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Abstract 16 

The use of decision support systems (DSS) allows integrating all the issues related with sustainable 17 

development in view of providing a useful support to solve multi-scenario problems. In this work an extensive 18 

review on the DSSs applied to wastewater treatment plants (WWTPs) is presented. The main aim of the work 19 

is to provide an updated compendium on DSSs in view of supporting researchers and engineers on the selection 20 

of the most suitable method to address their management/operation/design problems. Results showed that 21 

DSSs were mostly used as a comprehensive tool that is capable of integrating several data and a multi-criteria 22 

perspective in order to provide more reliable results. Only one energy-focused DSS was found in literature, 23 

while DSSs based on quality and operational issues are very often applied to site-specific conditions. Finally, 24 

it would be important to encourage the development of more user-friendly DSSs to increase general interest 25 

and usability. 26 

 27 

Keywords: Decision Support System (DSS), Wastewater Treatment Plant (WWTP), decision - making 28 

process; process optimization; mathematical modelling. 29 

 30 
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1. Introduction 32 

Wastewater treatment plants (WWTPs) are studied worldwide in view of finding more sustainable solutions 33 

for their management. WWTPs have been traditionally evaluated by end-of-pipe approaches, i.e. removal of 34 

pollutants from a stream before being disposed of or delivered into the environment (Garrido-Baserba et al., 35 

2014). The increase of the environmental issues related to the WWTPs (greenhouse gas – GHG emissions, 36 

stringent regulation for water quality effluent, etc.) impose to see the plants as a complex system within a 37 

complex environment (Brinkmann et al., 2016). According to the aforementioned approach WWTPs have to 38 

achieve at least three sustainability targets: environmental protection (low pollutants discharge), social 39 

acceptance (human sanitary protection) and economic development (feasible operational and construction 40 

costs) (Garrido-Baserba et al., 2012; Garrido-Baserba et al., 2014).  41 

Therefore, design and operation of WWTPs have to assume various complex objectives, such as minimizing 42 

costs while creating safe and operative installations that provide completely reliable wastewater treatment 43 

(Poch et al, 2012; Rodriguez-Roda et al., 2000). WWTPs are also facing stricter regulations regarding 44 

environment and human health, and are also being considered as sources of material and/or energy, by 45 

recovering nutrients and through biogas production (Bisinella de Faria et al., 2015). In addition to the previous 46 

concerns, conventional controller design approaches do not provide objective ways of quantifying the risk 47 

involved in the decisions engineers take as they develop their designs (Benedetti et al., 2010). Consequently, 48 

it is important to integrate the cause-effect relationships in WWTP management actions and to effectively 49 

represent the knowledge in order to enable comprehensive reasoning (Aulinas et al., 2011; Cortés et al., 2001). 50 

With this regards the adoption of a decision support system (DSS) during the design/operation of a WWTP 51 

could provide a useful support (Cortés et al., 1999; Rodriguez-Roda et al., 2000; Poch et al., 2004; Bisinella 52 

de Faria et al., 2015).  53 

A DSS is an information system that supports a user in choosing a consistent response for a particular problem 54 

in a reduced time frame (Hamouda, 2011), i.e. DSSs are computer-based systems, built in order to solve multi-55 

scenario problems by analyzing the feasibility of each scenario in a short time in order to provide a near 56 

optimum solution among them. A DSS may also be applicable for multiple problems and the possible solutions 57 

may or may not integrate aspects of sustainable development. 58 
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The adoption of DSSs allows to select more reliable and sustainable solutions thanks to the application of an 59 

integrated approach to problem analysis (Hamouda, 2011). The DSSs often include mathematical models, 60 

design/operational standards, interactive graphic displays and user-friendly interfaces (Rodriguez-Roda et al., 61 

2000; Sànchez-Marrè et al., 2004; Torregrossa et al., 2018). Therefore, DSSs applied to WWTPs represent 62 

valuable tool for selecting the most appropriate solutions (e.g., plant configuration, operational conditions, 63 

etc.) for a given situation (Rodríguez-Roda et al., 2002; Rodriguez-Roda et al., 2000). Over the last decade, 64 

several DSSs applications on WWTPs were published in literature and the main publications are summarized 65 

in Table 1. As mentioned before, Table 1 presents the DSSs that have been applied with focus on several 66 

scopes:  67 

i. Design (D) 68 

ii.  Energy consumption (E) 69 

iii.  Operational optimization (O) 70 

iv.  Improvement of the effluent Quality (Q) 71 

v.  Environmental Sustainability (S).  72 

On the basis of the main focus, four main approaches have been adopted by the DSSs:  73 

• Life Cycle Assessment (LCA) 74 

• Mathematical Model (MM) 75 

• Multi Criteria Decision Making (MCDM) 76 

• Intelligent DSS (IDSS)  77 

These approaches have been also described in the table 1. 78 

As far as the authors are aware, none of the studies has presented an updated compendium that classifies the 79 

DSSs in accordance to its main purposes. Thus, the main goal of this paper is to create an up to date database 80 

containing the novelties related to the application of DSSs in WWTPs. This paper also aims to help researchers 81 

and engineers on the selection of the most suitable method to address their management problems without 82 

recurring to an extensive research that takes time and financial investment.  83 
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This paper is divided into five main sections (Sections 2 to 7). Section 2 contains an historical overview of the 84 

DSS applied to WWTPs in order to better understand the past and current state of the art. Section 3 presents a 85 

conceptual review of the main types of DSS that are being used for researchers and engineers to address WWTP 86 

issues, aiming to classify these DSSs according to their main focus. Section 4 summarizes the main focus of 87 

DSSs when applied to the fundamental steps involving a WWTP, such as, design, operation, quality/energy 88 

aspects and sustainability. In Section 5, a review of the main DSS applications is reported. Section 6 89 

summarizes the key elements, gaps and findings obtained from this work. Finally, Section 7 summarizes the 90 

main conclusion drawn from this review paper.   91 

92 
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Table 1. Summary of the main Decision Support Systems found in literature during 2010-2019.  93 

Reference Type of DSS Main 
Focus Study Application 

Molinos-Senante et 
al. (2014)  MCDM S 

Applied for two extensive technologies (constructed wetlands and 
pond systems; and five intensive technologies (extended aeration, 
membrane bioreactor (MBR), rotating biological contactor, trickling 
filter, sequencing batch reactor. No specific location was mentioned 
in the paper.  

Yoshida et al. (2014) LCA S Real WWTP located in Copenhagen, Denmark. 

Bertanza et al. 
(2015) MCDM D Applied to a laboratory scale municipal WWTPs.  

Bisinella de Faria et 
al. (2015)  LCA / MM Q The plant under study was similar to that proposed in BSM2 

(Jeppsson et al., 2006).  

Garrido-Baserba et 
al. (2015) MCDM S Large WWTP which serves 1,000,000 person equivalents, in order 

to enable the exploration of a wide variety of alternative.  

Kyung et al. (2015) MM S Real advanced hybrid WWTP.  

Morera et al. (2015)  LCA / MCDM D Applied to two different WWTPs (La Garriga and Granollers), 
located in Spain. 

Castillo et al. (2016) LCA / MCDM D 

Scenario analysis. Scenario 1: retrofitting in a conceptual plant of 
Italy; Scenario 2: retrofitting in a real plant in the United States; 
Scenarios 3, 4 and 5, the installation of a new plant in the United 
States, in South America and in Europe, respectively. 

Kalbar et al. (2016) MCDM S 
Two case studies for the application of several scenarios: 1) selection 
of technology for an upcoming township project in Mumbai, Índia; 
2) lake rejuvenation project in the suburbs of Thane, Índia. 

Lorenzo-Toja et al. 
(2016) LCA O / S Applied to Betanzos and Calafell WWTPs, both located in Spain. 

Pintilie et al. (2016) LCA S Applied to Tarragona WWTP, Spain 

Saagi et al. (2016) MM O Hypothetical structure as the catchment described in ATV A 128 
(ATV, 1992). 

Singh and Kansal 
(2016) LCA / MM E / S Real wastewater infrastructure of Delhi, India 

Chhipi-Shrestha et 
al. (2017) MCDM D Presents a conceptual DSS to assess fit-for-purpose wastewater 

treatment and reuse and is applied to an hypothetic case study.  

Torregrossa et al. 
(2017) IDSS/MCDM E Two real conventional activated sludge system (CAS) WWTPs in 

Germany and in The Netherlands. 

Zeng et al. (2017) MM O / Q China's urban WWTPs. 

Arroyo and Molinos-
Senante (2018) MCDM D 

Applied for two extensive technologies (constructed wetlands and 
pond systems; and five intensive technologies (extended aeration, 
membrane bioreactor, rotating biological contactor, trickling filter,  
sequencing batch reactor.  

Chow et al. (2018) MCDM O Real WWTP located in Whyalla, south of Australia. 
Díaz-Madroñero et 
al. (2018) MM O Real WWTP located in the province of Alicante, Spain. 

Gémar et al. (2018) MM S 

Thirty small WWTPs from Spain were sampled between 2014 and 
2016, featuring three different secondary treatment technologies: 
CAS system, rotating biological contactors (RBC) and trickling 
filters (TF). 
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Reference Type of DSS Main 
Focus Study Application 

Jiang et al. (2018) MM S Real data obtained from WWTP located in the Lake Taihu region, 
China 

Jing et al. (2018) MM Q Seawater obtained from a clean coastal site in Saint John's, Canada 
Nadiri et al. (2018) IDSS/MM Q Real WWTP of Tabriz, Iran. 
Pascual-Pañach et al. 
(2018) IDSS O Supervision of a WWTP located in the Barcelona region, Catalonia. 

