari-
ables domain is supported over all constraints involving the variable.

The definition of support can be extended to handle problems with n-ary con-
straints:

Definition 2.2.3. For a constraint Ck with Vars(Ck) = {V1, . . . , Vr}, a value di 2
Vi is GAC-supported on Ck iff
8 j 2 {1, . . . , r}, j 6= i, 9 dj 2 Dj , s.t. (d1, . . . , di, . . . , dr) 2 Rel(Ck)

A CSP P is generalized arc-consistent (GAC) on a problem iff every value in
every variable is GAC-supported over all constraints involving the variable. Gen-
eralized arc-consistency is also referred to as as hyper arc-consistency or domain
consistency.
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9 5 7
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6 2
2 4 9 3

8 2 3
5 9 4 2

3 6 8 5

Figure 2.1: Sample Sudoku Puzzle.

To illustrate the difference between AC and GAC, consider the well-known
sudoku puzzle. This puzzle (in 9x9 format) involves assigning each blank square
a number between 1 and 9 such that each number appears once in every row,
every column and each highlighted 3x3 block. A sample sudoku puzzle is given
in Figure 2.1.

In CSP terms, the squares are the variables (thus there are 81 variables in the
9x9 sudoku). We will refer to the variable in row i, column j as xij , where rows
are numbered from top to bottom and columns are numbered from left to right.
The domain of each blank square is {1,. . . ,9}, we will consider the non-blank
squares as variables with singleton domains. This problem can be modeled as a
binary CSP by adding an inequality constraint between every pair of variables on
every row, every column and every highlighted block, requiring 972 constraints.
Alternatively, one could model this as a non-binary CSP by adding an alldifferent
constraint (Régin [170]) for the variables in each row, each column, and each
highlighted block, requiring only 27 constraints.
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Consider the 3x3 block with variables xij: i = 4, 5, 6; j = 1, 2, 3. Performing
AC on the constraints involving variables in this block will result in the following
reduced domains for the four non-singleton variables in the block:

• x43 = {1, 3, 5}

• x51 = {1, 5, 7}

• x52 = {1, 7}

• x63 = {1, 5, 7}

No further propagation will occur unless a neighbor of one of the variables
has its domain reduced to a singleton. This is because if a variable has at least two
values in its domain, then all values in each of its neighbors domains will have
a support on the associated inequality constraint. On the other hand, performing
GAC on the all-different constraint on these four variables would reduce the do-
mains further. The values 1 and 5 in the domain of x43 are not GAC-supported, so
these would be removed from the domain of x43.

A number of algorithms have been proposed for enforcing arc consistency,
with differing time and space complexity. The arc-consistency algorithm we will
use in this dissertation is AC-3 (Mackworth [141]).

Bounds consistency (BC) is a weaker form of consistency than AC, i.e. AC will
always remove at least as many values as BC and may remove more. BC is applied
to variables with totally ordered domains. There are a number of definitions of
bounds consistency in the literature, as discussed in Bessière [26] and Choi et al.
[47]. The definition we use is referred to as bounds(Z) consistency in [26, 47] and
interval consistency in Apt [5].

Let min(Vi) (respectively max(Vi)) be the minimum (maximum resp.) value
in the ordered domain of Vi, and Vars(Ck) = {V1, . . . , Vi, . . . , Vr}.

• A variable Vi is said to be BC for a constraint Ck iff 8di 2 {min(Vi),max(Vi)},
8 j 2 {1, . . . , r}, j 6= i, 9 dj where min(Vj) dj  max(Vj),
s.t. (d1, . . . , di, . . . , dr) 2 Rel(Ck)

• A problem P is said to be BC iff 8 Vi 2 V , 8Ck 2 C s.t. Vi 2 Vars(Ck),
Vi is BC on Ck
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Singleton arc-consistency (Debruyne and Bessière [54]), on the other hand,
is a stronger form of consistency than AC. A value a is singleton arc-consistent
(SAC) for its variable Vi if the problem P with Vi = a (denoted P |V

i

=a) can
be made AC. Values that are not SAC are removed. As this can be expensive to
calculate, a restricted form of SAC was proposed (RSAC) in [165], where each
variable is only considered once.

Lookahead Algorithms

There have been many proposed improvements to chronological backtracking.
These methods can be mainly partitioned under two headings: lookback algo-
rithms and lookahead algorithms. Lookback algorithms (or “intelligent backtrack-
ing” algorithms) record information regarding which values are in conflict and
use this information to jump back in search to the root of a failure thus avoiding
some thrashing. Examples of lookback schemes are conflict-directed backjumping
(Prosser [164]), and dynamic backtracking (Ginsberg [77]).

In this work we concentrate on lookahead algorithms (also referred to as fil-
tering/propagation algorithms). These algorithms prune the underlying search tree
after each variable assignment by enforcing some level of consistency (e.g. arc-
consistency). To change the chronological backtracking search algorithm outlined
above to a lookahead search algorithm, one would replace the “check-consistency”
function with a lookahead function.

Forward-checking (FC) checks that the value assigned to the variable is consis-
tent with the variable’s unassigned neighbors, removing values from unassigned
neighbors’ domains which are not supported (Haralick and Elliott [97]). If all val-
ues from a neighbors domain are removed (causing a domain wipeout) then a new
value is tried for the current variable, and search backtracks if all values have
been tried unsuccessfully. The assignments never have to be checked against pre-
vious instantiations since they must be consistent otherwise they would have been
removed when forward-checking was performed on the previous assignments.
Forward-checking is also known as partial lookahead because it only removes
inconsistent values from the neighbors of the variable assigned.

Maintaining arc-consistency (MAC), or full lookahead, enforces arc-consistency
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after each value assignment (Sabin and Freuder [174]). This a stronger form of
propagation than FC although there is a cost associated, namely the consistency
checking of the extra constraints. We will refer to the constraints which may re-
sult in propagation as active constraints (CA). A constraint is active if at least two
variables in its scope are unassigned.

To illustrate the stronger propagation of MAC relative to FC, let us reconsider
the sudoku puzzle (Figure 2.1) and in particular the four variables discussed earlier
with domains:

• x43 = {1, 3, 5}

• x51 = {1, 5, 7}

• x52 = {1, 7}

• x63 = {1, 5, 7}

Suppose x43 is selected and assigned the value 1. Forward checking will simply
remove this value from the domains of the neighbors of x43 including the three
unassigned variables in the block. Arc-consistency on this assignment will dis-
cover that it is inconsistent using the following inference:

(x43 = 1 =) x52 = 7 =) x51 = x63 = 5) ^ (x51 6= x63) =) ?.

Finally we note that the branching strategy used in Algorithm 1 is d-way
branching, for each variable Vi selected, there are |di| possible branches to be
explored, one for each value in its domain. An alternative branching scheme is
known as binary or 2-way branching, where each variable choice point has two
branches. Let Vi be the variable selected, and a the value selected for the variable
from its domain. Then the constraint Vi = a is posted on the left branch, while
on the right branch the constraint Vi 6= a is posted. Propagation of the constraint
Vi 6= a can potentially reduce the search space. Indeed, 2-way branching has been
shown to be stronger than d-way branching Hwang and Mitchell [111].
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2.3 Variable and Value Ordering Heuristics

The following discussion is based on depth-first chronological backtrack search
with a lookahead algorithm, e.g. forward-checking or maintaining arc-consistency.

The ordering in which variables are chosen can have a large impact on the
ability of search to find a solution or prove the problem insoluble quickly. At first
glance this may seem somewhat counterintuitive for the soluble problem case,
since, if there is to be a solution, then every variable will be part of it, but only one
value per variable will be in any given solution.

Thus it would seem logical that value selection would be more important for
reducing search. This is indeed true in the sense that if one had an infallible
method for value selection then the variable ordering would be obsolete. How-
ever, if such a heuristic existed then the problem would be solvable in polynomial
time. A general rule-of-thumb is to choose the variable most likely to fail [97],
and for this variable choose the value most likely to succeed. There are a number
of metrics one can use to decide which variable is most likely to fail, and which
value is most likely to succeed.

Many general-purpose variable ordering heuristics have been proposed. They
fall into two categories: static variable ordering heuristics (SVOs); and dynamic
variable ordering heuristics (DVOs). For SVO heuristics the ordering is based on
the initial state of search, for DVO heuristics the ordering is usually based on the
current state of search. The advantage of using a static ordering is that the ordering
only needs to be calculated once at the start of search. DVO heuristics are more
costly because the heuristic has to calculate which variable is best at each choice
point. However, even with this handicap, the latter generally outperform static
orderings due to their ability to exploit features of the current search state.

Variables can be characterised by certain basic parameters. The domain size
of a variable is the number of values in its current domain, and the degree of a
variable is the number of edges connected to it (i.e. the number of constraints
which have this variable in their scope). The backward-degree of a variable is the
number of edges it shares with assigned variables, while the forward-degree or
fdeg is the number of edges a variable shares with unassigned variables.

Haralick and Elliott [97] proposed selecting the variable with smallest domain
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at each choice point, as this will minimize the expected branch depth. This DVO
heuristic is known as the fail-first heuristic or simply as dom. The degree of the
heuristic can be combined with the domain size either as a tie-breaker (Brélaz
[31]) or by taking the ratio of the current domain to the forward-degree to create
the dom/fdeg heuristic (Bessière and Régin [27]). The latter heuristic is often used
as a baseline when comparing general purpose variable ordering heuristics. Russel
and Norvig [173] describe dom as the most constrained variable, and fdeg as the
most constraining variable.

A number of dual heuristics have recently been proposed which select the vari-
able and value at each choice point. Zanarini [236] proposed constraint-centered
heuristics based on solution counts for individual constraints. The solution count-
ing algorithms are used to calculate the solution density (SD) of each variable-
value pair (Vi, a), on each constraint. The solution density is defined as the number
of solutions to the constraint involving (Vi, a) relative to the total number of solu-
tions to the constraint. They proposed a number of heuristics based on this metric,
and found the best to be simply choosing the variable-value pair with maximum
SD over all constraints.

Refalo [169] proposed an adaptive search strategy known as Impact-Based
Search (IBS). The strategy uses impacts to guide variable and value selection.
The impact of a value is the proportional reduction in the search space after prop-
agating the assignment of the value to the variable. More formally, let P

before

be
the Cartesian Product of the unassigned variables prior to propagation of the as-
signment of (Vi = a) and P

after

be the Cartesian product after propagation. The
impact of (Vi = a) is given by:

Impact(Vi, a) = 1� P
after

P
before

This is quite similar to the promise heuristics proposed in Geelen [71], where
for each variable-value pair, the promise is defined to be the product of the number
of supports of the value in each unassigned neighbors domain. The promise of a
variable was defined as the sum of the promise scores of the values in its domain.
The heuristic selects the variable with minimum promise-sum, and assigns it the
value with maximum promise.
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Due to the expense in calculating the actual impact for each variable-value
pair at each choice point, Refalo proposed maintaining a rolling average per value
which is updated whenever the variable is assigned the value. The impact of a
variable is defined, like Geelens promise heuristic, to be the sum of the average
impact scores of the values in the variables domain. The heuristic then selects
the variable with maximum impact-sum and assigns it the value with minimum
impact.

In order to improve the initial decisions of the heuristic Refalo proposed a
preprocessing step where the impacts are initialized by performing restricted sin-
gleton arc-consistency (RSAC) prior to search. For variables with large domains,
one can calculate impacts for subsets of the domain to reduce the cost of prepro-
cessing.

Correia and Barahona [49] proposed an extension of this heuristic where ac-
tual impacts are calculated at each choice point by maintaining RSAC. In order
to reduce the cost of this step, they also proposed calculating actual impacts only
for variables with domain size of 2, and using the impact as a tie-breaker. Cam-
bazard proposed an augmented version of the impact heuristic which incorporates
information from explanation based learning [38].

Michel and Van Hentenryck [151] proposed a similar framework for variable
and value selection which they refer to as Activity-Based Search (ABS). Each vari-
able has an associated activity counter, which is incremented whenever the domain
of the variable is reduced at least once during the propagation phase of search.
More formally, a CP solver applies a propagation algorithm F after a variable as-
signment. The enforcement of the required level of consistency by F produces a
new domain store D0 ✓ D . A set V 0 of affected variables are identified:

8Vi 2 V 0

: D0

(Vi) ⇢ D(Vi)

8Vi 2 V \V 0

: D0

(Vi) = D(Vi)

The activity of variable Vi, denoted A(Vi), is updated at each node of the search
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tree (provided Vi is unassigned) by the following two rules:

8Vi 2 V s.t. |D(Vi)| > 1 : A(Vi) ⇤ �

8Vi 2 V 0

: A(Vi) A(Vi) + 1

where V 0 is the set of affected variables, and � is an age decay parameter (0 
�  1). The latter ensures that more importance is attached to recent “activity”.

They also defined the activity of an assignment Vi = a as |V 0| after applying
F to the assignment, i.e. the number of variables affected by the assignment. As
with impact-based search, a rolling average is maintained for the activity scores
for each value.

The heuristic chooses the variable that is most active with respect to its do-
main size, i.e. the variable with maximum A(V

i

)
|D(V

i

) . For this variable, the value with
minimum average-activity is selected. Activities are initialized through a random
sample of paths (a technique known as probing) from the root to a leaf node. The
sample size is chosen so as to provide a good estimate of the mean activity per
variable.

2.4 Restarting and Randomness

In devising general strategies for problem solving, robustness and adaptability
are key. One will not necessarily know beforehand how difficult a problem set
is, so a method that is equally adept at solving easy instances as hard instances
is desirable. Furthermore it has been shown that even within a given problem
set, there can be considerable variation in search effort required to solve different
instances (Mammen and Hogg [143]).

Gomes et al. suggested that the existence of “outliers” (an event that is several
standard deviations from the mean of distribution) could explain the heavy tailed
(or fat tailed) distribution in the runtime of problem solving for some problem sets
[80]. Outliers are not necessarily difficult problems in general, they may just be
difficult in the context of the search algorithm used. One algorithm’s outlier may
be solved extremely quickly using a different algorithm.

The notion of fat-tailedness is based on the kurtosis of a distribution. The kur-
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tosis is defined as µ4/µ2
2, i.e. the fourth central moment about the mean divided

by the square of the variance. When the kurtosis is greater than 3 the distribution
is said to be fat-tailed. Heavy-tailed distributions are non-standard distributions
that have infinite moments (e.g. an infinite mean or variance). Examples of heavy-
tail distributions can be found in Quasigroup Completion Problems and sports
scheduling problems (Gomes [80]).

In order to avoid the heavy-tail to the right of the distribution and to take ad-
vantage of the tail to the left of the distribution, Gomes et al. proposed a form of
“random” restarts for search [82]. The authors suggest that a randomized back-
track search procedure is most effective early in search. Thus a sequence of short
runs may be more effective than one long run. In their “rapid randomized restarts”
approach (RRR), search is repeatedly restarted after a fixed amount of time (long
enough for the problem to fall into the left tail of the distribution).

Randomization is added through the tie-breaking of the heuristic’s top choices.
In order to ensure ties occur one may choose randomly from the top x choices, for
some arbitrary x. Alternatively one may use the notion of heuristic equivalence
to force ties [82], where all choices whose heuristic score is within H% of the
top choices score are considered equivalent, e.g. all choices within 20% of the
top choices score. The advantage of the former method is that it guarantees a tie
will occur at each choice point, while the advantage of the latter is that the choice
will always be one which is of good quality according to the heuristic metric.
Other methods for randomizing the heuristic selection have been proposed which
add a bias function to the previous two strategies, Heuristic-Biased Stochastic
Sampling (Bresina [32]) and Value-Biased Stochastic Samplimg (Cicirello [48])
respectively.

The simplest method of combining randomization with restarting is the itera-
tive sampling approach (ISAMP) of Langley [128]. Both variable and value selec-
tions are completely random, and a cutoff of 1 failure is used. This was shown to
be extremely effective at solving job shop scheduling problems by Crawford and
Baker [50] (albeit using a SAT version of ISAMP, where forward checking was
replaced by unit propagation).

Although these scheduling problems contain many solutions, Crawford and
Baker observed that they also contain large insoluble subspaces. An initial bad
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guess by a heuristic can result in the solver being stuck in a virtually infinite search
tree (on the relatively small job shop scheduling problems they tested, search trees
of the order of 270 nodes were found [50]). They refer to this as the early mistake
problem. They further hypothesized that the reason for the better performance of
ISAMP, compared to the local search solver GSAT (Selman et al. [184]), was the
existence of a small number of “control” variables (those that define the problem)
and a large number of “dependent” variables (those whose values are determined
by the control variables).

A similar concept to the control variables has been introduced by Williams
et al. [227] which they refer to as backdoor variables. A backdoor is a set of
variables which, when assigned correctly, result in an underlying subproblem that
a sub-solver can return a satisfying assignment to in polynomial time. A strong
backdoor is a set of variables which, no matter their assignment, result in an un-
derlying subproblem that a sub-solver can either return a satisfying assignment
or prove infeasible in polynomial time. Williams et al. hypothesize that the exis-
tence of these backdoor variables can explain the superior performance of Gomes
RRR approach on certain problem types. They found that many problems contain
backdoors which constitute a small fraction of the total number of variables.

Gomes et al. formally proved that the underlying distribution of a restart strat-
egy with a fixed cutoff eliminates heavy-tailed behaviour [83]. Luby et al. had ear-
lier proven that when the runtime distribution is known the optimal restart strategy
is a fixed cutoff strategy [140]. However, the runtime distribution of a problem set
is often not known in advance. Hence Luby et al. proposed a universal restarting
strategy for this scenario, which they proved can never be worse than a constant
log factor of the optimal fixed cutoff strategy [140]. In practice, the Luby uni-
versal restarting strategy can be quite slow to converge [80]. Walsh proposed an
alternative universal strategy, where the cutoff increases geometrically which was
shown to outperform the Luby strategy on a number of problems [221].

Finally we note that a related area is that of discrepancy based search (e.g.
Limited Discrepancy Search (LDS) [100] and Depth-Bounded Discrepancy Search
(DDS) [220]. A discrepancy is defined as the assignment to a variable of a value
which is not the “best” value according to the value ordering heuristic. In LDS, the
solver first tries following the heuristic’s advice, i.e. choosing the best selection
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according to the heuristic (discrepancy 0). If this fails to produce a solution, the
solver systematically attempts to find a solution path with discrepancy 1, and itera-
tively increments the discrepancy size allowed until a solution of that discrepancy
is found or the search space has been exhausted.

For a more in-depth analysis of restarting and randomness the reader is re-
ferred to Gomes [80] and Gomes and Walsh [81],

2.5 Learning From Failure

Learning from failure has become a key component to many of the state of the
art CSP (e.g. [132, 102]) and SAT solvers ([155, 192]). This form of learning
can be done using both fine-grained and coarse-grained approaches. Examples of
fine-grained learning are nogood recording [55, 123] / explanation based learning
[119, 118] in CSPs; and clause learning in SAT [144]. These techniques involve
learning new constraints / clauses during search which are dynamically added to
the problem.

A nogood is a tuple (A, C 0), where A is an assignment of values to a subset
of the variables which cannot be extended to a solution to the problem; and C 0 is
a subset of the constraints such that the constraints C 0 are sufficient to show that
A cannot occur in any solution to a problem [180]. This definition has since been
expanded by [123] to incorporate both positive and negative assignments, i.e. both
Vi = a and Vi 6= a.

Nogoods have been used by look-back schemes to reduce thrashing by iden-
tifying a culprit variable for the inconsistency which search can “jump” back
to, e.g. conflict-directed backjumping (Prosser [163]) and dynamic backtracking
(Ginsberg [77]), as opposed to simply backtracking to the previous variable se-
lected. A less memory intensive technique to identify the culprit variable for
backtracking is last-conflict based reasoning as proposed in Lecoutre et al. [134].
Rather than record an eliminating explanation for every value removal and use
this information to identify the culprit variable upon backtracking, the algorithm
instead selects the last variable selected prior to backtracking. This variable must
partake in the conflict set for the inconsistency, and thus, by selecting this vari-



28 BACKGROUND

able after each sequential backtrack, search will quickly backtrack to the culprit
variable.

In SAT, clause learning combined with restarting is used by most state-of-the-
art solvers. In particular, it has been shown the addition of clause learning can
guarantee completeness of a fixed restart strategy, provided all learnt clauses are
kept (Richards and Richards [171]). However, storing all learnt clauses is imprac-
tical for many problems as the growth of the CNF formula is exponential in the
worst-case (Baptista et al. [15]). To remedy this issue and to remove the possibil-
ity of revisiting search paths between restarts, Baptista et al. proposed only storing
clauses learnt from the final search path when the cutoff was reached. A similar
approach has been proposed for solving CSPs (Lecoutre et al. [135]).

Coarse-grained approaches use information from failure/conflict to guide sub-
sequent search and can be incorporated into both local search strategies (e.g. Joslin
and Clements [116], Müller et al. [156], Jussien and Lhomme [120]) and sys-
tematic algorithms (e.g. for variable ordering during search (Boussemart et al.
[29], Karoui et al. [121]) and for revision ordering during consistency mainte-
nance (Balafoutis and Stergiou [12])).

2.5.1 Constraint weighting methods

Constraint weighting was introduced by Morris [153] in his breakout algorithm
for escaping local minima while using local search, and a similar technique was
independently introduced by Selman [183] for solving large structured SAT prob-
lems. The breakout algorithm is an extension of the min-conflicts heuristic repair
method (Minton et al. [152]), where the variable-value pair which minimizes the
number of constraint violations is selected at each iteration in local search. This
repair method can be combined with a variety of search strategies such as hill-
climbing [152].

The breakout algorithm was proposed by Morris in order to avoid getting stuck
in local minima when using a min-conflicts approach. The algorithm works as fol-
lows. All constraints are given an initial weight of 1. After a random initial assign-
ment, a min-conflicts type heuristic is used which chooses the variable-value pair
that minimizes the sum of the weights on violated constraints. If search becomes



2.5. LEARNING FROM FAILURE 29

stuck in a local minima, a breakout step is performed where the weight on all cur-
rently violated constraints are repeatedly incremented until the procedure breaks
out of the local minimum, i.e. until a variable-value pair with a lower weighted
sum than that of the current assignment is found.

Thornton investigated constraint weighting for local search algorithms in [198].
He found that constraint weighting methods worked best on structured problems
which had distinct sub-groups of constraints, i.e. it is extremely effective when
there is a subset of constraints which are much harder to satisfy than the rest of
the constraints.

Hybrid methods have also been proposed which pass conflict information be-
tween local and systematic search strategies. Eisenberg and Faltings [60] proposed
using Morris’s breakout algorithm to identify hard and unsolvable subproblems.
In their approach the breakout method was run for a fixed number of breakouts on
a problem. If the problem was not solved within this breakout-limit, a complete
search strategy was tried using the weights generated by the breakout method to
guide variable ordering to insoluble subproblems. They further presented an ex-
tension which identifies minimally unsolvable subproblems, similar techniques to
identify such subproblems have been proposed (e.g. Grégoire et al. [88], Hemery
et al. [105]).

Vion also proposed a hybrid method combining the breakout algorithm with
systematic search [212]. There are two steps to this method, in the first step the
breakout method is run for a fixed number of iterations from a random initial as-
signment, and this is repeated a fixed number of times (x say). If the problem re-
mains unsolved after running the breakout algorithm x times, the procedure moves
to the second step involving systematic search with the weighted degree heuristic
(Boussemart et al. [29]), where the weights are initialized to those learnt by the
breakout method. Systematic search is run for a fixed number of backtracks, and
if the problem is unsolved then the new weights are passed back to the breakout
method along with other information such as nogoods learnt during systematic
search, and the process repeats.

Mazure proposed interleaving systematic and local search for solving SAT
problems. The main method is the systematic approach, however at each choice
point local search is run on the subproblem to identify the hard elements. This
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can be viewed as providing localized information, compared to the previous two
strategies which used the weights on a global level.

In SAT, many state-of-the-art solvers combine restarts with both fine-grained
and coarse grained failure information. For example, the systematic solvers Chaff
(Moskewicz et al. [155]) and Minisat (Sörensson and Een [192]) both combine
clause learning with restarts. They further use conflict information (in the form
of clause weights) to guide search, the heuristics are referred to as VSIDS and
activity-based in Chaff and Minisat respectively. The addition of conflict clauses
through learning combined with the updated clause weights ensures that previ-
ously explored parts of the search space are not revisited upon restarting. Both
solvers also employ short term memory techniques for their heuristics, where all
clause weights are periodically divided by a constant.

The issue of whether clause weights, learnt during local search, are useful in
a global or a local context is one which has received some attention in the SAT
domain. Tompkins and Hoos [199] gave empirical evidence which suggested that
clause weights generated during local search are not meaningful in themselves,
but their effectiveness is primarily due to increasing diversification in the local
search algorithm. However, as discussed in Ferreira and Thornton [62] the ex-
perimental setup of Tompkins and Hoos was inadequate for properly testing the
hypothesis. Ferreira and Thornton provided contradictory empirical evidence that
showed that performance improvement can be achieved by longer term memory,
due to identifying clauses that are globally difficult to satisfy.

2.6 Weighted Degree Heuristics

Boussemart et al. [29] proposed using constraint weights during complete search
as a metric for conflict-directed variable ordering heuristics. These “weighted-
degree” (wdeg) heuristics are continuously updated during search by using in-
formation learnt from previous failures in order to guide search to the areas of
most contention. The advantage that these heuristics have is that they use previ-
ous search states as guidance, while most other heuristics either use the initial state
(static heuristics) or the current state. Thus the heuristic adapts to the problem.

The heuristic works as follows. All constraint weights are given an initial
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value of 1. A constraints weight (wt(Ck)) is then incremented by 1 each time the
constraint causes a domain wipeout during constraint propagation. The weighted-
degree of a variable is the sum of the weights on the active constraints (CA) in-
volving this variable, where a constraint is active if at least two variables in its
scope are unassigned. The weighted degree heuristic (wdeg) chooses the variable
with largest weighted degree.

wdeg(Vi) =

X

C
k

2C
A

,V
i

2Vars(C
k

)

wt(Ck)

Current domain information about the variables can also be incorporated into
the heuristic to produce the variant dom/wdeg (similar to dom/fdeg except it
chooses the variable which minimizes the ratio of domain to weighted-degree
as opposed to forward-degree). Heuristics based on wdeg were shown to be ex-
tremely effective at improving search when compared to the popular fail-first
heuristic dom/fdeg (Boussemart et al. [29]) and when compared with backjump-
based techniques (Lecoutre et al. [133]). Furthermore, Hulubei [110] has shown
that combining dom/wdeg with the min-conflicts value heuristic can remove
heavy-tails from some problem types.

Huguet et al. [109] propose an alternative to the weighted degree heuristic,
which they referred to as Wvar. Here, the weight is stored directly with the vari-
able, i.e. it is effectively the weighted static degree heuristic. The disadvantage
to this heuristic is that weights due to failures of constraints which are currently
entailed, are not removed as in wdeg. Since these constraints are entailed, they
cannot cause a failure in the current search state, and thus the weighted degree
method of ignoring their weight is the more logical. Nevertheless, they show that
Wvar outperformed wdeg on some sets of random binary problems.

The weighted degree heuristic sits in a family of adaptive heuristic which use
information from previous search states to guide subsequent search. The impact-
based and activity based search heuristics also belong to this family. Although
the weighted degree heuristic does not have a value ordering component, unlike
those two approaches, it has been observed that the variable ordering component
is much more critical for both IBS † and ABS [151]. Finally, we point the reader

†Personal correspondence with Philippe Refalo
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to Chapters 9 and 10 of Lecoutre [131] for further details on both fine-grained and
coarse-grained methods for learning from failure in CP.

2.7 Statistical Analysis

In this dissertation we use a number of statistical tools to analyze the results of
our experiments and to test certain hypotheses. We briefly describe these below.

2.7.1 Hypothesis Testing

The paired comparison t-test is used to test the null hypothesis that the average of
the differences between two paired samples is zero. For example suppose we solve
the same set of sample instances from a population with two different methods,
A and B, and we find that on average A performed better than B. The paired
comparison t-test can be used to test whether the difference in the average search
performance of the two methods is significant, i.e. is it likely that A will perform
better than B on the rest of the instances in the population or is it more likely that
the differences were due to spurious effects.

The null hypothesis for this example is that the two methods are equally good
on average for the population, while the alternative hypothesis is that A is better
than B on average for the population:

H0: µA = µB

H1: µA < µB

We then test the probability of getting the observed difference in average perfor-
mance on the sample instances, given the null hypothesis. If this probability is
very small we can reject the null hypothesis that both methods are equally good,
and accept the alternative hypothesis that A is better than B for the population.

The t-test is useful when comparing the average performance of two meth-
ods. However, when testing whether the average performance of several methods
are all equal, performing pairwise comparison t-tests for each pair of methods is
time consuming and more importantly the probability of committing a “Type I”
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error (where the null hypothesis is true but is incorrectly rejected) increases as the
number of comparison methods increase.

In this case, Analysis of Variance (ANOVA) [101] is a statistical test which can
be used to determine if the means of several “groups” are all equal. This can be
viewed as a generalization of the t-test to more than two groups. The groups can
be different levels for a set of factors.

Suppose that there are two factors A and B which we believe may influence
the dependent variable. For each factor we test a (small) number of levels on the
same set of n sample instances in a fully crossed design, i.e. we test each level
of A in combination with all levels of B. There are R levels in factor A and C

levels in factor B, and xirc represents individual i of combination rc. We wish to
assess whether each factor has a significant effect on the dependent variable and
also whether the interaction of the two factors with each other has a significant
effect on the dependent variable.

Performing a two-way fixed effects ANOVA will test the following three sep-
arate hypotheses:

• The population means for factor A are equal.

• The population means for factor B are equal.

• There is no interaction between the two factors.

There are a number of variations of the ANOVA, in this dissertation we em-
ploy both two-way fixed effects and three-way mixed effects ANOVA with repli-
cation. Replication means that for any combination of factors, there are at least
two independent observations made under identical experimental circumstances
[101].

The fixed/mixed effects refers to the type of factors under consideration. In
particular, in the fixed effects model the levels of the factors are non-random,
whereas in the mixed effects model some of the factors involve a random sample
of a population. In the two-way (three-way) ANOVA we are not only interested in
testing whether each factor has a significant effect on the dependent variable, but
also whether there is a significant interaction between the two (resp. three) factors.
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Table 2.1: Two-way fixed-effects ANOVA summary

Source SS df MS F

Rows nC

RX

r=1

(µr � µG)
2 R� 1 SS

Rows

df
Rows

MS
Rows

MS
Err.

Columns nR

CX

c=1

(µc � µG)
2 C � 1 SS

Col.

df
Col.

MS
Col.

MS
Err.

Interaction n

CX

c=1

RX

r=1

(µrc � µr � µc + µG)
2 (R� 1)(C � 1) SS

Int.

df
Int.

MS
Int.

MS
Err.

Error
CX

c=1

RX

r=1

nX

i=1

(xijk � µrc)
2 RC(n� 1) SS

Err.

df
Err.

Notes: µr/c is the mean of the data in row r / column c
µrc is the mean of the data in row r and column c. µG is the grand mean over all data.

For the two-way fixed effects ANOVA we have an orthogonal design, where
we have a data table consisting of a row for each level of factor A and a column
for each level of factor B. Each cell has n observations, each row has nC cases
and each column has nR cases.The total sum of squares can be partitioned into
sums of squares for four components:

SStotal = SSRows + SSColumns + SSInteraction + SSError

whose calculations are summarized in Table 2.1, along with calculations for the
degrees of freedom, mean square and the F ratio for the four components. The
F ratio along with the degrees of freedom of its two components is then used to
accept/reject the associated null hypothesis using a table of the F distribution. For
more information on analysis of variance, the reader is directed to [148, 101].

2.7.2 Distribution Analysis and Correlations

The Gini coefficient [75] is a measure of the inequality in the distribution of a
variable. It is commonly used by economists to measure the inequality of income
in a population. The Gini coefficient is based on the Lorenz curve, mapping the
cumulated proportion of the total summation of values for the variable over the
bottom x% of the population when ranked by their value. In economics this in-
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volves mapping the cumulated proportion of income y earned by the bottom x%
of the population (see figure 2.2).

Figure 2.2: Gini coefficient example: distribution of income. (Source
www.wikipedia.org/wiki/Gini_coefficient)

The Gini coefficient, G, is the ratio of the area lying between the Lorenz curve
and x = y, over the total area below x = y, i.e. A/(A+B) in Figure 2.2. For data
ordered in increasing size, this is given by the following equation:

G =

nX

i=1

(2i� n� 1)xi

n2µ
(2.1)

where n is the size of the population, µ is the mean of the population values, and
xi is the ith value in the ordered data.

When the distribution is perfectly fair (for income distribution this would mean
each household earns exactly the same amount), the Lorenz curve is x = y and so
the Gini coefficient is 0. The other extreme is a theoretical maximum of 1, where
in an infinite population all but one individuals are of size zero. In the income
distribution example this would mean that all the income is earned by just one
household.

www.wikipedia.org/wiki/Gini_coefficient
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Correlations

The Pearson product-moment correlation coefficient[148], r, is a measure of the
correlation or linear dependence between two variables, X and Y . It is calculated
for a sample for the two variables as follows:

r =
1

n� 1

nX

i=1

⇣Xi � ¯X

�X

⌘⇣Yi � ¯Y

�Y

⌘
(2.2)

where X
i

�X̄
�
X

is known as the standard score, ¯X is the sample mean and �X is the
sample standard deviation of variable X .

The coefficient ranges from -1 to 1. Either of these extremes mean that there
is a perfect (inverse for -1) correlation between the two variables, i.e. they are
functionally related to each other and follow a linear rule. A value of 1 means
that there is a linear equation for which X increases as Y increases. A value of -1
means that there is a linear equation for which X increases as Y decreases.

In certain cases, rather than the correlation of the actual scores for individuals
of the sample (of size n) for the two variables, one wishes to assess the level
of agreement between the rankings of the individuals. For example, one could
rank the scores from 1 to n, with the highest score receiving the top rank and the
lowest score receiving the bottom rank. The Spearman rank correlation coefficient
(⇢) [148] can then be used to measure the correlation between the two rankings.

⇢ = 1�
6

nX

i=1

D2
i

n(n2 � 1)

(2.3)

where Di is the difference between the two ranks for individual i and n is the
number of individuals in the sample. If there is a tie in the score for a set of indi-
viduals, then these are assigned the average of the ranks they would have received
with lexico tie breaking.

Like r, the value of ⇢ ranges from -1 to 1, where a value of 1 means that the
individuals were ranked identically, whilst a value of -1 means that the individuals
had the opposite ranking for the two variables. A value of 0 means that there is no
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correlation between the two rankings.
The Spearman rank correlation does not discriminate between agreement on

top and bottom rankings. In our work we are more concerned with agreement
amongst the top ranked choices. The top-down rank correlation coefficient [112]
is a weighted correlation statistic which places more importance on agreement
amongst top ranked individuals than on the bottom ranked individuals. The top-
down correlation coefficient, rT , is calculated similarly to ⇢. However, rather than
use the rank of the individuals, a score is computed for each.

The scoring system used is that of Savage [179], referred to as savage scores.
The savage score, Si, is computed as follows:

Si =

nX

j=i

1/j (2.4)

where i is the rank of the ith ordered statistic in a sample of size n. If individuals
are tied, the average savage score is used. The Pearson product-moment correla-
tion coefficient is then calculated on the savage scores of the individuals. If there
are no ties, this formula reduces to the following:

rT =

⇣ nX

i=1

SX
i

SY
i

� n
⌘

(n� S1)
(2.5)

The maximum value that rT can take is 1, which is the case where the rankings
are identical. However, unlike Pearson’s r and Spearman’s ⇢, the minimum value
is not -1 (for n � 3), but increases away from -1 to approximately -0.645 as
n!1 [112].
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Chapter 3

Probing for Failure

3.1 Introduction

In the book “Elements of Machine Learning” [129], Langley defines learning as
“the improvement of performance in some environment through the acquisition of
knowledge from experience in that environment”. This is a broad definition which
covers the methods we propose.

When devising learning strategies for problem solving there are some key
questions that one should consider. Denzinger et al. [58] outlined 9 issues which
they propose should be addressed when attempting to learn from previous proof
experience. The first group of issues deals with the learning phase:

• Whom and what to learn from?

• What to learn?

• How to represent and store the learned knowledge?

• What learning method to use?

The second group of issues deals with the use of information learnt:

• How to detect applicable knowledge?

• How to apply knowledge?

39
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• How to detect and deal with misleading knowledge?

• How to combine knowledge from different sources?

And the ninth, final issue they raise is which concepts of similarity are helpful.
This is an important issue which extends to most machine learning paradigms.
Normal machine learning approaches assume that there are certain characteristics
common to all problems of a particular type and in turn that these characteristics
can be exploited to improve performance. For example, in case-based reasoning
[1] one assumes that an algorithm which works well on a specific type of problem,
will work equally well on problems which share certain characteristics to this
problem. Identifying these characteristics and their interaction with each other
can be quite a challenge for general purpose problem solvers.

An adequate training set is vital for such learning procedures. However, due
to the noted variation in problem difficulty within constraint satisfaction problem
sets ([143], [68], [82]), it can be quite hard to learn information from a subset
of problems which will work on all other problems in the set. Within-problem
learning does not suffer from this issue as it adapts to each problem. It has the
advantage that the “training set” is also the “testing set”, i.e. the current problem,
and thus more specific information can be learnt.

In this work we use within-problem learning to identify sources of contention
in a problem. Boussemart et al. have proposed the weighted degree variable or-
dering heuristic [29]. The heuristic retains the feature of generality for problem
solving while adapting to the specific problem it is being tested on. The purpose
of the heuristic is not to identify characteristics of a problem which can be gen-
eralized to improve search performance on other problems, but to guide search to
areas of the search space which are likely to be sources of contention within the
context of the current state of search. Thus the ordering it places on variables is
constantly evolving. The information learnt is obsolete when one moves on to a
different problem, however the approach used in generating the information re-
mains a viable guidance tool for adapting to a new environment.

For the work described here, the answers to the first group of issues given at
the beginning of the section are as follows:
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• The approach learns from failure, in particular failures during consistency
checking, i.e. domain wipeouts.

• The aim is to learn which variables are sources of global contention in a
problem.

• The learned knowledge is represented in the form of constraint weights.
Each time propagation of a constraint causes a failure during consistency
checking, the constraint’s weight is incremented.

• The learning method used is constraint weighting combined with restarted
search in order to generate a global weight profile for the problem.

We will go into more detail in the following sections regarding the issues out-
lined. The second group of issues will be dealt with in the discussion section of
this chapter and in detail in Chapter 4. For the moment we will just address the
issues of the application of the learned knowledge and the quality of this knowl-
edge:

• The information learnt is used by a weighted degree heuristic to select the
most contentious variables at the beginning of search.

• The expected quality of the information learnt in singularity is quite weak.
A failure may occur because of a series of poor selections (local source
of difficulty); or it may represent a more fundamental issue in the prob-
lem (global source of difficulty). However weights are only incremented by
small amounts, it is through the buildup of these weights that import is at-
tached to a variable, i.e. through a variable’s constraints consistently causing
failure.

The rest of the chapter is organized as follows. The next section provides the
motivation for this work. Section 3.3 introduces two methods for improving the
performance of the weighted degree heuristic, both of which employ a fixed num-
ber of restarts in an information gathering phase, followed by a run to completion.
In section 3.4, we provide an empirical analysis on both structured and random
problem instances. We also investigate the effects of varying the restart and cut-
off parameters for both methods. Section 3.5 analyzes the quality of information
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produced by the strategies during their respective information gathering phases,
followed by a discussion of issues arising out of this research. The final section
provides a summary of the chapter.

3.2 Motivation

The motivation for this work came from observations regarding two different top-
ics which have been the focus of much recent research. The first topic is that of
randomized restarting approaches [82, 93], and the second topic is that of adaptive
heuristics which use information from previous search states to guide subsequent
search [29, 169].

Randomized restarting approaches have been shown to be extremely effective
when solving problems with a heavy-tailed distribution (Gomes et al. [82]) and
problems with a small world topology (Walsh [221]). Randomization is usually
added by randomizing the search ordering heuristics, where one randomly selects
from a subset of the heuristic’s top choices. In this case one maintains a degree of
confidence in the selections made while still allowing for search diversification.
These approaches continue to be widely studied, e.g. Guddeti and Choueiry [93],
Wu and van Beek [232].

However randomized restarting techniques do not take advantage of having
already sampled the search space. Furthermore, the approaches assume that the
heuristic being randomized is a ‘good’ heuristic for the problem to be solved. If
this is not the case then randomly choosing from the heuristic’s top choices may
not improve matters greatly. One would expect that these approaches could be
improved by learning from their failed search attempts.

The second topic of research involves search heuristics that use information
from previous search states to guide subsequent search. An example of this type
of heuristic is the aforementioned weighted degree heuristic (wdeg) [29], which
chooses variables based on their participation in failure during search. A vari-
ant dom/wdeg of this heuristic, which incorporates domain information, has been
shown to be extremely robust at solving both insoluble and soluble problems [29].
It can solve “easy” instances as quickly as dom/fdeg, while for harder instances
it adapts to the search space it is in by prioritizing troublesome variables.



3.2. MOTIVATION 43

However, as Smith showed in her work on optimal static orderings [188], the
first few variable selections can have a huge impact on the size of the search tree
encountered when finding a solution. A bad choice at the top of the search tree can
have disastrous consequences for search effort required to solve the problem. Fur-
thermore, Harvey and Ginsberg [100] state that for many problems “heuristics are
least reliable early in the search, before making decisions that reduce the problem
to a size for which the heuristics become reliable”.

Refalo outlined three principles for reducing search effort [169], the first two
deal with variable ordering (choose the variable that maximally constrains the rest
of the search space) and value ordering (choose the value that maximizes the num-
ber of possibilities for future assignment). The third, and final, principle concerns
making good choices at the top of the search tree. Refalo suggests that applying
this final principle means that some preprocessing must be done if we wish to
identify the best starting point for search. This principle is of utmost importance
to the work discussed in this dissertation.

Yet the weighted degree heuristic has the least information when making ini-
tial selections at the top of the search tree. In fact the heuristic has no weight
information, other than the degrees of the variables, until at least one failure has
occurred. It would seem logical to conclude that the heuristic can be improved
upon by providing it with more information for those early choices.

In their work on Squeaky Wheel Optimization Joslin and Clements [116]
found that, although identifying “difficult” elements through static analysis of the
problem may be possible in some cases, interactions between constraints can be
quite complex. Often it is only through search that these interactions can be iden-
tified. Joslin and Clements also found that globally difficult elements, i.e. those
that are difficult across large parts of the search space, tend to be identified over
time.

In Huang [108], a study of combining restarts with clause learning and clause
weighting in SAT, the author comments that when the solver is run for a certain
amount of time, it accumulates information in the form of learned clauses and
clause weights. This information reflects the solver’s current belief regarding the
order in which future decisions should be made. However the solver is bound by
the decisions made earlier so, unless it restarts, it will not be free to use the infor-
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mation in the best manner. This applies equally to the weighted degree heuristic.
Both restarting and the weighted degree heuristics are employed to combat

the effects of thrashing, where large insoluble subtrees are traversed systemati-
cally, repeatedly searching over variables which are independent of the cause of
failure. Restarting, combined with some form of randomization, allows one to
jump out of (possibly) unpromising search trees by restarting search with a differ-
ent variable ordering. The weighted degree heuristic avoids thrashing by moving
contentious variables up the ordering. The drawbacks to both the weighted degree
heuristic and to randomized restarting approaches could be dealt with by com-
bining constraint weighting with restarting. Here the constraint weights learnt are
often sufficient to guarantee that the same search tree won’t be explored upon
restarting.

The above observations led us to the following two questions. Firstly, can we
improve search by performing a minimal amount of preprocessing in order to
learn about the search space, in particular which variables are the main search
bottlenecks? Secondly, how should one go about gathering this information and at
what cost? These are two questions which we aim to answer in this chapter.

3.3 Initial Methods

We devised two different approaches for boosting the weighted degree heuristic.
Both approaches combine restarts with constraint weighting for information gath-
ering. Search is run until either the problem has been solved or a fixed cutoff has
been reached. This is repeated until either the problem has been solved or a fixed
number of restarts has been reached. Constraint weights are carried along from
one run to another. After reaching the fixed number of restarts (information gath-
ering phase) the cutoff is removed (increased to1). A final search attempt is then
made using the information learnt from the previous runs, and stops when a so-
lution has been found or the problem has been proven insoluble (solving phase).
Thus both methods are complete. More formally, for each cutoff ti:

ti =

(
tinit if i < R

1 if i = R
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where tinit is the fixed cutoff and R is the fixed number of restarts.
The first approach, which we call WTDI (for WeighTeD Information gath-

ering), uses the weighted degree heuristic for selecting variables in both the in-
formation gathering phase and the solving phase. Combining a weighted degree
heuristic with this form of restarting is expected to have the following results:

• Easy instances of the problem set are likely to be solved prior to the final
run to completion (given a sufficient cutoff), as contentious variables are
moved to the top of the ordering after restarting.

• Hard instances are expected to be solved more efficiently on the run to com-
pletion due to improved initial selections based on weights learnt in the pre-
vious runs.

With regard to the first expectation, upon each restart the weighted degree
heuristic has more information available from which to guide search. Thus, in
theory, each successive run should improve upon its predecessor. However this
assumes that the quality of information learnt is uniform which is not necessarily
the case.

The second approach, which we call RNDI (for RaNDom Information gath-
ering), combines a form of iterative sampling [128] with information gathering.
In its original form, iterative sampling involves selecting variables and values ran-
domly during search until a failure occurs (so a cutoff of 1 failure), at which point
the algorithm restarts. Iterative sampling is an incomplete approach, involving no
learning, which is only applicable to problems which have a large number of so-
lutions [50].

A number of recent approaches have incorporated a random probing phase for
learning prior to search. Lombardi et al. [139] proposed using random probing
(which they refer to as “diving”) to extract information regarding the feasibility
of individual variable-value assignments. For each variable-value assignment they
store the average dive-depth involving the assignment, and the number of occur-
rences of the assignment in the feasible partial assignments stored for each dive.

Stamatatos and Stergiou [193] used a random probing technique to extract
information regarding the activity of a constraint in reducing the search space. The
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information recorded for each constraint during random probing (e.g. the number
of times revision of the constraint reduced a variables domain versus the number
of times the constraint was revised, the number of values removed by revision of
the constraint, etc.) is then used to decide on the strength of the propagator to be
applied to the constraint during search.

In our version (RNDI), during the information gathering phase variables are
selected randomly (according to a uniform probability distribution over the unas-
signed variables). The cutoff is larger than one failure since the purpose of these
“random probes” of the search space is to gather information regarding sources of
contention in each individual search tree. Unlike iterative sampling, this random
probing phase is mainly an information gathering step, albeit with the possibility
of solving the problem in this phase. On the run to completion a weighted de-
gree heuristic is used for solving the problem (with the weights learnt from these
random probes guiding early selections).

As discussed earlier we believe that many problems contain elements which
are globally difficult. A constraint with a high weight after many restarts is likely
to have been a source of contention in different parts of the search space and thus
should be more representative of global difficulty. Joslin and Clements suggested
that globally difficult elements are likely to be identified over time [115].

Despite their similarities, the two approaches represent fundamentally differ-
ent strategies for learning. WTDI continuously evolves as it learns, aiming to solve
the problem before the final restart. RNDI, on the other hand, is intended to get as
varied a sample of the search space as possible in order to provide a more ‘global’
representation of the spread of contention in the problem.

The first approach, WTDI, contains the benefits of restarting randomized search
(i.e. intelligently traversing different areas of the search space) while learning
from its failures in order to improve subsequent search. Gomes refers to this type
of search (learning combined with restarting) as ‘deterministic randomization’
[80] in that the search is deterministic, but behaves in so complex a manner as to
appear random.

In his work on randomized restarting strategies for SAT, Zhan found that most
problems can either be solved very quickly (i.e. they are suited to rapid restarts)
or require intensive search exploration [237], and the incorrect choice of algo-
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rithm (with/without restarting) can have disastrous consequences for the amount
of search effort required to solve a problem. WTDI attempts to strike a balance
between intensive restarting and intensive search exploration.

The second approach, RNDI, has more in common with Refalo’s impact-based
heuristic work [169] in that the random runs are used mainly as a preprocessing
step for gathering information from a diverse sample. It is not expected that the
problem will be solved during preprocessing.

These approaches may seem to be two extremes, one using an informed search
strategy, the other using an uninformed strategy. However if a portfolio of “good”
heuristics were used for the information gathering phase, then the weights learnt
would be biased. In particular it is of interest to consider the minimum and peak
failure depths when assessing such learning strategies. Normally a few variables
will be assigned before a failure occurs. Thus the first few variables selected will
receive little if any weight. Most weight will be accrued on variables below the
peak failure depth. If one were to use different ‘good’ heuristics for each probe,
their top choices would rarely receive any weight.

Algorithms 2 and 3 are a general pseudo description of the restarting algo-
rithms which we propose. Algorithm 2 outlines the overall Solve function while
Algorithm 3 is the Search function. The algorithms given are for solving a bi-
nary constraint satisfaction problem while maintaining arc-consistency, (line 9 of
Algorithm 3) with d-way branching (line 7 of Algorithm 3).

The Solve function takes as input a CSP, a fixed cutoff-limit L in terms of
nodes or failures, a fixed number of restarts R, and value and variable heuristics.
In the algorithm given, the cutoff is in terms of nodes, however this can easily be
altered for a cutoff in terms of failures. In this case a failure counter is added which
is incremented in the consistency method whenever the function Consistent re-
turns false.

By fixing the cutoff in terms of nodes we ensure that the same proportion of
the search space is explored in each run. If we were to use a cutoff that varied in
size from run to run, the information learnt would be biased to runs which had a
large cutoff. This may obscure sources of global contention compared with local
sources of contention. Furthermore a time-based cutoff would not guarantee that
learning occurred on each run, in which case our deterministic restarting approach
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Algorithm 2: Solve function for RNDI/WTDI

Input : A CSP in the form V , D , C , cutoff-limit L, maximum number of
restarts R, variable heuristic varH, value heuristic valH

Output: solution or insoluble
restarts 01

while restarts < R do2

nodes 03

solution Search(V , D , C , {}, L, varH, valH)4

if solution 6= Cutoff then5

if solution = false then6

return insoluble7

else8

return solution9

else10

restarts++11

if restarts = R then12

solution Search(V , D , C , {},1,13

SelectDomWdegVariable, valH)
if solution 6= false then14

return solution15

else return insoluble16

(WTDI) would merely repeat the previous run.

The only difference between WTDI and RNDI is in the variable heuristic used
for probing (line 4 of Algorithm 2). In both our methods, there is a fixed maximum
number of restarts, R (which gives a maximum number of runs R + 1). During
each run, search continues until the problem has been solved or L nodes (failures)
have been searched (resp. encountered), while updating weights after constraint
violations.

On runs 1 through R, if no solution has been found after L nodes/failures, the
function Search is again called on the initial state of the problem with updated
weights. On the (R+1)th run, the cutoff is removed (set to infinity) and search runs
to completion (line 13 of Algorithm 2). On this run, a conflict-directed heuristic
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Algorithm 3: Search function for RNDI/WTDI

Input : Set of unassigned variables futureVars, their current domains
D , set of constraints C , node-limit L, variable heuristic varH,
value heuristic valH

Output: Cutoff or assignment or false

if futureVars = ; then1

return assignment2

if nodes � L then3

return Cutoff4

Vi  Select variable from futureVars according to varH5

futureVars ( futureVars � Vi )6

while Di 6= ; do7

di  Select value from Di according to valH8

consistent AC(Vi  di, assignment, C)9

if consistent = true then10

assignment ( assignment [ (Vi  di) )11

nodes++12

result Search(futureVars, D, C, assignment, L,13

varH, valH)

if ¬result then14

assignment assignment � {Vi  di}15

Di Di�{di}16

else if result = Cutoff then17

return Cutoff18

else19

return assignment20

else21

assignment assignment � {Vi  di}22

Di Di�{di}23

return false24
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such as dom/wdeg or wdeg is used for variable selection.

3.4 Experimentation

In this section we provide experimental analysis of both WTDI and RNDI on two
different types of problem. We compare these approaches with complete search
approaches using dom/fdeg and dom/wdeg. The first type of problem is one with
clearly defined sources of global contention. The second type is one where the
sources of difficulty are less obvious. We also analyse the impact of varying the
restarts and cutoff factors for both approaches on a sample problem set.

In the following experiments the base algorithm used was a MAC-3 algorithm
with d-way branching, value selection was lexical and no arc-ordering heuristics
were used. To avoid confusion, we will refer to search using dom/wdeg without
restarts as “dom/wdeg-nores”. For all experiments using the RNDI approach, the
results reported are the averages of ten experiments. This was done to obtain ade-
quate samples under randomization and to avoid spuriously good (or bad) effects
due to random selections. All experiments, for which runtime results are given,
were run on an Intel Xeon 2.66GHz machine with 12GB of RAM on Fedora 9.

3.4.1 Problems with embedded insoluble cores

We first provide results for some obvious cases where these two methods are ap-
propriate, namely on problems with embedded insoluble subproblems. It should
be noted that Hemery et al. have independently proposed using the weighted de-
gree heuristic with restarts as part of a process for extracting minimial unsat-
isfiable cores from constraint networks [105]. Eisenberg and Faltings also used
constraint weights to identify insoluble subproblems [60], their approach however
used constraint weights produced by the breakout (local search) algorithm [153].
There has also been a focus in the SAT community on methods for identifying
minimal unsatisfiable subformulas, see for example Grégoire et al. [88] and Liffi-
ton et al. [138].

For these types of problem the smallest proof of insolubility occurs when the
variables in the insoluble subproblem are selected first in search. However check-
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ing whether a set of constraints form a minimal insoluble core is DP-complete in
itself [160]. By restarting and collating information regarding failures in search,
we hope to identify these globally difficult elements.

