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ABSTRACT

Critical infrastructure networks (CINs) are the backbone of modern societies,

which depend on their continuous and proper functioning. Such infrastructure networks

are subjected to different types of inevitable disruptive events which could affect their

performance unpredictably and have direct socioeconomic consequences. Therefore, planning

for disruptions to CINs has recently shifted from emphasizing pre-disruption phases of

prevention and protection to post-disruption studies investigating the ability of critical

infrastructures (CIs) to withstand disruptions and recover timely from them. However,

post-disruption restoration planning often faces uncertainties associated with the required

repair tasks and the accessibility of the underlying transportation network. Such challenges

are often overlooked in the CIs resilience literature. Furthermore, CIs are not isolated from

each other, but instead, most of them rely on one another for their proper functioning.

Hence, the occurrence of a disruption in one CIN could affect other dependent CINs, leading

to a more significant adverse impact on communities. Therefore, interdependencies among

CINs increase the complexity associated with recovery planning after a disruptive event,

making it a more challenging task for decision makers.

Recognizing the inevitability of large-scale disruptions to CIs and their impacts on

societies, the research objective of this work is to study the recovery of CINs following

a disruptive event. Accordingly, the main contributions of the following two research

components are to develop: (i) resilience-based post-disruption stochastic restoration

optimization models that respect the spatial nature of CIs, (ii) a general framework for

scenario-based stochastic models covering scenario generation, selection, and reduction



for resilience applications, (iii) stochastic risk-related cost-based restoration modeling

approaches to minimize restoration costs of a system of interdependent critical infrastructure

networks (ICINs), (iv) flexible restoration strategies of ICINs under uncertainty, and

(v) effective solution approaches to the proposed optimization models.

The first research component considers developing two-stage risk-related stochastic

programming models to schedule repair activities for a disrupted CIN to maximize the

system resilience. The stochastic models are developed using a scenario-based optimization

technique accounting for the uncertainties of the repair time and travel time spent on the

underlying transportation network. To assess the risks associated with post-disruption

scheduling plans, a conditional value-at-risk metric is incorporated into the optimization

models through the scenario reduction algorithm. The proposed restoration framework is

illustrated using the French RTE electric power network.

The second research component studies the restoration problem for a system of ICINs

following a disruptive event under uncertainty. A two-stage mean-risk stochastic restoration

model is proposed to minimize the total cost associated with ICINs unsatisfied demands,

repair tasks, and flow. The model assigns and schedules repair tasks to network-specific

work crews with consideration of limited time and resources availability. Additionally, the

model features flexible restoration strategies including a multicrew assignment for a single

component and a multimodal repair setting along with the consideration of full and partial

functioning and dependencies between the multi-network components. The proposed model

is illustrated using the power and water networks in Shelby County, Tennessee, United States,

under two hypothetical earthquakes.

Finally, some other topics are discussed for possible future work.
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Chapter 1

Introduction

1.1 Overview

Critical infrastructures (CIs) are defined as networks of independent, mostly

privately-owned, man-made systems and processes that function collaboratively and

synergistically to produce and distribute a continuous flow of essential goods and services

(Ellis et al., 1997). Hence, critical infrastructure networks such as electric power, water

distribution, natural gas, transportation, and telecommunications, among others, are the

backbone of modern societies, which depend on their continuous and proper functioning

(Almoghathawi et al., 2019; Zio, 2016). Such critical infrastructure networks provide the

fundamental services that support the economic productivity, security, and quality of life of

citizens.

Moreover, infrastructure networks are subjected to different types of disruptive

events, including random failures, technical accidents, malevolent attacks, and natural

hazards, which could affect their performance unpredictably and have direct consequences

on communities and people’s daily lives. Such disruptions become inevitable in today’s

increasingly complex and risky operating environment (Helbing, 2013). Hence, for several

years, the United States (U.S.), as well as many countries around the globe, have shown an

increasing interest in effectively preparing for and responding promptly to such disruptive

events (Karagiannis et al., 2017; O’Donnell, 2013; White House, 2013). Therefore, it is

increasingly important to not only protect current infrastructure networks against disruption,

1



but to be able to restore them once they have been disrupted.

In addition, interdependencies among infrastructure networks have become more

frequent and complex due to the increasing trend of globalization and technological

developments (Karakoc et al., 2019; Rinaldi et al., 2001; Saidi et al., 2018). However,

although interdependencies can improve the efficiency of networks functionality, this type of

complex coordination often causes them to become more vulnerable to disruptions (e.g.,

random failures, terrorist attacks, or natural disasters). As a result, a disruption in

some components of one of the infrastructure networks could cause a malfunction in the

undisrupted components of other dependent networks, resulting in a series of cascading

failures affecting the whole infrastructure network system (Buldyrev et al., 2010; Danziger

et al., 2016; Eusgeld et al., 2011; Karakoc et al., 2019; Little, 2002; Ouyang, 2014; Wallace et

al., 2003). Therefore, this high vulnerability of infrastructure networks against disruptions

is a critical concern for decision-makers, especially where accounting for interdependencies

through recovery planning is essential to obtain a realistic analysis of their performance

(Holden et al., 2013). Moreover, scheduling the restoration processes separately for

interdependent infrastructure networks without considering their interdependencies could

cause misutilization of resources, waste of time and funds, and even might trigger additional

inoperability of distribution systems (Baidya & Sun, 2017).

Risk management strategies generally emphasized disruptive events mitigation

options in the form of prevention and protection: designing systems to avoid or absorb

undesired events from occurring (Hosseini et al., 2016). While such strategies are critical

to prevent undesired events or consequences, recent events suggested that not all undesired

events can be prevented. Natural events such as Hurricane Harvey are among the recent
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examples of unpreventable disruptions; in fact, this particular event impacted multiple

networked systems including the transportation network and power network, which has

not been restored fully even after a few months of the incident (Manuel, 2013). In a

recent report by the European Commission’s science and knowledge service, the Joint

Research Centre (JRC) has addressed challenges in power grid recovery after natural hazards

(Karagiannis et al., 2017). The study covered different natural events and their impact on

power grid networks by collecting worldwide data about at least 50 events from different

sources, including technical reports, field survey reports, and research papers (Karagiannis

et al., 2017). The report used two thresholds to assess power grid recoverability: (1) The

restoration of power supply to customers, (2) The complete repair of the network; moreover,

two of the significant challenges that face recovery actions were found to be the repair times

uncertainty and poor access to damaged facilities due to landslides or traffic congestions. In

addition, the report was concluded with multiple recommendations to improve power grid

recovery, ranging from integrating risk-related strategies to stockpiling spare parts for urgent

maintenance actions (Luo et al., 2020).

All such recovery planning actions after disruptions are part of the rising concept

of resilience, which can be defined generally as the ability of a system or an organization

to react and recover from unanticipated disturbances and events (Hollnagel et al., 2006).

Resilience, and in particular CI resilience, has emerged in recent years due to the awareness

of governments about the possible risks associated with CIs and the catastrophic impacts

of various disruptive events affecting CIs (White House, 2013). This has encouraged

practitioners and researchers to develop various resilience improvement techniques ranging

from system design to recovery optimization (Hosseini et al., 2016). In addition, resilience
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can be effectively improved by developing optimum plans for timely restoring the disrupted

service after the occurrence of disruptive events. In planning CIs restoration, prioritizing

components is a key in improving the recovery process; hence, optimization approaches are

typically used to facilitate the identification and scheduling of effective restoration strategies

for the rapid reestablishment of system functionality.

Post-disruption restoration of CIs problems studied in this context are related to

general classical maintenance repair problems (MRPs) (Cassady et al., 2001; Fang &

Sansavini, 2019; Pandey et al., 2013). However, the main differences between these two

categories of problems can be summarized as follows (Fang & Sansavini, 2019):

• Post-disruption restoration of CIs problems focus only on the restoration stage after

a single large-scale disruption on a critical infrastructure network (or a system of

interdependent networks), i.e., it is assumed that damages to the system components

have occurred. In contrast, MRPs usually cover the whole failure and repair process

considering component failures as the main source of uncertainty.

• Post-disruption restoration of CIs problems focus on the identification and scheduling

of optimal restoration strategies for the rapid reestablishment of system functionality

under limited amount of repair resources. Conversely, MRPs usually focus on the

long term strategies for system maintenance and repair, e.g., different choices of the

maintenance periods for the system components and of the number of repair teams to

keep on site (Fang & Sansavini, 2019; Marseguerra & Zio, 2000).

• Post-disruption restoration of CIs problems are considered as planning (scheduling)

problems and thus often studied in a mathematical programming and optimization
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framework in the literature. On the other hand, MRPs typically discuss the failure

and repair processes from a statistical point of view, represent the processes through

stochastic models (e.g., using failure and recovery rates), and often adopt simulation

methods to find the best maintenance policies (Marseguerra & Zio, 2000).

There are many studies that have been proposed in the literature in the

context of post-disruption CI restoration under a mathematical programming framework

(Almoghathawi et al., 2019; Fang & Sansavini, 2017; Nurre & Sharkey, 2014; Vugrin et

al., 2014; Zhang et al., 2018). In this context, the main goal is to schedule recovering

tasks of failed components in order to accelerate the restoration process (Vugrin et al.,

2014). However, almost all studies focus on deterministic approaches and unrealistic

assumptions such as complete information on the restoration resources and full knowledge

of the activities durations. However, the restoration of infrastructure systems is complicated

by the many decisions to be made in a highly uncertain environment exacerbated by the

disaster itself, people’s reaction, and limited capability of information gathering (Fang &

Sansavini, 2019). Several factors introduce uncertainty into the parameters of a disaster

situation, e.g., availability of restoration resources, number of repair crews, the time duration

for repairing failed components, and the accessibility to such failed components through the

related transportation network. Clearly, optimal task planning under uncertainty appears

to be the closest to a real-life situation. In addition, existing optimization approaches

usually do not account for risk measures related to the execution of the optimal plan.

For example, if the time duration of some repair activities were longer than expected, the

doubt would be if the suggested plan will still perform well. Clearly, when optimizing CI
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restoration, risks associated with the restoration plan must be considered to identify the

possible worst-case scenarios and alter the plan accordingly. Additionally, the travel time

between failed components, an often overlooked aspect of the restoration plan, may also

affect the proposed plan along with the accessibility of components under the transportation

network condition.

1.2 Problem statement and objective

There are multiple challenges facing the recovery planning of CIs after disruptions.

According to JRC, two of the significant challenges that face recovery actions were the

repair times uncertainty and poor access to damaged facilities due to landslides or traffic

congestion (Karagiannis et al., 2017). However, the vast majority of CIs restoration models

do not consider traffic travel times to access damaged facilities nor uncertainty in restoration

tasks. Besides, knowing that the restoration process is a one-shot operation, the restoration

plan needs to be assessed from a risk analysis point of view. Therefore, linking restoration

optimization models with risk measures is significant in order to find restoration plans

that are robust even in the worst-case scenarios involving longer than expected repairing

tasks or travel times. Furthermore, another challenge facing the restoration process is

the interdependencies across critical infrastructure networks. Such interdependencies often

increase the complexity associated with recovery planning, making it a more challenging task

to simultaneously coordinate multiple networks’ restoration plans.

Hence, the main research objective of the work presented in this dissertation is to

study the recovery of systems of critical infrastructure networks following a disruptive event

under uncertainty. This includes developing stochastic resilience-driven restoration models
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with uncertainty-related coherent risk measures and consideration of CIs interdependencies.

Moreover, developed models need to respect the spatial nature of such CIs by relaxing a

general assumption in the literature that restoration tasks can be performed sequentially,

where the long mile-measured distances between failed components translated into lost

time are ignored. Additionally, given the complex nature of stochastic models compared

to deterministic ones, effective solution methodologies need to be developed to solve the

proposed models. Accordingly, we try to develop: (i) risk-related stochastic restoration

models that enhance CIs resilience, and (ii) interdependent CIs mean-risk cost-based

stochastic restoration modeling approaches, considering the physical interdependency among

the infrastructure networks. The two research components presented in this dissertation are

summarized below.

First, we develop two-stage risk-averse and risk-neutral stochastic programming

models to schedule repair activities for a disrupted CI network to maximize the system

resilience. Both models are developed based on a scenario-based optimization technique

that accounts for the repair time uncertainties and the travel time spent on the underlying

transportation network. Given the large number of uncertainty realizations associated

with post-disruption restoration tasks, an improved fast forward algorithm based on a

wait-and-see optimal solution is provided to scale down the number of chosen scenarios,

which results in desired probabilistic performance metrics. To assess the risks associated with

post-disruption scheduling plans, a conditional value-at-risk (CVaR) metric is incorporated

into the optimization models through the scenario reduction algorithm. The proposed

restoration framework is applied to the French RTE electric power network with a DC

power flow procedure. The results demonstrate the added value of using the stochastic
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programming models incorporating the travel times related to repair activities. It is essential

that risk-averse decision-making under uncertainty largely impacts the optimum schedule and

the expected resilience, especially in the worst-case scenarios.

Second, we study the interdependent critical infrastructure networks restoration

problem, which seeks to minimize the total cost associated with unmet demand (resilience

loss), repair tasks, and network flow by improving the restoration strategy of a system

of interdependent infrastructure networks following a disruption event under uncertainty.

A two-stage mean-risk stochastic restoration model is proposed, based on the developed

one in our first study, using mixed-integer linear programming (MILP). The model assigns

and schedules repair tasks to network-specific work crews with consideration of limited

time and resources availability. In particular, the proposed model determines (i) the

set of failed components to be restored, (ii) the repair mode for each failed component,

(iii) the set of failed components for each crew to restore individually or concurrently,

(iv) the baseline restoration sequence across scenarios for each crew in order to minimize

the total cost associated with the restoration process (i.e., resilience loss, repair, and

flow costs). Additionally, the model features flexible restoration strategies including

multicrew assignment for a single component and a multimodal repair setting along with the

consideration of full and partial functioning and dependencies between the multi-network

components. The proposed model is illustrated using the power and water networks in

Shelby County, Tennessee, United States, under two hypothetical earthquakes.
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1.3 Dissertation outline

This dissertation consists of five chapters where the content of each chapter is briefly

described in this section.

In Chapter 1, we give an overview of the studies on post-disruption restoration of

critical infrastructure networks. In addition, we address the problem statement as well as

the objectives of this dissertation.

In Chapter 2, we present some background information about the resilience of critical

infrastructure concept. Additionally, we provide a literature survey on available definitions

of resilience, assessment techniques, and modeling approaches in engineering fields.

In Chapter 3, we present risk-related restoration models for an infrastructure network

using MILP with respect to the underlying transportation network. Additionally, we present

and discuss the results of a case study based on the French RTE electric power network. This

chapter is based on a published paper in the European Journal of Operational Research.

In Chapter 4, we present a two-stage mean-risk stochastic restoration model for a

system of interdependent critical infrastructure networks using MILP, based on the work

in Chapter 3. Additionally, we discuss the the results of a case study based on the power

and water networks in Shelby County, Tennessee, United States. This chapter is based on a

submitted manuscript to the Journal of Computers and Operations Research.

In Chapter 5, we discuss possible extensions to the current work and different research

topics for future work.
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Community resilience-driven restoration model for interdependent infrastructure
networks. International Journal of Disaster Risk Reduction, 38 , 101228. doi:
10.1016/j.ijdrr.2019.101228

Little, R. G. (2002). Controlling cascading failure: Understanding the vulnerabilities of
interconnected infrastructures. Journal of Urban Technology , 9 (1), 109–123. doi:
10.1080/106307302317379855

Luo, H., Alkhaleel, B. A., Liao, H., & Pascual, R. (2020). Resilience improvement of a
critical infrastructure via optimal replacement and reordering of critical components.
Sustainable and Resilient Infrastructure, 1–21. doi: 10.1080/23789689.2019.1710072

Manuel, J. (2013). The long road to recovery: Environmental health impacts of
hurricane sandy (Vol. 121) (No. 5). Environmental Health Perspectives. doi:
10.1289/ehp.121-a152

Marseguerra, M., & Zio, E. (2000). Optimizing maintenance and repair policies via a
combination of genetic algorithms and monte carlo simulation. Reliability Engineering
and System Safety , 68 (1), 69–83. doi: 10.1016/s0951-8320(00)00007-7

Nurre, S. G., & Sharkey, T. C. (2014). Integrated network design and scheduling problems
with parallel identical machines: Complexity results and dispatching rules. Networks ,
63 (4), 306–326. doi: 10.1002/net.21547

O’Donnell, K. (2013). Critical infrastructure resilience: Resilience thinking in australia’s
federal critical infrastructure protection policy. Salus Journal , 1 (3), 13.