Torregrossa et al. 
(2018) LCA / MM O 

Plant data were generated with the STOAT simulator, that has been 
set-up to replicate the operational conditions of the WWTP of 
Solingen-Burg, Germany. 

Ye et al. (2019) IDSS D Optimal design of WWTPs in view of reducing resources and 
operational costs. 

Oprea (2018) IDSS S 
The IDSS has been applied to Danube 
River, consequently the WWTPs effluent quality has been optimized 
by means of IDSS   

Xin et al. (2018) MCDM D Real WWTP of Minnesota, United States.  
LCA = Life Cycle Assessment; MM = Mathematical Model; MCDM = Multi Criteria Decision Making; IDSS = 94 
Intelligent Decision Support System;  D = design; E = energy consumption; O = operational optimization; Q = 95 
improvement of the effluent quality; S = environmental sustainability. 96 

 97 

2. Historical overview of DSS applied to WWTP 98 

Figure 1 shows an overview of the evolution of DSSs applied to WWTPs related to the last six decades focusing 99 

the attention on the main DSS approach adopted.  100 

 101 

Figure 1. Overview of the evolution of DSSs applied to WWTPs. 102 

While, Figure 2 shows the evolution over the time of DSS and IDSS on the basis of their main tasks.  103 

 104 

1960 1970 1980 1990 2000 2010

• DSSs mostly based on 
mathematical models 
using linear and dynamic 
programming to 
optimize operational 
issues.

• DSSs based on mathematical 
models  integrating dynamic 
concepts and cost functions. 

• Insertion of construction 
phase within the DSSs.

• Application of dynamic 
mathematical model-based
DSSs. 

• Environmental criteria 
related to the achievement 
of water quality standards.

• IDSSs like knowledge-based
systems applied to address 
multi-purpose issues related 
to WWTPs.

• DSSs to attend water quality 
level, near optimum design 
and cost-effectiveness.

• Economic, social and 
environmental aspects taken 
into account during decision-
making.

• MCDA and LCA presented as 
solutions to address WWTP 
dynamic issues.

• DSSs accounting chemical and 
energy consumption and 
carbon footprint from WWTPs.

• MCDM improved to attend 
WWTPs technical, 
environmental and social 
aspects.
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 105 

Figure 2.  DSS and IDSS evolution for WasteWater Treatment Systems 106 

2.1. From DSSs origin to their application as dynamic tools 107 

The optimization of the wastewater treatments by using DSSs started since 1960s (Anzaldi et al., 2014). At 108 

this period, the availability of computer-based systems has increased and the scientific community started to 109 

have easier access to advanced computers. Since this period, WWTP major issues were reported as being 110 

related to its inherent complexity and dynamicity, which were hard to solve due to the lack of proper 111 

instruments, control and automation. Information technology has played an increasing role in the planning, 112 

design, and operation of water treatment systems (Hamouda, 2011). Thus, DSSs have being applied to solve 113 

WWTP related issues and their complexity. 114 

In 1965, Deininger studied the ways to obtain high water quality levels by applying concepts of linear 115 

programming, i.e. when problems can be solved using linear equations or inequalities (Deininger, 1965).  116 

The 1970s brought a more mature use of such DSSs due to the application of more dynamic concepts regarding 117 

the wastewater treatment, which includes transport systems and the integration of different treatment levels 118 
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(Converse, 1972; de Melo and Camara, 1994). Although this decade was important for the development of 119 

mathematical model-based DSSs, a certain difficulty in their application to real cases is reported (de Melo and 120 

Camara, 1994). The use of cost functions within the models is also reported (Hahn et al., 1973; Wanielista and 121 

Bauer, 1973) with the aim to integrate operational quality and cost optimization to more complex algorithms, 122 

e.g. convex, heuristic and geometric programming (Deininger and Su, 1973; McConagha and Converse, 1973), 123 

obtaining the best possible solutions among the alternatives provided by the DSSs at the time. Klemetson 124 

(1975) also used dynamic programming to select optimal solutions during the design phase.  125 

From 1981, studies were published reporting the evolution of the DSSs going towards the consideration of 126 

state variables depending on the time, to ensure that results would include the dynamicity inherent to effluent 127 

quality in different periods (Klemetson and Grenney, 1985). The environmental criteria considered during 128 

decision-making were mostly based on deviations related to water quality standards (Joshi and Modak, 1989). 129 

Still in 1980s, the acquired knowledge regarding growth-based kinetics was combined with mathematical 130 

modeling and the Activated Sludge Model (ASM) No. 1 was published (Henze et al., 2000). In this period, the 131 

first IDSSs were developed. They were mainly isolated Artificial Intelligence (AI) techniques using a 132 

Knowledge-Based System (KBS) approach to mimic the experts reasoning process like the works of (Flanagan, 133 

1980; Berthuex et al., 1987; Maeda, 1985; Maeda, 1989; Gall and Patry, 1989; Tzafestas and Ligeza, 1989), 134 

or some intelligent control approaches like using a Genetic Algorithm (GA) control approach (Karr, 1991) or 135 

a Fuzzy Logic (FL) control approach (Czoagala & Rawlik, 1989).  136 

2.2. Intelligent DSSs spreading as design and operation tools  137 

In the beginning of the 1990s, the design of a WWTP considered the need to follow a three-phase process, 138 

which included: i) list possible treatment processes; ii) perform bench-scale testing to acknowledge the 139 

applicability of the proposed treatment processes; and iii) select the best option among the tested processes 140 

and consider engineer quality (Evenson and Baetz, 1994). In the same period, what-if analysis and functions 141 

of utility including costs have been introduced in literature (Vanrolleghemet al., 1996; Maheepala et al., 2000).  142 

During this decade the need of real-time operational control and concerns about safety increased (Rodriguez-143 

Roda et al., 2000), inciting the use of online systems (Metzger, 1995) to improve WWTP management and to 144 
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prevent accidents. Details on the adoption of online systems are reported in the review paper proposed by 145 

Olsson et al. (2003). 146 

Regarding the IDSS approach, during this period there was a great explosion on generating Intelligent DSS. 147 

There was a generalization in the use of Knowledge-Based Systems which was reported in view to address 148 

multi-purpose demands, such as diagnosis of an activated sludge WWTP (Sànchez-Marrè, 1991; Serra et al., 149 

1994), water quality within legal requirements, near optimum design (Krovvidy et al., 1991; Krovvidy and 150 

Wee, 1993) and cost-effective technologies for WWTP operation and control (Beck et al., 1990).  Some other 151 

intelligent control techniques based on Artificial Neural Network (ANN) approaches were applied (Capodaglio 152 

et al., 1991; Kosko, 1992; Côte et al., 1995; Syu et al., 1998), or using fuzzy rule generation approach like in 153 

(Wang et al., 1997). Furthermore, in this decade some work proposed to apply Case-Based Reasoning (CBR) 154 

to the supervision of a WWTP (Sànchez-Marrè et al., 1997). In addition, a multi-agent distributed and 155 

integrated management architecture for supervising a WWTP was proposed in literature (Sànchez-Marrè et 156 

al., 1996) to use more than one AI technique. In this decade, the use of AI in DSS for environmental systems 157 

was generalized as detailed in (Cortés et al., 2000), where a general architecture for IDSS suitable for WWTP 158 

was presented. This initial proposal was refined in a later study (Poch 2004).  159 

The 2000s brought up concerns regarding the three main elements of sustainable development: economy, social 160 

aspects and environment (Afgan et al., 1999). For this reason, comprehensive planning tools were developed 161 

in order to address the growing sustainability demand, without, however, completely attend social aspects. 162 

During this period, European Council established a framework of community actions in the field of water 163 

policy (including wastewater treatment) in view of achieving good qualitative and quantitative status of all 164 

water bodies (Directive 2000/60/EC). This Directive favored the adoption of DSS in WWTP field in view of 165 

reducing the mass of pollutants discharged into the environment. 166 

 Nevertheless, the multi-purpose demand was specifically managed with the use of IDSS. Some new expert 167 

systems (ES) in which the logic of the system bears a resemblance to human reasoning (Ahmed et al., 2002) 168 

were continued to be developed. Models based on the concept of artificial neural networks (ANN) were 169 

reportedly used in view of predicting the interlinkage among the processes involved in 170 

WWTPs/society/economy (Hamed et al., 2004). In the mid 2000 simulation and benchmarks appear to be the 171 
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main sources of evidence to support decisions in WWTP (Jeppsson et al 2006; Vrecko et al 2006). In (Roehl 172 

et al 2006) strategies to decrease the enormous costs of simulations are addressed.  Some new intelligent 173 

techniques were proposed in the literature like the use of Multi-Agent Systems (MAS) for the operation and 174 

management of a WWTP (Riaño et al., 2001; Borrell et al., 2002) and the use of MAS for water management 175 

using the simulation of scenarios in decision-making for a river basin (Rendón-Sallard et al., 2006). An 176 

extensive survey on the use of Agent Technology in environmental processes was done in (Aulinas et al., 177 