Case Study: Queens-Knights Problem

An academic example of such a problem is the queens-knights problem. This
combines the problem of putting n queens on an n x n chessboard so that no two
queens can attack each other, i.e. no two queens share a column, row or diagonal;
and the problem of putting r knights on an n x n chessboard such that the knights
form a cycle in knight moves. When the number of knights is odd the problem is
insoluble, so the knights form an insoluble core of the queens-knights problem.

There are two formulations of the queens-knights problem. In the first the
queens and the knights can share a cell (i.e. there are no constraints between the
queens and the knights); and in the second they cannot share a cell. The first type
is referred to as qk-n-r-add and the second qk-n-r-mul.

For the qk-n-r-add instances, each of the n queens has initial domain size n

and has degree (n� 1), while each of the r knights has initial domain size n2 and
degree (r � 1). There is a predefined ordering on the knights, each knight has a
constraint defining the knight move to its predecessor and a constraint defining
the knight move to its successor in the order. (The other (r�3) constraints are not
equals constraints with the rest of the knights). The optimal search effort occurs
when a knight is selected first, requiring exploration of n2 search nodes, i.e. every
value for that knight is tried and found invalid by MAC.

Selecting a queen first and then a knight increases the number of nodes to n3

(n2 failures for each value in the domain of the queen). The dom/fdeg heuristic
will perform an all-solutions search on the queens problem. Each time it finds a
solution to the queens problem it will then select a knight, producing n2 failures,
before backtracking. This is an extreme case of thrashing.

The approach dom/wdeg-nores will act identically to search with dom/fdeg

until the weighted degree on a knight is large enough to produce a smaller ratio of
domain size to wdeg than for any currently uninstantiated queen. It will then pick
this knight and backtrack once all n2 values have been tried. The knight(s) will
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then be selected after each backtrack, moving up the ordering, until one has been
tried with each of the remaining values for the first queen selected.

However there are two points which should be noted here. Firstly, when a
knight is chosen the weight on its constraints may not be increased, instead a con-
straint between two other knights may repeatedly cause failure so their weighted
degrees will each increase. This is because the constraints of the instantiated
knight are propagated first, followed by the constraints of its reduced knight neigh-
bors. Thus the next knight chosen may be a different knight.

This means that the weight will be spread between (some of) the knights, re-
ducing the likelihood of a knight being selected ahead of a queen early in search.
This effect can be seen in the results on knights instances (without queens) of
Boussemart et al. [29]. Their results, using binary branching, show that dom/fdeg
solved the instances in the minimal refutation (because it kept choosing the same
knight after each failure) while the weighted degree heuristics required more
nodes to solve it. This was because the heuristic led search to jump between dif-
ferent knights upon failure.

A second point regarding the queens-knights problem is that, for each queen
instantiated, the domains of all the uninstantiated queens are reduced further. This
makes it less likely that a knight will be selected ahead of a queen deep in search.
It is probable that search will have to backtrack almost to the top of the search tree
before a knight will be selected.

The two methods we propose behave as follows. The random probing ap-
proach builds up the weight on the knights in the preprocessing phase (weight
is rarely assigned to a queen) so that a knight will be selected first on the final
run (provided sufficient weight is accrued). Similarly WTDI will keep restarting
until sufficient weight has been attached to the constraints of a knight such that the
knight is selected at the top of the search tree, provided R and C are large enough.

Results for a sample of queens-knights instances are given in Table 3.1, com-
paring dom/wdeg-nores with our two approaches. All instances were taken from
the benchmark website of the 2005 CP solver competition†. The same restart-
cutoff (10 restarts, 200 node cutoff) combination was used for all RNDI experi-
ments, a different restart-cutoff combination (10 restarts, 1000 node cutoff) was

†http://cpai.ucc.ie/05/Benchmarks.html
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used for all WTDI experiments. Results for dom/fdeg are not presented as it failed
to solve any of these instances with a 2 million search node limit.

As one can see in Table 3.1, both restarting approaches achieve large gains in
search performance over dom/wdeg-nores, with order of magnitude differences
for large n across all three metrics of evaluation. Furthermore both approaches
always solved the instance in the minimum refutation size (n2) on the final run,
i.e. the run when the instance was solved.

There are some points of note regarding cutoff values for WTDI. If the cutoff
is so low that no wipeouts occur on the first run, then the same search tree will
be explored on each subsequent run. Furthermore the cutoff must be large enough
(> n) for the approach to reach the insoluble core. Finally, if one hopes to solve
the problem prior to the run to completion, the cutoff must be greater than the
optimal refutation for the problem set (> n2) .

Table 3.1: Results For Instances of the Queens-Knights Problem

n-r 12-5 15-5 20-5 25-5
type add mul add mul add mul add mul

dom/wdeg 8.7K 20.3K 23.7K 30.0K 50.2K 55.6K 117.0K 112.6K
Nds WTDI 1144 2144 2225 2225 2400 1400 2625 3625

RNDI 744 744 2225 2225 2400 2400 2625 2625
dom/wdeg 89M 307M 561M 1.0B 3.8B 4.5B 21.6B 21.5B

Cks WTDI 12M 38M 50M 79M 149M 130M 557M 751M
RNDI 6M 8M 45M 52M 140M 168M 309M 395M

dom/wdeg 3.30 9.17 20.99 31.54 144.2 166.1 810.1 781.4
T(s) WTDI 0.43 1.01 1.82 2.33 5.8 4.3 18.9 25.7

RNDI 0.27 0.31 1.92 2.09 6.1 6.7 14.9 16.0

Notes: Total Search Nodes, Constraint Checks and Time.
Restarts and cutoff-limit! RNDI: 10R 200C; WTDI: 10R 1000C

Therefore WTDI needed a larger cutoff than RNDI for these instances. (Note
that since RNDI uses random variable ordering, the probability of it weighting a
variable in an insoluble core is quite large for a given probe provided the cutoff is
within reason.) For example on the qk-25-5 instances, WTDI solved the problem
in 2 restarts on qk-add and 3 restarts on qk-mul with a cutoff of 1000 nodes. For
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the same instances RNDI identified the knights as the source of contention with
10 restarts and a cutoff of 200 nodes.

For the RNDI approach on the 12 queens instances, most of the experiments
were solved during the random probing phase. This is because the minimal refuta-
tion for these two instances is 144 nodes, which is less than the cutoff. Thus when
a knight was randomly selected first the instance was solved during the probe. The
likelihood of a knight being selected first on a run is r/(r+n), here 5/17.

Clearly we could have optimized the parameters for both WTDI and RNDI to
each instance, however we were merely concerned with showing that large savings
can be made with a weighted degree heuristic by performing a small amount of
preprocessing.

Further results for problems with insoluble cores

The next two problem sets are also taken from the benchmark website of the 2005
CSP Solver Competition†, (two sets of random 3-sat instances); the last problem
set was generated using Richard Wallace’s generator. The random 3-sat instances
were originally proposed in SAT format by Bayardo [117]. They are 2 classes
of easy random 3-sat instances, each with an embedded unsatisfiable subproblem
which were thought to make them exceptionally hard instances (hence the prob-
lem name ehi-⇤).

These instances were converted to CSP format by Bacchus [9] using the dual
encoding method [10]. The first class, ehi-85, has 100 instances, each containing
297 variables (85 in the original SAT instances). The second class, ehi-90, also
has 100 instances, each containing 315 variables (90 in the original sat instances).

The last problem set reported in Table 3.2 is a set of 100 “composed” ran-
dom instances which were generated by Richard Wallace. These consist of a main
under-constrained component in the form hn, d,m, ti where n is the number of
variables, d the uniform domain size, m the graph density of the component and
t the uniform constraint tightness; and k satellite components also in this form
attached by links of density m, tightness t. For these instances, the main compo-
nent was h100,10,0.15,0.05i, there were 5 satellites, all h20,10,0.25,0.5i, and links

†http://cpai.ucc.ie/05/Benchmarks.html
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were h0.012,0.05i.

Table 3.2: Results For Unsatisfiable Embedded Problems

dom dom
� � WTDI RNDI

fdeg wdeg
Solved 61% 100% 100% 100%

ehi-85-297 Final Run Nodes - - 14.2 21.1
Total Nodes > 63K 1160.3 224.2 170.2
Total Checks > 101M 2.96M 0.67M 1.63M
Total Time - 3.30 0.65 1.27

Solved 58% 100% 100% 100%
ehi-90-315 Final Run Nodes - - 30.0 23.5

Total Nodes > 58K 1008.6 252.0 172.8
Total Checks > 105M 2.9M 0.84M 1.72M
Total Time - 3.31 0.86 1.39

Solved 0% 100% 100% 100%
composed Final Run Nodes - - 45.96 133

Total Nodes - 13953 426 1133
Total Checks - 13M 0.5M 1.2M
Total Time - 14.57 0.41 1.03

Notes: Results are averages per instance. dom/fdeg had a cutoff of
100,000 nodes in the above experiments. RNDI had restarting regimens of
R=10, C=20 for ehi instances and R=20, C=50 for composed.
WTDI had restarting parameters R=10, C=200 for all problem sets.

The results of Table 3.2 once again show that large gains can be made over
dom/wdeg-nores by performing a small amount of preprocessing. As expected,
dom/fdeg performed extremely poorly on these problem sets, failing to solve
any of the composed instances within the cutoff. These problems are unsuited to
dom/fdeg as the variables in the insoluble core generally do not have large de-
grees nor small domains. Thus dom/fdeg suffers from large amounts of thrashing
without ever identifying the source of the thrashing, i.e. the problems in the insol-
uble core.

It is interesting to note that even though dom/wdeg-nores was extremely effi-
cient at solving the ehi problem sets (roughly 1000 nodes on average per instance),
the two restarting approaches were still able to improve on it. WTDI solved most
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instances prior to the run to completion. In fact it averaged less than two restarts
per instance for all 3 problem sets.

RNDI solved many of the ehi instances during the random probing phase even
with its short cutoff (nearly 40 instances in both sets on each run), averaging less
than 9 restarts per instance for both ehi sets. However it failed to solve any of the
composed instances prior to the run to completion.

Both RNDI and WTDI have advantages and disadvantages. For these prob-
lems, RNDI is likely to choose a variable in an insoluble core earlier than WTDI
(since WTDI follows the search of dom/fdeg up until at least one failure occurs).
However, once WTDI discovers an insoluble core, the weight thereafter will be
concentrated on variables in this core. On the other hand, the weight will be spread
across all insoluble cores with RNDI. This may lead to “jumping around” between
insoluble cores on the run to completion, which clearly would hinder search.

3.4.2 Analysis of various restart-cutoff combinations for RNDI
and WTDI

We now provide detailed analysis of the effect on WTDI and RNDI of varying
both the restart and cutoff factors on a given problem set. The problem set chosen
is a set of random binary problems which take the form hn, d,m, ti as defined
earlier. The problem parameters are based on one of the problem sets used by
Boussemart et al. in their study of the weighted degree heuristic [29].

The parameters were h200,10,0.0153,0.45i, the instances were generated by
Richard Wallace. The only difference in the method of generation from that of
Boussemart et al. is that each of the present instances consist of a single connected
component. This was done by first connecting the nodes of the constraint graph
successively to make a (random) spanning tree and then adding edges at random
until the required number had been chosen.

The instances are of type Model B, as discussed in [81]. From the original set,
100 soluble and 100 insoluble instances were selected so that they could be tested
separately. The purpose of this was to test if an approach was better suited to one
class or the other.

For both approaches, the cutoff levels tested were 250, 500, 1000, and 2000
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nodes. The number of restarts tested were 1, 5, 10 and 20. These factors were
“fully crossed” in the experiments, so that all values of the cutoff factor were tested
with all values of the restart factor. Thus, all combinations of factor-levels were
tested. In the case of RNDI, each condition, i.e. combination of values for cutoff
and restarts, was again tested ten times and the average of these ten experiments
is reported.

Results were analysed with the analysis of variance (ANOVA), in some cases
followed by comparisons of individual means using paired-comparison t-tests
[101]. For experiments with WTDI (next sub-section), the ANOVA was based on a
two-way fixed effects model. Experiments using RNDI (subsequent sub-section)
were analysed with a three-way mixed effects model in which problems was a
third factor (and each cell of the design had ten data points based on the ten tests
for the instance), as well as a two-way ANOVA based on the mean for each in-
stance across the ten tests.

To meet the statistical assumptions of the ANOVA, and to make computations
tractable, the original data were transformed by taking logarithms prior to the
analysis. (Since the test instances are in the critical complexity region, heavy-tail
effects are not present.)

These factors were tested with the following expectations. Increasing the cut-
off and increasing the number of restarts should result in a reduction in search
effort compared to dom/wdeg-nores, as the amount of contention information
grows. Furthermore increasing the cutoff and the number of restarts should in-
crease the likelihood that the problem will be solved prior to the run to comple-
tion by WTDI and, to a lesser extent, by RNDI. Increasing the number of restarts
should give a more diverse sample of the search space and, as such, should pro-
vide a better estimate of sources of global contention. However, as we show in the
next section, this did not turn out to be the case for WTDI.

Results for WTDI

Summary results for the tests of WTDI are given in Table 3.3. The table shows
mean nodes explored over the 100 instances in the two sets, for each condition.
This measure includes nodes searched across all runs, including the final run to
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Table 3.3: WTDI: Analysis of restart and cutoff factors.

Soluble Problems Insoluble Problems
Cutoff Cutoff

250 500 1000 2000 250 500 1000 2000
1 47,865 53,878 45,306 48,276 46,833 47,810 47,699 53,598

5 46,032 44,239 43,486 51,221 45,754 46,553 49,730 51,581
Restarts

10 51,850 48,246 49,903 55,939 44,487 47,072 53,626 62,526

20 39,158 53,155 55,062 59,692 48,607 54,022 64,805 80,899

Notes: h200,10,0.0153,0.55i problems. 100 instances per set. Mean nodes
explored across all runs per instance. For reference, dom/wdeg-nores averaged
42,468 nodes on the soluble instances and 41,200 nodes on the insoluble instances
Figures in bold indicates improvement over dom/wdeg-nores.

completion if one was needed. In this and the following tables, cases where the
average was better than that for dom/wdeg-nores are marked in bold

For the soluble problem set, the analysis of variance (ANOVA) showed only a
small statistically significant difference for the restarts factor (F (3,1584) = 2.9752,
p < 0.05) and none for the cutoff factor, while for insoluble problems both restarts
and cutoff, but not their interaction, were statistically significant (p < 0.001). For
the latter, it is clear from the table that this significance is due to the average nodes
increasing as restarts and cutoff increase. Indeed, WTDI improved on dom/wdeg-
nores in terms of nodes explored in only one case on the soluble problem set
(20R250C) and no restart-cutoff combination resulted in improved performance
on the insoluble problem set. This refutes the expectation that WTDI would result
in a reduction in search effort over dom/wdeg-nores.

However the cost of preprocessing may obscure improvements. Thus it is of
interest to consider means for the final run for each instance, to determine if there
was any evidence of improvement that could be ascribed to learning. (By the final
run we mean the run where either a solution was found or the instance was proven
insoluble.) An improvement would imply that the weights learnt were meaningful
and significant on a global scale. These results are given in Table 3.4.
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There are no consistent trends for the insoluble instances, which is reflected in
neither factor being statistically significant based on the ANOVA. Indeed, outside
of the results with 1 restart, there is little difference between the averages for the
other combinations (all in the range 42K – 45K). Furthermore, no combination
resulted in improved performance which suggests that the weights learnt were not
significant on a global scale.

For the soluble problem set on the other hand, the restarts factor was statisti-
cally significant (p < 0.001) as was the cutoff factor, although to a lesser degree
(p < 0.05). Although there are no consistent trends in the averages, means tended
to decrease as the number of restarts or the cutoff increased. Here, however, there
are a number of cases where WTDI solved the instances on average in less nodes
than dom/wdeg-nores (e.g. for 3 of the cutoff factors when combined with 20
restarts).

Table 3.4: WTDI: Analysis of restart and cutoff factors, final run.

Soluble Problems Insoluble Problems
Cutoff Cutoff

250 500 1000 2000 250 500 1000 2000
1 47,615 53,388 44,336 46,416 46,583 47,310 46,709 51,678

5 44,782 41,889 38,856 42,781 44,504 44,053 44,780 41,981
Restarts

10 49,353 43,686 41,043 40,579 41,987 42,072 43,726 43,326

20 34,191 44,400 38,292 31,472 43,607 44,022 45,005 42,499

Notes. h200,10,0.0153,0.55i problems. 100 instances per set.
Mean nodes explored for run where instance was solved.
For reference, dom/wdeg-nores averaged 42,468 nodes on the soluble instances
and 41,200 nodes on the insoluble instances

One possible reason for the statistically significant results on the soluble prob-
lem set that may confound interpretation is that an instance was only tested until a
solution was found. This means that whenever an instance was solved before the
run to completion, it would necessarily have a low value for the number of nodes
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in the final run. This would be more likely to happen for larger C and R, and is
suggested by the overall trends noted above.

Low averages for certain conditions may be because the weights were effective
at this point or because a degree of randomisation was added to a heuristic that is
generally effective. Therefore, cases where the mean was better than the reference
value (42,468) on the soluble problem set must be treated with caution.

To obviate this difficulty, instances were selected that were never solved before
the final run under any condition. There were 54 such instances in the soluble set
and 96 in the insoluble set. (Interestingly the 4 insoluble instances that were solved
prior to the run to completion were solved on the first run, further emphasizing the
notion that combining the heuristic with restarting is poor for these problems.)

Table 3.5: WTDI: Analysis of restart and cutoff factors, only instances solved on
run to completion, final run.

Soluble Problems Insoluble Problems
Cutoff Cutoff

250 500 1000 2000 250 500 1000 2000
1 66,446 79,489 62,272 66,787 48,450 49,196 48,584 53,774

5 62,636 58,875 58,587 69,877 46,291 45,827 46,586 43,673
Restarts

10 68,971 59,755 63,442 65,171 43,672 43,767 45,490 45,074

20 52,264 64,430 63,570 55,572 45,365 45,803 46,829 44,212

Notes. h200,10,0.0153,0.55i problems. Only instances solved on the run to
completion (54 instances in soluble set, 96 instances in insoluble set).
Mean nodes explored on run to completion.
For reference, dom/wdeg-nores averaged 58,669 nodes on 54 soluble instances
and 42,860 nodes on 96 insoluble instances

The means for these subsets under the present experimental regimen are given
in Table 3.5. As one can see there are no consistent improvements as the number
of restarts is increased nor as the cutoff is increased. Here the ANOVA gave no
statistically significant results for either soluble or insoluble problems. This indi-
cates that improvements over dom/wdeg-nores in Table 3.4 and the statistically
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significant results may be due to the factors suggested above.
There are at least two reasons why WTDI may not be effective here. The first

reason is there may not have been anything to learn on a global scale for these
problems. Since failure always occurs in a particular context in the form of a
partial assignment, weights derived from such failures may not be relevant at the
beginning of search when the contexts of those failures are no longer present.

Furthermore, variables with higher weights will tend to be chosen earlier af-
ter restart. These variables are less likely to have their weights increased in the
subsequent search since wipeouts generally don’t occur until after several vari-
ables have been assigned and only affect future variables when constraint prop-
agation is used. This will lead to different variables being weighted each time.
When these variables are chosen during subsequent restarts, still other variables
may be weighted, and so forth.

Together, these effects may make it difficult to distinguish sources of “global”
as opposed to “local” difficulty, i.e. difficulty that is basic to the problem and
which will, therefore, be encountered throughout the search space, versus diffi-
culty restricted to a specific part of the search space. We will return to this issue
in section 3.5.

Table 3.6: RNDI: Analysis of restart and cutoff factors.

Soluble Problems Insoluble Problems
Cutoff Cutoff

250 500 1000 2000 250 500 1000 2000
1 50,008 46,882 50,246 45,897 46,363 47,153 46,726 47,502

5 41,107 38,505 43,995 45,737 39,551 39,323 40,409 44,250
Restarts

10 37,683 41,006 43,673 51,697 38,073 38,684 42,800 51,186

20 39,616 42,284 49,172 68,368 38,501 41,937 49,874 68,383

Notes. h200,10,0.0153,0.55i problems. 100 instances per set.
Mean nodes explored across all runs for each instance. Average of ten tests per
instance. For reference, dom/wdeg-nores averaged 42,468 nodes on the soluble
instances and 41,200 nodes on the insoluble instances
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Results for RNDI

Results for fully crossed restart-cutoff experiments using RNDI are given in Table
3.6 with mean total search nodes (including nodes explored during preprocessing).
In contrast to those tests with WTDI, there was a more consistent improvement
in total nodes for both sets compared to dom/wdeg-nores (e.g. cutoff 250 for
restarts 5,10 and 20). With regard to trends, increasing the cutoff generally led to
an increase in average nodes (outside of the 1R condition), while there was no
consistent trend for increasing number of restarts. It is also interesting to note the
similarity between the behavior of RNDI on the soluble and insoluble problem
sets.

Table 3.7 gives results for mean search nodes on the final run, i.e. the run where
the instance was solved. The first point to note is that, outside of the 1R condition,
every restart-cutoff combination improved on dom/wdeg-nores for both sets.

RNDI failed to solved any instance during preprocessing. Thus every instance
was solved on the final run using dom/wdeg with the weights learnt in preprocess-
ing guiding its early choices. This was expected as search with random variable
ordering using d-way branching can be inefficient. Hence, the results in Tables 3.6
and 3.7 are not affected by finding a solution prior to the run to completion.

For comparisons of means in Table 3.7, we performed a two-way ANOVA
with only the restarts and cutoff factors, using the means for the ten tests for each
problem and condition. The restarts factor was highly significant (F (3, 1584) =
15.8423 for soluble, F (3, 1584) = 8.2953 for insoluble, p ⌧ 0.001), while nei-
ther the cutoff factor nor the interaction of cutoff and restarts had any statistical
significance.

In Table 3.8, we also provide the 3-way mixed effects ANOVA for the soluble
set, containing problems as a third factor. This gave a highly significant result
for the restarts factor (p ⌧ 0.001); in contrast, the result for the cutoff factor
was much less significant (p < 0.01). Not surprisingly, the problems factor was
highly significant, showing that there were stable differences in problem difficulty
despite the randomisation of variable selection. The most significant interaction
was between problems and number of restarts (p⌧ 0.001), while there was a less
significant interaction between the number of restarts and the cutoff (p < 0.05).
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Table 3.7: RNDI: Analysis of restart and cutoff factors, final run.

Soluble Problems Insoluble Problems
Cutoff Cutoff

250 500 1000 2000 250 500 1000 2000
1 49,758 46,382 49,246 43,897 46,113 46,653 45,726 45,502

5 39,857 36,005 38,995 35,737 38,301 36,823 35,409 34,250
Restarts

10 35,183 36,006 33,673 31,697 35,573 33,684 32,800 31,186

20 34,616 32,284 29,172 28,368 33,501 31,937 29,874 28,383

Notes. h200,10,0.0153,0.55i problems. 100 instances per set.
Mean nodes explored in run where instance was solved. Average of 10 experiments.
For reference, dom/wdeg-nores averaged 42,468 nodes on the soluble instances
and 41,200 nodes on the insoluble instances

The consistent significance of the restarts factor is logical for RNDI, more
restarts means a more diverse sample of the search space. A large cutoff, on the
other hand, will just give greater weight increments in each individual search tree.
This could lead to overweighting local sources of contention. This implies that
a short cutoff (Ci) with many restarts (Ri) should learn better information than
a large cutoff (Cj) with few restarts (Rj), where CiRi = CjRj , i.e. where the
total number of search nodes explored during probing is the same (e.g. 10R500C
versus 20R250C). These expectations are largely borne out by the experiments
using RNDI, although differences are generally small and were rarely statistically
significant when compared using paired comparison t-tests. We will investigate
this hypothesis further in the following section.

To assess the variation in performance of random probing across the ten exper-
iments with different seeds, we calculated the standard deviation of the means of
the 100 instances, which we plot in Figure 3.1. Increasing the number of restarts
generally resulted in a reduction in variation (in 10/12 comparisons between se-
quential restart parameters for both soluble and insoluble instances). On the other
hand, increasing the cutoff only resulted in a decrease in variation on roughly 50%
of paired comparisons between sequential cutoff parameters. This further supports
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Table 3.8: Analysis of Variance for RNDI, Solution Run

factor Df Sum Sq Mean Sq F value Pr(>F )
Problems 99 22001.6 222.238 297.9671 < 2.20E-16
Restart 3 370.4 123.463 165.5341 < 2.20E-16
Cutoff 3 11.6 3.854 5.1669 0.00144
P*R 297 866 2.916 3.9096 < 2.20E-16
P*C 297 227.3 0.765 1.0262 0.366977
R*C 9 12.6 1.403 1.8811 0.049913
P*R*C 891 651.6 0.731 0.9805 0.65068
Residuals 14400 10740.2 0.746

Notes. Based on data of Soluble Problem Set in Table 3.7.
Column headers are standard abbreviations for ANOVA terms:
“Df” = Degrees of freedom, “Sum Sq” = sum of squares, “Mean
Sq” = mean sum of squares (Sum Sq / Df), “F ” is the test statistic
obtained by dividing the Mean Sq in the row by the Mean Sq
Residual. “Pr(>F )”is the probability of obtaining the value of F under
the null hypothesis of no effects, where the expectation of F=1.

the hypothesis that the number of restarts is the key element to identifying globally
contentious variables with random probing.
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Figure 3.1: Standard deviation of RNDI experiments with different seeds.

3.4.3 Random Problems

The experiments in this section were carried out on random binary CSPs, which
take the form hn, d,m, ti as defined earlier; and on random k-coloring problems.
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The problem parameters for the random binary CSPs are, again, based on the prob-
lem sets used by Boussemart et al. in their study of the weighted degree heuristic
[29].

The parameters for the random binary problems are h80,10,0.1042,0.65i. The
random k-coloring problems were generated using Richard Wallace’s generator.
There were 300 variables, with 3 colors and density 0.009. Here, instances were
also separated into soluble and insoluble sets, each set containing 100 instances. A
further set of soluble coloring instances (as studied in [92]) was also tested, there
were 100 instances each with 50 variables, 6 colors and density 0.27.

The main results are shown in Table 3.9. Somewhat surprisingly, WTDI only
improved on dom/wdeg-nores in one problem set (the 3-Coloring Soluble set),
and in fact was sometimes appreciably worse. If one considers nodes for just the
final run, it also improved on the 6-coloring problem set, although here it solved
64 of the instances prior to the run to completion.

RNDI, on the other hand, nearly always led to improved performance although
the differences were not always large. The largest improvement was 40% on the
soluble 3-coloring problem set. The performance on the Rand-80 set, where there
was most room for improvement, was surprising as it was expected that real gains
could be made by preprocessing. Although it did reduce the average search nodes
on the final run by over 5% this did not offset the cost of probing.

Interestingly, RNDI performed poorly on the relatively easy 6-coloring in-
stances. Although there was not much room for improvement here (indeed the cost
of preprocessing (⇡2400 nodes) was more than twice the average of dom/wdeg-
nores and dom/fdeg for these instances), the average nodes explored on the final
run was over three times greater than that of dom/wdeg-nores.

There are two possible reasons for this: the first is simply that the weights
learnt by random probing were poor for these instances, i.e. random probing was
unable to identify globally difficult elements; the second possibility is that the in-
teraction of the weights with the domain factor was counter-productive. We tested
whether the latter was the case by combining RNDI with two alternative heuris-
tics, wdeg, and a variation of the brelaz heuristic [31], where variables are chosen
by their domain size and ties are broken by the variables’ weighted degrees. We
refer to this heuristic as brelazwdeg. The results are given in Table3.10.
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Table 3.9: Results For Random Binary and k-Coloring Problems

dom dom
� � WTDI RNDI

fdeg wdeg
Total Nodes 242.6K 186.9K 229.3K 184.4K

Rand-80 Final Run Nodes - - 221.3K 176.4K
(54/100 sol) Total Checks 342M 280M 352M 276M

Total Time 125.44 105.41 131.00 105.50
#PreSol - - 2 0

Total Nodes 42.7K 22.1K 20.3K 14.1K
3-Coloring Final Run Nodes - - 11.5K 10.1K

Soluble Total Checks 3.5M 2.3M 2.0M 1.5M
Total Time 39.71 25.15 21.77 17.09

#PreSol - - 21 0
Total Nodes 145.5K 54K 65.6K 50.6K

3-Coloring Final Run Nodes - - 55.8K 46.6K
Insoluble Total Checks 12M 5.6M 6.9M 5.3M

Total Time 137.56 60.63 73.42 58.08
#PreSol - - 2 0

Total Nodes 1285.1 1028.9 2030.5 5796.5
6-Coloring Final Run Nodes - - 714.1 3428.4

Soluble Total Checks 101.9K 93.0K 185.8K 488.1K
Total Time 0.08 0.08 0.15 0.40

#PreSol - - 64 2.3

Notes: Results are averages per instance.
“#PreSol” refers to the number of instances solved prior to the run to
completion.
For Rand-80 problem set, R = 40 and C = 200 for both RNDI and WTDI.
For 3-coloring problem sets, R = 40 and C = 100 for RNDI,
R = 20 and C = 500 for WTDI.
For 6-coloring problem set, R = 40 and C = 60 for both RNDI and WTDI.
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Table 3.10: Results For 50 Variable 6-Coloring Problem Set

WTDI RNDI
fdeg wdeg wdeg wdeg

Total Nodes 1285.1 1028.9 2030.5 5796.5
Final Run Nodes - - 714.1 3428.4

dom/⇤ Total Checks 101.9K 93.0K 185.8K 488.1K
Total Time 0.08 0.08 0.15 0.40

#PreSol - - 64 2.3
Total Nodes 347.3K 16.9K 17.6K 15.3K

Final Run Nodes - - 15.5K 12.9K
⇤ Total Checks 22.8M 2.0M 2.2M 1.7M

Total Time 23.45 1.45 1.51 1.25
#PreSol - - 28 2.3

Total Nodes 909.2 805.5 2263.6 2979.6
Final Run Nodes - - 712.0 611.5

brelaz⇤ Total Checks 64.7K 59.2K 202.4K 179.3K
Total Time 0.05 0.05 0.15 0.17

#PreSol - - 50 2.3

Notes: Results are averages per instance. “⇤” refers to either fdeg or
wdeg in the top row. “#PreSol” refers to the number of instances
solved during the information gathering phase.
R = 40 and C = 60 for both RNDI and WTDI.

When the domain factor is removed entirely (i.e. the heuristic was either fdeg
or wdeg), we see that random probing performs best. This supports our hypoth-
esis that the reason for the poor performance of random probing followed by
dom/wdeg on these instances was due to an adverse interaction with the domain
factor, and not due to the quality of information learnt during probing.

The brelaz heuristic was specifically developed for graph coloring problems
and, as the results illustrate, it is extremely effective. Interestingly, we find that
the heuristic can still be improved upon by breaking ties with wdeg rather than
fdeg. The cost of probing again outweighs the benefits for both RNDI and WTDI,
however we see that on the final run both improve upon brelazwdeg-nores. In
the case of RNDI, which rarely solved an instance during the probing phase, this
confirms that the weights learnt were indeed beneficial.
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Analysis of information quality

In order to better analyze the quality of information gathered by the two restarting
approaches we froze the weights after preprocessing, i.e. on the run to comple-
tion. Although this does go against the purpose of the methods (i.e. providing
the heuristic with information from which to make better initial decisions), this
was done to obtain information about the effectiveness of weight increments dur-
ing the initial runs without contamination from updates during the final run of
search. Note that results for WTDI are not completely representative of freezing
the weights as they include instances which WTDI solved prior to the run to com-
pletion.

Table 3.11: Results For Random Binary and k-Coloring Problems, Frozen
Weights

dom Frozen Frozen
� WTDI WTDI RNDI RNDI

wdeg
Rand-200 Final Run Nodes - 43.7K 61.5 36.0K 37.0K
Soluble Total Nodes 42.5K 48.2K 66.1K 41.0K 42.0K

Lex Total Checks 107M 122M 168M 98M 104M
Rand-200 Final Run Nodes - 42.1K 54.1K 33.7K 34.8K
Insoluble Total Nodes 41.2K 47.1K 59.1K 38.7K 39.8K

Total Checks 115M 136M 168M 103M 109M
Rand-80 Final Run Nodes - 221.3K 268.4K 176.4K 142.0K

(54/100 sol) Total Nodes 186.9K 229.3K 276.3K 184.4K 150.4K
Total Checks 280M 352M 418M 276M 237M

3-Coloring Final Run Nodes - 11.5K 18.2K 10.1K 9.6K
Soluble Total Nodes 22.1K 20.3K 27.1K 14.1K 13.6K

Total Checks 2.3M 2.0M 2.7M 1.5M 1.4M
3-Coloring Final Run Nodes - 55.8K 83.2K 46.6K 34.1K
Insoluble Total Nodes 54K 65.6K 93.0K 50.6K 38.1K

Total Checks 5.6M 6.9M 9.7M 5.3M 4.2M

Notes: Results are averages per instance.
For Rand-200 problem sets, R = 10 and C = 500
For Rand-80 problem set, R = 40 and C = 200.
For coloring problem sets, R = 20 and C = 500

for WTDI, R = 40 and C = 100 for RNDI.

The results provide more compelling evidence concerning the quality of infor-
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mation learnt by both approaches (Table 3.11). As expected, freezing the weights
consistently lead to a large degradation in performance for WTDI. A puzzling
aspect of these results is that learning during the final run can actually hinder
search in the RNDI approach (Rand-80 and 3-Coloring insoluble problem sets).
This could be ascribed to the interaction between the weights learnt during pre-
processing and the weights learnt on the final run. Since we are learning from a
relatively small sample in our preprocessing (a maximum of only 8000 nodes),
the weights learnt can be quickly subsumed by the weights learnt on the final run,
often changing the order of the variables (except for the first variable selected).

Table 3.12: RNDI Comparison of (Small R, Large C) with (Large R, Small C)

R200 R200 R80 3-Col 3-Col
Sol Insol Sol Insol

dom/wdeg Nodes 42.5K 41.2K 186.9K 22.1K 54.0K
-nores Runtime 92.5 93.0 105.4 25.1 60.6

Frozen RNDI Total Nodes 42.0K 39.8K 166.2K 16.0K 48.3K
(10R Large C) Runtime 94.7 94.3 105.6 21.3 61.1
Frozen RNDI Total Nodes 33.7K 32.3K 144.0K 13.4K 37.2K

(100R Small C) Runtime 78.0 66.8 91.2 16.4 43.4

Notes: Average nodes/runtime per instance.
For Rand-200 problems (“R200”), Large C = 500 and Small C = 50.
For Rand-80 problems (“R80”), Large C = 800 and Small C = 80.
For 3-Col problems, Large C = 400 and Small C = 40.

In the previous section, we noticed a trend for RNDI where, for Ri > Rj ,
Ci < Cj , and RiCi = RjCj , the approach with a greater number of restarts and
a shorter cutoff generally performed better. We tested this further by comparing
R = 100 with small C versus R = 10 with large C, as shown in Table 3.12.
Weights were again frozen to directly assess the quality of information learnt.
(The values of C were based on the parameters used in Table 3.9, so as to explore
the same number of nodes in preprocessing.)

The results clearly show that the information learnt with the 100R approach is
of better quality, with improvements over the 10R approach ranging from 10-30%
in terms of both average nodes explored and mean runtime. Similar improvements
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were found over dom/wdeg-nores. These results were further corroborated using
paired t-tests comparing the mean nodes of the two RNDI methods over 10 runs
for each instance, the differences were statistically significant for all problem sets
(p⌧ 0.001).

3.4.4 Structured Problems

In this section, we look at problems with a more defined structure, in particular
open shop scheduling problems (OSPs). An OSP involves a set of n Jobs and
a set of m Machines, where each job consists of m tasks. Each task, ti has an
associated duration (pi, its processing time) and machine; no two tasks of the
same job share a machine. (Taillard found that only instances generated with n =
m were non-trivial [196] so all “os-taillard-n” instances have n = m.)

The problem involves finding a schedule of all tasks such that no pair of tasks
of a job overlap in their processing time, and no pair of tasks sharing a machine
overlap in their processing time. In CSP terms: the variables are the tasks, the
domain of a variable is the set of possible starting times for the variable. The
constraints between pairs of tasks (ti, tj) of the same job/machine are as follows:

(ti + pi  tj)
W

(tj + durj  ti)

i.e. either ti finishes before tj starts, or vice versa. When formulated as an opti-
mization problem, the goal is generally to minimize the makespan, i.e. the latest
finishing time over all tasks minus the earliest starting time over all tasks. A sam-
ple solution to an OSP with four jobs and four machines is given in Figure 3.2,
where the makespan is given by (tend - tstart).

We tested on OSPs from the CSP solver competition †. The instances are de-
rived from the Taillard optimization instances [196]. Each optimization instance
was converted to three satisfaction instances by fixing the latest allowed finishing
time of all tasks based on the best known makespan (BKM) found by Taillard for
the instance.

The latest allowed finishing times of tasks in the “os-taillard-n-100” instances
is set to the BKM (i.e. the domain of each task ti is (0. . . (BKM - pi))), the lat-
est allowed finishing time of tasks in the “os-taillard-n-105” instances is set to

†http://www.cril.univ-artois.fr/ lecoutre/benchmarks/ benchmarks.html
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Figure 3.2: Solution to a sample 4x4 OSP.

105%(BKM), while the latest allowed finishing time of tasks in the “os-taillard-
n-95” instances is set to 95%(BKM). All instances in the first two sets (*-100 and
*-105) are soluble, whilst instances of the latter set are generally insoluble (un-
less BKM was not the optimal solution, which does not apply to the problem sets
studied here).

In the previous section we showed that combining the weighted degree heuris-
tic directly with a restarting strategy performed quite poorly on the random prob-
lem sets studied. However, there are reasons to believe that WTDI may perform
better on more structured problems such as the open shop scheduling instances.
Firstly, Thornton found that constraint weighting methods in local search per-
formed better on structured (as opposed to random) CSPs where it was able to
distinguish between harder and easier sets of constraints [198].

Secondly, systematic search methods for these types of scheduling problems
are known to suffer from the “early mistake problem”, where a poor decision at
the top of the search tree may result in the exploration of an exponentially large
insoluble subtree which cannot be recovered from in a feasible amount of time.
This occurs because, although the instances often contain many solutions, there
are also large parts of the search space without a solution [50].
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Crawford and Baker further hypothesized that the job shop scheduling prob-
lems contain a small number of “control” variables (which define the schedule)
and the rest are “dependent” variables (whose values are determined by the con-
trol variables). (Note that, as mentioned earlier, this is obviously closely related to
the concept of backdoor variables as introduced by Williams et al. [227].) Restart-
ing search, combined with some form of randomization, can reduce the impact
of the early mistake problem on search effort by trying different orderings at the
top of the search tree until the control variables are selected. Indeed, it is likely
that these control variables are bottlenecks which can be identified through their
constraint weights.

Experimentation

We tested on 5 sets of Taillard instances: two sets of instances with n=4 (so 16
tasks to be scheduled); and three sets of instances with n=5 (25 tasks to be sched-
uled). Each set contains ten instances. Domain sizes range from 120 to 270 for
ost-4-100 instances and 180 to 330 for ost-5-100 instances.

We ran the same experimental setup as for the random problems, with a restart-
ing regimen for both RNDI and WTDI of 50 restarts with a cutoff of 40 nodes per
run. However, even though the instances tested were relatively small, search was
limited to an overall cutoff of one million nodes due to the issues discussed with
regard to the early mistake problem. Thus we also present our results in terms of
number of instances solved (for RNDI this is the average number solved across
10 experiments).

The value ordering was a form of lexico, the ordering alternated between the
lower and upper bound on the variable’s domain. In other words, when a variable
is first selected it is assigned its lower bound. If search backtracks to the variable
it will remove the last value assigned and assign it the opposite bound of what was
chosen the previous time.

Table 3.13 presents the results on the five sets. Both restarting strategies im-
prove on dom/wdeg-nores on all but the first set. The biggest differences can be
seen for the larger sets (containing 25 tasks per instance). Interestingly, random
probing solved roughly the same number of instances during the probing phase
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Table 3.13: Results For Open Shop Scheduling Problems

dom dom
� � WTDI RNDI

fdeg wdeg
#Sol 10 10 10 10

#PreSol - - 1 1
ost-4-95 Total Nodes 56.3K 3.7K 3.8K 3.3K

Final Run Nodes - - 2.0K 1.5K
Total Time 1.41 0.10 0.15 0.15

#Sol 9 10 10 10
#PreSol - - 8 9.8

ost-4-100 Total Nodes 246.1K 17.2K 3.3K 0.4K
Final Run Nodes - - 2.8K 0.03K

Total Time 7.77 0.59 0.12 0.02
#Sol 5 6 8 9.4

#PreSol - - 0 0
ost-5-95 Total Nodes 595.9K 410.5K 251.6K 121.3K

Final Run Nodes - - 249.6K 119.3K
Total Time 29.32 20.55 13.21 6.64

#Sol 2 2 6 4.1
#PreSol - - 2 0.9

ost-5-100 Total Nodes 895.2K 830.0K 417.0K 660.4K
Final Run Nodes - - 415.3K 658.5K

Total Time 36.08 39.26 20.92 33.58
#Sol 6 9 10 10

#PreSol - - 10 9.5
ost-5-105 Total Nodes 406.0K 134.3K 0.3K 0.5K

Final Run Nodes - - 0.03K 0.04K
Total Time 13.52 6.67 0.02 0.03
Total Sol 32 37 44 43.5

Notes: Results are averages per instance, including cases where
the overall cutoff was reached. “#PreSol” refers to the number of instances
solved during the information gathering phase.
R = 50 and C = 40 for both RNDI and WTDI for all sets.
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as WTDI. A similar result was found by Crawford and Baker [50] on job shop
scheduling problems (JSP) using iterative sampling where decisions were made
randomly and search restarted after the first failure.

According to Crawford and Baker [50], iterative sampling was effective at
solving JSPs for the following reasons. Firstly, these types of problem often con-
tain many solutions and their perceived difficulty is due to the “early mistake
problem”, repeatedly restarting will avoid the early mistake problem and eventu-
ally find one of the solution paths. They further hypothesized that the JSPs contain
a small number of control variables which determine the values for the other (de-
pendent) variables.

Overall, we see that the two restarting strategies offer large improvements over
dom/wdeg-nores. We also tested freezing the weights for these instances, but this
resulted in a deterioration in performance for both RNDI and WTDI. Thus, it is
important to continue updating weights on these problems.
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Figure 3.3: Weight profiles on qk-15-5-add for WTDI and two runs of RNDI
with different seeds (RNDI 1, RNDI 2).



3.5. ANALYSIS OF WEIGHT CHANGES PRODUCED BY EACH STRATEGY 75

3.5 Analysis of Weight Changes Produced by Each
Strategy

In this section we analyse the weights produced by RNDI and WTDI to gain
a deeper insight into the behavior of the approaches during search. We refer to
the weighted degrees of the variables in an instance as the weight profile. We
first look at weight profiles after our preprocessing methods on instances with
insoluble cores. Figures 3.3(a) and 3.3(b) illustrate weight profiles on the qk-15-
5-add instance. Weights for RNDI are averaged over ten experiments.

The first figure shows the degrees, and weighted degrees after probing, of the
queens and the knights variables. The first 15 variables are the queen variables
while the last 5 variables are the knight variables. If we compare the weights on
the knights with those on the queens we see the queens receive very little weight
while most of the knights receive a large amount of weight as expected.

Figure 3.3(b) shows the weights for the queens alone. RNDI rarely failed on
a queen constraint while WTDI resulted in a weight increase on a number of the
queens. However the weight gain by queens variables are dwarfed by the weight
increases on the knight variables. This shows the ability of both approaches to
focus on global sources of contention and avoid weighting local sources of con-
tention.

Sample weights for the first ehi-85-297 instance and the first of the composed
instances are given in figures 3.4(a) and 3.4(b) respectively. The variables are
ranked by their degrees in decreasing order. It is clear from the figures that the
reason these problems are difficult for normal degree-based heuristics is that the
variables that are part of the insoluble core(s), the variables with largest weighted
degrees, do not also have the largest degrees. Furthermore the domain sizes of
all variables are nearly identical at the start of solving so domain-based heuristics
(with lexical tie-breaking) will suffer from the same thrashing effects which hinder
degree-based heuristics on these problems.

To better understand the differences between the two strategies on random
binary instances used in the previous experiments, we generated weight profiles
on 5 randomly selected instances of the random binary 200-variable soluble set.
For these tests, we used a cutoff of 500 nodes with 100 restarts. The five instances
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Figure 3.4: Weight profiles for WTDI and RNDI on sample ehi-85 and
composed instances. * iRjC refers to i restarts and cutoff j.

chosen for these tests were sufficiently difficult that they were not solved within
the specified cutoff by either approach. Each variable’s weighted degree was saved
after every restart.

After 100 restarts the sum of weights across all variables was 80% greater for
random probing than for WTDI on average. This means that when using random
variable selection there were 80% more failures than when using dom/wdeg in
preprocessing.

This is a slightly surprising result. One would expect that search with random
variable ordering would not discover failures till a greater depth than search with
dom/wdeg. Since variables are selected randomly it is less likely to build up the
contention at the top of the search tree to the same degree as WTDI, and thus one
may expect that WTDI would fail more often within the same cutoff.

To test this, we plot in Figure 3.5 the average number of failures at each search
depth per probe, for both RNDI and WTDI after 100 restarts with a 500 node cut-
off, for a sample instance from the Rand-200 soluble set. As we can see, the peak
failure depth for random probing is indeed deeper than WTDI, but interestingly
there is a much larger number of failures at this peak. This can be explained by dif-
ferences in thrashing, the weighted degree heuristic moves contentious variables
up the ordering during WTDI, while RNDI will repeatedly fail without identifying
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Figure 3.5: Average number of failures at each search depth per probe for RNDI
and WTDI, 100R500C. Sample Rand-200 soluble instance.

the cause.

One reasonable explanation for the greater effectiveness of RNDI is that it
provides better discrimination among variables, especially those with the largest
weights. Figure 3.6(a) shows a typical weight plot for a single instance after 100
restarts, for a WTDI experiment and for two RNDI experiments which had dif-
ferent random seeds. In all three cases the variables were ranked according to
their weight after the 100th restart. Figure 3.6(b) is the same three weight pro-
files where each weighted degree was normalised with respect to the maximum
weighted degree in the profile.

The slope of the line indicates the level of discrimination between successive
variables in the ranked order. Note that, for both RNDI runs, the slope is very steep
for the top 50 variables and maintains a better level of discrimination over the next
50 variables than WTDI. The weight plot for WTDI has a much more gradual
inclination, which indicates that even after 100 restarts there are no variables (or
even subsets of variables) standing out as clearly contentious. This can be seen
more clearly when the weights were normalised. Also, since the differences in
weighted degrees between successively ranked variables are small in WTDI, the
domain factor of dom/wdeg will have more influence than for RNDI.



78 PROBING FOR FAILURE

25 50 75 100 125 150 175 200

500

1000

1500

2000

2500 WTDI
RNDI_1
RNDI_2

Variables (ranked by weighted degree)

W
ei

gh
te

d 
D

eg
re

e

(a) Wdeg Profiles

25 50 75 100 125 150 175 200

0.2

0.4

0.6

0.8

1.0
WTDI
RNDI_1
RNDI_2

Variables (ranked by weighted degree)

N
or

m
al

is
ed

 W
ei

gh
te

d 
D

eg
re

e

(b) Normalised Wdeg Profiles

Figure 3.6: Weight profiles and normalised weight profiles after preprocessing
with 100R 500C for WTDI and two independent runs of RNDI.

An alternative method to assess the level of discrimination in the weight pro-
files is to look at their Gini coefficient, which is a measure of the inequality of a
distribution of a variable. In our case we are mapping the proportion of weight on
the bottom x% of variables over the total weight accrued.
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Figure 3.7: Gini coefficients for weight distribution every 10 restarts on sample
Rand-200 soluble instance.

We used the weight profiles generated on the 5 instances from the Rand-200
soluble set with 100 restarts and a cutoff of 500 nodes mentioned above. The Gini
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coefficient was calculated after every 10 restarts. The results for a sample instance
are shown in Figure 3.7. The Gini coefficient for WTDI was consistently less than
that for RNDI. This confirms that RNDI provides greater discrimination amongst
variables.

One possible explanation for the difference is that RNDI accrued considerably
more weight than WTDI during each probe, and thus the proportion of weight on
the top variables may be similar but the weights in RNDI are much greater. How-
ever, when we compare the Gini coefficients between weight profiles on the same
instance with roughly the same sum of weighted degrees in Figure 3.7 (e.g. RNDI
after 10 restarts versus WTDI after 30 restarts) we find that the Gini coefficient for
RNDI is still significantly higher. Indeed, the lowest Gini for RNDI here (0.578
after 10 restarts) was still greater than the highest Gini coefficient with WTDI
(0.525 after 100 restarts), even though the weight accrued by WTDI was nearly 5
times greater.

We evaluated the stability of the weight rankings across restarts using the
top-down rank correlation coefficient [112]. We chose this statistic as we are pri-
marily interested in the correlation amongst the variables identified as “globally”
contentious by the probing methods. Furthermore, there are often a number of
variables which are rarely involved in a domain wipeout. Inclusion of these low-
ranked variables can produce spuriously high rank correlations when using an
unweighted method such as Spearman’s rank correlation coefficient.

We first assessed the consistency of the weight profiles produced by RNDI
and WTDI across restarts. We calculated the weight increase per variable for each
block of 20 restarts on an instance (i.e. a variable’s weight increase in restarts
1-20, 21-40, etc.). This was done to ensure independent rankings for the statistic.

The average top-down correlation amongst these augmented weight profiles is
given in Figure 3.8 for each sample instance. RNDI was clearly more consistent
than WTDI in its identification of the globally contentious variables. This is fur-
ther underlined by the overall range of correlations found for both methods. The
augmented weight profiles produced by WTDI had correlations ranging from 0.69
– 0.91, compared to a range of 0.80 – 0.95 for RNDI.

We next assessed the consistency of RNDI across different initial random
seeds. We calculated top-down correlations amongst weight profiles generated
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Figure 3.8: Average top-down correlation between weight increments every 20
restarts on 5 sample Rand-200 soluble instances, with 100R500C restarting

strategy for both RNDI and WTDI.
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Figure 3.9: RNDI (100R500C) restarting strategy, 5 sample Rand-200 soluble
instances. Overall maximum, average, and minimum top-down correlations every

10 restarts across five runs on each instance.
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by RNDI with five different seeds, on the five sample instances, after every 10
restarts. In Figure 3.9, we plot the minimum, average, and maximum correlations
over the five instances, per 10 restarts. The results show that after 40 restarts, cor-
relations amongst weight profiles generated with different seeds were all above
0.9. This confirms that RNDI is consistent at identifying globally contentious
variables in these problems, while the results also suggests that 10 restarts is not
sufficient to adequately sample the search space.

We hypothesized earlier that a large number of short runs is better than a few
long runs for identifying globally contentious variables. To test this, we gener-
ated weight profiles for the restarting strategies 100R50C and 10R500C with five
different seeds on each of the five sample instances, and calculated top-down cor-
relations amongst rankings on the same instance.

Our analysis of the correlations (as illustrated in Figure 3.10) confirms that
taking a more varied sample produces more consistent information, notwithstand-
ing the shorter cutoff. Indeed, the minimum correlation between a pair of weight
profiles generated using 100R50C was 0.90, compared to a minimum of 0.71 for
the 10R500C setting.
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Figure 3.10: Average top-down correlation across five runs per instance for
RNDI, comparing weight profiles of 100R50C with 10R500C restarting stragies.

We also generated weight profiles for 10 open shop scheduling instances in
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the set ost-5-95 (these were chosen as none were solved during preprocessing
by either method). For each instance, we generated the weight profile for WTDI
and two weight profiles for RNDI with different seeds, a sample plot is given in
Figure 3.11 for instance ost-5-95-3. Here, WTDI clearly identified a small subset
of variables as contentious and focused search on these. RNDI, on the other hand,
had a wider spread of weight albeit still providing greatest discrimination between
its top ranked variables.

Upon further investigation, we find that this instance contains five insoluble
cores, three on the machines and two on the jobs. These were insoluble cores
as the sum of durations of the five tasks in the job/machine exceeded the latest
allowed finishing time of the tasks (95%BKM). Thus, no matter the ordering, it is
impossible for the five tasks to be processed sequentially in the allotted time.

There are six variables which partake in two insoluble cores. The five variables
weighted by WTDI form an insoluble core, they are five tasks of the one job.
Three of these variables are also in an insoluble core on their associated machines.
Analysis of the top ranked variables based on weights from RNDI show that the
same variable was ranked first after preprocessing with the two different seeds
(albeit tied first in one case). This variable participated in two insoluble cores, one
on its machine and one on its job (not the same job as identified by WTDI).
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Figure 3.11: ost-5-95-3 weight profiles after preprocessing with 50R40C for both
WTDI and RNDI.
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Other variables ranked highly by both runs of RNDI include the variables
that WTDI identified as an insoluble core. Interestingly, RNDI weighted the vari-
ables with the largest duration in the insoluble core highly, while WTDI weighted
all five variables in its insoluble core highly. Indeed, the top ranked variable by
WTDI after preprocessing had a relatively small duration (37), while the two low-
est ranked variables in the insoluble core had largest durations (83 and 93).

This may explain why RNDI proved insolubility on this instance in 8400 nodes
on average (with seven runs proving insolubility in 7347 nodes, two runs proving
insolubility in 6457 nodes and one run taking 19050 nodes), compared to WTDI
which needed 20557 nodes to prove insolubility. Assigning the variable in the
insoluble core with the largest duration first is best for two reasons, firstly it has
the smallest domain (since the initial domain size of a variable x is (95%(BKM) -
durx)), and secondly it will result in the largest reduction of its neighbors domains
after propagation.