Ouyang, M. (2014). Review on modeling and simulation of interdependent critical
infrastructure systems. Reliability Engineering and System Safety , 121 , 43–60. doi:
10.1016/j.ress.2013.06.040

Pandey, M., Zuo, M. J., Moghaddass, R., & Tiwari, M. (2013). Selective maintenance for
binary systems under imperfect repair. Reliability Engineering and System Safety , 113 ,
42–51. doi: 10.1016/j.ress.2012.12.009

11



Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding,
and analyzing critical infrastructure interdependencies. IEEE Control Systems , 21 (6),
11–25. doi: 10.1109/37.969131

Saidi, S., Kattan, L., Jayasinghe, P., Hettiaratchi, P., & Taron, J. (2018). Integrated
infrastructure systems—a review. Sustainable Cities and Society , 36 , 1–11. doi:
10.1016/j.scs.2017.09.022

Vugrin, E. D., Turnquist, M. A., & Brown, N. J. (2014). Optimal recovery sequencing for
enhanced resilience and service restoration in transportation networks. International
Journal of Critical Infrastructures , 10 (3/4), 218–246. doi: 10.1504/IJCIS.2014.066356

Wallace, W., Mendonca, D., Lee, E., Mitchell, J., Wallace, J., & Monday, J. (2003).
Managing disruptions to critical interdependent infrastructures in the context of
the 2001 world trade center attack. in beyond september 11th: An account of.
Post-Disaster Research, special publication, 39 , 165–198.

White House. (2013). Presidential Policy Directive/PPD-21 : Critical Infrastructure Security
and Resilience. Office of the Press Secretary: Washington, DC. [Administration of
Barack Obama]. Washington, DC..

Zhang, C., Kong, J.-j., & Simonovic, S. P. (2018). Restoration resource allocation model
for enhancing resilience of interdependent infrastructure systems. Safety Science, 102 ,
169–177. doi: 10.1016/j.ssci.2017.10.014

Zio, E. (2016). Challenges in the vulnerability and risk analysis of critical
infrastructures. Reliability Engineering and System Safety , 152 , 137–150. doi:
10.1016/j.ress.2016.02.009

12



Chapter 2

Resilience of Critical Infrastructure

2.1 Introduction

Resilient infrastructure systems such as electric power, water, and telecommunication

are essential for minimizing the impact of extreme events. In fact, building a resilient

infrastructure is an important goal for every nation’s Critical Infrastructure Protection (CIP)

program (Lindström & Olsson, 2009). However, the first step toward this goal is to develop

an evaluation methodology that enables decision makers to quantify an infrastructure’s

resilience. The developed methodology is then used to evaluate the possible measures for

improving infrastructure resilience.

In this chapter, we review effective cross-infrastructure resilience assessment

frameworks. Such frameworks incorporate three main steps: (i) defining resilience attributes,

(ii) modeling critical infrastructure, and (iii) measuring resilience. The reviewed assessment

frameworks can be used to evaluate and optimize preparedness, response, and mitigation

plans against natural and man-made disasters. The rest of this chapter is organized

as follows. Section 2.2 of this chapter presents a literature review on existing resilience

definitions in the engineering field literature. Section 2.3 lists the different measures used

to assess, quantify, and optimize resilience of networked systems. Finally, in Section 2.4, we

conclude the review and discuss our findings.
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2.2 Resilience definition

The word resilience has been originally originated from the Latin word “resiliere,”

which means to “bounce back.” The common use of the resilience word implies the ability

of an entity or system to return to its normal condition after the occurrence of an event

that disrupts its state. Moreover, the term resilience has increasingly been seen in the

research literature (Hosseini et al., 2016; Park et al., 2012) due to its role in reducing the

risks associated with the inevitable disruption of systems. In fact, the concept of resilience

exists in various fields such as ecology, economics, and engineering (Hosseini et al., 2016).

Several definitions of resilience have been offered in the literature of different

disciplines. Many of these definitions are similar, although many overlap with a number

of already existing concepts such as robustness, fault-tolerance, flexibility, survivability, and

others (Fang, 2015; Hosseini et al., 2016). However, in this literature review, we primarily

focus on the quantitative perspective of modeling resilience in engineering applications along

with popular definitions in this field of study.

Among the general definitions of resilience existing in multidiscipline literature is the

one proposed by Allenby and Fink (2000) who defined resilience as the “capability of a

system to maintain its functions and structure in the face of internal and external change

and to degrade gracefully when it must.” This definition seems to be applicable even in

the engineering field; nonetheless, the context of this definition is in ecological and social

sciences. Another multidisciplinary definition is the one provided by Pregenzer (2011) stating

that resilience is the “measure of a system’s ability to absorb continuous and unpredictable

change and still maintain its vital functions.” Haimes (2009) defined resilience as the “ability
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of system to withstand a major disruption within acceptable degradation parameters and to

recover with a suitable time and reasonable costs and risks.” Such definitions focus on the

ability of a system to resist a change and/or adapt with it, which shows that all definitions

of resilience (general and field-specific) are related to the concept of resisting an internal

or external undesired change, adapting and functioning under effect, and recovering rapidly

after effect.

Disaster resilience constitutes an important part of the literature on resilience, which

is characterized by The Infrastructure Security Partnership (TISP, 2006) as the capability to

prevent or protect against significant multi-hazard threats and incidents, including terrorist

attacks, and to recover and reconstitute critical services with minimum devastation to public

safety and health. Vugrin et al. (2010) defined system resilience as: “Given the occurrence

of a particular disruptive event (or set of events), the resilience of a system to that event

(or events) is that system’s ability to reduce efficiently both the magnitude and duration

of deviation from targeted system performance levels.” Two elements of this definition

are noted by Hosseini et al. (2016): system impact, which is the negative impact that

a disruption imposes to a system and measured by the difference between targeted and

disrupted performance level of the system, and total recovery effort, which is the amount of

resources expended to recover the disrupted system. Both elements of the previous definition

are the base of resilience mathematical measures. Furthermore, infrastructure systems such

as water distribution systems, nuclear plants, transportation systems, and others have a

critical connection with the resilience concept. Hence, the National Infrastructure Advisory

Council (NIAC) defined the resilience of infrastructure systems as their ability to predict,

absorb, adapt, and/or quickly recover from a disruptive event such as natural disasters
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(NIAC, 2009). Due to the crucial role of infrastructures on society and economy, research

efforts have recently focused on infrastructure resilience (DiPietro et al., 2014; Morshedlou

et al., 2018; Shafieezadeh & Burden, 2014; Vugrin & Camphouse, 2011). Ouyang and Wang

(2015) assessed the resilience of interdependent electric power and natural gas infrastructure

systems under multiple hazards, noting how interdependent network performance could be

measured in physical engineering terms or in terms of societal impact.
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Figure 2.1. Key characteristics of resilience definitions from different disciplines

In the engineering domain, resilience is usually associated with reliability and

robustness terms, both of which are important concepts in such field. Youn et al. (2011)

defined engineering resilience as the sum of the passive survival rate (reliability) and proactive

survival rate (restoration) of a system. Another definition of engineering resilience is offered

by Hollnagel et al. (2006) as the intrinsic ability of a system to adjust its functionality in the
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presence of a disturbance and unpredicted changes. In addition, Hollnagel (2011) pointed out

that, for resilience engineering, understanding the normal functioning of a technical system

is important as well as understanding how it fails. The American Society of Mechanical

Engineers (ASME) defined resilience as the ability of a system to sustain external and

internal disruptions without discontinuity of performing the system’s function or, if the

function is disconnected, to fully recover the function rapidly (ASME, 2009). Dinh et al.

(2012) identified six factors that enhance the resilience engineering of industrial processes,

including minimization of failure, limitation of effects, administrative controls/procedures,

flexibility, controllability, and early detection.

Overall, it can be seen that there are several commonalities and differences among the

proposed resilience definitions. Figure 2.1 shows some of the key resilience characteristics

as identified by CIP community and other disciplines. The main highlights of resilience

definitions reviewed above can be summarized as follows (Hosseini et al., 2016):

• Some definitions do not specify mechanisms to achieve resilience; however, they focus

on the capability of systems to absorb and adapt to disruptive events. In addition, the

term recovery is considered the critical part of resilience under this group of definitions.

• Some definitions, such as ASME (2009), emphasize that returning to steady state

performance level is needed for resilience, while other definitions do not impose that

the system has to return to its pre-disaster state.

• The definition offered by Haimes (2009) suggests multidimensionality to the

quantification of resilience, that is, particular states of a system are inherently more

resilient than others. Furthermore, Haimes stresses that the resilience of a system is
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threat-dependent.

• Some definitions such as Allenby and Fink (2000) and Pregenzer (2011) defined

resilience in terms of preparedness (pre-disaster) activities, while the role of recovery

(post-disaster) activities is discarded. Definitions presented by organizations such

as NIAC (2009) emphasized the role of both preparedness and recovery activities to

achieve resilience.

2.3 Resilience measures

There are different approaches to measure the resilience of systems in the literature.

However, such measures can be broadly classified into (Hosseini et al., 2016):

• Deterministic vs. Stochastic: where a deterministic approach does not incorporate

uncertainty into the metric, while a stochastic or probabilistic performance-based

approach quantifies uncertainty in terms of probabilities and statistical distributions.

• Dynamic vs. Static: where a dynamic performance-based approach accounts for

time-dependent behavior, while a static performance-based approach does not consider

any time factor.

In this section, we start our review of resilience measures with deterministic ones in Section

2.3.1, and then we discuss the stochastic measures in Section 2.3.2.

2.3.1 Deterministic measures

There are four dimensions of resilience, defined by Bruneau et al. (2003), in the

well-known resilience triangle model in civil infrastructure: (i) robustness, the strength of
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a system, or its ability to prevent damage propagation through the system in the presence

of a disruptive event, (ii) rapidity, the speed or rate at which a system could return to

its original state or at least an acceptable level of functionality after the occurrence of

disruption, (iii) resourcefulness, the level of capability in applying material (i.e., information,

technological, physical) and human resources (i.e., labor) to respond to a disruptive event,

and (iv) redundancy, the extent to which carries by a system to minimize the likelihood and

impact of disruption. Based on that, Bruneau et al. (2003) proposed a deterministic static

metric for measuring the resilience loss of a community to an earthquake. The metric is

expressed as in Equation (2.1), where the time at which the disruption occurs is t0, and the

time at which the community returns to its normal pre-disruption state is t1. The quality of

the community infrastructure at time t, which could represent several kinds of performance

measures, is denoted with Q(t). Thus, the quality of degraded infrastructure is compared

to the as-planned infrastructure quality of 100 during the recovery period. Hence, resilience

loss (RL) can be represented mathematically as shown in Equation (2.1) and can be be

illustrated graphically as the shaded area in Figure 2.2.

RL =

∫ t1

t0

[100−Q(t)]dt (2.1)

Zobel (2011) proposed a metric specified by “calculating the percentage of the total

possible loss over some suitably long time interval T ∗” as shown in Equation (2.2):

R(X,T ) =
T ∗ −XT/2

T ∗
= 1− XT

2T ∗
(2.2)

Parameters include X ∈ [0, 1] as the percentage of functionality lost after a disruption,

T ∈ [0, T ∗] as the time required for full recovery, and T ∗ as a suitably long time interval over

which lost functionality is determined. Zobel also provided a visualization of the tradeoffs
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Figure 2.2. Resilience loss measurement (adapted from Bruneau et al. (2003))

between lost functionality and recovery time for the same level of resilience as shown in

Figure 2.3:

Figure 2.3. Zobel’s resilience visualization (adapted from Zobel (2011))

Rose (2007) defined economic resilience as “the ability of an entity or system to

maintain system functionally when a disruption occurs.” This metric measures the ratio of

the avoided drop in system output and the maximum possible drop in system output as

shown in Figure 2.4.

The proposed metric, provided in Equation (2.3), is classified as a deterministic static
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Figure 2.4. Illustration of the economic resilience measure (adapted from Rose (2007))

model, where %∆DY is the difference between non-disrupted and expected disrupted system

performance and %∆DY max is the difference between non-disrupted and worst-case disrupted

system performance:

R =
%∆DY max −%∆DY

%∆DY max
(2.3)

Rose (2007) also considered the time-dependent aspects of recovery in his definition

of dynamic resilience (DR):

DR =
N∑
i=1

SOHR (ti)− SOWR (ti) (2.4)

The DR measure is a function of SOHR, the output of the system under hastened

recovery, and SOWR, the system’s output without hastened recovery, where ti is the ith

time step during recovery and N is the number of time steps considered. DR is presented

graphically in Figure 2.5. Note that the dynamic economic resilience is not bounded between

0 and 1, which does not provide a convenient understanding of the score.

Henry and Ramirez-Marquez (2012) developed a time-dependent resilience metric

that quantifies resilience as ratio of recovery to loss. Given that the performance of the

system at a point in time is measured with performance function ϕ(t), three system states
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Figure 2.5. The dynamic economic resilience (adapted from Rose (2007))

that are important in quantifying resilience are represented in Figure 2.6: (i) the stable

original state which represents normal functionally of a system before disruption occurs,

starts from time t0 and ends by time te, (ii) the disrupted state, which is brought about by a

disruptive event (ej) at time te whose effects set in until time td, describes the performance

of the system from time td to ts, (iii) the stable recovered state which refers to the new

steady state performance level once the recovery action initiated at time ts is over. The

time-dependent measure of resilience is defined mathematically as follows:

Rϕ
(
t | ej

)
=
ϕ (t | ej)− ϕ (td | ej)
ϕ (t0)− ϕ (td | ej)

(2.5)

Notation Rwas adopted as R is commonly reserved for reliability. The mathematical

formulation indicates that the numerator of this metric implies recovery up to time t, while

the denominator refers to the total loss due to disruption ej.
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Figure 2.6. System state transition to describe resilience (adapted from Henry and
Ramirez-Marquez (2012))

Chen and Miller-Hooks (2012) introduced an indicator for measuring resilience in

transportation networks. The resilience indicator, represented in Equation (2.6), quantifies

the post-disruption expected fraction of demand that, for a given network, can be satisfied

within pre-determined recovery budgets. Parameter dw quantifies the maximum demand

that can be satisfied for origin–destination (O–D) pair w following a disruption, and Dw is

demand that can be satisfied for O–D pair w prior to the disruption. A limitation of this

formulation includes its lack of specifying the contribution of pre-disaster and post-disaster

recovery activities, especially in accounting for recovery time.

Resilience = E

(∑
w∈W

dw/
∑
w∈W

Dw

)
=

1∑
w∈W Dw

E

(∑
w∈W

dw

)
(2.6)

Orwin and Wardle (2004) introduced a measurement metric by linking resilience with

instantaneous and maximum disturbance as follows:

Resilience =

(
2× |Emax|
|Emax|+ |Ej|

)
− 1 (2.7)

where Emax refers to the maximum intensity of absorbable force without perturbing
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the system’s function, and Ej refers to the magnitude of the disturbance’s effect on safety

at time Tj. The resilience measure is ranged between 0 and 1 (when Ej = 0).