2009). In addition, the data-driven approach to build IDSS was started to be considered as in (Comas et al., 178 

2001), and the need for standardizing the terminology and using a background knowledge in WWTPs was 179 

implemented with the use of ontologies (Ceccaroni et al., 2004). The application of CBR was consolidated 180 

with some works like (R-Roda et al., 2001; Sànchez-Marrè et al., 2004). Finally, researchers in IDSS field 181 

started to be aware of the increasing need for setting some general framework for the development of IDSS 182 

(Sànchez-Marrè et al., 2008). The MCDM approach was presented as a friendly solution that takes into 183 

consideration technology and cost information for the selection of the most appropriate treatment system, 184 

weighting of other important indicators with the aim to present a final ranking of possible solutions to a specific 185 

problem (Hidalgo et al., 2007). LCA was also applied as a credible “cradle-to-grave” evaluation of the 186 

environmental impacts of a wastewater treatment plant (Renou et al., 2007).  187 

2.3. DSS impoving to consider environmental and social aspects including climate change 188 

During the 2010s the increase on the environmental and social emphasis to all types of industrial process 189 

occurred. Further, the needs for economic efficiency (e.g. minimizing energy and chemicals consumption and 190 

plant footprint) and operational reliability (Comas et al 2010; Hakanen et al., 2011; Carburenau et al 2013) 191 

faced with even more stricter environmental requirements. In addition, climate change issues have also 192 

acquired a notable role in WWTPs’ decision support systems. In this matter, GHG are being more commonly 193 

assessed due to the relevance that WWTPs have on the emissions of methane (CH4) and nitrous oxide (N2O) 194 

(among others, Kampschreur et al., 2009; Ahn et al., 2010; Caniani et al., 2015; Lorenzo-Toja et al., 2016). 195 

The increase of DSSs with the aim to quantify GHGs from WWTPs is related to the fact that environmental 196 

cost-benefit ratio is representing an unacceptable business risk (Foley et al., 2010) and GHGs are being 197 

considered as an undesirable treatment output (Zeng et al., 2017; Gémar et al., 2018). For the abovementioned 198 

reasons, IDSS (Poch et al., 2017) and MCDMs  (Bertanza, 2015; Arroyo and Molinos-Senante, 2018) have 199 
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been evolving to support decision makers in choosing the most suitable technology among all the alternatives 200 

that were developed along the past years. IDSSs have evolved in the direction of using extensively the data-201 

driven approaches, appearing a subfield named Enviromental Data Mining born in 2006 (Gibert et al. 2008) 202 

and reviewed in literature (Gibert et al., 2012), and using the MAS approach (Polakóv and Metzger, 2012). In 203 

addition, the characterization of IDSS for environmental systems was increasing (Sànchez-Marrè et al., 2012). 204 

Furthermore, the concept of IDSS interoperation (Sànchez-Marrè, 2014) appeared during this period.  205 

With the appearance of IoT and development of smart sensors, distributed real time computing and real-scale 206 

Artificial Intelligence, new generations of IDSS rely on intensive multimodal data and the new field of 207 

Environmental Data Science approaches (Gibert et al 2018). In Corominas et al. (2018) a nice review of the 208 

data science techniques used in water management systems to transform data into relevant knowledge for 209 

decision support is provided. Quality of sensor data is object of attention (Alferes et al., 2016), removal of 210 

emergent pollutants (pharmacy, pesticides, micro-pollutants...) become more and more important 211 

(Hadjimichael et al., 2016; Fisher et al., 2017; Kim et al., 2017) and participation of end-users seem to gain 212 

importance for a design of effective systems at real full-scale (Corominas et al. 2018). The concept of 213 

workflow-based operation systems in WWTPs, and in general, environmental systems points towards this 214 

direction (Pascual-Pañach et al., 2018). Nowadays, DSS become central elements to support new designs of 215 

adaptive water management systems required for the rapid and unpredictable changes occurring in the context, 216 

that precludes the assumption of stationarity announced in literature (Domínguez et al., 2006; Milli et al., 2008; 217 

Torregrossa et al., 2018). 218 

More details of DSS's evolution during the last decade are presented in the following sections where the 219 

systems were categorized in accordance to their main characteristics.  220 

 221 

222 
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3. Main types of DSS applied to WWTP issues 223 

Four main types of DSSs have been found in literature: i. Life Cycle Assessment (LCA) based; ii. mathematical 224 

models (MM) based; iii. Multi-Criteria Decision Making (MCDM) based; iv. Intelligent Decision Support 225 

Systems (IDSS) based (see Figure 3). A summarized discussion regarding these four types of DSS is presented 226 

in this section in order to provide the reader an overview of their application to WWTPs. 227 

 228 

 229 

Figure 3.  Main DSS existing in literature 230 

3.1. Life Cycle Assessment DSS for WWTP 231 

LCA is applied to WWTPs in order to evaluate the environmental profile of every aspect from the beginning 232 

to the end, including WWTP’s processes efficiency and services (Pasqualino et al., 2009). LCA methodology 233 

allows computing all environmental emissions (solid, liquid and gaseous) generated from all the involved 234 

processes in view of converting them into environmental impacts and impact indicators looking to the 235 

environment, social and economic aspects (Yoshida et al., 2014). The core idea behind the LCA applications 236 

on WWTPs is to elaborate/quantify indicators for assessing the global environmental impacts of WWTPs. The 237 

main contributors to the environmental profile provided by a WWTP are energy consumption, wastewater 238 

discharge, sludge disposal/reuse and land occupation (among others, Hospido et al., 2004; Lassaux et al., 239 

2007). Sludge reuse, for example, is very often considered during the LCA due to its potential applicability to 240 

industrial symbiosis as agronomical fertilizer (Pasqualino et al., 2009) or fuel recovery (Zarkadas et al., 2016). 241 

Another example is the current discussion regarding the reuse of the treated wastewater, which could be applied 242 

to agriculture irrigation, urban routines, groundwater recharge, recreation, among others (Pintille et al., 2016).  243 

LCA MM

MDM IDSS

DSS
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Despite of the sustainable approach presented by these kind of reuses, environmental regulations require 244 

restrictive targets, which are hard to achieve due to several management questions. For this reasons, during the 245 

last decade, LCA has gained particular interest from the WWTP sector, as its features have encountered the 246 

urgent need of researchers/scientists/operators of WWTPs to better quantify the environmental impact of 247 

plants, reduce the operational costs, reduce the mass of pollutants discharged, facilitate the wastewater 248 

recycling and reuse recovery materials or energy (Yoshida et al., 2014).  249 

Several applications and review papers on LCA of WWTPs have been published in the literature (among 250 

others, Friedrich et al., 2007; Ahmed, 2011; Corominas et al., 2013a). Researchers have applied LCA for 251 

several scopes: i. evaluate the environmental impact of specific WWTPs case studies (Venkatesh and Brattebø, 252 

2011; Pintile et al., 2016); ii. set-up control strategies for improving WWTPs operations as pure LCA (Yoshida 253 

et al., 2014) or coupled with mathematical models (Flores-Alsina et al., 2010; Bisinella de Faria et al., 2015); 254 

iii. design in view of comparing different plant configurations or non-conventional (e.g. MBR) versus 255 

conventional technologies (e.g. CAS) (Clauson-Kaas et al., 2004; Morera et al., 2015). The evolution of LCA 256 

applications can also be found in the literature depending on the scope and the WWTPs technology applied. 257 

Examples of recent applications, main purposes and achieved results are presented in section 5 of this work. 258 

 259 

3.2. Mathematical Model-based DSS for WWTP 260 

The oldest DSSs found in literature are based on mathematical models.  This type of DSS is the more developed 261 

since the knowledge required for their application is already widespread. MM based DSSs represent  powerful 262 

tool to obtain a comprehensive understanding of WWTP features since do not require a high costs to be 263 

implemented (Mannina et al., 2016). Their application may seek the assessment of biological carbon, 264 

phosphorus and ammonia removal (Henze et al., 2000; Zuthi et al., 2012), with the aim to predict the effluent 265 

quality. In addition, biomass metabolism can be evaluated in view of understanding excess sludge production, 266 

oxygen consumption rates (Fenu et al., 2010) and direct GHG emissions (Sweetapple et al., 2014).  267 

MMs may differ each other on the basis of their level of details and complexity. Literature often report 268 

simplified models in view of having rapid responses (among others, Kyung et al., 2015; Zeng et al., 2017; 269 

Nadiri et al., 2018). These simplified models often include the direct and indirect GHG emissions 270 

quantification (e.g., Kyung et al., 2015) coupled with the economic/social indicators (e.g., Gémar et al., 2018; 271 
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Jiang et al., 2018). The simplified models adopted are commonly based on the mass balance and/or on the 272 

emission factors established in the literature. For example, Kyung et al. (2015) quantified the on-site GHG 273 

emissions from a five-stage Bardenpho WWTP on the basis of the emission factors established by experimental 274 

data. 275 

Detailed type of model can be adopted when a more reliable representation of reality is required. However, the 276 

adoption of mechanistic mathematical models (e.g. the activated sludge model - ASM family) is rare since 277 

they are complex and require detailed dataset to be adopted (Henze et al., 2000). Some attempt of establishing 278 

a DSS based on mechanistic mathematical models (often coupled with LCA) exist in the literature (among 279 

others, Foley et al., 2010; Flores-Alsina et al., 2010; Corominas et al., 2013b, Boiocchi et al., 2017). For 280 

example, Boiocchi et al. (2017) applied a dynamic model to a WWTP with the aim of assessing the nitrous 281 

oxide emissions related to the metabolism of the ammonia oxidizing bacteria (AOB). This application 282 

demonstrates that dynamic models are used when researchers are seeking for specific answers that may 283 

enhance the plant’s performance. MMs have also been applied to WWTPs inclusing membrane bioreactors 284 

with the aim to prevent their known limitations (e.g., membrane fouling, higher energy requirement and higher 285 