The Gini coefficients for the weights distributions on these scheduling in-
stances give further evidence of the ability of WTDI to focus on a subset of
variables. The average Gini coefficient over the 10 weight profiles was 0.73 for
WTDI, compared to an average of 0.46 for the RNDI weight profiles. On further
inspection, we find that the Gini coefficients for WTDI were generally between
0.75 and 0.85 with two exceptions which had Gini coefficients of 0.42 and 0.54
respectively. These two exceptions occurred for the instances which WTDI failed
to solve within the million node cutoff.

Weighted degree rankings of the variables were compared using the top-down
correlation coefficient. The correlations for the two RNDI rankings (with different
seeds) ranged from 0.45 to 0.90 across the ten instances, with an average of 0.68.
Thus the weight profiles generated by RNDI on these scheduling instances were
much less stable than for the random binary instances discussed earlier.

However, as shown in Table 3.13, RNDI still solved most of these instances
(9.4 on average), compared to WTDI which solved eight. As we have discussed
for the sample instance, once WTDI identified an insoluble core it concentrated
its weight therein. RNDI spread its weight across different insoluble cores but,
on occasion, found an insoluble core with a smaller proof. This may also explain
why RNDI performed worse when weights were frozen, RNDI may jump between
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insoluble cores with frozen weights whereas allowing learning to continue on the
run to completion may concentrate search in one insoluble core.

Overall, our analysis has supported a number of hypothesis regarding the re-
sults of our earlier experimentation. Firstly we have shown that both methods
are adept at identifying insoluble cores, be it in academic problems such as the
queens-knights or more real-world examples such as the scheduling instances of
Taillard. As expected, WTDI concentrates its weight on an insoluble core once
one is discovered (hence the high Gini coefficient for the insoluble scheduling in-
stances), while RNDI spreads its weight across insoluble cores if more than one
exists.

Secondly, when problems had less structure, WTDI, unlike RNDI, struggled
to separate locally contentious variables from those globally contentious as shown
by plots of ranked weighted degrees, and by their Gini coefficients. Furthermore,
RNDI resulted in more stable patterns of weight distribution, i.e. variables had
similar rankings after runs of RNDI with different seeds. This was clearest for the
top ranked variables, which shows that there were measurable differences in the
levels of contention associated with different variables in the instance.

3.6 Discussion

3.6.1 Variable Convection

WTDI suffers from something that we refer to as variable convection, which de-
scribes the rise and fall of variables within the heuristic’s ordering during search.
This effect occurs because variables which have a large weight (from the previous
runs) are selected at the top of the search tree. The first few variables chosen rarely
receive any weight in a given run, since failures generally don’t occur until at least
4 or 5 variables have been assigned. Eventually these variables fall back down the
ordering and are replaced by variables which have received weight in the previous
run(s), and the cycle repeats.

Clearly this is beneficial in the context of restarting, however it does affect
the method’s ability to clearly identify globally difficult elements. As a result,
although WTDI can identify a subset of variables which are sources of contention,
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it does not offer good discrimination between them. A similar effect has been
observed in “Squeaky Wheel Optimization” [115] where difficult elements get
handled earlier upon restart, and because they are handled earlier they cause less
“trouble”, and eventually they fall back down the ordering to the point where they
are sources of difficulty again.
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Figure 3.12: Variable Convection for WTDI on sample instance, convection
effect on two top ranked variables (V 28,V 90).

Figure 3.12 illustrates the notion of variable convection on two highly ranked
variables of a sample instance from the Rand-200 soluble problem set. The two
variables were selected because one or the other was chosen first by the heuristic
on 8 out of the last 11 runs: Var-90 was chosen first on restarts 90, 93, 94, 96;
Var-28 was selected first on restarts 95, 98, 99 and on the final run (which isn’t
included since there was no cutoff). The weight increase per restart for the two
variables over the final 11 restarts out of 100 is shown in Fig 3.12(a), while the
depth at which the variable was selected during search is shown in Fig 3.12(b)
(due to varying fail-depths we only show the depth if the variable was selected in
the first 10 variable selections).

On the runs where the variable was chosen first, its weight increase was 0
(Var-28 also had no weight increase on restart 91 where it was selected third).
Then, when other variables achieved a weight larger than theirs, they fell back
down the ordering and their weights began to increase again. Indeed in most cases
where they were not selected first, they were not selected in the first ten variable
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choices in a run (Fig 3.12(b)). Also, there were 5 different variables selected first
over the last 11 runs for this instance which further emphasizes the effects we are
discussing, i.e. that the variable ordering at the top of the search tree is constantly
changing with WTDI, even after a large number of restarts.

A similar phenomenon was observed in the insoluble scheduling instance dis-
cussed in the previous section. Three different variables were selected first over
the last ten runs of WTDI. The variable representing the task with the largest du-
ration was selected first on four runs, while the variable representing the task with
the second smallest duration was selected first on four of the other runs. When the
variable was selected first it received no weight increase on its constraints.

Note that this effect is not restricted to the restarting case, it can occur for
any form of depth-first search with a weighted degree based heuristic. Variables
chosen at the top of the search tree are likely to receive little weight, and will thus
be replaced by other variables if search backtracks to this point again.

This also explains why freezing the weights after random probing generally
improved search: when search backtracks to the top of the search tree, the vari-
ables selected based on the probing weights would no longer have the largest
weight if the weights weren’t frozen and so would not be selected.

However it should be noted that the impact of variable convection is less likely
for problems with large arity constraints, as a variable chosen near the top of the
search tree may still receive weight if its neighbors in the large arity constraints
are uninstantiated.

3.6.2 Blame Assignment

As in most learning from search approaches, there are important blame assign-
ment issues [187]. First, one doesn’t know the actual root of any insoluble subtree
without knowing the solution, because search can backtrack above any given in-
stantiation (obviously except for the first variable selected in search).

Secondly, when propagating assignments using arc consistency, one doesn’t
know that a given constraint is truly to blame for a variable’s domain going empty.
It could be that the constraint of a neighboring variable had removed so many
values that support was lost for neighboring domains and thus it should be the
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former which is weighted.
In this context, a significant advantage of the weighted degree heuristic is that

the weight it gives for each individual wipeout is small. It is the cumulative ef-
fect of a variable’s constraints directly causing domain wipeouts on a number of
occasions that determines whether that variable will be selected over another. Sim-
ilarly, RNDI uses weights accumulated over a large number of runs and should be
less susceptible to noise for the top choices. We will look at this issue in more
detail in the following chapter.

3.7 Chapter Summary

Domain/weighted degree is a powerful heuristic that already demonstrates the
benefits of learning from failure. Nevertheless, we have shown that further in-
formation can be extracted and utilised to improve search further. Both of our ap-
proaches improved on the original heuristic when tested on problems with clearly
defined sources of global difficulty, in some cases by orders of magnitude.

When the sources of global difficulty were not as clear cut, e.g. on the ran-
dom binary and random 3-coloring problems, RNDI consistently outperformed
both dom/wdeg-nores and WTDI, although the magnitude of the improvement
was not appreciable on most problem sets when one considers the preprocessing.
However, the results on the 6-coloring problem set show that weights from RNDI
can have a negative interaction with the domain factor of the heuristic, even if the
weights themselves are meaningful.

A significant finding in connection with the random variable selection proce-
dure was that the number of restarts is a more important parameter than the cutoff-
level. This conclusion was supported by the post-hoc analysis which showed that,
for conditions in which the maximum allotment of nodes was the same, a greater
number of restarts was more beneficial than a higher cutoff.

Through analysis of the weight distributions produced by the two strategies,
we obtained evidence that supports our explanation of the deficiencies of WTDI
and also helps explain the improvement observed when restarting is combined
with random variable selection on the random problems. Thus, we have shown
that when variables are ranked in terms of their weighted degree, the level of
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discrimination between the top ranked variables is much greater with RNDI. We
have also shown that the rankings of these variables are much less stable across
restarts with WTDI than they are with RNDI. This led us to introduce the notion
of variable convection for search using weighted degree heuristics.

Although variable convection does decrease the likelihood of identifying glob-
ally difficult elements, it also implies that the weighted degree heuristic might be
better suited to a universal restarting strategy which would still guarantee com-
pleteness than to a fixed cutoff method such as WTDI. We will investigate this
further in Chapter 6.

The most surprising result of this chapter was that learning on the final run can
sometimes greatly hinder search when using random probing. Although this can
also be explained by the effects of variable convection, it further emphasizes the
need for careful consideration when developing approaches combining sampling
and learning during search.

One final point to note is that information from WTDI/RNDI can also be used
to provide feedback to a client regarding bottlenecks in the problem. For example
if one is solving a scheduling problem such as scheduling the machines for a
factory, the weights produced by these probes of the problem may indicate that
machine X is a bottleneck. Purchasing a second machine of the same type as X
may result in greater production and robustness for the client.



Chapter 4

Exploration of alternative constraint
weighting techniques

4.1 Introduction

Constraint weighting has been shown to be an extremely efficient tool for guiding
search decisions in solving CSPs. However, due to the complex nature of search
when these adaptive heuristics are incorporated, there remains limited understand-
ing as to why these methods work. In this chapter, we develop further insight into
the nature of search both for the standard method and for search with weights
initialized by random probing.

The weighted degree heuristic combines two related principles, the Fail First
principle of Haralick and Elliott [97] and the Contention Principle, as introduced
by Wallace [92], which states that:

If a constraint is identified as a source of contention, then a variable asso-
ciated with the constraint is more likely to cause failure after instantiation than
variables not associated with such a constraint.

We first investigate whether any form of contention can be used to improve the
base heuristic. There are a number of ways of assessing contention, in the previous
chapter we simply used constraint violations. However it is possible to glean more
discriminatory information from search for little extra cost.

We consider a number of alternative measurements of contention such as

89
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weighting based on the effective propagation of a constraint (i.e. when propa-
gation of the constraint removes at least one value from a domain), and discrim-
inating between constraint failures / effective propagations based on the size of
the reduction caused by the constraint (i.e. the number of values it removes during
propagation). We also assess whether these new forms of identifying contentious
variables yield an improvement in the search performance of the two restarting
methods introduced in the previous chapter.

Incrementing weights based on the size of reduction caused by propagation
of a constraint deals with one aspect of the blame assignment issue for constraint
weighting, whereby all constraints that cause failure are weighted equally even
though some may be more indicative of global contention than others. By discrim-
inating based on the number of values removed we assign ‘blame’ in proportion
to the impact it had on the variable’s domain.

We next evaluate the quality of information learnt by different sampling strate-
gies, in particular we are interested in the extent to which maintaining arc consis-
tency during random probing improves discrimination between global and local
sources of contention. Although we have shown that random probing with MAC
is effective at weighting global bottlenecks in problems, it is possible that there
are less expensive methods to gather the same quality of information. We exam-
ine two such methods, the first uses a weaker level of consistency during random
probing while the second uses weights generated during local search.

The latter is of particular interest as there have been a number of approaches
previously proposed which combined local search with systematic search, where
one facet of the local search method was to identify bottlenecks for guiding sys-
tematic search (e.g. [60],[147]). For example, Eisenberg and Faltings used local
search as a preprocessing tool, which either returned a solution to the problem or
returned a set of weights which were used to order variables [60].

Finally, we investigate a number of hypotheses regarding the basis for im-
provements in search performance when using a weighted degree heuristic, and
when using weights initialized by random probing. In particular, we assess the
importance of initial choices for improvements with random probing. We then in-
vestigate whether the depth at which failures occur reflects the level of associated
contention, and the importance of sampling across the search space when using
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random probing. Following this, we compare the heuristics in terms of two policy
measurements of heuristic performance (promise and fail-firstness [24]), and in
terms of their association with factors associated with heuristic action (buildup of
contention versus simplification of the future problem) using the factor analysis
approach of Wallace [213].

4.2 Sampling Different Forms of Contention

Weighting constraints based on failures is one method of identifying which con-
straints are the most contentious. Here, we look at alternative weighting methods
for assessing contention. In some cases these may provide better discrimination
between contentious constraints. In other cases, they simply allow us to assess the
viability of different methods of evaluating contention. The purpose of these meth-
ods is to test the hypothesis that the performance of the heuristic can be improved
by providing more discriminatory information, i.e. does the blame assignment is-
sue discussed in the previous chapter have a negative impact on the heuristic?

In this section, we look at a number of methods for assessing contention.
Specifically, we consider the following (where the naming convention was type-
of-contention By type-of-increment):

• “WipeBydel”: When a domain wipeout (DWO) occurs, the relevant con-
straint weight is increased by the number of values deleted by the constraint
in the DWO variable, i.e. the size of the domain prior to propagation of this
constraint.

• “AlldelBy1”: Whenever a constraint deletes at least one value of a variable
during propagation, the weight of that constraint is incremented by 1.

• “AlldelBydel”: Whenever a constraint deletes at least one value of a vari-
able during propagation, the weight of that constraint is incremented by the
number of values deleted from the variable’s domain.

• “Del/noWipeBy1”: Whenever a constraint deletes at least one value of a
variable during propagation, the weight of that constraint is incremented by
1 except when propagation of the constraint resulted in a DWO.
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These different methods had the following expectations:

• WipeBydel: Incrementing by the size of the reduction when a DWO occurs
should provide better discrimination between constraint failures. Consider
the queens-knights problem of the previous chapter, a DWO on a queen
is generally the result of the removal of a relatively small number of values
by propagation of a constraint, while a DWO on a knight is the result of
a relatively large number of values being removed. However in the normal
weighting approach these two events are considered equivalent.

In the case of dom/wdeg-nores (and WTDI) this should result in earlier
use of the information as larger increments are more likely to result in the
heuristic selecting the variable, i.e. the weighted degree factor dominating
the domain factor of the heuristic.

• AlldelBy1: Incrementing based on deletions allows earlier use of contention
information for the heuristic and should increase diversification. The in-
crease in diversification for dom/wdeg-nores may be quite beneficial. For
random probing, however, one would expect performance to deteriorate as
the information may obscure sources of global contention. Similarly, this
may have an adverse impact on WTDI as the restarts are sufficient for di-
versification.

• AlldelBydel: This is a combination of the two previous strategies. Incre-
menting by the size of the reduction for each constraint should give a better
estimate at how contentious the constraint is compared to AlldelBy1. It also
allows for earlier use of weight information in the case of dom/wdeg-nores.

• Del/noWipeBy1: This final strategy was included to evaluate a form of
sampling that could be distinguished from DWOs. This may provide evi-
dence that sampling is related to contention rather than to failure in particu-
lar.

It should be noted that, due to the bi-directionality of the wipeouts in binary
CSPs (i.e. if no value in variable X has a support in variable Y , this implies that
no value in the domain of Y has a support in X), a number of methods could
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have been used for the first case where weights are incremented by the size of the
domain reduction upon wipeout. One could look at incrementing by the sum of
the domain sizes of variables in the scope of the constraint prior to propagation
resulting in a wipeout, the average of the domain sizes, or simply to increment by
the size of the domain of the variable that was wiped. We chose the latter. The
bi-directionality of wipeouts does not hold for deletions.

One must also bear in mind how these methods will impact the performance of
dom/wdeg compared to wdeg. As the constraint weights increase, the weighted
degree will become the dominant factor in the heuristic to the point where the
domain size may be reduced to a tie-breaking role. We showed in the previous
chapter that this can have an adverse effect on search for some problem types.

4.2.1 Alternative Forms of Contention Experiments

The purpose of the following experiments is to assess how the different algo-
rithms behave using these alternative measurements of contention, and to deter-
mine whether these measurements of contention provide better/worse indicators
of the globally difficult elements.

Based on the findings of the previous chapter, our restarting regimen is 100
restarts with a cutoff of 30 failures per run for both RNDI and WTDI. The use
of failures for the cutoff guarantees learning will occur on every run, while also
reducing the need for problem-specific parameterization. For the experiments in-
volving random probing, results are again averages of ten experiments. Where
statistical significance is discussed between samples below, we refer to paired
comparison t-tests at the 95% confidence interval unless otherwise stated.

As we are solely interested in how an algorithm behaves when the different
forms of contention information are used for guidance, the RNDI algorithm used
here only terminates when the problem is solved on the run to completion. In other
words, when a problem is solved during random probing it does not terminate as
done in the previous chapter. Therefore, the value for nodes explored with RNDI
does not include nodes explored during the probing phase. The WTDI algorithm,
on the other hand, does terminate during the probing phase as the information is
being used throughout. Hence, the nodes explored for WTDI does include those
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explored during the probing phase.
We first experimented on a set of 100 random binary problems with parame-

ters h50,10,0.183,0.369i which, although relatively easy to solve, are in the crit-
ical complexity region. These were generated by Richard Wallace. Results are
presented in Table 4.1, for both dom/wdeg and wdeg. The latter was used to re-
move the impact of the domain factor, in order to more directly assess the perfor-
mance of the different forms of measuring contention. For comparison, we note
that dom/fdeg and fdeg averaged 1621 and 2625 nodes respectively on these
instances.

Table 4.1: Search Efficiency with Different Sampling Strategies:
Random Binary Problems

dom/wdeg wdeg
nores RNDI WTDI nores RNDI WTDI

Normal 1538 1211 4489 2070 1713 3931
WipeBydel 1592 1204 4313 2140 1754 4097
AlldelBydel 1496 1392 4979 2259 2474 5540
AlldelBy1 1523 1302 5149 2284 2106 4678
Del/noWipeBy1 1530 1314 5017 2297 2173 4605
Notes. h50,10,0.183,0.369i problems. Mean search nodes per
instance. For comparison, dom/fdeg and fdeg averaged 1621 and
2625 nodes resp. RNDI and WTDI had restarting regimen of 100
restarts with a cutoff of 30 failures per run. RNDI data doesn’t include
nodes from probing, and didn’t terminate until instance was solved
on run to completion.

For dom/wdeg-nores sampling either deletions or failures gave comparable
results for search, while sampling directly related to failures was slightly better for
wdeg-nores (albeit only statistically significant when comparing “Normal” with
“AlldelBy1” and “DelnoWipeBy1”). Indeed all measurements of contention for
both approaches showed improvement over the associated non-weighted version
of the heuristics (i.e. dom/fdeg and fdeg). These results suggest that any of these
events can serve as an indicator of contention.

On the other hand, direct sampling of failure is better than sampling deletions
for both RNDI and WTDI. This is clearer when WTDI and RNDI were combined
with wdeg. Here there was no statistically significant difference between the two
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methods that only use information regarding failures, but there was a statistically
significant difference between each of these and the other three measures of con-
tention.

Open Shop Scheduling

We further tested these approaches on the open shop scheduling problems (OSPs)
described in the previous chapter (Section 3.4.4). The constraints of these prob-
lems have varying tightness and so the results may reflect more inherent differ-
ences between the approaches. In particular, one would expect weighting based
on the size of the reductions to have a greater impact on the choices made.

Table 4.2: Alternative Measurements of Contention: dom/wdeg-nores. Open
Shop Scheduling Problems, # Solved.

dom/fdeg Normal Wipe Alldel Alldel Del/noWipe
Bydel Bydel By1 By1

ost-4-95 10 10 10 10 10 10
ost-4-100 9 10 10 10 10 10
ost-5-95 5 6 6 5 5 5
ost-5-100 2 2 4 3 2 2
ost-5-105 6 9 9 9 7 8
Total 32 37 39 37 34 35

Notes: Number of instances solved (out of ten) for each problem set.
Figures in bold represent the best result over the different methods

Results are presented for the 3 sets (ost-n-95, ost-n-100, ost-n-105) for n=4
and n=5, except for the ost-4-105 set which were trivially easy for all methods.
Each set contains 10 instances. An overall limit of one million nodes per instance
was used. The results for average nodes include cases where the million node
cutoff was reached and so are a lower bound.

Tables 4.2 and 4.3 show the results for dom/wdeg-nores per problem set in
terms of number of instances solved and average search nodes respectively. For
comparison we also include the results for dom/fdeg. The first point to note is
that, as for the random binary problems, all forms of assessing contention outper-
formed dom/fdeg on these instances, both in terms of number of instances solved
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and in search nodes on where all instances of a problem set were solved by all
methods (ost-4-95).

Table 4.3: Alternative Measurements of Contention: dom/wdeg-nores. Open
Shop Scheduling Problem, Average Nodes.

dom/fdeg Normal Wipe Alldel Alldel Del/noWipe
Bydel Bydel By1 By1

ost-4-95 56.3 3.7 5.3 2.4 4.2 2.8
ost-4-100 246.1 17.2 16.5 17.4 14.4 12.7
ost-5-95 596 410 418 527 536 538
ost-5-100 895 830 820 717 853 962
ost-5-105 406 134 115 119 331 277
Sum 2,199 1,395 1,375 1,382 1,740 1,794

Notes: Average search nodes per instance, includes failed attempts where
search hit the million node cutoff.

Figures in bold represent the best result over the different methods

The best approach based on number of instances solved is “WipeBydel”, with
the approaches that focus neither on failures nor on the size of reduction perform-
ing poorest. However, if we compare the sum of the average nodes (Table 4.3) for
the three best sampling strategies, we see that there is little difference between the
three even though “WipeBydel” solved two more instances than the other two.

In particular, if we compare the average nodes for solving ost-5-100 using
“Normal” and “WipeBydel”, we see that there is only 10,000 nodes in the dif-
ference even though “Normal” solved two instances less. This implied that the
two extra instances solved by “WipeBydel” were solved just under the node limit,
which was confirmed by analysis of individual results. Indeed there is little differ-
ence in performance between the sampling methods on these instances, which was
also the case for the random binary problems in the previous section. Therefore
there is no evidence to suggest that the blame assignment issue negatively affects
dom/wdeg-nores.

For RNDI, the results once again show that weighting based solely on failures
is best for this form of sampling (Tables 4.4 and 4.5). “Normal” weighting with
RNDI solved instances in the fewest nodes on average for all five sets. Further-
more, in most sets we see a clear difference in terms of average nodes between
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Table 4.4: Alternative Measurements of Contention: RNDI. Open Shop
Scheduling Problems, # Solved.

Normal Wipe Alldel Alldel Del/noWipe
Bydel Bydel By1 By1

ost-4-95 10.0 10.0 10.0 10.0 10.0
ost-4-100 10.0 10.0 10.0 10.0 10.0
ost-5-95 9.6 9.7 9.2 8.7 8.2
ost-5-100 3.7 3.5 2.1 1.6 2.0
ost-5-105 10.0 9.9 9.6 9.8 9.8
Total 43.3 43.1 40.9 40.1 40.0

Notes: Number of instances solved (out of ten) for each problem set.
RNDI had probing regimen of 100 restarts with a 30 failure
cutoff per run. Weights were updated on run to completion.
N.B. Algorithm doesn’t stop if solved during probing phase.

the two RNDI approaches that use failure information only and the other RNDI
approaches.

Table 4.5: Alternative Measurements of Contention: RNDI. Open Shop
Scheduling Problems, Average Nodes.

Normal Wipe Alldel Alldel Del/noWipe
Bydel Bydel By1 By1

ost-4-95 1.3 2.3 1.6 1.7 1.6
ost-4-100 5.7 6.7 12.1 16.3 16.1
ost-5-95 88 94 175 175 212
ost-5-100 738 760 858 870 853
ost-5-105 18 20 48 28 30
Sum 850 882 1,096 1,091 1,113

Notes: Average search nodes per instance, includes failed attempts
where search hit the million node limit, doesn’t include nodes explored

during probing. RNDI had probing regimen of 100 restarts with a 30
failure cutoff per run. Weights were updated on run to completion.

N.B. Algorithm doesn’t stop if solved during probing phase.

A surprising result is that the worst approach for RNDI was still better than the
best approach for dom/wdeg-nores both in terms of number of instances solved
and sum of average nodes. This confirms that any of these methods can be used as
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indicators of contention, and also emphasizes the importance of making informed
decisions at the top of the search tree for these problems.

Finally, we present the results for WTDI combined with the different measures
of contention in Tables 4.6 and 4.7. All measures are extremely effective on these
problem sets, with only one set where not all instances were solved (ost-5-100).
On this set, the two methods which increment weights based solely on failures
were two of the three best.

In terms of average nodes explored, the ordering becomes somewhat clearer.
In the two cases where two approaches solved the same number of instances,
there was approximately ninety thousand nodes in the difference (i.e. “WipeBy-
del” was more efficient than “AlldelBy1”, and “AlldelBydel” was more efficient
than “Del/noWipeBy1”).

Table 4.6: Alternative Measurements of Contention: WTDI. Open Shop
Scheduling Problems, # Solved.

Normal Wipe Alldel Alldel Del/noWipe
Bydel Bydel By1 By1

ost-4-95 10 (1) 10 (1) 10 (1) 10 (1) 10 (1)
ost-4-100 10 (10) 10 (10) 10 (8) 10 (9) 10 (8)
ost-5-95 10 (0) 10 (0) 10 (0) 10 (0) 10 (0)
ost-5-100 6 (3) 5 (4) 2 (0) 5 (3) 2 (0)
ost-5-105 10 (10) 10 (10) 10 (10) 10 (10) 10 (10)
Total 46 (24) 45 (25) 42 (19) 45 (23) 42 (19)

Notes: Number of instances solved (out of ten) for each problem set.
Numbers in brackets are number of instances solved during probing.

WTDI had probing regimen of 100 restarts with a 30 failure
cutoff per run.Weights were updated on run to completion.

The experiments on random binary and open shop scheduling problems show
firstly that any of these measures can be used successfully as indicators of con-
tention. Inclusion of the various forms of contention measurement never led to
a deterioration in performance with respect to the non-weighting strategy. Fur-
thermore, sampling these different forms of contention during RNDI, and WTDI
for the scheduling problems, led to an improvement over the nores approaches
in most cases. Together, these results show that contention can be successfully
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sampled even when ignoring failures.

Table 4.7: Alternative Measurements of Contention: WTDI. Open Shop
Scheduling Problems, Average Nodes.

Normal Wipe Alldel Alldel Del/noWipe
Bydel Bydel By1 By1

ost-4-95 4.4 4.2 4.4 3.9 4.5
ost-4-100 0.4 0.5 1.8 32.7 1.9
ost-5-95 31 131 32 115 84
ost-5-100 485 503 815 577 854
ost-5-105 0.2 0.1 0.2 0.2 0.1
Sum 522 640 853 729 944

Notes: Average search nodes per instance per problem set, includes
failed attempts where search hit the million node limit, includes
nodes explored during probing. WTDI had probing regimen of
100 restarts with a 30 failure cutoff per run. Weights were updated
on the run to completion.

Overall, we found that sampling events directly related to failure performed
best. This was clearest for RNDI, where the benefits of increased diversification
plays a smaller role than for the other two strategies. In this case, the key to im-
proved performance is identifying those variables which are likely to cause failure,
and the results show that this is best done by directly sampling wipeout events.
Nonetheless, it is significant that search is very efficient in all cases.

4.2.2 Analysis of Weight Distributions Produced by Unbiased
Sampling

We generated ten weight profiles (with different seeds) with RNDI for each weight-
ing method on five sample instances from the 50-variable random binary problem
set, and on a sample of the open shop scheduling problems, both soluble and insol-
uble (which are referred to as Sched Sol and Sched Insol in the following tables
and figures). The instances selected from the random binary problem set were the
five hardest when solved by dom/wdeg-nores, while for the scheduling instances
we generated weight profiles for the first two instances of the ost-5-95 set and
the first two instances of the ost-5-100 set. We also generated weight profiles for
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ost-5-95-3, which was the instance with clearly defined insoluble cores discussed
in the weight analysis of the previous chapter.

For the random instances, incrementing weights based on the size of the reduc-
tion had relatively little impact (the average weighted degree of “WipeBydel” was
170 compared to 133 for normal weighting, similarly AlldelBydel had an aver-
age weighted degree of 10705 compared to 6701 for AlldelBy1). For scheduling
instances, on the other hand, there was a much larger impact as predicted (the
average weighted degree for “WipeBydel” was 6313 compared to 256 for nor-
mal weighting, similarly AlldelBydel had an average weighted degree of 177081
compared to 4464 for AlldelBy1).

Table 4.8: Top-down correlation coefficients for different weighting methods
across ten runs

Random Sched Sol Sched Insol
Avg Min Avg Min Avg Min

Normal 0.94 0.85 0.84 0.63 0.89 0.69
WipeBydel 0.93 0.86 0.84 0.53 0.89 0.75
AlldelBydel 0.96 0.84 0.85 0.52 0.90 0.69
AlldelBy1 0.96 0.84 0.89 0.70 0.90 0.70
Del/noWipeBy1 0.96 0.84 0.88 0.63 0.89 0.67
Notes. Sample of instances from each set.
Results in terms of average (“Avg)”) and minimum (“Min”).

Correlations across different seeds were calculated for each method using the
top-down correlation coefficient [112]. The results are shown in Table 4.8. Cor-
relations on random instances were high for all methods, greater than 0.92 on
average and always greater than 0.85. There was greater variation in the weight
profiles generated on the scheduling instances, with minimum correlations rang-
ing from 0.52 to 0.75 for the five weighting methods.

For the insoluble scheduling instance discussed in the previous chapter (ost-
5-95-3), we find that the top three variables weighted by all methods are variables
from the same insoluble core. However, the top ranked variable of the failure only
methods had the smallest domain, while the “Alldel” methods weighted a variable
with a slightly larger domain size. Obviously this will impact the size of the proof
of insolubility.



4.2. SAMPLING DIFFERENT FORMS OF CONTENTION 101

P21 P60 P68 P74 P91

0.2

0.3

0.4

Normal
WipeBydel
AlldelBydel
AlldelBy1
Del/noWipeBy1

Instance

Av
er

ag
e 

G
in

i C
oe

ffi
ci

en
t

Figure 4.1: Average Gini coefficients of weights distributions for five sample
random instances

We next assessed the distribution of weights after random probing. For the
random instances, the Gini coefficient for the methods which only considered
failures was roughly 0.36 on average for both (Figure 4.1). On the other hand, the
Gini coefficients for the three methods that considered any effective propagation
of a constraint were all approximately 0.21.

This difference was even more prominent for the scheduling instances, where
each of the three “Alldel” methods again had an average Gini coefficient of 0.22
/ 0.23, while the “WipeBydel” method had an average Gini coefficient of 0.54
compared to 0.46 for weights produced from the normal method of weighting.
However, one would expect a smaller Gini coefficient when all effective propaga-
tions are weighted, since weight is increased for a greater number of contention
events.

An alternative way to view the distribution of weight is to assess the level of
discrimination between the top and bottom ranked variables. In particular, we take
the difference in weighted degree for each pair of successively ranked variables.
We then sum these differences for the top and bottom 50% of ranked variables,
and compute the ratio of top discrimination to bottom discrimination. A value
below 1 would mean there is greater discrimination amongst the bottom ranked
variables, while a value above 1 would mean the opposite.

We plot the results for the average ratio per instance sample for each problem
type in Figure 4.2. The main point to note is that the methods which only sam-
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Figure 4.2: Ratio of Discrimination for Ranked Variables, Top 50% Versus
Bottom 50%. Averages per instance sample.

pled DWOs always had a larger ratio of discrimination. The results also show that
for these two methods, the ratio of discrimination was greater when incrementing
based on the size of the reduction for the scheduling instances. As discussed pre-
viously the insoluble scheduling instances have a subset of insoluble cores, which
explains why these have the largest ratios on average. Furthermore, for some runs
on both random and scheduling instances the “Alldel” methods gave a ratio lower
than 1, i.e. there was greater discrimination amongst the bottom ranked variables
than the top ranked.

4.3 Sampling Based on Different Search Procedures

In this section we assess the importance of the MAC algorithm to the quality of
information learnt by RNDI. We compared the normal MAC method of random
probing with alternative methods for information gathering, which weight con-
straints that either cause domain wipeouts in systematic search or cause conflict
in local search. These weights are then used by either dom/wdeg or wdeg to solve
the problem.

The first method merely replaces the MAC algorithm with a weaker level of
consistency, forward checking (FC), for the information gathering phase. For both
FC-RNDI and MAC-RNDI there were 100 restarts with a failure cutoff of 30. All
methods were followed by complete search with MAC.
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The second method is a version of the “Breakout” algorithm (Morris [153]).
We tried three variations of the breakout method for generating a weight pro-
file. The first approach was to simply run the breakout method with min-conflicts
heuristic from an initial random assignment until a total weight of 3000 had been
generated. Thus, the total weight increase was the same as that of the two random
probing procedures. Since we are solely interested in the quality of information
learnt by each method, if the problem was solved before the cutoff during this lo-
cal search phase it was restarted with a new random assignment (and reinitialised
weights) until a run produced a weight increase of 3000. We refer to this method
as BO-nores.

The second breakout approach we tried (BO-res), has more in common with
random probing. Here the breakout method was repeatedly run to a fixed weight
cutoff of 30. After each run, weights were added to a total-weight counter and
then reset. Thus weights from previous runs were not used by the min-conflicts
procedure and so did not bias the new weights learnt. Each run had a different
initial random assignment to the variables. After 100 such runs, the accumulated
weights in the total-weight counter were used by either dom/wdeg or wdeg as
before.

The final breakout approach (BO-bias) is identical to the previous method,
with the exception that weights were not reset after each run (and so a separate
total-weight counter was not used). Thus weights learnt from previous runs af-
fected the choices made by the min-conflicts heuristic in subsequent runs and so
biased the weights learnt. This approach is more consistent with that of Eisen-
berg and Faltings, in that they restarted the local search algorithm after reaching a
predefined number of iterations.

It should be noted that all approaches, except forward-checking, solved some
instances during preprocessing. However the algorithms only terminate on each
instance after the run to completion with a weighted-degree heuristic, since we
are solely interested in the quality of information collected by these preprocessing
approaches.

We first tested these sampling strategies on the set of random binary problems
with parameters h50,10,0.183,0.631i. Table 4.9 presents the results, in terms of
average nodes explored on the run to completion, for each sampling method fol-
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lowed by systematic search with MAC using one of four heuristics: dom/wdeg,
wdeg, dom/frowdeg and frowdeg. The two latter heuristics use weights frozen
after the sampling phase, i.e. weights were not updated on the run to completion,
thus allowing a more direct evaluation of the quality of information learnt in pre-
processing.

Table 4.9: Search Efficiency with Information Gathered
under Different Search Procedures

dom/wdeg wdeg dom/frowdeg frowdeg
MAC-RNDI 100R 30WC 1211 1731 1223 1632
FC -RNDI 100R 30WC 1444 2122 1579 3434
BO-nores 3000WC 1619 2227 1848 3893
BO-res 100R 30WC 1271 1843 1271 2119
BO-bias 100R 30WC 1394 1954 1389 2204
Notes: h50,10,0.183,0.631i problems. Basic sample is 100 instances. All
results are for the run to completion only and are the mean search nodes
across ten experiments. “frowdeg” means weights were not updated on the
run to completion. For reference, the average search nodes for dom/wdeg
and wdeg without restarting were 1538 and 2070 respectively.

Weights learnt by random probing with MAC produced the best results in ev-
ery case. The differences in means between MAC-RNDI and the other sampling
methods were statistically significant at the 95% confidence interval for all ex-
cept BO-res. In this case, the difference was only statistically significant when the
weights were frozen and the domain factor was removed.

In order to further investigate the effectiveness of this breakout procedure we
tested on harder problem sets (both insoluble and soluble) with parameters h200,
10, 0.0153, 0.55i. The heuristic used was dom/wdeg and weights were frozen. For
these instances the weights learnt by BO-res resulted in worse search performance
than if no preprocessing was done. As previously shown MAC-RNDI with frozen
weights improved search effort by roughly 30% on these instances.

The poor performance of FC-RNDI is not surprising as one would not expect
it to be able to identify globally contentious variables as well as MAC-RNDI,
since propagation in forward checking only occurs on constraints between the as-
signed variable and its neighbors. We tested whether improvement could be found
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by increasing the diversity of the sample, with the expectation that a variable’s
repeated involvement in localized sources of conflict across different parts of the
search space should be more indicative of global contention.

In particular, we ran FC with two alternative probing regimens, 30R100WC
and 300R10WC, and compared with the results above. The strategy combining
the largest number of restarts with the smallest cutoff did indeed produce the best
results, however these were still significantly worse than those for MAC-RNDI.

It has also been suggested that weights learnt by FC-RNDI may work better
for search with forward checking. This was tested by comparing FC-RNDI and
MAC-RNDI where both were followed by systematic search with forward check-
ing on the run to completion. Weights produced by MAC still resulted in superior
performance (by an order of magnitude when the domain factor was removed)
which further supports our hypothesis that MAC-RNDI is better at identifying
contentious variables.

With regard to the breakout methods, it is clear that for these problems gather-
ing a diverse sample is better than simply running breakout to a large cutoff. The
results further show that unbiased sampling is better, matching our findings for
random binary problems in the previous chapter.

Table 4.10: Average Nodes. Open Shop Scheduling Problems

*-nores MAC FC BO BO BO
RNDI RNDI nores res bias

dom/wdeg # Sol 37 43.3 41.4 44.2 41.1 42.2
Nodes 1,395K 850K 1,038K 797K 996K 921K

wdeg # Sol 34 42.9 42 42.5 41.1 39.5
Nodes 2,059K 922K 1,106K 1,001K 1,168K 1,274K

dom/frowdeg # Sol - 39.3 36.8 39.3 38.2 38.5
Nodes - 1,152K 1,469K 1,204K 1,230K 1,255K

frowdeg # Sol - 37.2 32.3 34.4 29.5 29.6
Nodes - 1,541K 2,025K 1,794K 2,211K 2,240K

Notes: “#Sol” refers to the average solved over the 50 instances. “Nodes” refers to the
sum of average nodes per problem set, including cases where the million node
cutoff was reached. Restarting parameters were 100R30WC for all sampling

strategies except BO-nores which had a cutoff of 3000WC.

We further tested the sampling methods on the open shop scheduling problems
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(Table 4.10). Thornton found in his dissertation [198] that constraint weighting
in local search is more suited to structured problems with clearly distinguishable
subsets of easy and hard constraints, so one would expect the weights learnt by the
breakout methods to result in better performance here than for the random binary
problems. (Once again we remind the reader that all methods only terminate after
the run to completion with a weighted degree heuristic, irrespective of whether
a problem was solved during the sampling phase. In the case of BO-nores, if a
problem was solved during breakout, the algorithm was restarted with reinitialized
weights until a run generated a weight increase of 3000.)

The results firstly show that the weights learnt by any of the sampling strate-
gies resulted in superior performance over the case where no weight information
was available at the start of search (i.e. “⇤-nores”). This implies that there is a
clear structure to these problems which can be identified even when simply run-
ning forward checking.

The improved performance of all the breakout methods reflects the findings of
Thornton. Interestingly, BO-nores performed best when followed by search with
dom/wdeg, whereas for the random binary problems it was consistently the worst
sampling strategy. However, when we take a more direct assessment of the quality
of information learnt (by freezing the weights and/or removing the domain factor
from the heuristic), we see clearer differences between the methods.

In particular, the results for search followed by “frowdeg” show that the qual-
ity of information learnt by MAC-RNDI was better than that of the other methods.
It is somewhat surprising that the best methods overall were MAC-RNDI and BO-
nores as, in terms of sampling, these are polar opposites (extremely biased versus
extremely unbiased). The other two breakout methods fall in between in terms
of level of bias during sampling. However, we note that WTDI also performed
extremely efficiently on these problems which indicates that biased sampling is
suited to these types of structured problem.
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4.3.1 Analysis of Weight Profiles Produced by Different Sam-
pling Strategies

In this section we look at the weights generated by these different sampling meth-
ods, both for the problem sets tested and for the queens-knights problem intro-
duced in the previous chapter (Section 3.4.1). We first examine the consistency of
the rankings produced across ten experiments for each method on the same sample
of problems used previously, i.e. the same 5 problems from the 50-variable ran-
dom binary problem set, and the same sample of insoluble and soluble scheduling
problems.

Table 4.11: Top-down correlation coefficients for different sampling methods
across ten runs

Random Sched Sol Sched Insol
Avg Min Avg Min Avg Min

MAC-RNDI 0.94 0.85 0.84 0.63 0.89 0.69
FC-RNDI 0.88 0.77 0.80 0.52 0.82 0.54
BO-nores 0.55 0.16 0.68 0.22 0.89 0.74
BO-res 0.92 0.75 0.96 0.88 0.95 0.83
BO-bias 0.95 0.85 0.95 0.83 0.95 0.83
Notes. Sample of problems from each set.
Correlations greater than 0.9 are marked in bold.

Table 4.11 presents the top-down correlation coefficients on each problem,
averaged over the problem type. For the random binary problems, MAC-RNDI
and the two restarting breakout methods all had correlations greater than 0.9 on
average. FC-RNDI and BO-nores were the least consistent across runs, with the
latter in particular quite poor as the minimum correlation of 0.16 illustrates. A
similar pattern occurred for the soluble scheduling problems with FC-RNDI and
BO-nores the least consistent, although not to the same extent as for the random
problems in the latter case.

The next three figures (4.3 4.4, 4.5) show the average weighted degree over
ten weight profiles for a sample problem from each problem set. For the random
binary problems (Figure 4.3), it is clear that RNDI assigns less weight to its bottom
ranked choices than the other sampling methods.
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Figure 4.3: Averaged weight profiles over ten runs for sample random binary
problem
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Figure 4.4: Averaged weight profiles over ten runs for a sample insoluble
scheduling problem (ost-5-95-3)
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In Figure 4.4, the breakout methods have clearly less discrimination than the
systematic search methods for the insoluble scheduling problem. This may be
the result of the problem containing a number of insoluble cores. Each time the
constraints in conflict are incremented during breakout, at least one constraint in
each insoluble core must be in conflict and will have its weight incremented. Thus
weight will be spread across all insoluble cores mre consistently than with MAC-
RNDI.

The final figure ( 4.5) shows the averaged weight profiles for a sample problem
from the soluble scheduling set. All approaches appear to have a similar level of
discrimination, albeit MAC-RNDI has slightly greater discrimination for the top
ranked variables.
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Figure 4.5: Averaged weight profiles over ten runs for a sample soluble
scheduling problem (ost-5-100-0)

To further investigate this we compared the weight difference between suc-
cessively ranked variables for each sampling method. Table 4.12 presents results
in terms of the ratio of discrimination for the top 50% versus the bottom 50% of
ranked variables, and in terms of the average weight difference between succes-
sively ranked variables.

The results show that the systematic search methods provided greater discrim-
ination for the top ranked variables. Indeed the breakout methods gave near equal
discrimination between top ranked and bottom ranked variables. Furthermore, the
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average weight difference between successively ranked variables was consistently
less for the different breakout methods of sampling.

This may partially explain the good performance of BO-nores on the schedul-
ing problems when followed by search with dom/wdeg. Smaller differences be-
tween successively ranked variables means (a) the domain factor of the heuristic
will play a larger role in the selections made; and (b) weights learnt during the
run to completion are more likely to affect the variable ordering. In other words,
smaller differences between successively ranked variables after sampling results
in the heuristic being more sensitive to information from the current search state
on the run to completion.

However, this is obviously not the sole reason for the good performance of
BO-nores since the other breakout methods didn’t perform as well despite having
a similar level of discrimination after sampling. BO-nores is clearly identifying
globally contentious variables at the top of the search tree.

Table 4.12: Analysis of level of discrimination between successively ranked
variables on sample of soluble and insoluble scheduling problems.

Ratio of Discrimination Average Weight Difference
Sched Sol Sched Insol Sched Sol Sched Insol

MAC-RNDI 2.07 3.52 26.8 31.8
FC-RNDI 2.66 2.13 28.5 29.0
BO-nores 0.83 1.05 20.5 20.6
BO-res 1.18 0.84 23.5 20.6
BO-bias 0.70 0.68 20.9 19.0

We also calculated the Gini coefficients of the weight distributions for each
run. For the random binary problems, MAC-RNDI consistently had the largest
Gini coefficient (averaging 0.37 over 10 runs on the 5 sample problems), BO-res
had the next largest Gini coefficient on average (0.28), while the other three meth-
ods all had an average Gini coefficient of 0.22/0.23. Comparing these findings
with the search performance of the different methods on the random problems,
we see that the best methods were more consistent in their ranking of the vari-
ables after sampling (high correlations across ten experiments), and were more
discriminatory (larger Gini coefficients).
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The Gini coefficients for the scheduling problems support the findings in Ta-
ble 4.12. MAC-RNDI had the most skewed weight distributions with an average
Gini coefficient of 0.49 (over 10 runs on the 5 sample scheduling problems). FC-
RNDI also had a high average Gini coefficient of 0.45, compared to average Gini
coefficients of 0.37, 0.33 and 0.30 for BO-res, BO-nores and BO-bias respectively.

Finally we generated weight profiles for a sample queens knights problem qk-
15-5-add, containing 15 queens and 5 knights. All methods weighted the knight
variables highest, however our interest is in the weight accumulated on the queen
variables, given in Figure 4.6. For clarity, we show the weight increase (i.e. the
weighted degree minus the degree) per queen variable after sampling.
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Figure 4.6: Sample weight profile for qk-15-5-add. Weight increase on queens
only.

The figure shows that MAC-RNDI and BO-nores were least susceptible to lo-
cal sources of contention (i.e. conflicts between queen variables), with an average
weight increase of 1.7 per queen variable. The other three methods, on the other
hand, had an average weight increase of over one hundred.

For FC-RNDI, this shows that the weak propagation of forward checking re-
sults in constraints that are local sources of contention receiving a high weight. For
the breakout methods, it is clear that there are a number of queens in conflict at the
first local minimum. The breakout method quickly finds a solution to the queens
problem and then proceeds to consistently weight the knight variables. However,
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each time the local search algorithm is restarted, some queens are weighted.
Overall, we have shown that MAC-RNDI leads to greatest discrimination amongst

variables, while remaining relatively consistent in its ranking of variables. The
restarting breakout algorithms were extremely consistent in their rankings but did
not provide as clear a distinction between the levels of contention of the variables.

4.4 Importance of Initial Choices

One hypothesis for the improved search performance of dom/wdeg when using
weights from random probing is that it is mainly due to better variable selections
at the top of the search tree. We tested this hypothesis by restricting the depths at
which the information from probing is used.

More specifically, we perform random probing and then use one of the follow-
ing strategies on the run to completion:

• select variables from depth 1 to depth x using dom/fdeg, and use dom/frowdeg
for all choices beneath this depth (referred to as “domfdeg1st” in figures).

• select variables from depth 1 to depth x using dom/frowdeg, and use dom/fdeg
for all choices beneath this depth (referred to as “domfrowdeg1st” in fig-
ures).

We first tested the importance of initial choices on the random binary prob-
lem set with parameters h50,10,0.183,0.631i, where all problems are soluble.
The results are shown in Figure 4.7. We include three benchmark comparisons,
dom/fdeg, dom/wdeg-nores, and random probing followed by dom/wdeg with
frozen weights (“RNDIfro”). Furthermore, we note that the peak failure depth on
average for the run to completion of RNDIfro was 8, while the maximum failure
depth on average was 17.

The figure shows that using weights from random probing to select the first
three variables alone already results in improved performance over dom/wdeg-
nores. Similarly, we note that choosing just the first three variables with dom/fdeg
and then choosing all others beneath using dom/frowdeg results in a deterioration
in performance over RNDIfro.
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Figure 4.7: Depth to which probe weights are beneficial on random binary
problem set h50,10,0.183,0.631i

However, we note that the deterioration (resp. improvement) in performance
is quite consistent for domfdeg1st (domfrowdeg1st resp.). Furthermore, the im-
pact of the weights from probing is still evident at a depth of 8, the average peak
failure depth, which contradicts the hypothesis that the benefits of weights learnt
during random probing is restricted to choices at the top of the search tree for
these problems.

We also tested on two sets of the Taillard open shop scheduling problems,
the set ost-4-95 consisting of 10 insoluble problems (Figure 4.8(a)), and the set
ost-4-100 consisting of 10 soluble problems (Figure 4.8(b)). For the latter set, we
only include results for problems which were solved by all methods on all runs,
of which there were eight.

Contrary to our findings on the random binary problems, here there is clear
evidence that the benefits of probing are restricted to the choices made at the
top of the search tree. For the insoluble problems, there was no fall off in per-
formance over RNDIfro when using dom/frowdeg at depth one only. Similarly,
choosing the first variable alone with dom/fdeg and then choosing all others with
dom/frowdeg was significantly worse than dom/wdeg-nores and RNDIfro.

This may be somewhat surprising as dom/wdeg-nores will make the same
first variable selection. At the same time, it is clear from the results of RNDIfro
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Figure 4.8: Importance of Initial Choices for Scheduling Problems

that the weights learnt are not of poor quality as it averaged the smallest proofs of
insolubility for these problems.

A possible explanation is that these problems contain insoluble cores, where a
subset of jobs and/or machines are overconstrained. If the first variable selected by
dom/fdeg is part of an insoluble core then dom/wdeg will identify this and restrict
search to the variables in the insoluble core. On the other hand, dom/frowdeg may
still select variables in the insoluble core which had the highest weight after prob-
ing, even if it is not connected to the variable chosen by dom/fdeg. In this case,
search with the domfdeg1st strategy may be proving insolubility of the highest
weighted core from the probing phase for each value of the variable selected by
dom/fdeg.

An uninformed selection for the first variable has a less negative impact for the
soluble problem set. However, at a depth of four in both cases search performance
is equivalent to that of search with the heuristic which was used first. These results
show the importance of good choices at the top of the search tree, especially for
the scheduling problems which are highly sturctured.
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4.5 Further Analysis of the Nature of Unbiased Sam-
pling

The majority of the work performed in this section was done by Richard Wallace
and was published in [218].

4.5.1 Local Versus Global Contention

The depth at which failures occur may also indicate the globality of the contention,
i.e. the deeper in search that a failure occurs, the more specific the context of that
failure and thus the more localized the information. One would therefore expect
that learning from failures that occur deeper in search when sampling would result
in poorer search performance on the run to completion.

To test this hypothesis, sampling in the probing phase was restricted to differ-
ent ranges of depths, i.e. only failures that occurred when search was in a given
depth range were weighted. The ranges tested were 1-5, 6-10, 11-15, 6-15 and
14-18. Experiments were performed on the set of random binary problems with
parameters h50,10,0.183,0.631i. The probing regimen was 40 restarts with a cut-
off of 30 failures per run. Weights were frozen on the run to completion.

The expectation of this set of experiments was that weights learnt from con-
flicts in the depth range 1-5 would result in better performance than those learnt
from deeper in search. However, contrary to this expectation, there was no dis-
cernible difference in search performance on the run to completion when using
weights learnt from the different ranges.

An alternative test was to consider the number of variables whose instantia-
tion led to a domain reduction. When a wipeout occurred, weights were only in-
cremented if the number of such “preclusion variables” was within a given range
(greater than 3, 4 or 5, and less than 3 or 4). The expectation was that the fewer the
number of preclusion variables the more globally contentious the constraint which
caused the failure, and thus search performance with this information should be
better than when larger numbers of preclusion variables were allowed. Once again,
however, this did not turn out to be the case. These two results contradicted the hy-
pothesis that the more specific the context of the failures, the poorer the estimate
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of contention.
A final test was performed where random probing was restricted to a specific

part of the search space. This was done be selecting variables until a depth i using
lexical variable ordering, and then randomly selecting variables below this depth
during the random probing phase. The different values of i that were tested were 1,
3, 5, 10, and n (i.e. all variables were selected lexically). The probing regimen was
40 restarts with a cutoff of 50 nodes per run. Here there was a clear deterioration in
search performance as the sampling was restricted to a smaller part of the search
space.

This experiment was repeated, but with variables chosen by minimum-degree
to depth i, instead of lexical ordering. This was done so as to increase the proba-
bility that variables which are likely to be sources of global contention, i.e. those
with high degree, would receive most weight. Search performance again deterio-
rated when i was greater than 1.

This last set of experiments supports the idea that the effectiveness of probing
for these problems depends on sampling across the entire search space, and that
these problems do contain sources of global contention. In light of this, the first
two sets of experiments can be interpreted as showing that, as long as one sam-
ples across the search space, the same variables and constraints will cause most
failures, even when the contexts of those failures differ.

4.5.2 Search after Random Probing: Policy Measures and Heuris-
tic Actions

A further hypothesis with regard to the improved performance when using weights
learnt by random probing is that this is due to an improvement in the fail-firstness
of the weighted-degree heuristic. This was tested by comparing the heuristic’s
adherence to the policies introduced by Beck et al. for evaluating heuristic perfor-
mance [24]. The first policy (promise policy) concerns enhancing the likelihood
of remaining on a solution path by correctly extending the current partial solution.
The second policy (fail-first policy) concerns minimizing the size of the refutation
when search is not on a solution path, ie. a mistake has been made.

The promise measurement is a sum of probabilities across all complete search
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paths, while the fail-first measurement is the mean refutation size (where a refuta-
tion is an insoluble subtree, rooted at the initial deviation from the solution path,
that was explored). It has been shown that, in general, better heuristics improve
adherence to both policies [216]. Similarly Hulubei [110] found that dom/wdeg

performed best out of the heuristics tested in their experiments on random prob-
lems because it struck the best balance between promise (measured in terms of
number mistakes encountered) and fail-firstness, even though it was not the best
heuristic in terms of the individual metrics.

Table 4.13: Adherence to Policy Assessments

Policy Measures
Promise Refutation Size

dom/fdeg 0.00041 437
dom/wdeg-nores 0.00042 366
RNDI 0.00046 282

Notes: h50,10,0.183,0.631i problems. Averaged over
100 problems. Results for RNDI are for the final run only.

Since variable selection using dom/wdeg is not well defined or easily repli-
cated (either in the non-restarting case or after random probing), each problem
was solved and the ordering of the variables on the solution path was stored and
reused for calculating promise and fail-firstness measures. Although this means
that search is less efficient than the dynamic case, it allows better assessment of the
information gained at the end of search for both methods. Furthermore, promise
calculations involved an all-solutions search, while fail-firstness measurements
were based on search for one solution.