Enjalbert et al. (2011) introduced local and global resilience assessment metrics for

public transportation systems, as shown in Equations (2.8) and (2.9), respectively. Function

S(t) is a safety indicator of the system, measured as the “sum of effect of factors which can

affect the system safety” (Enjalbert et al., 2011). Local resilience measures instantaneous

resilience based on the safety indicator, and global resilience is obtained by integrating local

resilience over time, between when the disturbance effect commences (represented by tb) and

the end time of disturbance effect (represented by te).

Local resilience =
dS(t)

dt
(2.8)

Global resilience =

∫ te

tb

local resilience =

∫ te

tb

dS(t)

dt
(2.9)

Francis and Bekera (2014) proposed a dynamic resilience metric ρi for event i as

shown in Equations (2.10)–(2.11). In their mathematical representation, Sp refers to the

speed of recovery, Fo is the performance level of the system at its original state, Fr is the

performance level at a new stable level after recovery efforts, and Fd is the performance level

immediately following the disruption.

ρi = Sp
Fr
Fo

Fd
Fo

(2.10)

Sp =


(tδ/t

∗
r) exp [−a (tr − t∗r)] for tr ≥ t∗r

(tδ/t
∗
r) otherwise

(2.11)
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Speed of recovery in Equation (2.11) assumes exponential growth, with tδ representing

the slack time or the maximum amount of time post-disaster that is acceptable before

recovery ensues, tr representing the time to final recovery or time to reach a new equilibrium

state, t∗r representing the time to complete the initial recovery actions, and a representing

the parameter controlling the “decay” in resilience until the new equilibrium is met. This

measure describes the absorptive capacity in terms of the proportion of original steady-state

functionality maintained after the new steady-state functionality, Fr/F0.

Cimellaro et al. (2010) expressed resilience in terms of quality of service, as shown in

Equation (2.12), where α is a weighting factor representing the importance of per-disruption

and post-disruption service qualities, Q1(t) and Q2(t) are the quality service of the system

before and after the disruption, respectively, and TLC is the control time of the system. This

metric is intended to be applied to measure healthcare resilience using patients waiting time

as an indicator of service quality.

R = α

∫
TLC

Q1(t)

TLC
dt+ (1− α)

∫
TLC

Q2(t)

TLC
dt (2.12)

Fang (2015) suggested a resilience measure suitable to represent different systems

and performance measures (such as amount of flow in networks and number of customers

served in service sectors). The measure is shown in Equation (2.13) as the ratio between

the cumulative system performance that has been restored from disruption to time t and

the cumulative target system performance without disruption; F (t) in this metric represents

the system performance function and TF (t) is the target system performance function. The

provided metric is bounded between 0 and 1, undefined when F (td) = TF (t), which means

that there is no loss in performance, and undefined when t < td since restoration actions
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take place after disruption.

R(t) =

∫ t
td

[F (τ)− F (td)] dτ∫ t
td

[TF (τ)− F (td)] dτ
, t ≥ td (2.13)

Figure 2.7. Conceptual illustration of Fang’s resilience metric (adapted from Fang (2015)

A list of deterministic measures along with their parameters and variables are

summarized below in Table 2.1.

Table 2.1. Resilience deterministic measures by reference

Reference Measure Parameters and variables

Bruneau
et al.

(2003)
RL =

∫ t1

t0

[100−Q(t)]dt

• t0: the time at which
the disruption occurs

• t1: the time at which
the community returns
to its normal
pre-disruption state

• Q(t): the quality of the
community
infrastructure at time t
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Table 2.1 (Cont.)

Zobel
(2011) R(X,T ) =

T ∗ −XT/2
T ∗

= 1− XT

2T ∗

• X ∈ [0, 1]: the
percentage of
functionality lost after a
disruption

• T ∈ [0, T ∗]: the time
required for full recovery

• T ∗: a suitably long time
interval over which lost
functionality is
determined

Rose
(2007) R =

%∆DY max −%∆DY

%∆DY max

• %∆DY : the difference
in non-disrupted and
expected disrupted
system performance and

• %∆DY max: the
difference in
non-disrupted and
worst-case disrupted
system performance

DR =
N∑
i=1

SOHR (ti)− SOWR (ti)

• SOHR,: the output of
the system under
hastened recovery

• SOWR: the system’s
output without
hastened recovery

• ti : the ith time step
during recovery and

• N : the number of time
steps considered
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Table 2.1 (Cont.)

Henry
and

Ramirez-Marquez
(2012)

Rϕ
(
t | ej

)
=
ϕ (t | ej)− ϕ (td | ej)
ϕ (t0)− ϕ (td | ej)

• ϕ(t): performance
function at time t

• ej: disruptive event at
time te with effect until
time td

• ts: recovery action
initiated at time

Chen
and

Miller-Hooks
(2012)

Resilience = E

(∑
w∈W

dw/
∑
w∈W

Dw

)

=
1∑

w∈W Dw

E

(∑
w∈W

dw

)

• dw: quantifies the
maximum demand that
can be satisfied for
origin–destination
(O–D) pair w following
a disruption

• Dw: demand that can
be satisfied for O–D
pair w prior to the
disruption

Orwin
and

Wardle
(2004)

Resilience =

(
2× |Emax|
|Emax|+ |Ej|

)
− 1

• Emax: the maximum
intensity of absorbable
force without
perturbing the system’s
function,

• Ej: the magnitude of
the disturbance’s effect
on safety at time Tj
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Table 2.1 (Cont.)

Enjalbert
et al.

(2011)

Local resilience =
dS(t)

dt

Global resilience =

∫ te

tb

local resilience

=

∫ te

tb

dS(t)

dt

• S(t): sum of effect of
factors that can impact
the system safety

• tb: time when the
disturbance effect
commences

• te: end time of
disturbance effect

Francis
and

Bekera
(2014)

ρi = Sp
Fr
Fo

Fd
Fo

Sp =

{
(tδ/t

∗
r) exp [−a (tr − t∗r)] for tr ≥ t∗r

(tδ/t
∗
r) otherwise

• Sp: refers to the speed
of recovery

• Fo: the performance of
level of the system at its
original state

• Fr: the performance
level at a new stable
level after recovery
efforts

• Fd: the performance
level immediately
following the disruption

• tδ: maximum amount of
time post-disaster that
is acceptable before
recovery ensues

• tr: time to final recovery
or time to reach a new
equilibrium state

• t∗r: time to complete the
initial recovery actions

• a: parameter controlling
the “decay” in resilience
until the new
equilibrium is met
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Table 2.1 (Cont.)

Cimellaro
et al.

(2010)
R = α

∫
TLC

Q1(t)

TLC
dt+ (1− α)

∫
TLC

Q2(t)

TLC
dt

• Q1(t): quality service of
the system before
disruption

• Q2(t): quality service of
the system after
disruption

• α: weighting factor
representing the
importance Q1(t) and
Q2(t)

• TLC : the control time of
the system

Fang
(2015) R(t) =

∫ t
td

[F (τ)− F (td)] dτ∫ t
td

[TF (τ)− F (td)] dτ
, t ≥ td

• F (t): system
performance function

• TF (t): target system
performance function

• td: disruption time

2.3.2 Stochastic measures

Chang and Shinozuka (2004) introduced a probabilistic approach for assessing

resilience, measured with two elements: (i) loss of performance and (ii) length of recovery.

According to Chang and Shinozuka (2004), resilience is defined as the probability of the

initial system performance loss after a disruption being less than the maximum acceptable

performance loss with the time to full recovery being less than the maximum acceptable
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disruption time. In mathematical form, the measure is shown in Equation (2.14):

R = P (A|i) = P (r0 < r∗ and t1 < t∗) (2.14)

where A represents the set of performance standards for maximum acceptable loss

of system performance, r∗, and maximum acceptable recovery time, t∗, for a disruption of

magnitude i.

Ouyang et al. (2012) developed a stochastic time-dependent metric for measuring

“annual resilience” under multi-hazard events, shown in Equation (2.15). Their primary

metric measures the mean ratio of the area between the actual performance curve, P (t), and

the time axis to the area between the target performance curve, TP (t), and the time axis

over a length of time T . In their mathematical formulation, P (t) is modeled as a stochastic

process and multiple hazards can be included with the
∑N(T )

n=1 AIAn (tn) term, where n refers

to the nth event, N(T ) is the total number of events that occur during T , tn is a random

variable describing the time at which the nth event occurs, and AIAn (tn) is the area between

P (t) and TP (t) for the nth event.

AR = E

[ ∫ T
0
P (t)dt∫ T

0
TP (t)dt

]
= E

[∫ T
0
TP (t)dt−

∑N(T )
n=1 AIAn (tn)∫ T

0
TP (t)dt

]
(2.15)

Youn et al. (2011) considered both mitigation and contingency strategies to define

their resilience metric. The metric, provided in Equations (2.16) and (2.17), is defined as

the sum of the passive survival rate (reliability) and proactive survival rate (restoration)

following a disruption.

Ψ( resilience ) = R( reliability) + ρ (restoration) (2.16)
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ρ = P (Emr|EcpEcdEsf )× P (Ecp|EcdEsf )× P (Ecd|Esf )× P (Esf ) (2.17)

In this metric, restoration is defined to be the degree of reliability recovery and is

calculated as the joint probability of a system failure event, Esf , a correct diagnosis event,

Ecd, a correct prognosis event, Ecp, and a successful recovery action event, Emr. Hence, the

measure proposed by Youn et al. (2011) accounts for system reliability in assessing resilience,

which is a unique feature not found in other resilience measures. In fact, such feature makes

it suitable to assess resilience of engineered systems that require a certain degree of reliability

in order to balance resilience and reliability. Moreover, the metric is bounded on [0, 1], which

makes it suitable for comparison of systems on a normalized scale.

Ayyub (2013) defined a stochastic resilience metric that considers the effects of aging

on the system. The system’s performance is defined as the difference between the system’s

strength and load. The metric is shown in Equation (2.18), where Ti is the time to incident,

Tf is the time to failure, Tr is the time to recovery, ∆Tf = Tf − Ti is the duration of failure,

and ∆Tr = Tr − Tf is the duration of recovery.

Re =
Ti + F∆Tf +R∆Tr
Ti + ∆Tf + ∆Tr

(2.18)

The failure profile, F , in Equation (2.18) is a measure of robustness and redundancy,

calculated using Equation (2.19). Similarly, the recovery profile, R, measures recoverability

with Equation (2.20) while Q represents the system performance.

F =

∫ tf
ti
fdt∫ tf

ti
Qdt

(2.19)
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R =

∫ tr
tf
rdt∫ tr

tf
Qdt

(2.20)

This metric proposed by Ayyub (2013) is among the most comprehensive resilience

measures, prescribing both mitigation (reliability) and contingency (recovery duration)

strategies.

Hashimoto et al. (1982) defined the resilience of a system as conditional probability

of a satisfactory (i.e., non-failure) state in time period t+ 1 given an unsatisfactory state in

time period t, shown in Equation (2.21). S(t) represents the state of the system at time t

and NF and F represent non-failure and failure states, respectively.

R = P{S(t+ 1) ∈ NF |S(t) ∈ F} (2.21)

Franchin and Cavalieri (2014) introduced a probabilistic metric for assessing

infrastructure resilience in the presence of an earthquake. Their definition of resilience is

based on the efficiency of the spatial distribution of an infrastructure network. The efficiency

of two nodes in an infrastructure network is defined as being inversely proportional to their

shortest distance.

R =
1

PDE0

∫ PD

0

E (Pr) dPr (2.22)

The metric is provided in Equation (2.22), where PD is the fraction of displaced

population, E0 is the efficiency of the city network before the earthquake, Pr is the measure

of progress of recovery, and E(Pr) is the recovery curve of the fraction of the displaced

population. In their study, the efficiency of a city road network is measured in terms of

population density. PD in this metric is stochastic which makes the suggested measure

stochastic; also, the measure is restricted between 0 and 1.
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Table 2.2. Resilience Stochastic measures by reference

Reference Measure Parameters & Variables

Chang
and

Shinozuka
(2004)

R = P (A|i) = P (r0 < r∗ and t1 < t∗)

• r∗: maximum
acceptable loss of
system performance

• t∗: maximum
acceptable recovery
time

• A: set of performance
standards for r∗ and t∗

• i: magnitude of
disruption

Ouyang
et al.

(2012)

RAR = E

[ ∫ T
0
P (t)dt∫ T

0
TP (t)dt

]

= E

[∫ T
0
TP (t)dt−

∑N(T )
n=1 AIAn (tn)∫ T

0
TP (t)dt

]

• P (t): the actual
performance curve

• TP (t): the target
performance curve

• AIAn (tn): the area
between P (t) and
TP (t) for the nth event

• N(T ): the total
number of events that
occur during T

Youn et
al.

(2011)

Ψ( resilience ) = R( reliability)

+ ρ (restoration)

ρ = P (Emr|EcpEcdEsf )× P (Ecp|EcdEsf )
× P (Ecd|Esf )× P (Esf )

• Esf : system failure
event

• Ecd: a correct diagnosis
event

• Ecp: a correct
prognosis event

• Emr: a successful
recovery action event
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Table 2.2 (Cont.)

Ayyub
(2013)

Re =
Ti + F∆Tf +R∆Tr
Ti + ∆Tf + ∆Tr

F =

∫ tf
ti
fdt∫ tf

ti
Qdt

R =

∫ tr
tf
rdt∫ tr

tf
Qdt

• Ti: time to incident

• Tf : time to failure

• Tr: time to recovery

• ∆Tf = Tf − Ti: the
duration of failure

• ∆Tr = Tr − Tf : the
duration of recovery

• F : the failure profile

• R: recoverability
measure

• Q: system performance

Hashimoto
et al.

(1982)
R = P{S(t+ 1) ∈ NF |S(t) ∈ F}

• S(t): state of the
system at time t

• F : represent failure
state

• NF : represents
non-failure state

Franchin
and

Cavalieri
(2014)

R =
1

PDE0

∫ PD

0

E (Pr) dPr

• PD: the fraction of
displaced population

• E0: efficiency of the
city network before the
earthquake

• Pr: the measure of
progress of recovery

• E(Pr): the recovery
curve of the fraction of
the displaced
population
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2.4 Discussion and conclusion

Over the past few years, the significance of the concept of resilience has been well

recognized among researchers and practitioners. Many efforts have been devoted to quantify

resilience in engineering systems and differentiate this concept with other close-related

ones such as reliability, robustness, and flexibility. These efforts started by defining

resilience theoretically in different fields of study in order to develop suitable mathematical

representations for this concept in different applications, especially in networked systems

such as critical infrastructures.

Resilience measures could be classified broadly into deterministic and stochastic

measures as seen in our review. This classification could also be further extended into static,

where the measure does not depend on time, and dynamic, where functions included in the

metric are time-dependent. Such measures have helped researchers develop optimization

models to improve resilience by considering these metrics as the objective function to be

maximized in such models.

To sum up, the term “resilience” is increasingly used in research journals, government

documents, and media. Different measures and optimization models have been developed to

quantify it in engineering and networked systems. Nonetheless, there is more work needed to

make resilience assessment usable in more applications. For instance, some of the resilience

quantification research gaps are evaluating resilience of communities (Barkerring et al., 2018;

Karakoc et al., 2019; Kelly et al., 2015), developing resilience standards and guidelines in

order for stakeholders to apply (NIST, 2016), and integrating tri-level measures of resilience

planning, mitigation, and restoration. Such research directions need to be explored by the
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resilience-interested research community.
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Chapter 3

Risk and Resilience-Based Optimal Post-Disruption Restoration for Critical

Infrastructures under Uncertainty

Basem A. Alkhaleel, Haitao Liao, Kelly M. Sullivan

Abstract

Post-disruption restoration of critical infrastructures (CIs) often faces uncertainties

associated with the required repair tasks and the related transportation network. However,

such challenges are often overlooked in most studies on the improvement of CI resilience.