GHG emissions) from affecting the scattering and viability of the technology (Zuthi et al., 2013). 286 

Several advantages can be listed concerning this kind of DSS. For example, the use of MMs may proportionate 287 

the validation of lab-scale results and provide credible estimations for full-scale facilities (Zuthi et al., 2012), 288 

offering a wide range of possible solutions to be considered during a decision-making process (Mannina & 289 

Cosenza, 2013). Their main liability is related to the lack of default values for several crucial information (e.g., 290 

biomass growth and decay rates, formation/degradation coefficients, among others), which may reduce its 291 

accuracy (Zuthi et al., 2012). For this reason, some MMs are applied for specific WWTP and must suffer 292 

somes changes for the application to other sites (Ni and Yuan, 2015). 293 

From the abovementioned considerations, it is possible to conclude that DSSs based on mathematical 294 

modelling can allow stakeholders to explore a variety of possible solutions for an issue of interest prior to their 295 

application on-site, which may allow saving time and money while solving a determined problem. 296 

3.3. Multicriteria Decision Making based DSS for WWTP 297 
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The MCDM based DSS represent the combination of different criteria/methods established with the aim of 298 

optimizing the behavior of a WWTP in which several technologies are applied focusing the attention towards 299 

several optimization targets (e.g. reducing emissions, reducing operational costs) (among others, Torregrossa 300 

et al. 2017; Chow et al., 2018). MCDM based DSS application to the WWTP context is suggested when multi-301 

objective responses are required in order to pursue a more efficient management of the whole facility (Zeng et 302 

al., 2017; Jiang et al., 2018). In particular, the MCDM approach is one of the most reliable DSSs when it comes 303 

to pursue the optimization of WWTPs. 304 

MCDM based DSS application are still under careful studies since an MCDM may require developed systems 305 

and complex software with the aim to obtain faster responses. Literature shows that the use of MCDM may 306 

lead to more sustainable wastewater treatment, as they can include several environmental issues (e.g., GHG 307 

emissions and resources consumption) with a similar weight as operating features and effluent quality 308 

(Mannina et al., 2019). Indeed, MCDMs are often coupled with other types of DSSs in view of providing a 309 

more comprehensive response to the treatment issues (Bisinella de Faria et al., 2015). For example, Castillo et 310 

al. (2016) coupled a multi-criteria analysis to an integrated mathematical model with the aim of generating a 311 

ranked short-list of feasible treatments for three different scenarios (which included different types of 312 

wastewater treatment), obtaining the optimal type of treatment and the most robust solution under influent 313 

uncertainties and tighter effluent limits. Mannina et al. (2019) coupled an integrated mathematical model to an 314 

optimization technique named Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) in 315 

order to optimize the bahaviour of a membrane bioreactor pilot-plant. Multiple criteria were assessed during 316 

the work (e.g., operating aspects and costs, emissions of liquids and gases, energy demand, among others) 317 

considering the influence of the main operating parameters (e.g., sludge retention time – SRT, recycle ratio 318 

and air flow rate) of a benchmark scenario, which was used as reference for the optimization. Results provided 319 

an optimal set of parameter to ensure 48% reduction in terms of operating costs and a 10% reduction in terms 320 

of direct emissions. From both previous examples, one can see that DSSs based on MCDM have a great 321 

potential to improve the work of managers and researchers regarding the wastewater treatment. 322 

 323 

3.4. Intelligent Decision Support Systems for WWTP 324 
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Finally, the IDSS based propose the integration of several techniques, some coming from the Artificial 325 

Intelligence (AI) and others coming from Statistics or Control Theory field, to improve the complex decisions 326 

made by the final users of a WWTP. The reader may refer to Sànchez-Marrè and Cortés (2011) for a further 327 

review of the application of AI tools to WWT systems. Both data-driven methods induced from historical data, 328 

and model-driven techniques obtained from experts or from first-principle models, are integrated into these 329 

systems to improve the performance and reliability of these operation, control, management or design systems. 330 

In the last years, some researchers have been studying a more complex WWT system, formed not only by one 331 

WWTP, but a whole River Basin (RB) composed by several WWTPs, the corresponding water connections 332 

and the receiving water body of the river (Oliva-Felipe et al., 2017). New generations of IDSS based on AI 333 

represent the current state of the art. Indeed, they allow establishing a dependence between data (acquired by 334 

means of AI systems), focus and actions (Gibert et al 2018).  335 

 336 

3.5. Main software tools available for the various DSS 337 

In this section, the software mostly adopted, as authors are aware, for each type of DSS will be briefly 338 

presented. 339 

Regarding the LCA, the software mostly adopted WWTP filed is the Superpro/Envrio Pro Designer 340 

commercialized by Intelligen, Inc. This software allows handling the wastewater processes (coupled with tens 341 

of other processes). This tool is quite simple to be adopted since include an intuitive graphical and user 342 

interface. Another LCA software is GaBi life cycle assessment software, commercialized by GaBi solutions. 343 

This latter can be adopted as a tool for a sustainable WWTP design. Further, it includes the tools for calculating 344 

the carbon, ecological, environmental and water footprint of the WWTP, coupled with the tool for evaluating 345 

the resource recovery efficiency.  346 

Regarding the MM and MCDM advanced software are available in the market as support for plant design, 347 

diagnostic, optimization, operation. Among these tools, the mostly adopted are WEST, produced by MIKE 348 

Powered by DHI, and GPS-X, produced by Hydromantis Environmental Software Solutions, Inc. Both of these 349 

software algorithms are based on the ASM proposed by the International Water Association (Henze et al., 350 



18 
 

2000). WEST and GPS-X allow to simulate the WWTP at plant scale and the integration with other software 351 

systems in view of selecting the best option for an optimal plant design or operation.  352 

Since IDSS are often the integration of different decision support techniques, it is hard to find a single software 353 

that can be declared as specifically applicable for WWTPs. Indeed, literature shows that different existing 354 

systems can be joined to support intelligent decision-making. The Environmental Problem Solving Interface 355 

LOgic Nonmonotonic (EPSILoN) is an example of an IDSS based on expert knowledge system that works in 356 

a two-step process. The first step regards the insertion of the process knowledge into the platform by the user, 357 

so EPSILoN can obtain the information needed for the decision-making process. Then, as a second step, 358 

EPSILoN must be able to understand user’s request so it can provide the results of the reasoning.  359 

GESCONDA (Sànchez-Marrè et al., 2010) was a tool conceived as a system for knowledge discovery and 360 

Data Mining, but currently, the system supports additional functionalities. A case-based reasoning engine and 361 

a rule-based reasoning shell are provided. Those skills of GESCONDA makes it a suitable prototype tool for 362 

the deployment of IDSSs, including all main steps like data preparation and filtering, data mining, model 363 

validation, reasoning abilities to generate solutions, and predictive models to support final users. 364 

Oprea (2018) introduced a knowledge-based modelling framework for IDSS that can be applied to several 365 

environmental issues, which had coupled ontological approach with data mining and Bayesian networks. By 366 

means of these three approaches, the IDSS is capable of store knowledge regarding the environmental issue, 367 

to perform specific analysis on the basis of inductive learning techniques (decision trees and rules algorithms), 368 

and to represent the dependences between different parameters defined by the problem.  369 

4. Main focus of DSS application in WWTPS 370 

In Figure 4 the DSS working principle in WWTP field is summarized on the basis of the key focuses linked to 371 

its adoption (Figure 4). According to the relevant literature, the key focuses of applying a DSS in WWTP field 372 

are: design new plants, reduce energy consumption, improve effluent quality, making WWPTs sustainable, 373 

improve plants operation and, their combination (among them, Yoshida et al., 2014; Pintilie et al., 2016; Gémar 374 

et al., 2018; Jiang et al., 2018). The DSS can be adopted in literature as a closed loop, depending on the main 375 

focus imposed (Figure 4). On the basis of the imposed focus, a collection of a database is first required to run 376 

models or software used as support. The results allow to improve experts’ knowledge. Then, the results 377 
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interpretation provides information and potential advises for decision making. Consequently, the actions to 378 

undertake in view of obtaining the established focus can be identified (Figure 4).  379 

 380 

 381 

Figure 4.  Main focus of DSS application in WWTP field  382 

In the following sub-sections some details about each focus and the main DSS applications found in literature 383 

related to each focus wil be discussed.   384 

 385 

4.1 DSS focused on design 386 

Currently, two different scenarios can be find in the world regarding the design of WWTPs (Castillo et al., 387 

2016): i) establish a wastewater treatment program (e.g. United States and Europe), seeking to retrofit existing 388 

facilities in order to attend more stringent water quality regulations; ii) implement new wastewater treatment 389 

plants, such as India, Latin America and Africa, aiming to meet health and ecological standards.  390 