Experiments were carried out on the set of random binary problems with
parameters h50,10,0.183,0.631i. The results showed that the main basis for im-
provement with random probing was indeed down to a greater fail-firstness, as
evidenced by smaller refutations on average (Table 4.13), compared to the mea-
surements of promise which are similar for all. We further note that, as expected,
the improved performance of dom/wdeg-nores over dom/fdeg can also be at-
tributed to enhanced fail-firstness.
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However this information does not describe the nature of the refutations them-
selves. In particular, it could be the case that search after random probing en-
countered many more mistakes but explored smaller subtrees when refuting them.
Thus, it is also of interest to note the depth in search at which mistakes were
encountered, and the average refutation size at these depths.

Table 4.14: Refutations per Depth in Search

dom/wdeg-nores RNDI
Depth Frequency Mean Size Frequency Mean Size

1 1.3 1883 1.6 1295
2 1.2 597 1.6 349
3 1.1 219 1.2 127
4 1.1 68 0.9 51
5 0.8 24 0.8 26

Notes: h50,10,0.183,0.631i problems. Averaged over 100
problems. Depth refers to the depth in search at which the initial
mistake was made. Results for RNDI are for the final run only.

The results in Table 4.14 show that the biggest differences were for mistakes at
the top of the search tree. Here, although dom/wdeg-nores encountered slightly
fewer mistakes, it needed much larger refutations on average to return to the solu-
tion path. This also provides further corroboration of the importance of the choices
made at the top of the search tree.

Heuristic Actions

Recent work has shown that, for problems with unspecified structure, there are
two distinct forms of heuristic action that result in different patterns of variation
in search efficiency across problems [213], [215]. Based on factor analysis [98] of
search efficiency of different heuristics, these two forms appear to be related to (i)
the buildup of contention, and (ii) the simplification of the underlying subproblem.

Examples of heuristics which are associated with the buildup of contention
factor are domain based heuristics such as dom/fdeg and Brélaz, while degree
only heuristics such as fdeg are associated with the simplification factor. In Ta-
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ble 4.15, the results of the factor analysis are presented for a set of random binary
problems and a set of coloring problems.

In the table, deg refers to the static degree of the variable, ff2 and ff3 are two
of the fail-first heuristics introduced by Smith and Grant [189]. For both problem
sets shown, Factor 1 is the buildup of contention factor and Factor 2 is the sim-
plification factor. (Note that the coloring problems are those studied in the previ-
ous chapter (Section 3.4.3), for which RNDI, followed by dom/wdeg, performed
poorly due to a negative interaction between the domain factor and the weights
from the probing phase).

The results show that, while dom/wdeg-nores and wdeg-nores load on the
same factor as their foundation heuristics (dom/fdeg and fdeg respectively),
search using frozen weights after random probing had a distinct pattern of cor-
relations. For the set of random binary problems, there was a moderate loading on
both factors while there was also a large amount of variance that was unique to the
probing methods. For the coloring problems, the results were similar in that there
was not a large difference between the loadings on the two factors. However, here
the loadings on the two factors were much less, most of the variance was unique
to the probing methods.

It has been shown that the best search performance occurs for a weighted-sum
combination of two heuristics that load on separate factors, even when the individ-
ual heuristics perform relatively poorly [214]. Furthermore, the best combination
with MAC was generally when both base heuristics were weighted equally in the
weighted-sum. For the random binary problems in Table 4.15, we note that the
probing strategies result in more balanced loadings on both factors, compared to
the loadings of the associated weighted degree heuristics which load heavily on
one or the other factor. This follows previous findings for weighted combinations
of heuristics.

4.6 Related Work

Balafoutis and Stergiou have also proposed variations on the constraint weighting
method with the goal of improving the quality of information learnt [11]. They
firstly tackled one aspect of the blame assignment issue; when a DWO occurs
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Table 4.15: Factor Analysis of Heuristic Search Performance

heuristic Random Problems Coloring Problems
Factor 1 Factor 2 Uniqueness Factor 1 Factor 2 Uniqueness

deg 0.445 0.840 0.097 0.267 0.787 0.310
fdeg 0.387 0.910 0.021 0.109 0.935 0.114
Brélaz 0.749 0.396 0.282 0.682 0.247 0.474
dom/deg 0.890 0.437 0.017 0.830 0.125 0.296
dom/fdeg 0.887 0.456 0.005 0.969 0.163 0.035
ff2 0.775 0.412 0.230 0.141 0.935 0.105
ff3 0.595 0.507 0.389 0.273 0.747 0.367
wdeg 0.420 0.854 0.075 0.134 0.895 0.180
dom/wdeg 0.873 0.466 0.020 0.967 0.123 0.050
RNDI-wdeg 0.385 0.566 0.531 0.285 0.361 0.788
RNDI-dom/wdeg 0.487 0.436 0.573 0.380 0.137 0.837
SS loadings 4.786 3.975 3.996 3.448
cumulative var. 0.435 0.796 0.363 0.677

Notes: Random problems had parameters h50,10,0.183,0.631i problems. Coloring
problems had parameters h50, 6, 0.27i. Correlations greater than 0.6 are shown in
bold. Results for RNDI are for the final run only and are for one experimental run
(similar results were found with different seeds for RNDI). The probing parameters were
40R50C for the random binary problems and 100R50C for the coloring problems.

the constraint which is weighted is the constraint that last removed values from
the variable, even though some other, more contentious, constraint(s) may have
removed most of its values and thus be more to blame.

They dealt with this blame assignment issue by recording every constraint
which removes a value from a variable’s domain during propagation. Then, when
a DWO occurs for variable x, say, the weights on all constraints that removed at
least one value from the domain of x are incremented in one of the following three
ways: (i) unit increments; (ii) increment by the number of values the constraint
removed from the domain of x; and (iii) increment by the normalized number of
values removed from the domain of x by the constraint, i.e. increment by the ratio
of number of values removed to the domain size of x.

Based on the observation that different revision ordering heuristics can lead to
different DWOs occurring during a pass of AC, they proposed a separate weight-
ing method to identify potential DWOs. During a pass of arc consistency, ev-
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ery constraint that has a fruitful propagation (i.e. removed at least one value) is
recorded. If a DWO occurs, all constraints that had a fruitful propagation during
the current pass of AC have their weights increased. They refer to this method as
“fully assigned”.

Finally, they implemented an “aging” strategy for constraint weighting, where
all constraint weights are divided by a constant every x backtracks. A similar
approach has been widely used in the SAT community, e.g. [155]. The basis for
this is the assumption that more importance should be attached to recent conflicts
than older conflicts.

They compared these new methods with dom/wdeg and with the AlldelBydel

heuristic introduced earlier. All methods were combined with a geometric restart-
ing strategy [221]. For the problems studied, there was no clear winner although
it was interesting to note that for the seven problem classes studied, dom/wdeg
was never the fastest, whereas five of the six other methods had a “win” on at least
one of the problem classes. Furthermore, aging worked extremely well for certain
problem classes, but quite poorly for others.

Balafoutis and Stergiou extended their experimental comparison in [12], test-
ing on a wider range of problems. Here they found that dom/wdeg was fastest
overall, closely followed by AlldelBydel and fully assigned. These results, com-
bined with our findings in Section 4.2, show that the confluence of failures on
the constraints of a variable is more important than the apportioning of blame for
individual failures.

In the latter paper Balafoutis and Stergiou also investigated the benefits of
using constraint weights to guide revision ordering during arc consistency. They
found that, for the instances tested, using dom/wdeg in a variable oriented revision
ordering consistently performed best on structured problems, and was best overall
on random problems.

Another aspect that affects the information learnt, and thus the performance of
dom/wdeg, is the value ordering. It has been widely assumed in the CSP commu-
nity that value ordering does not affect search if one is looking for all solutions or
proving a problem insoluble, when using d-way branching. This is because all val-
ues in each selected variable’s domains will need to be explored. However Mehta
and van Dongen [150] showed that the value ordering does affect search when one
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is using information from previous search states to guide subsequent search such
as in the weighted-degree heuristic, even if the problem is insoluble.

However it is still unclear what is the best value ordering heuristic to use in
combination with a weighted degree heuristic. Consider a heuristic such as Gee-
len’s promise heuristic [71]. This may remove some noise from the data by avoid-
ing failures which were due to poor value selection (and thus are localized) as
opposed to those weights which are indicators of contention.

At the same time, there are disadvantages to such an approach. Firstly these
heuristics are often costly to calculate. Secondly, the use of such a heuristic will
generally result in failures occurring deeper in search. This means that it will
take longer for weights to accrue, and thus affect the variable ordering. There is
evidence to suggest that, when combining a weighted degree heuristic with binary
branching search, choosing values based on the fail first policy may yield better
results than a value ordering based on the promise policy ([136]).

There have been a number of hybrid approaches proposed, combining local
and systematic search, that use local search to identify difficult elements of a
problem This information is then used to guide the branching decisions of a sys-
tematic search algorithm. The approach of Eisenberg and Faltings for CSPs [60],
discussed earlier, is one example.

Mazure et al. proposed a similar method for the satisfiability domain, which in-
terleaved a GSAT type local search with a DP systematic search algorithm [147].
The local search algorithm was used to identify difficult literals for guiding the
systematic search algorithm. In their method, each clause is scored based on the
number of times it was falsified during local search. Similarly, each literal is
scored based on the number of times it appeared in a falsified clause. At each
branching step, the local search algorithm is called with respect to the remainder
of the SAT instance. The literal with the highest score is selected

The difference between the approach of Mazure et al. and that of Eisenberg
and Faltings is that, for the former, the information supplied by the local search
algorithm is specific to the current search state. For the latter, and for the breakout
methods we tested, the information supplied by local search was a global overview
of the contentious constraints. One would expect the former to result in a smaller
search tree, although the cost of running local search at each branching step may
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be prohibitive.
Finally, we note the activity-based search strategy (ABS) recently proposed by

Michel and Van Hentenryck [151] is similar to the AlldelBy1 weighting method.
The main difference is that, in ABS, the weight on a variable is incremented if it
has had its domain reduced after applying a filtering algorithm. For AlldelBy1, on
the other hand, the weight on a variable (via its constraints) is incremented each
time a constraint on the variable caused a domain reduction, either to the variable
or to one of its neighbors. Furthermore, an aging strategy is employed in ABS,
which focuses search on variables which have recently been “active”.

4.7 Chapter Summary

In this chapter we have investigated the quality of information learnt by constraint
weighting methods under different conditions. We introduced alternative measure-
ments of contention and showed experimentally that any of these measurements
can be used by a weighted degree heuristic to improve search over its associ-
ated non-weighted heuristic (dom/fdeg or fdeg). We compared these methods
across three different paradigms: weighted degree without restarting; weighted
degree with restarting; and weighted degree with weights initialized through ran-
dom probing. In most cases, we found that using measurements of contention
directly related to failure resulted in the best search performance. This implies
that correctly assigning blame for each individual failure of a variable is not as
important as the confluence of weights on the constraints of a variable.

We assessed the importance of maintaining arc consistency during random
probing for identifying the critical variables. The results showed that using a
weaker level of consistency resulted in poorer search performance on the run to
completion. Analysis of the weights produced showed that this form of consis-
tency is more susceptible to local sources of contention. However, in some cases
search performance was still better than when no weight information was avail-
able at the start of search, which shows that the weaker level of consistency was
still available to identify contentious variables.

We also compared weights generated by the breakout algorithm in local search
with those generated by random probing with MAC. We tested three variations



124 EXPLORATION OF ALTERNATIVE CONSTRAINT WEIGHTING TECHNIQUES

with different levels of bias in the information learnt. For random problems the
version of breakout, which was restarted a number of times with weights reset
each time, performed best of the breakout methods and was only statistically
significantly worse than normal random probing when followed by wdeg with
frozen weights. The worst breakout method was the non-restarting version, which
resulted in worse search performance than if there was no weight information
available at the start of search.

However, the opposite was the case for the structured problems, with the non-
restarting version of breakout performing best. These results reflect similar find-
ings in the previous chapter, where biased sampling was extremely poor for un-
structured problems but performed well on structured instances. Analysis of the
weight profiles produced by the different sampling strategies showed that random
probing with MAC provided the most discrimination between ranked variables on
all problem types.

Our study of the nature of sampling after random probing proved a number of
hypotheses. Firstly, the good performance of search after random probing can be
mainly attributed to an improvement in choices at the top of the search tree, and an
improvement in the fail-firstness of the heuristic. Analysis of the depths at which
failures occur showed that, as long as sampling was performed across the search
space, the globally contentious variables received the most weight no matter what
the contexts of the individual failures.

Finally, search performance with the weighted degree heuristics, in both their
basic form and with weights frozen after random probing, were compared using
factor analysis. The results showed that the weighted degree heuristics load on the
same factors as their base heuristics. On the other hand, most of the variance asso-
ciated with search when weights were initialized by random probing was unique
to this method, and did not load strongly on either of the factors which the other
heuristics loaded on.



Chapter 5

Solving Dynamic CSPs Through
Failure Reuse

5.1 Introduction

In many real world situations, combinatorial problems are defined in a dynamic
environment where changes may occur over time to the problem definition, and
each time a problem is altered a new solution may need to be computed. Examples
include online scheduling, where problem changes may occur through user inter-
action (e.g. [73]); and university timetabling where the problem changes slightly
each year due to the arrival/departure of lecturers, the addition/removal of courses,
etc. (e.g. [61]).

Such cases may be modeled as dynamic constraint satisfaction problems (DC-
SPs), which are sequences of static CSPs. Each CSP in the sequence is an al-
tered version of the preceding CSP. The alterations may be in the form of addi-
tion/removal of constraints or variables or domain values for variables.

In order to solve these problems, one could simply apply the same static CSP
solving technique to solve each problem in the sequence. However, this may result
in a lot of redundant search effort and cause unnecessary disruption to the current
solution. Therefore, when solving a DCSP, one would like to take advantage of the
fact that one is solving a sequence of similar problems in order to reduce search
effort and increase solution stability (i.e. minimize the changes made from the
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previous solution in the sequence).
Many methods have been proposed for handling DCSPs, as described in the

survey of Verfaillie and Jussien [208]. These methods can be split into two cate-
gories: proactive methods (e.g. find robust solutions [217]), where one knows the
changes that are likely to occur; and reactive methods (e.g. solution reuse [209]),
where information learnt while solving the previous problem is used to solve the
subsequent problem.

Our work focuses on reactive techniques, where we assume no knowledge ex-
ists regarding the changes that are to occur (however this is not to say that the
methods cannot be used in situations where such information is available). Reac-
tive techniques have been further categorized, based on the type of information
which is stored, into reasoning reuse approaches (where information regarding
inconsistency is stored) and solution reuse approaches (where information regard-
ing consistency is stored). Most research in this area has concentrated on devel-
oping/improving proactive or reactive techniques.

However, little attention has been paid to the impact of changes on a prob-
lem. In particular, it is acknowledged that solution/reasoning reuse techniques,
although generally effective even in the face of large changes, perform poorly
when changes occur to problems at the phase transition. It is suggested that this is
because even small changes may have a large impact on the nature of the instance
to solve at the phase transition. In this case it is proposed that the best approach
may be a two-tiered strategy, where solution/reasoning reuse techniques are used
for a short time and, if the problem remains unsolved, the problem is solved from
scratch [208].

In this work we test the hypothesis with regard to the impact of small changes
on CSPs at the phase transition. We show that many important attributes associ-
ated with a problem are sensitive to alterations when at the phase transition, e.g.
the search effort to find a solution / prove a problem insoluble; the number of so-
lutions to a problem; promise and fail-firstness measurements; and the individual
elements of the solution set.

We identify one problem feature which is not greatly affected by alteration,
namely the major points of contention in a problem. This led to the development
of a new approach for solving DCSPs, based on contention reuse. We show experi-
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mentally the benefits of such an approach for a range of alteration types, including
cases where alteration affected the solubility of the problem. The advantages, and
disadvantages, of this approach are investigated.

We also address the issue of solution stability by adding a simple enhancement
to our approach, namely a value ordering heuristic based on the solution to the
preceding problem in the sequence. This compares favorably with a traditional
solution reuse method, both in terms of solution stability and search effort.

The breakdown of the chapter is as follows. The next section gives a formal
definition of the DCSP and outlines the main objectives for solving the problem.
We then provide a brief overview of the techniques which have been proposed in
the literature for handling DCSPs. Section 5.4 describes the experimental methods
which are used in the chapter. In the following section we present our investigation
of the impact of small changes on problems at the phase transition.

We assess the stability of the points of contention and introduce a new ap-
proach for DCSPs in Section 5.6. This approach is tested on a wide variety of
DCSPs with different forms of alteration. The section thereafter is focused on so-
lution stability, including an examination of a traditional solution reuse method,
analysis of the nearest solution possible for the DCSPs tested, and an enhance-
ment of our basic method to incorporate a solution reuse component. The final
section provides conclusions of the work presented in the chapter.

5.2 Background

Using the definition of Dechter and Dechter [56], a dynamic constraint satisfac-
tion problem (DCSP) is a sequence of static CSPs where each CSP is an altered
version of the preceding CSP in the sequence. These alterations are generally
the addition and/or deletion of some of the basic elements of the problem (i.e.
constraints/variables/domain values). The addition of constraints/variables and
the deletion of values are forms of problem restriction, while deletion of con-
straints/variables and addition of values are forms of problem relaxation.

More formally, a DCSP of length l is a sequence of CSPs {P0, P1, . . . Pl} s.t
Pi = (Pi�1 +Ea

i

�Er
i

) for i = {1 . . . k}. Ea
i

is the set of elements (constraints,
variables, domain values) added to problem Pi while Er

i

is the set of elements
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that were in problem Pi�1 but are not in problem Pi. We refer to P0 as the base
problem, and the set of changes (Ea

i

� Er
i

) as a perturbation.

The above definition is quite broad, indeed any pair of independent CSPs (Pj ,
Pz) form a DCSP, where Ea

z

= Pz and Er
z

= Pj . Thus, it is implicitly assumed
when referring to DCSPs that the changes between two problems in the sequence
are limited, i.e. only a fraction of the elements are altered per perturbation.

The main requirements when solving a DCSP, as outlined by Verfaillie and
Jussien in [208], are:

1. Limit the time taken to compute a new solution after the problem has been
altered.

2. Limit the disruption caused by the new solution, i.e. one would like a new
solution to be as similar as possible to the previous solution.

3. Limit as much as possible the need for successive online problem solvings
(we do not want to be continually changing the solution, e.g. truck drivers do
not want their route constantly changing due to small changes in traveling
conditions).

4. Keep producing consistent and optimal solutions.

We will use the following notation in discussing instances of DCSPs through-
out the remainder of the chapter. Peri-j refers to the jth problem generated by al-
tering base problem i (Peri-0). For DCSPs of length greater than 1, Peri-sj refers
to the jth problem in a sequence of successive alterations beginning at base prob-
lem i. For means, since we are sampling over DCSPs generated from a set of
base problems, this notation can be simplified to Perj/Persj. For example, Per2-0
refers to the second base problem generated, Per2-3 refers to the third perturbed
problem generated by altering base problem Per2-0, while Per2-s3 refers to the
third perturbed problem in the sequence of successive alterations beginning at
base problem Per2-0.
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5.3 Previous Techniques

There are two different types of approach for solving DCSPs. The first type in-
volves proactive methods for satisfying the goals of minimizing search effort and
minimizing changes to the solutions. The second type involves reactive methods.
Proactive methods aim to find solutions that will be most resistant to changes in
subsequent problems, or that can be easily modified to find alternative solutions if
changes negate the validity of the current solution.

Proactive methods can be further split into two categories, those that attempt
to find robust solutions and those that attempt to find flexible solutions. Robust
solutions are those which, given a model of the possible changes, are most likely
to remain a solution after problem alteration. An example of such an approach is
one where probabilities are available for the values in the domains of the variables
which may change [217], [222].

A flexible solution (which can be a partial/complete solution, or a set of solu-
tions) is one which can be easily modified to produce a new solution should the
current solution become invalid after problem alteration. One method is to store
the set of solutions in a binary decision diagram (BDD) [36] or an automaton
[207]. This is known as a conditional solution. An alternative method would be
to store the interchangeable values (where they exist) [66] for each value in the
current solution, providing a quick, compact method for storing a large number of
solutions.

Another example of a flexible solution is a super-solution [103] which is a
solution with an associated tuple (a,b) such that if at most a variables have invalid
values in a new problem in the sequence, then at most b other variables will also
need to have their values changed to form a new solution, (e.g. a (1,1)-super-
solution means that if only one variable loses its value in a solution then only one
other variable at most need also have its value changed to produce a new solution).

In this work, we focus on reactive methods. Like proactive methods, these can
be further split into two categories, solution reuse and reasoning reuse methods.
As their name suggests, both involve reusing information learnt while solving the
previous problem in the sequence, to solve the subsequent problem.

Reasoning reuse methods store information regarding inconsistency in a prob-
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lem, typically in the form of nogoods which can then be used to prune the search
space on the subsequent problem in the sequence (e.g. [180],[61]). Note that if the
alterations are solely in the form of problem restrictions then any nogood of the
preceding problem remains valid.

Solution reuse methods store information regarding consistency in a problem,
in particular the solution to the previous problem in a sequence is typically reused,
either in guiding a depth-first search approach [204], or as an initial assignment to
the variables in local search methods and local repair methods (e.g. Local Changes
[209]). Local Changes is a complete algorithm designed to find solutions to an
altered problem while conserving as much of the original assignment as possible.
It works by determining a minimal set of variables that must be reassigned, and
undoing old assignments only when they are inconsistent with the new ones.

Obviously, these two reuse methods are not mutually exclusive. Angles-Domı́-
nguez and Terashima-Marı́n proposed two different combinations of these reuse
techniques [3]. They tested these methods on randomly generated DCSPs based
on the resource allocation problem, which contained binary intensional constraints
of the form <, >, and 6=.

However the problems they studied were in the easy region and thus are not
applicable to our work. For example, all base problems had 40 variables, domain
size 5, and 14 constraints. Thus, at least 12 variables in each base problem were
not in the scope of any constraint (and this is for the case where each of the 28
other variables were only in the scope of one constraint). The maximum increase
in constraints per perturbation was 7, which still results in an extremely undercon-
strained problem.

Finally we note that approaches can also be segregated based on their primary
objective. Most of the approaches described above are concerned with reducing
search effort, with minimizing solution disruption a secondary objective. How-
ever, there are a number of methods where this objective order is reversed, i.e.
minimizing solution disruption is the primary objective (e.g. [25],[19]).
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5.4 Experimental Methods

The majority of our experiments were performed on random binary problems,
generated in accordance with Model B [72] as they allow for greater control. Ad-
ditional experiments were performed on open shop scheduling problems [196].
All perturbed problem sets were generated by Richard Wallace.

For the random binary problems, DCSPs were generated using one of the fol-
lowing types of alteration:

• Addition and deletion of k constraints of the previous CSP in the sequence
(for simplicity we will refer to this condition as kad)

• Replacement of k relations of the previous CSP in the sequence (we will
refer to this condition as kr)

In both cases the number of constraints in the problem remains the same.
Changes were carried out in the first case such that additions and deletions did
not overlap. The second method of alteration can be viewed as a special case of
the first, where the scope of an added constraint is the same as that of a deleted
constraint.

For each set of DCSPs we generated 25 independent base CSPs. In most cases,
three CSPs were then generated from each base problem, giving three DCSPs of
length 1. This was sufficient to illustrate the effects we are interested in. We also
generated DCSPs of length 20, again starting with 25 independently generated
base instances, where successive perturbed instances were produced by altering
the previous instance in the sequence.

All problems had 50 variables, each with initial domain size of 10, and tight-
ness of 0.369. Most sets had density of 0.184 (giving 225 constraints), where all
instances were soluble. Density of 0.19 (giving 233 constraints) was also used for
some sets where we wished to assess differences in behavior between soluble and
insoluble DCSPs. All problems are in the critical complexity region (with the 0.19
density sets being closer to the peak), while still small enough to allow extensive
experimentation be performed in a reasonable amount of time.

Search was performed until either a solution was found or the instance was
proven insoluble. The variable ordering heuristics used were dom/fdeg, ff2, and
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dom/wdeg, consistency was maintained using the MAC-3 algorithm. In order to
avoid vagaries in results due to the value ordering, in most cases each instance
was solved 100 times with values chosen randomly, and the results are presented
in terms of means over the 100 runs.

We also generated DCSP’s from open shop scheduling problems (as previ-
ously described in Section 3.4.4), the base problems were the ost-4-100 and ost-
4-95 sets. For each base instance, 5 DCSPs of length 1 were generated. Instances
in the ost-4-100 set were altered by decreasing the upper bound on the domains
of 4 randomly selected variables by 10 units, while instances in the ost-4-95 set
were altered by increasing the upper bound on the domains of 6 randomly selected
variables by 10 units. The size of the increment/decrement (10 units) was chosen
as this was the difference between the upper bounds of the same variables in the
ost-4-100 and ost-4-95 sets. All of the ost-4-100 DCSPs are soluble, while all of
the ost-4-95 DCSPs are insoluble.

It should be noted that, unlike the random binary perturbed problems, the
scheduling perturbed problems should be more difficult than their respective base
problems:

• For the soluble set, domains of 4 variables have been decreased which will
either reduce the number of solutions to the instance or leave the same num-
ber of solutions.

• For the insoluble set, domains of 6 variables have been increased which will
either result in an instance with a minimal refutation of the same size as the
base, or a larger minimal refutation than that required for the base instance.

5.5 Impact of small changes at the phase transition

We tested the hypothesis, put forward by Verfaillie and Jussien in [208], that small
changes to problems at the frontier between consistency and inconsistency have a
profound effect on the nature of the instances to solve. To the best of our knowl-
edge, research on this topic has not been published. The majority of the work in
this section was performed by Richard Wallace.
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We first experimented on the set of soluble random binary DCSPs with param-
eters h50, 10, 0.184, 0.631i,f where problems were altered by adding and deleting
five constraints (condition 5ad). Table 5.1 presents results for the first five DC-
SPs (similar results were found for the other twenty DCSPs). We see that small
changes can have a large impact on the search effort required to solve an instance.
When solving the fifth DCSP with fdeg, for example, Per5-1 required nearly dou-
ble the search effort of the base instance on average, while Per5-3 required less
than half the search effort of the base instance.

Table 5.1: Impact of Small Changes on Search Performance: Random Binary
Problem

DCSP i Peri-0 Peri-1 Peri-2 Peri-3
fdeg

1 600 1303 705 1266
2 2136 4160 2407 1569
3 1682 1794 1697 2027
4 318 755 586 1507
5 2804 4996 1425 1270

ff2
1 670 1280 1412 1004
2 3222 3990 2521 1582
3 924 1385 2385 968
4 713 1129 1027 941
5 3359 4549 2952 1780
Notes. h50, 10, 0.184, 0.631i problems. Mean search
nodes over 100 runs with random value ordering. Instances
altered by adding and deleting 5 constraints. Peri-0 is
base instance for each of three altered instances found on
the same row. These are therefore separate DCSPs of length 1.

Furthermore, there were cases where one heuristic performed better on a base
instance but the other heuristic performed better on an associated perturbed in-
stance (e.g. fdeg solved the fourth base instance in less than half the nodes it
took ff2 on average, yet explored nearly twice as many search nodes as ff2 on
Per4-3). Since these heuristics are associated with different heuristic actions on
random binary problems (as discussed in Section 4.5.2 of the previous chapter),
this shows that small alterations can affect the relative amenability of a problem
to one heuristic action over the other.
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Figure 5.1: Scatter plot of search effort (mean nodes over 100 runs) with fdeg on
base versus Peri-3 instances with five constraints added and deleted. (Overall

correlation in performance between base and altered instances is 0.24.)

The variation in search performance before and after alteration can be seen
most clearly in Figure 5.1, which is a scatter plot of search effort on the 25 base
problems versus search effort on the perturbed problem set Peri-3. For clarity, we
include the line x = y where points near or on this line occur for cases where
search performance was similar for both a base instance and its associated per-
turbed instance. The figure shows the extremes that can occur, with search effort
on perturbed instances ranging from a factor of 5 less to a factor of 4 more than
that for the associated base instance.

We further assessed the impact of small changes on search performance by
comparing results for ten sets of 25 independently generated instances with results
for ten sets of 25 instances where each set was generated by perturbing instances
in a common base problem set. Alterations again took the form of addition and
deletion of five constraints. Problems were solved using the heuristic fdeg.

Results were compared using the coefficient of variation, which is equal to
the ratio of the standard deviation to the mean [191]. The coefficient ranged from
0.61–1.08 over the ten sets of independently generated instances, while the range
over the ten sets of perturbed instances was 0.43–0.63. This shows that the vari-
ability in search performance found after small problem perturbations is a sizable
proportion of that found with independently generated problems.
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The scheduling DCSPs generated resulted in even greater variation in search
performance, as shown in Table 5.2. We remind the reader that, unlike for the
random binary DCSPs, the perturbed scheduling instances were expected to be
harder due to the form of alteration used. However, we find orders of magnitude
difference in search performance between base and perturbed instances for both
soluble and insoluble sets, in both directions. In other words, there were cases
where perturbed instances were much harder than their base instance as expected,
but also cases where the perturbed instances were much easier!

Table 5.2: Impact of Small Changes on Search Performance: Scheduling
Problems

DCSP i Peri-0 Peri-1 Peri-2 Peri-3
os� taillard� 4� 95

0 51 578 76 557
1 390,845 10,172 1,255,215 1,865,802
2 397 22,140 58,181 66,174
3 1755 22,745 38,060 41,111
4 167,719 51,148 320,280 569,975

os� taillard� 4� 100
0 17 18 31 41
1 4,745,944 2,635,513 463,465 6,934,799
2 52,377 81,762 53,060 4,812
3 507,254 233,397 103,630 169,570
4 558,176 4,569,500 9,429 3,481
Notes. Table shows first 5 base instances. Data for 4-100 series
is mean search nodes for 50 runs with random value ordering.
Variable ordering heuristic was dom/fdeg.

In Table 5.3, we present Pearson product-moment correlation coefficients com-
paring search performance on base instances and on their associated perturbed in-
stances for a number of different conditions for the random binary problem sets.
The perturbed instances are arbitrarily grouped based on the number of perturbed
instances independently generated from the base, i.e. “Per1” refers to the first
perturbed instance generated by altering the base instance, “Per2” the second per-
turbed instance, etc.

It should be emphasized that this is a somewhat crude measure of problem
change, since correlations significantly less than +1.0 will only occur if the rel-
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ative values of a base and its associated perturbed instance, in comparison with
other instances in the corresponding set of base or perturbed instances, are con-
siderably different for a sufficient number of DCSPs. Lower values for a given
type of change are of most interest in the table, as these show how large an impact
the form of alteration can have.

Table 5.3: Search Performance Correlations for Different Forms of Alterations

fdeg ff2
condition Per1 Per2 Per3 Per1 Per2 Per3
1ad .81 .83 .70 .81 .84 .67
5ad .49 .83 .24 .34 .54 .31
25ad .64 .34 .55 .46 .45 .23
1r .92 .86 .92 .77 .71 .83
5r .76 .84 .67 .51 .71 .56
25r .71 .80 .85 .82 .13 .55
Notes. h50, 10, 0.184, 0.631i problems. Single solution
search with repeated runs on each instance. Condition
“kad” is k additions and deletions; “kr” is k altered relations.
All instances contain 225 constraints.

As expected, correlations tend to decrease as the number of problem changes
increases. However, we see that the addition and deletion of just one constraint
(or just one relational change) produces correlations as low as 0.7. Furthermore,
changes to just one forty-fifth of the constraints (conditions 5ad and 5r) resulted
in correlations of 0.5 and lower.

Changes restricted to relations had less impact on search performance for fdeg
than for ff2. Alterations of this form do not affect the constraint graph, therefore
degree only heuristics, such as fdeg, will have the same variable ordering before
and after perturbation. Here, we still see correlations as low as 0.67 for the 5r
condition. Furthermore, when lexical value ordering was used (therefore variables
and values were selected in the same order), correlations of less than 0.5 were
found for this condition.

One possible explanation for the variation in search performance could be the
impact the alterations have on the number of solutions. In other words, it could be
that the perturbed instances required more (resp. less) search effort because they
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had less (resp. more) solutions than their associated base instance. However, the
results given in Table 5.4 refute this hypothesis.

For example, there is an order of magnitude increase in the number of so-
lutions for Per1-2 over Per1-0, yet search effort increased for both heuristics on
Per1-2, by a factor of 2 in the case of ff2 (cf. Table 5.1). The overall correlation
between average search nodes explored and number of solutions was -0.2 for the
100 instances (25 base and 75 perturbed instances). Although this is in the ex-
pected direction, i.e. negatively correlated, the size of the correlation shows that
very little of the variation in search performance is attributable to this factor.

Table 5.4: Solution Counts for Sample Instances

DCSP i Peri-0 Peri-1 Peri-2 Peri-3
1 7,846 43,267 109,480 12,065
2 18,573 29,722 47,392 79,147
3 65,735 3,550 8,843 28,427
4 26,505 37,253 17,751 7,282
5 20,156 16,434 12,033 79,384
Notes. Instances taken from Table 5.1

In Table 5.5 we appraised the impact of small problem alterations on two
measurements of heuristic performance, promise and fail-firstness (as introduced
in Section 2.3). Although correlations are quite low for all measurements, we
see that those for promise were much lower than fail-firstness on average. This
implies that changes have a greater impact on the ability of the heuristic to remain
on the solution path than on its ability to recover from mistakes.

Table 5.5: Correlations of Heuristic Measurements

fdeg ff2
measure Per1 Per2 Per3 x(1-10) Per1 Per2 Per3 x(1-10)
prom 0.22 0.74 0.34 0.46 0.5 0.43 0.16 0.41
ff-1 0.49 0.67 0.74 0.69 0.52 0.47 0.45 0.58
ff-2 0.75 0.72 0.72 0.72 0.77 0.84 0.46 0.70
Notes. Random binary DCSPs, 5 constraints added and deleted per alteration.
“prom” refers to the promise measurement, ff-1 and ff-2 refer to the mean
mistake tree size of mistakes rooted at levels 1 and 2 respectively.
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Overall, we have shown that even changes as small as one constraint added and
deleted can have a profound impact on search performance. Although alterations
did have a large effect on the number of solutions, the low correlation with search
performance means that this is not the sole cause of search performance variation.
Finally, we found that changes had a larger bearing on a heuristic’s ability to
remain on a solution path than its ability to recover from a mistake.

5.6 New approach - Contention Reuse

In the previous section we showed the marked effects that small changes can have
for problems at the phase transition. However, it is possible that there are alter-
native problem features which are less affected by these forms of alteration. In
particular, we investigate the impact of these changes on the major sources of
contention. If these remain relatively stable, then contention information from a
problem can be reused to guide search in solving altered versions of the problem
more efficiently.

5.6.1 Stability of points of contention

We tested the hypothesis that major points of contention remain stable in the
face of small problem alteration, by measuring the degree of correlation between
weight profiles produced by random probing before and after alteration. A sample
of DCSPs were randomly selected. Weight profiles were generated using random
probing with 100 restarts and a cutoff of 30 failures per restart. Variables were
ranked by their weighted degree after probing, and we compared these rankings
for instances before and after change using the top-down correlation coefficient
[112].

Figure 5.2 shows results for the correlations between five base instances and
each of their three perturbed instances, for the 5r, 5ad, and 25ad problem sets. We
see that changes to relations had little impact on the weight profiles after random
probing, with correlations ranging from 0.87 to 0.98. The top ranked variables
were slightly less consistent after addition and deletion of five constraints, with
correlations in the range 0.73 to 0.98, averaging 0.91 overall. Although there was
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Figure 5.2: Top-down correlation coefficients between 5 sample base instances
and each of their 3 perturbed instances for conditions 5r, 5ad, and 25ad.

a more noticeable decrease in correlations for the 25ad instances, these still re-
mained relatively high (averaging 0.75).

For comparison, top-down correlations amongst weight profiles for the same
instance, but generated with different random seeds for RNDI, ranged between
0.87 and 0.99, while correlations amongst weight profiles for a sample of in-
dependently generated instances ranged from -0.11 to 0.27. In light of this, the
correlations found on the above DCSPs show that sources of contention remain
relatively stable in spite of alterations.

A decrease in correlation is to be expected for the 25ad problem set. For the
5ad condition only one forty-fifth of the constraints are added/deleted, while for
the 25ad condition one ninth of the constraints are added/deleted. Most reuse
techniques would struggle in the face of such large changes.

Finally, we consider the case where a constraint, which was a source of global
contention, is removed. When a constraint is removed, its weight is also removed
from the weighted degree of its associated variables. Thus, even in a case where
bottlenecks were impacted by change, the weights learnt should not result in per-
formance degradation compared to the case where no weight information is avail-
able at the start of search.
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5.6.2 DCSP search with weighted degree heuristics

The stability of the major points of contention implies that a contention based
heuristic may perform well on the perturbed problems, even when only using
information regarding contentious variables of the base problem. In the follow-
ing experiments we tested this by solving DCSPs using four different forms of
weighted degree:
(i) dom/wdeg: Normal search with no restarting.

(ii) RNDI: Random probing is used to initialize weights for each problem.

(iii) RNDI-reuse: This approach is identical to RNDI, except no probing is per-

formed on the perturbed problems. Instead, weights on perturbed problems are
initialized to the weights after random probing on the base problem.
(iv) dom/wdeg-reuse: This approach is similar to (i). Problems are solved with

dom/wdeg. However here the weight profile from the final search state on the base
problem is stored, and constraint weights in the perturbed problems are initialized
to these weights.

For the weight-reuse approaches, (iii) and (iv), there are a number of ways one
could initialize the weight on the new constraints (when alterations involve the
addition and deletion of constraints). One could take the average weight of con-
straints on the variables in the scope of the new constraint, the average weight over
all constraints, or simply assign them an initial weight of 1. The latter approach
was used in the following experiments.

There were one hundred runs with random value ordering for the random prob-
lem sets (conditions 5ad and 5r). Random probing was performed once on an
instance, and these weights were used as initial weights for each of the hundred
runs. In the case of RNDI-reuse, the weights from a single phase of probing on a
base instance were used as initial weights for all runs on the base and its associated
perturbed instances.

The purpose of dom/wdeg-reuse is to investigate whether weights can be sim-
ply carried over from one instance to the next in a sequence, Thus, the weights
were stored after the first run of dom/wdeg on the base instance and used as initial
weights on all runs on the associated perturbed instances. If the accumulated or
average weight over the hundred runs on the base instance was used instead, then
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weights would be learnt from a larger sample of the search space, which doesn’t
evaluate the core issue we are investigating.

We assessed the performance of each approach in terms of average nodes over
the perturbed instances (75 for random, 50 for scheduling). Nodes explored during
the probing phase are not included, since we are interested in examining quality of
performance using the information gained by probing. These amounted to about
3300�4400 nodes per instance for the entire phase, depending on the problem
type. For the same reason, the algorithm only terminates on the run to completion
for the probing strategies. The results are given in Table 5.6.

Table 5.6: Search Performance of Weighted Degree Approaches

dom/wdeg dom/wdeg RNDI RNDI
problems -reuse -reuse
random-5ad 1617 1875 1170 1216
random-5r 1729 2055 1344 1317
ost-4-95-per 16,745 11,496 4139 5198
ost-4-100-per 11,340 20,283 7972 5999
Notes. Mean search nodes across all altered instances. Random
instance parameters are h50, 10, 0.184, 0.631i, 5ad refers to 5
constraints added and deleted, 5r refers to 5 relational changes
Scheduling instances altered as described in text.

Reusing weights obtained with random probing on the base instance consis-
tently resulted in an improvement in search performance over the case where no
weight information is available at the start of search. Furthermore, there was lit-
tle fall-off in performance between RNDI-reuse and probing on each individual
instance.

This was confirmed through paired comparison t-tests [101] at the 95% confi-
dence interval. There was no statistical significance between the results of RNDI
and RNDI-reuse on any of the sets, but there was statistical significance between
the performance of each of the probing methods and that of dom/wdeg on all prob-
lem sets except the soluble scheduling instances. In the latter case there was no
statistical significance between the results of any pair of methods due to variability
across instances.
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Reusing weights from the final search state of dom/wdeg, on the other hand,
led to a degradation in performance on the perturbed instances in most cases. Dif-
ferences between dom/wdeg and dom/wdeg-reuse were statistically significant
at the 95% confidence interval for the random binary instances. This illustrates
the importance of unbiased sampling when gathering information regarding con-
tention.

Interestingly, dom/wdeg-reuse performed better than dom/wdeg on the insol-
uble scheduling perturbed set. A possible explanation is that the insoluble cores
may be unaffected by change for some perturbed instances, in which case the
weights learnt by dom/wdeg on the base would guide search directly to an insol-
uble core in the perturbed instances. Thus the search effort to prove insolubility
would be greatly reduced.

We have shown that reusing weights from the probing phase on the base in-
stances can result in similarly good performance on the perturbed instances as
performing probing on each individual instance. However, this does not necessar-
ily mean that reusing contention information will result in more consistency in
search performance between base and perturbed instances.

Table 5.7: Search Effort Correlations for Weighted Degree Approaches

Random-5ad Random-5r
Per1 Per2 Per3 Per1 Per2 Per3

dom/wdeg 0.49 0.82 0.26 0.76 0.77 0.68
dom/wdeg-reuse 0.37 0.89 0.48 0.81 0.78 0.76
RNDI 0.58 0.76 0.38 0.70 0.86 0.59
RNDI-reuse 0.59 0.80 0.43 0.77 0.85 0.68
Notes. Search effort correlations between base and altered instances.
Random problem parameters are h50, 10, 0.184, 0.631i, 5ad refers to
5 constraints added and deleted, 5r refers to 5 relational changes.

We calculated the Pearson product-moment correlation coefficient between
search performance on base instances and on perturbed instances. The results,
presented in Table 5.7, for the random problem sets with conditions 5ad and 5r
show that reusing contention information did not reduce variation in search per-
formance. Indeed correlations are similar to those for the non-adaptive heuris-
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tics shown in Table 5.3. A possible explanation for this is the low correlations
for promise shown earlier, which showed that there is considerable variation in a
heuristics ability to remain on the solution path.

5.6.3 Insoluble Problems

The stability of the points of contention, and the higher correlations for fail-
firstness measurements compared to promise, suggest that there should be less
variation in search performance on insoluble DCSPs. To test this we generated a
set of insoluble random DCSPs with identical parameters to those already studied,
with the exception that the density was increased slightly (to 0.19) so as to reduce
the likelihood of generating soluble instances.

The results in Table 5.8 support our hypothesis, where we show search effort
correlations between base and associated perturbed instances on the sets of soluble
and insoluble random binary DCSPS with five constraints added and deleted. We
see consistently high correlations on the insoluble DCSPs, whereas correlations
as low as 0.3 are observed for the soluble DCSPs.

Table 5.8: Search Performance Correlations: Soluble versus Insoluble Random
Binary DCSPs

fdeg ff2
condition Per1 Per2 Per3 Per1 Per2 Per3
Soluble .49 .83 .24 .34 .54 .31
Insoluble .80 .85 .84 .90 .91 .93
Notes. Soluble instances: h50, 10, 0.184, 0.631i
Insoluble instances: h50,10,0.19,0.369i
Alterations involved the addition and deletion of 5 constraints.

However, we showed in Section 5.5 that alterations had a large impact on both
soluble and insoluble scheduling instances, which seems to contradict the hypoth-
esis. This apparent contradiction can be explained by the following observations
in regard to the insoluble scheduling DCSPs. Firstly, as previously mentioned, the
perturbed scheduling instances are either as difficult or harder than their respective
base instances, whereas the random instances have the same basic level of diffi-
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culty before and after alteration. In particular, the alterations may remove some
insoluble cores for the insoluble scheduling DCSPs. Thus some instances will be
considerably more difficult than their base, while others may remain completely
unaffected.

Secondly, the initial choices of the heuristic used earlier to solve the insoluble
scheduling instances (dom/fdeg) were directly impacted by the kind of problem
alterations made. It is possible that a heuristic whose initial choices are not im-
pacted by the changes would suffer from less variation. We tested this hypothesis
with the heuristic wdeg (due to the symmetry in the constraint graph, fdeg pro-
vides little in the way of discrimination on these instances).

The search correlations given in Table 5.9 confirm our hypothesis. We see
that, while correlations were high for dom/fdeg in most cases on the insoluble
instances, a correlation of 0.03 was found. For wdeg, on the other hand, the min-
imum correlation was 0.98. On the soluble scheduling instances, correlations of
0.51 or lower were found for both heuristics (correlations on these instances for
average search effort over 50 runs with the value ordering randomized were the
same or slightly lower).

Table 5.9: Search Performance Correlations: Soluble versus Insoluble
Scheduling DCSPs

dom/fdeg wdeg
Per1 Per2 Per3 Per4 Per5 Per1 Per2 Per3 Per4 Per5

Soluble 0.52 0.98 0.99 1.00 0.27 0.99 0.85 0.93 0.51 0.99
Insoluble 0.03 0.98 0.99 1.00 0.98 1.00 0.98 0.99 1.00 1.00
Notes. Instances altered by increasing/decreasing a subset of domains.
Value ordering was alternate between lb and ub, with no randomization.

Finally, upon closer inspection of the results for dom/fdeg, we see that only
three out of the fifty perturbed instances were solved more efficiently than their
base for the insoluble set, compared to over half of the soluble perturbed instances.
A similar pattern was observed for wdeg. Since the perturbed instances should be
either as difficult or harder than their associated base instances, this shows that
the impact of small changes was greater on the soluble instance set than on the
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insoluble instance set.

5.6.4 Probing with successive changes

The main disadvantage of the approach RNDI-reuse, in contrast to other reuse
methods (be they reasoning or solution based), is that information is not carried
over from the preceding instance in a sequence of perturbed instances (i.e. DCSP
of length � 1), but from the first instance in the sequence. Indeed, once a per-
turbed instance has become sufficiently different from that which random probing
was performed on, the weights may no longer be beneficial to search and thus
random probing would need to be rerun on the current CSP in the sequence.
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Figure 5.3: Top Down correlations with base after successive changes for (a) 5ad
condition and (b) 5r condition

An important question, therefore, is at what point do the weights from random
probing cause a deterioration in performance. We investigated this by generating
sets of random binary DCSPs of length 20, where each perturbed instance is the
result of alterations to the preceding instance in the sequence. We tested alterations
for both the 5ad and 5r problem sets.
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Figure 5.4: Percent improvement of RNDI and RNDI-reuse in comparison with
dom/wdeg on sets of successive perturbed instances. Problem set k+1 in

sequence derived by adding and deleting 5 constraints in each instance in set k
(Pk in figure).

We first examined the stability of the major points of contention across the
first 5 DCSPs for both conditions, again using the top-down rank correlation co-
efficient. We calculated correlations between the weight profile generated by ran-
dom probing on the base instance and each of the perturbed instances. The weight
profiles were all generated with the same initial seed. The results are shown in
Figure 5.3.

For the 5ad condition, correlations for the first five perturbed instances ranged
from 0.75 to 0.96 and continued to decrease thereafter. This is unsurprising given
that, after five successive alterations, the instances should be have a similar rela-
tion to the base instance as for the 25ad condition discussed earlier. On the other
hand, when changes were restricted to altering the set of supports in a constraint,
correlations were consistently high across all twenty perturbed instances, ranging
from 0.94 to 0.99. This shows that major points of contention remain relatively
stable for this form of change, providing further support to our earlier findings.

In Figures 5.4 and 5.5, we compare the search performance of RNDI and
RNDI-reuse with dom/wdeg for the 5ad and 5r conditions respectively. Each
data point is the average percent improvement, in terms of nodes explored, of
RNDI or RNDI-reuse over dom/wdeg. The results mirror the weight profile cor-
relations, with search performance of RNDI-reuse deteriorating as the distance
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Figure 5.5: Percent improvement of RNDI and RNDI-reuse in comparison with
dom/wdeg on sets of successive perturbed instances. Problem set k+1 in

sequence derived by altering 5 relations in each instance in set k (Pk in figure).

from the base increases for the 5ad condition, while performance is consistently
better across all sets for the 5r condition.

Since alterations of the 5r problems do not add nor remove constraints, the
same weight profile is used on all perturbed instances which contributes to the
consistency of the performance, i.e. it is a 1-1 mapping of constraint weights
(which isn’t the case for the 5ad problems as a subset of constraints are new
and thus have a weight of 1 and a subset are removed as are their weights). For
the 5ad instances we note that weights were no longer beneficial after the seventh
perturbed instance in the sequence.

5.6.5 Alterations Affecting the Solubility of a Problem

We next assessed whether the contention reuse method would be able to maintain
performance levels in the face of alterations which change a soluble instance to
an insoluble instance or vice versa. All random instances had the same parame-
ters as the insoluble instances discussed earlier, h50,10,0.19,0.369i, and changes
involved the addition and deletion of five constraints.

The results (Table 5.10) are quite similar to those shown previously, with both
random probing methods averaging fewer search nodes than dom/wdeg in finding
a solution to the the perturbed instances, while there was no statistical significance
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Table 5.10: Search Performance for Random Problems where Alterations
Changed the Solubility

Soluble �> Insoluble Insoluble �> Soluble
Base Perturbed Base Perturbed

dom/wdeg 2,858 6,321 4,985 2,390
RNDI 2,262 5,162 3,954 1,886
RNDI-reuse 2,224 5,227 3,943 1,906
Notes. Instances altered by adding and deleting 5 constraints. In
the first set the base instances were soluble and altered instances
were not. The opposite was the case for the second set.
Mean search nodes (25 base instances, 75 perturbed instances).
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Figure 5.6: Percent improvement of RNDI and RNDI-reuse in comparison with
dom/wdeg on sets of successive perturbed instances with 40-60% soluble.

Problem set k+1 in sequence derived by altering 5 relations in each instance in
set k (Pk in figure).

to the difference in means of RNDI and RNDI-reuse. The issue of solubility had
no impact on the gains obtained with RNDI-reuse.

Figure 5.6 shows the percent improvement of the random probing methods
over dom/wdeg on a set of DCSPs with successive changes. For these DCSPs,
all base instances had solutions while perturbed sequences were selected so that
40-60% of the instances had solutions. There were 5 relational changes per pertur-
bation. As we can see, the gains were extremely consistent, with little difference
in search performance between RNDI and RNDI-reuse on most sets of perturbed
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instances.
DCSPs based on the taillard scheduling instances, with perturbations chang-

ing a soluble instance to insoluble and vice versa, were also studied. For these, the
domains of four variables in the ost-4-100 instances were decreased by ten, and
insoluble instances were selected. Five sets of DCSPs of length one were gener-
ated for each base instance. Once again we see that both probing methods yield a
large improvement in search performance over dom/wdeg (Table 5.11).

Table 5.11: Search Performance for Scheduling Problems where Alterations
Changed the Solubility

Base Perturbed
dom/wdeg 17,159 49,085
RNDI 6,524 19,439
RNDI-reuse 6,524 19,208
Notes. ost-4-100 instances altered by decreasing
4 domains. Mean search nodes (10 base instances,
50 perturbed instances). Results for random probing
methods are averaged over 10 runs per instance.

An alternative method for comparing learning on soluble (resp. insoluble)
base instances and testing on insoluble (resp. soluble) perturbed instances, in-
volves the CSP solver competition version of the Taillard open shop scheduling
instances †. The problem sets are referred to as ost-n-⇤, where n is the number of
jobs/machines and * is either 95, 100, or 105. As described previously, instances
in the ost-n-105 set were obtained by increasing the domain size of all variables
in the corresponding ost-n-100 instance by a small fixed amount, instances in
the ost-n-95 set were obtained by decreasing the domain size of all variables in
the corresponding ost-n-100 instance by the same fixed amount. The ost-n-95
instances are insoluble, the others are all soluble.

Our experimental setup was to learn weights with random probing on instances
in one set, and use the weights learnt as initial weights on the respective instances
in the other two sets. We experimented on the sets with n = 4 and 5. For the latter,
an overall search limit of one million nodes was used. We present the results in

†http://www.cril.univ-artois.fr/ lecoutre/benchmarks/ benchmarks.html
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Table 5.12 in terms of average search nodes explored for the ost-4-⇤ problem sets,
and in terms of number of instances solved on average for the ost-5-⇤ problem
sets.

The results reveal some interesting points. Firstly, in all but one case, RNDI-
reuse gave a significant improvement over dom/wdeg be it in terms of average
nodes for the ost-4-⇤ problem sets, or number of instances solved for the ost-5-⇤
problem sets. This is quite impressive given that the size of the changes are much
greater in some cases than for the scheduling DCSPs studied so far.

Table 5.12: Search Performance on Scheduling Instances

dom/wdeg RNDI RNDI RNDI RNDI
problems -L95 -L100 -L105

ost-4-95 3748 1263 1263 1496 2916
ost-4-100 17159 5706 8358 5706 19203
ost-4-105 16 23 97 57 23
Mean 6972 2331 3239 2420 7381

ost-5-95 6 9.6 9.6 9.6 9.3
ost-5-100 2 3.7 2.8 3.7 4.2
ost-5-105 9 10 9.8 9.8 10
Total 17 23.3 22.2 23.1 23.5
Notes. RNDI-L⇤ refers to weights learnt by random probing on
ost-n-⇤ and tested on all three sets. Results for RNDI methods
are averages of ten experiments. For ost-4 instances, the metric is
mean search nodes explored. For ost-5 instances, the metric was
number of instances solved within the million node limit on search.

Given the performance of RNDI-L⇤ for all other training sets, it was somewhat
surprising that it resulted in a deterioration in performance over dom/wdeg when
learning from ost-4-105. Further analysis of the results reveals that this is probably
because the instances are extremely easy, thus there were no major bottlenecks to
be identified.

For this set, instances were solved on over 60 of the random runs (out of 100)
on average during the probing phase, and in most cases they were solved mistake-
free. In comparison, an instance was solved on 15% (resp. 11%) of the probing
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runs for the ost-4-100 (resp. ost-5-105) set, while an instance was solved on less
than 1% of the probing runs on average for the ost-5-100 set.