In this chapter, two-stage risk-averse and risk-neutral stochastic optimization models are

proposed to schedule repair activities for a disrupted CI network with the objective of

maximizing system resilience. Both models are developed based on a scenario-based

optimization technique that accounts for the uncertainties of the repair time and the travel

time spent on the underlying transportation network. Given the large number of uncertainty

realizations associated with post-disruption restoration tasks, an improved fast forward

algorithm based on a wait-and-see solution methodology is provided to reduce the number

of chosen scenarios, which results in the desired probabilistic performance metrics. To assess

the risks associated with post-disruption scheduling plans, a conditional value-at-risk (CVaR)

metric is incorporated into the optimization models through a scenario reduction algorithm.

The proposed restoration framework is applied to the French RTE electric power network

with a DC power flow procedure, and the results demonstrate the added value of using the

stochastic optimization models incorporating the travel times related to repair activities. It
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is essential that risk-averse decision-making under uncertainty largely impacts the optimum

schedule and the expected resilience, especially in the worst-case scenarios.
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3.1 Introduction

3.1.1 Background

Critical infrastructures (CIs) are defined as networks of independent, mostly

privately-owned, man-made systems and processes that function collaboratively and

synergistically to produce and distribute a continuous flow of essential goods and services

(Ellis et al., 1997). Specially, those CI networks for electric power, water distribution,

natural gas, transportation, and telecommunications are the backbone of modern societies

(Almoghathawi et al., 2019; Zio, 2016). Their continuous and proper functioning provides

the fundamental services that support the economic productivity, security, and quality of

life of citizens.

Unfortunately, CI networks are often subject to different types of disruptive events,

including random failures, technical accidents, malevolent attacks, and natural hazards,

which could affect their performance unpredictably and have direct consequences on the

communities and people’s daily lives. Such disruptions become inevitable in today’s

increasingly complex and risky operating environment (Helbing, 2013). Hence, for several

years, the United States (U.S.), as well as many countries around the globe, have shown an

increasing interest in effectively preparing for and responding promptly to such disruptive

events (Karagiannis et al., 2017; O’Donnell, 2013; White House, 2013). Indeed, it is

increasingly important to not only protect the current CI networks against disruption, but

also to be able to restore them once they are disrupted.

In 2011, the U.S. president released a report setting a four-pillared strategy for

modernizing the electric grid (Executive Office of the President, 2011). The presidential
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initiative directed billions of dollars toward the investments in 21st century smart grid

technologies aiming at increasing the grid’s efficiency, reliability, and resilience, and at

making the grid less vulnerable to outages and reducing the time it takes to restore power

after an outage. A subsequent report in 2013 has addressed explicitly the importance

of increasing electric grid resilience, especially against weather-related outages, and the

economic benefits of resilience improvement (Executive Office of the President, 2013).

According to the report, severe weather is the leading cause of power outages in the U.S. In

fact, between 2003 and 2012, an estimated 679 widespread power outages occurred due to

severe weather. Such weather-outages are expected to rise as climate change increases the

frequency and intensity of hurricanes, blizzards, floods, and other extreme weather events

(Zamuda et al., 2013). In addition, weather-related outages are estimated to have cost the

U.S. economy an inflation-adjusted annual average of $18 billion to $33 billion (Executive

Office of the President, 2013). The annual estimation could reach $70 billion according to

another congressional study (Campbell & Lowry, 2012).

It is worth pointing out that the annual losses fluctuate significantly and reach

the greatest in the years of major storms. For example, Hurricane Sandy, which struck

the entire East Coast of the U.S. in October 2012, caused significant damages to the

infrastructure systems, resulting in an estimated cost of $33 billion for repairs and cleanup

in the aftermath and an approximate total of $65 billion in damages and economic loss

(Force, 2013). Moreover, about 8.5 million customers were left without power, and the

commuting time increased significantly due to the disabled roads and public transit. When

Hurricane Harvey struck the southern coast, it caused about $200 billion in damages and

$20 to $30 billion in lost economic output (CNBC, 2017). According to the U.S. Federal
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Emergency Management Agency (FEMA), nearly 40,000 people were in the shelters in Texas

and Louisiana, considering the most were without essential lifeline services, over 160 drinking

water systems were damaged with 50 of them being totally shut down, and 800 water waste

facilities were partially damaged (FEMA, 2017). Furthermore, nearly 80,000 homes had

at least 18 inches of floodwater, 23,000 of which had more than 5 feet, 24 hospitals were

evacuated, 61 communities lost drinking water capability, 23 ports were closed, 781 roads

were impassable, about 780,000 people evacuated their homes, and first responders rescued

122,331 people (FEMA, 2017). Altogether, the experience from these events underlines the

needs for timely, efficient, and effective network restoration and recovery activities in the

aftermath of large-scale disruptive events, so that both short-term and long-term reliance on

the infrastructure networks can be assured.

Risk management strategies generally emphasize disruptive events mitigation options

in the form of prevention and protection by designing the systems to avoid or absorb

undesired events from occurring (Hosseini et al., 2016). While such strategies are crucial

to preventing undesired events or consequences, recent events suggest that not all undesired

events can be prevented. Natural events such as Hurricane Harvey are among the recent

examples of unpreventable disruptions. In fact, this particular event impacted multiple

networked systems including the transportation network and power network, which has not

been restored fully even after few months of the incident (Manuel, 2013). In a recent report by

the European Commission’s science and knowledge service, the Joint Research Centre (JRC)

has addressed challenges in power grid recovery after natural hazards (Karagiannis et al.,

2017). The study covered different natural events and their impact on power grid networks by

collecting worldwide data about at least 50 events from different sources including technical
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reports, field survey reports, and research papers (Karagiannis et al., 2017). The report used

two thresholds to assess power grid recoverability: (1) The restoration of power supply to

customers, and (2) The complete repair of the network. Moreover, two of the significant

challenges that face recovery actions were found to be the repair times uncertainty and poor

access to damaged facilities due to landslides or traffic congestions. In addition, the report

was concluded with multiple recommendations to improve power grid recovery ranging from

integrating risk-related strategies to stockpiling spare parts for urgent maintenance actions

(Luo et al., 2020).

All such recovery planning actions after disruptions are part of the rising concept

of resilience, which can be defined generally as the ability of a system or an organization

to react and recover from unanticipated disturbances and events (Hollnagel et al., 2006).

Resilience, and in particular CI resilience, has emerged in recent years due to the awareness

of governments about the possible risks associated with CIs and the catastrophic impacts

of various disruptive events affecting CIs (White House, 2013). This has encouraged

practitioners and researchers to develop various resilience improvement techniques ranging

from system design to recovery optimization (Hosseini et al., 2016). In addition, resilience

can be effectively improved by developing optimum plans for timely restoring the disrupted

service after the occurrence of a disruptive event. In planning CIs restoration, prioritizing

components is key in improving the recovery process. To this end, optimization approaches

are typically used to facilitate the identification and scheduling of effective restoration

strategies for the rapid reestablishment of system functionality. Many studies have

been reported in the literature in the context of post-disruption CI restoration under a

mathematical programming framework (Fang & Sansavini, 2017; Nurre & Sharkey, 2014;
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Vugrin et al., 2014; Zhang et al., 2018). The main goal is to schedule recovering tasks of

failed components in order to accelerate the restoration process (Vugrin et al., 2014).

3.1.2 Related literature

The concept of resilience has been investigated by different disciplinary perspectives

and across various application domains. Specially, several definitions of resilience have

been offered from an engineering point of view (Hosseini et al., 2016). Many are similar

and overlap with a number of existing concepts such as robustness, fault tolerance,

flexibility, survivability, and agility, among others. However, most definitions are based

around pre- and post-disruption related concepts, such as protection, risk mitigation,

adaption and restoration (Barker et al., 2017). In addition, developing mathematical and

statistical modeling approaches to improve, analyze and optimize resilience needs resilience

quantification to compare proposed models. As a result, in the literature, resilience has

been quantified by different approaches and mathematical interpretations (Gasser et al.,

2019; Hosseini et al., 2016). Many of these resilience measures try to scale the performance

measure as a ratio between the actual level of performance and the desired (undisrupted)

level over time (for a full review see Gasser et al. (2019) and Hosseini et al. (2016)). Some

examples are the ratio of the probability of failure and recovery (Li & Lence, 2007), the ratio

of the expected degradation and the maximum possible degradation of a system due to a

disruption (Rose, 2007), and the measure of system performance (Henry & Ramirez-Marquez,

2012). In this work, the focus will be on post-event resilience-based actions (i.e., restoration

and/or recovery).

There are multiple studies addressing post-disruption CI restoration with different
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goals and mathematical approaches. Anaya-Arenas et al. (2014) and Özdamar and Ertem

(2015) reviewed post-disruption restoration plans in humanitarian logistics, such as relief

delivery, casualty transportation, and mass evacuation. In addition, considerable research in

this area has been focused on specific types of critical infrastructures such as transportation

networks and electrical power grids (Morshedlou, 2018). In contrast, other studies developed

general restoration models that can be applied to almost any CI network without changes

or with slight modifications (e.g., adding power flow constraints in power grids). Although

the literature review will not be restricted to one type of CIs models, restrictions associated

with a single CI model will be mentioned.

Many of the mathematical models found in the literature are formulated as mixed

integer programs (MIPs) and mixed integer linear programs (MILPs). Bryson et al. (2002)

applied an MIP approach for selecting a set of recovery subplans leading to the greatest

benefit to business operation. Matisziw et al. (2010) proposed an MIP model to restore

networks where the connectivity between pairs of nodes is considered as the performance

measure associated with the network. Nurre et al. (2012) studied an integrated network

design and scheduling problem for the restoration of CI systems. They formulated the

problem as an integer programming problem, and a dispatch rule-based heuristic approach

was proposed for its efficient solution. To account for power flow law in electrical networks,

they adopted the method by Bienstock and Mattia (2007). Furthermore, Nurre and Sharkey

(2014) provided a comparative study focusing mainly on model complexity and heuristic

dispatch rules for their integer optimization problem.

Regarding cascading failures in power networks, Bienstock and Mattia (2007)

proposed an MIP model to protect power grid networks at minimum costs to increase
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the networks survivability against cascading failures. Their DC power flow model can be

implemented in general MIPs and MILPs by just adding a small set of constraints to control

the power flow. To control power transmission networks, Chang and Wu (2011) explored

a quantitative method to measure the stability and reliability of electric power networks

under the triggered cascading failures. In addition, Bienstock and Grebla (2015) introduced

a stochastic algorithm to minimize the lost power load at the termination of the cascade

considering noise and errors in the model. Fang et al. (2017) introduced a pattern for

searching for the optimal limited resource allocation to increase the capacity of some links in

electric power networks to be able to maximize the networks resistance to cascading failures.

Multiple infrastructures restoration models can also be found in the literature. Casari

and Wilkie (2005) discussed multiple infrastructures restoration when CIs are operated by

different firms. Lee II et al. (2007) proposed an MIP model to minimize the operating

costs for temporary emergency restoration, where network restoration involves selecting the

locations of temporary arcs needed to completely reestablish network services over a set of

interdependent networks. Ouyang and Wang (2015) studied and compared the effectiveness

of five strategies for joint restoration of interdependent infrastructures, and a Genetic

Algorithm (GA) was applied to generate recovery sequences. Sharkey et al. (2015) studied

the restoration of multiple interdependent CI networks under a centralized decision-making

framework and suggested an MIP model to solve the problem. Furthermore, González et al.

(2016) proposed an MIP model for optimizing infrastructure system restoration considering

joint restoration due to the geographical interdependence between multiple CI systems.

Recently, Garay-Sianca and Pinkley (2021) studied the restoration of interdependent CIs

considering the movement of work crews through a damaged transportation network being
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restored and proposed an MIP to solve the problem under a deterministic problem setting.

When only transportation networks are concerned, Aksu and Ozdamar (2014)

considered a multi-vehicle problem to maximize network accessibility during transportation

network recovery by identifying critical blocked links and restoring them with limited

resources. Çelik et al. (2015) also considered debris removal problems and developed a

stochastic debris removal approach over discrete time periods to determine the optimal

schedule of blocked links under uncertainty. It was assumed that the information

corresponding to clearance time changes as the amount of debris changes, and thus as the

information is updated, the restorative vehicles assignment schedule changes. Furthermore,

Kasaei and Salman (2016) studied arc routing problems to regain network connectivity by

clearing blocked roads, developing heuristic algorithms to attain the maximum benefit gained

by network connectivity while minimizing the time horizon. Recently, Iloglu and Albert

(2020) proposed a restoration model of transportation networks to deliver critical services

after disasters by heuristically optimizing the relocation process of emergency responders to

maximize the coverage of emergency services demand over time.

One can see that the vast majority of these studies are based on deterministic

assumptions such as complete information on the restoration resources and full knowledge

of the activities durations. However, the restoration of infrastructure systems is complicated

by the many decisions to be made in a highly uncertain environment exacerbated by the

disaster itself, people’s reaction, and limited capability of information gathering (Fang &

Sansavini, 2019). Several factors introduce uncertainty into the parameters of a disaster

situation, e.g., availability of restoration resources, number of repair crews, the time duration

for repairing failed components and the accessibility to such failed components through the
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related transportation network. Clearly, optimal task planning under uncertainty appears

to be the closest to a real-life situation. In addition, existing optimization approaches

usually do not account for risk measures related to the execution of the optimal plan. For

example, if the time durations of some repair activities were longer than expected, the

doubt would be if the suggested plan will still perform well. Obviously, when optimizing

CI restoration, risks associated with the restoration plan must be considered to identify the

possible worst-case scenarios and alter the plan accordingly. Furthermore, the travel time

between failed components may also affect the proposed plan along with the accessibility of

components under the transportation network condition.

In the literature, few studies have tackled uncertainty in post-disruption CI

restoration. Xu et al. (2007) optimized a power network restoration by scheduling inspection,

assessment, and repair operations, which were assumed to have random durations with known

probability distributions. Instead of solving the stochastic model, the authors used a GA

to produce a priority list of repair tasks, which might be suboptimal. Recently, Fang and

Sansavini (2019) proposed a stochastic optimization approach for infrastructure restoration

under uncertainty and showed the added value of the stochastic model compared to the

deterministic counterpart. However, risk measures, the effects of travel time and the impact

of different network failure modes were not considered in their model.

3.1.3 Overview and research contributions

The aim of this paper is to schedule restoration actions on failed CI components

using multiple maintenance crews by solving a two-stage stochastic optimization model.

The first stage schedules repair tasks, and the second stage resolves the CI performance
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for each time period. The scheduled tasks have uncertain duration, and the travel times

between different tasks are also uncertain. Considering these sources of uncertainty, two

variants of the proposed stochastic optimization model are: (1) a risk-neutral model to

optimize restoration activities accounting for uncertainty and (2) a conditional value-at-risk

(CVaR)-based risk-averse model that enables the decision maker to choose plans that perform

well even in worst-case scenarios.

The main contributions of this paper are three-fold. (1) To the best of our knowledge,

this is the first paper that incorporates risk measures into resilience-based optimization in the

context of post-disruption restoration; (2) it provides a general framework for the generation,

selection and reduction of scenarios based on an improved fast forward selection algorithm

for resilience optimization; and (3) it provides the first stochastic optimization models that

account for the travel time between failed components for post-disruption restoration.

The remainder of this paper is organized as follows. Section 3.2 presents the

background and methodology pertinent to our models and summarizes the proposed

mathematical formulations. Section 3.3 shows the solution approach used in this paper.

Section 3.4 presents a case study on the RTE electric power network to illustrate the use

and advantage of the suggested models. Finally, concluding remarks and future research

directions are provided in Section 3.5.

3.2 Methodology and model development

3.2.1 Resilience of critical infrastructure

The resilience of a CI is commonly characterized with respect to a measure of

performance (e.g., flow, connectivity, amount of demand satisfied) ϕ(t) that evolves over
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time (Henry & Ramirez-Marquez, 2012; Hosseini et al., 2016). As depicted in Figure 3.1, let

te ≤ td ≤ ts ≤ tf denote instants in time such that (i) a disruptive event occurs at time te

causing ϕ(t) to begin decreasing; (ii) the effects of the disruption are fully realized at time

td, causing ϕ(t) to stop decreasing; (iii) recovery of the CI begins at time ts, causing ϕ(t)

to begin increasing; and (iv) recovery of the CI is complete at time tf , causing ϕ(t) to stop

increasing.