Finding a proper DSS for design purposes is a challenging since WWTPs usually have remarkably site-specific 391 

conditions, which makes difficult the adoption of DSSs for all WWTPs. Several DSSs focused on design 392 

aspects were found in literature with the scope of upgrading (Bertanza et al., 2015) and retrofitting (Morera et 393 
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al., 2015; Castillo et al. 2016). DSS developers are also having trouble to keep up with the rapid growth of 394 

innovations that is currently happening. Thus, it is hard to find a system that comprises a considerable amount 395 

of new technologies and an integration among them to address the whole wastewater treatment (Comas et al 396 

2010; Castillo et al., 2016; Poch et al, 2017).   397 

Despite of the aforementioned challenges, DSSs are able to guide the decision makers into a more rational 398 

decision as they consider several aspects at the same time to provide the most suitable solutions. Considering 399 

design purposes, for example, the selection of a treatment train on current days does not considers only 400 

technological aspects, but also environmental regulations, economic feasibility and stakeholders appreciation, 401 

and DSSs are able to present the integrated evaluation within minutes, while a decision maker would need 402 

months to present a similar result. 403 

Castillo et al (2016) have presented a detailed study discussing the capability of DSSs as tools to support the 404 

designing of new WWTPs. The study of Castillo et al (2016) can be used as a good example of “DSS for 405 

design” since three case studies (in United States, South America and Europe) of real projects were adopted 406 

by the authors and compared to the results obtained with a DSS. With this regards, they applied the 407 

Novedar_EDSS tool which allows to compare different designing scenarios (adoption of different processes 408 

technologies, treatment of wastewater having different qualitative and quantitative features, etc…) thanks to 409 

its two main sub-units linked each other (specific knowledge base, Skb-units and compatibility knowledge 410 

base, Ckb-units). After defining the scenario to be analyzed, during the diagnosis step the Novedar_EDSS 411 

allows to compare different technologies (by means of Skb-units) and to identify the appropriate process flow 412 

diagrams to be adopted (by means of Ckb-units). The designing alternatives are compared during the last step 413 

of Novedar_EDSS by using a multi criteria analysis.  The findings obtained by Castillo et al (2016) show that 414 

by using the Novedar_EDSS tool the same treatment processes of the real project have been selected, thus 415 

showing that this tool represents an excellent decision-makers to support the choice of best technology and 416 

treatment processes to be adopted.  417 

 418 

4.2 DSS focused on energy aspects 419 

WWTPs are strongly dependent on energy to be operated (Akhoundi and Nazif, 2018). Despite of this 420 

dependence, plant managers usually access energy data with a low frequency which provides a long time gap 421 
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between the occurrence of problems regarding energy aspects and its detection (Torregrossa et al., 2017). 422 

Energy is currently measured by automatic sensors that gather the data to feed enormous databases, from which 423 

is hard to retrieve information to support the decision-making process. Along with this scenario, it is possible 424 

to find studies mentioning process inefficiency as one of the causes for increasing energy consumption within 425 

a WWTP (Akhoundi and Nazif, 2018; Torregrossa et al. 2018), which directly affects plant costs. Both 426 

situations highlight the importance of a DSS focused on energy demands.  427 

Torregrossa et al. (2017) affirmed that a DSS specially focused on energy aspects of WWTP management does 428 

not exist. It is, however, possible to find studies using decision support tools accounting energy consumption 429 

and converting this results in terms of indirect GHG emissions (Singh and Kansal, 2016; Tomei et al., 2016; 430 

Zeng et al., 2017). The main problem of this approach is that energy is usually considered by DSSs as an input 431 

data collected from plant’s measurements and not as a result from the decision-making process, i.e., while 432 

evaluating plant’s performance, managers do not directly seek for mitigating energy consumption, as its 433 

consumption appears to be a result of other performance indicators.  434 

One of the first attempt of applying a DSS with the aim to selct strategies for reducing energy consumption 435 

and GHG emissions from WWTPs was proposed by Singh and Kansal (2016). Specifically, they combined 436 

different simple mathematical models and an LCA to evaluate the total energy consumption and the GHG 437 

footprint of WWTPs. The simple mathematical model adopted by Singh and Kansal (2016) were based on 438 

mass balance and described th energy consumption and the direct GHG emissions due to: mechanical devices 439 

(for example, mixer, pump, aerators), construction materials, diesel used for sludge transportation from the 440 

plant to the final destination (e.g., landfill, composting plant etc…) and chemicals used during the plant 441 

operation (e.g., disinfectants or flocculants). The energy consumption and GHG emissions of twelve WWTPs 442 

in Delhi was assessed in view of understanding the key factors influencing their values in the centralized (the 443 

whole catchment area wastewater treated in a large WWTP) and decentralized (several small households 444 

treatment systems treating the wastewater produced inside the catchment area) systems. The study of Singh 445 

and Kansal (2016) showed the trade-offs between pollution reduction, energy savings, and GHG emissions 446 

reduction, which may influence in the decision-making concerning infrastructure’s choices. Thus, according 447 

to the authors, the choice between centralized and decentralized systems depends on the aim, i.e. if the goal is 448 

to lower the degree of pollution, then centralized systems offer more energy savings; if, however, urban 449 
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wastewater infrastructure is to be designed for recycling and reuse locally, decentralized systems are more 450 

energy efficient.  451 

4.3 DSS focused on quality aspects 452 

DSSs can be applied to WWTPs in order to predict the effluent quality under known WWTP operational 453 

conditions (Nadiri et al., 2018). For example, it is possible to adopt DSSs in view of calculating treatment 454 

efficiency and evaluating the removal of substances even prior to initiate the treatment under different 455 

operational conditions, implemented processes and influent features (Hamed et al., 2004; Sonaje and Berlekar, 456 

2015).  457 

One of the most representative example of DSS focused on quality aspects was presented by Jing et al (2018), 458 

who introduced a novel probabilistic agent-based modelling approach for simulating the marine oily 459 

wastewater treatment process. The agent-based modelling approach has the particularity of describing each 460 

component of the system under study at micro scale, thus allowing to predicting the behavior of bulk liquid 461 

(e.g., interface between water and oil) that cannot be appreciate at macro scale. Specifically, Jing et al (2018) 462 

adopted this approach to evaluate the removal efficiency of naphthalene (NAP) from marine oily wastewater 463 

by using the ultra violet (UV) process. They found an excellent capability of the proposed modelling approach 464 

to describe the treatment process under study. Indeed, the calibrated model provided predicted results which 465 

have a root mean square error quite low (11.03%) compared to the measured data.   466 

A discussion on some DSSs related to quality aspects will be presented in the following sections with the aim 467 

of emphasizing the structure of the adopted DSS (e.g., IDSS adopted by Nadiri et al. (2018).  468 

 469 

4.4 DSS focused on sustainability aspects 470 

The current goal of WWTPs is the improvement of wastewater treatment’s sustainability (Gémar et al., 2018), 471 

i.e. treat an higher amount of water as possible, with less cost associated to the treatment and causing less 472 

environmental impacts. Considering sustainability as a multiple-aspect issue, it can be said that its assessment 473 

is a complex problem (Molinos-Senante et al., 2014).  474 
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Some DSSs were developed in order to provide an integration of techno-economic, environmental and social 475 

aspects, permitting a more complete evaluation of a WWTP when decision-making is needed (among others, 476 

Tomei et al., 2016; Xin et al., 2018). In order to assess the sustainable aspects of a WWTP, the opportunities 477 

for its improvement and prioritize actions have to be identified. 478 

Recently, Oprea (2018) have proposed an environmental knowledge based IDSS able to solve different 479 

environmental issues (at water, economic or other levels) in view of creating a sustainable WWTP. The 480 

advantage of such approach is to dealing and solving complex environmental issues in a modular way. 481 

Other DSSs related to sustainability, will be discussed in section 5 as examples of the DSS types application.  482 

4.5 DSS focused on operational aspects 483 

The DSS focused on operational aspects have the main aim to help WWTPs operators suggesting the best and 484 

fastest operational solutions in view of improving cost-benefit relations focusing on several aspects, including 485 

quality, energy and sustainability (Torregrossa et al., 2018). The system presented in (Sànchez-Marrè et al., 486 

2004) is currently working as a real intelligent supervisor in many real WWTP. The setting-up and the adoption 487 

of DSS focused on operational aspect requires an extensive database (influent flow rate, air flow rate, influent 488 

features, etc.). Therefore, it is suggested to equip WWTPs with sensors able to deliver high-frequency data 489 

(Torregrossa et al., 2018). 490 

The DSSs focused on operational aspects mentioned in this work as being the ones addressing management 491 

issues, e.g. optimization of control parameters (Díaz-Madroñero et al., 2018), and processing of plant report 492 

data (Torregrossa et al., 2018). Another important group of DSS are the IDSS focused on the supervision and 493 

general management of WWTPs which have been mentioned before. Currently, most of the efforts in IDSSs 494 

are focused on model interoperability (Sànchez-Marrè, 2014), and in scalable and automatic building of IDSS, 495 

independently from the location-site specific conditions (Pascual-Pañach et al., 2018). 496 