Analysis of the weights generated on the ten instances in the os-4-105 set
shows that generally there were less than half the number of failures during prob-
ing than when an instance is never solved during the probing phase. Top-down
rank correlations as low as -0.01 were found for weight profiles generated with
different seeds on the same instance, with an average of 0.28 for the minimum
correlation per instance. This raises an important issue for our method and indeed
for random probing in general. If the random probing method is unable to identify
global bottlenecks in a problem, then weights learnt may result in a deterioration
in performance. This may occur for “easy” problems or for problems which do
not contain global bottlenecks due to symmetries, etc. (an example of the latter
would be the pigeon hole problem).

In order to reduce the likelihood of this occurring, the probing method could
be monitored and if an instance is solved on over 40% of the first 30 runs, say,
then weights are not carried over. Alternatively, a relatively low correlation be-
tween weights learnt on the first 20 runs and the next 20 runs could be used as
an indication that the probing method is not identifying global bottlenecks. In ei-
ther case, one could abandon the probing phase and either use dom/wdeg with
uninitialized weights on the next instance in the sequence, or continue to perform
monitored probing on each successive instance until either neither condition is
met, or all instances have been solved.

5.7 Solution Stability

In the work so far we have concentrated on our primary objective for solving DC-
SPs, namely minimizing the search effort required to solve the problem. We now
concern ourselves with the secondary objective: maximizing the solution stability.
The solution stability can be measured in a number of different ways, with the
most common being the Hamming distance between solutions to successive CSPs
in a DCSP [25], [3]. Let V be the set of variables in common between two suc-
cessive perturbed problems, Pi�1, Pi, and let si�1

a , sib be the respective solutions
found for these problems. Then the Hamming distance between the two solutions
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is given by

hdist(si�1
a , sib) = |{x 2 V : si�1

a (x) 6= sib(x)}| (5.1)

where sib(x) is the value variable x took in sib. Let Sol(Pi) be the set of solutions
to Pi. We say that sib is the nearest solution to si�1

a if

hdist(si�1
a , sib)  hdist(si�1

a , sic) 8sic 2 Sol(Pi), c 6= b (5.2)

i.e. if it has minimal Hamming distance to the solution to the previous problem in
the sequence (note there may be more than one solution with minimal hamming
distance to the solution found for the preceding problem, so there may be more
than one “nearest solution”).

We first show how changes impact a traditional solution reuse method, Local
Changes [209], for problems at the phase transition. We then analyze the maximal
solution stability attainable on the problems studied. Finally, we introduce a sim-
ple augmentation of our contention reuse method to increase the solution stability
of our approach.

5.7.1 Performance of an Algorithm Based on Solution Reuse:
Local Changes

In this section we assess the performance of a traditional solution reuse approach
on DCSPs in the critical complexity region. The approach we consider is Local
Changes [209], which is a complete method that starts with the previous solution
assigned to the variables. For each constraint in conflict, a variable in its scope
is selected and unassigned. Then each unassigned variable is selected in turn and
assigned a new value. The process of unassigning and reassigning variables is
repeated until all constraints are satisfied or all values have been tried (i.e. the
problem has been proven insoluble). The majority of the work in this section was
performed by Richard Wallace.

Our version of Local Changes updates the classical description by using MAC;
it also makes use of the data structures and style of control used in our basic MAC
implementation. All base instances were solved with lexical value ordering. The
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solution to the base instance was then passed to the Local Changes algorithm for
solving the perturbed instances.

We tried three different value ordering heuristics for Local Changes on the
random problems: lexical, min-conflicts [152], and “min-violations”. The latter
heuristic is that proposed by Verfaillie and Schiex in the original Local Changes
paper [209] and involves selecting the value with fewest conflicts with assigned
neighbors of the current variable. Min-conflicts, on the other hand, chooses the
value with fewest conflicts with values in the domains of unassigned neighbors.
For scheduling problems, we used the value ordering described earlier (alternate
between lower and upper bounds of the domain) as min-conflicts is too costly to
compute on such large domains.

We found in preliminary experiments with Local Changes that min-conflicts
resulted in the best search performance for the random problems studied, and it
is this heuristic that was used for Local Changes in the experiments reported in
Table 5.13. In the table, we compare the performance of Local Changes with that
of depth first search for three different variable ordering heuristics. Results for
depth first search are grand means over 100 runs with random value ordering per
perturbed instance, although we note that with lexical value ordering, the largest
difference with the averages reported in the table was only 400 nodes.

Table 5.13: Solution Reuse Search Performance: Random DCSPs

Heuristic
Algorithm Condition fdeg ff2 dom/wdeg
DFS 5ad 2,601 3,561 1,617

5r 3,423 3,080 1,729
Local Changes 5ad 7,463,591 191,503 377,596

5r 8,931,099 285,796 564,097
Notes. Comparison of depth first search and Local Changes with
different variable heuristics. Mean search nodes across all (75) altered
instances. Random problem parameters are h50, 10, 0.184, 0.631i.
DFS results are averaged over 100 runs with random value ordering.

We see that this form of solution reuse is consistently orders of magnitude
worse than solving the perturbed instances from scratch. This is because Local
Changes attempts to maintain the previous solution, repeatedly undoing assign-
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ments, resulting in an enormous amount of thrashing. The differences are even
more impressive given that over 15% of the altered instances in the 5ad condition
were solved in zero nodes, i.e. the solution to the base instance was still valid after
problem alteration. For fdeg, there were 13 such cases, while there were 12 for
ff2.

When changes were restricted to relations, where we have shown that the ma-
jor points of contention remain relatively stable across successive perturbed in-
stances, there was a deterioration in the performance of Local Changes compared
to the 5ad condition. Here, there were only 5 (resp. 4) cases where the solution
to the base instance remained valid for fdeg (resp. ff2). The results imply that
solutions at a small distance from the base solution are rarely found.

Table 5.14: Solution Reuse Search Performance: Scheduling DCSPs

Heuristic
Algorithm dom/fdeg dom/wdeg
DFS 367,291 11,340
Local Changes > 2,104,397 > 2,148,399
Notes. ost-4-100 instances, altered by reducing 4
domains. Mean search nodes across all (50) altered
instances. 10 million node search limit.

The performance of Local Changes on the soluble scheduling DCSPs was
even worse (Table 5.14), even though 70% of the instances were solved by Local
Changes in zero nodes for both heuristics. Yet of the fifteen instances where the
previous solution was invalid, Local Changes failed to solve ten instances with
dom/fdeg, and eleven instances with dom/wdeg, within the limit of ten million
nodes. It is also interesting to note that, unlike depth first search, dom/wdeg was
not the best heuristic when combined with Local Changes on either the random
DCSPs or the scheduling DCSPs.

5.7.2 Nearest Solution Analysis

The poor search performance of Local Changes implies that small changes on
problems at the phase transition have a profound effect on the elements in the
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solution set of a problem. In order to develop our understanding of the effects of
these minor alterations, we look at the Hamming distance between solutions to the
base instances and their nearest solution in the perturbed instances. Experiments
were carried out on random DCSPs with 50 variables, so the Hamming distances
have a possible range of 0 (meaning the solution to the base was still a solution
for the perturbed instance) to 50 (meaning no value in the solution to the base
instance was part of any solution to the perturbed instance).

Similar experiments have been performed in Ran et al. [168], where the Ham-
ming distance was used to define the optimal solution stability. However in their
experimental setup, they generated a set of random binary CSPs. For each CSP,
they then randomly generated a complete assignment which they referred to as the
“infringed solution”, and used branch and bound search to find the nearest solution
of the infringed solution in the same problem. We would argue that our method
is more realistic in that the only constraints which may not be satisfied by the old
solution are those added (a small fraction of the total number of constraints). In
the experimental setup of [168], on the other hand, a large number of constraints
may be in conflict with the random value assignments.

We first report results of an experiment performed by Emmanuel Hebrard,
using the solver Mistral †. The experiment was designed to test the impact of small
changes on the minimal Hamming distance as instances go from the easy to hard
region. Problem parameters were the same as for the soluble random problems
studied earlier (i.e. 50 variables, domain size 10, and density 0.184), with the
tightness ranging from 0.1 to 0.36 in steps of 0.01. In the easy region 500 base
instances were generated for each value of tightness, while in the hard region 100
base instances were generated. For each base instance, one perturbed instance
was generated by adding and deleting three constraints. The nearest solution in
the perturbed instance was found using limited discrepancy search.

The results are shown in Figure 5.7. We see that solutions remain relatively
unaffected by change until instances enter the critical complexity region, at which
point there is a sharp rise in the minimum minimal Hamming distance. Indeed, for
some instances at the phase transition, there were no values in the base solution
which were part of any solution to the perturbed instance.

†http://4c.ucc.ie/˜ehebrard/mistral/doxygen/html/main.html
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Figure 5.7: Hamming distances for nearest solution of perturbed instances to
their base instances for varying tightness.

For our experiments, we focused primarily on the perturbed set of instances
involving the addition and deletion of five constraints, with additional experiments
reported on instances involving the alteration of five relations. Each of the 25 base
instances was solved 100 times with random value ordering. For each solution to a
base instance, branch and bound search was then used to find the nearest solution
in the three associated perturbed instances. The variable ordering heuristic used
for the base and the perturbed instances was dom/wdeg.

We present the results in terms of average, median, minimum, and maximum
minimal Hamming distance over the 100 runs for each perturbed instance (Fig-
ure 5.8). For clarity, the instances have been ordered in terms of increasing aver-
age minimal Hamming distance. A similar set of results was obtained on instances
with the 5r condition.

The average minimal Hamming distance per altered instance, over 100 runs,
ranged from 0.4 to 42.7. The overall average minimal Hamming distance was
21.2. Clearly, a local repair method such as Local Changes would suffer greatly
in the face of such changes to the individual solution set. Interestingly, for 57 of
the 75 perturbed instances there was at least one solution to the base that was still
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Figure 5.8: Minimal Hamming distance statistics for perturbed instances in the
5ad condition.

valid after problem alteration. Overall, however, only 12% of the 7500 runs had a
minimal Hamming distance of 0.

These figures were lower for the 5r condition, where only 45 out of the 75
perturbed instances had at least one minimal Hamming distance of 0 and a solution
to the base remained valid on only 6% of the 7500 runs (although here the overall
average minimal Hamming distance was just slightly higher at 22.2 than for the
5ad DCSPs). These results explicate the difference in search performance of Local
Changes for these two conditions (cf. Table 5.13).

The extremes between different perturbed problems, in terms of minimal Ham-
ming distances, can be seen more clearly in Figure 5.9, where we plot the minimal
Hamming distance for each run of 3 sample instances. For clarity, the runs are or-
dered for each instance in terms of increasing Hamming distance. For Per11-2,
the minimal Hamming distance was always low which shows that the problem
alterations had little impact on individual solutions. The opposite was the case
for instance Per6-2, which had a consistently high minimal Hamming distance (>
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Figure 5.9: Hamming distances for nearest solution of 3 perturbed instances from
100 different solutions to their base instance.

40 for all base solutions). In between such extremes were cases such as Per23-1,
where the minimal Hamming distance had a large range, with base solutions still
valid in the best case while in the worst case only 25% of the solution could be
maintained.

These results illustrate why Local Changes performed poorly on these prob-
lems. Starting from a complete assignment of the previous solution and working
backwards is extremely inefficient if there is a large distance between the previous
solution and the nearest solution in the current problem.

5.7.3 Solution guidance for failure reuse

The contention reuse method we proposed can be enhanced by adding a solution
reuse component in the form of a simple value ordering heuristic. The heuristic
chooses the value that the variable took in the solution to the previous problem in
the DCSP sequence (similar heuristics have been previously proposed, e.g. [204]).

However, as noted in [208], depth-first tree search methods do not explore the
space of possible assignments in increasing distance to the heuristic assignment.
To improve the solution stability, we added a tie-breaker for the case where the
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Figure 5.10: Hamming distance comparison of adaptive methods with solution
guidance compared to minimum obtainable.

value from the previous solution is not in the current domain of the variable. For
each value, v, in the domain of the variable, we count the number of unassigned
neighbors of the variable for which v supports the solution value of the neighbor,
i.e. the value the neighbor took in the previous solution. The heuristic chooses the
value that supports most solution values over the unassigned neighbors. (Since the
algorithm incorporates MAC, each value in the current domain supports the same
number of solution values in the assigned neighbors of the variable.)

In Figure 5.10, we compare the average Hamming distance of solutions found
by our solution guided contention reuse method (RNDI-reuse-sg) with the average
Hamming distances of the nearest solution. Instances were ordered in terms of in-
creasing average Hamming distance of the nearest solution (it should be noted that
the solutions to the base instances were different for the two methods, hence there
are a couple of instances for which RNDI-reuse-sg had a lower average than that
of the “nearest solution”). We see that the addition of the value ordering heuristic
for our method results in solutions which are close to optimal in most cases. The
overall average Hamming distance was 24.3 for RNDI-reuse-sg, compared to an
average of 21.2 for the minimal Hamming distance.

The search performance of probing with solution guidance was closely re-
lated to the minimal Hamming distance. We plot in Figure 5.11 the search nodes
explored in increasing order for 100 runs on the same three instances studied in
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Figure 5.11: Search Performance of RNDI-reuse-sg on instances studied in
Figure 5.9.

Figure 5.9. Correlations between weight profiles generated on these perturbed in-
stances and on their associated base instances were 0.92 or higher, which shows
that the major points of contention were unaffected by extreme changes to the
solution set. It is also interesting to note that for Per11-2, the instance was al-
ways solved without encountering a single mistake, even though the base solution
wasn’t always valid. This can be attributed to the effects of propagating the solu-
tion values at the top of the search tree.

To allow for a more direct comparison of solution stability with Local Changes,
we ran RNDI-reuse with solution guidance on the perturbed instances, but with
solutions to the base instances found using lexical value ordering and either fdeg
or ff2. Thus the same base solutions were used on the perturbed instances by
both RNDI-reuse-sg and Local Changes. We also generated the minimal Ham-
ming distances for each base solution of the two heuristics. The results are given
in Table 5.15.

We see that, in terms of solution stability, min-violations is the best value
ordering heuristic for Local Changes. This is unsurprising as min-conflicts is used
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solely for search effort reduction. Min-violations attempts to maintain the solution
with respect to the original instantiated variables, if most of these assignments
are undone during search then the solution stability will be greatly reduced. On
average, less than 50% of the original solution was maintained by Local Changes
with min-violations. Somewhat surprisingly, our simple value ordering heuristic
resulted in better solution stability than any of the Local Changes approaches.

Table 5.15: Solution Stability Comparison

Algorithm
LC LC LC RNDI-reuse Minimal

Heuristic -lexval -minconflicts -minviolations -sg Hdist
fdeg 30.6 30.4 25.8 22.7 18.8
ff2 31.3 31.1 28.6 24.5 20.7
Notes. 5ad problem set. Base instances solved by either fdeg or ff2 with lexical
value ordering. Average Hamming distance between solution found on base and perturbed.
LC is Local Changes.

Finally, we note that the benefit of solution guidance to our method wasn’t
restricted to an increase in solution stability. Search performance also improved
over RNDI-reuse. A reduction in search effort of nearly 50% was found on av-
erage for the 5ad perturbed instances, for both RNDI-reuse and dom/wdeg when
combined with solution guidance (average nodes of 701 and 954 respectively).
This is because little search effort is required to solve perturbed problems where
the solution to the base is still valid or a solution quite close to the base solution
exists.

5.8 Chapter Summary

The Dynamic Constraint Satisfaction Problem is an important subfield in the area
of constraint satisfaction and optimization. However, there has been little work
done on understanding the impact of changes, especially on problems in the crit-
ical complexity region. In this chapter we have shown that even small alterations
can have a profound impact on a number of problem features, such as search per-
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formance, the size of the solution set, the individual elements in the solution set,
and promise and fail-firstness measurements for heuristics.

In the course of this work we identified one feature which does not appear to
be as sensitive to change, namely the major points of contention. Based on these
findings we have proposed a new method for solving DCSPs, in particular DCSPs
at or near the phase transition. We have identified both advantages (equally adept
at solving insoluble DCSPs as soluble DCSPs) and disadvantages (contention in-
formation cannot be carried over from one problem to the next in the sequence)
of our method. However, we have still shown that it is orders of magnitude more
efficient than the local repair method of Verfaillie and Schiex (Local Changes).

Analysis of the optimal solution stability clearly showed why solution repair
methods will struggle on the type of DCSPs studied, where on average nearly 50%
of the solution could not be maintained. We further supplemented our method
with a simple value ordering heuristic to improve the solution stability. The re-
sults showed that not only was it more efficient in solving problems than Local
Changes, it also resulted in better solution stability.



Chapter 6

Alternative restarting strategies

6.1 Introduction

Fixed cutoff restarting strategies have proven very adept at solving many CSPs,
where the runtime distribution is used to identify the optimal cutoff (Gomes et al.
[82]). However, often the runtime distribution is not known in advance of solving
the problem, and a trial-and-error approach is required to identify the optimal
fixed cutoff. A poor choice of cutoff can have disastrous consequences: too low
and the problem will never be solved; too high and the algorithm will spend a
large amount of time exploring unpromising parts of the search space.

Universal restarting strategies were proposed in order to approximate the opti-
mal cutoff. They retain the benefits of restarting while guaranteeing completeness.
These strategies have cutoffs that increase periodically, eventually tending to in-
finity. The most popular universal restarting strategies are the Luby strategy (Luby
et al. [140]) and the Walsh (geometric) strategy [221], and variations thereof (Wu
[231]).

The traditional method of ensuring diversification of search across restarts
is to introduce an element of randomness into the search algorithm, typically
through randomization of the variable and/or value ordering heuristics (Harvey
[99], Gomes et al. [82]). More recently, adaptive heuristics, such as the weighted-
degree heuristic or the impact-based search strategy of Refalo [169], have been
successfully combined with restarting strategies where updates to the constraint

163
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weights / value impacts are generally sufficient for diversification across restarts.
Impact-based search (IBS) uses alternative information from previous search

states to guide subsequent search. It stores information about the impact of a value,
i.e. the proportional reduction in the size of the search space after assigning, and
propagating, a value. These impacts are then used to guide both variable and value
selection.

The aim of this chapter is to identify the best general purpose strategy for
solving CSPs. To this end we firstly provide a thorough evaluation of the different
restarting strategies and adaptive heuristics on a large testbed of instances of vary-
ing types. We then investigate the behavior of the approaches on a subset of prob-
lems, to ascertain why the different approaches result in good/bad performance.
In particular, we identify advantages and disadvantages of constraint weighting
for different models of the open shop scheduling problem.

The next section provides a description of the solver used and the differ-
ent search strategies tested. The section thereafter describes the results for the
weighted degree heuristic with the different restarting strategies and a comparison
of weighted degree with impact-based search.

Sections 6.4 and 6.5 provide more detailed analysis of the behavior of the
different approaches on two problem types, open shop scheduling and radio link
frequency assignment. The final section presents the conclusions of the work.

6.2 Solver Description and Techniques Tested

In order to test the different methods on a wide testbed of problems, we imple-
mented the probing strategies in the CSP solver, Mistral. This solver is extremely
robust at solving CSPs (Lecoutre et al. [137]), it was the top ranked solver in three
of the five categories of the 2009 CSP Solver Competition and was one of the top
three ranked solvers for the other two categories†.

Mistral is a C++ constraint programming library developed by Emmanuel He-
brard. It contains a number of automated modeling steps such as: the choice of rep-
resentation for a variable (bitset, list, Boolean, range); the constraint propagator

†http://www.cril.univ-artois.fr/CPAI09/results/ranking.php?
idev=30

http://www.cril.univ-artois.fr/CPAI09/results/ranking.php?idev=30
http://www.cril.univ-artois.fr/CPAI09/results/ranking.php?idev=30
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for each constraint (general algorithms for enforcing arc consistency and bounds
consistency, and dedicated constraint propagators for handling global constraints).
We tested the methods using the black-box solving method of Mistral which has
been submitted to the CSP solver competitions.

The depth first search method used by Mistral involves binary branching,
which has been shown to be much more powerful than d-way branching for back-
tracking search (Hwang and Mitchell [111]). An important aspect of Mistral, given
the impact two different but logically equivalent models will have on search with
the weighted degree heuristic, is the method used to handle constraints which are
specified as predicate trees. Figure 6.1 shows a sample predicate tree for the fol-
lowing constraint:

3X + 4Y + 8Z  18 (6.1)

The default method for handling constraints of this type in Mistral is to represent
each internal node of the predicate tree as a variable. For the sample constraint
given, the model used by Mistral would involve the following variables and con-
straints:

3X + 4Y = V1 (6.2)

8Z + V1 = V2 (6.3)

V2  18 (6.4)

where V1 and V2 are auxiliary variables, and the domain of V1 (similarly for V2) is
thus

(3 ⇤min(D(X)) + 4 ⇤min(D(Y )), . . . , 3 ⇤max(D(X)) + 4 ⇤max(D(Y )))

Furthermore, the unary constraint (6.4) is simply enforced at the root node, by
reducing the maximum domain value of V2 to 18. These auxiliary variables are
not included in the decision variables of the problem, however they will impact
the spread of the weight in the problem.

The strategies we tested in Mistral involved combinations of the following
components:
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Figure 6.1: Sample predicate tree.

• Variable ordering heuristics: dom/fdeg, dom/wdeg, and impact.

• Initialization for adaptive heuristics: Random probing for dom/wdeg, sin-
gleton arc consistency for impact.

• Restarting: All heuristics were tested with and without restarting. Geomet-
ric restarting was used with randomized dom/fdeg and with impact, while
three restarting strategies were tried in combination with dom/wdeg: WTDI,
Luby [140] and Geometric [221].

6.2.1 Restarting Parameters for weighted degree approaches

Probing Strategies

The probing parameters used for RNDI were again 100 restarts with a cutoff of 30
failures per restart, as we have shown that these are generally sufficient to identify
problem bottlenecks. A ten minute cutoff for the probing phase was included as a
safety measure, i.e. if problems are extremely expensive to search on then spend-
ing the majority of the time performing random probing could prove detrimental.

The purpose of WTDI is to combine a rapid restart phase with an intensive
search phase. We tried various cutoff values for WTDI while keeping the number
of restarts fixed at 100. The cutoff values tested were C 2 {100, 500, 1000, 2000,
5000}.
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Universal Restarting Strategies

Following on from [232], we include a scale parameter s in both universal strate-
gies tested. The Luby sequence can be described as a strategy where “all run
lengths are powers of 2, and each time a pair of runs of a given length are com-
pleted, a run of twice the length is immediately executed” [140].

More formally, the Luby sequence is a sequence L=(t1, t2, t3, . . . ) where:

ti =

(
s ⇤ 2k�1 if i = 2

k � 1

ti�2k�1+1 if 2

k�1  i < 2

k � 1

The first terms of this sequence for s = 100 are:

100, 100, 200, 100, 100, 200, 400, 100, 100, 200, 100, 100, 200, 400, 800, . . .

We tested a large range of values for the scale parameter s 2{10, 100, 500, 1000,
2000, 5000, 10000}. Larger cutoffs than those for WTDI were tested as the Luby
strategy may take longer to scale up for problems suited to intensive search.

The geometric strategy is a sequence of the form s, sr, sr2, sr3, where s is a
scale parameter and r is the multiplicative factor. This is one of the most popu-
lar restarting strategies and indeed has been combined with the weighted degree
heuristic previously (Lecoutre et al. [135], Balafoutis and Stergiou [12]). The val-
ues we tested for the parameters were r={1.1, 1.3, 1.5, 2} and s={10,100,1000},
in a “fully crossed” design.

The geometric strategy is less influenced by the scale factor as Luby (within
reason); here, the parameter r is the more important factor. Too low a value for
r and a large enough cutoff may not occur in the sequence within a reasonable
amount of time; too high a value and the optimal cutoff may be bypassed. We will
refer to the strategy combining the weighted degree heuristic with Luby restarting
as Lubywtd and that with geometric restarting as Geowtd.

6.2.2 Randomized non-adaptive heuristic

There are a number of options for randomizing the variable heuristic, the two most
common methods are “forced ties” (e.g. Wu and van Beek [232]) and “heuristic
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equivalence” (Gomes et al. [82]). We chose the former, where ties were forced
by considering the top ten choices of dom/fdeg as equivalent, and randomly se-
lecting from amongst this subset. The randomized heuristic was combined with
geometric restarting, with a scale factor of 10 and a multiplicative factor of 1.5.
We will refer to this method as Georand.

6.2.3 Impact-Based Search

Impact-based search (IBS) was tested with and without initialization by single-
ton arc consistency (SAC), and with and without restarting. For the former, when
impacts were not initialized by SAC some initial value must be chosen for the
impacts. Provided all values have the same initial impact value, > 0, the heuristic
will behave identically to min-domain up until at least one backtrack has oc-
curred (this is similar to initializing all constraint weights to one when using the
weighted degree heuristic, resulting in the heuristic behaving identically to max-
degree).

Different initial values for the impacts, however, will have a profound effect
on the subsequent search. Consider the case where search is at a choice point
after several backtracks and there are a number of unassigned variables with equal
minimum domain size, including at least one previously tried variable, y, which
was assigned the value a prior to backtracking.

If impacts are initialized to a very low value, e.g. 0.0001, then the impact of
y = a is likely to have increased. Therefore the variable y is likely to be selected
ahead of other variables with the same domain size which haven’t been tried. For
this variable, since the impact of y = a has increased, a previously untried value
will be selected.

On the other hand, if impacts are initialized to a very high value, e.g. 0.9999,
then the impact of y = a is likely to have decreased. Thus a previously untried
variable of equal domain size will be selected ahead of y. If the variable y is
eventually selected again, it will be assigned a previously tried value as these are
likely to have an impact lower than 0.9999.

Overall, this means that a low initial value for the impacts will lead to diversi-
fication of the value selection, while a high initial value will diversify the variable



6.3. FULL EMPIRICAL STUDY 169

selection. Given these considerations, we tested both small and large initial val-
ues for the impacts. When IBS was combined with geometric restarting, the same
parameters as for randomized dom/fdeg were used, i.e. a scale factor of 10 and a
multiplicative factor of 1.5.

6.3 Full Empirical Study

6.3.1 Problem Sets

All problems are taken from the benchmarks website of the CSP Solver Compe-
tition( [202]). There were 1800 instances in our test set, separated into 30 prob-
lem types. In some cases we grouped instances based on an overall type, such
as random extensional or scheduling problems, and randomly selected a sample
of 100 instances. For any problem type, the largest number of instances was 100
(so if there were more than 100 instances of the type a sample was randomly se-
lected). Due to the number of problem sets tested, we do not describe these here
although reference will be made during the discussion to certain problem types. A
full description of each problem set is given in Appendix A; alternatively problem
descriptions can be found at the benchmarks website†.

6.3.2 Experimental Setup

All algorithms had a time limit of 1200 seconds per instance. The results for the
randomized algorithms (RNDI and randomized dom/fdeg) are the averages of ten
runs. No ordering heuristics were used for the consistency methods, and values
were chosen lexically for all approaches except IBS which used the impact value
ordering heuristic. Experiments were again performed on an Intel Xeon 2.66GHz
machine with 12GB of RAM on Fedora 9.
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Figure 6.2: Results summary.

6.3.3 Experimental Results for Weighted Degree Approaches

We first present our results in terms of number of instances solved within increas-
ing time limits (Figure 6.2 and Table 6.1) by each method with its best parameter
setting (except results for IBS approaches which are given in Section 6.3.4). The
results for the methods that combined dom/wdeg directly with restarting, are given
for the best parameter settings for each (2000C for Wtdi, 5000C for Lubywtd, and
1000C with a multiplicative factor of 1.5 for Geowtd).

The results for Georand illustrate two points. Firstly, as expected, restarting
combined with an element of randomization resulted in improved performance.
More importantly, however, these results show that the benefit of the weighted
degree heuristic isn’t restricted to merely increasing the diversification of the base
heuristic (dom/fdeg). The weights learnt are clearly meaningful. Indeed, compar-
ing Georand with dom/wdeg-nores, we observe that constraint weighting is more
effective at removing thrashing than randomizing dom/fdeg with restarting.

†http://www.cril.univ-artois.fr/ lecoutre/research/benchmarks/benchmarks.html
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Overall, we found that the weighted degree heuristic combined with a geomet-
ric restarting strategy was best. However it is interesting to note that WTDI would
have solved the most instances if a cutoff of five or ten minutes was used. In-
deed, directly combining the weighted degree heuristic with any of the restarting
strategies was consistently better than the two cases where the weighted degree
heuristic was only used on a run to completion (dom/wdeg-nores and RNDI).
Surprisingly, on average RNDI only solved 6.4 more instances than dom/wdeg-
nores. Furthermore, the cost of probing meant that RNDI was generally slower
on the “easy” instances. Indeed, if a cutoff of five minutes, or less, had been used
then dom/wdeg-nores would have solved more instances.

Table 6.1: Full Results By Runtime

dom/ Georand dom/ RNDI WTDI Geowtd Lubywtd
fdeg wdeg 100R 100R s=1000 s=5000

Time -nores 30WC 2000WC r=1.5
< 1s 718 763.8 900 810.9 925 939 922
< 10s 898 917.2 1090 1025.3 1091 1116 1111
< 30s 984 995 1179 1116.3 1203 1236 1212
< 60s 1003 1043 1207 1166.5 1232 1266 1249
< 120s 1023 1072.1 1234 1230.4 1279 1294 1291
< 300s 1051 1107.3 1274 1267.8 1339 1336 1329
< 600s 1070 1125.6 1298 1305.5 1372 1364 1360

< 1200s 1083 1143.5 1322 1328.4 1394 1396 1381

In Figure 6.3 we show the number of problem sets for which each method
performed best (in terms of number of instances solved), and uniquely best (i.e.
solved more instances of the type than any of the other methods). We find that
WTDI matched the best performance on eighteen of the thirty problem sets, two
more than Geowtd, and was uniquely best on two more problem sets than Geowtd.
Interestingly, RNDI was also uniquely best on four problem sets.

The methods Geowtd and WTDI both attempt a tradeoff between diversifica-
tion and intensification, albeit in very different ways, in order to have more robust
performance across problems. WTDI starts with total diversification (fixed short
cutoff, many runs), and follows with total intensification (unbounded search). Ge-
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Figure 6.3: Number of problem sets (out of 30) where method was best /
uniquely best.

owtd, on the other hand, gradually moves from diversification oriented to intensi-
fication oriented search.

We found that both achieved the aim of robust performance to a certain de-
gree. We compared these two methods, in terms of number of instances solved per
problem set, with the more intensification-oriented strategy (dom/wdeg-nores)
and the more diversification-oriented strategy (Lubywtd). Over the thirty problem
sets, we found that dom/wdeg-nores solved at most one more instance in a prob-
lem set than WTDI, and a maximum of two more instances than Geowtd, whereas
dom/wdeg-nores solved a maximum of ten more instances than Lubywtd.

The results were slightly worse for robust performance on problem sets suited
to diversification. Lubywtd solved, per problem set, a maximum of nine more
instances than WTDI and five more instances than Geowtd. However, we note
that both WTDI and Geowtd also solved a maximum of nine more instances than
Lubywtd over the thirty problem sets.

In Figure 6.4, we show the number of instances solved by the three weighted
restarting methods for their different parameter settings. Observe that, outside of
a cutoff of 100 failures, WTDI always solved more instances than the best cut-
off (5000) for Lubywtd. For Geowtd, the smallest multiplicative factor (1.1) was
consistently worst across the different scale factors. There is greater variation in
the results for the other multiplicative factors, although the multiplicative factor
of 1.5 was generally best. We also observe that as the scale factor increased, so
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did the number of instances solved with multiplicative factors of 1.5 and 2.
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Figure 6.4: Number of instances solved with different parameter settings.

We compare the runtime performance of Geowtd with Wtdi in Figure 6.5,
where we provide the boxplots of runtimes on the commonly solved instances,
along with average and standard deviation of the runtimes. For clarity, we removed
“easy” instances that were solved in less than one second by both methods, leaving
460 instances. The boxplot is a graphical depiction of the five point summary of
data involving: the minimum, 1st (lower) quartile, median, 3rd (upper) quartile,
and maximum. The “box” goes from the lower quartile to the upper quartile, with
the median illustrated by a dark line across the middle of the box.

The inner quartile range (IQR) is used to calculate the “whiskers” and outliers
as follows. The IQR is multiplied by 1.5 to give the step. Any data points above
(3rd quartile + step) are considered to be outliers. A whisker is drawn at the largest
data point that is not an outlier. Similarly, any data points below (1st quartile -
step) are considered to be outliers and the lowest data point that is not an outlier
is the lower whisker in the plot. The results show that although both methods had
comparable performance on average, Geowtd was generally quicker than WTDI
in solving these instances.

The reason for RNDI’s relatively poor overall performance, as can be seen
in Table 6.2, is mainly due to one problem type, the balanced incomplete block
design problem (BIBD). RNDI solved 20 fewer instances than dom/wdeg-nores
out of 83 instances in this problem set, and approximately 40 instances fewer than
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Figure 6.5: Boxplots of runtime performance for WTDI and Geowtd on 460
commonly solved, non-trivial, instances. Average (red diamond) and standard

deviation (green square) also depicted.

the best algorithm (the Luby restarting strategy).

Given a tuple of natural numbers (v, b, r, k, �), a BIBD involves arranging v

distinct objects into b blocks. Each block contains exactly k distinct objects, each
object occurs in exactly r different blocks, and every two distinct objects occur to-
gether in exactly � blocks. Since both the objects and blocks are interchangeable,
the matrix X has total row and total column symmetry (Frisch et al. [67]). These
symmetries mean that there are no global bottlenecks for RNDI to find.

We generated weight profiles for RNDI, with two different seeds, and WTDI
on a sample BIBD that was unsolved during the probing phase by either method.
The same probing parameters were used for WTDI as for RNDI (cutoff of 30
failures with 100 restarts). The sample instance involves 3,264 (Boolean) vari-
ables, with 3,040 constraints. 2,880 constraints have arity 3 and take the form
(x1 ⇤ x2 = x3), while the other 160 constraints involve the global constraint
weighted sum, of which 24 have arity 16 and 136 have arity 24.

The breakdown of the variables in this instance, in terms of degree, is 2,880
variables of degree 2 and 384 variables of degree 17. We observe that the heuristic
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Table 6.2: Full Results By Problem Type

dom/ Geo- dom/ RNDI WTDI Geowtd Luby-
Problem fdeg rand wdeg wtd
Type #Inst
All Intervals 25 9 13.2 19 23 22 22 21
All Squares 74 33 33.7 40 40.1 41 41 39
Bdd 70 70 70 70 70 70 70 70
BIBD 83 22 62.4 55 34.2 69 71 74
Bmc 24 24 23.7 24 24 24 24 24
Boolean (S) 100 81 77 92 91 91 90 87
Chess Color 20 11 15.2 13 15 15 15 15
Coloring (S) 100 87 86.2 89 88.9 91 90 90
Costas Array 11 9 9 9 9.9 10 9 10
Crosswords (S) 100 69 67.1 92 93.7 93 95 94
Driver Log 7 7 7 7 7 7 7 7
Fapp (S) 100 16 9.4 48 48.9 57 57 52
Fischer (S) 100 38 37 63 67.1 68 65 61
Golomb 28 21 22.9 23 23.4 22 22 22
Langford 75 53 54 53 54 54 54 53
Multi-Knapsack 6 6 6 6 6 6 6 6
Patat 46 4 4 5 7 17 29 26
Primes (S) 50 39 38.8 40 40.3 44 41 41
PseudoBool (S) 100 51 56.3 64 69.3 67 66 68
Pseudo-GLB (S) 100 25 24.2 37 35.4 40 35 40
Qcp/Qwh (S) 100 93 93.7 95 95.3 96 95 94
Radar 100 89 96.3 100 100 100 100 100
Ramsey 16 5 8.3 5 8.2 9 10 10
Random (S) 100 81 71.4 85 86.1 84 84 75
RLFAP 71 43 47.4 68 69.9 70 70 69
Scheduling (S) 100 56 63.1 73 73.5 74 74 74
Schurr’s Lemma 10 9 8 9 8.5 9 9 9
Social Golfer 12 1 4.4 3 3.8 4 5 5
Tdsp 42 1 4.6 5 4.9 10 10 15
Traveling 30 30 29.2 30 30 30 30 30
Salesman
Total 1800 1083 1143.5 1322 1328.4 1394 1396 1381

Notes: “S” refers to a sample of instances. Problem descriptions given in Appendix A.

dom/wdeg will behave identically to wdeg on these instances, as it only contains
Boolean variables. Thus, it will branch on a number of the 384 variables with
degree 17 first (until sufficient weight has accrued on a variable of degree 2).

RNDI, on the other hand, is likely to branch primarily on the variables of
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degree 2 here, given the probability of selecting a variable of degree 17 first is
0.12 compared to a probability of 0.88 for selecting a variable of degree 2. We
note that the nodes explored during the probing phase by WTDI were 15,389,
while there were over 79,000 nodes explored by RNDI during the probing phase
in both cases. This shows that, as expected, it took much longer for failures to
occur when randomly selecting variables.

Surprisingly we found that the Gini coefficient was greater than 0.84 for both
runs of RNDI, compared to a Gini coefficient of 0.61 for WTDI. This suggests
that RNDI was weighting a subset of the variables much more highly than WTDI.
We investigated this further by calculating the Pearson product-moment correla-
tion coefficient comparing the variable degree with the weighted degree. For both
weight profiles of RNDI, this correlation was 0.98, while the correlation was 0.48
for WTDI. Thus we find that the weight profiles generated by RNDI loaded heav-
ily on the degree factor, compared to WTDI.

This loading by RNDI on the degree can be clearly seen in Figure 6.6, where
we plot the weight increase for WTDI and a run of RNDI on the variables sep-
arated by degree. Figure 6.6(a) shows the weight increase on the 384 variables
of degree 17, while Figure 6.6(b) shows the weight increase on the variables of
degree 2.
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Figure 6.6: Weight increase per variable with RNDI/WTDI on sample Bibd.

We see that most failures occurred on the variables of degree 17 during random
probing, while WTDI weighted a large number of the variables of degree 2 highly,
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and a number of variables of degree 17 received no weight increase during the
probing phase of WTDI. We separated the variables into two subsets based on
degree, and found that both weight profiles of RNDI had a Gini coefficient of less
than 0.12 on the variables with degree 17, and a Gini coefficient of 0.58 on the
variables of degree 2. The weight profile of WTDI had a Gini coefficient of 0.35
on the variables of degree 17 and 0.64 on the variables of degree 2. This confirms
the lack of discrimination amongst the variables of these problems by RNDI.

6.3.4 Comparison with Impact-Based Search

We compared three heuristics (dom/fdeg, dom/wdeg and IBS) under two condi-
tions, with and without restarting. The same geometric restarting approach was
used for all, with an initial cutoff of 10 failures and a multiplicative factor of 1.5.
These methods were tested on 26 of the 30 problem sets, using the same general
experimental setup as before.

We removed problem sets containing variables with range domains as impact
is not straightforward to implement for such variables. A range domain is where,
due to the size of the domain, only the lower and upper bounds on the value that the
variable can take are stored. The method used by Mistral for the impact of values
in a range domain involves storing the impacts of the lower and upper bounds.
However, the value these bounds take can change drastically during search as the
bounds are updated.

Initializing impacts using singleton arc consistency resulted in worse perfor-
mance overall, so the impact results presented are without SAC initialization. For
geometric restarting the best strategy was to initialize the impacts to a large value
(0.9999). Interestingly, the opposite was the case for IBS without restarting where
the best method was to initialize the impacts to a low value (0.0001). The impact
results presented in Table 6.3 are only for the best methods for the two cases.

The results are presented in Table 6.3. Comparing Geowtd with Geoimpact,
we see that there were 12 problem sets where Geowtd solved more instances than
Geoimpact, while there were only 3 problem sets where the opposite was the case.
The relative performance of dom/wdeg was even more impressive when restarting
was not involved, solving 91 instances more than IBS. Furthermore, there was
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Table 6.3: Number of Instances Solved: Impact-Based Search Comparison

W/o Restarting Geometric Restarting
dom/ dom/ IBS Georand Geowtd Geo-
fdeg wdeg impact

All Intervals 25 9 19 14 13.2 25 16
All Squares 74 33 40 32 33.7 40 33
Bdd 70 70 70 70 70 70 70
BIBD 83 22 55 36 62.4 69 66
Bmc 24 24 24 21 23.7 24 22
Boolean (S) 100 81 92 91 77 90 90
Chess Color 20 11 13 13 15.2 15 16
Coloring (S) 100 87 89 89 86.2 90 90
Costas Array 11 9 9 9 9 9 9
Crosswords (S) 100 69 92 71 67.1 94 84
Driver Log 7 7 7 7 7 7 7
Fapp (S) 100 16 48 31 9.4 54 37
Golomb 28 21 23 22 22.9 22 23
Langford 75 53 53 52 54 54 52
Multi-Knapsack 6 6 6 6 6 6 6
Patat 46 4 5 1 4 26 28
PseudoBool (S) 100 51 64 64 56.3 66 66
Pseudo-GLB (S) 100 25 37 37 24.2 33 33
Qcp/Qwh (S) 100 93 95 93 93.7 94 94
Radar 100 89 100 100 96.3 100 100
Ramsey 16 5 5 3 8.3 10 7
Random (S) 100 81 85 79 71.4 82 80
RLFAP 71 43 68 66 47.4 69 65
Schurrs Lemma 10 9 9 9 8 9 8
Social Golfer 12 1 3 4 4.4 6 3
Traveling 30 30 30 30 29.2 30 30
Salesman
Totals 1508 949 1141 1050 1000 1194 1135

Notes: “S” refers to a sample of instances. Problem descriptions given in Appendix A.

only one problem set where dom/wdeg-nores solved fewer instances, while there
were 15 problem sets where it solved more instances. (We note that Balafoutis and
Stergiou had similar findings in their comparison of dom/wdeg and IBS [12]).

Overall, there were 1098 instances that were solved by both Geowtd and
Geoimpact. In terms of runtime over these instances, we found that Geowtd was
faster by 6.8 seconds on average (17.6 versus 24.4 seconds). If we remove the
instances that were solved in under a second by both, we find that Geowtd was
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Figure 6.7: Scatter plot of runtimes for Geoimpact versus Geowtd.

nearly 30% faster on average (49.0s versus 68.3s) over the 393 “hard” instances,
and had a median runtime of 6.0s compared to Geoimpact which had a median
runtime of 10.6s.

A scatter plot of the runtimes over all instances is shown in Figure 6.7. The
most striking aspect of the figure is that there were a large number of instances
that Geowtd solved quickly while Geoimpact found extremely difficult and vice
versa. This implies that many instances were suited to either constraint weighting
or impact-based search, but not both. Further analysis of the results reveals that
of the 1508 instances, Geowtd was at least two orders of magnitude faster than
Geoimpact on 80 instances, while the opposite was the case on 41 instances.

The complementary nature of these results suggest that the best generic strat-
egy for solving CSPs would be to run both in parallel. For example, if we had
run both in parallel then 1231 instances would have been solved. Furthermore the
average runtime of running both in parallel would have been 8.3 seconds on the
1098 commonly solved instances discussed above, which is less than 50% of the
average runtime of Geowtd.
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6.4 Case Study I: Open Shop Scheduling Problems

We have previously shown that the probing based methods are extremely efficient
at solving open shop scheduling problems, due to their ability to identify the key
variables and thus avoid the early mistake problem. We investigate whether the
universal restarting strategies are more adept at solving such problems.

The default method used in Mistral for handling problems with disjunctive
constraints is to introduce auxiliary variables which explicitly state the possible
precedences. For a disjunctive constraint between tasks ti and tj , two Boolean
variables bij , bji, and two range variables ri, rj , are added. These are linked via
the following constraints:

(ti + pi) = ri (6.5)

(ri  tj) = bij (6.6)

(tj + pj) = rj (6.7)

(rj  ti) = bji (6.8)

bij _ bji (6.9)

where pi is the duration of task ti. Assigning a Boolean variable bij the value 0
enforces the precedence between tasks ti and tj , stating that task tj must finish
before task ti can start. The decision variables used are the task and Boolean
variables.

This model has two advantages, it speeds up propagation and can also reduce
search effort by branching on the Boolean variables. This is because a consistent
assignment to all Boolean variables creates a partial order on the tasks, where
tasks are fully ordered on each job and machine. In other words, the Boolean
variables form a strong backdoor to the problem. If a problem is unsatisfiable then
there is no ordering of the tasks which will satisfy the constraints, if the problem is
satisfiable then an assignment to all Booleans which satisfies all constraints proves
a solution exists (and each task variable can simply be assigned the minimum
value in its domain to find the solution).

In this section, we compare this model with the non-adapted model which
contains only the tasks as variables. We will refer to the former as the Aux-Task
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model and the latter as the Task-Only model. Due to the difference in propagation
speeds, we define the overall limit per instance in terms of total nodes explored.
The limit was set to one million nodes. Value ordering was again lexical, which
involves branching on the lower bound of the domain of the selected variable for
range variables.

The restarting parameters used are the same as for the previous section, with
the exception that the base value for the geometric restarting method was 10 fail-
ures for both Geowtd and Georand. This is because these problems are suited to
restarting, and so the lower initial cutoff resulted in slightly better performance
due to the extra short runs. We performed some initial experiments to assess
whether WTDI or Lubywtd would also benefit from a reduction in (initial) cut-
off, and found that this was not the case generally.

We first tested the various methods (excluding impact-based search as these
problems involve variables with very large domains) on the five largest sets of Tail-
lard open shop instances, ost-n (where n refers to the number of jobs/machines, so
there are n2 tasks per instance). We remind the reader that each set contains thirty
instances, at least twenty of which are satisfiable (ten ost-n-100 and ten ost-n-105
instances). The other ten instances (ost-n-95) are unsatisfiable in most cases. The
instances range in size from 25 to 400 tasks to be scheduled, with domain sizes
ranging from ⇠200 values (for ost-5-95 instances) to ⇠1200 values (for ost-20-105
instances).

The results in Table 6.4 show that the methods using the dom/fdeg heuris-
tic are quite poor on these problem sets, due to the auxiliary Boolean variables.
Since these variables all have the same initial domain size and degree, the heuris-
tic cannot discriminate amongst the 2n2

(n� 1) such variables. The weighted de-
gree approaches, on the other hand, are extremely adept at solving these instances
with dom/wdeg-nores alone solving nearly two thirds of the instances. Indeed,
the poor discrimination of dom/fdeg further underlines the power of dom/wdeg
on these instances, as the initial decisions made by the heuristic are completely
uninformed.

RNDI solved a further 22 instances more than dom/wdeg-nores on average
even though, outside of the ost-5 set, an instance was rarely solved during the
probing phase. This shows the ability of the method to identify the key variables
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Table 6.4: Taillard Open Shop Scheduling Problems (Aux-Task model)

dom Geo dom Geo Luby
� rand � RNDI WTDI wtd wtd

fdeg wdeg
ost-5 # Solved 19 30 30 30 30 30 30

Sol Time (s) 1.13 0.07 0.04 0.09 0.03 0.02 0.04
Sol Nodes (K) 46 2.5 1.2 3.7 0.8 0.5 1.1
# Pre Solved - - - 11.7 30 - -

ost-7 # Solved 0 8.4 29 29.3 30 30 28
Sol Time (s) - 1.63 5.91 1.82 4.08 3.62 2.78

Sol Nodes (K) - 37 87 31 49 52 38
# Pre Solved - - - 2.4 27 - -

ost-10 # Solved 0 1.1 17 26 29 28 28
Sol Time (s) - 12.08 18.42 8.11 7.99 6.63 11.23

Sol Nodes (K) - 132 231 101 98 74 136
# Pre Solved - - - 0.1 20 - -

ost-15 # Solved 0 0 13 19.8 21 21 21
Sol Time (s) - - 40.48 33.97 4.11 3.9 4.84

Sol Nodes (K) - - 152 87 15 15 20
# Pre Solved - - - 0 21 - -

ost-20 # Solved 0 0 10 16.7 22 22 22
Sol Time (s) - - 76.67 347.57 65.94 54.31 48.1

Sol Nodes (K) - - 85 184 54 46 43
# Pre Solved - - - 0 22 - -

Total Solved 19 39.5 99 121.8 132 131 129

Notes: Results for Georand and RNDI are averaged over ten runs. “#Pre Solved” refers
to the number of instances solved during the probing phase by RNDI/WTDI.
“Sol” Time/Nodes refers to the average time taken / nodes explored over the instances
solved by the method.

through their constraint weights. The best approaches were those directly combin-
ing the weighted heuristic with a restarting strategy, with all three methods solving
over 85% of the 150 instances.

For the ost-15 and ost-20 problem sets, unsatisfiability was never proven by
any method due to the size of the search space. We note that one of the ost-15-95
instances is satisfiable, as are two of the ost-20-95 instances. This is because the
best known upper bound for the optimization instance was not optimal when the
instances were generated. Thus, there were 17 instances between these two sets
which were not solved by any method.
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The performance of the weighted restarting approaches is even more impres-
sive if we restrict our attention to the (known) satisfiable instances. Of the 103
such instances, Lubywtd only failed to solve two, while WTDI and Geowtd solved
all satisfiable instances.

Table 6.5: Gueret-Prins Open Shop Scheduling Problems (Aux-Task model)

dom Geo dom Geo Luby
� rand � RNDI WTDI wtd wtd

fdeg wdeg
osgp-10 # Solved 0 4.6 10 10 10 10 10

Sat Sol Time (s) - 3.40 12.88 1.28 5.71 0.88 13.66
Sol Nodes (K) - 30 71 15 28 5 77
# Pre Solved - - - 0.5 9 - -

osgp-10 # Solved 0 0.1 9 10 9 10 9
Unsat Sol Time (s) - 3.47 12.28 4.98 10.71 13.24 2.97

Sol Nodes (K) - 24 56 39 52 75 13
# Pre Solved - - - 0 8 - -

Total Solved 0 4.7 19 20 19 20 19

Notes: Results for Georand and RNDI are averaged over ten runs. “#Pre Solved” refers
to the number of instances solved during the probing phase by RNDI/WTDI.
“Sol” Time/Nodes refers to the average time taken / nodes explored over the instances
solved by the method.

We further experimented on a set of OSPs (of size 10) originally proposed by
Guéret and Prins [95], which were converted to CSP format by Naoyuki Tamura †

for the CSP solver competition ([202]). These were generated with the expectation
that they would be significantly harder than the Taillard instances. This was done
by ensuring that there was a sufficient gap between the optimal makespan value
and the trivial lower bound (which is the maximum of the sum of task durations
for each job/machine). There are ten instances in the original set. These were
converted into a set of satisfiable instances by setting the upper bound on the
domains of the tasks to the optimal makespan for the instance, and into a set of
unsatisfiable instances by setting the upper bound on the domains of the tasks to
(optimal makespan - 1).

†http://bach.istc.kobe-u.ac.jp/tamura.html

http://bach.istc.kobe-u.ac.jp/tamura.html


184 ALTERNATIVE RESTARTING STRATEGIES

We see in Table 6.5 a similar pattern in the results to those of the Taillard in-
stances, with the adaptive methods significantly outperforming the two algorithms
which use dom/fdeg. Interestingly, restarting does not appear to be as necessary
for good performance here, with dom/wdeg-nores solving the same number of
instances as WTDI and Lubywtd, albeit with a slightly greater average runtime.

RNDI and Geowtd were the only methods to solve all instances, with RNDI
outperforming the latter in terms of average runtime. Furthermore, of the 95 runs
where RNDI solved a satisfiable instance on the run to completion, seven of those
were solved backtrack-free. (We note that when a smaller cutoff of 30 failures
was used for WTDI, it solved all instances and had the lowest average runtimes
(0.5s for the satisfiable instances and 3.6s for the unsatisfiable instances).) The
impressive performance of the weighted approaches on these instances is surpris-
ing given the aforementioned expectation that the instances in optimization format
were much harder than the Taillard instances (Guéret and Prins [95]).

In Table 6.6 we present results on the same Taillard problem sets using the
Task-Only model, so each ost-n instance has n2 (range) variables. The most no-
ticeable trend is in the difference between the non-adaptive versus adaptive meth-
ods. The two algorithms which use dom/fdeg solved roughly 20 instances more
than before, while the adaptive methods all solved 20 instances fewer than with
the Aux-Task model.

The improvement in performance of the non-adaptive methods can be at-
tributed to greater discrimination amongst the heuristic’s choices. This is partic-
ularly evident for the two largest sets. Interestingly, although the performance of
dom/wdeg-nores on these larger sets improved somewhat, overall it solved 25
fewer instances than with the previous model. Similar results were found for the
other adaptive methods, with all solving at least 20 more instances with the Aux-
Task model.

Furthermore, we found that search was markedly slower with this model. For
example, there was approximately two orders of magnitude difference in the run-
time of the random probing phase between the previous model and this model on
the ost-15 instances (three seconds versus three hundred seconds). However, one
interesting result with RNDI was that, of the 39.4 instances solved on average be-
tween the ost-15 and ost-20 sets, over 75% were solved backtrack-free on the run
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Table 6.6: Results For Open Shop Scheduling Problems (Task-Only model)

dom Geo dom Geo Luby
� rand � RNDI WTDI wtd wtd

fdeg wdeg
ost-5 # Solved 12 11.6 27 27 28 29 29

Sol Time (s) 124.42 12.86 113.19 148.86 153.37 44.82 94.34
Sol Nodes (K) 74 20 61 86 81 24 55
# Pre Solved - - - 10.8 26 - -

ost-7 # Solved 4 8.7 10 16.3 17 17 14
Sol Time (s) 1025.89 42.71 614.84 677.89 481.29 356.88 191

Sol Nodes (K) 251 40 156 181 117 83 49
# Pre Solved - - - 4.8 15 - -

ost-10 # Solved 4 9.8 9 15 19 20 20
Sol Time (s) 5.26 32.74 709.33 163.07 106.93 150.8 456.71

Sol Nodes (K) 0.6 22 150 31 18 26 78
# Pre Solved - - - 1.2 19 - -

ost-15 # Solved 11 16.9 15 19 21 20 21
Sol Time (s) 24.99 59.92 126.62 327.8 88.85 30.44 125.92

Sol Nodes (K) 3 18 42 29 8 2 14
# Pre Solved - - - 1.2 21 - -

ost-20 # Solved 9 18.8 13 20.4 22 22 22
Sol Time (s) 37.67 108.77 290.4 646.03 138.62 525.37 293.5

Sol Nodes (K) 0.5 16 16 30 7 29 21
# Pre Solved - - - 0.6 22 - -

Total Solved 40 65.8 74 97.7 107 108 106

Notes: Results for Georand and RNDI are averaged over ten runs. “#Pre Solved” refers
to the number of instances solved during the probing phase by RNDI/WTDI.
“Sol” Time/Nodes refers to the average time taken / nodes explored over the instances
solved by the method.

to completion (a similar result was found [89] using the solver JaCoP †).

