18,374 research outputs found

    Pre-positioning of relief items under road/facility vulnerability with concurrent restoration and relief transportation

    Get PDF
    Planning for response to sudden-onset disasters such as earthquakes, hurricanes, or floods needs to take into account the inherent uncertainties regarding the disaster and its impacts on the affected people as well as the logistics network. This article focuses on the design of a multi-echelon humanitarian response network, where the pre-disaster decisions of warehouse location and item pre-positioning are subject to uncertainties in relief item demand and vulnerability of roads and facilities following the disaster. Once the disaster strikes, relief transportation is accompanied by simultaneous repair of blocked roads, which delays the transportation process, but gradually increases the connectivity of the network at the same time. A two-stage stochastic program is formulated to model this system and a Sample Average Approximation (SAA) scheme is proposed for its heuristic solution. To enhance the efficiency of the SAA algorithm, we introduce a number of valid inequalities and bounds on the objective value. Computational experiments on a potential earthquake scenario in Istanbul, Turkey show that the SAA scheme is able to provide an accurate approximation of the objective function in reasonable time, and can help drive policy-based implications that may be applicable in preparation for similar potential disaster

    Disaster Management Cycle-Based Integrated Humanitarian Supply Network Management

    Get PDF
    While logistics research recently has placed increased focus on disruptionmanagement, few studies have examined the response and recovery phases in post-disaster operations. We present a multiple-objective, integrated network optimizationmodel for making strategic decisions in the supply distribution and network restorationphases of humanitarian logistics operations. Our model provides an equity- or fairness-based solution for constrained capacity, budget, and resource problems in post-disasterlogistics management. We then generate efficient Pareto frontiers to understand the trade-off between the objectives of interest.Next, we present a goal programming-based multiple-objective integratedresponse and recovery model. The model prescribes fairness-based compromise solutionsfor user-desired goals, given limited capacity, budget, and available resources. Anexperimental study demonstrates how different decision making strategies can beformulated to understand important dimensions of decision making.Considering multiple, conflicting objectives of the model, generating Pareto-optimal front with ample, diverse solutions quickly is important for a decision maker tomake a final decision. Thus, we adapt the well-known Non-dominated Sorting GeneticAlgorithm II (NSGA-II) by integrating an evolutionary heuristic with optimization-basedtechniques called the Hybrid NSGA-II for this NP-hard problem. A Hypervolume-basedtechnique is used to assess the algorithm’s effectiveness. The Hazards U.S. Multi-Hazard(Hazus)-generated regional case studies based on earthquake scenarios are used todemonstrate the applicability of our proposed models in post-disaster operations

    Stochastic Programming and Distributionally Robust Optimization Approaches for Location and Inventory Prepositioning of Disaster Relief Supplies

    Full text link
    In this paper, we study the problem of disaster relief inventory prepositioning under uncertainty. Specifically, we aim to determine where to open warehouses and how much relief item inventory to preposition in each, pre-disaster. During the post-disaster phase, prepositioned items are distributed to demand nodes, and additional items are procured and distributed as needed. There is uncertainty in the (1) disaster level, (2) locations of affected areas, (3) demand of relief items, (4) usable fraction of prepositioned items post-disaster, (5) procurement quantity, and (6) arc capacity. We propose and analyze two-stage stochastic programming (SP) and distributionally robust optimization (DRO) models, assuming known and unknown uncertainty distributions, respectively. The first and second stages correspond to pre- and post-disaster phases, respectively. We propose a Monte Carlo Optimization procedure to solve the SP and a decomposition algorithm to solve the DRO model. To illustrate potential applications of our approaches, we conduct extensive experiments using a hurricane season and an earthquake as case studies. Our results demonstrate the (1) the robustness and superior post-disaster operational performance of the DRO decisions under various distributions compared to SP decisions, especially under misspecified distributions and high variability, (2) the trade-off between considering distributional ambiguity and following distributional belief, and (3) computational efficiency of our approaches

    A mathematical pre-disaster model with uncertainty and multiple criteria for facility location and network fortification

    Get PDF
    Disasters have catastrophic effects on the affected population, especially in developing and underdeveloped countries. Humanitarian Logistics models can help decision-makers to efficiently and effectively warehouse and distribute emergency goods to the affected population, to reduce casualties and suffering. However, poor planning and structural damage to the transportation infrastructure could hamper these efforts and, eventually, make it impossible to reach all the affected demand centers. In this paper, a pre-disaster Humanitarian Logistics model is presented that jointly optimizes the prepositioning of aid distribution centers and the strengthening of road sections to ensure that as much affected population as possible can efficiently get help. The model is stochastic in nature and considers that the demand in the centers affected by the disaster and the state of the transportation network are random. Uncertainty is represented through scenarios representing possible disasters. The methodology is applied to a real-world case study based on the 2018 storm system that hit the Nampula Province in Mozambique

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    A review of lean and agile management in humanitarian supply chains: analysing the pre-disaster and post-disaster phases and future directions