 497 

5. Application of DSSs to full-scale WWTPs 498 

This section presents the remarks of peer-reviewed international publications (source Science Direct) dealing 499 

with DSSs applied to WWTPs (adopted keywords “decision support systems” and “wastewater treatment”).  500 
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The period between 2010 and 2018 was considered in order to illustrate how the DSSs application to WWTPs 501 

evolved during the last decade. Most of the papers published from 2010 to 2013 presented the adoption of new 502 

approaches (Hernandez-Sancho et al., 2011) or similar types of DSSs (Li et al., 2013) in comparison to the 503 

following years. Thus, here the remarks of papers published in most recent years (from 2014 to 2018) are 504 

discussed. 505 

The papers found in literature were classified in accordance to the type of DSS applied (LCA, MM, MCDM, 506 

IDSS or a hybrid DSS, i.e. comprising the previous types) and their main focus regarding WWTPs needs 507 

(design, energy, operation, quality and sustainability). In this period (2010-2018), the efforts on the IDSS type 508 

of DSS have been focused more on the proposal of general frameworks (Sànchez-Marrè, 2014), 509 

methodological approaches to generate reliable and useful IDSS for WWT systems (Pascual-Pañach et al., 510 

2018), characterization of the environmental data mining subfield (Gibert and Sànchez-Marrè, 2012), and open 511 

challenges in the field of IDSS (Sànchez-Marrè et al., 2008), than in deploying applications for concrete 512 

WWTP installations.  From the 28 papers considered in this review, three were related to LCA, seven to 513 

MCDM, eight to MM, three to IDSS, and seven were related to what this paper is calling as “hybrid DSSs”, 514 

of which three used LCA+MM, two used LCA+MCDM, one IDSS + MM and one  IDSS + MCDM (see Figure 515 

5).  516 

  517 

Figure 5. Main types of DSSs applied to WWTPs from 2014 to 2018 (source Science Direct), where: LCA = Life Cycle 518 

Assessment; MCDM = Multi-criteria decision making; MM = Mathematical modelling; IDSS = Intelligent DSS; 519 

LCA/MM = Life Cycle Assessment and Mathematical modelling; LCA/MCDM = Life Cycle Assessment and Multi-520 
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criteria decision making; IDSS/MM = Intelligent DSS and Mathematical modelling;  IDSS/ MCDM = Intelligent DSS 521 

and Multi-criteria decision making. 522 

 523 

As for the main focus of the DSSs while applied to WWTPs, from the same 28 papers previously mentioned, 524 

nine were related to improvements during the design phase, one to improvements concerning energy aspects, 525 

five to provide solutions for the operational phase, three seeking to enhance effluent’s quality, eight to better 526 

understand sustainable aspects, two integrated operations with i) design phase and ii) sustainability aspects, 527 

and one integrated energy with sustainability (see Figure 6). 528 

 529 

   530 

Figure 6. Main focus of DSSs applied to WWTPs from 2014 to 2018, where: D = Design; E = Energy; O = Operation; 531 

Q = Quality; S = Sustainability; O/Q = Operation and Quality; O/S = Operation and Sustainability; and E/S = Energy 532 

and Sustainability. 533 

A brief description and the main features of the DSSs found in literature are presented in the following sections. 534 

5.1 Life Cycle Assessment 535 

Yoshida et al. (2014) and Pintilie et al. (2016) used LCA in view of assessing issues related to WWTP’s 536 

sustainability. Yoshida et al. (2014) have emphasized the need of having good quality data. Indeed, Yoshida 537 

et al. (2014) have demonstrated that the use of overestimated data (e.g. emission inventory) during the LCA 538 

application may result in gross underestimation of environmental impacts associated with the WWTP. With 539 

this regard, authors suggested the inclusion of operational data and background emissions. 540 

0

2

4

6

8

10

D E O Q S O/Q O/S E/S

N
um

be
r o

f D
SS

 (u
ni

t)

Main focus of the DSSs



26 
 

Pintilie et al. (2016) presented an extensive data collection and a Life Cycle Inventory (LCI) build-up. Two 541 

case studies from different climatic regions of Spain were taken into account for assessing water quality, direct 542 

(from carbon dioxide - CO2, N2O and CH4) and indirect (from energy consumption) GHG emissions and 543 

toxicity coming from pharmaceutical and personal care products (PPCPs). From the extended LCI application, 544 

Pintilie et al. (2016) found that the WWTP construction phase is the least environmentally impacting, while 545 

the operation phase is the most impacting one. Pintilie et al. (2016) also emphasized that the removal of PPCPs 546 

could have strong environmental benefit when compared to non-treatment scenario underlying the key role 547 

played by non-conventional pollutants. Pintilie et al. (2016) also underlined the need of adopting measured 548 

GHG emissions data, since they are soften higher than the emissions factors; the use of emission factor could 549 

underestimate the total GHG emissions in almost 62%. 550 

Lorenzo-Toja et al. (2016) applied an LCA to Spanish urban wastewater and water reclamation opportunities 551 

in order to identify and quantify its main environmental contributors. Authors found that energy demand was 552 

more environmentally impacting due to the large amount of energy required for the advanced treatment. They 553 

also found that non-potable use of reclaimed water could reduce the stress of fresh water supply in Spain. 554 

5.2 Mathematical Models 555 

Some of the DSSs found in literature based on mathematical models will be here discussed.  556 

Gémar et al. (2018) assessed dynamic eco-efficiency (i.e. changes in eco-productivity over time) of WWTPs 557 

using the dynamic weighted Russell directional distance model (WRDDM). The WRDDM is a non-radial data 558 

envelopment analysis (DEA), and the authors used the approach aiming to obtain an eco-productivity change 559 

index for each major component of the WRDDM model, such as costs, pollutants removal, and greenhouse 560 

gas emissions. The results were quantified in terms of total factor eco-productivity (TFEPC) and the relative 561 

contributions of inputs (e.g. economic costs) and outputs (desirable, e.g. pollutants removal efficiency, and 562 

undesirable, e.g. environmental impacts). Results illustrated that although eco-productivity improved in half 563 

of the WWTPs assessed, there was still potential for improving some eco-efficiency components. Moreover, 564 

operational costs and GHG emissions were the main drivers reducing eco-productivity. The results also 565 

highlighted the importance of evaluating change in eco-productivity over time and in identifying the drivers 566 
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associated with those changes, both of which can be used to support decision-making focused on the 567 

sustainability of WWTPs. 568 

Jiang et al. (2018) presented the application of a social optimization model considering both wastewater 569 

treatment costs and valuation of ecosystem damage in view of finding the optimal solution for pollutant control 570 

levels.  Results presented by Jiang et al (2018) showed that the integration between the treatment cost decision 571 

and the ecological damage in one model allows improving the policy-makers’ capability of identifying the 572 

trade-off for socially optimal solutions under various conditions.  573 

A benchmark simulation model was developed by Saagi et al. (2016) to evaluate control strategies for the 574 

urban catchment and sewer network. The model can be integrated with existing/standard wastewater treatment 575 

models, such as ASMs. The presented model was able to describe the dynamic conditions related to wastewater 576 

generation and to provide an assessment of control strategies and structural modifications to be applied for the 577 

catchment and sewer system. On the other hand, further studies must be made in order to guarantee that the 578 

model can be applied to different site conditions.   579 

Zeng et al. (2017) used a distance function approach to comprehensively assess the performance of 1079 urban 580 

WWTPs throughout China. The main aim of the study was to minimize the capital cost and energy 581 

consumption during the removal of conventional pollutants (COD, BOD; TSS, total nitrogen - TN, total 582 

phosphorus - TP). The co-benefit of controlling water pollution and mitigating climate change was also taken 583 

into account. Zeng et al. (2017) found that GHG emissions could decrease by 32.2% if all plants worked 584 

efficiently and that the parameterized distance function presented by the study showed to be useful in 585 

explaining the differences among WWTPs and their potential for performance improvement. 586 

5.3 Multi-Criteria Decision Making  587 

Bertanza et al. (2015) have developed a DSS procedure which allows the rating of several technical factors 588 

(system reliability, complexity, safety aspects, modularity, etc.) and estimating capital and operating costs in 589 

case of WWTP upgrading is needed. The main goal of Bertanza et al. (2015) was to use the DSS in order to 590 

evaluate different upgrading scenarios for existing WWTPs. The DSS revealed to be flexible and capable of 591 
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providing a detailed assessment that emphasizes techno-economic, environmental and social aspects in order 592 

to help stakehoders on finding a most suitable solution for sludge management. 593 

Chhipi-Shrestha et al. (2017) developed a DSS for evaluating the potentiality of fit-for-purpose (FFP) 594 

wastewater treatment and specific reuse for a community. FFP wastewater treatment simultaneously considers 595 

intended and economic viability, use, and environmental sustainability. The DSS considers as state variables 596 

the amount of reclaimed water production, the health risk of water reuse, the cost, the energy use and the 597 

carbon emissions. From the use of the proposed DSS, Chhipi-Shrestha et al. (2017) conclude that the quality 598 

of reclaimed water varies with different reuse applications which affects the types of treatment required. 599 

Treatment requirements may reflect on different cost, energy use, health risk and carbon emissions for each 600 

WWTP. 601 

Molinos-Senante et al. (2014) presented an innovative methodology to assess the sustainability of WWTPs. 602 

Specifically, Molinos-Senante et al. (2014) have proposed a composite indicator embracing economic, 603 

environmental and social issues. The Analytical Hierarchical Process (AHP) (Saaty, 1986) is also used to 604 

assign the weights to each indicator based on expert knowledge. The methodology proposed by Molinos-605 