Upon closer inspection, we find that the main difference between the perfor-
mance of the adaptive heuristics on the two models is due to the problem sets ost-7
and ost-10, and in particular the unsatisfiable instances of those problem sets. As
shown in Figure 6.8, no method was able to prove unsatisfiability on any of the
ost-10-95 instances with the Task-Only model, whereas a minimum of seven were
solved with the Aux-Task model. (Note that the difference in propagation speeds

†www.jacop.eu
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cannot be an explanation for this as search had an overall node limit.)
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Figure 6.8: Number of unsatisfiable instances solved using two different models.

6.4.1 Analysis of weight profiles

We first tested whether the same tasks would be highly weighted by the two differ-
ent models using random probing. We selected a satisfiable instance (ost-7-100-
0), as the weights would be spread across insoluble cores with an unsatisfiable
instance. We ranked the task variables of both models by their weighted degree
and found that the top-down rank correlation coefficient was 0.93. Furthermore,
as can be seen in Figure 6.9, the four most highly weighted task variables were
the same for both models. With regard to the Boolean variables, at least one of the
two top ranked task variables shared a constraint with the five top ranked Boolean
variables in the Aux-Task model.

Refutation size comparision for over-constrained job/machine

To better understand the results on the unsatisfiable instances, let us consider the
case where an instance has an over-constrained job/machine. (We note that global
constraints for the unary resources such as Edge-Finder (Carlier and Pinson [40]),
etc., would be able to discover this inconsistency directly.) In order to prove un-
satisfiability in the Task-Only model, one will need to search an insoluble core
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Figure 6.9: Weight increase on task variables after random probing for instance
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model.

involving n variables, all with large domains. On the ost-7-95 instances, this in-
volves 7 variables each with domain size greater than 300. For the ost-10-95 in-
stances, this involves 10 variables, each with domain size greater than 500.

For the Aux-Task model, on the other hand, branching solely on the Boolean
variables amongst tasks in an over-constrained job/machine is sufficient to prove
the instance unsatisfiable. There are n(n� 1) Boolean variables per job/machine.
So for the ost-7-95 instances there are 42 Boolean variables per job/machine,
while there are 90 Boolean variables per job/machine in the ost-10-95 instances.
However, only half of these are necessary to instantiate, as there are two Booleans
per disjunct and assigning one to 0 will result in the other taking the value 1.

Analysis of the search trees explored, and the weight profiles generated, con-
firms that branching on the Boolean variables is key to proving an instance un-
satisfiable. We compared the two models on the instance ost-7-95-1 using the
Geowtd search strategy. We firstly note that this instance was solved with Geowtd
in 104 nodes using the Aux-Task model, compared to over 800,000 nodes with
the Task-Only model.

We found that, on the restart where the instance was solved with the Aux-Task
model, search branched on just nine Boolean variables. These Boolean variables
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were all of the same job. Moreover, only five of the seven tasks of this job appeared
in the constraints on the nine Booleans. The sum of the durations of these five tasks
is greater than the makespan allowed, and thus they form an insoluble core.

For the Task-Only model, we generated a weight profile with Geowtd after
1000 nodes of search, since this was sufficient to illustrate the behaviour of the
algorithm on this model. Only ten of the forty nine tasks received any weight
increase, six of which had a weight increase of approximately 300, with the other
variables receiving a weight increase of at most ten. As expected, we find that
these six tasks are all tasks of the same over-constrained job (albeit a different
over-constrained job to that found by Geowtd with the Aux-Task model).

Since these six tasks form an insoluble core, once identified, no other vari-
ables will be weighted as these variables will repeatedly be selected and thus will
accrue all subsequent weight. Yet, there were over 800,000 nodes explored by Ge-
owtd before the instance was proven to be over-constrained. This can be explained
by the interaction of variable convection with binary branching. Although binary
branching guided by a weighted degree heuristic clearly has advantages over d-
way branching, in that it allows earlier use of weight information and results in
greater diversification, it also has disadvantages when solving problems with an
insoluble core (as alluded to in Chapter 3.4.1).

Let x be the first variable of the insoluble core selected at the top of the search
tree. For d-way branching, each value of x is tried and found to be inconsistent,
so at level 1 there will be |dom(x)| values tried. With binary branching, the first
value of x will be tried and found to be inconsistent. However, due to the weight
accrued while proving this value inconsistent, a different variable, y say, may be
selected next at level 1. If the heuristic repeatedly flips between just these two
variables, then there will be (|dom(x)| + |dom(y)| - 1) values tried at level 1. This
effect will obviously not occur if the variables are Boolean.

Identification of over-constrained jobs/machines

We generated weight profiles on an unsatisfiable instance of the largest set, ost-
20-95-0, with the three weighted restarting approaches. We found that even for in-
stances of this size, insoluble cores in the shape of over-constrained jobs/machines
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Figure 6.10: Evolution of constraint weights on task variables (which received a
weight increase of at least one), during Geowtd search using Aux-Task model, on

instance ost-20-95-0.

are quickly identified with the Task-Only model. For example, after two thousand
nodes of search with Geowtd, the weights converge on a single over-constrained
job.

However, weight profiles generated for the Aux-Task model reveal that it takes
much longer for weights to converge on an over-constrained job. This can be at-
tributed to the combination of weak propagation and lack of initial discrimination
amongst the 15,200 Boolean variable. For example, we analyzed weight profiles at
different points during search with Geowtd using the Aux-Task model on the same
unsatisfiable instance. Since this instance was not proven unsatisfiable within the
one million node limit, we outputted the weighted degrees every ten thousand
nodes to assess the evolution of the weights.

In Figure 6.10, we plot the weighted degree of each task variable, which re-
ceived a weight increase of at least one, at four arbitrary points during search with
Geowtd: after 10,000, 50,000, 90,000, and 100,000 nodes. Variables are ranked
by their weighted degree after 100,000 nodes. The first point to note is that an
over-constrained job was eventually identified (the first twenty variables in the
figure). This was the same job as was identified using the Task-Only model after
2,000 nodes of search. However, here it took roughly 90,000 nodes for the weights
to converge on this job (note that the weighted degrees after 90,000 and 100,000
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Figure 6.11: Geowtd search using Aux-Task model on instance ost-20-95-0.
Number of task variables whose weighted degree increased between node limits i

and (i - 1) in sequence (10K, 20K, 50K, 80K, 90K, 100K, 110K, 150K).

nodes only differ on the top twenty ranked variables). Even after 50,000 nodes
there were tasks of other jobs/machines receiving weight. A similar result was
found with WTDI.

This can be seen more clearly in Figure 6.11. Here, we look at the number of
variables whose weight increased during successive periods of search. We gen-
erated weight profiles after each of the following node limits (10K, 20K, 50K,
80K, 90K, 100K, 110K, 150K). For each limit (from 20K on), we subtracted the
weighted degree of each task variable after the previous limit, from the weighted
degree after the current limit. The results show that after 90,000 nodes search con-
verged on twenty variables (further analysis revealing that they are all tasks on one
over-constrained job), and these twenty variables were the only variables weighted
during search thereafter. Overall, this analysis shows that the Aux-Task model is
better at proving problems infeasible, even though it can take much longer to iden-
tify an unsatisfiable core.
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6.5 Case Study II: Radio Link Frequency Assign-
ment Problems

The radio link frequency assignment problem (RLFAP) involves assigning fre-
quencies to a number of radio links in a communications network, such that in-
terference is minimized between radio sites wishing to communicate with one
another. CELAR (the french “Centre d’Electronique de l’Armement”) designed
a set of simplified versions of this problem (RLFAPs), based on data from a real
network. These instances were then made public in the framework of the Euro-
pean EUCLID project CALMA (“Combinatorial Algorithms for Military Appli-
cations”)†.

In CSP terms the variables are the radio links, the possible frequencies are the
domains of the variables, and the constraints define distances between frequencies.
More formally, Cabon et al. [37] describe the problem as follows. We are given a
set X of unidirectional radio links. For each link i 2 X , a frequency fi has to be
chosen from a finite set Di of available frequencies for that link. Binary constraints
are defined on pairs of links (i,j). These constraints can take two forms. The first
type specifies that the distance between the frequencies of i and j must be greater
than a given constant di,j:

|fi � fj| < di,j

The other type of constraint specifies that the distance between the frequencies of
i and j must be equal to a given constant �i,j (238 in all CELAR instances):

|fi � fj| = �i,j

The objective of this optimization problem is to find a solution which uses the
minimum number of frequencies.

The RLFAPs tested are again taken from the CSP Solver Competition web-
site, and are converted to satisfaction problems by fixing the frequencies available
to each variable. The problem is then to find a solution, if one exists, using the
limited set of frequencies. There are 12 instances in the set we test, which are all

†http://www.win.tue.nl/˜wscor/calma.html

http://www.win.tue.nl/~wscor/calma.html
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modified versions of the same base instance “scen11”. The instance was modified
by removing the highest f frequencies, so scen11-f3 is the scen11 instance with
the three highest frequencies of the original instance removed from the domains
of the variables. Each instance contains 680 variables, 4103 constraints, and with
maximum domain size ranging from 32 (for -f12) to 43 (for -f1). All instances
are unsatisfiable.

Table 6.7: Results For RLFAP Modified Scen11 Problems

dom
� RNDI WTDI Geowtd Lubywtd Geoimpact

wdeg
# Solved 8 10 10 10 9 9

# Pre Solved - 0 7 - - -
Mean Sol Time (s) 37.71 37.93 51.55 36.45 37.62 30.77

Mean Sol Nodes (K) 105 125 148 107 120 57

The results in Table 6.7 and Figure 6.12 once again show the ability of the
weighted degree heuristic in solving unsatisfiable instances, once it is able to make
informed decisions at the top of the search tree. Neither dom/fdeg nor Georand
were able to solve any of these instances. The impact heuristic was also effective at
solving these instances. However, with the same parameters, geometric restarting
was consistently more efficient when combined with the weighted degree heuristic
than with impact-based search.

Random probing performed marginally better on the hardest instance as the
minimal refutation was of a considerable size. This also explains the poor per-
formance of the Luby restarting strategy and, to a lesser extent, WTDI on these
large instances as the cutoff(s) were too low to prove unsatisfiability on the harder
instances. However, the opposite was the case for the instances with most fre-
quencies removed (f8-f12), where the cost of random probing outweighed the
benefits. We also note that when a cutoff of 30 failures was used for WTDI, it
solved the same 10 instances in 31.93 seconds on average, 4 seconds faster than
Geowtd.

Weight profiles were generated for all constraint weighting methods on the in-
stance scen11-f6. All methods except RNDI had a node limit of 10,000. For RNDI,
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Figure 6.12: Individual results for RLFAP modified Scen11 Instances.

we outputted weights after the probing phase. Lubywtd, WTDI and dom/wdeg-
nores all resulted in a weight increase on only 19 variables out of 680 after 10,000
nodes of search, and the same 19 variables were weighted by all. These 19 vari-
ables also had their weight increased when using Geowtd, along with just one
other variable. Analysis of the instance reveals that these variables form an insol-
uble core of the instance.

On the other hand, 150 variables had a weight increase of at least one during
the random probing phase of RNDI. We believe that this is because the more
over-constrained a problem, the more likely it is that a variable will be part of
some insoluble core, and thus RNDI is likely to spread its weight across a number
of variables, We investigated this hypothesis by generating weight profiles after
random probing for a number of the scen11-fn instances. Note that the larger
the value of n, the more values that have been removed from the domains of the
variables, and thus the more over-constrained the instance. If our theory holds,
then RNDI should weight fewer variables for scen11-f1 than for scen11-f6.

Weight profiles were generated with RNDI for instances scen11-f1, scen11-
f3, scen11-f6, and scen11-f10. The results shown in Figure 6.13 support the hy-
pothesis. We see that the more domain values that were removed, the greater the
number of variables which received a weight increase. Indeed, for scen11-f1, only
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Figure 6.13: Spread of weight after random probing on RLFAP modified scen11
instances.

35 variables received a weight greater than 10, and only 20 variables received a
weight greater than 40. These 20 variables all received a weight increase of at
least 100 during probing, and we find that these are the same 20 variables as were
weighted by Geowtd on the instances scen11-f1 and scen11-f6. Similarly we note
that the top twenty variables after random probing on scen11-f3 were the same as
on scen11-f1.

6.6 Chapter Summary

In this chapter, we have provided an extensive empirical analysis of different
restarting strategies for the weighted degree heuristic. The best strategies were
the pure restarting approaches, with little overall difference between WTDI and
the geometric restarting strategy of Walsh in particular. It should be noted that
the benefits of restarting combined with the weighted degree heuristic for generic
problem solving is widely accepted in the community, as evidenced by the num-
ber of solvers in the last CSP solver competition which used this combination
(Lecoutre et al. [137]).

Furthermore, we found that the weighted degree heuristic outperformed impact-
based search on a wide range of problems. Of equal interest was the behavior of
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the two heuristics, where we observed a number of instances, for both heuristics,
where one was an order of magnitude faster than the other.

Experimental analysis of open shop scheduling problems revealed that the
weighted degree heuristic, combined with a restarting strategy, is extremely ef-
ficient at solving this type of problem. These results mirrored the general pattern
seen earlier, with the best methods being the restarting methods that move from
diversification (short runs) to intensification (long run(s)), i.e. WTDI and Geowtd.

We compared two models for this type of problem and found that, despite the
lack of initial discrimination by the heuristic, the model that works best was the
one incorporating auxiliary Boolean variables to represent the disjunctive con-
straints. The ability of constraint weighting to identify the critical variables in
these problems was further illustrated by the fact that RNDI solved a large num-
ber of instances backtrack-free on the run to completion using one of the models.
Analysis of the results and the weight profiles produced on the different mod-
els revealed that the Aux-Task model was better for proving unsatisfiability, even
though it can take longer to identify insoluble cores due to the lack of initial dis-
crimination and the number of auxiliary variables in the larger instances.

Finally we tested the different approaches on a set of difficult Radio Link Fre-
quency Assignment Problems. The results illustrated the ability of the methods
which combine the weighted degree heuristic directly with a restarting strategy to
quickly identify a small subset of variables which formed an insoluble core, and
prove the instances infeasible by eventually shifting these variables to the top of
the search tree upon restarting. On the other hand, RNDI spread its weight out
more on the instances which were more over-constrained. This has a negative im-
pact as search on the run to completion may jump between unconnected insoluble
cores.
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Chapter 7

A Generic Approach for Disjunctive
Scheduling Problems

.

7.1 Introduction

Scheduling problems have proven to be fertile research ground for constraint pro-
gramming and other combinatorial optimization techniques. There are numerous
such problems occurring in industry, and whilst relatively simple in their formula-
tion, they typically involve only Sequencing and Resource constraints, they remain
extremely challenging to solve.

The most efficient methods for solving disjunctive scheduling problems like
Open shop and Job shop scheduling problems are usually dedicated local search
algorithms, such as tabu search (Nowicki and Smutnicki [157, 158]) for job shop
scheduling and particle swarm optimization (Sha and Hsu [185]) for open shop
scheduling. However, constraint programming often remains the solution of choice.
It is relatively competitive (Beck [21], Watson and Beck [224], Malapert et al.
[142]) with the added benefit that optimality can be proven.

The best CP models to date are those based on strong inference methods, such
as Edge-Finding (Carlier and Pinson [40], Nuijten [159]), and specific search
strategies, such as Texture (Fox et al. [64]). Indeed, the conventional wisdom is

197
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that many of these problems are too difficult to solve without such dedicated tech-
niques. After such a long period as an active research topic (over half a century
since Johnsons seminal work [114]) it is natural to expect that methods specically
engineered for each class of problems would dominate approaches with a broader
spectrum.

In the previous chapter we showed that combining the weighted degree heuris-
tic with a universal restarting strategy is extremely efficient for Open shop schedul-
ing problems. We explore this result further in this chapter, comparing state-of-
the-art approaches for a number of disjunctive scheduling problems with our “light
model” (weighted degree heuristic combined with bounds consistency) imple-
mented in Mistral. We will empirically show that the complex inference methods
and search strategies currently used in state of the art constraint models can, sur-
prisingly, be advantageously replaced by simple propagation algorithms and the
weighted degree heuristic [29].

Our approach relies on a standard constraint model and generic variable/value
ordering heuristics and restart policy. Each unordered pair of tasks that cannot be
run in parallel, whether because they share a machine (OSP/JSP) or belong to the
same job (OSP), are associated through a disjunctive constraint, with a Boolean
variable standing for their relative ordering. Following the standard search pro-
cedure for this class of problems, the search space can thus be restricted to the
partial orders on tasks. Once the tasks are totally ordered on each resource the
residual problem is a Simple Temporal Problem (STP) [57] and can be solved in
polynomial time.

The key components of our algorithm are as follows. The choice of the next
(Boolean) variable to branch on is made by combining the current domain sizes of
the associated two tasks with the weighted degree of the corresponding ternary
disjunctive constraint. The current “best” solution is used as a value ordering
heuristic. Finally, we use a standard restarting policy together with a certain amount
of randomization, and nogoods are recorded from restarts using the method of
Lecoutre et al. [135].

In the next section we describe the general type of scheduling problem con-
sidered in this chapter and outline the main CP methods that have been developed
for tackling these problems. In section 7.3, we introduce our basic model and the
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different components of our search algorithm.
The following six sections deal with different variants of the disjunctive schedul-

ing problem: open shop scheduling; job shop scheduling; job shop scheduling
with setup times; job shop scheduling with maximal time lags; no-wait job shop
scheduling; and finally job shop scheduling with earliness and tardiness costs.
We show how our basic model can easily be adapted to handle each variant, and
provide compelling empirical proof of the benefits of our method compared with
state-of-the-art exact and approximate methods.

Section 7.10 provides a detailed evaluation of the different components in
our algorithm, identifying those that are key to the performance. Analysis of the
weight profiles produced on the problem variants is given in Section 7.11. Finally,
conclusions of the chapter are outlined in Section 7.12, along with avenues for
future research.

7.2 Background

The scheduling problems we study can be generally defined as the problem of
scheduling n jobs J = {J1, . . . , Jn}, on a set of m resources R = {R1, . . . , Rm}.
A job Ji consists of a set of tasks T = {t1, . . . , tk}, where each task has an associ-
ated processing time and an associated resource on which it must be processed. A
resource has an associated capacity which cannot be exceeded at any time point.

Scheduling problems can be distinguished based on the type of resource: dis-
junctive scheduling where a resource can only handle one task a time (in this
case the resource is referred to as a machine); or cumulative scheduling where a
resource can execute several tasks at a time provided its capacity isn’t exceeded.

Problems can also be distinguished based on the type of task: non-preemptive
scheduling where a task must run to completion once it has started; or preemptive
scheduling where tasks can be interrupted during processing. All the problems
we study are disjunctive, non-preemptive, scheduling problems, i.e. resources can
only process one task at a time and tasks cannot be interrupted once started.

Table 7.1 presents the notation that will be used throughout this chapter. Fur-
thermore, we use the usual classification of Graham et al. [87] to define our prob-
lems under the notation ↵|�|�. These parameters describe respectively the ma-
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chine environment, the job characteristics, and the optimality criterion. Here, ↵
is either J or O, where J (resp. O) means the problems are job shop (resp. open
shop). � refers to the characteristics of the jobs, for example if jobs have a release
date before which they cannot start and a due date for when they should finish
then � = “rdiddi”.

Table 7.1: Table of Notation.

Jj Job j
Mm Machine m
ti Task i
st i Start time of ti
pi Processing time of ti
Cj Completion time of Jj
rdj Release date of Jj
ddj Due date of Jj
Pj Processing time of Jj =

P
t
i

2J
j

pi
Pm Processing time of Mm =

P
t
i

2M
m

pi
Lj Lateness of Jj = (Cj � ddj)
Ej Earliness of Jj = max (�Lj, 0)
Tj Tardiness of Jj = max (Lj, 0)
we

j Cost of Jj being early per unit
wt

j Cost of Jj being tardy per unit
si,k Setup time between ti finishing and tk; ti, tk 2Mm

tlj Maximum time lag allowed between ti finishing and ti+1 starting in Jj
est i Earliest start time of ti, i.e. sti
eft i Earliest finish time of ti, i.e. sti + pi
lst i Latest start time of ti, i.e. sti
lft i Latest finish time of ti, i.e. sti + pi
⌦ A subset of tasks on a resource
st⌦ mint

i

2⌦(st i)
ft⌦ maxt

i

2⌦(st i + pi)

p⌦
X

t
i

2⌦

pi

The optimization criterion �, refers to the objective function which one intends
to minimize/maximize. There are a number of such criterion, however we only
consider the following two objectives:
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• Makespan: Cmax = maxCj

The objective is to find the schedule with minimum overall duration. If we
consider time 0 to be the earliest starting time, then Cmax is the latest fin-
ishing time over all jobs.

• Earliness Tardiness Costs: ETcost =
X

J

(Ej ⇤ we
j + Tj ⇤ wt

j)

In certain situations, where there is a due date associated with each job, there
may be a penalty for a delay in the completion of a job. Similarly there may
be a cost associated with earlier completion of a job (e.g. the storage of the
product until it is ready to be shipped on its due date).

Many approaches use the disjunctive graph representation (Roy and Sussman
[172]) for these problems, G = (N, D, A). There is a set of nodes N, where each
node in the graph represents a task (outside of the source and sink dummy nodes).
The set D of directed arcs represents the precedence constraints and the set A of
bidirectional dashed arcs represents the disjunctive constraints. A job is a maximal
path in (N,D), while a resource is a maximal clique in (N,A). For each arc in A,
a direction must be chosen for the arc which defines the order of the two tasks on
the machine. The length of the arc is the duration of the task on the tail of the arc.

A solution to the scheduling problem is an acyclic graph where all bidirec-
tional arcs are replaced with directed arcs. The makespan of the scheduling prob-
lem is the critical path from the source node to the sink node, i.e. the longest path
from the source to the sink. To find the optimal solution, one therefore needs to
direct the bidirectional arcs such that the critical path is minimized.

We introduce a sample job shop scheduling problem with three jobs and three
machines to illustrate the disjunctive graph. The problem is outlined in Table 7.2,
while Figure 7.1 presents the disjunctive graph representation of this problem,
along with a sample graph of an optimal solution. The critical path of the optimal
solution is: “Source”! 4! 2! 8! 9! “Sink”, which gives optimal Cmax of
147 (=0+21+53+42+31).
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Table 7.2: Sample 3⇥3 Job Shop Instance.

t1 t2 t3
Mi pi Mi pi Mi pi

J1 2 21 1 53 3 34
J2 1 21 2 71 3 26
J3 3 12 1 42 2 31

Source  Sink 

21  53 

21  71 

12  42 

26 0 

0 

0 

34 

31 

1  2  3 

4  5  6 

7  8  9 

(a) Disjunctive Graph

1 

4 

7 

2  3 

5  6 

8  9 

Source  Sink 

21  53 

21  71 

12  42 

26 0 

0 

0 

34 

31 

(b) Optimal makespan

Figure 7.1: Disjunctive Graph for sample 3⇥3 JSP.

7.2.1 Traditional CP approach (“Heavy Model”)

We first provide a brief overview of some of the main inference techniques and
search heuristics developed for the non-preemptive machine scheduling problems.
Modeling this type of problem as a COP is quite straightforward: the variables
are the tasks, their domains are the possible starting times of the task, and the
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constraints specify relations between the tasks, e.g. no two tasks sharing a resource
can overlap. The objective function is a criteria for deciding what the best schedule
should be, e.g. minimize Cmax.

Unary resource constraint propagation algorithms

The temporal constraint (or precedence constraint) enforces bounds consistency
on ordered pairs of sequential tasks. For an ordered pair of tasks ti, ti+1 on a job,
propagation of the temporal constraint enforces that

st i + pi  st i+1. (7.1)

The disjunctive constraint handles pairs of tasks (ti tj) sharing a resource (or
sharing a job for OSPs). Since two tasks cannot overlap, either ti finishes before
tj starts or vice versa:

(st i + pi  st j) _ (st j + pj  st i). (7.2)

The time-table propagation rule (Pape [161]) identifies time periods for which
a resource must be used by a task. It computes the required resource usage for
each time point t, maintaining a set of 0-1 variables X(ti, t) which takes the value
1 iff ti must use the resource at time point t. Since the resources are unary, the
following constraint is added:

nX

i=1

X(ti, t) = 18t 2 T. (7.3)

where T is the set of time periods, T=(0,lftM
y

).
For example, if we have a task ti with pi = 7 and domain [0. . . 3], then its

earliest possible processing time would require the resource in the time interval
[0 6] and its latest possible processing time would require the resource in the time
interval [3 9]. Thus this task will always require the resource in the time interval
[3 6], the intersection of the earliest and latest processing time intervals, no matter
what its starting time. The earliest possible start time of all other tasks on this
resource, with pi > 4, must then be 6 (since they cannot be processed before this
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task), and their domains are updated accordingly.

The previous two propagation methods involve simple reasoning. We now de-
scribe some of the more complicated filtering techniques that have been proposed
for the unary resource constraint. One of the most popular filtering techniques
for the unary resource constraint is known as Edge-Finding (Carlier and Pinson
[40], Nuijten [159]).

Let T denote a set of tasks sharing a unary resource, ⌦ denote a subset of T ,
and let ti ⌧ ⌦ (respectively ti � ⌦) denote that ti must start before (resp. after)
the set of tasks ⌦, for ti /2 ⌦. Edge-Finding involves detecting that a task must be
scheduled first (Eqn 7.4) or last (Eqn 7.5) in the set of tasks (⌦ [ ti). Equations
7.6 and 7.7 illustrate how the variable st i is updated:

8⌦, 8ti /2 ⌦, [(lft⌦[t
i

� est⌦) < (p⌦[t
i

)] ) ti ⌧ ⌦ (7.4)

8⌦, 8ti /2 ⌦, [(lft⌦ � est⌦[t
i

) < (p⌦[t
i

)] ) ti � ⌦ (7.5)

ti ⌧ ⌦ ) st i + pi  min

;6=⌦0
✓⌦

(lft⌦0 � p⌦0
) (7.6)

ti � ⌦ ) st i � max

;6=⌦0
✓⌦

(est⌦0
+ p⌦0

) (7.7)

The complement to the above is the “Not First, Not Last” filtering technique
which detects that a task ti /2 ⌦ cannot be scheduled first or last in the set of tasks
⌦ [ ti, in which case the domain of ti is updated accordingly (Baptiste and Pape
[16], Torres and Lopez [200]).

The Shaving filtering technique (Carlier and Pinson [41], Martin and Shmoys
[145]) updates the task time windows by assessing the earliest and latest start
times. For each unassigned task ti, at each node, it temporarily assigns ti a start-
ing time (either est i or lst i) and propagates the assignment using the filtering
algorithms (Edge-Finding, etc). If this results in a failure, it updates the relevant
domain bound. The process iterates until a fixed point is reached. This can be
viewed as a form of Singleton Bounds Consistency.

There are many variations on the above constraints, as well as further filtering
techniques such as the balance constraint (Laborie [126]), which are beyond the
scope of this dissertation. The reader is pointed to [17, 126] for further details on
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inference techniques for constraint based scheduling, and the dissertation of Vilı́m
[210] for further details and improvements to unary resource filtering techniques
in particular.

Variable and Value Ordering Heuristics

Instead of searching by assigning a task a starting time on a left branch, and for-
bidding this value on the right branch, it is common to branch on precedences. An
unresolved pair of tasks ti, tj is selected and the constraint st i+pi  st j is posted
on the left branch whilst st j + pj  st i is posted on the right branch.

Most heuristics are based on the identification of critical variables. The branch-
ing scheme Profile introduced in Beck et al. [23] (which is an extension of the
ORR/FSS heuristic (Sadeh and Fox [176])) involves selecting a pair of critical
tasks sharing the same unary resource and ordering them by posting a precedence
constraint on the left branch. The criticality is based on two texture measure-
ments, contention and reliance (Sadeh [175]). Contention is the extent to which
tasks compete for the same resource over the same time interval, reliance is the
extent to which a task must use the resource for given time points (e.g. in the
above example for the time-table constraint, ti relies on its resource in the time
interval [3 6]).

The heuristic determines the most constrained resources and tasks. For each
task on each resource, the probability of the task requiring the resource is calcu-
lated for each time period. This probabilistic profile is referred to as the individual
demand curve. The contention is based on the aggregated demand over all tasks
on the resource. At each node, the resource and the time point with the maximum
contention are identified by the heuristic, then a pair of tasks that rely most on
this resource at this time point are selected (provided the two tasks are not already
connected by a path of temporal constraints).

Once the pair of tasks has been chosen, the order of the precedence has to
be decided. For that purpose, a number of randomized value ordering heuristics
have also been proposed [23], such as the centroid heuristic. The centroid of a
task on a resource is based on the individual demand curve for the task on the
resource. and is computed for the two critical tasks. The centroid of a task is
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the point that divides its probabilistic profile equally. If the centroids are at the
same position, a random ordering is chosen. A similar contention based approach
has been proposed by Laborie, based on the detection and resolution of minimal
critical sets (MCS) [127].

An alternative measurement of criticality was proposed by Smith and Cheng
[190]. They used the “slack” between two tasks sharing a resource to identify
the pair of critical tasks. For all pairs of tasks sharing a resource the Bslack was
calculated as follows:

slack(ti ! tj) = lft j � est i � (pi + pj) (7.8)

S =

min(slack(ti ! tj), slack(tj ! ti))

max(slack(ti ! tj), slack(tj ! ti))
(7.9)

Bslack(ti ! tj) =
slack(ti ! tj)p

S
(7.10)

The pair of tasks with the smallest Bslack is chosen and ordered so as to leave
the most slack.

7.3 Light Weighted Model (LW)

The CP model introduced in the previous section can be viewed as a reasoning-
intensive model. Our model is more search intensive, with little in the way of
domain-specific propagators/heuristics. We mainly concern ourselves with the ob-
jective of minimizing Cmax. The start time of each task ti is represented by a
variable st i 2 [0, . . . , (Cmax � pi)].

We use an improved version of the Mistral default model described in the pre-
vious chapter (Section 6.4). For each pair of tasks sharing a resource, we introduce
a Boolean variable bij which represents the relative ordering between ti and tj . A
value of 0 for bij means that task ti precedes task tj , whilst a value of 1 stands
for the opposite ordering. The variables st i, st j and bij are linked by the following
constraint:

bij =

(
0, st i + pi  st j

1, st j + pj  st i
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Bounds consistency (BC) is maintained on these constraints (note that bounds
consistency is equivalent to arc consistency for these constraints). Here, the scope
of the constraint involves three variables, therefore BC can be achieved in constant
time for a single constraint, by applying simple rules. For n jobs and m machines,
this model involves nm(n � 1)/2 Boolean variables (and as many ternary dis-
junctive constraints) for the job shop scheduling problem. Using an AC3 type
constraint queue, the worst case time complexity for achieving bounds consis-
tency on the whole network is therefore O(n2mCmax). However, it rarely reaches
this bound in practice.

Note that this model follows the disjunctive graph representation: we include
a precedence constraint for each edge in D and a disjunctive constraint for each
edge in A. We do not use information about the maximal paths in D and maximal
cliques in A (which define a resource), unlike the “heavy” model with global
constraints such as Edge-Finding.

It has been observed (for instance in Meiri [149]) that the existence of a partial
ordering of the tasks (compatible with start times and durations, and such that its
projection on any job or machine is a total order) is equivalent to the existence of
a solution. In other words, if we successfully assign all Boolean variables in our
model, the existence of a solution is guaranteed. This is equivalent to replacing all
the bidirectional arcs with directed arcs in the disjunctive graph representation.

7.3.1 Variable Ordering

We use the domain/weighted-degree heuristic [29]. However, at the start of the
search, this heuristic is completely uninformed since every Boolean variable has
the same domain size and the same degree (i.e. 1). We therefore used the domain
size of the two tasks ti, tj associated to every disjunct bij to alleviate this issue.
The domain size of task ti (denoted dom(ti)) is the number of possible starting
times of ti, i.e. dom(ti) = (lst i � est i + 1)

With regard to the weighted component of the heuristic, there is a number
of ways to incorporate failure information. We focused on the following two
methods. In the first, we simply use the weight on the Boolean variable (denoted
w(i, j)), i.e. the number of times the search failed while propagating the constraint
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between st i, st j and bij .
The heuristic then chooses the variable minimizing the sum of the tasks’ do-

main size divided by the weighted degree:

dom(ti) + dom(tj)

w(i, j)
(7.11)

Our second method uses the weighted degree associated with the task vari-
ables instead of the Boolean variable. Let �(ti) denote the set of tasks sharing a
resource with ti. We call w(ti) =

P
t
j

2�(t
i

) w(i, j) the sum of the weights of ev-
ery ternary disjunctive constraint involving ti. Now we can define an alternative
variable ordering as follows:

dom(ti) + dom(tj)

w(ti) + w(tj)
(7.12)

We refer to these heuristics as Tdom/Bwt and Tdom/Twt, where tdom is
the sum of the domain sizes of the tasks associated with the Boolean variable, and
bwt (twt) is the weighted degree of the Boolean (associated tasks resp.). Ties were
broken randomly.

It is important to stress that the behaviour of the weighted degree heuristic is
dependent on the modelling choices. Indeed two different, yet logically equiva-
lent, sets of constraints may distribute the weights differently. The relative light
weight of our model allows the search engine to explore many more nodes, thus
quickly accruing information in the form of constraint weights.

7.3.2 Value Ordering

Our value ordering is based on the solution guided method (SGMPCS) proposed
by Beck for JSPs [21]. This approach uses previous solutions as guidance for the
current search, intensifying search around a previous solution in a similar manner
to the tabu search algorithm of Nowicki and Smutnicki [158]. In SGMPCS, a set
of elite solutions is initially generated. Then, at the start of each search attempt, a
solution is randomly chosen from the set and is used as a value ordering heuristic.
When an improving solution is found, it replaces the solution in the elite set that
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was used for guidance. (A similar solution guided approach, known as “progress
saving”, has recently been proposed in SAT [162].)

The logic behind this approach is its combination of intensification (through
solution guidance) and diversification (through maintaining a set of diverse solu-
tions). Note that this is a generic technique that can be applied to both COPs and
CSPs (Heckman [104]). In the latter case, partial solutions are stored and used to
guide subsequent search.

Interestingly Beck found that the intensification aspect was more important
than diversification for solving JSPs. Indeed, for the instances studied, there was
little difference in performance between an elite set of size 1 and larger elite sets
(although too large a set did result in a deterioration in performance). We use an
elite set of 1 for our approach, i.e. once an initial solution has been found this
solution is used, and updated, throughout our search.

Furthermore, up until the first solution is found, we use a value ordering
working on the principle of best promise [71]. The value zero for bij is visited
first iff the domain reduction directly induced by the corresponding precedence
(st i + pi  st j) is less than that of the opposite precedence (st j + pj  st i). We
use a static value ordering heuristic for breaking ties, based on the tasks’ relative
position in their jobs. For example, if tj is the fourth task in its job and ti is the
sixth task in its job, then the value zero for bij sets the precedence st j + pj  st i.

7.3.3 Additional Features

In the previous chapter we showed the efficiency gained by combining the weighted
degree heuristic with a restarting strategy for these types of problem. Here, we
use a geometric restarting strategy (Walsh [221]) with random tie-breaking for the
variable heuristic. The geometric strategy is of the form s, sr, sr2, sr3, . . . where
s is the base and r is the multiplicative factor. In our experiments the base was
256 failures and the multiplicative factor was 1.3.

We also incorporate the nogood recording from restarts strategy of Lecoutre
et al. [135], where nogoods are generated from the final search state when the
cutoff has been reached. In other words, a nogood is stored for each right branch
on the path from the root to the search node at which the cutoff was reached.
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7.3.4 Search Strategy

There are two main phases to our approach (Algorithm 4), the first involves a
dichotomic search phase (lines 8-17), which is followed by branch-and-bound
search if optimality hasn’t been proven (line 22). Initially the lower bound on
Cmax is set to the duration of the longest job/machine, while the upper bound ub

is initialized by a greedy algorithm in most cases (in one case it is initialized by
simply summing the durations of every task).

Furthermore, we observed that there was a large improvement in search per-
formance when guided by a solution, even one of relatively poor quality. Thus we
added an initial step prior to the dichotomic phase, where the Cmax was set to the
initial upperbound and search was run for approximately 3 seconds in order to
quickly initialize the solution (line 3 of Algorithm 4). Since these initial bounds
are often quite weak, the dichotomic search allows us to quickly reduce the gap
between lb and ub.

The function Solve handles the scheduling instance as a decision problem
with a latest starting time of (Cmax � pi) for all ti, where Cmax is the current
upperbound on the objective. This function returns two values. The first is the
final state: “solution”, ”Limit reached”, ”no solution”. The second value returned
is the solution if the problem was solved. Note that when the decision problem
is solved, the solution may have a better objective value than the Cmax for the
decision problem. Hence the objective value for the solution is calculated (lines 5
and 12).

In the dichotomic search phase, the decision problem is repeatedly solved with
Cmax fixed to ub+lb

2 , updating lb and ub accordingly, until they have collapsed.
Each dichotomic step has a fixed cutoff, if the problem is unsolved the lb is up-
dated, although not stored as the best proven lb.

In order to make the results reproducible, we implemented the cutoff for each
dichotomic step in terms of propagations since the vast majority of constraints
are the same (ternary disjuncts). The observed propagation speed for a subset of
problems was approximately 20M/s, the cutoff was then calculated by multiplying
this by 30 (as this would generally result in a time cutoff of 30 seconds).

If the problem has not been solved to optimality during the dichotomic search,
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Algorithm 4: LW Solve

Input : Scheduling problem P, variable heuristic varH, value heuristic
valH, initial cutoff, dichotomic search step cutoff, and overall
cutoff

Output: Integer bestMkp and Boolean optimal

runtime 0.0, bestLb 01

Initialize lb and ub2

// Try solving with ub and very short cutoff
// to initialize solution store
hresult,solutioni  Solve(P,ub,initCutoff,varH, valH)3

if result = SolutionFound then4

Set ub to objective value of solution5

Store solution for value ordering6

bestMkp ub7

// Dichotomic Search
while lb < ub do8

mkp b(lb+ub)/2c9

hresult,solutioni  Solve(P,mkp,dsCutoff,varH, valH)10

if result = SolutionFound then11

Set ub to objective value of solution12

Store solution for value ordering13

else14

lb mkp+115

if result 6= LimitReached then16

bestLb=mkp+117

if bestLb = ub then // Optimal solution found18

return(ub, true)19

else20

// Branch and Bound Search
bnbCutoff (totalCutoff- runtime)21

result BnbSolve(P,ub, bestLb, bnbCutoff,varH, valH)22

return result23



212 A GENERIC APPROACH FOR DISJUNCTIVE SCHEDULING PROBLEMS

we perform a branch and bound search (BnbSolve) with the best Cmax from
the dichotmic search as our upper bound, and the best proven lb as our lower
bound. Branch and bound search is performed until either optimality of a solution
is proven or an overall cutoff is reached. The function returns the best objective
value found and a Boolean value for whether optimality was proven or not.

7.4 Open Shop Scheduling

7.4.1 Problem Description

An n ⇥m Open Shop Scheduling Problem (OSP) involves scheduling a set of n
jobs J , each consisting of m tasks, to be processed on a set of m machines M,
and is written as (O | | C

max

) in the Graham three-field notation. Each task of a
job has an associated duration (or processing time), pi, and is associated with a
different machine, i.e. each machine processes exactly one task in each job. This
was shown to be NP-hard for m � 3 in Gonzales and Sahni [84].

More formally, our problem can be defined as:

minimize Cmax

subject to

Cmax � st i + pi 8ti 2 T (7.13)

(st i + pi  st j) _ (st j + pj  st i) 8Jx 2 J , ti 6= tj 2 Jx (7.14)

(st i + pi  st j) _ (st j + pj  st i) 8My 2M, ti 6= tj 2My (7.15)

Figure 7.2 presents a Gantt chart of the optimal solution to the sample JSP in-
troduced in Table 7.2 converted to open shop by replacing precedence constraints
with disjunctive constraints in the jobs. The optimal value for Cmax is 123. Note
that a symmetrical solution can be found by setting the start time of each task ti

to (Cmax - ti - pi).
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Figure 7.2: Optimal solution to sample 3⇥3 OSP.

7.4.2 State of the art

We compared our model with the CP model of Malapert et al. [142] (denoted
RRCP-OSP), implemented in Choco [46], which has recently been shown to be
state-of-the-art on these problems [142]. It outperformed both metaheuristic ap-
proaches, such as particle swarm optimization [185] and ant-colony optimization
[28]; and exact methods, such as the branch and bound methods of Dorndorf et al.
[59] and Gueret et al. [96], and the method of Laborie [127].

The approach combines a number of traditional filtering techniques for the
unary resource global constraint (Edge-Finder; Not-First, Not-Last) with a spe-
cialized filtering method for OSPs, Forbidden Intervals [94] which are time in-
tervals in which no task can start or finish in an optimal solution. Furthermore,
a precedence constraint network is used to improve efficiency on propagation of
temporal constraints, using previous techniques developed for the Simple Tempo-
ral Problem (Dechter et al. [57]).

Symmetry breaking was added to remove the solution symmetries of the OSP
(simply reversing the order of the tasks on each job and machine in a solution is
also a solution). To achieve this, the task with the longest processing time was
selected and forced to start in the first half of the schedule, i.e. the constraint
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st i  C
max

�p
i

2 was added, where task ti has the longest processing time. The
branching scheme was the Profile heuristic described earlier (with the precedence
decided by the centroid heuristic).

However, Malapert et al. found that both the propagation methods and the
heuristics perform poorly when the upper bound on Cmax is very far from the
optimal. To counteract this, a randomized constructive heuristic was used, without
propagation, to generate a good initial upper bound. They used a common priority
dispatching rule (the longest processing time) to construct a nondelay schedule by
repeatedly appending tasks to a schedule.

Finally, the best restarting scheme for the approach of Malapert et al. was
found to be Luby [140] of order 3 (i.e. all run lengths are powers of 2 as normal,
but each time a triplet (instead of a pair) of runs of a given length are completed,
a run of twice that length is performed). Nogood recording form restarts [135], as
described earlier, was also incorporated.

7.4.3 Implementation of our model

There is little alteration required for our basic model for these problems, other
than to consider each job as a resource. For n jobs and m machines, we have
m ⇤ (m� 1)/2 Boolean variables per job and n ⇤ (n� 1)/2 Boolean variables per
machine, so overall our OSP model involves nm(m+n� 2)/2 Boolean variables
and as many ternary constraints.

7.4.4 Experimental Evaluation

All experiments reported in this chapter were again run on an Intel Xeon 2.66GHz
machine with 12GB of RAM on Fedora 9, unless otherwise stated. Each algorithm
run on an instance had an overall time limit of 3600s. There were 10 runs per
instance. The heuristic used in our algorithm was Tdom/Bwt.

Benchmarks

There are three sets of instances which are widely studied in the literature, Taillard
[196] (60 instances, denoted tai-*), Brucker [35] (52 instances, denoted j-*), and
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Guéret-Prins [95] (80 instances, denoted gp-*). All instances involve “square”
problems, i.e. where the number of jobs and machines are equal. The instances
range in size from 3⇥3 to 20x20, with 192 instances overall.

The Taillard instances were randomly generated, and the ten most difficult,
based on the performance of a tabu search approach of Taillard, for each pair of
n,m were selected [196]. Although this problem set contains the largest instances
(400 tasks for the 20x20 set compared to 100 (64) tasks for the largest Gueret-
Prins (Brucker resp.) instances), the Taillard instances are considered to be rela-
tively easy [95]. This is because there is generally no proof of optimality required,
the basic lower bound (LBbasic, the maximum job/machine duration over all jobs
and machines) is the optimal value for all instances with n,m > 5.

In response to observations regarding the easiness of the Taillard instances,
Brucker et al. proposed instances which were generated so as to be much more
difficult to solve. They defined the workload of an instance to be the average
workload on its machines:

Workload =

total processing time
m⇤LB

basic

.

They stated that generating instances with a workload close to 1 would be
difficult to solve, as this would imply that the processing times of all jobs and
machines are in a small range. Thus, there would be little chance of finding a
solution with Cmax near LBbasic.

Gueret and Prins proposed an improved method of finding a lower bound for
OSPs [95]. Based on this, they developed a problem generator which produced
instances with a large distance between LBbasic and their new lower bound, and
by extension the optimal value of Cmax.

Forty of these OSPs remained open up until recently, when Laborie closed the
remaining 34 open Gueret-Prins instances and 3 of the 6 open Brucker instances
[127] in 2005. The final 3 open Brucker instances were closed by Tamura et al
[197] in 2006 (although 2 of these were solved by dividing the problem into 120
subproblems, which were solved running on 10 machines in parallel, taking 6 and
13 hours respectively).
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Figure 7.3: Average runtimes on Taillard instances.

Results

We first compare the Mistral implementation of LW-OSP with RRCP-OSP. Both
proved optimality within the 1 hour cutoff on every instance, so we present our
results in terms of average time taken per instance over the 10 runs. Results on the
Taillard instances are given in Figure 7.3. Although both methods were extremely
efficient on these instances, LW-OSP solved all in under 4 seconds (note the dif-
ference in scale for the two axes), while RRCP-OSP took over a minute to solve
some of the 20x20 instances.

These results clearly show that, contrary to popular belief, scheduling spe-
cific filtering techniques and heuristics are not necessary for solving these prob-
lems. However it may be the case that, when a proof of optimality is required, the
stronger inference techniques of RRCP-OSP are advantageous. Thus the Gueret-
Prins and Brucker instances are of more interest.

Results for the Gueret-Prints instances are shown in Figure 7.4. These in-
stances were generated to be hard to solve, and have proven difficult for meta-
heuristic approaches [185]. However, exact methods have been much more suc-
cessful, with the MCS method of Laborie closing the 34 open problems in under
5 seconds each [127]. Our LW-OSP method solved all instances in less than a
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Figure 7.4: Average runtimes on Gueret-Prins instances.

second, while RRCP-OSP was slower on the larger instances.

The Brucker instances are generally the most difficult, as shown in Figure 7.5
(for clarity we have also plotted the line x = y). Indeed, RRCP-OSP was the first
exact method to solve the 2 most difficult instances without dividing the problem
into subproblems and running in parallel (as done in Tamura et al. [197]). How-
ever, LW-OSP is still consistently faster than RRCP-OSP on the hard instances.
These results show that our method is efficient both at solving problems quickly
and proving optimality.

In order for a more direct comparison, Arnaud Malapert implemented LW-
OSP in Choco with the following alterations: the value ordering was lexical through-
out; and the dichotomic search phase was replaced by the same randomized con-
structive heuristic used to initialize the upper bound in RRCP-OSP. Therefore both
methods start the branch-and-bound phase with the same bounds on Cmax.

Figure 7.6(a) is a log-log plot of the average time taken by the two Choco
models to solve each of the 192 open shop instances, while Figure 7.6(b) is a
log-log plot of the average nodes explored by the two models. The light model
is generally faster on the harder instances, even though (as expected) it explores
more nodes.
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Figure 7.5: Average runtimes on Brucker instances.
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Figure 7.6: Log-log plots of Light vs Heavy Choco models on open shop
instances.
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We selected a subset of 11 of the hardest instances based on the overall results
of Figure 7.6(a), choosing instances for which at least one approach took over
20 seconds on average to solve. This subset consisted of one Gueret-Prins, four
Taillard and six Brucker instances, of order 10, 20 and 7-8 respectively.

In Table 7.3 we compare LW-OSP implemented in Choco (“Light-dw”) with
the RRCP-OSP model (“Heavy-prof”) on this hard subset. In order to better under-
stand the importance of the heuristics to the two models, we ran the same experi-
ments but with the heuristics swapped (algorithms “Light-prof” and “Heavy-dw”
in Table 7.3).

The results are presented in terms of average time and average nodes (where
a model failed to prove optimality its time is taken as 3600s, in these cases the
average time is a lower bound). For reference, we note that the Mistral implemen-
tation of LW-OSP averaged 79s on these instances, while the same model, but
with lexical value ordering, averaged 93s. We see that, similarly to the results in
Figure 7.6, Light-dw is generally much faster than Heavy-prof (only slower on 1
of the 11 instances), even though it explores many more nodes.

Table 7.3: Results (Time) For Hard Open Shop Scheduling Problems

Light-dw Heavy-prof Light-prof Heavy-dw
t̄ n̄ t̄ n̄ t̄ n̄ t̄ n̄

gp-10-1 6.1 4K 118.4 53K 2523.2 6131K 9.6 3K
j7-0-0 854.5 5.1M 1310.9 1.4M 979.1 4.3M 3326.7 2.6M
j7-10-2 57.6 0.4M 102.7 0.1M 89.5 0.4M 109.6 0.1M
j8-0-1 1397.1 6.4M 1973.8 1.5M 1729.3 6.0M 3600 2.4M
j8-10-0 24.6 0.10M 30.9 0.02M 19.7 0.05M 68 0.06M
j8-10-1 275.2 1.3M 154.8 0.1M 92.8 0.3M 796.7 0.7M
j8-10-2 335.3 1.6M 651.4 0.6M 754 2.7M 697.1 0.6M
tai-20-1 25.4 2K 27.5 3K 2524.7 1458K 34.4 3K
tai-20-2 56.5 11K 178 42K 3600 2261K 81.9 10K
tai-20-7 47.8 9K 50.9 11K 3600 2083K 63.7 8K
tai-20-8 66.8 14K 108.3 25K 3600 2127K 84.8 11K
Average 286.1 1.3M 428.9 0.4M 1774.3 2.5M 806.6 0.6M

Average runtime in seconds (t̄), and average nodes explored (n̄)

Interestingly, on the hardest instances (6 Brucker instances), we observed that
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Heavy-prof was slightly quicker on average than Light-dw at finding the optimal
solution (310s vs 360s), but was 3 times slower at proving optimality once the so-
lution had been found (385s vs 125s). This may be somewhat surprising since, as
mentioned earlier, one would expect that the stronger inference techniques would
be more beneficial when a proof of optimality is required.

With regard to the swapping of heuristics, Tdom/Bwt is clearly more effective
for the light model than Profile. Indeed combining Profile with the light model
failed to prove optimality on 30% of the instances and was 8 times slower on
average.

For the heavy model, Tdom/Bwt is slower on average than Profile. This is
mainly due to poor performance on the Brucker instances, although it still proved
optimality on 92% of the runs. This is surprising given that bwt is much less
discriminatory with the heavy model as each constraint has n variables associated
with it. When a failure occurs all variables in that constraint will have their weight
increased.

Overall, we have shown that domain-specific filtering techniques and heuris-
tics are not necessary for solving open shop scheduling problems. Our approach
of combining a number of generic CSP solving techniques with simple bounds
consistency is extremely efficient for these problems.

7.5 Job Shop Scheduling

7.5.1 Problem Description

A Job Shop Scheduling Problem (JSP) is identical to an OSP with the exception
that there is a predefined ordering on the tasks of each job, i.e. a task in a job cannot
start until the preceding task in the order has finished. In the Graham three-field
notation, it is written as (J | | C

max

). The problem is known to be NP-hard for
m � 3 (Garey et al. [70]).

The formal definition can be stated as follows:
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Figure 7.7: Optimal solution to sample 3⇥3 JSP.

(JSP ) minimize Cmax

subject to

Cmax � st i + pi 8ti 2 T (7.16)

st i + pi  st i+1 8Jx 2 J , 8ti, ti+1 2 Jx (7.17)

(st i + pi  st j) _ (st j + pj  st i) 8My 2M, ti 6= tj 2My (7.18)

In Figure 7.7, we show the optimal solution for the sample JSP introduced in
Table 7.2 (this is the same solution as shown in disjunctive graph form in Fig-
ure 7.1). The precedence constraints on the tasks in a job result in a larger optimal
Cmax than for the associated OSP. Indeed, the optimal Cmax to a JSP can at best
match the optimal Cmax for the associated OSP since any solution to a JSP is also
a solution to the OSP while the opposite does not hold.
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7.5.2 State of the art

Metaheuristic approaches have generally been the most efficient at solving JSPs,
in particular the tabu search method of Nowicki and Smutnicki’s i-TSAB [158],
and the tabu search / simulated annealing hybrid of Zhang et al. [238]. Indeed, the
former produced such impressive results that research was carried out indepen-
dently on why this form of tabu search was so suited to JSPs (Watson et al. [226]).
The most competitive exact methods are the i-TSAB/SGMPCS approach of Wat-
son and Beck [224] (hybridizing tabu search and CP) and, from a pure CP point
of view, the solution guided multi point constructive search method (SGMPCS)
of Beck [21].

The i-TSAB method has three main components as outlined in Watson and
Beck [224]: the N5 critical-path based move operator (Nowicki and Smutnicki
[157]); search intensification through storing and reusing a set of elite or high-
quality solutions (Nowicki and Smutnicki [157]); and search diversification through
the selection of a solution e0, a solution equidistant from two randomly selected
elite solutions ei and ej (by a process known as path relinking, Nowicki and Smut-
nicki [158]). When an elite solution ei is improved, the new solution replaces the
old solution.