    Get PDF
    Disasters have quadrupled over the last two decades leading to unprecedented loss of life. The objective of disaster-focussed humanitarian supply chains (HSCs) is to ensure saving maximum lives with limited resources; despite severe uncertainties. Therefore, significant research has investigated lean and agile in HSCs; to effectively source and speedily deploy resources, with minimum wastage; in each disaster life-cycle phase. However, the literature and research findings are currently highly disjointed regarding how lean and agile principles may be aligned with different HSC activities in the disaster management lifecycle; and do not provide a collective understanding for practitioners and researchers. This paper reviews and organises the literature on HSCs in relation to lean and agile paradigms, focussing on the pre-disaster (mitigation and preparedness) and post-disaster (response and recovery) phases. Findings reveal, all phases benefit from both lean and agile, with agile benefitting the response phase most. The phases are inter-dependent and identifying optimum decoupling points for lean and agile principles are crucial. Majority research has focussed on individual or a couple of phases. Therefore, authors recommend research on integrating the functions of the different phases by employing lean and agile principles, to generate rapid response, economies of scale and cost minimisation

    Resilience-Driven Post-Disruption Restoration of Interdependent Critical Infrastructure Systems Under Uncertainty: Modeling, Risk-Averse Optimization, and Solution Approaches

    Get PDF
    Critical infrastructure networks (CINs) are the backbone of modern societies, which depend on their continuous and proper functioning. Such infrastructure networks are subjected to different types of inevitable disruptive events which could affect their performance unpredictably and have direct socioeconomic consequences. Therefore, planning for disruptions to CINs has recently shifted from emphasizing pre-disruption phases of prevention and protection to post-disruption studies investigating the ability of critical infrastructures (CIs) to withstand disruptions and recover timely from them. However, post-disruption restoration planning often faces uncertainties associated with the required repair tasks and the accessibility of the underlying transportation network. Such challenges are often overlooked in the CIs resilience literature. Furthermore, CIs are not isolated from each other, but instead, most of them rely on one another for their proper functioning. Hence, the occurrence of a disruption in one CIN could affect other dependent CINs, leading to a more significant adverse impact on communities. Therefore, interdependencies among CINs increase the complexity associated with recovery planning after a disruptive event, making it a more challenging task for decision makers. Recognizing the inevitability of large-scale disruptions to CIs and their impacts on societies, the research objective of this work is to study the recovery of CINs following a disruptive event. Accordingly, the main contributions of the following two research components are to develop: (i) resilience-based post-disruption stochastic restoration optimization models that respect the spatial nature of CIs, (ii) a general framework for scenario-based stochastic models covering scenario generation, selection, and reduction for resilience applications, (iii) stochastic risk-related cost-based restoration modeling approaches to minimize restoration costs of a system of interdependent critical infrastructure networks (ICINs), (iv) flexible restoration strategies of ICINs under uncertainty, and (v) effective solution approaches to the proposed optimization models. The first research component considers developing two-stage risk-related stochastic programming models to schedule repair activities for a disrupted CIN to maximize the system resilience. The stochastic models are developed using a scenario-based optimization technique accounting for the uncertainties of the repair time and travel time spent on the underlying transportation network. To assess the risks associated with post-disruption scheduling plans, a conditional value-at-risk metric is incorporated into the optimization models through the scenario reduction algorithm. The proposed restoration framework is illustrated using the French RTE electric power network. The second research component studies the restoration problem for a system of ICINs following a disruptive event under uncertainty. A two-stage mean-risk stochastic restoration model is proposed to minimize the total cost associated with ICINs unsatisfied demands, repair tasks, and flow. The model assigns and schedules repair tasks to network-specific work crews with consideration of limited time and resources availability. Additionally, the model features flexible restoration strategies including a multicrew assignment for a single component and a multimodal repair setting along with the consideration of full and partial functioning and dependencies between the multi-network components. The proposed model is illustrated using the power and water networks in Shelby County, Tennessee, United States, under two hypothetical earthquakes. Finally, some other topics are discussed for possible future work

    Application of a Blockchain Enabled Model in Disaster Aids Supply Network Resilience

    Get PDF
    The disaster area is a dynamic environment. The bottleneck in distributing the supplies may be from the damaged infrastructure or the unavailability of accurate information about the required amounts. The success of the disaster response network is based on collaboration, coordination, sovereignty, and equality in relief distribution. Therefore, a reliable dynamic communication system is required to facilitate the interactions, enhance the knowledge for the relief operation, prioritize, and coordinate the goods distribution. One of the promising innovative technologies is blockchain technology which enables transparent, secure, and real-time information exchange and automation through smart contracts. This study analyzes the application of blockchain technology on disaster management resilience. The influences of this most promising application on the disaster aid supply network resilience combined with the Internet of Things (IoT) and Dynamic Voltage Frequency Scaling (DVFS) algorithm are explored employing a network-based simulation. The theoretical analysis reveals an advancement in disaster-aids supply network strategies using smart contracts for collaborations. The simulation study indicates an enhance in resilience by improvement in collaboration and communication due to more time-efficient processing for disaster supply management. From the investigations, insights have been derived for researchers in the field and the managers interested in practical implementation
    • …
    corecore