Senante et al. (2014) was applied to seven wastewater treatment technologies for secondary treatment in small 606 

communities. The results showed that intensive technologies are the cheapest but have the lowest 607 

environmental sustainability, whereas the membrane bioreactor presents a contrary behavior. Indeed, the 608 

adoption of membrane bioreactors entails high operating costs (additional energy is required for membrane 609 

aeration and for permeate pump extraction), thus making this solution low economically sustainable. On the 610 

other hand, membrane bioreactors allow to achieve excellent effluent quality since the membrane physical 611 

barrier retains all the suspended (and a great part) of the dissolved pollutants, thus making this solution high 612 

environmentally sustainable.  613 

5.4 Intelligent Decision Support Systems 614 

Some of the works found in the literature are discussed below.  615 

The PSARU IDSS (Poch et al., 2017) was commissioned by the Catalan Water Agency to a consortium of 616 

research groups with the objective of selecting the most appropriate wastewater treatment and disposal system 617 
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for 3500 communities with less than 2000 inhabitants in Catalonia. A consortium of four environmental 618 

engineering research groups from different universities, an artificial intelligence research group and the 619 

Spanish Scientific Council led by the University of Girona was established to acquire and systematize the 620 

required knowledge and develop a system capable of reproducing the reasoning process of a group of experts 621 

facing the complex situation in question. A rule-based system was used as the main reasoning tool. 622 

The IDSS for energy saving within WWTPs proposed by Torregrossa et al. (2017) has the novelty of 623 

considering the DSS as a combination of key performance indicators, expert knowledge, daily benchmarking, 624 

fuzzy logic, scenario analysis and shared knowledge. With this regards, the Shared Knowledge Decision 625 

Support System (SK-DSS) concept was adopted. The structure of SK-DSS is very complex and complete of 626 

informatin. SK-DSS includes several tools for data management, for evaluating key performance indicators 627 

(KPI calculator), for assessing the benchmark conditions, for analysing the role of different technologies 628 

adopted (rule generator), for the comparison of different technical and operating solutions for energy saving 629 

and selecting the optimal one (fuzzy logic engin, solution engine and knowledge discovery tools).  The IDSS 630 

uses the on-line sensors and SCADA systems in view of pregressively find the most appropriate solution for 631 

energy saving. The IDSS proposed by Torregrossa et al. (2017) provides useful information to quickly find 632 

deficiencies and propose solutions to increase the energy performance.  633 

Nadiri et al. (2018) proposed an IDSS that adopted a supervised committee of fuzzy logic (SCFL) models as 634 

surrogates for the WWTP modelling in view of avoiding the adoption of complex physical, chemical and 635 

biological models. The fuzzy logic (FL) model predicts water quality parameters using the measurements 636 

obtained from influent quality data, such as pH, temperature, chemical oxygen demand (COD), biochemical 637 

oxygen demand (BOD), and total suspended solids (TSS). The SCFL model uses an ANN to combine 638 

forecasted results of water quality from individual FL models. Three FL models were used as surrogates 639 

proposed by Takagi-Sugeno (1985), Mamdani (1977), and Larsen (1980). The comparison between the SCFL 640 

results and the three surrogate models showed that the first one increased model's accuracy in approximately 641 

30% for BOD, 31% for COD and 23% for TSS. Authors also recommended to perform future researches to 642 

focus on quality data considering time variation. 643 
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The atl_EDAR system described in (Sànchez-Marrè et al., 2004) is the real and successful implementation of 644 

an IDSS for the supervision and management of WWTPs, proposed some years ago in (Sànchez-Marrè, 1996). 645 

The atl_EDAR system is currently implemented and, during the period 2010-2018, it is running in near 646 

twenty WWTPs both in Europe and South America. It is especially remarkable the application of the system 647 

to the El Prat de Llobregat WWTP which manages 420.000 m3/day, with an energy saving of 8,000 kWh/day. 648 

The system integrated both a rule-based system, a case-based reasoning system, and some fuzzy control 649 

algorithms, which made it very reliable and powerful. 650 

5.5 Hybrid DSSs 651 

The denomination “hybrid DSSs” is being used to represent the DSS that presented an association of more 652 

than one type of the DSSs previously classified in this work. A brief discussion on the most recently published 653 

studies will be provided in the following. 654 

One of the first example of hybrid DSSs, discussed above in terms of DSS focused on energy aspects, has been 655 

presented by Singh and Kansal (2016). As discussed above, the DSS of  Singh and Kansal (2016) combines 656 

simple  mathematical models with the LCA approach. Despite the results obtained by Singh and Kansal (2016) 657 

showed realistic energy consumption and GHG emissions values, the adoption of simplified models have 658 

limited the possibility to widen the analysis in terms of operating factors or treatment processes affecting their 659 

values. For example, the adoption of resource recovery strategies in WWTPs may reduce significantly the 660 

energy and GHG footprints. With this regards, current literature suggests to combine new generation of 661 

simulation with intensive data-driven tween models based for example on IoT, 5G distributed computing and 662 

IDSS in view of supporting the WWTP design and the technology development concerning more sustainable 663 

water management according to the Directive 2000/60/EC (Gibert et al., 2018; Corominas et al., 2018). 664 

The first attempt of combining innovative approaches was recently presented by Torregrossa et al. (2018). 665 

Specifically,  Torregrossa et al. (2018) presented an approach that consists of combining the LCA, the DEA, 666 

the time series analysis and the statistical tests. The main aim of Torregrossa et al. (2018) was to monitor the 667 

potential deterioration of the eco-efficiency (energy and environmental performance) occurred during the 668 

modifications in processes behavior within a WWTP. The main innovation in DEA algorithm is based on the 669 

set of decision-making units (DMUs), which was represented as 1-day operation datasets of a single WWTP. 670 
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The results showed that the methodology was able to identify the modifications in processes behavior and their 671 

causes and provide solutions for the process improvement.  672 

6. Discussions on DSS review 673 

The optimal design/operation of WWTPs requires the integration among several factors having different nature 674 

techno-economic, environmental, health-hygiene and social-cultural (Díaz-Madroñero et al., 2018) making 675 

this issue very challenging. With this regards DSSs could represent a valid tool to address all the 676 

aforementioned factors and find a trad-off among them.  677 

Considering the types of DSSs used, the studies presented by this work are following the current trend of 678 

applying more comprehensive tools to address WWTPs daily problems. The use of complex tools, such as 679 

LCA, MM, MCDM and IDSS, shows that the knowledge acquired so far concerning wastewater treatment has 680 

significantly grown with the years and more complex parts of the process become nowadays suitable for 681 

automatization to support the complex decisions underlying water management. The field is still in constant 682 

improvement and the results retrieved from these studies may provide even more opportunities so the scientific 683 

community can find innovative and more general solutions for WWTP issues, encompassing more and more 684 

aspects of the process, from safety to sustainability, including efficient operation, optimization of costs, 685 

treatment of emergent pollutants, reduction of emissions and other byproducts, in a way flexible enough to be 686 

adaptable to the rapid changing contextual conditions in which current WWTP have to perform 687 

In a more specific way, LCAs was shown as an important tool to assess environmental contributors and 688 

hotspots, due to its extended scope (Pintille et al., 2016). Specifically, literature shows that LCAs present more 689 

reliable results while using more precise data as input, as the use of underestimated data may lead to a gross 690 

result regarding the environmental outputs (Yoshida et al., 2014). Additionally, as the LCA is mainly applied 691 

to environmental issues, it uses is constantly associated with sustainable aspects, but is not restricted to this 692 

type of use. Lorenzo-Toja et al. (2016) showed that the association of the LCA with operational and sustainable 693 

aspects led to an important result. 694 

Mathematical models allow the investigation of how individual behavior could affect population dynamics 695 

while avoid the complex simulation of physical, chemical, and biological treatment processes (Jing et al., 696 
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2018). The application of MM can also provide more accurate results than the use of less complex tools, which 697 

would help on the reduction GHG emissions (Kyung et al., 2015) and operational costs, while maintaining 698 

effluent quality. Mathematical models also permit the assessment of dynamic conditions, which is why they 699 

can be applied to address several kinds of focuses. For example, Gémar et al. (2018) assessed the operational 700 

costs and the strategies for pollutants removal (both liquid and gaseous). The adoption of a dynamic MM has 701 

the great advantage of assessing dynamic conditions focused on sustainability. Jiang et al. (2018) also proved 702 

that MMs can be used in order to identify the optimal trade-off for socially solutions under various operational 703 

conditions. The operational conditions of WWTPs are very often assessed by mathematical models (Saagi et 704 

al., 2016; Díaz-Madroñero et al., 2018) due to the possibility of integrating existing wastewater treatment 705 

models (e.g. ASM) with the site-specific conditions in order to obtain more comprehensive results.  706 

The MCDMs were used when a multi-criteria assessment was needed to support the decision-making process. 707 

The literature review presented here shows that MCDMs were never adopted for quality scopes. This is mainly 708 

due to the fact that MCDMs are more complex approaches than others. Comprehensive assessments to address 709 

design issues were found in literature, e.g. i. considering several system aspects (such as reliability, complexity, 710 

safety aspects, modularity, etc.) and estimating capital and operating costs for plant upgrading (Bertanza et al., 711 