Figure 3.1. Illustration of decreasing network performance ϕ(t) (adapted from Henry and
Ramirez-Marquez (2012))

In this study, the focus is on the recovery period after td, for which a model that

optimizes a restoration plan over a finite planning horizon is proposed. Without loss of

generality, let t ∈ {1 . . . T} denote the time periods over which the CI network is restored

and t = td = 0 denote the instant of planning. The system performance ϕ(t), t ∈ {1 . . . T}

is defined using a maximum weighted flow performance metric defined over an undirected

network G(V,E) that represents the CI. The nodes V are partitioned into supply nodes V +,

transshipment nodes V ∗, and demand nodes such that V + ∪ V ∗ ∪ V − = V . Each supply

node i ∈ V + has a supply P+
i ∈ R+

0 that specifies the maximum amount of flow that may
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originate at the node within a single time period. Associated with each demand node j ∈ V −

is a demand P−j ∈ R+
0 that specifies the maximum amount of flow that may be consumed

by the node in one time period. Each edge {i, j} ∈ E has an associated capacity Pij ∈ R+
0

that specifies the maximum amount of flow that can be carried on the edge within a single

time period.

Given the mechanics expressed above, system performance is defined as the maximum

amount of weighted flow consumed by the demand nodes. Let weights wj ∈ Z+ be assigned

to each demand node j ∈ V −. These weights are incorporated in order to enable prioritizing

the importance certain types of demand nodes (e.g., it is more important to deliver power

to a hospital than to a residential household). Formally, system performance is defined as:

ϕ(t) =
∑
j∈V −

wjfj(t) (3.1)

where fj(t) is the total flow reaching demand node j in time period t ∈ {1 . . . T}.

The proposed restoration planning model aims to reestablish connectivity between

supply and demand nodes of a disrupted network by repairing damaged components over a

fixed planning horizon. Disruptions are modeled by the removal of a subset of edges, without

loss of generality, at time t = 0. Hereafter, these edges are referred to as failed edges. As edges

are repaired in subsequent time periods, the system performance ϕ(t) improves. Following

Fang et al. (2016), the resilience R(T ) is defined as the cumulative performance restored

during the restoration horizon normalized by dividing by the cumulative performance that

would be restored over the same horizon if the system could be restored to pre-disruption

performance instantaneously. That is, the system resilience is given by:

R(T ) =

∑t=T
t=1 [

∑
j∈V − wjfj(t)− ϕ(0)]

T (
∑

j∈V − wjP
−
j − ϕ(0))

, T ≥ 1 (3.2)
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where
∑

j∈V − wjP
−
j = ϕ(t0) denotes the system performance if not affected by the disruption.

3.2.2 Risk measure approach

Generally, two-stage stochastic optimization approaches in the literature are

risk-neutral. In other words, these approaches incorporate randomness by comparing

different solutions on the basis of expectation. Though solutions to risk-neutral models

perform well on average, they may be prone to poor performance for certain realizations

in practice. Given the non-repetitive nature of CI restoration and its significant impact on

society, it is of interest to consider risk-averse models for planning restoration (Noyan, 2012).

That is, a desirable restoration plan may seek to limit the chance of realizations that result

in poor performance.

Toward stating a risk-averse restoration optimization model in Section 3.2.3, we now

summarize the Conditional Value at Risk (CVaR) risk measure (Krokhmal et al., 2002;

Rockafellar & Uryasev, 2000) and recap results pertinent to the optimization model. Let

Z denote a loss random variable with cumulative distribution function (CDF) F (·). The

term “loss” is used here to indicate that large values of Z are undesirable. Although this

convention seemingly conflicts with the “maximize resilience” objective, it has been employed

here because it is standard in the CVaR literature. Section 3.2.3 details the procedure for

applying these results to our model.) For a given risk level α ∈ [0, 1], the Value at Risk

(VaR) of Z is defined as:

VaRα(Z) = min{t|F (t) ≥ α} = min{t|P (Z ≤ t) ≥ α} (3.3)

Thus, for a continuous random variable Z, VaRα[Z] is the quantile of Z that exceeds the
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loss with probability α.

The CVaR for Z with risk level α ∈ [0, 1] is the expected loss given that the loss is

at least VaRα(Z), i.e.:

CVaRα(Z) = E (Z|Z ≥ VaRα(Z)) (3.4)

It is known that CVaR can also be expressed as the optimal solution to the optimization

problem:

CVaRα[Z] = min
η∈R

{
η +

1

1− α
E [(Z − η)+]

}
(3.5)

where (a)+ := max(a, 0) (Rockafellar & Uryasev, 2000).

Equation (3.5) enables conveniently formulating risk-averse stochastic optimization

models with respect to a CVaR risk measure. Formally, let x be a vector of decision variables,

ξ be a random vector of data, and G(x, ξ) be a cost function depending on x and ξ. Then,

the CVaR minimization problem:

min
x∈X

CVaRα[G(x, ξ)] (3.6)

can be formulated as:

min
x∈X,η∈R

{
η +

1

1− α
E [(G(x, ξ)− η)+]

}
(3.7)

allowing us to linearize the model by expressing the expected value term as a

probability-weighted summation of ξ discrete realizations.

3.2.3 Two-stage stochastic optimization model formulation

This section formulates a two-stage stochastic optimization model in which the first

stage schedules the repair of failed edges using multiple repair crews, and the second stage
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determines the resilience that results under a given realization of the random variables.

Rather than optimize explicitly over all random variables, it is common to sample scenarios

from their joint distribution. Let Ω denote the set of scenarios. For a given scenario ω ∈ Ω,

let ttrijω denote the time to repair edge {i′, j′} ∈ E ′ and let ttiji′j′ denote the travel time

incurred if edge {i, j} ∈ E ′ and edge {i′, j′} ∈ E ′ are repaired in sequence. It will also be

convenient to define ξ(ω) as a vector specifying the realized values of all random variables

in scenario ω.

The maximum weighted flow for each time period t ∈ {1 . . . T} depends on ξ(ω), and

therefore the resilience depends on ξ(ω) as well. Let fjω(t) denote the flow into demand

node j ∈ V − at time t ∈ {1 . . . T} in scenario ω ∈ Ω, and define the resilience R(T, ξ(ω)) in

scenario ω ∈ Ω as:

R(T, ξ(ω)) =

∑t=T
t=1 [

∑
j∈V − wjfjω(t)− ϕ(0)]

T (
∑

j∈V − wjP
−
j − ϕ(0))

, T ≥ 1 (3.8)

In what follows, R(T, ξ(ω)) is optimized with respect to both expectation and a CVaR

risk measure. For simplicity of exposition, the model for the case of maximizing expected

resilience is stated first.

Notation

A summary of notation follows. In addition to the notation already defined, the

summary defines binary variables zijk and xiji′j′k in order to encode a restoration plan,

auxiliary binary variables sijω(t) and yijkω(t) in order to resolve the status of each disrupted

edge for each time period and realized scenario, and flow variables fijω(t) in order to facilitate

determining the maximum weighted flow for each time period and realized scenario. The

57



feasible region of the optimization problem is denoted by X and the sets of decision variables

are represented as {f, s, y, st, z, x}.

Parameters & Sets

G(V,E) Undirected graph consisting of nodes V and edges E

{V +, V ∗, V −} Set of {supply, transshipment, demand} nodes

T The number of time periods in restoration planning

E ′ Set of failed edges before restoration (E ′ ⊂ E)

K Set of repair crews

P+
i Supply of node i ∈ V + per time period

P−j Demand of node j ∈ V − per time period

Pij Flow capacity of edge {i, j} ∈ E per time period

ttiji′j′ω Travel time between edge {i, j} ∈ E ′ and {i′, j′} ∈ E ′ in scenario ω

ttrijω Time to repair edge {i, j} ∈ E ′ for each scenario ω

Decision Variables

fijω(t) Flow on edge {i, j} ∈ E in time t ∈ {1 . . . T} for each scenario ω

fjω(t) Total flow reaching demand node j ∈ V − in each scenario ω

sijω(t) Binary variable indicating whether (sijω = 1) or not (sijω = 0) edge

{i, j} ∈ E is functioning at time t ∈ {0 . . . T}
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yijkω(t) Binary variable that equals 1 if edge {i, j} ∈ E ′ is assigned to crew k ∈ K

and it is functioning at time t ∈ {0 . . . T}; 0 otherwise

stijkω Time at which crew k ∈ K begins repairing edge {i, j} ∈ E ′

zijk Binary variable that equals 1 if edge {i, j} ∈ E ′ is assigned to crew k ∈ K;

0 otherwise

xiji′j′k Binary variable that equals 1 if crew k ∈ K repairs edge {i, j} ∈ E ′ before

edge {i′, j′} ∈ E ′ \ {i, j}

The two-stage stochastic optimization model for maximizing the expected resilience

follows:

max
{f,s,y,st,z,x}∈X

E(R(T, ξ(ω))) (3.9)

s.t. ∑
ij∈E

fijω(t)−
∑
ji∈E

fjiω(t) ≤ P+
i , ∀i ∈ V +, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (3.10)

∑
ij∈E

fijω(t)−
∑
ji∈E

fjiω(t) = 0, ∀i ∈ V ∗, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (3.11)

∑
ij∈E

fijω(t)−
∑
ji∈E

fjiω(t) ≤ fjω(t) , ∀j ∈ V −, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (3.12)

0 ≤ fjω(t) ≤ P−j , ∀j ∈ V −, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (3.13)

−sijω(t)Pij ≤ fijω(t) ≤ sijω(t)Pij, ∀ij ∈ E, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (3.14)

sijω(0) = 0,∀ij ∈ E ′, ∀ω ∈ Ω (3.15)

sijω(0) = 1,∀ij ∈ E\E ′, ∀ω ∈ Ω (3.16)
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sijω(t) ≤ sijω(t+ 1) , ∀ij ∈ E, ∀t ∈ {0 . . . T − 1}, ∀ω ∈ Ω (3.17)

yijkω(t) ≤ yijkω(t+ 1) , ∀ij ∈ E ′, ∀t ∈ {0 . . . T − 1}, ∀k ∈ K, ∀ω ∈ Ω (3.18)

stijkω + ttrijω + ttiji′j′ω ≤ sti′j′kω +Mxiji′j′k, ∀ij, i′j′ ∈ E ′ : {i, j} 6= {i′, j′},

∀k ∈ K, ∀ω ∈ Ω (3.19)

stijkω + ttrijω + ttiji′j′ω ≤ sti′j′kω +M(1− xiji′j′k),∀ij, i′j′ ∈ E ′ : {i, j} 6= {i′, j′},

∀k ∈ K, ∀ω ∈ Ω (3.20)

t ≥ stijkω + ttrijω −M [1− yijkω(t)] ,∀ij ∈ E ′, ∀t ∈ {1 . . . T}, ∀k ∈ K , ∀ω ∈ Ω (3.21)∑
k∈K

yijkω(t) = sijω(t) ,∀ij ∈ E ′, ∀t ∈ {0 . . . T}, ∀ω ∈ Ω (3.22)

∑
ω∈Ω

yijkω(t) ≥
∑
ω∈Ω

sijω(T )− |Ω|(1− zijk) ,∀ij ∈ E ′, ∀k ∈ K (3.23)

∑
ω∈Ω

yijkω(t) ≤ |Ω|zijk ,∀ij ∈ E ′, ∀k ∈ K (3.24)

∑
k∈K

zijk = 1 , ∀ij ∈ E ′ (3.25)

xiji′j′k ∈ {0, 1}, ∀ij ∈ E ′, ∀i′j′ ∈ E ′ \ {i, j}, ∀k ∈ K (3.26)

zijk ∈ {0, 1}, ∀ij ∈ E ′, ∀k ∈ K (3.27)

yijkω(t) ∈ {0, 1}, ∀ij ∈ E ′, ∀t ∈ {1 . . . T},∀k ∈ K, ∀ω ∈ Ω (3.28)

sijω(t) ∈ {0, 1}, ∀ij ∈ E, ∀t ∈ {1 . . . T},∀ω ∈ Ω (3.29)

stijkω ≥ 0, ∀ij ∈ E ′, ∀k ∈ K, ∀ω ∈ Ω (3.30)

The goal of model (3.9)–(3.30) is to determine a sequence of edges for each crew

to restore in order to maximize the expected resilience. Constraints (3.10)–(3.12) are flow
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balance constraints. Constraint (3.13) ensures that each demand node j ∈ V − consumes no

more than its demand P−j in every time period, and constraint (3.14) ensures that the flow

on each edge {i, j} ∈ E in each time period does not exceed its capacity Pij if the edge is

functioning or 0 if the edge is failed. Constraints (3.15) and (3.16) set the initial state of edges

to be 0 for failed edges and 1 for other edges. Constraint (3.17) ensures that edges {i, j} ∈

E ′ remain functioning after being restored, and edges {i, j} are functioning for the entire

restoration period. Constraint (3.18) impose a similar restriction on the yijkω(t)-variables;

that is, if an edge {i, j} ∈ E ′ was repaired by crew k ∈ K by time period t ∈ {1 . . . T − 1},

where yijkω(0) = sijω(0) at t = 0, then the edge was also repaired by crew k by time period

t + 1. Constraints (3.19)–(3.20) ensure each crew k ∈ K can work on repairing at most

one edge at a time, according to the schedule specified by the xiji′j′k-variables. Note that

one limitation of the proposed model is that the xiji′j′k decision variables controlling the

schedule of failed components are first-stage decision variables (i.e., not indexed by scenario

ω) which prevents sequential changes over time. Relative to Constraints (3.19)–(3.20), the

xiji′j′k-variables, and the stijkω-variables, an important detail of the model is that all edges are

sequenced for repair by all crews; however, constraints (3.14) and (3.21)–(3.22) impose that

no benefit is gained by (i) completing an edge’s restoration after the end of the restoration

period or (ii) completing an edge’s restoration using a different crew from when it was

first restored. Therefore, the effect is equivalent to imposing strictly that each edge is

restored at most once and that edges cannot be restored unless they can be completed

during the restoration horizon. Defining ttrmax
ijω and ttmax

iji′j′ω as the maximum repair time

parameter of any failed edge in all scenarios and the maximum travel time parameter between
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any two failed edges in all scenarios, M = |E ′|(ttrmax
ijω + ttmax

iji′j′ω) is sufficiently large in

Constraints (3.19)–(3.20). Constraint (3.21) ensures that an edge {i, j} ∈ E ′ cannot have

been restored by crew k ∈ K by time t unless the restoration start time added to the

repair time is no more than t. In Constraint (3.21), it is sufficient to use the same value

for M as in constraints (3.19)–(3.20). Constraint (3.22) imposes that an edge {i, j} ∈ E ′

repaired by crew k ∈ K by time t ∈ {1 . . . T} is an edge that must be functioning at time t,

and it prevents duplicate restoration of an edge by multiple crews. Constraints (3.26)–(3.29)

require the xiji′j′k-, zijk-, yijkω(t)-, and sijω(t) variables to to be binary, and Constraint (3.30)

imposes that no repair tasks begin prior to time t = 0.

The risk-neutral model (3.9)–(3.30) can be reformulated using a CVaR objective by

first introducing the following resilience loss function:

∆R(T, ξ(ω)) = 1−R(T, ξ(ω)) (3.31)

The value of ∆R(Tξ(ω)) ranges between [0, 1] because R(T ) is bounded by the same

values. Given that X denotes the feasible region determined by constraints (3.10)–(3.30)

and {f, s, y, st, z, x} represents the set of decision variables, then, by using Equation (3.7)

the CVaR problem can be formulated as:

min
{f, s, y, st, z, x}∈X, η∈R

{
η +

1

1− α
E [(∆R(T, ξ(ω))− η)+]

}
(3.32)

To motivate the following section, consider an optimal solution to model (3.32).

