9,749 research outputs found

    A feedback simulation procedure for real-time control of urban drainage systems

    Get PDF
    This paper presents a feedback simulation procedure for the real-time control (RTC) of urban drainage systems (UDS) with the aim of providing accurate state evolutions to the RTC optimizer as well as illustrating the optimization performance in a virtual reality. Model predictive control (MPC) has been implemented to generate optimal solutions for the multiple objectives of UDS using a simplified conceptual model. A high-fidelity simulator InfoWorks ICM is used to carry on the simulation based on a high level detailed model of a UDS. Communication between optimizer and simulator is realized in a feedback manner, from which both the state dynamics and the optimal solutions have been implemented through realistic demonstrations. In order to validate the proposed procedure, a real pilot based on Badalona UDS has been applied as the case study.Peer ReviewedPostprint (author's final draft

    Advanced integrated real-time control of combined Urban drainage systems using MPC

    Get PDF
    Combined urban drainage system (CUDS) collect both wastewater and raining water through sewer networks to wastewater treatment plants (WWTP) before releasing to the environment. During storm weather, rain and wastewater can overload the capacity of the CUDS and/or the WWTPs, producing combined sewer overflows (CSO). In order to improve the management efficiency of CUDS, advanced real-time control (RTC) of detention and diversion infrastructures in the sewer systems has been proven to contribute to reducing the CSO volumes. This work considers the integrated RTC of sewer network and WWTPs based on model predictive control (MPC) and taking into account the water quality as well as quantity, with the objective of minimizing the environmental impact of CSO on receiving waters. The control approach is validated using a real pilot Badalona sewer network in Spain. The first results, discussion and conclusions are also provided.Peer ReviewedPostprint (author's final draft

    Conceptual quality modelling and integrated control of combined urban drainage system

    Get PDF
    This paper presents the first results of conceptual quality modelling approach oriented to the integrated real-time control (RTC) strategy for urban drainage networks (UDN) and wastewater treatment plants (WWTP) developed in the European project LIFE EFFIDRAIN (Efficient Integrated Real-time Control in Urban Drainage and Wastewater Treatment Plants for Environmental Protection). Model predictive control (MPC) has been selected as a proper RTC to minimize the polluting discharge in case of raining events. The simulator SWMM5 was modified to integrate a lumped conceptual model for total suspended solids (TSS) called SWMM-TSS, which has been used as virtual reality for calibration and validation of the proposed modelling approaches in Perinot network, a real case study in Bordeaux.Peer ReviewedPostprint (author's final draft

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively

    Municipal wastewater treatment with pond technology : historical review and future outlook

    No full text
    Facing an unprecedented population growth, it is difficult to overstress the assets for wastewater treatment of waste stabilization ponds (WSPs), i.e. high removal efficiency, simplicity, and low cost, which have been recognized by numerous scientists and operators. However, stricter discharge standards, changes in wastewater compounds, high emissions of greenhouse gases, and elevated land prices have led to their replacements in many places. This review aims at delivering a comprehensive overview of the historical development and current state of WSPs, and providing further insights to deal with their limitations in the future. The 21st century is witnessing changes in the way of approaching conventional problems in pond technology, in which WSPs should no longer be considered as a low treatment technology. Advanced models and technologies have been integrated for better design, control, and management. The roles of algae, which have been crucial as solar-powered aeration, will continue being a key solution. Yet, the separation of suspended algae to avoid deterioration of the effluent remains a major challenge in WSPs while in the case of high algal rate pond, further research is needed to maximize algal growth yield, select proper strains, and optimize harvesting methods to put algal biomass production in practice. Significant gaps need to be filled in understanding mechanisms of greenhouse gas emission, climate change mitigation, pond ecosystem services, and the fate and toxicity of emerging contaminants. From these insights, adaptation strategies are developed to deal with new opportunities and future challenges

    Optimizing the Structure and Scale of Urban Water Infrastructure: Integrating Distributed Systems

    Get PDF
    Large-scale, centralized water infrastructure has provided clean drinking water, wastewater treatment, stormwater management and flood protection for U.S. cities and towns for many decades, protecting public health, safety and environmental quality. To accommodate increasing demands driven by population growth and industrial needs, municipalities and utilities have typically expanded centralized water systems with longer distribution and collection networks. This approach achieves financial and institutional economies of scale and allows for centralized management. It comes with tradeoffs, however, including higher energy demands for longdistance transport; extensive maintenance needs; and disruption of the hydrologic cycle, including the large-scale transfer of freshwater resources to estuarine and saline environments.While smaller-scale distributed water infrastructure has been available for quite some time, it has yet to be widely adopted in urban areas of the United States. However, interest in rethinking how to best meet our water and sanitation needs has been building. Recent technological developments and concerns about sustainability and community resilience have prompted experts to view distributed systems as complementary to centralized infrastructure, and in some situations the preferred alternative.In March 2014, the Johnson Foundation at Wingspread partnered with the Water Environment Federation and the Patel College of Global Sustainability at the University of South Florida to convene a diverse group of experts to examine the potential for distributed water infrastructure systems to be integrated with or substituted for more traditional water infrastructure, with a focus on right-sizing the structure and scale of systems and services to optimize water, energy and sanitation management while achieving long-term sustainability and resilience