2015); ii. using comprehensive techno-economic analysis (TEA) to evaluate the technology and economic 712 

feasibility of the integrated system (Xin et al., 2018); iii. integrating the stakeholders interest in view of 713 

selecting the most suitable WWT technology to be adopted (Chhipi-Shrestha et al., 2017; Arroyo and Molinos-714 

Senante, 2018). Web-based initiatives were seen only for MCDMs based on scenario-based analysis (Kalbar 715 

et al., 2016) and on online monitoring (Chow et al., 2018). The first one incorporated multiple scenario analysis 716 

to assess new treatment technologies, and environmental, social and economic aspects. As for the DSS 717 

presented by Chow et al. (2018), its main goal was to use real-time data in order to provide faster answers for 718 

the operators while handling the vast amount of data generated from online instruments.  719 

The integration of different type of DSSs was presented in this work as being related to the need for a multi-720 

criteria perspective and for an interconnection between different methodologies that are suitable for the 721 

different nature of the assessed data. It was also possible to see that hybrid DSSs have the capability to assess 722 

multiple WWTP issues and provide extensive results to help decision-makers. For example, the integration 723 
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among LCA, data envelopment analysis, time series analysis and statistical tests presented by Torregrossa et 724 

al. (2018) allowed to analyze plant’s global performance and to suggest improvement measures for the site 725 

operation. The same result was obtained by Bisinella de Faria et al. (2015) while applying LCA and a dynamic 726 

MM in order to assess effluent’s quality after urine source-separation (USS). Hybrid DSSs were also used for 727 

assessing pollution reduction, energy savings and GHG emissions reduction (Singh and Kansal, 2016), local 728 

and global environmental and economic evaluations (Morera et al., 2015), and for plant retrofitting (Castillo 729 

et al., 2016).  730 

The application of AI techniques in DSS created a new type of DSS: the so-called Intelligent Decision Support 731 

Systems (IDSS). IDSS, in general, used several models and methods, which were integrated to get more 732 

reliable and powerful DSS to provide support to the final users. The atl_EDAR IDSS proposed in (Sànchez-733 

Marrè et al., 2004) integrated both a rule-based system, a case-based reasoning system, and some fuzzy control 734 

algorithms for the management, operation and supervision of WWTPs. Torregrossa et al. (2017) proposed an 735 

integration of some expert knowledge (inference rules) and fuzzy logic models to improve the operation of the 736 

WWTPs. Regarding the design of the best treatment systems, the PSARU IDSS (Poch et al., 2017) aimed at 737 

selecting the most appropriate wastewater treatment and disposal system for communities with less than 2000 738 

inhabitants. It used the expert knowledge integrated in expert-based models and used a rule-based tool. Nadiri 739 

et al. (2018) proposed the use of an ensemble of fuzzy logic models, which predict some water quality 740 

parameters. These fuzzy model outputs are combined through the use of an ANN to get a final parameter 741 

prediction in a more accurate way. Pascual-Pañach et al. (2018) proposed the use of visual workflows, to 742 

enable the automation of the design task and the implementation of Intelligent Process Control Systems. The 743 

resulting framework can automatically generate both simulation models of the process and programming code 744 

to control and supervise the process, using workflows designed for each particular installation. The case study 745 

is focused on the supervision of a WWTP. 746 

The abundant literature on DSSs oriented to WWTPs design, reflects the urgent need worldwide to upgrade 747 

existing plants or construct new plants able to achieve stringent effluent quality limits. 748 

The adoption of DSS studies dealing with energy aspects (e.g., Torregrossa et al., 2017; Singh and Kansal, 749 

2016) have underlined the high potential of using DSS in view od reducing the energy consumption within the 750 
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WWTP. In particular, the adoption of an energy-dedicated DSS or the improvement of DSSs based only on 751 

accounting energy consumption, can provide predictive solutions to reduce energy consumption.  752 

Quality aspects are more easily assessed by the application of mathematical modelling, which allows to 753 

calculate the efficiency of the wastewater treatment. DSSs focused on quality aspects are often site-specifics 754 

and therefore to replicate its results for other plants the new tred of research is to correct/upda prior to its 755 

application. Among the DSSs focused on quality the study presented by Bisinella de Faria et al. (2015) have 756 

the innovative aspect of integrating MM with LCA, while the others used only MM. The integration presented 757 

by Bisinella de Faria et al. (2015) has the advantage of providing a complete impact assessment.  758 

Regarding the DSS applied to operate WWTPs, literature shows that the proper operation in view of obtaining 759 

an excellent effluent quality is a well-known subject, but it is not easy to get an optimal, on-line and reliable 760 

operation of a WWTP. Therefore, the main current challenge of operators and managers is how to optimize 761 

operation obtaining excellent effluent quality with the minimum impacts (economic, environmental and 762 

social). As for the DSSs focused on quality aspects, operation-related DSSs are very often developed to attend 763 

a site-specific condition.  764 

Literature shows that the integration of techno-economic, environmental and social aspects in most of the DSSs 765 

presented by this work could allow to better understanding the several complex aspects of a WWTP. However, 766 

the major limitation of this approach is the lack of consensus on the definition of sustainability in the 767 

framework of WWT (Hoffmann et al., 2000; Molinos-Senante et al., 2014), i.e. sustainable aspects are 768 

incorporated in accordance to DSS developers, as there is no standard that can be applied while developing the 769 

systems (Balkema et al., 2002; Molinos-Senante et al., 2014). This issue implies that sustainability results may 770 

assume different interpretations comparing different DSSs. On the other hand, DSSs based on sustainability 771 

aspects may have presented the most complete assessment in terms of integrated analysis, but this does not 772 

means that they presented the most reliable DSS. Each case scenario, methodology and result must be 773 

separatedly evaluated to understand which DSS could be replicated in another cases. Further, current 774 

knowledge suggests that the adoption of IDSSs represent a relevant research frontier since they have the 775 

capability to interlink the knowledge on the process (to be optimized or designed…) with the data acquired by 776 

using AI.  777 
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Further, this work has repeatedly mentioned that site-specific conditions are one of the major challenges while 778 

applying a DSS found in literature to an existing scenario. Indeed, the development of a DSS to address specific 779 

situation is a cost and time demanding task that sometimes prevents managers from pursue this kind of solution. 780 

However, following this line of research, there is the recent work of Pascual-Pañach et al. (2018), where they 781 

propose an interoperable workflow-based framework for the automation of building Intelligent Process 782 

Supervision Systems for WWTPs, and other environmental systems. 783 

None of the presented DSSs integrated all five focuses investigated (i.e. operational, design, energy, quality 784 

and sustainability), which means that, so far, a comprehensive tool to address all WWTP management issues 785 

is not yet available. 786 

Another aspect must be cited while evaluating DSSs application to WWTPs. Datasets are, very often, 787 

unavailable to help users on the application of DSSs and only a couple of DSSs (Chhipi-Shrestha et al. 2017; 788 

Kalbar et al. 2016) was declared as having a user-friendly interface. Also, only one DSS (Chow et al. 2018) 789 

were completely web-based. Despite of the fact that none of the DSSs can be considered unreliable based on 790 

these aspects, it would be important to stimulate the development of more user-friendly tools in order to 791 

increase general interest in use and test the systems. Web-based DSSs could also stimulate group decision-792 

making, as the systems would be available to a higher number of persons. Furthermore, some tools for the 793 

development of integrated management and operation IDSS must be deployed. 794 

8. DSS advantages against previous existing techniques for WWTP management 795 

Before the deployment and use of DSS, the existing techniques for WWTP management showed several 796 

drawbacks: 797 

• Difficulties to manage the high complexity of WWTPs due to the interaction of heterogeneus 798 

components and elements (biological, chemical, physical, mechanical, etc.) 799 

• Lack of control, automation and instrumentation in WWTPs to cope with the dynamicity of WWTPs 800 

• No exhaustive alternative decision analysis support 801 

• No prognosis capabilities for possible alternative decision assessment 802 

• No wide data-based models use 803 
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Literature review showed that LCA, MM, MCDM or IDSS are used to support the decision-making process 804 

regarding quality, operational, design, energy and sustanability aspects. The use of DSS shows several 805 

advantages against previous existing techniques for WWTPs management. These advantages are listed in the 806 

table 2, and it is marked in which type of DSSs system these advantages are shown with a greatest impact. 807 

Table 2. Advantages of DSSs techniques for WWTPs  808 

Concept LCA MM MCDM IDSS 

Systematic alternative formation x x x x 

Prognostic capabilities for alternative analysis x x x x 

Evaluation of environmental impact x    

Comparing designs of different plant alternatives x    

Optimization of cost and/or emissions  x   

Economic efficiency   x  

Validation of lab-scale results   x  

Usee of data-driven techniques    x 

Use of model-driven techniques    x 

Integration of AI / Statistical / Control models    x 

 809 

 810 

7. Conclusions 811 

Based on this review, and taking into account the advantages of these techniques described in table 2, it would 812 

be important to encourage the adoption of innovative solutions for WWTP including sustainability, treatment 813 

of emergent pollutants, reduction of emissions and operational costs. The development of more user-friendly 814 

and web-based DSSs is also encouraged to increase general interest. In addition, some works are outlining the 815 
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gap between the development of environmental IDSS and the actual implementation to the water market. This 816 

challenge should be more deeply explored in the future. 817 
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