Observe that the CVaR for this solution corresponds to the average resilience loss of the

d(1 − α)|Ω|e worst scenarios (having values greater than η); thus, the remaining bα|Ω|c

scenarios contribute to the CVaR only indirectly because their resilience loss must be no
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Figure 3.2. Projection of CI network edges on transportation network

more than η. Following Arpón et al. (2018) and Garćıa-Bertrand and Mı́nguez (2012),

this motivates a computationally efficient strategy for deriving solutions to model (3.32) by

reducing the set of scenarios to focus on those that involve high risk.

3.3 Solution approach

3.3.1 Scenario generation and reduction

To ensure a representative set of scenarios, a maxi-min Latin hypercube sampling

(LHS) technique (Wyss & Jorgensen, 1998) is used to generate a large set of scenarios Ω.

Using LHS ensures some amount of coverage of each random variable’s range, and it has

been shown to have advantages when incorporated within a sample average approximation

approach (Chen et al., 2014; Kleywegt et al., 2002).

When the number of generated scenarios is large, the associated stochastic program

tends to become intractable (Morales et al., 2009). To improve tractability, one method

is to reduce the number of scenarios such that the resulting problem’s optimal solution is
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close to the solution of the original optimization problem (Fang & Sansavini, 2019). In these

methods, which have received significant attention in the literature (Heitsch & Römisch,

2003; Horeǰsová et al., 2020), it is common to select scenarios based upon a probability

distance between the original and reduced set of scenarios. The most common probability

distance used in stochastic optimization is the Kantorovich distance, DK(·), defined between

two probability distributions Q and Q′ on Ω by the following problem (Dupačová et al.,

2003; Rachev, 1991):

DK (Q,Q′) = inf
θ

{∫
Ω×Ω

c (ω, ω′) θ (dω, dω′) :
∫

Ω
θ (·, dω′) = Q∫

Ω
θ(dω, ·) = Q′

} (3.33)

Problem (3.33) is known as the Monge–Kantorovich mass transportation problem (Rachev,

1991), where c (ω, ω′) is a nonnegative, continuous and symmetric function, often referred to

as cost function. The infimum is taken over all joint probability distributions defined on Ω×Ω

represented by θ (ω, ω′) in (3.33). Note that DK(·) can only be properly called Kantorovich

distance if function c(·) is given by a norm. When Q and Q′ are finite distributions

corresponding to the initial set of scenarios Ω and the reduced set of scenarios Ωs ⊆ Ω,

the Kantorovich distance can be determined (see Dupačová et al. (2003) for details) by:

DK (Q,Q′) =
∑

ω∈Ω\Ωs

πω min
ω′∈Ωs

c (ω, ω′) (3.34)

where πω represents the probability of scenario ω in Ω (Dupačová et al., 2003).

Expression (3.34) can be used to derive several heuristics for generating reduced scenario sets

that are close to an original set (Dupačová et al., 2003; Morales et al., 2009). Practically,

the fast forward selection algorithm (Heitsch & Römisch, 2003) has been known to perform
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well in different stochastic optimization applications. This algorithm is an iterative greedy

process that starts with an empty set. In the first step of the algorithm, the scenario that

has the minimum probability distance (e.g., Kantorovich distance) with all other scenarios is

included. After that, in each step of the algorithm, a scenario that minimizes the Kantorovich

distance between the reduced and original sets is selected from the set of non-selected

scenarios (Ω\Ωs), where Ωs represents the set of selected scenarios. Then, this scenario

is included in the reduced set Ωs. The stopping criteria of the algorithm is either by finding

the pre-specified number of scenarios or by reaching a pre-defined Kantorovich distance

threshold (Morales et al., 2009).

In the fast forward selection algorithm, as described in (Heitsch & Römisch, 2003),

the distance between two scenarios ω and ω′ is expressed by the function c (ω, ω′) and is

computed according to the difference between pairs of random vectors. Choices of the

function (distance) c (ω, ω′) varies between probability metrics (Dupačová et al., 2003), fixed

first-stage decision variables objective function (Morales et al., 2009) and the objective value

for each scenario, which is shown to practically outperform the other two methods (Bruninx,

2014). Here, we use the objective function value zWS
ω of the wait-and-see solution (WS) for

each scenario ω ∈ Ω (i.e., the objective function resulting from solving model (3.9)–(3.30)

when it is populated with ω as its only scenario) to define c(·, ·) as follows:

c(ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ (3.35)

The resulting fast forward selection algorithm is summarized in Algorithm 1, specifically

using the “Algorithm A” subroutine in Step 0. We apply this algorithm, hereafter referred

to as “Algorithm 1-A, to the risk-neutral model (3.9). We also compare Algorithm 1-A to
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Algorithm 1-B, which is the standard algorithm proposed by Dupačová et al. (2003) based

on the difference between the realized vectors λω and λω′ consisting of the travel times and

repair times for a pair of scenarios ω, ω′ ∈ Ω:

c (ω, ω′) = ‖λω − λω′‖ (3.36)

and report our findings in Section 3.4.4.

Following Arpón et al. (2018), Fairbrother et al. (2019) and Pineda and Conejo (2010),

Algorithm 1 is adapted to the CVaR model given in Equation (3.32). Toward this end, we

first define an active scenario subset Ωα ⊆ Ω of scenarios consisting of the scenarios ω ∈ Ω

having the worst WS objective value zWS
ω (Garćıa-Bertrand & Mı́nguez, 2012). Formally,

let η∗α = VaRα[G(x∗ω, ·)] and define Ωα = {ω ∈ Ω : G(x∗ω, ξ(ω)) ≥ η∗α}. Algorithm 1-C

(i.e., Algorithm 1 with the “Algorithm C” subroutine chosen in Step 0) summarizes the

resulting procedure. After performing this initial reduction, Algorithm 1-C proceeds exactly

as Algorithm 1-A.

The current risk-averse scenario reduction approach combines the active scenarios

concept from Garćıa-Bertrand and Mı́nguez (2012) and the WS reduction metric from

Bruninx (2014). One advantage of this hybrid procedure is that the auxiliary variable η in

Equation (3.32) is already known (η = η∗α = VaRα[G(x∗ω, ·)]) given that individual scenario

problems are already solved and that only scenarios whose resilience losses are greater than or

equal to η∗α are chosen. This allows us to rewrite Equation (3.32) with optimal VaRα[G(x∗ω, ·)]

as:

min
{f, s, y, st, z, x}∈X

{
η∗α +

1

1− α
E [(∆R(T, ξ(ω))− η∗α)]

}
(3.37)

In addition, since the subset of 1 − α scenarios in Ωα is treated as a whole set of α- CVaR
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included scenarios—with each scenario ω included in Ωα having the property ofG(x∗ω, ξ(ω)) ≥

η∗α—we can drop the constant η∗α and express Equation (3.37) as:

min
{f, s, y, st, z, x}∈X

{
1

1− α
E [(∆R(T, ξ(ω))|ω ∈ Ωα]

}
(3.38)

Thus, the problem has become similar to the risk-neutral one by choosing the risk region

Ωα and the reduction Algorithm 1-C acts similar to Algorithm 1-A as mentioned above.

Nonetheless, the disadvantage of the approach suggested by Pineda and Conejo (2010) and

its risk-averse extension proposed in this paper is that the algorithm computational time will

be higher than other approaches. To overcome the problem, we provide the deterministic

solution (DS) as the initial feasible solution to solve the problem associated with each scenario

reducing the computational time significantly to a level on par with Morales et al. (2009).

3.3.2 Benders decomposition

There are different types of decomposition algorithms for solving continuous and

mixed integer large-scale two-stage and multi-stage optimization problems (see Escudero

et al. (2017) for a recent review). One of those types of algorithms is the time-honored

Benders decomposition (Benders, 1962) and its variants (see Rahmaniani et al. (2017) for

a good review). Benders decomposition is commonly used in the stochastic optimization

literature to solve the resulting mixed-integer linear programs (Rahmaniani et al., 2017). In

this context, the risk-neutral and risk-averse models separate into one linear program per

scenario ω—forming what is known as the subproblem (SP)—in the reduced scenario set Ωs

(Ωα,s for the CVaR model) after fixing the binary xiji′j′k-, zijk-, yijkω(t)-, and sijω(t)-variables.

Formally, for each scenario ω ∈ Ωs, let zω denote a fixed assignment of values to
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Algorithm 1: Fast forward scenario reduction algorithm (Dupačová et al., 2003)

Step 0: Compute the distances of scenario pairs:

Algorithm A: c (ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ ; ∀ω, ω′ ∈ Ω . Risk-neutral WS

Algorithm B: c (ω, ω′) = ‖λω − λω′‖ ; ∀ω, ω′ ∈ Ω . λ is a vector of random variables

Algorithm C: (a) Ωα = {ω ∈ Ω | G(x∗ω, ω) ≥ η∗α} . proposed risk-averse

(b) c (ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ ; ∀ω, ω′ ∈ Ωα . Ω = Ωα and Ωs = Ωα,s for

Algorithm C in steps 1-3
Step 1: Select the first scenario as the most equidistant scenario from all other scenarios

in the set Ω :

ω1 = arg min
ω′∈Ω

{∑
ω∈Ω

πωc (ω, ω′)

}
(3.39)

Ω
[1]
s ← {ω1} . Ω

[i]
s is the set of selected scenarios until step i

Ω
[1]
J ← Ω\{ω1} . Ω

[i]
J : the scenarios set not selected in the first i steps

Step i: Identify the scenarios ωi to be added to Ωs until it reaches a given cardinality Ns

based on the distance function between Ω
[i−1]
s and Ω

[i−1]
J :

For i in {2 . . . Ns}:

ωi = arg min
ω′∈Ω

[i−1]
J


∑

ω∈Ω
[i−1]
J \{ω′}

πω min
ω′′∈Ω

[i−1]
s ∪{ω}

c (ω, ω′′)

 (3.40)

Ω
[i]
s ← Ω

[i−1]
s ∪ {ωi}, Ω

[i]
J ← Ω

[i−1]
J \{ωi} . Ω

[i]
J ∪ Ω

[i]
s = Ω

End For

Step Ns + 1: Redistribute the probabilities of Ω∗J = Ω
[Ns]
J over Ω∗s = Ω

[Ns]
s according to

the cost function c (ω, ω′) :

π∗ω = πω +
∑

ω′∈J(ω)

πω′ , ∀ω ∈ Ω∗s (3.41)

with J(ω) being the set of scenarios ω′ ∈ Ω∗J such that ω = arg min
ω′′∈Ω∗s

c (ω′′, ω′)
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all x-, z-, y-, and s-variables corresponding to the index ω. The resulting SP for scenario

ω ∈ Ωs—with resilience loss minimization objective—is the linear program:

SP(zω) : min

(
1−

∑t=T
t=1 [

∑
j∈V − wjfjω(t)− ϕ(0)]

T (
∑

j∈V − wjP
−
j − ϕ(0))

)
(3.42)

s.t. (3.10)− (3.14) for scenario ω (3.43)

Because SP(zω) is a linear program in which zω appears only in the constraints, the dual of

SP(zω) can be formulated as a linear program of the form:

DSP(zω) : max (b−Bzω)dω (3.44)

s.t. dω ∈ D (3.45)

where b is the right-hand side vector of (3.43), B is the left-hand side coefficient matrix

of (3.43), dω is the dual variable vector corresponding to constraint (3.43), and D represents

the dual feasible region. Let Dp and Dr respectively denote the extreme points and extreme

rays of D. Then, letting Dωnp ⊆ Dp and Dωnr ⊆ Dr respectively denote a subset of the

extreme points and extreme rays produced prior to iteration n of Benders decomposition,

the restricted master problem (RMP) for iteration n is formulated as:

min
Ωs∑
ω=1

πωvω (3.46)

s.t.

vω ≥ (b−Bzω)dω,∀ω ∈ Ωs, dω ∈ Dωnp (3.47)

0 ≥ (b−Bzω)dω,∀ω ∈ Ωs, dω ∈ Dωnr (3.48)

constraints (3.15)–(3.30)

where vω is a new variable that represents the resilience loss in scenario ω. Constraints (3.47)
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and (3.48) are respectively known as optimality cuts and feasibility cuts.

In the proposed Benders algorithm (Algorithm 2), the first step is to set the upper

bound, lower bound and iteration counter at∞, 0 and 0, respectively. In iteration n, RMP is

solved first to obtain an optimal solution z̄n (note that in iteration 0, RMP has no cuts and

any feasible solution to (3.15)–(3.30) is optimal with an objecive value of 0). From z̄n, let

z̄nω denote the partial solution associated with the x-, z-, y-, and s-variables corresponding

to the index ω. Then, DSP(z̄nω) is solved (note that since the linear program in (3.42)–(3.43)

and so its dual (3.44)–(3.45) are scenario indexed, they can be solved in parallel), yielding

either an extreme point dω ∈ Dp (if the model is solved to optimality) or an extreme ray

dω ∈ Dp (if the model is concluded to be unbounded). In the former case, dω is added to

Dωnp (i.e., Dω,n+1
p ← Dωnp ∪ {dω} and Dω,n+1

r ← Dωnr ), resulting in a new optimality cut;

otherwise, dω is added to Dωnr (i.e., Dω,n+1
p ← Dωnp and Dω,n+1

r ← Dωnr ∪ {dω}), yielding a

new feasibility cut. The RMP objective provides a lower bound to the optimal solution of the

original problem (3.9)–(3.30) —under a resilience loss minimization objective—; furthermore,

as demonstrated in the following proposition, the dual subproblem DSP(zω) always has an

optimal solution, meaning the weighted sum
∑

ω∈Ωs
πω (b−Bznω)dω yields an upper bound.

We now state and prove the required result.

Proposition 3.1 For a given binary variable vector zω =
[
xiji′j′k, sijω(t), yijkω(t), zijk

]
that

satisfies the constraints (3.15)–(3.30), both SP(zω) and DSP(zω) are always feasible and

bounded.

Proof 3.1 Observe that setting fijω(t) = 0, ∀{i, j} ∈ E, ∀t ∈ {1 . . . T}, and fjω(t) =

0, ∀j ∈ V +, ∀t ∈ {1 . . . T}, satisfies Constraints (3.10)–(3.14); thus, SP(zω) is feasible. To
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show the boundedness of SP(zω), note that fjω(t) ≤ P−j , ∀j ∈ V −, ∀t ∈ {1 . . . T} due to

Constraint (3.13); therefore, the objective of SP(zω) is bounded to be nonnegative. By duality

theory, DSP(zω) must be feasible and bounded because SP(zω) is feasible and bounded.

Algorithm 2: Benders decomposition algorithm
Step 0: UB ←∞, LB ← 0, iteration counter n = 0

Step 1: Solve the RMP to obtain its optimal solution (zω, v̄ω) ,∀ω ∈ Ωs . Ωs = Ωα,s for

CVaR modelLB ← max{LB,
∑

ω∈Ωs
πωv̄ω}

Step 2: For each ω ∈ Ωs:

Solve the DSP(zω) to obtain its optimal solution dω and objective value

(b−Bzω)dω

End For

UB ← min{UB,
∑

ω∈Ωs
πω (b−Bzω)dω}

Step 3: If UB − LB ≤ ε : . ε is a predefined tolerance

Stop and report the solution

Else:

(a) Add a total number of |Ωs| Benders optimality cuts of the form:

vω ≥ (b−Bzω)dω,∀ω ∈ Ωs to the RMP

(b) n ← n+ 1 and go to Step 1

End If

This result additionally shows that feasibility cuts are not needed in the decomposition

procedure; therefore, only optimality cuts are generated and added to the RMP in each

iteration, and the convergence of the algorithm is accelerated.

