85,250 research outputs found

    Data integration for biological network databases: MetNetDB labeled graph model and graph matching algorithm

    Get PDF
    To understand the cellular functions of genes requires investigating a variety of biological data, including experimental data, annotation from online databases and literatures, information about cellular interactions, and domain knowledge from biologists. These requirements demand a flexible and powerful biological data management system. MetNetDB is the biological database component of the MetNet platform (http://metnetdb.org/), a software platform for Arabidopsis system biology. This work describes a labeled graph model that addresses the challenges associated with biological network databases, and discusses the implementation of this model in MetNetDB. MetNetDB integrates most recent data from various sources, including biological networks, gene annotation, metabolite information, and protein localization data. The integration contains four steps: data model transformation and integration; semantic mapping; data conversion and integration; and conflict resolution. MetNetDB is established as a labeled graph model. The graph structure supports network data storage and application of graph analysis algorithm. The node and edge labels have the same extension capability as object data model. In addition, rules are used to guarantee the biological network data integrity; operations are defined for graph edit and comparison. To facilitate the integration of network data, which is often inaccurate or incomplete, a subgraph extraction algorithm is designed for MetNetDB. This algorithm allows subgraph querying based on user-specified biomolecules. Both exact matching and approximate matching with biomolecules in networks are supported. The similarity among biomolecules is inferred from expression patterns, gene ontology, chemical ontology, and protein-gene relationships. Combined with the implementation of Messmer\u27s approximate subgraph isomorphism algorithm, MetNetDB supports exact and approximate graph matching. Based on the MetNetDB labeled graph model and the graph matching algorithms, the MetNetDB curator tool is built with several innovative features, including active biological rule checking during network curation, tracking data change history, and a biologist-friendly visual graph query system

    A Path to Implement Precision Child Health Cardiovascular Medicine.

    Get PDF
    Congenital heart defects (CHDs) affect approximately 1% of live births and are a major source of childhood morbidity and mortality even in countries with advanced healthcare systems. Along with phenotypic heterogeneity, the underlying etiology of CHDs is multifactorial, involving genetic, epigenetic, and/or environmental contributors. Clear dissection of the underlying mechanism is a powerful step to establish individualized therapies. However, the majority of CHDs are yet to be clearly diagnosed for the underlying genetic and environmental factors, and even less with effective therapies. Although the survival rate for CHDs is steadily improving, there is still a significant unmet need for refining diagnostic precision and establishing targeted therapies to optimize life quality and to minimize future complications. In particular, proper identification of disease associated genetic variants in humans has been challenging, and this greatly impedes our ability to delineate gene-environment interactions that contribute to the pathogenesis of CHDs. Implementing a systematic multileveled approach can establish a continuum from phenotypic characterization in the clinic to molecular dissection using combined next-generation sequencing platforms and validation studies in suitable models at the bench. Key elements necessary to advance the field are: first, proper delineation of the phenotypic spectrum of CHDs; second, defining the molecular genotype/phenotype by combining whole-exome sequencing and transcriptome analysis; third, integration of phenotypic, genotypic, and molecular datasets to identify molecular network contributing to CHDs; fourth, generation of relevant disease models and multileveled experimental investigations. In order to achieve all these goals, access to high-quality biological specimens from well-defined patient cohorts is a crucial step. Therefore, establishing a CHD BioCore is an essential infrastructure and a critical step on the path toward precision child health cardiovascular medicine

    From access and integration to mining of secure genomic data sets across the grid

    Get PDF
    The UK Department of Trade and Industry (DTI) funded BRIDGES project (Biomedical Research Informatics Delivered by Grid Enabled Services) has developed a Grid infrastructure to support cardiovascular research. This includes the provision of a compute Grid and a data Grid infrastructure with security at its heart. In this paper we focus on the BRIDGES data Grid. A primary aim of the BRIDGES data Grid is to help control the complexity in access to and integration of a myriad of genomic data sets through simple Grid based tools. We outline these tools, how they are delivered to the end user scientists. We also describe how these tools are to be extended in the BBSRC funded Grid Enabled Microarray Expression Profile Search (GEMEPS) to support a richer vocabulary of search capabilities to support mining of microarray data sets. As with BRIDGES, fine grain Grid security underpins GEMEPS

    BioCloud Search EnGene: Surfing Biological Data on the Cloud

    Get PDF
    The massive production and spread of biomedical data around the web introduces new challenges related to identify computational approaches for providing quality search and browsing of web resources. This papers presents BioCloud Search EnGene (BSE), a cloud application that facilitates searching and integration of the many layers of biological information offered by public large-scale genomic repositories. Grounding on the concept of dataspace, BSE is built on top of a cloud platform that severely curtails issues associated with scalability and performance. Like popular online gene portals, BSE adopts a gene-centric approach: researchers can find their information of interest by means of a simple “Google-like” query interface that accepts standard gene identification as keywords. We present BSE architecture and functionality and discuss how our strategies contribute to successfully tackle big data problems in querying gene-based web resources. BSE is publically available at: http://biocloud-unica.appspot.com/

    Towards data grids for microarray expression profiles

    Get PDF
    The UK DTI funded Biomedical Research Informatics Delivered by Grid Enabled Services (BRIDGES) project developed a Grid infrastructure through which research into the genetic causes of hypertension could be supported by scientists within the large Wellcome Trust funded Cardiovascular Functional Genomics project. The BRIDGES project had a focus on developing a compute Grid and a data Grid infrastructure with security at its heart. Building on the work within BRIDGES, the BBSRC funded Grid enabled Microarray Expression Profile Search (GEMEPS) project plans to provide an enhanced data Grid infrastructure to support richer queries needed for the discovery and analysis of microarray data sets, also based upon a fine-grained security infrastructure. This paper outlines the experiences gained within BRIDGES and outlines the status of the GEMEPS project, the open challenges that remain and plans for the future

    Advancing the Understanding of Clinical Sepsis Using Gene Expression-Driven Machine Learning to Improve Patient Outcomes

    Get PDF
    Sepsis remains a major challenge that necessitates improved approaches to enhance patient outcomes. This study explored the potential of Machine Learning (ML) techniques to bridge the gap between clinical data and gene expression information to better predict and understand sepsis. We discuss the application of ML algorithms, including neural networks, deep learning, and ensemble methods, to address key evidence gaps and overcome the challenges in sepsis research. The lack of a clear definition of sepsis is highlighted as a major hurdle, but ML models offer a workaround by focusing on endpoint prediction. We emphasize the significance of gene transcript information and its use in ML models to provide insights into sepsis pathophysiology and biomarker identification. Temporal analysis and integration of gene expression data further enhance the accuracy and predictive capabilities of ML models for sepsis. Although challenges such as interpretability and bias exist, ML research offers exciting prospects for addressing critical clinical problems, improving sepsis management, and advancing precision medicine approaches. Collaborative efforts between clinicians and data scientists are essential for the successful implementation and translation of ML models into clinical practice. ML has the potential to revolutionize our understanding of sepsis and significantly improve patient outcomes. Further research and collaboration between clinicians and data scientists are needed to fully understand the potential of ML in sepsis management
    corecore