    MatSWMM - An open-source toolbox for designing real-time control of urban drainage systems

    Get PDF
    This manuscript describes the MatSWMM toolbox, an open-source Matlab, Python, and LabVIEW-based software package for the analysis and design of real-time control (RTC) strategies in urban drainage systems (UDS). MatSWMM includes control-oriented models of UDS, and the storm water management model (SWMM) of the US Environmental Protection Agency (EPA), as well as systematic-system edition functionalities. Furthermore, MatSWMM is also provided with a population-dynamics-based controller for UDS with three of the fundamental dynamics, i.e., the Smith, projection, and replicator dynamics. The simulation algorithm, and a detailed description of the features of MatSWMM are presented in this manuscript in order to illustrate the capabilities that the tool has for educational and research purposes.Peer ReviewedPostprint (author's final draft

    Decision support systems (DSS) for wastewater treatment plants: a review of the state of the art

    Get PDF
    The use of decision support systems (DSS) allows integrating all the issues related with sustainable developmentin view of providing a useful support to solve multi-scenario problems. In this work an extensive review on theDSSs applied to wastewater treatment plants (WWTPs) is presented. The main aim of the work is to provide anupdated compendium on DSSs in view of supporting researchers and engineers on the selection of the mostsuitable method to address their management/operation/design problems. Results showed that DSSs weremostly used as a comprehensive tool that is capable of integrating several data and a multi-criteria perspective inorder to provide more reliable results. Only one energy-focused DSS was found in literature, while DSSs based onquality and operational issues are very often applied to site-specific conditions. Finally, it would be important toencourage the development of more user-friendly DSSs to increase general interest and usability.This work is part of a research project supported by grant of the Italian Ministry of Education, University and Research (MIUR) through the Research project of national interest PRIN2012 (D.M. 28 December 2012 n. 957/Ric – Prot. 2012PTZAMC) entitled “Energy consumption and Greenhouse Gas (GHG) emissions in the wastewater treatment plants: a decision support system for planning and management – http://ghgfromwwtp.unipa.it” in which the first author is the Principal Investigator. In addition, some coauthors acknowledge the partial support of the Industrial Doctorate Programme (2017-DI-006) and the Research Consolidated Groups/Centres Grant (2017 SGR 574) from the Catalan Agency of University and Research Grants Management (AGAUR), from Catalan Government.Peer ReviewedPostprint (author's final draft

    Comparison of control strategies for multi-objective control of urban wastewater systems

    Get PDF
    In recent years much attention has been paid to integrated management and control of urban wastewater systems. With the application of integrated system modelling tools, overall system performance can be improved to a great extent in terms of receiving water quality, through development of optimal control strategies. Most studies to date, however, have used a single objective to demonstrate the potential benefits. Control of urban wastewater systems is actually a multiple objective optimisation problem, involving balancing different, possibly conflicting objectives required by stakeholders with different interests. This paper compares three different control strategies for multi-objective optimal control of the urban wastewater system, including one global control strategy and two integrated control strategies. A popular multiple objective evolutionary algorithm, NSGA II, is applied to derive the Pareto optimal solutions for the three strategies. The comparative results show the benefits of application of integrated control in achieving an improved system performance in terms of dissolved oxygen and ammonium concentrations in the receiving river. The simulation results also illustrate the effectiveness of NSGA II in deriving the optimal control strategies with different complexities

    Use of surrogate modelling for multiobjective optimisation of urban wastewater systems

    Get PDF
    Copyright © IWA Publishing 2009. The definitive peer-reviewed and edited version of this article is published in Water Science and Technology Volume 60 Issue 6, pp. 1641–1647 (2009), DOI: 10.2166/wst.2009.508 and is available at www.iwapublishing.comSimulation models are now available to represent the sewer network, wastewater treatment plant and receiving water as an integrated system. These models can be combined with optimisation methods to improve overall system performance through optimal control. Evolutionary algorithms (EAs) have been proven to be a powerful method in developing optimal control strategies; however, the intensive computational requirement of these methods imposes a limit on their application. This paper explores the potential of surrogate modelling in multiobjective optimisation of urban wastewater systems with a limited number of model simulations. A surrogate based method, ParEGO, is combined with an integrated urban wastewater model to solve real time control problems. This method is compared with the popular NSGA II, by using performance indicators: the hypervolume indicator, additive binary epsilon-indicator and attainment surface. Comparative results show that ParEGO is an efficient and effective method in deriving optimal control strategies for multiple objective control problems with a small number of simulations. It is suggested that ParEGO can greatly improve computational efficiency in the multiobjective optimisation process, particularly for complex urban wastewater systems
    • …
    corecore