3.4 Numerical studies

3.4.1 System description

To test the proposed model and solution approach, the data from the French electrical

power network company RTE (D’Electricité, 2019) is utilized in this work. The RTE network
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can be modeled as an undirected graph with 172 substations (nodes) and 220 transmission

lines (edges) covering up to more than 17,500 miles. There are 26 power generators and 145

distributors in the network. Some of the generators and distributors also transmit power

from other generators to distributors. The weights of the edges (i.e., their capacities) are

assumed to be identical. Specially, the capacity of each transmission line is 5000 MW, and

the total network flow received by demand nodes is 61928 MW. In addition, given that the

power network flow does not follow the general flow-based model introduced in this paper

(Bienstock & Mattia, 2007), the DC model has been used as a linear approximation of the

power flow in the network (see Appendix A.1 for details).

In this study, three possible cases are considered (along with subcases for their

travel times) for network failure modes that differ in terms of their spatial coverage and

the importance or criticality of the components in the network:

• Case 1: Random failures - common failures that occur randomly across the network

caused often by weather-related triggers, man-made accidents and operation errors

affecting the whole network. In this case, network edges are removed randomly with

an equal failure probability for all edges in the network.

• Case 2: Cascading failures - failures of initial components that may cause other

interconnected components to fail due to increased loads causing a sequence of failures

in the network. The cascading failure process was simulated using the ML model

(Motter & Lai, 2002).

• Case 3: Spatial failures - failures caused generally by natural disasters (e.g.,

earthquakes and floods) where only a local spatial area of the network is affected,

72



and thus only components that are spatially close to each other are impacted by the

local disruption.

For all these cases, the three subcases of travel times are: (a) without travel time

consideration, (b) with deterministic travel time consideration, and (c) with random travel

time consideration. Considering these allows for measuring the impact of travel times,

uncertainty and risk to be tested under various scenarios of failure propagation and revealing

under which circumstances the usage of these additions to system resilience is critical. The

distribution of the failed components over the geographic area of the network for each case

can be found in Appendix B.1.

3.4.2 Uncertainty representation

The proposed model assumes the time to repair each edge and the travel time between

failed edges are uncertain, but the remaining parameters are deterministic. The remainder of

this section summarizes the assumed probability distributions for the uncertain parameters.

Let E ′ ⊆ E denote the set of disrupted edges, and ttrij denote the time to repair

edge e = {i, j} ∈ E ′. We assume ttri,j has a Weibull distribution with scale parameter νe

and shape parameter βe. Specially, the probability density function of ttrij is given by:

h(t, βe, νe) =
βe
νe

(
t

νe

)βe−1

e−( t
νe

)
βe

, t ≥ 0 (3.49)

Note that the Weibull distribution is commonly used to model activity times (Abdelkader,

2004).

For e = {i, j} ∈ E ′ and e′ = {i′, j′} ∈ E ′, let ttiji′j′ denote the travel time between

edge e and e′. A deterministic estimate of the travel time from e to e′ is derived using a
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separate transportation network. In the transportation network, each edge has an associated

length and speed limit, and its traversal time cl is estimated assuming it will always be

possible to travel at the speed limit. The deterministic estimate of ttiji′j′ , hereafter denoted

as dttiji′j′ , is obtained by determining the shortest path length between two nodes in the

transportation network, namely those that are closest to the midpoint of e and e′ (see

Figure 3.2 for illustration). To represent the uncertainty of ttiji′j′ , a distribution for traversal

time of edges in the transportation network is populated; given cl, the random traversal time

crl is distributed according to the probability mass function:

P (crl = t) =


0.3, t = cl

0.3, t = 1.5 cl

0.4, t = 2 cl

(3.50)

and ttiji′j′ is found by solving the shortest path problem as explained. This approach follows

other disaster relief studies assuming that uncertain traversal times are based on a coefficient

multiplication of the deterministic traversal times of the transportation network (de la Torre

et al., 2012; Mete & Zabinsky, 2010).

3.4.3 Assumptions and computational information

In this study, the Weibull distributed repair time shape and scale parameters are

assumed to be 5 and 2, respectively, for all components. Such assumptions are made following

other studies in the literature in terms of the chosen probability distribution and parameters

(Fang & Sansavini, 2019). Thus, the mean-time-to-repair (MTTR) used in the deterministic

model is 1.84 hours. Without loss of generality, we assume that 10% of the edges are

damaged under each failure mode and that the number of available maintenance crews is
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three. Table 3.1 shows the decrease in the network performance under each failure mode.

In addition, the restoration planning horizon T is chosen as 20 hours, which is sufficient

to restore the network performance to its original state under all cases. For the scenario

generation process, 1000 scenarios are generated of each failure mode and its included

subcases. After that, scenario reduction algorithms (1-A and 1-C) were used to reduce the

number of scenarios into a smaller set. For the risk-neutral stochastic optimization model,

the total number of scenarios is reduced to 10 scenarios; and for the risk-averse stochastic

optimization model (with α = 80%) we reduce the total number of scenarios to 5 given

that less probability space is covered (80% less) with the CVaR measure. Solutions to the

MILPs used in the scenario reduction procedure and the stochastic optimization models were

computed using CPLEX 12.10 (CPLEX, 2020) and programmed using Python 3.7 (Python,

2020) on a 3.2 GHz Intel Core i5 iMac machine with 24 GB of RAM.

Table 3.1. Network performance drop after possible modes of disruption

Case Random failures Cascading failures Spatial failures

Performance drop 9% 13.35% 12.78%

Based on our preliminary analysis, a time limit of 2 hours (7200 seconds) and 1

hour (3600 seconds) was set for each instance of the risk-neutral stochastic optimization

model with 10 scenarios and the risk-averse stochastic optimization model with 5 scenarios,

respectively. This amount of time allows our implementation of Benders algorithm to solve

both problems within 2% adjusted optimality gap (see Appendix A.2 for details) for all

subcases. Algorithm 2 was implemented using callbacks with Benders cuts added as lazy

constraints. Table 3.2 shows the added value of our proposed solution algorithm compared

to CPLEX standard solver, and Table 3.3 summarizes the dimensions of different problem
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instances.

Table 3.2. Comparison of Benders decomposition and CPLEX solver solutions for the
Risk-neutral stochastic optimization model with 10 reduced scenarios

Case
CPLEX standard solver Benders decomposition

Computational
time (s)

Gap(%)
Resilience
objective

value

Computational
time (s)

Gap(%)
Resilience
objective

value

Random failures 7201.05 5.59 0.3437980 7202.178 0.1444 0.913716
Random failures (deterministic travel times) 7201.36 5.99 0.3035116 7200.977 0.7702 0.844289
Random failures (random travel times) 7201.18 2.56 0.63019 7200.49 0.7646 0.82157
Cascading failures 7200.20 1.13 0.8678093 5300.619 1.0288 0.875282
Cascading failures (deterministic travel times) 7201.46 2.26 0.78629732 6000.816 0.9407 0.881616
Cascading failures (random travel times) 7200.40 6.52 0.481307 7201.611 1.1633 0.850502
Spatial failures 7201.83 4.08 0.6243989 7201.101 1.2052 0.835887
Spatial failures (deterministic travel times) 7201.15 4.01 0.6289536 7201.170 1.4432 0.817396
Spatial failures (random travel times) 7206.79 6.82 0.41048 7217.37 1.3527 0.800491

Table 3.3. Problem sizes of different study instances

Instance
No. of

continuous
variables

No. of binary
variables

No. of
constraints

No. of
Scenarios

No. of
maintenance

crews

Max
computational

time (s)

Risk-neutral 115,320 315,612 377,104 10 3 7200
Risk-averse 57,660 158,532 188,629 5 3 3600
Deterministic 11,532 32,868 37,695 1 3 600

3.4.4 Results

Scenario reduction results

In this section, we compare the results from the adopted risk-neutral scenario

reduction algorithm based on the individual WS solutions with the ones from the standard

algorithm based on the norm of the difference between pairs of scenarios’ random vectors.

Figure 3.3 presents a histogram comparison of the WS resilience values of the reduced set

of scenarios using the WS metric (Algorithm 1-A) and the standard probability metric

(Algorithm 1-B) for one failure mode.

The WS reduced scenarios show more resemblance to the original set of scenarios with
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Figure 3.3. WS results of scenario reduction algorithms 1-A and 1-B for different reduced
numbers of scenarios
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respect to the distribution of objective values. Furthermore, Tables 3.4 and 3.5 present the

values of mean and standard deviation of system resilience for the reduced sets using both

algorithms under different target numbers of reduced scenarios without/with travel time

considerations. It is worth pointing out that the standard probability metric method cannot

differentiate between the model with no travel times and the one considering deterministic

travel times since the same set of scenarios will be chosen for both cases.

Table 3.4. WS results from scenario reduction algorithms 1-A and 1-B for different reduced
numbers of scenarios without travel time consideration

All 1000 scenarios Algorithm 1-A Algorithm 1-B

Resilience
mean

Resilience
standard
deviation

Number
of

reduced
scenarios

Resilience
mean

Resilience
standard
deviation

Number
of

reduced
scenarios

Resilience
mean

Resilience
standard
deviation

0.915831 0.0172952

500 0.915831 0.0172866 500 0.915613 0.0176127
200 0.915831 0.0172866 200 0.91598 0.0178898
100 0.915831 0.0172866 100 0.915249 0.0180558
50 0.915827 0.0172921 50 0.917131 0.0178635

Table 3.5. WS results from scenario reduction algorithms 1-A and 1-B for different reduced
numbers of scenarios considering deterministic travel times

All 1000 scenarios Algorithm 1-A Algorithm 1-B

Resilience
mean

Resilience
standard
deviation

Number
of

reduced
scenarios

Resilience
mean

Resilience
standard
deviation

Number
of

reduced
scenarios

Resilience
mean

Resilience
standard
deviation

0.854238 0.0171757

500 0.854238 0.0171671 500 0.853971 0.0174006
200 0.854238 0.0171671 200 0.854054 0.0177003
100 0.854239 0.0171649 100 0.853737 0.017949
50 0.854242 0.0171685 50 0.855148 0.0178526

Table 3.6 shows the benefit of using a warm start setting (supplying the deterministic

solution as an initial feasible solution) for each single scenario problem in reducing both

computational time and optimality gaps for the WS problems.
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Table 3.6. Comparison of computational time and optimality gap for single scenario
problems with warm vs. cold start

Instance
Average

optimality
gap (%)

Max
optimality
gap (%)

Average
computational

time per
problem (s)

Max
computational

time per
problem (s)

1000 scenario with cold start 0.573 2.27 118.135 120
1000 scenario with warm start 0.13 0.59 108.82 120

Stochastic optimization models results

A key result in this study is the impact of the inclusion of travel times between

failed components for each maintenance crew on the system resilience. Figure 3.4 shows

a comparison between resilience with and without deterministic travel times for all three

failure modes. (The travel time between each pair of failed components is assumed to be

dttiji′j′ for the former and 0 for the latter). For all failure modes, the impact of travel times is

significant. The result indicates that the resilience models without considering travel times

between failed components might overestimate the actual possible resilience values achieved

and the time to restore the system to its undisrupted performance. Note that this occurs

even in the spatial failures case in which pairs of failed components are likely to be close to

each other. A sample of optimal routing for one failure mode is provided in Appendix B.2.

Risk-neutral stochastic model

To measure the added value of incorporating uncertainty into the model and to

compare the stochastic solution (SS) to its deterministic counterpart, we use what is known

as the value of stochastic solution (VSS) as our metric for comparison. This measure

indicates the difference in the objective values of the stochastic solution and the deterministic
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deterministic travel times

80



counterpart (Birge, 1982). By solving the restoration problems for the different disruption

cases (with the subcases of excluding travel times, and including deterministic travel times

and random travel times) using the proposed Benders decomposition method, we can find the

added value of uncertainty. Figure 3.5 shows the added value of the risk-neutral stochastic

model compared to its deterministic counterpart in terms of the value of resilience achieved

at the end of the restoration period and in terms of the extra amount of flow (power) received

by demand nodes under the cases of random failures and cascading failures. Based on that,

if the stochastic solution was used instead of the deterministic one, more flow will be pushed

to satisfy more demand by amounts of at least 3000 MWh (3 GWh) for all subcases of the

random failures case and 1800 MWh (1.8 GWh) for all subcases of the cascading failures case.

Given that the annual electricity consumption per household in France is about 5.425 MWh

(Odyssee-Mure, 2020) and the daily consumption is approximately 0.015 MWh, the extra

amount of flow gained by the stochastic solution is equivalent to the daily consumption

of 200,000–275,000 households for case 1 and 100,000–600,000 households for case 2 (see

Figure 3.6). This indicates the significance of incorporating uncertainty into the restoration

scheduling tasks.

In contrast to the previous cases, the stochastic solution for the case with spatial

failures only shows an improvement over the deterministic solution in the subcase with

random travel times. In the other subcases, the deterministic and stochastic solutions are

the same. Resilience progress over time curves for cases 1 and 2 can be found under Appendix

B.3 showing how the stochastic solution outperforms the deterministic counterpart in almost

every scenario.

To validate the solution resulting from the reduced set of scenarios, we compare the
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Figure 3.5. Case 1 and 2 (Random Failures and Cascading Failures): Resilience values and
VSS (as higher satisfied demand in MWh) under different travel time assumptions

solution for each subcase to the one for the full set of scenarios as shown in Table 3.7. In all

subcases, the estimate of the expected resilience value for the small set of scenarios is within

about a 0.01 difference from the expected resilience for the full set of scenarios.

Risk-averse stochastic model

For the risk-averse model, five reduced scenarios are chosen to represent the worst

20% cases with α = 0.8. Similar to the VSS, we adopt the mean-risk value of stochastic

solution (MRVSS) (Noyan, 2012), a measure of the possible gain from solving stochastic

models incorporating a mean-risk function, as the method to quantify the gains from solving

the CVaR problem. However, given that only a CVaR approach is considered rather than a

mean-risk one, we rename the measure to CVaR-VSS, i.e., the mean-risk measure with the
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Table 3.7. Validation of solutions for the reduced set of scenarios when applied to the full
set of scenarios

Case
Full set of scenarios

(1000 scenarios)
Reduced set of scenarios

(10 scenarios)

Resilience objective value Resilience objective value

Random failures 0.912227 0.913716
Random failures (deterministic travel times) 0.838694 0.844289
Random failures (random travel times) 0.828919 0.82157
Cascading failures 0.881547 0.875282
Cascading failures (deterministic travel times) 0.881711 0.881616
Cascading failures (random travel times) 0.845592 0.850502
Spatial failures 0.848444 0.835887
Spatial failures (deterministic travel times) 0.815873 0.817396
Spatial failures (random travel times) 0.796081 0.800491

weight of the expected resilience of scenarios not in α-CVaR being 0. Figures 3.7, 3.8 and

3.9 compare the CVaR solution and the deterministic solution in terms of resilience values

and CVaR-VSS for all cases.

In almost all of these cases, the CVaR solutions outperform the deterministic solutions

by achieving higher resilience values accompanied with significant CVaR-VSS values ranging

from about 50,000 to 800,000 households daily consumption equivalence in the worst-case

scenarios. Note that, in contrast to the risk-neutral case, the case with spatial failures also

shows a significant CVaR-VSS under all subcases. Figure 3.10 plots the network performance

over time for the high-risk scenarios in Case 3-b (spatial failures with deterministic travel

times), showing how the CVaR restoration plan generally achieves full performance in these

scenarios faster than either a risk-neutral or deterministic restoration plan.

Table 3.8 compares the CVaR solution and the deterministic and risk-neutral solutions

across Cases 1–3. It can be seen that the risk-averse solution performs the best in all the

cases by mitigating the risk associated with resilience loss. Moreover, the risk-neutral solution

almost always comes second in performance with the deterministic solution classified as the
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Figure 3.6. Cases 1 and 2 (Random Failures and Cascading Failures): VSS in equivalent
number of households consumption related to the extra amount of satisfied demand in MWh
under different travel time assumptions

solution involving the highest risk.