The Zhang method differs from i-TSAB in the following ways. Firstly, simu-
lated annealing is used to find the elite solutions, and this provides the diversifi-
cation. Secondly, the move operator used is the N6 neighborhood structure based
move operator of Balas and Vazacopoulos [13].

The SGMPCS approach of Beck also uses an elite solution set for guidance,
and indeed was inspired by i-TSAB. The set is initialized with a number of ran-
domly generated solutions to provide diversification. Restarted search is then per-
formed, where at each restart an elite solution is selected with probability p. This
is used to guide the value ordering until either an improved solution is found or
the cutoff is reached. For the former, the guiding solution is replaced with the im-
proved solution. If an elite solution wasn’t used for guidance, and a solution of
better quality than at least one of the elite solutions is found, then this solution
replaces the worst solution in the elite solution set.

The variable ordering heuristic used in SGMPCS is the Profile heuristic de-
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scribed earlier (referred to as Texture in [21]). Randomization is added by ran-
domly selecting with uniform probability from the top 10% most critical pairs
of (machine, timepoint). Finally, the standard constraint propagation techniques
for scheduling are used, such as time-table [161], Edge-Finding [159], and balance
constraints [126].

7.5.3 Implementation of our model

For n jobs and m machines, our model involves nm(n � 1)/2 Boolean variables
and as many ternary constraints. The model is as described earlier in Section 7.3.

7.5.4 Experimental Evaluation

We compare our approach with the SGMPCS approach of Beck, for which the
code was kindly supplied by Chris Beck. Each approach was run 10 times with
a time limit of one hour per instance. SGMPCS was run using Ilog Scheduler
6.2. Due to the number of benchmarks our primary method of comparison is the
average percentage relative deviation (APRD) per problem set. The PRD is given
by

PRD =

CAlg � CRef

CRef

⇤ 100

where CAlg is the makespan found by Alg and CRef is the best known makespan
for the instance. In most cases this was either taken from Zhang et al. [238], or
where optimality was proven. However, for the set of five instances swv11-15, the
best known makespan is taken from the best found by the two methods tested.
Finally, the heuristic used in our algorithm was Tdom/Twt.

Benchmarks

There are a large number of benchmarks in the literature, stretching back to the 3
ft-⇤ instances proposed by Fisher and Thompson in 1963 [63]. The other bench-
marks we consider here are: the 40 Lawrence instances [130] (denoted la-⇤), 5
instances proposed by Adams et al. [2] (denoted abz-⇤), 10 instances proposed
by Applegate and Cook [4] (denoted orb-⇤), 4 instances proposed by Yamada
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Table 7.4: APRDs on JSPs: LW-JSP versus SGMPCS

Problem Set LW-JSP SGMPCS
Min Avg Min Avg

abz 0.360 0.839 0.840 1.347
ft 0 0.157 0 0
la01-20 0 0 0 0
la11-20 0 0 0 0
la21-30 0.153 0.292 0 0.078
la31-40 0 0 0 0
orb 0 0 0 0
swv1-10 2.706 4.272 1.718 2.99
swv11-15 5.950 8.459 0 2.977
swv15-20 0 0 0 0
yn 0.738 1.670 0.793 1.589
tai11-20 0.637 1.661 0.228 1.111
tai21-30 0.419 1.056 0.523 1.159
tai31-40 2.468 3.716 0.687 1.438
tai41-50 3.588 4.915 1.882 3.015
Total Average 1.135 1.803 0.445 1.047

Notes: CRef taken from Zhang et al. [238] (or
known optimal values), except for swv11-15

where CRef=min(LW-JSP, SGMPCS).

and Nakano [234] (denoted yn-⇤), 20 instances proposed by Storer et al. [195]
(denoted swv-⇤), and finally 40 of the Taillard instances [196] (denoted tai-⇤).
Instances range in size from 6x6 to 50x10.

Results

The results are given in Table 7.4. We see that LW-JSP outperformed SGMPCS on
three of the sets (abz, yn, tai21-30). Although our approach was generally com-
petitive on the other problem sets, it is clear from the total averages that SGMPCS
was best. Indeed the average of the SGMPCS runs was better than the best found
with our method. This was mainly due to the swv instances 1-15 and Taillard in-
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stances 31-50, which were the only cases where the APRD of the best solutions
found by Mistral was greater than 1.

We further compare the approaches in terms of number of instances (out of the
182 instances tested) where optimality was proven. LW-JSP solved 56 instances
to optimality on at least one run, while SGMPCS solved four more instances to
optimality on at least one run. Only two of these instances, for both methods, were
not solved on every run.

Similar behavior was observed for the number of instances for which a method
matched the best solution. LW-JSP matched the best solution on at least one run
on 58 instances, whereas SGMPCS matched the best known solution on 61 of the
instances on at least one run. Again, the methods had fairly consistent performance
across runs, with the best known solution not matched on every run on only three
of these instances for both methods.

7.6 Job Shop Scheduling with Sequence Dependent
Setup Times

7.6.1 Problem Description

An n ⇥ m job shop problem with sequence-dependent setup times (SDST-JSP)
involves the same variables and constraints as a JSP of the same order, with the
additional constraint that for each machine and each pair of tasks running on this
machine, the machine needs to be setup to accommodate the new task. During this
setup the machine must stand idle. In the Graham three-field notation, it is written
as (J |si,j| Cmax

).

The duration of the setup depends on the sequence of tasks, that is, for every
pair of tasks (ti, tj) running on the same machine we are given the setup time si,j

for tj following ti and the setup time sj,i for ti following tj .
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Figure 7.8: Optimal solution to sample 3⇥3 JSP with sequence dependent setup
times.

The objective, once again, is to minimize Cmax. More formally:

(SDST � JSP ) minimize Cmax

subject to

Cmax � st i + pi 8ti 2 T (7.19)

st i + pi  st i+1 8Jx 2 J , 8ti, ti+1 2 Jx

(7.20)

(st i + pi + si,j,y  st j) _ (st j + pj + sj,i,y  st i) 8My 2M, 8ti, tj 2My, ti 6= tj

(7.21)

Figure 7.8 presents a Gantt chart of the optimal solution to the sample 3⇥3 JSP
with additional setup times. For each machine the setup times were permutations
on {0, 10, 20}, while the initial setup time was taken from {10, 20, 30}. The
optimal Cmax for this problem is 192, compared to 147 for the basic JSP, due to
the setup times (note the gap between tasks of the same machine).
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7.6.2 State of the art

This problem presents a challenge for CP and systematic approaches in gen-
eral, since traditional inference methods for disjunctive constraints (e.g. the Edge-
Finding algorithm) are seriously weakened as they cannot easily take into account
the setup times. The best complete techniques are two recently introduced CP ap-
proaches. The first by Artigues and Feillet [6] (denoted AF08 in Table 7.5) tries
to adapt the reasoning for simple unary resources to unary resources with setup
times. The approach relies on solving a traveling salesman problem (TSP) with
time windows to find the shortest permutation of tasks using a dynamic program-
ming technique, and is therefore computationally expensive.

The second CP approach (which we will refer to as W09) is that of Wolf
[230]. Here they introduced a model of the SDST-JSP with time windows and
work breaks. A dedicated pruning algorithm was proposed and incorporated in
a branch-and-bound approach with a dichotomic search strategy on Cmax. The
branching scheme is the demand heuristic proposed for classical JSPs in [229],
which branches based on the demand on resources.

A number of metaheuristic approaches have also been proposed. Balas et al.
introduced a shifting bottleneck algorithm combined with guided local search
“SB-GLS” [14] (denoted BSV08 in Table 7.6), where the problem is decomposed
into a TSP with time windows (which is solved with dynamic programming). Hy-
brid genetic algorithms have been proposed by González et al. for this problem,
firstly a hybrid GA with local search [85] and more recently GA combined with
tabu search [86] (denoted GVV08 and GV09 resp. in Table 7.6). For both GA
hybrids, the problem is modeled using the disjunctive graph representation.

7.6.3 Implementation of our model

Our model is basically identical to the job shop scheduling model. However, the
setup time between two tasks is added to the duration within the disjunctive con-
straints. That is, given two tasks ti and tj sharing a machine, let si,j (resp. sj,i) be
the setup time for the transition between ti and tj (resp. between tj and ti), we
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replace the usual disjunctive constraint with:

bij =

(
0, st i + pi + si,j  st j

1, st j + pj + sj,i  st i

Since pi + si,j is a constant, this constraint has the same form as the disjunc-
tive constraint for the classical JSP. Finally, we note that our approach (like most
methods) works only if the setup times respect the triangular inequality:

si,j + sj,k � si,k 88My 2M, 8ti, tj, tk 2My (7.22)

7.6.4 Experimental Evaluation

The search heuristic used by LW-SDST was Tdom/Bwt. The results for the com-
parison methods are taken from their respective papers with the exception of the
results for BSV08, which are taken from http://www.andrew.cmu.edu/

user/neils/tsp/outt2.txt. In this section and in the following work we
will refer to the best known solution of an instance as the BKS.

There were two approaches presented by Artigues and Feillet [6] which only
differed in the search strategy used, the first was a dichotomic search strategy, the
second used a linear search strategy starting from the the lower bound. We provide
the best results over the two approaches (although we note that the dichotomic
search strategy was generally best).

Balas also reported results for two different approaches, a single run of the SB-
GLS algorithm or multiple runs of a randomized version of SB-GLS combined
with a two phase strategy. The latter approach, although computationally more
expensive, achieved the best results and it is these that are reported.

Benchmarks

We tested our method on a set of benchmarks proposed by Brucker and Thiele
[34]. These instances were generated by adding setup times to a subset of the
Lawrence job shop instances [130]. The instances in the set t2-ps⇤ correspond to
the job shop instances la01-15, instances in the set t2-pss⇤ are variations of t2-ps⇤

where an alternative setup-time distribution was used.

http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt
http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt
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Results

We first compare our method with the best systematic approaches from the liter-
ature, AF08 of Artigues and Feillet [6] and W09 of Wolf [230]. The target ma-
chines used by the comparison methods are as follows. AF08 was run on a PC
with AMD64 architecture under Linux, while W09 was tested on a laptop PC
Intel Core 2 Duo (T7700) with 2 GB of RAM and a 2.4 GHz processor.

Table 7.5: SDST-JSP: Comparison with state-of-the-art exact methods.

Instance Size AF08 W09 LW-SDST
n⇥m Best Time(s) Best Time(s) Best Avg Time (s)

t2-ps01 798 56.7 798 2.1 798 798.0 0.03
t2-ps02 784 242.3 784 7.2 784 784.0 0.15
t2-ps03 10x5 749 699.3 749 15.1 749 749.0 0.21
t2-ps04 730 251.6 730 3.8 730 730.0 0.06
t2-ps05 691 58.2 691 2.7 691 691.0 0.08
t2-ps06 1009 1797.6 1009 1481.8 1009 1009.0 18.52
t2-ps07 970 781.8 970 7538.2 970 970.0 41.63
t2-ps08 15x5 963 349923 - TO 963 963.0 104.48
t2-ps09 1061 169582 1060 31812.1 1060 1060.0 967.27
t2-ps10 1018 35.1 1018 1788.9 1018 1018.0 15.05
t2-ps11 1494 916833 - - 1437⇤ 1502 3600
t2-ps12 1381 914086 - - 1269 1341 3600
t2-ps13 20x5 1457 895059 - - 1415 1439 3600
t2-ps14 1483 306899 - - 1452 1501 3600
t2-ps15 1661 792196 - - 1479⇤ 1524 3600
Boldface values denote the best known solution to an instance. Underlined values denote that
optimality was proven. Values marked with a ⇤ denote that our method improved on the BKS

Table 7.5 summarizes the results for the set t2-ps, consisting of 15 instances.
No results were given for W09 on the five largest instances. Furthermore, a cut-
off of 12 hours was used in W09 and no result was reported for the case where
this cutoff was reached (t2-ps09). Of the ten instances tested by all three methods
we see that LW-SDST proved optimality on one instance more than both AF08
and W09, and was orders of magnitude faster in most cases, albeit on different
machines. On the five largest instances, LW-SDST consistently found better solu-
tions than AF08, despite the latter having an average runtime of 8.8 days.

With regard to the state-of-the-art approximate methods for this type of prob-
lem, we first note the target machines used by the three comparison techniques.
BSV08 was run on a Sun Ultra 60 with UltraSPARC-II processor at 360MHz,
while GVV08 and GVV09 were run on Pentium IV (1.7GHz) and Intel Core 2
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Table 7.6: SDST-JSP: Comparison with state-of-the-art incomplete techniques.

Instance GVV08 GVV09 BSV08 LW-SDST
Best Avg t (s) Best Avg t (s) Best t (s) Best Avg t (s)

t2-ps11 1438 1439 31.62 1438 1441 34.92 1470 3047 1437⇤ 1502 3600
t2-ps12 1269 1291 34.28 1269 1277 34.57 1305 2173 1269 1341 3600
t2-ps13 1406 1415 31.14 1415 1416 34.57 1439 2468 1415 1439 3600
t2-ps14 1452 1489 27.83 1452 1489 37.51 1485 2131 1452 1501 3600
t2-ps15 1485 1502 36.58 1485 1496 36.02 1527 3111 1479⇤ 1524 3600
t2-pss06 1126 980 1114⇤ 1126 1161.86
t2-pss07 1075 929 1070⇤ 1070.0 232.47
t2-pss08 1087 794 1072⇤ 1077 3600
t2-pss09 1181 295 1161⇤ 1161 3600
t2-pss10 1121 535 1118⇤ 1118.0 138.25
t2-pss11 1442 3193 1421⇤ 1440 3600
t2-pss12 1258 1266 35.23 1290 2062 1269 1296 3600
t2-pss13 1361 1379 36.81 1398 1875 1383 1405 3600
t2-pss14 1453 2060 1452⇤ 1462 3600
t2-pss15 1435 4111 1413⇤ 1430 3600

C
max

and average runtime comparison. Boldface values denote the best known solution to an instance. Underlined
values denote that optimality was proven. Values marked with a ⇤ denote that our method improved on the BKS.

Duo (2.6GHz) machines respectively.

Table 7.6 provides comparison results on the fifteen remaining open problems.
LW-SDST found the first proofs of optimality on three of these open problems
(t2-pss- 06,07,10), and improved on the best known solution on seven of the re-
maining twelve instances. Indeed, there were only three instances where one of
the other methods found a better solution than LW-SDST. However there are a
couple of caveats to the comparison with the GVV methods. Firstly, they didn’t
report results on most of the t2-pss⇤ instances. Secondly, as can be seen in average
Cmax columns, these methods were more consistent than LW-SDST across runs
despite having a much shorter runtime.

Overall we have shown that LW-SDST is the state-of-the-art systematic method
for problems of this nature and is competitive with the best metaheuristic ap-
proaches. Our method was orders of magnitude faster than the best known exact
methods, closed three open problems and improved on the best known solution on
another seven instances.



7.7. JOB SHOP SCHEDULING WITH MAXIMAL TIME LAGS 231

7.7 Job Shop Scheduling with Maximal Time Lags

7.7.1 Problem Description

An n ⇥ m job shop problem with maximal time lags (TL-JSP) is a JSP with an
additional constraint on the time allowed between a task finishing and the next
task of a job starting. This is written as J |tl

J

| C
max

in the three-field Graham
notation.

Let tli denote the maximum duration allowed between the completion of task
ti and the start of task ti+1. Then the problem can be formally defined as follows:

(JTL) minimize Cmax

subject to

Cmax � st i + pi 8ti 2 T (7.23)

st i + pi  st i+1 8Jx 2 J , 8ti, ti+1 2 Jx (7.24)

st i + pi + tli � st i+1 8Jx 2 J , 8ti, ti+1 2 Jx (7.25)

(st i + pi  st j) _ (st j + pj  st i) 8My 2M, 8ti 6= tj 2My (7.26)

This type of constraint arises in many situations. For instance in the steel in-
dustry, the time lag between the heating of a piece of steel and its moulding should
be small [228]. Similarly when scheduling chemical reactions, the reactives often
cannot be stored for a long period of time between two stages of a process to avoid
interactions with external elements [167]. This type of constraint also occurs in the
food [106] and pharmaceutical industries [166].

In Figure 7.9 we illustrate the optimal solution to the sample 3⇥3 JSP with
added time lag constraints in a Gantt chart. The time lags between successive
tasks of the one job (given in Table 7.7) are the average task duration of the job.
Although the optimal Cmax is the same as for the JSP, 147, we note that the first
task of J3 does not start at 0 in this solution, but at 34 due to the time lag constraint.
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Table 7.7: Sample 3⇥3 Job Shop Instance with maximum time lag constraints.

t1 t2 t3
Mi pi Mi pi Mi pi tlj

J1 2 21 1 53 3 34 37
J2 1 21 2 71 3 26 39
J3 3 12 1 42 2 31 29

20  40  60  80  100  120  140  160 0 

J1 

J2 

J3 

Cmax=147 

M1 =   M2 =   M3 =  

Figure 7.9: Optimal solution to sample 3⇥3 TL-JSP.

7.7.2 State of the art

The general TL-JSP problem has only recently received attention in the literature,
(most methods have been proposed for a special case which we will consider in the
following section). Caumond et al. [44] introduced a memetic algorithm, which is
a combination of population based search and local search with an emphasis on
using problem specific knowledge, for the TL-JSP.

An initial solution is generated by priority dispatching rules. The memetic
algorithm then runs an evolutionary process, applying local search to a set of
chromosones. The local search method incorporates the longest path algorithm for
the disjunctive constraint with positive cycle detection, followed by a Bierwirth
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sequence for representing the solution. The local search then adapts this solution.
More recently, there have been two systematic search approaches proposed.

The first method, of Karoui et al. [122], proposes a climbing discrepancy search
approach to the problem. Unfortunately, as it is a short paper, there is little detail
provided either in the description of the method or the results. Artigues et al.
[8] proposed a CP branch and bound method using dichotomic search and the
branching scheme of Torres and Lopez [200]. The method uses a greedy insertion
heuristic to initialize the upper bound, and combines a number of generalizations
of constraint propagation rules for JSPs.

In particular they proposed generalizations of three disjunctive constraint prop-
agation rules: Forbidden Precedences (FP) from Brucker [33]; latest starting time
of last (LSL); and earliest finishing time of first (EFF). The two latter rules were
originally proposed by Caseau and Laburthe [42]. They combined these general-
izations with Edge-Finding and Forbidden Precedences with energetic reasoning.

7.7.3 Implementation of our model

Once again our model required little alteration, the time lag constraint being the
only addition. The constraint to represent time lags between two tasks of a job are
simple precedences in our model. For instance, a time lag tli between ti and ti+1,
is represented by the following constraint: st i+1 � (pi + tli)  st i.

7.7.4 Experimental Evaluation

We compare with the memetic algorithm of Caumond et al. [44], which we will
refer to as CLT08; and the CP method of Artigues et al. [8], which we will refer to
as AHL11. All results for the memetic algorithm are taken from Caumond et al.
[44] (note that the results for the memetic algorithm given in Artigues et al. [8]
were taken from the dissertation of Caumond [43], the results of Caumond et al.
[44] are slightly better so it is these that we use). Artigues et al. also provided a set
of results on larger instances than those studied by Caumond et al, in the technical
report Artigues et al. [7].

The upper bound for our method was set to the trivial upper bound of the sum
of the durations of all tasks, i.e. start each job only after the preceding job has
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finished. The lower bound was set to the maximum job/machine duration. The
branching heuristic used was again Tdom/Bwt.

Benchmarks

The instances that have been studied in the literature, as presented in Caumond
et al. [44], were generated by adding time lag constraints to well known JSP
benchmarks. In particular we tested on forty Lawrence instances [130], and four
flow shop instances of Carlier [39]. (The flow shop problem is a special case of
the job shop problem where the ith task of each job is performed on the same
machine for all i 2 {1, . . . ,m}.)

The time lags are defined by a factor, �. For each pair of consecutive tasks in
a job the maximum time lag is � ⇤ pavg, where pavg is the average task duration of
tasks in the job. This means that the maximum time lag is the same for all pairs
of consecutive tasks in a job, but may vary across jobs. (Note that the larger the
value of �, the closer the instance is to the original JSP.) The values of � tested
were � 2 {0, 0.25, 0.5, 1, 2, 3, 10}. The la instances range in size from 10x5 to
30x10, while the four flow shop instances, denoted car⇤, range in size from 10x6
to 8x9.

Table 7.8: TL-JSP. APRD comparison with AHL11 and CLT08 on easy flow/job
shop with time lag instances.

Instance Sets AHL11 CLT08⇤ LW-JTL
Best Time Best STime/Time Best Time

car[5-8] 0 - - 0.00 14.5/14.5 0.00 8.7
car[5-8] 0,5 - - 0.00 28.9/322.2 0.00 1.9
car[5-8] 1 - - 0.00 103.5/273.7 0.00 3.4
car[5-8] 2 - - 0.00 199.5/297.1 0.00 4.4
la[1-5] 0 12.17 - 1.33 174.4/425.4 0.00 1.7
la[1-5] 0,5 0.00 633.6 10.23 135.8/277.8 0.00 0.5
la[1-5] 1 0.00 300.0 3.52 152.6/265.4 0.00 0.4
la[1-5] 2 0.00 249.6 1.26 104.4/234.6 0.00 0.3

* Results for memetic algorithm for la[1-5] are taken from AHL11 as these
were not given in CLT08. Time is average runtime in seconds. For CLT08
“STime” is time taken to find the best solution. Boldface values denote that the
optimum was found.
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Results

Experiments with the memetic algorithm were carried out on a 1.8 GHz computer
under Windows XP with 512 MO of memory, while the AHL11 experiments were
performed on a 2.33 GHz computer with 4 GB of RAM running under Linux Red
Hat 4.4.1-2. In Caumond et al. [44], they provided results for four runs of the
memetic algorithm per instance. We report the best and average over the four
runs.

The results, in terms of the APRD from the optimal solution, for two sets of
small instances are given in Table 7.8. Artigues et al. did not test on the flow
shop instances, nor did they provide runtimes for the la[1-5] instances where they
failed to prove optimality. LW-JTL proved optimality on every instance (on every
run), in less than ten seconds on average. For flow shop instances we find that
the memetic algorithm performed best on the instances with the tightest time lag,
compared to LW-JTL which found these instances to be the hardest.

A similar pattern was observed for both systematic approaches on the la in-
stances, with performance degrading as the time lags decrease. Indeed AHL11
failed to prove optimality on four of the five instances with maximum time lag of
0, whereas it proved optimality on all other instances.

The results on larger Lawrence instances are shown in Table 7.9, again given
in terms of PRD from the best solution found over the three methods. Due to the
difference in machines and timeouts used, we also include the results of LW-JTL
after the dichotomic search phase where runtimes are more comparable with those
used by the other methods.

The superior performance of LW-JTL can be seen more clearly in this table,
where we closed ten of the fourteen open problems. However, our method was less
consistent, failing to prove optimality on every run for four of the ten instances.
Comparing the PRDs of AHL11 and CLT08 with those of LW-JTL after the di-
chotomic search phase, we see that the superior performance of LW-JTL cannot
be attributed to a longer runtime or faster machine.

Artigues et al. also provided results on instances la09-25 for maximum time
lag � 2 {0, 0.5, 1, 3, 10} in an earlier technical report [7], which we will refer to as
AHL10. The method and hardware used for testing were the same as for AHL11.
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Table 7.9: TL-JSP. PRD comparison with CLT and AHL on hard job shop with
time lag instances.

Instance
LW-JTL

Best AHL11 CLT08 Overall DS
C

max

Best Time Best Avg Time Best Avg OptTime Best Avg Time
la06 0 1248 41.83 525 4.57 12.12 3684 0.00⇤ 1.23 2040 (6) 0.00 4.34 134.1
la07 0 1172 31.06 530 9.39 13.67 3967 0.00 1.70 - 2.56 5.56 97.6
la08 0 1244 31.83 528 5.47 11.15 3992 0.00⇤ 1.07 981 (3) 0.00 4.34 89.1
la06 0.5 1003 46.66 526 21.44 23.08 2440 0.00⇤ 0.02 1283 (9) 0.00 10.23 100.3
la07 0.5 953 50.05 529 23.71 25.50 2413 0.00⇤ 0.00 1522 (8) 1.15 3.10 108.6
la08 0.5 984 47.76 529 14.23 21.80 2225 0.00⇤ 0.00 393 (10) 0.00 0.64 103.7
la06 1 926 50.22 524 17.28 20.14 1876 0.00⇤ 0.00 1612 (10) 0.65 6.48 68.2
la07 1 896 18.86 754 15.18 18.14 1898 0.00⇤ 0.33 - 0.00 3.78 88.3
la08 1 892 17.94 587 17.49 23.04 1838 0.00⇤ 0.00 1060 (10) 0.56 4.99 88.5
la06 2 926 50.22 524 17.28 20.14 1890 0.00⇤ 0.00 1615 (10) 0.65 6.48 68.2
la07 2 896 20.42 659 18.19 19.08 1829 0.00 0.44 - 1.34 11.31 72.8
la08 2 892 17.94 587 17.49 23.04 1842 0.00⇤ 0.00 1060 (10) 0.56 4.99 88.4
la06 10 926 0.11 707 0.00 0.00 758 0.00⇤ 0.00 0.01 (10) 0.00 0.00 0.01
la07 10 890 26.18 518 0.00 0.00 58 0.00 0.00 - 0.00 0.00 78
la08 10 863 0.00 260 0.00 0.00 5 0.00 0.00 0.02 (10) 0.00 0.00 0.02

Average 30.10 552 12.11 15.39 2048 0.00 0.32 - 0.50 4.41 79.1

Time is average total time (in seconds). OptTime is the average time taken by LW-JTL over the runs where optimality
was proven, the number in parantheses is the number of runs where optimality was proven. Boldface values denote
the best known result on an instance was found. Underlined values denote that optimality was proven.
Values marked with a ⇤ denote that our method improved on the previously best known result.

Figure 7.10 shows a comparison of the APRD over the 17 instances per time lag,
of AHL10 relative to the best and the average found by (a) LW-JTL, and (b) LW-
JTL after the dichotomic search phase alone (Caumond only tested on Lawrence
instances up to la08).

The figure shows that LW-JTL consistently found better solutions than AHL10
while the dichotomic search phase alone had worse average performance than
AHL10 for just one maximum time lag (� = 1). The average runtime for AHL10
over the 85 instances was 740 seconds, LW-JTL had an average total runtime
of 1617 seconds and an average runtime for the dichotomic search phase of 75
seconds.

The reason for the poorer performance of the dichotomic search phase is that
it did not improve on the initial upper bound on every run for a number of in-
stances, as shown in Table 7.10. AHL10 failed to improve on the initial upper
bound on 70% of the instances. This may seem unsurprising given that AHL10
had a much stronger initial upper bound than LW-JTL due to their use of a greedy
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Figure 7.10: Lawrence instances 09-25 for various maximum time lags, APRD of
AHL10 versus (a) LW-JTL and (b) LW-JTL dichotomic search only.

insertion heuristic, i.e. LW-JTL had greater scope for improvement on the initial
upper bound.

However these problems are somewhat different to typical scheduling prob-
lems where a larger upper bound on Cmax generally makes it easier to find a fea-
sible solution. For the general JSP a solution can be found backtrack-free given a
large enough upper bound on Cmax. This does not hold for the TL-JSP due to the
time lag constraint, which greatly reduces the number of solutions to the problem.

Table 7.10: TL-JSP, optimality and failure to improve on initial upper bound.

LW-JTL
AHL11 Total Dichotomic Search

At least 1 run Every run At least 1 run Every run
# Proved 4 57 44 40 24
optimal
# Failed to 60 1 0 24 1
improve initub
85 Lawrence time lag instances (la[09-25], � 2 {0, 0.5, 1, 3, 10}).
The average runtime over the 85 instances was 740s for AHL11, 1617s for
LW-JTL and 75s for the dichotomic search phase of LW-JTL

With regard to the ability of the two methods to prove optimality, we see in
Table 7.10 that LW-JTL is much more efficient on these instances than AHL10.
Of the 85 instances tested, the optimal solution was found for 67% on at least one
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Figure 7.11: Lawrence instances grouped by time lag (top figures), and by
problem size (bottom figures); where LW-JTL failed to improve initial upper

bound (left figures), and where optimality was proven (right figures).
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run. Indeed, nearly 50% of instances were solved to optimality in the dichotomic
search phase alone on at least one run. In comparison, AHL10 proved optimality
on less than 5% of the instances.

In Figure 7.11, we report results for LW-JTL on all forty Lawrence instances
for seven different maximum time lags: � 2 {0, 0.25, 0.5, 1, 2, 3, 10}, giving 280
instances in total. Instances are grouped by time lag (7.11(a), 7.11(b)), and by
size (7.11(c), 7.11(d)). Figures 7.11(a) and 7.11(c) show the percentage of in-
stances for which LW-JTL failed to improve on the initial upper bound, while
Figures 7.11(b) and 7.11(d) show the percentage of instances for which LW-JTL
proved optimality.

AHL11 didn’t report results on the instances la[26-40] as they never improved
on the initial upper bound. Similar behavior occurred for LW-JTL where the initial
upper bound was not improved on for over 50% of these instances on at least one
run (Figure 7.11(c), problem sizes 15x15, 20x10 and 30x10). The problem set with
the largest instances (la[36�40], size 30x10) was the only problem set where there
were instances that LW-JTL failed to improve the initial upper bound on every run
on an instance. This occurred for 14 of the 35 instances. Unsurprisingly, LW-JTL
performs best on the instances with largest maximum time lag, and on the smallest
instances. However, optimality was still proven on over 30% of the instances with
the smallest time lags and on 10% of the largest instances.

Finally, we note that our method has since been improved by Emmanuel He-
brard through the addition of a greedy heuristic, which is used to find a good initial
upper bound when the problem isn’t solved in the first (short) dichotomic search
step (Grimes and Hebrard [90]). This heuristic has the additional benefit of pro-
viding a good initial solution for guiding value ordering in the subsequent search.
We compare the performance of our method with and without this initialization
heuristic in Table 7.11.

The results show that initializing the upper bound in this manner results in a
significant improvement in search performance. Obviously the large differences
are primarily due to the cases where our method couldn’t improve on the basic
upper bound. However, the new method always improved on the initial upper
bound found by the greedy heuristic. This further illustrates the difficulty of these
problems when starting from a weak upper bound.
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Table 7.11: LW-JTL: Initialization of upper bound with greedy job insertion
heuristic.

APRD
Best Worst

w/o greedy w. greedy Greedy ub w/o greedy w. greedy Greedy ub
la[6,40] 0 0 12.27 0.18 12.45 151.61 6.54 21.44
la[6,40] 0 0.25 26.91 0.05 11.06 224.70 5.74 21.11
la[6,40] 0 0.5 2.91 0.05 14.65 211.63 5.35 24.58
la[6,40] 0 1 20.78 0.00 21.29 273.06 5.11 29.67
la[6,40] 0 2 121.22 0.00 23.87 239.68 2.97 31.90
la[6,40] 0 3 168.79 0.09 21.38 171.95 2.72 29.36
Average 58.81 0.06 17.45 212.11 4.74 26.35

7.8 No-Wait Job Shop Scheduling

Most algorithms introduced in the literature for the TL-JSP have been designed
for a particular case of this problem: the no-wait job shop scheduling problem
(NW-JSP), written as J | no-wait | C

max

in the Graham three-field notation. In
this case, the maximum time-lag is zero, i.e. each task must start directly after
the preceding task in the job has finished. This has been shown to be NP-hard in
the strong sense for the two-machine case alone (Sahni and Cho [177]). Mascis
and Pacciarelli [146] found that many of the greedy algorithms (based on list
schedules with priority dispatching rules) developed for the classical JSP fail to
find a solution to the NW-JSP with high probability.

Figure 7.12 shows the Gantt chart of the optimal solution to the sample 3⇥3
JSP with added no-wait constraints. Here, the optimal Cmax is 197, which is the
largest makespan over the different variants of this instance that we’ve tested. As
one can see in the figure, each job is one block of tasks which can be moved as
long as each successive task starts immediately after the preceding task in the job.

7.8.1 State of the art

A large number of metaheuristic approaches have been proposed in recent years
for the NW-JSP. Schuster and Framinan [182] proposed hybridizing a genetic
algorithm with simulated annealing; Framinan and Schuster [65] applied a re-
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Figure 7.12: Optimal solution to sample 3⇥3 NW-JSP.

cently proposed technique, complete local search with memory (CLM, Ghosh and
Sierksma [74]), where all solutions are stored to avoid repeatedly discovering the
same solutions; while Schuster [181] also proposed an efficient tabu search algo-
rithm for the NW-JSP.

The best metaheuristic methods, however, are the complete local search with
limited memory (CLLM) method of Zhu, Li and Wang [239] and a hybrid con-
structive/tabu search algorithm (HTS) introduced by Bozėjko and Makuchowski
in 2009 [30].

The CLLM method of Zhu et al. decomposes the problem into sequencing and
timetabling components. It differs from the CLM method of Framinian and Schus-
ter in the following ways: firstly they augment the timetabling method to perform
shift timetabling on top of non-delay and enhanced timetabling techniques; sec-
ondly, since the memory required by CLM in storing solutions increases with the
size of the problem, they propose limiting the number of solutions that are stored.
Furthermore, unlike most methods which use the sequencing and timetabling de-
composition, CLLM solves them integrally rather than considering them as two
separate subproblems.

The HTS method of Bozėjko and Makuchowski uses a constructive job in-
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sertion heuristic to generate a set of initial solutions. They also solve a “mirror”
instance, which is the instance with the order of all tasks on their jobs reversed.
Tabu search is then performed with intensification of search around the best found
solution. When the algorithm fails to improve on the solution after a predefined
number of iterations, a “backjump” is performed to the best known solution. The
size of the tabu list is then incremented and the number of allowed non-improving
iterations prior to returning to the best solution is doubled.

The first systematic method for this problem was that of Mascis and Paccia-
relli [146], incorporating a generalization of the disjunctive graph representation,
which they refer to as the alternative graph. These graphs are identical for the
classical JSP, but the alternative graph allows for greater inference on the NW-
JSP. Recently, van den Broek [201] has proposed an improvement to this method,
where the problem is formulated as a Mixed Integer Programming (MIP) problem
incorporating the alternative graph representation.

Van den Broek’s algorithm, which we will refer to as vdB09, initializes the
upper bound using a problem-specific job insertion heuristic that is guaranteed
to find a feasible solution, although in the worst case the trivial feasible solution
is found. The branch and bound method applies three immediate selection rules
based on the alternative graph, and uses a branching scheme also incorporating
information from the alternative graph.

7.8.2 Implementation of our model

Although our generic model was relatively efficient on these problems, we made a
simple improvement for the no-wait problem based on the following observation:
if no delay is allowed between any two consecutive tasks of a job, then the start
time of every task is functionally dependent on the start time of any other task. The
tasks of each job can thus be viewed as one block. In other words we really only
need one variable in our model to represent all the tasks of a job. We therefore use
only n variables: {Jx | 1  x  n}.

Let hi be the total duration of the tasks coming before task ti in its job. That
is, if job J = {t1, . . . , tm}, we have: hi =

P
k<i pk. For every pair of tasks ti 2

Jx, tj 2 Jy sharing a machine, we use the same Boolean variables to represent
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disjuncts as in the original model, however linked by the following constraints:

bij =

(
0, Jx + hi + pi � hj  Jy

1, Jy + hj + pj � hi  Jx

Notice that, although the variables and constants are different, these are still
exactly the same ternary disjuncts used in the original model.

The no-wait job shop scheduling problem can therefore be reformulated as
follows, where the variables J1, . . . , Jn represent the start time of the jobs, Jx(i)
stands for the job of task ti, and f(i, j) = hi + pi � hj .

(NW � JSP ) minimize Cmax

subject to

Cmax � Jx +
X

t
i

2J
x

pi 8Jx 2 J (7.27)

(Jx(i) + f(i, j)  Jx(j)) _ (Jx(j) + f(j, i)  Jx(i)) 8My 2M, ti, tj 2My

(7.28)

The initial upper bound for the dichotomic search is set to the trivial upper
bound, i.e. the sum of the durations of every task.

7.8.3 Experimental Evaluation

The best heuristics for our method were Tdom/Twt, and Tdom with the weight
on the Booleans used as a tie-breaker (“Tdom+Bwt”). This was quite surprising
given that neither metric, tdom alone nor tdom/twt, offer much discrimination
amongst Booleans. Indeed all Booleans between tasks of the same pair of jobs
will have the same tdom value and the same tdom/twt value, since all tasks are
replaced by their job in the improved model. Therefore the heuristic Tdom+Bwt

will choose the pair of jobs with the smallest sum of domain sizes, and choose the
Boolean variable with the largest weighted degree from the Boolean variables of
the selected pair of jobs.

Furthermore, the promise value ordering performed poorly in finding initial
solutions so we used a simple static value ordering heuristic, which we refer to as
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JobRank. Here each pair of tasks on a machine are ordered based on their relative
position in their respective jobs. For example, given a pair of tasks (ti, tj) on a
machine, if ti is fourth in the order on its job, and tj is second in the order on its
job, then the Boolean variable bij is set up so that bij = 0 , tj + pj < ti. (We
will return to these issues when assessing the different factors of our method in
Section 7.10.)

Comparison of NW-JSP model with TL-JSP model

We first compare the no-wait model with the general time lag model on the set of
Lawrence NW-JSPs. The results, given in Table 7.12, show that the problem spe-
cific model results in a large improvement over LW-JTL on these instances. For
both heuristics tested LW-JNW outperformed LW-JTL in all metrics of compari-
son: much lower APRD; proved optimality on a larger number of instances; never
failed to improve on the initial upper bound; and was an order of magnitude faster
on the ten instances that were solved to optimality by all three methods tested.

Interestingly, Tdom+Bwt was much better than Tdom/Twt at proving opti-
mality, yet the opposite was the case when the heuristics are compared in terms
of APRD. Tdom/Twt was better at finding good solutions, but had much greater
variation in performance than Tdom+Bwt. This can be seen even more clearly in
the following section.

Table 7.12: NW-JSP: Comparison of NW-JSP and TL-JSP models.

APRD Proved Common Failed to
Model Heuristic Optimal OptTime Improve InitUB
LW-JTL Tdom/Bwt 12.7 10/14 46.04 1/16
LW-JNW Tdom+Bwt 0.8 26/26 0.53 0/0

Tdom/Twt 0.3 14/16 0.90 0/0

Notes: Results are for 40 Lawrence no-wait JSPs. i/j refers to every run / at
least one run. “Common OptTime” is average runtime in proving optimality
on the 10 instances which were solved by all methods on every run. InitUB
is the initial ub on Cmax. For PRD Cref is best Cmax over the methods.



7.8. NO-WAIT JOB SHOP SCHEDULING 245

Comparison with state of the art

The branch and bound method of van den Broek [201] (vdB09) was run on an
Intel core T8300, with a 2.4 GHz processor and 2GB of internal memory. The
metaheuristic methods CLLM [239] and HTS [30] were run on PCs with a Pen-
tium 4 processor and an AMD Duron 800 MHz processor respectively. CLLM
had 20 runs per instance, thus we report the results in terms of best and average
performance. For HTS, the authors reported two sets of results on the set of “hard”
instances, where one run was “without limit of computation time”.

We first compare our approach with the best systematic method, vdB09, in
terms of average runtime on the set of instances for which both proved optimality
(Table 7.13). The results for the (small) instances that were closed by Mascis and
Pacciarelli [146] are not included as all methods solved these to optimality in
under three seconds on average. On the medium sized instances we find again that
Tdom/Twt is quite poor at proving optimality on these problems.

Comparing vdB09 with Tdom+Bwt, we see that on average vdB09 took over
twice as long, albeit on a different machine. In van den Broek [201], they gave
proofs of optimality on 13 further instances which LW-JNW was unable to solve.
However, the proofs of optimality for these instances took over 21 hours on aver-
age, with only one instance solved in under one hour, while the longest runtime on
an instance was over three days. These results show that LW-JNW is competitive
with the state of the art systematic method.

In Table 7.14 we compare the makespans found by both metaheuristic and sys-
tematic methods on a set of “easy” instances. The set consists of two ft instances
of sizes 6x6 and 10x10, two abz instances and ten orb instances all of size 10x10,
and fifteen la instances split into three groups of five, of size 10x5, 10x10 and
15x5 respectively. The results show that the systematic methods are extremely ef-
ficient on these instances, finding the optimal solution in less than ten seconds on
average for vdB09 and Tdom+Bwt (Tdom/Twt had longer average runtime as it
failed to prove optimality on one run on one instance).

We give the APRDs over the remaining 53 (hard) instances in Table 7.15.
The runtime used by vdB, where there was a limit on the computation time, was
that given for CLLM for each instance in Zhu et al. [239]. Similarly HTS, where
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Table 7.13: NW-JSP: Runtime comparison with vdB09 for proofs of optimality.

Instances Opt vdB LW-JNW
Cmax Tdom+Bwt Tdom/Twt

La06 1248 40 57 104
La07 1172 22 37 50
La08 1244 16 16 30
La09 1358 38 61 121 (9)
La10 1287 21 18 41
La12 1414 3506 2278 -
La21 2030 226 290 -
La22 1852 285 303 -
La23 2021 490 380 -
La24 1972 356 372 -
La25 1906 133 114 -
La36 2685 695 426 -
La37 2831 1963 1962 -
La38 2525 1106 786 -
La39 2660 2515 1827 152 (7)
La40 2564 1505 1746 -
Ft20 1532 11830 2565 -
swv05 2333 10593 3308 -

Average 1963 919 -
Max 11830 3308 -

Notes: Results for LW-JNW are averages of ten runs, except
for two cases with Tomd/Twt where the number in parantheses
is the number of runs for which optimality was proven.
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Table 7.14: NW-JSP: APRD comparison with state of the art on “easy” instances.

vdB CLLM HTS Tdom+Bwt Tdom/Twt
Best Avg Avg Avg

APRD 0 0.005 0.615 1.068 0 0
Avg Runtime 7.5 - 73.1 1.3 7.4 25.5

Notes. 29 Instances: abz5-6, ft6, ft10, orb1-10, la1-10, la16-20.
Results weren’t included by vdB on la1-5, and by CLLM on abz5-6.

there was a limit on the computation time, used the runtime of the tabu search
algorithm in Schuster [181] for each instance. For vdB where there was no limit
on computation time, every instance was solved to optimality (as discussed with
regard to Table 7.13 above). Unfortunately, Bozėjko and Makuchowski did not
provide any further runtime information for the “unlimited” case.

The results show that, outside of HTS and vdB with unlimited computation
time, LW-JNW had a lower average APRD with both heuristics than the other
methods. Tdom/Twt produced the best solutions, within 2% of the best known
solution on average. Furthermore it improved on the best known solution for one
of the 27 open problems (finding an upper bound on Cmax of 5769 for swv17,
whereas the previous best known upper bound was 5780, found by HTS with
unlimited computation time).

This is quite surprising given its relatively poor performance in terms of prov-
ing optimality as previously shown in Table 7.13 above. LW-JNW with Tdom+Bwt

proved optimality on 13 of the 53 “hard” instances compared to Tdom/Twt which
only proved optimality on one instance. However the quality of solutions found
by Tdom/Twt was much less consistent than Tdom+Bwt across the ten runs.

Finally, we note that this method has also been recently improved by Em-
manuel Hebrard (Grimes and Hebrard [90]). The basis for the improvement is a
tighter model through the identification of conflict intervals for pairs of jobs. Each
disjunct between a pair of tasks defines a conflict interval for their respective jobs.

Using the notation Jx(j) for the job x of task tj , then for two tasks ti and tj ,
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Table 7.15: NW-JSP: comparison with state of the art on “hard” instances.

vdB CLLM HTS Tdom+Bwt Tdom/Twt
Instances Lim Unlim Best Avg Lim Unlim Best Avg Best Avg
la11-15 1.33 0 3.44 6.27 6.47 0.89 0.25 0.25 0.85 2.54
la21-25 0 0 1.22 3.59 6.20 0 0 0 0 0.63
la26-30 5.63 0 5.73 9.75 10.47 0.85 3.53 3.54 3.57 6.27
la36-40 2.92 0 2.17 5.22 7.29 0.33 0 0 0.75 3.92
swv1-5 4.78 0 1.03 4.30 3.67 0 2.40 2.60 0.69 2.35
la31-35 11.52 - 5.95 10.32 8.26 0 8.34 9.68 2.46 5.52
swv6-10 7.51 - 2.05 4.23 4.19 0 5.32 5.79 1.46 4.54
swv11-15 - - - - 1.86 0 24.19 25.14 4.97 8.27
swv16-20 - - - - 3.98 0 7.12 10.24 1.30 3.99
ft20 - 0 - - 4.96 0 0 0 1.11 2.89
yn1-4 - - - - 8.51 0 4.54 5.67 3.27 6.37
abz7-9 - - - - 8.61 0 3.71 3.85 1.98 5.04
Avg1 4.81 - 3.08 6.24 6.65 0.30 2.83 3.12 1.40 3.68
Avg2 - - - - 6.17 0.20 5.38 6.04 1.89 4.41

Notes: Lim/Unlim refers to limited/unlimited computation time.
Avg1 is the average for the subset of instances that CLLM and vdB-Lim solved.
Avg2 is the average over all instances.

sharing a resource we have the following conflict interval:

Jx(j) 62 ]Jx(i) � f(j, i), Jx(i) + f(i, j)[

and vice versa for Jx(i). However, these intervals may overlap or subsume each
other. It is therefore possible to tighten this encoding by computing larger inter-
vals, that we refer to as maximal forbidden intervals, hence resulting in fewer
disjuncts. (Further details can be found in [90].)

Table 7.16: NW-JSP: comparison with new model.

Instances Metric Tdom+Bwt Tdom/Twt
Set # New Old New Old
easy 29 Average 1.78 7.4 2.71 25.49

Runtime

hard 53
APRD 2.86 5.38 1.31 1.89
# Opt 21 13 8 1
# Bks 2 0 3 1

For hard set, metrics are APRD of best solution relative to
that of previous BKS; number of instances where optimality
was proven; number of improved solutions found.
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Table 7.16 summarizes the performance gains achieved by the new improved
model. For both heuristics, we provide four different comparisons of the new and
old models. The APRD is relative to the previous best known solution, which was
either the optimal solution found by vdB or the best solution found by HTS with
unlimited computation time. The results show that the new model improves both
the ability to prove optimality and the quality of the solutions found where opti-
mality was not proven. New upper bounds were found for four instances (abz9,
la34, yn2 and yn4).

7.9 Job Shop Scheduling with Earliness/Tardiness
Objective

7.9.1 Problem Description

All the problems studied so far have involved minimizing the latest completion
time over all jobs (given the earliest starting time over all jobs is 0). An alternative
objective, which is important in industry, is the minimization of the cost of a job
finishing early/late. An example of a cost for early completion of a job would be
storage costs incurred, while for late completion of a job these costs may represent
the impact on customer satisfaction.

In the job shop problem with earliness tardiness objective (J | rdxddx |we
x

X
Ex+

wt
x

X
Lx in the Graham notation), each job Jx has a release date, rdx, and a due

date, ddx. There is a cost associated with completing a job before its due date,
we

x, and similarly with the tardy completion of a job, wt
x. The cost of a job is then

given by

costJ
x

=

(
we

x(ddx � Cx) if Cx  ddx

wt
x(Cx � ddx) if Cx > ddx

where Cx refers to the completion time of job Jx. The total cost is the sum of the
costs of each job: ETsum =

X

J
x

2J

costJ
x

. (Note that these problems differ from

Just in Time job shop scheduling problems (Baptiste et al. [18]), where there is a
cost associated with the completion time of each task.)

The problem is formally defined as follows:
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(ET � JSP ) minimize ETsum

subject to

ETsum =

X

J
x

2J

(we
xEx + wt

xLx) (7.29)

Ex = max (ddx � Cx, 0) 8Jx 2 J (7.30)

Tx = max (Cx � ddx, 0) 8Jx 2 J (7.31)

st i + pi  st i+1 8Jx 2 J , 8ti, ti+1 2 Jx (7.32)

(st i + pi  st j) _ (st j + pj  st i) 8My 2M, ti 6= tj 2My (7.33)

We again illustrate the problem using a Gantt chart (Figure 7.13) for the op-
timal solution to the sample 3⇥3 JSP with additional due dates and weights as
given in Table 7.17. In the optimal solution, J1 and J3 finished on time while J2

finished 4 units early, giving a minimum cost of 120 (4*we
2=4*30). We also note

that Cmax for the optimal solution was 160.

Table 7.17: Sample 3⇥3 Job Shop Instance with due dates and earliness/tardiness
penalties.

t1 t2 t3
Mi pi Mi pi Mi pi ddj we

j wt
j

J1 2 21 1 53 3 34 160 100 50
J2 1 21 2 71 3 26 130 30 40
J3 3 12 1 42 2 31 150 60 20

7.9.2 State of the art

The best complete methods for this type of problem are the CP/LP hybrid of Beck
and Refalo [22], the MIP approaches of Danna et al. [53] and Danna and Perron
[51], while more recently Kebel and Hanzalek proposed a pure CP approach [124].
Unfortunately the latter didn’t provide results on the benchmarks widely studied
in the literature, so we do not provide a comparison with their method. Danna and
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Figure 7.13: Optimal solution to sample 3⇥3 ET-JSP.

Perron [51] also proposed an incomplete method based on large neighborhood
search method, while a number of genetic algorithms have been proposed for
problems of this type (see the survey of Vázquez and Whitley [206]).

The complete method of Beck and Refalo (CRS-ALL) involves applying CP
and LP algorithms at each search node. The CP method is based on probe back-
track search [178] and is used to infer domain reductions and precedence con-
straints on the resources. The LP algorithm is used to maintain an optimal solution
to a relaxation of the problem where resource constraints are not considered. The
branching heuristic then selects a pair of conflicting tasks (due to the resource
constraints) from this solution and posts a precedence constraint between them.
This constraint is added to both the CP and LP models.

The key component of their technique is the creation and solving of the cost
relevant subproblem (CRS), which only contains those tasks and resources which
directly impact the objective function. In other words, the CRS contains the last
task of each job (since the cost is solely based on the completion time of these
tasks) and the resources that these tasks require for processing. The CRS is solved
using the same CP method (an augmented form of probe backtrack search). The
optimal solution to the CRS is then either extended to a full solution or it is proven
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that no solution exists for this cost, using a pure CP scheduling approach. In the
former, a new upper bound has been found, while in the latter a new lower bound
has been found.

The MIP methods proposed by Danna et al. [53] (RINS), and Danna and Per-
ron [51] (uLNS and sLNS) are based on large neighborhood search [186]. Re-
laxation induced search (RINS) is a heuristic method for restricting search to
subspaces, referred to as sub-MIPs. A standard MIP algorithm is used to produce
a solution (of the continuous relaxation). The RINS method takes an incumbent
solution and fixes a subset of the variables to the values they took in the incum-
bent solution. Branch-and-cut is then performed on the restricted search space for
a limited number of nodes / amount of time.

Unstructured large neighborhood search, or uLNS, is an extension of RINS
which incorporates a tree traversal strategy known as guided dives, which guides
search towards the neighborhood of the incumbent. The structured large neigh-
borhood search method (sLNS) they proposed is a traditional LNS scheduling
method embedded in a dedicated CP algorithm. The algorithm uLNS is a com-
plete method, whereas sLNS is incomplete.

The comparison methods are as follows:

• MIP: Default CPLEX in [53], run using a modified version of ILOG CPLEX
8.1

• CP: A pure constraint programming approach introduced by Beck and Re-
falo in [22], run using ILOG Scheduler 5.3 and ILOG Solver 5.3

• CRS-ALL: A CP/LP hybrid approach proposed by Beck and Refalo in [22],
run using ILOG CPLEX 8.1, ILOG Hybrid 1.3.1, ILOG Scheduler 5.3 and
ILOG Solver 5.3

• uLNS: An unstructured large neighborhood search MIP method proposed
by Danna and Peron in [52], run using a modified version of ILOG CPLEX
8.1

• sLNS: A structured large neighborhood search CP/LP method proposed by
Danna and Peron in [52], run using ILOG Scheduler 5.3, ILOG Solver 5.3
and ILOG CPLEX 8.1
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7.9.3 Implementation of our model

Although the only change to the problem is the objective function, our model
requires a number of additional elements. In particular we introduce 4n additional
variables. For each job Jx we have a Boolean variable ex that takes the value 1 iff
Jx is finished early and the value 0 otherwise. In other words, ex is a reification of
the precedence constraint stxm + pxm < ddx.

Moreover, we also have a variable Ex representing the duration between the
completion time of the last task of Jx and the due date ddx when Jx finishes before
its due date: Ex = ex(ddx�stxm�pxm). Symmetrically, for each job Jx we have a
Boolean variable lx taking the value 1 iff Jx is finished late, and an integer variable
Tx representing the delay.

We model the earliness/tardiness objective as follows:

minimize ETsum subject to :

ETsum =

X

J
x

2J

(we
xEx + wt

xLx) (7.34)

ex , (stxm + pxm < ddx) 8Jx 2 J (7.35)

Ex = ex(ddx � stxm � pxm) 8Jx 2 J (7.36)

lx , (stxm + pxm > ddx) 8Jx 2 J (7.37)

Tx = lx(stxm + pxm � ddx) 8Jx 2 J (7.38)

Unlike the case where the objective involves minimizing Cmax, branching only
on the disjuncts is not sufficient for these problems. Thus we also branch on the
early and late Boolean variables, and on the variables representing the start times
of the last task of each job.

7.9.4 Experimental Evaluation

We tested our method on two sets of benchmarks which have been widely studied
in the literature. The comparison experimental results are taken from [53] and
[51], where all experiments were performed on a 1.5 GHz Pentium IV system
running Linux. For the first benchmark, these algorithms had a time limit of 20
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minutes per instance, while for the second benchmark the algorithms had a time
limit of 2 hours.

The results for LW-ETJSP are given in terms of the best and worst perfor-
mance over the ten runs. The variable heuristic used was dom/wdeg, where dom

was tdom and wdeg was twt for the Booleans representing the disjuncts, and had
the normal defintions for the other variables.

This heuristic will naturally branch on the ex and lx variables at the top of the
search tree (up until sufficient failures have been encountered during the previous
restarts) as their domain size is 2 compared with the tdom of the Boolean disjunct
variables. Assigning these variables to the value 0 (i.e. lexically) will result in
search for a solution of minimum cost (as the last task of each job will be set such
that it finishes on the due date of the job where possible).

Observe, however, that forcing this branching strategy (of initially searching
for a solution of minimum cost) would result in poor performance if a solution
with this cost did not exist. In this case, search must prove the underlying schedul-
ing problem infeasible. If this was not achieved within the cutoff in the first di-
chotomic step, then increasing the upper bound on the cost for the subsequent
dichotomic steps would have no impact on search as the branching strategy would
repeatedly search for a solution with the same minimum cost.

Benchmarks

The first benchmark consists of 9 sets of problems, each containing 10 instances.
These were generated by Beck and Refalo [22] using the random JSP generator
of Watson et al. [225]. For problem size J xM, three sets of JSPs of size 10x10,
15x10 and 20x10 were generated, each set containing ten instances. For each JSP
instance, three ET-JSP instances were generated with different due dates and costs.
The costs were uniformly drawn from the interval [1, 20]. The due dates were
calculated based on the Taillard lower bound (tlb [196]) of the base JSP instance,
and were uniformly drawn from the interval:

[0.75 x tlb x lf, 1.25 x tlb x lf ]

where lf is the looseness factor and takes one of the three values {1.0, 1.3, 1.5}.
Thus for each problem size, there are 30 instances (10 for each looseness factor).
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Jobs do not have release dates in these instances.
The second benchmark is taken from the genetic algorithms (GA) literature

and was proposed by Morton and Pentico [154]. There are 12 instances, with
problem size ranging from 10x3 to 50x8. Jobs in these problems do have release
dates. Furthermore earliness and tardiness costs of a job are equal in these prob-
lems.

Results

We present results on the first benchmark in Table 7.18 in terms of number of
instances solved to optimality by each of the complete algorithms. Here, the “best”
column for our method refers to the number of instances solved to optimality on
at least one of the ten runs on the instance, while “worst” refers to the number of
instances solved to optimality on all ten runs.

Table 7.18: ET-JSP - Random Problems, Number Proven Optimal

Looseness MIP CP uLNS CRS-All LW-ETJSP
Factor Best Worst

1.0 0 0 0 7 10 8
1.3 14 6 30 30 30 30
1.5 27 6 30 30 30 30

Notes: Comparison results taken from [53], except uLNS results
taken from [52]. Figures in bold are the best result over all methods.

While there is little difference in the performance of our method and that of
uLNS and CRS-ALL on the looser instances (looseness factors of 1.3 and 1.5),
we see that our method is able to close three of the 23 open problems in the
set with looseness factor 1.0. One possible explanation for the improvement with
our method is the difference in time limits and quality of machines. However,
analysis of the results reveals that of the 68 instances solved to optimality on every
run of LW-ETJSP, only 8 took longer than one second on average, and only one
took longer than one minute (averaging 156s). Furthermore, uLNS only solved
two instances to optimality when the time limit was increased to two hours [52].
Clearly our method is extremely efficient at proving optimality on these problems.
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The previous results suggest that CRS-ALL is much better than uLNS on these
instances. However, as was shown by Danna et al. [53], this was not the case when
the algorithms were compared in terms of the sum of the upper bounds found over
the 30 “hard” instances (i.e. with looseness factor 1.0). In Table 7.19 we assess
whether there was a similar deterioration in the performance of LW-ETJSP as for
CRS-ALL on the instances where optimality wasn’t proven.

Table 7.19: ET-JSP - Random Problems, Upper Bound Sum

MIP CP uLNS sLNS CRS-All LW-ETJSP
lf Best Worst
1.0 654,290 1,060,634 156,001 52,307 885,546 30,735 38,416
1.3 26,930 1,248,618 8,397 8,397 8,397 8,397 8,397
1.5 7,891 1,672,511 6,964 6,964 6,964 6,964 6,964
Notes: Comparison results taken from [53], except uLNS and sLNS results [52].
Figures in bold are the best result over all methods.

On the contrary, we find that the performance of LW-ETJSP is even more im-
pressive when algorithms are compared using this metric. The two large neighbor-
hood search methods found the best upper bounds of the comparison algorithms
with sLNS the most efficient by a factor of 2 over uLNS. There are a couple of
points that should be noted concerning sLNS. Firstly it is an incomplete method
so cannot prove optimality, and secondly the sum of the worst upper bounds found
by our method was still significantly better than that found by sLNS. Indeed, there
was very little variation in performance for LW-ETJSP across runs, with an aver-
age difference over the 30 instances of just 256 between the best and worst upper
bounds found per instance.

Danna and Perron also provided the sum of the best upper bounds found on
the hard instances over all methods they tested, which was 36,849 [51]. This fur-
ther underlines the quality of the performance of LW-ETJSP on these instances.
Finally, we once again considered the hypothesis that the different time limit and
machines used for experiments might explain these results. We compared the best
and worst upper bounds found by our method after the dichotomic search phase,
where the maximum runtime of this phase over all runs per instance was 339s.
The upper bound sums on the hard instances were 32,299 and 49,808 for best and
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worst respectively, which refutes this hypothesis.
Table 7.20 provides results on the second of the benchmarks (taken from the

GA literature). Following the convention of previous work on these instances
([206][22][53]), we report the cost normalized by the weighted sum of the job
processing times. We include the best results found by the GA algorithms as pre-
sented by Vázquez and Whitley [206]. We also provide an aggregated view of
the results of each algorithm using the geometric mean ratio (GMR), which is the
geometric mean of the ratio between the normalized upper bound found by the
algorithm and the best known normalized upper bound, across a set of instances.

Table 7.20: ET-JSP - GA Problems, Normalized upper bounds

MIP CP uLNS sLNS CRS GA LW-ETJSP
Instance Size -All Best Best Worst

jb1 10x3 0.191* 0.474 0.191* 0.191 0.191* 0.474 0.191* 0.191*
jb2 10x3 0.137* 0.746 0.137* 0.137 0.531 0.499 0.137* 0.137*
jb4 10x5 0.568* 0.570 0.568* 0.568 0.568* 0.619 0.568* 0.568*
jb9 15x3 0.333* 0.355 0.333* 0.333 1.216 0.369 0.333* 0.333*
jb11 15x5 0.233 0.365 0.213* 0.213 0.213* 0.262 0.221 0.235
jb12 15x5 0.190* 0.239 0.190* 0.190 0.190* 0.246 0.190* 0.190*

GMR 1.015 1.774 1 1 1.555 1.610 1.006 1.017
ljb1 30x3 0.215* 0.847 0.215* 0.215 0.295 0.279 0.215 0.221
ljb2 30x3 0.622 1.268 0.508 0.508 1.364 0.598 0.590 0.728
ljb7 50x5 0.317 0.614 0.123 0.110 0.951 0.246 0.166 0.256
ljb9 50x5 1.373 1.737 1.270 1.015 2.571 0.739 1.157 1.513
ljb10 50x8 0.820 1.569 0.558 0.525 1.779 0.512 0.499 0.637
ljb12 50x8 1.025 1.368 0.488 0.605 1.601 0.399 0.537 0.623

GMR 1.943 3.233 1.213 1.170 4.098 1.220 1.299 1.686

Overall GMR 1.329 2.434 1.084 1.068 2.305 1.408 1.118 1.256
Comparison results taken from [53]. Figures in bold indicate best upper bound
found over the different algorithms. “*” indicates optimality was proven by the algorithm.

The performance of our method was less impressive for these instances, solv-
ing two fewer instances to optimality than uLNS, and achieving a worse GMR
than either of the large neighborhood search methods. However, we remind the
reader that all comparison methods had a 2 hour time limit on these instances,
except the GA approaches for which the time limit was not reported. We further
note that LW-ETJSP improved on the best known solution for one instance (ljb10)
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and outperforms all methods other than uLNS and sLNS.
Overall, we have shown that our model can be successfully adapted to handle

the objective of minimizing the sum of earliness/tardiness costs. These problems
have traditionally proven quite troublesome for CP approaches due to the weak
propagation of the sum objective [51].

7.10 Analysis of different factors in model

In this section we assess the relative importance of the different components of our
algorithm to its overall performance. The motivation for this is twofold. Firstly,
the results provide further insight into the behavior of our algorithm, which could
be of use to other researchers considering a similar approach. Secondly, the results
provide insight into the problems themselves, which can also clarify why certain
components of our approach are more suited to one type of problem than another.

For each problem type we compared the default method with the following
variations:

• Variable Ordering: Tdom, Bwt, and Twt alone; and the non-default of
Tdom/Bwt and Tdom/Twt.

The default for OSP, SDST-JSP and TL-JSP was Tdom/Bwt; the default
for JSP and ET-JSP was Tdom/Twt; ad finally the default for NW-JSP was
Tdom+Bwt.

• Value Ordering: Promise and lexical (for the job shop problem and its vari-
ants, this is the static heuristic as described in Section7.8.3). The default
used solution guided value ordering.

• Without nogood recording from restarts (noNgd). The default used nogood
recording from restarts.

• Dichotomic Search: None versus 3 or 300 second cutoffs (noDs/Ds3s/Ds300s).
The default used a 30 second cutoff for dichotomic search.

• Randomization: None versus randomly select from top 2 or top 3 choices
(noRand/RandTop2/RandTop3). The default used random tie breaking.
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• Restarting: None versus Luby restarting strategy (noRestart/Luby). For the
latter, the scale factor was 4096 failures. The default used the geometric
restarting strategy.

For each variant of an algorithmic component, all other components used the de-
fault settings (for example Luby combined the Luby restarting strategy with the
default variable heuristic for the problem type, solution guided value ordering,
nogood recording from restarts, 30 second cutoff for each dichotomic step, and
random tie breaking).

7.10.1 Experimental Setup and Benchmarks

There were ten runs per instance with an overall time limit of twenty minutes per
run on an instance (except obviously for the non-randomized variant for which
there was only one run). A subset of ten benchmarks were randomly selected for
each problem type. However the selection process was biased so as to contain a
number of difficult instances (based on the results of the previous sections), and
to have problems of varying size.

The algorithms were compared in terms of % runs where optimality was
proven, average runtime, and best and average APRD where Cref was the best
objective found on the instance over the different variants. For ET-JSPs the sam-
ple contained five of the instances generated by Beck et al. [22] and five of the
instances from the GA literature [154]. The APRD for the latter was calculated
relative to the normalized objective as described in the previous section, and the
overall results for ET-JSPs are averaged over the two sets.

The results for four of the problem types (OSP, JSP, SDST-JSP, and ET-JSP)
are given in Table 7.21. The rankings are relatively consistent in terms of the key
algorithmic factors across the different problem types. The weighted component
of the variable heuristic was most important, as evidenced by the performance of
Tdom.

In particular, when compared in terms of % proven optimal, Tdom performed
significantly worse in three of the four problem types and only solved 3% more
than the worst on the other problem set. For the ET-JSPs, the reason for the large
APRD for Tdom is that it failed to improve on the initial upperbound for a number
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Table 7.21: Analysis of algorithm components - OSP, JSP, SDST-JSP, ET-JSP

OSP JSP
Alg APRD % Opt Time Alg APRD % Opt Time

Best Avg Avg Best Avg Avg
Ds3s 0 0 100 74 Luby 0.09 0.92 54 595
noDs 0 0 100 74 RandTop2 0.13 1.01 51 601
Default 0 0 100 94 RandTop3 0.27 1.08 51 602
noRand 0 - 100 96 Ds3s 0.31 1.14 53 596
LexVal 0 0 100 99 Ds300s 0.42 1.08 50 603
Promise 0 0 100 100 Tdom/Bwt 0.48 1.66 52 602
noRestart 0 0 100 103 Default 0.53 1.29 52 601
Luby 0 0 100 106 noDs 0.57 1.77 51 599
RandTop2 0 0 100 109 noNgd 0.63 1.31 50 610
RandTop3 0 0 100 114 noRand 0.68 - 60 596
Ds300s 0 0 100 148 Twt 2.85 3.93 50 606
noNgd 0 0 100 190 Promise 2.89 3.65 50 604
Bwt 0 0.06 99 167 LexVal 3.80 4.91 50 604
Tdom/Twt 0 0 90 180 noRestart 5.01 6.60 50 617
Twt 0 0.54 74 458 Bwt 6.09 6.90 50 608
Tdom 0.39 0.85 39 810 Tdom 9.41 10.25 39 804

SDST-JSP ET-JSP
Alg APRD % Opt Time Alg APRD % Opt Time

Best Avg Avg Best Avg avg
RandTop3 0.08 0.94 39 795 RandTop2 0.80 9.76 69 427
RandTop2 0.10 1.07 38 792 Luby 1.64 6.43 69 429
Tdom/Twt 0.16 1.10 38 780 RandTop3 2.33 9.25 67 443
Default 0.16 0.84 35 818 Ds300s 2.35 11.20 70 447
Ds3s 0.18 1.06 38 794 Tdom/Bwt 2.47 13.17 60 516
Twt 0.25 1.40 31 844 Ds3s 2.48 14.31 68 404
Bwt 0.29 1.58 30 849 Default 3.73 9.49 69 434
noNgd 0.30 1.11 34 847 noNgd 4.74 9.91 50 600
Ds300s 0.31 0.97 35 824 Bwt 4.99 79.00 68 398
Luby 0.32 1.09 37 795 noRand 7.68 - 70 405
noDs 0.89 1.82 35 812 noDs 8.01 28.76 58 529
noRand 1.26 - 30 845 LexVal 15.58 23.69 70 413
LexVal 1.37 2.04 31 852 Promise 17.65 26.52 69 431
Promise 1.50 2.35 32 844 noRestart 61.81 220.92 63 508
noRestart 2.99 5.55 33 874 Twt 566.98 3447.30 34 803
Tdom 12.93 13.69 10 1082 Tdom 10016.34 55098.77 37 757
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of runs on three of the five Beck instances, and in one case it didn’t find a solution
on any run.

For the JSP and its variants, solution guided value ordering, restarting and,
to a lesser extent, randomization were also important to the performance of the
algorithms. The other factors, such as dichotomic search and nogood recording,
generally resulted in only minor gains.

The key factors for the open shop instances were nogood recording from
restarts and, more importantly, the two variable heuristic components, bwt and
tdom. We see that search guided by the weights on the Boolean variables alone
solved every instance but one to optimality on every run. The poorest performance
occurred when weights were ignored, with optimality proven on only four of the
ten instances.

One further point of note for the OSPs is that dichotomic search with a rela-
tively large cutoff (greater than 3 seconds) performed poorly. This was because,
during dichotomic search, the algorithm repeatedly tries to prove infeasibility of
makespans which are below the optimal Cmax. On the other hand, a proof of in-
feasibility is only required once during the branch and bound phase (for (Cmax

-1)).
For problems involving time lag constraints, the ranking of the components

was quite different, as shown in Table 7.22. The most obvious difference is that
here the weighted degree component of the variable heuristic was much less im-
portant than the (tasks) domain size, indeed if anything it appeared to be detri-
mental to search. Similarly, solution guided value ordering and restarting appear
to have much less influence on these problems.

The reason for the large differences in APRD on the TL-JSP instances is that
a number of the algorithms failed to improve on the initial upper bound, either on
a subset of runs or on all (see for example the best and average APRD for noNgd

and noDs).
One hypothesis to explain why Tdom performed better than Tdom/Bwt on

the NW-JSP instances is that Tdom concentrates search on neighboring variables.
For these problems Tdom would usually select the same pair of jobs until all
Booleans between them are assigned, before moving on to the next pair of jobs.
This is because assigning a Boolean variable between a pair of jobs will often
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Table 7.22: Analysis of algorithm components - Time lag JSPs

TL-JSP NW-JSP
Alg APRD % Opt Time Alg APRD % Opt Time

Best Avg Avg Best Avg avg
noRestart 1.74 5.95 50 719 Tdom/Twt 0.19 2.29 40 721
noNgd 2.49 126.55 46 726 Tdom/Bwt 1.30 4.50 40 728
noDs 2.53 166.44 49 674 Promise 2.85 16.56 60 540
Tdom 4.62 14.74 37 866 noDs 2.93 7.52 60 526
LexVal 8.73 182.12 49 680 noRestart 3.14 3.87 60 543
Ds300s 55.60 112.55 48 683 Tdom 3.38 3.83 60 553
Luby 56.07 65.70 48 690 RandTop2 3.38 3.80 60 547
Default 56.08 123.89 44 703 RandTop3 3.43 3.81 60 552
RandTop2 56.63 162.73 50 664 Default 3.62 3.84 60 552
Ds3s 57.35 182.19 48 687 Luby 3.63 3.87 60 545
RandTop3 57.50 168.37 49 672 LexVal 3.66 4.15 60 552
Promise 58.03 125.75 49 671 noRand 3.71 - 60 538
Tdom/Twt 188.42 230.42 50 654 Ds3s 3.74 4.14 60 528
noRand 189.87 - 50 641 Ds300s 3.79 4.19 60 603
Twt 190.62 272.14 46 727 noNgd 4.07 4.28 60 605
Bwt 260.47 261.17 43 743 Twt 5.42 8.43 40 792

Bwt 6.88 10.21 40 798

Notes: Algorithms ranked by best APRD. Figures in bold indicate best result according to metric.

result in the greatest domain reduction on the unassigned Booleans between the
same pair of jobs. Since this pair of jobs had the smallest tdom at the previous
choice point it is likely to be selected again.

On the other hand, as the weights grow, Tdom/Bwt would be more likely to
lead search to unconnected variables. In the case of Tdom/Twt, this effect would
be less pronounced as its selections are restricted to pairs of jobs (all Booleans
between the same pair of jobs will have the same ratio of tdom to twt). However,
when a Boolean variable is assigned, its weight is removed which may result in a
Boolean from a different pair of jobs being selected subsequently.

We tested this hypothesis on the NW-JSP instances by using the heuristic
Tdom/Twt only to select a pair of jobs. Each Boolean variable between the pair
of jobs would then be assigned before Tdom/Twt selected the next pair of jobs.
However, our results showed that this did not perform significantly better than
Tdom/Twt which contradicts the hypothesis. Furthermore, it is clear that while
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the weights were detrimental for proving optimality, they did result in much better
solutions on the harder instances.

Overall these results show that the variable heuristic is the key factor in our
algorithm, although the relative importance of the two components of the heuristic
varies depending on the problem type. Furthermore, it is clear that our algorithm
could be improved further by fine tuning the various parameters for the different
problem types. However, the goal of this work was to illustrate that a relatively
simple generic method can be successfully applied to scheduling problems with-
out the need for parameter tuning for each specific problem type.

7.11 Weight analysis

We generated weight profiles on a sample of instances for each problem type. The
experimental setup involved running branch and bound search with a 30 second
cutoff. Weights were stored after either the cutoff was reached or the instance was
solved. The purpose of these experiments is to provide insight into the behaviour
of search on the different problem sets and to ascertain whether there was a cor-
relation between search performance and the level of discrimination amongst the
variable weights.

7.11.1 Weight profiles for OSPs

We first analyzed the weight profiles generated on OSPs with the heuristic Tdom/Bwt,
comparing the weight increment received by each variable using the Gini coeffi-
cient. The instances tested were the 20 largest instances from both Taillard (tai15-
⇤, tai20-⇤) and Gueret-Prins sets (gp09-⇤, gp10-⇤), and the 26 largest Brucker in-
stances (j6per-⇤, j7per-⇤, j8per-⇤). Boxplots of the results, in terms of the Gini
coefficient of the weight increments, are shown in Figure 7.14.

We see that the Taillard and Gueret-Prins instances always yielded a Gini co-
efficient of greater than 0.83. The Brucker instances, on the other hand, had Gini
coefficients ranging from 0.22 to 0.88, with a median value of 0.58. This means
that there was a relatively small set of variables which were identified as the pri-
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Figure 7.14: Boxplot representation of Gini coefficient of weight increment
distribution for largest OSPs of the three sets.

mary sources of conflict for the Taillard and Gueret-Prins instances, whereas there
were fewer clearly defined bottleneck variables in most of the Brucker instances.

However, there are a couple of caveats that should be noted. Firstly, optimality
wasn’t proven for 5 of the 26 Brucker instances, and thus these ran for the full
30 seconds, encountering many more failures. Indeed, the number of failures en-
countered during search was much less for the Taillard and Gueret-Prins instances
than for the Brucker instances (the median number of failures for the latter was
over twice that for either of the other two sets). Secondly, the Brucker instances
involved at most 448 Boolean variables, compared to 900 for the largest Gueret-
Prins and 7600 for the largest Taillard instances.

To illustrate the impact of the size of the problem on the Gini coefficient, let us
consider the large Taillard instances. The median number of failures encountered
on the 20 instances was 564. Suppose each of 564 failures occurred on a different
variable in a 20x20 instance, this would still result in a Gini coefficient of 0.93
(564/7600 variables with a weight increment of 1). The other extreme, where all
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Figure 7.15: Evolution of weight increment distribution across restarts for sample
OSPs (gp⇤ is Gueret-Prins instance, j⇤per⇤ is Brucker instance).

564 failures occurred on the same variable, would obviously yield a Gini coeffi-
cient of 1. The range of the Gini coefficients on the ten tai20⇤ instances was 0.97
to 0.99, with a median of 0.987, so the weight distribution was clearly closer to
amassing all weight on one variable than an even distribution of weight.

Note that if we calculated the Gini coefficient of the weighted degree of the
variables (as opposed to the weight increment), then there would be a similar
issue. If we consider the 20x20 case where all 564 failures occurred on the same
variable, i.e. all other variables have a weighted degree of 1, the Gini coefficient
would be 0.07 here instead of 1! This is mainly an issue when we calculate the Gini
coefficient on problems after a small number of failures, as the number of failures
increases the Gini coefficient of the weighted degrees and the weight increments
converge.

Figure 7.15 illustrates the evolution of the distribution of weight increments
across restarts for a sample of OSPs. These instances were chosen as there were
sufficient failures to be of interest. The results again show that the heuristic found
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it more difficult to identify bottleneck variables in the Brucker instances than in the
Gueret-Prins instance. The important point is that there was a sharp decline in the
Gini coefficient on all Brucker instances over the first three restarts (approximately
1000 failures). This refutes the hypothesis that the results in Figure 7.14 were due
to a greater number of failures encountered on the Brucker instances.

Focusing on the instances GP10 6 and j8per0 2, we first note that search effort
was similar on both instances (⇠50K/60K failures). Analysis of the weight pro-
files on these two instances further corroborates the findings of Figure 7.15. Here
only 33% of variables received any weight increment during search on gp10 6 ,
compared to 85% of the variables in j8per0 1.

7.11.2 Weight profiles for the JSP and its variants

The results on the OSPs suggest that the weight discrimination is the reason for
the good performance of Tdom/Bwt. We tested this hypothesis further on variants
of the JSP, generating weight profiles with both Tdom/Bwt and Tdom/Twt. The
benchmarks tested were a sample of ten Lawrence instances la06-15, as these
have SDST-JSP, TL-JSP, and NW-JSP variants, i.e. the same base JSP is used for
each variant. Of particular interest is the weight discrimination on the NW-JSPs,
as Tdom/Bwt performed relatively poorly on these instances.

Figure 7.16 shows the boxplots of the Gini coefficients for the ten instances of
the different variants, with bwts generated with Tdom/Bwt and twts generated
with Tdom/Twt. We include two sets of SDST-JSPs (denoted ps-⇤ and pss-⇤ in
our earlier experiments, here sds1 and sds2 respectively), and two sets of TL-
JSPs (for time lag � = 0, 1, denoted jtl0, jtl1 respectively in the figure). We do
not include weight profiles for the base JSPs as these were solved in under 0.1
seconds in most cases, encountering few failures.

The clearest pattern observable in the figure illustrates the difference between
the distribution of bwts and twts on the Boolean variables. The Gini coefficients
of the bwts were consistently much higher than those of the twts, while there
was greater variation in the Gini coefficients of the twts across instances for each
variant except on the NW-JSP instances which were consistently low.

However, there was clearly no correlation between search performance and the
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Figure 7.16: Gini coefficients of twt increment (T⇤) and bwt increment (B⇤) for
different variants of sample Lawrence instances.

Gini coefficients in these experiments as Tdom/Twt here performed much better
(both in terms of proving optimality and objective found) than Tdom/Bwt on both
sets of SDST-JSP instances and on the NW-JSP instances (although the opposite
was the case on the two TL-JSP sets). Indeed, in the previous section we showed
that Tdom/Bwt performed extremely poorly on the NW-JSP instances, yet we
see that the level of discrimination of the weights was similar for bwt across all
problem sets.

One interesting discovery we made during initial weight analysis on the OSPs,
was that incrementing the weight on the global nogood constraint resulted in a
deterioration in performance on some of the harder instances. This may prove
counter intuitive at first glance, as all variables are involved in the constraint. To
illustrate why this would occur, let us consider two variables a and b, where a has
taskdom of 30 and b has taskdom of 35. Further let us first consider the case
where the bwt of a is 10 and the bwt of b is 100. Here b will be selected ahead of
a (0.35 < 3).

However, suppose there is a weight of 1000 on the global nogood constraint.
This reduces the impact of differences between weights on the disjunctive con-
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straints. In our example, with bwt of a now 1010 and bwt of b now 1100, a will be
chosen ahead of b (0.0297 < 0.0318). For this reason the nogood constraint was
not weighted in our experiments (and indeed, based on this finding, the default
black box solver of Mistral does not weight constraints with arity > n/2, where n
is the number of variables in the problem instance).

7.12 Chapter Summary

In this chapter we introduced a new approach for solving disjunctive schedul-
ing problems, combining relatively simple inference with a number of generic
CP techniques such as restarting, weighted degree variable ordering, and solution
guided value ordering. We took a minimalistic approach to modeling the problem,
simply decomposing the unary resource constraints into primitive disjunctive con-
straints. In comparison, most CP techniques model the unary resource constraint
as a global constraint, devising specialized filtering algorithms for the constraint.

We demonstrated the benefits of our approach on a variety of problems, and in
so doing we have refuted the conventional wisdom that problem specific heuristics
and, in particular, problem specific inference methods are necessary to achieve
good performance on problems of this nature. The advantages of using a weighted
degree based heuristic for these problems, and indeed in general, is twofold: it
can identify critical variables without (a) costly calculations at each node and (b)
costly inference methods.

We have further shown that our basic method can be easily adapted to handle
a number of side constraints (setup times and maximum time constraints) and the
objective of minimizing the earliness/tardiness costs. This is important as these
side constraints and the alternative objective have proven troublesome for tradi-
tional CP methods due to their impact on the dedicated inference methods. Since
our method is more search intensive than inference intensive, it suffers less from
these issues.

However, our method cannot be considered to be completely generic as domain-
specific knowledge was incorporated to good effect in certain cases. Firstly, the
variable heuristic was improved by adding information regarding the domain sizes
of the tasks, and in some cases weight information of the tasks. Secondly, our
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method for solving the NW-JSP was improved by using a model specific to the
problem based on the simple observation that each task in a job is functionally
dependent on the other tasks of the job. This encoding has since been further
strengthened by applying the concept of forbidden intervals. The addition of a
dedicated metaheuristic for finding good initial upper bound has also been used to
improve performance on the TL-JSPs.

These results show that there is still room for improvement through the com-
bination of generic techniques with problem specific information. However, it
should be noted that no problem specific propagators were employed by our ap-
proach. Indeed we showed that, for the OSPs, global constraints negated the ability
of the variable heuristic to discriminate due to the large arity constraints.

One concern with our method is that the number of disjunctive constraints
(and Boolean variables) is quadratic in n. In comparison, the most popular filter-
ing algorithms for the unary resource constraint employ the Edge-Finding, Not-
First/Not-Last and Detectable Precedence rules with a O(n log n) time complexity
Vilı́m [211]. Therefore one would expect that our method would be less efficient
as n grows. However this did not prove to be the case on the academic benchmarks
tested.
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Chapter 8

Conclusion and Future Work

The central thesis defended in this dissertation was the following:

Many constraint satisfaction problems contain globally difficult elements. These
elements can be identified through preprocessing. This information can then be
used to both solve problems efficiently and provide valuable feedback to the user.

We demonstrated this by applying our preprocessing techniques to a wide
range of problems ranging from highly random to highly structured. Analysis of
the weight profiles revealed that for many problems there were a small subset of
variables which were the primary source of contention across the search space in
the respective problem.

This dissertation addressed two general issues when solving a CSP. The first
issue is that a user is often not an expert in the field, and thus will not know the best
search method to use for a problem. We have shown that not only is combining
the weighted degree heuristic directly with a restarting strategy one of the best
generic methods for solving CSPs, it can even outperform specialized heuristics
and reasoning techniques for some widely studied problems (Chapter 7). Here, our
method was able to close a number of open problems, and find a large number of
improved upper bounds. We further showed that the weight profiles generated can
provide the user with valuable insight, both into the bottlenecks of the problem
and into the behavior of conflict-directed search on the problem.

The second issue addressed was that of the impact of thrashing on the amount
of search effort required to solve a problem, or prove that no solution exists. We

271
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demonstrated that the approaches we proposed can greatly reduce search effort by
identifying the critical variables through their consistent involvement in failures in
disparate parts of the search space. Assigning these globally contentious variables
at the top of the search tree resulted in improved search performance, in some
cases it even resulted in backtrack-free search on difficult instances (e.g. Section
6.4).

8.1 Contributions

8.1.1 Boosting the weighted degree heuristic through informa-
tion gathering

In this dissertation we investigated methods designed to boost conflict directed
heuristics [29]. The motivation for this work was a combination of the lack of
information available to the heuristic at the start of search, and the lack of infor-
mation gathering in the randomized restarting approaches proposed by Gomes et
al. [82]. These new methods were designed to have the dual benefit of improving
both the conflict-directed heuristic and the randomized restarting approach.

We proposed two methods and empirically showed that both improved over
standard search with dom/wdeg, for example achieving orders of magnitude im-
provement on a number of problems with insoluble cores, and solving 15-20%
more open shop problems. We identified advantages and disadvantages to both.
When the test problem had clearly defined structure, the approach whose pre-
processing phase consisted of a number of short runs guided by the dom/wdeg
heuristic generally identified a subset of critical variables and concentrated search
on this subset thereafter, shuffling the critical variables upon restart. However this
shuffling of variables, which we refer to as variable convection, can also be disad-
vantageous when solving problems with less clearly defined sources of contention.
In this case, the weights used on the run to completion may not reflect the globality
of the sources of contention.

The second method we proposed, which randomly samples the search space
for information, produced a more global view of the sources of contention in a
problem than the previous method. This is particularly valuable as a feedback
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mechanism to the user as it may be difficult to identify the problem bottlenecks
through static analysis of a problem. The disadvantage of the random probing
method, as evidenced on the balanced incomplete block design problems, is that
highly symmetrical problems can result in symmetrically equivalent variables in
unconnected components receiving a large weight. Search guided by these weights
will then jump between unconnected components, whereas weights learnt by the
heuristic in a localized context would have resulted in a more efficient search. One
further disadvantage, compared to the previous method, is that a problem is much
less likely to be solved during the preprocessing phase.

8.1.2 Blame assignment issue for constraint weighting

We investigated whether alternative measurements of contention would improve
the heuristic. These measurements were designed to produce more discrimina-
tory information and address the blame assignment issue. However none of these
methods dominated the standard method of simply incrementing the weight on a
constraint by one when the constraint caused a failure. (Similar results have been
found by Balafoutis and Stergiou [11].) This suggests that it is the confluence of
failures on the constraints of a variable that is important, rather than the “cor-
rect” apportioning of blame for individual failures. This was further supported by
analysis of the failure depths, which showed that globally contentious variables
received the most weight no matter the context of failures.

8.1.3 Alternative preprocessing techniques

We assessed the quality of information produced by some less expensive prepro-
cessing methods, namely forward checking and the breakout local search tech-
nique. We compared these methods with MAC-based random probing and found
that these were generally inferior. In particular, we showed that these methods
were more susceptible to weighting local sources of contention.
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8.1.4 Dynamic CSPs at the phase transition: impact of small
changes

We analyzed the impact of small changes on CSPs at the phase transition and
showed that, although a number of problem features are dramatically affected, the
main sources of contention are relatively unaffected on the problems studied. The
poor performance of traditional solution reuse approaches was primarily down to
the impact of small changes on the minimal hamming distances between solutions
of successive problems. Based on these findings, we introduced a new approach
to solving DCSPs that reuses both solution and contention information and em-
pirically showed the benefits of such an approach. In particular, we showed that in
some cases this new method offered orders of magnitude reduction in search effort
compared to a traditional solution reuse method, while maintaining a similar level
of solution stability.

8.1.5 Analysis of various restarting strategies in combination
with conflict-directed heuristics

An extensive experimental study with a number of restarting strategies was per-
formed to assess which restarting strategy was best in general for combining
with the weighted degree heuristic. The overall results confirmed that combin-
ing the weighted degree heuristic with a restarting strategy outperforms both non-
restarting weighted degree search, and non-learning randomized restarting search.
Geometric restarting and WTDI were found to be the best, with little overall dif-
ference in performance between the two. RNDI, on the other hand, performed
relatively poorly compared to the methods which combined the heuristic directly
with a restarting strategy. This was primarily due to one set of highly symmetrical
instances, which did not contain globally contentious variables.

We provided detailed analysis for two problem types: open shop scheduling
problems and radio link frequency assignment problems. The results illustrated
that the weighted degree heuristic is extremely effective at solving both problem
types when combined with a restarting strategy. We further showed that modeling
the OSP with auxiliary variables to represent the disjuncts is much more effective
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than the basic model of the problem.

8.1.6 Complementary performance between weighted degree
and impact-based search

We compared the two heuristics (with and without restarting) on a large testbed
of instances and found that the weighted degree heuristic was best both in terms
of number of instance solved and runtime on commonly solved instances. How-
ever, we also found that for both heuristics, there were a number of instances for
which the heuristic was orders of magnitude faster than the other. This shows the
complementary nature of these two heuristics.

8.1.7 Ability of constraint weighting to identify the critical vari-
ables in unary resource scheduling problems

As mentioned above, one of the key discoveries of Chapter 6 was the efficiency
of conflict directed heuristics, combined with restarting, in solving open shop
scheduling problems. Indeed, throughout this dissertation we have found this to be
the case. This led us to develop a new method for solving unary resource schedul-
ing problems, which combines a number of generic CSP/COP search techniques
such as the weighted degree heuristic, restarting, solution guided value ordering,
etc., with a simple inference method (bounds consistency on pairwise disjunc-
tive constraints). We demonstrated that our method can be easily and successfully
adapted to handle additional side constraints, and the alternative objective of min-
imizing earliness/tardiness penalties.

The results contradicted the conventional wisdom that these scheduling prob-
lems require domain-specific heuristics and dedicated global constraints to be
solved efficiently. Our method matched or outperformed the state-of-the-art sys-
tematic and local search techniques in most cases on a variety of problems, closing
a number of open problems and improving on the best known solution for a large
number of problems in these sets.

While the individual components of our algorithm are not particularly novel,
we hope that this work will provide encouragement to the community to consider
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similar techniques for other problem types. In particular, this work shows that
(a) combining existing generic techniques can lead to interesting synthesis, where
the performance is greater than the sum of the parts; and (b) creating a complex
specialized approach to a problem can be unnecessary, sometimes a simple generic
technique can also be the best.

8.2 Future Work

There are a number of research directions identified in this dissertation which
warrant further exploration.

Random Probing. Correlation analysis of the weight profiles during the random
probing phase could be used to assess whether global sources of contention have
been identified. Low (top-down) correlations between weights after independent
sets of 10 probes may indicate that the probing method is unsuited to the problem.
On the other hand, high correlations would indicate that the probing method has
identified the critical variables and thus further probing may be unnecessary.

Dynamic CSPs. Our contention and solution reuse method could be further en-
hanced with a reasoning reuse strategy. Alternatively, it would be interesting to
investigate combining random probing with proactive techniques, both as a means
of identifying the bottleneck variables which may prove troublesome after alter-
ation, and for guiding search on the subsequent problem.

Combining weighted degree and impact-based search. The complementary
nature of the results with these two heuristics, discussed above, suggest that a
method of combining the two heuristics would provide the best general perfor-
mance for solving CSPs. The simplest method would be to run both in parallel.
An alternative which has been tried (Hebrard [102]) is to directly combine the
two heuristic metrics by choosing the variable with minimum ratio of impact to
weighted degree. However, this method generally did not result in improved per-
formance over the weighted degree heuristic †. Of greater interest would be to

†Personal correspondence with Emmanuel Hebrard
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investigate whether there are problem features that can be used to indicate which
of the two heuristics is most suited for a given problem. Weight profile analysis
after a fixed amount of search could be used to indicate whether the weighted
degree heuristic is suited to the problem.

Scheduling. This work can be extended in two directions. Firstly, applying these
generic techniques to other scheduling problems such as those with cumulative
resource constraints, and indeed applying these techniques to applications outside
of the scheduling domain. Secondly, the approaches for the problems studied may
be further improved through the addition of domain-specific information (e.g. the
addition of dedicated metaheuristics to initialize both the upper bound and the
solution pool for the value ordering heuristic).
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Technical report, École Des Mines de Nantes, 1998.
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Appendix A

Full Experimental Analysis of
Restarting Strategies: Benchmarks

The following problem descriptions are primarily taken from the benchmark web-
site of the CSP solver competition†.

• All Interval Series (All Intervals)

The all-interval series problem is the task of finding a vector s = (s1, . . . , sn),
such that s is a permutation of {0,1, . . . , n-1} and the interval vector v =
(|s2 � s1|, |s3 � s2|, . . . , |sn � sn�1|) is a permutation of {1,2,. . . ,n-1}. See
problem 07 at http://www.csplib.org.

• All Squares

This problem involves finding the smallest square that the n squares {1⇥1,
. . . , n ⇥ n} will fit into. This sequence starts 1, 3, 5, 7, 9, 11, 13, 15, 18,
21, 24, 27, 30, 33, 36, 39, 43, 47, 51, 54, 58, 63, 67, 71, . . . and is number
A005842 of the Encyclopedia of Integer Sequences. It is a special case of
problem 09 of http://www.csplib.org. The series tested here were
generated by Hadrien Cambazard.

• Balanced Incomplete Block Desgins (BIBD)

†http://www.cril.univ-artois.fr/ lecoutre/research/benchmarks/benchmarks.html
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Given a tuple of natural numbers (v, b, r, k, �), a BIBD involves arranging
v distinct objects into b blocks. Each block contains exactly k distinct ob-
jects, each object occurs in exactly r different blocks, and every two distinct
objects occur together in exactly � blocks (Frisch et al. [67]). See problem
28 at http://www.csplib.org.

• Binary decision diagrams A binary decision diagram (BDD) [36] is a method
of compactly representing the solution set to a constraint on Boolean vari-
ables. It is a directed acyclic graph with two terminal nodes: the 0-terminal
(representing a false assignment) and the 1-terminal (representing a true as-
signment). Each non-terminal node u is labeled with a Boolean variable bi,
and has a 0-successor (1-succesor) representing the assignment of the value
0 (1 resp.) to the variable.

A BDD constraint is a random extensional constraint built from a binary
decision diagram. These series have been generated by Kenil Cheng and
Roland Yap in the context of the paper Cheng and Yap [45]. There are two
sets of 35 instances each. The first set contains problems with many small
BDD constraints while the latter set contains problems with few large BDD
constraints.

• Boolean Problems

These problems contain only Boolean variables and are satisfiability prob-
lems proposed in the context of the second Dimacs implementation chal-
lenge [113]. A description of the different problem sets can be found at
http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html. A sam-
ple of 100 instances were randomly selected.

• Bounded Model Checking

The bmc instances are bounded model checking problems which were con-
verted from CNF to intensional CSP by Marc van Dongen. These instances
are non-binary. The original instances may be found on SATLIB: http:
//www.satlib.org/. For each SATLIB instance, CSP instances were
generated for different domain sizes. For example, the original instance

http://www.csplib.org
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.satlib.org/
http://www.satlib.org/
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bmc-ibm-1.cnf was converted to instances bmc-ibm-1-2.xml, bmc-ibm-1-
4.xml, bmc-ibm-1-8.xml and bmc-ibm-1-16.xml. The domain of the in-
stance bmc-ibm-1-n.xml is given by {0,. . . ,n-1}. All instances correspond-
ing to a given original SAT instance are equivalent in the sense that their
solutions are the same. This was achieved by adding unary constraints to
remove values greater than 1.

• Chessboard Coloration (Chess Coloration)

The chessboard coloration problem is the task of coloring all squares of a
chessboard composed of r rows and c columns. There are exactly n avail-
able colors and the four corners of any rectangle extracted from the chess-
board must not be assigned the same color.

• Costas Array

A Costas array can be regarded geometrically as a set of n points lying on the
squares of a n⇥n checkerboard, such that each row or column contains only
one point, and that all of the n(n�1)/2 displacement vectors between each
pair of dots are distinct. This result in an ideal ‘thumbtack’ auto-ambiguity
function, making the arrays useful in applications such as Sonar and Radar.
A Costas array may be represented numerically as an nxn array of num-
bers, where each entry is either 1, for a point, or 0, for the absence of a
point. When interpreted as binary matrices, these arrays of numbers have
the property that, since each row and column has the constraint that it only
has one point on it, they are therefore also permutation matrices. Thus, the
Costas arrays for any given n are a subset of the permutation matrices of
order n.

• Crosswords

Given a grid and a dictionary, the problem is to fill the grid with the words
contained in the dictionary. Here, three series of grids (Herald, Puzzle, Vg)
and four dictionaries (lex, ogd, uk, words) have been used. Herald refers
to crossword puzzles taken from the Herald Tribune (Spring, 1999), Puzzle
refers to crossword puzzles mentioned in Ginsberg [76] and Ginsberg et al.
[78], and Vg refers to blank grids.



308 FULL EXPERIMENTAL ANALYSIS OF RESTARTING STRATEGIES: BENCHMARKS

Lex is a dictionary used in Stergiou and Samaras [194], uk corresponds
to the UK cryptic solvers dictionary, words corresponds to the dictionary
found in /usr/dict/words under Linux, and ogd corresponds to a french dic-
tionary. Lex and words are small dictionaries whereas uk and ogd are large
ones. The model used to represent the instances is the one identified by m1

in Beacham et al. [20]. However, for the Vg grids, all instances only involve
constraints in extension as for these grids, putting two times the same word
has been authorized. Hadrien Cambazard, Kostas Stergiou and Julian Ull-
mann contributed to converting these instances to XML format. A sample
of 100 instances were randomly selected.

• Driver Log

According to the planning competition website†, this problem involves drivers
that can walk between locations and trucks that can drive between locations.
Walking requires traversal of different paths from those used for driving,
and there is always one intermediate location on a footpath between two
road junctions. The trucks can be loaded or unloaded with packages (with
or without a driver present) and the objective is to transport packages be-
tween locations, ending up with a subset of the packages, the trucks and the
drivers at specified destinations.

• Fischer

This series correspond to Fischer Satisfiability Modulo Theory (SMT) in-
stances from MathSat‡ converted to CSP by Lucas Bordeaux. The original
instances can be found at the SMT-LIB website§ (in the QFIDL family
of benchmarks). The translation is a straightforward encoding of the SMT
syntax in which Boolean combinations of arithmetic constraints are decom-
posed into primitive constraints, using reification where appropriate. Here
the domains have been artificially bounded, whereas in SMT theorem prov-

†http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/
long03a-html/node39.html

‡http://mathsat.fbk.eu/
§http://www.smtlib.org

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node39.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-html/node39.html
http://mathsat.fbk.eu/
http://www.smtlib.org
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ing should be done over the unbounded integers. A sample of 100 instances
were randomly selected.

• Frequency Assignment Problem with Polarization (Fapp)

The Frequency Assignment Problem with Polarization constraints (denoted
FAPP) is the optimization problem retained for the ROADEF’2001 chal-
lenge (a description is available here challenge.roadef.org/2001/
files/fapp_roadef01_rev2_msword_en.ps.gz) . It is one ex-
tended subject of the CALMA European project (Combinatorial ALgo-
rithms for Military Applications). In this problem, one can find some con-
straints concerning the distance between frequencies and depending on their
polarizations. For such constraints, a progressive relaxation is authorized: a
relaxation level is possible between 0 (no relaxation) and 10 (the maximum
relaxation). To obtain a decision problem, one has just to set one of these
relaxation levels. In other words, 11 CSP instances can be defined from any
original FAPP instance. A sample of 100 instances were randomly selected.

• Golomb Ruler

The Golomb Ruler problem is the task of putting n marks on a ruler of
length m such that the distance between any two pairs of marks is distinct.
See problem 06 at http://www.csplib.org.

• Graph Coloring (Coloring)

The graph coloring problem can be stated as follows: given a graph G =

(V,E), the objective is to find the minimum number of colors k such that
there exists a mapping r from V to {1. . . k} with r(i) 6= r(j) for every edge
(i, j) of G. The decision problem associated with this optimization problem
involves determining if the graph can be colored when using a given number
of colors k. All CSP instances given here have been built from resources that
can be found at http://mat.gsia.cmu.edu/COLOR04/. A sample
of 100 instances were randomly selected.

• Langford

challenge.roadef.org/2001/files/fapp_roadef01_rev2_msword_en.ps.gz
challenge.roadef.org/2001/files/fapp_roadef01_rev2_msword_en.ps.gz
http://www.csplib.org
http://mat.gsia.cmu.edu/COLOR04/
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The (generalized version of the) problem is to arrange k sets of numbers
ranging from 1 to n, so that each appearance of the number m is m numbers
on from the last. See problem 24 at http://www.csplib.org.

• Multi-Knapsack

The basic knapsack problem involves a set of n items, with each item hav-
ing an associated profit pj and weight wj . The objective is to pick some
of the items, with maximal total profit, while obeying that the maximum
total weight of the chosen items must not exceed W . Generally, these coef-
ficients are scaled to become integers, and they are almost always assumed
to be positive. The multi-dimensional knapsack problem (multi-knapsack
problem) is where there are additional constraints restricting certain combi-
nations of the items.

The problems in optimization format are available at the operations research
library website†. In satisfaction format there are constraints of two types, the
first involves finding the combination of items which gives the optimal value
for the problem:

nX

i=1

(ci ⇤ xi) = Opt (A.1)

8j
nX

i=1

(cji ⇤ xi)  k (A.2)

where xi refers to the n Boolean variables, ci their associated constants (>
0), cji are the associated constants in the additional j capacity constraints
(if a variable doesn’t contribute to the dimensional capacity its weight, cji,
is set to 0 in the constraint).

• Primes

The Primes instances are non-binary intensional instances which were cre-
ated by Marc van Dongen. All instances are satisfiable. The domains of

†http://people.brunel.ac.uk/ mastjjb/jeb/orlib/mknapinfo.html

http://www.csplib.org
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the variables consist of prime numbers and all constraints are linear equa-
tions. The coefficients and constants in the equations are also prime num-
bers. These instances are interesting because solving them using Gausian
elimination is polynomial, assuming that the basic arithmetic operartions
have a time complexity of O(1). In reality this assumption does not hold
and the choise of prime numbers in the equations gives rise to large in-
termediate coefficients in the equations, making the basic operations more
time consuming. A sample of 50 instances were randomly selected.

• Pseudo-Boolean (PseudoBool)

These instances correspond to the Pseudo-Boolean instances that were used
for testing solvers submitted to the Pseudo Boolean Evaluation 2006 (http:
//www.cril.univ-artois.fr/PB06/archive.html). A sample
of 100 instances were randomly selected.

• Pseudo-Boolean with global constraints (Pseudo-Glb)

These instances were also used for testing solvers submitted to the Pseudo
Boolean Evaluation 2006, and are similar to the other Pseudo-Boolean prob-
lems with the exception that all these instances involve the weightedSum
global constraint. A sample of 100 instances were randomly selected.

• Quasi-group completion problem / Quasi-group with holes (Qcp/Qwh)

The Quasi-group Completion problem (QCP) is the task of determining
whether the remaining entries of the partial Latin square can be filled in
such a way that we obtain a complete Latin square, ie. a full multiplication
table of a quasi-group. The Quasi-group With Holes problem (QWH) is a
variant of the QCP where instances are generated in such a way that they are
guaranteed to be satisfiable. The randomly selected sample of 100 instances
used here were taken from 8 series generated by Radoslaw Szymanek for
the 2005 CSP Solver Competition.

• Radar

The radar surveillance problem involves determining a radar surveillance
plan for a geographical area, divided into hexagonal cells (Walser [219],

http://www.cril.univ-artois.fr/PB06/archive.html
http://www.cril.univ-artois.fr/PB06/archive.html
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discussed in Chapter 6 on “Covering and assignment”). There are a number
of radio stations in fixed cells. Each cell must be monitored by at least three
radio stations.

• Ramsey

The Ramsey problem is the task of coloring, using k colors, the edges of a
complete graph involving n nodes in such a way that there is no monochro-
matic triangle in the graph (i.e., in any triangle at most two edges have the
same color). See problem 17 at http://www.csplib.org.

• Random Extensional Problems (Random)

A sample of 100 instances were randomly selected. This sample contains
problems generated according to different models, in particular models B,
D (both described in [81]), and RB as described in Xu and Li [233].

Some quasi-random CSP instances were also included, in particular in-
stances of type “composed” and “geometric”. The composed problems are
generated such that each instance is composed of a main (under-constrained)
fragment and some auxiliary fragments, each of which being grafted to the
main one by introducing some binary constraints.

The geometric instances are generated as follows. Instead of a density pa-
rameter, a “distance” parameter, dst, is used such that dst 

p
2. For each

variable, two coordinates are chosen at random so the associated point lies
in the unit square. Then for each variable pair, (x,y), if the distance between
their associated points is less than or equal to dst, the arc (x,y) is added
to the constraint graph. Constraint relations are created in the same way as
they are for homogeneous random CSP instances.

• Radio Link Frequency Assignment Problem (RLFAP)

The Radio Link Frequency Assignment Problem (RLFAP) is the task of
assigning frequencies to a number of radio links in such a manner as to
simultaneously satisfy a large number of constraints and use as few distinct
frequencies as possible.

http://www.csplib.org
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• Scheduling

A sample of 100 scheduling instances were randomly selected from the
following scheduling problem sets:

– Cabinet

This is an assignment scheduling problem where some tasks are pro-
cessed on one of a number of machines. Depending on the machine
chosen, a task may take a different amount of time to be processed.
The objective is to assign all the tasks to machines in order to mini-
mize the overall makespan. This is equivalent to minimizing the max-
imum makespan of each machine. In these examples, the problem is
presented as a satisfaction one, and involves the global constraint el-
ement. This series has was contributed to the solver competition by
Leonid Ioffe and James Little, with the participation of Marc van Don-
gen.

– Classical job shop scheduling (cjss)

These problems are derived from classical job-shop scheduling prob-
lems by multiplying the number of jobs (and thus the number of tasks)
and the capacity of the resources by the given factor. The makespan
value is also specified. This series has been submitted by Naoyuki
Tamura to the 2008 CSP solver competition and involves the global
constraint cumulative.

– Resource constrained project scheduling (rcpsp)

This is the Resource Constrained Project Scheduling Problem, which
involves assigning jobs or tasks to a resource or set of resources with
limited capacity in order to meet some predefined objective (Yang
et al. [235]). These satisfaction instances have been generated from
data/instances of Baptiste and Le Pape by Hadrien Cambazard with
the help of Sophie Demassey.

– Job-shop scheduling with super solutions (super-jsp)

These series of instances have been built by converting original prob-
lems into the corresponding ”super-solutions” problems (Hebrard et al.
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[103]). That is, any solution of the resulting problem is a (1,0)-super
solution of the original one. Observe that it requires instances with
large domains and a lot of solutions to produce interesting problems.
These series have been converted and generated by Emmanuel He-
brard in the context of the 2008 CSP Solver Competition.

• Schurr’s Lemma

The Schurr’s lemma problem is the task of putting n balls labelled from 1
to n into 3 boxes so that for any triple of balls (x, y, z) with x+ y = z, not
all are in the same box. See problem 15 at http://www.csplib.org.

• Social Golfer

This is a series of instances proposed by Daniel le Berre and Ines Lynce for
the 2006 CSP Solver Competition. The original problem can be described
by enumerating four constraints as follows: a golf club has 32 members;
each member plays golf once a week; golfers always play in groups of
four; and no golfer plays in the same group as any other golfer twice. It
can be easily generalized. An instance to this generalized problem is then
characterized by a triple w-p-g, where w is the number of weeks, p is the
number of players per group and g is the number of groups. The encod-
ing used here is the one proposed by Walser and is available at http:
//www.csplib.org.

• Timetabling (Patat)

These instances come from the 2007/2008 timetabling competition http:
//www.cs.qub.ac.uk/itc2007/ as well as from the previous one
in 2002. They involve the global allDifferent constraint as well as in-
tensional constraints. These series have been converted and generated by
Emmanuel Hebrard in the context of the 2008 CSP Solver Competition.

• Traveling Salesman

The Travelling Salesman problem is the task of finding a tour of minimal
length that traverses each city (only once) for a given set of cities. The prob-

http://www.csplib.org
http://www.csplib.org
http://www.csplib.org
http://www.cs.qub.ac.uk/itc2007/
http://www.cs.qub.ac.uk/itc2007/
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lems used are two series of 15 ternary instances (all satisfiable), which were
generated by Radoslaw Szymanek for the 2005 competition.

• Two-Dimensional Strip Packing (Tdsp)

The Two-Dimensional Strip Packing problem involves fitting all given rect-
angles into a container (“strip”) whose width is prescribed, such that the
overall height is minimized (Hopper [107]). This series was submitted by
Naoyuki Tamura to the 2008 CSP solver competition.
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