In addition, It is of interest to investigate whether the CVaR solution performs well

in scenarios other than the high-risk ones. Table 3.9 compares the risk-neutral solution for

all cases with the deterministic counterpart and the CVaR solution applied to the reduced

set of 10 scenarios associated with the risk-neutral problem. Surprisingly, the CVaR solution

in some cases outperforms the risk-neutral solution. One possible reason of this unexpected

finding is that the CVaR problems generally use fewer scenarios, given the 1− α% reduced

covered area of possible scenarios allowing the optimal solutions of the problems to be closer

to the 0% optimality gap in less amount of computational time. Therefore, two important

features of the CVaR approach can be summarized as follows: (1) the CVaR approach

covers a fair amount of uncertainty (depending on α value), making its suggested plan more

pleasing than the fixed deterministic counterpart, and (2) the CVaR problem is solved with
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Figure 3.7. Case 1 (Random Failures): Resilience values and CVaR-VSS in equivalent
number of households consumption related to the extra amount of satisfied demand in MWh
under different travel time assumptions (α = 0.8)

fewer scenarios than its risk-neutral counterpart allowing the optimal solution to be found

in less time (50% in our setting) and with lower optimality gaps.

Table 3.8. Solution comparison of the risk-averse resilience values (α = 0.8) with
deterministic and risk-neutral alternatives

Case
Computational

time (s)
Gap(%)

CVaR
solution

Deterministic
solution

Stochastic
solution

Random failures 3600.000 0.0691 0.887089 0.846803 0.885704
Random failures (deterministic travel times) 3600.797 0.5549 0.827217 0.804466 0.827217
Random failures (random travel times) 3600.632 0.833 0.8103 0.7876 0.8103
Cascading failures 3607.194 0.1988 0.920725 0.850712 0.868874
Cascading failures (deterministic travel times) 3600.476 0.8428 0.880710 0.860402 0.873507
Cascading failures (random travel times) 3600.035 1.4551 0.8289 0.7959 0.8155
Spatial failures 3600.312 0.7766 0.842965 0.828520 0.828520
Spatial failures (deterministic travel times) 3600.015 1.4309 0.804756 0.800828 0.800828
Spatial failures (random travel times) 3600.896 1.3141 0.7744 0.7622 0.7744
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Figure 3.8. Case 2 (Cascading Failures): Resilience values and CVaR-VSS in equivalent
number of households consumption related to the extra amount of satisfied demand in MWh
under different travel time assumptions (α = 0.8)

Table 3.9. Solution comparison of the risk-neutral resilience values with deterministic and
risk-neutral alternatives

Case
Computational

time (s)
Gap(%)

Stochastic
solution

Deterministic
solution

CVaR
solution

Random failures 7202.178 0.1444 0.913716 0.877421 0.912732
Random failures (deterministic travel times) 7200.977 0.7702 0.844289 0.817283 0.844289
Random failures (random travel times) 7200.49 0.7646 0.82157 0.7928 0.82157
Cascading failures 5300.619 1.0288 0.875282 0.865170 0.911292
Cascading failures (deterministic travel times) 6000.816 0.9407 0.881616 0.848590 0.882013
Cascading failures (random travel times) 7200.4 0.9549 0.8505 0.7983 0.8314
Spatial failures 7201.101 1.2052 0.835887 0.835887 0.850345
Spatial failures (deterministic travel times) 7201.170 1.4432 0.817396 0.817396 0.818078
Spatial failures (random travel times) 7217.37 1.3527 0.800491 0.7704 0.800491

3.5 Conclusion and future work

This chapter proposes risk-neutral and risk-averse two-stage stochastic optimization

models for CI restoration planning, where post-disruption restoration tasks occur in a highly

dynamic environment and thus subject to a considerable amount of uncertainty. The models
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Figure 3.9. Case 3 (Spatial Failures): Resilience values and CVaR-VSS in equivalent
number of households consumption related to the extra amount of satisfied demand in MWh
under different travel time assumptions (α = 0.8)

address two important challenges facing restoration planning, which are the accessibility of

failed components and uncertainty associated with restoration task durations and possible

starting times. For the former, travel time between components has been added to the model

to connect CI restoration models to the state of the underlying transportation network. For

the latter, the uncertainty of repair times and travel times is handled by sampling from their

suggested probability distributions through a maxi-min Latin hypercube technique, with the

number of discrete uncertainty scenarios being reduced to a tractable size by applying an

improved risk-neutral and a proposed risk-averse fast forward selection algorithm based on

the WS objective values of individual scenarios. The objective of the model is to minimize

the expected loss of performance over all possible realizations of the random parameters,

and thus to maximize the system’s resilience. Three common network failure mechanisms
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Figure 3.10. Case 3-b (Spatial Failures with Deterministic Travel Times): Comparison
of network performance during the restoration period in high-risk scenarios under different
solution plans

(i.e., random failures, cascading failures and spatial failures) are tested.

The proposed approach was demonstrated using a real-life case study based on

the RTE 400 kV French electric power transmission network. Our first finding was the

significant impact of incorporating travel times into resilience modeling. In fact, one can see

that resilience models that do not consider travel times are overestimating their expected

resilience achieved and the speed of restoring the system to its undisrupted performance level.

Furthermore, to assess the added value of incorporating uncertainty, two measures were used

to quantify the significance of adapting stochastic models over deterministic counterparts:

VSS for the risk-neutral stochastic model and CVaR-VSS for the risk-averse stochastic model.
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Both models have resulted in positive values of VSS and CVaR-VSS in 2 out of 3 cases and

all three cases, respectively. There is a clear benefit of using stochastic methods that account

for uncertainty over deterministic ones that depend on the expected values of the uncertain

parameters. In addition, CVaR solutions were generally found with less computational time,

and their suggested restoration plans perform on par with the risk-neutral counterparts and

sometimes even better under a risk-neutral setting of scenarios selection. However, under

high-risk scenarios, CVaR proposed solutions mitigate the risk associated with such scenarios

by achieving resilience values close to the wait-and-see solutions of such individual scenarios.

In addition, the CVaR solution under this setting performed second to none under all failure

modes and their subcases.

The stochastic optimization models proposed in this study are reformulated as

deterministic equivalent large MILPs in order to generate methods to solve proposed models

efficiently. A Benders decomposition algorithm is proposed in this paper to solve the

proposed models in short time settings. In addition, given that the risk-averse stochastic

program is modeled by a scenario selection procedure identifying true risks associated

with individual scenarios, the Benders decomposition algorithm proposed here is robust

to work with both versions of the stochastic model. Thus, a practical framework for

solving risk-averse versions of resilience-based optimization models, starting from scenarios

generation, risk-averse scenarios reduction and ending with a solution procedure, is shown

here to facilitate linking risk measures to current and future resilience optimization models.

The proposed stochastic optimization models present a practical framework for

risk-neutral and risk-averse resilience-based applications and possibly other applications

with task-scheduling procedures involving fair amount of uncertainty. Nonetheless, possible

89



additions in terms of planning flexibility to the current framework are adding multi-mode

repairs of failed components and allowing for multi-crew restoration of failed components

under travel time considerations. Moreover, restoration considering multiple interdependent

networks (Gomez et al., 2019) under uncertainty and network-based risk measures along

with coordinating the restoration of the transportation network can also be studied as future

research directions. Finally, the models in the present study assume that the restoration plan

is determined initially and cannot be altered afterwards. Indeed, relaxing this assumption

by enabling sequential change of the plan as time goes on will add more flexibility to the

models but will significantly increase the computational time by moving the models from

the two-stage setting into a more dynamic multi-stage stochastic optimization framework.

Such computational differences can be tested using time-consistent risk-averse measures

such as Expected CVaR (Homem-de-Mello & Pagnoncelli, 2016) and Expected Conditional

Stochastic Dominance (Escudero et al., 2017).
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Appendix A

A.1 Model adaptation for the power network

The general flow-based model introduced in this paper assumes that the flow in the

network can be directly controlled, which is not the case for power infrastructure networks

(Bienstock & Mattia, 2007). The DC model is a commonly used linear approximation of the

power grid to model its operations, especially the power transmission network (Bienstock &

Mattia, 2007; Nurre et al., 2012). The DC model includes decision variables (i.e., the phase

angles) for all the nodes in the network. The flow on edge {i, j} is then a function of the

phase angles of nodes i and j along with the reactance of the edge {i, j}. The reactance, bij,

of the edge is dependent on its length and the voltage levels. By defining θi for i ∈ V as the

phase angle of node i, the flow on edge {i, j} for a given scenario is determined by:

bijfij = θi − θj (3.51)

Note that both the phase angle variables and the edge flow variables are unrestricted

in the DC model. A negative flow on edge {ij} corresponds to power flowing from node j to

node i. Therefore, it is necessary to incorporate the constraints given by Equation (3.51) into

the optimization problem (3.9)–(3.30). We define variables θi(t) for i ∈ V and t ∈ {1 . . . , T}

for the phase angle of node i in time period t. Then, the DC flow is incorporated by adding

two constraints controlling flow on each edge along with (3.14):

bijfijω(t) ≤ θiω(t)− θjω(t) +M [1− sijω(t)] ,∀ij ∈ E,∀t ∈ {1, . . . , T}, ∀ω ∈ Ωs (3.52)

bijfijω(t) ≥ θiω(t)− θjω(t)−M [1− sijω(t)] ,∀ij ∈ E,∀t ∈ {1, . . . , T},∀ω ∈ Ωs (3.53)

Therefore, whenever sijω(t) = 1, constraints (3.52) and (3.53) will make sure that the DC
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flow satisfies Equation (3.51) for edge {i, j} in time period t. In addition, Constraints (3.52)

and (3.53) are added to the optimization problem (3.9)–(3.30) and to each scenario-related

subproblem from the proposed Benders decomposition.

A.2 Optimality gap calculation

Regarding the relative optimality gap of the stochastic optimization models, we note

that the optimality gap using the resilience measure (or loss of resilience) by Fang et al. (2016)

is inflated given a constant term in the objective function’s numerator representing either the

negative summation of the aggregated system performance measure (flow in our case) in the

disrupted state: −
∑t=T

t=1 ϕ(0) for a maximization problem or the summation of aggregated

system flow over time in the nominal state:
∑t=T

t=1 ϕ(t0) for a resilience loss minimization

problem. For example, if the cumulative sum of flow ∀t ∈ {1 . . . T} is 100,
∑t=T

t=1 ϕ(0) = 70

and
∑t=T

t=1 ϕ(t0) = 120, the resilience objective function solution (Ôbj) will be 0.60 and if we

assume that the upper bound on the cumulative flow is 115, the upper bound on resilience

(ObjUB) will be 0.90; thus, if we calculate the optimality gap by:
(
ObjUB

Ôbj

)
− 1, it will be

estimated as 50.00% where the gap in terms of the aggregated flow:
(

Aggregated FlowUB

̂Aggregated Flow

)
− 1,

which is the term to be maximized, is 15.00%. Based on that, we use from this point onward

an adjusted optimality gap calculated using:

(
ObjUB+

Tϕ(0)
T (ϕ(t0)−ϕ(0))

Ôbj+
Tϕ(0)

T (ϕ(t0)−ϕ(0))

)
− 1 for a maximization

problem and:

(
Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−ObjLB

Tϕ(t0)
T (ϕ(t0)−ϕ(0))

−Ôbj

)
− 1 for a minimization objective to eliminate the impact

of constant terms on the gap estimation of the aggregated flow. In Table 3.2, we compare

the proposed Benders algorithm to the standard CPLEX solver. The optimalty gap for the

Benders implementation is found using:

(
Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−LB

Tϕ(t0)
T (ϕ(t0)−ϕ(0))

−Ôbj

)
− 1 where LB is the lower bound

representing the optimal objective function value of the master problem at the last iteration
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of the algorithm before termination. For the CPLEX solver, we use the reported best lower

bound on the objective function ObjLBsolver and the best available objective value Ôbjsolver

reported by CPLEX:

(
Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−ObjLBsolver

Tϕ(t0)
T (ϕ(t0)−ϕ(0))

−Ôbjsolver

)
− 1 to calculate the optimality gap.

Appendix B

B.1 Maps of failed components for numerical studies

Figure 3.11. Case 1: Distribution of random failures
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Figure 3.12. Case 2: Distribution of cascading failures

Figure 3.13. Case 3: Distribution of spatial failures
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B.2 Sample of optimal solution routing under deterministic travel times

Figure 3.14. Case 1-b (Random Failures with Deterministic Travel Times): Optimal
routing for crews 1 and 2

Figure 3.15. Case 1-b (Random Failures with Deterministic Travel Times): Optimal
routing for crew 3
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B.3 Resilience curves under different considerations of travel times
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Figure 3.16. Case 1-c (Random Failures with Random Travel Times): Comparison of
resilience curves under different solution plans for the reduced 10 scenarios
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Figure 3.17. Case 2-c (Cascading Failures with Random Travel Times): Comparison of
resilience curves under different solution plans for the reduced 10 scenarios
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Figure 3.18. Case 1-a (Random Failures without Travel Times): Comparison of resilience
curves under different solution plans for the reduced 10 scenarios
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Figure 3.19. Case 1-b (Random Failures with Deterministic Travel Times): Comparison
of resilience curves under different solution plans for the reduced 10 scenarios
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Figure 3.20. Case 2-a (Cascading Failures without Travel Times): Comparison of resilience
curves under different solution plans for the reduced 10 scenarios
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Figure 3.21. Case 2-b (Cascading Failures with Travel Times): Comparison of resilience
curves under different solution plans for the reduced 10 scenarios
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Chapter 4

Model and Solution Method for Mean-Risk Cost-Based Post-Disruption

Restoration of Interdependent Critical Infrastructure Networks

Basem A. Alkhaleel, Haitao Liao, Kelly M. Sullivan

Abstract

Critical infrastructure networks (CINs), such as power grids, water distribution

systems, and telecommunication networks, are essential for the functioning of society and the

economy. As these infrastructure networks are not isolated from each other, their functions

are not independent and may be vulnerable to disruptive events (e.g., component failures,

terrorist attacks, natural disasters). For decision makers, how to restore the functions of CINs

while accounting for interdependencies and various uncertainties becomes a challenging task.

In this work, we study the post-disruption restoration problem for a system of interdependent

CINs under uncertainty. We propose a two-stage mean-risk stochastic restoration model

using mixed-integer linear programming (MILP) with the goal of minimizing the total cost

associated with unsatisfied demands, repair tasks, and flow of interdependent infrastructure

networks. The restoration model considers the availability of limited time and resources

and provides a prioritized list of components to be restored along with assigning and

scheduling them to the available network-specific work crews. Additionally, the model

features flexible restoration strategies including multicrew assignment for a single component

and a multimodal repair setting along with the consideration of full and partial functioning

and dependencies between the multi-network components. The proposed model is illustrated
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using the power and water networks in Shelby County, Tennessee, United States, under two

hypothetical earthquake scenarios.
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4.1 Introduction

4.1.1 Background

Modern societies rely on the proper functioning and sustainability of critical

infrastructure networks (CINs) such as electric power systems, water supply systems,

transportation, and telecommunications (Karakoc et al., 2019). Therefore, maintaining

secure and resilient critical infrastructures (CIs) has become one of the most demanding

challenges for governments around the globe, especially in the last three decades (Humphreys,

2019; Karagiannis et al., 2017; White House, 2013). For instance, the United States (U.S.)

federal planning documents suggest the importance of addressing CI resilience in such a way

that reflects its “interconnectedness and interdependency” (White House, 2013). Planning

for disruptions to CINs has shifted recently from emphasizing prevention and protection

to capturing the CIs’ ability to withstand disruptions and quickly recover their functions

(Hosseini et al., 2016; Humphreys, 2019). This ability to withstand, adapt to, and recover

from disruptions is referred to as resilience (Almoghathawi et al., 2019; Barker et al., 2017;

Humphreys, 2019).

CINs are often vulnerable and subject to natural and/or man-made disruption events

(e.g., earthquakes, hurricanes, and malevolent attacks), which could impact the CINs’

performance unpredictably and result in severe socioeconomic consequences (Alkhaleel et al.,

2021; Almoghathawi et al., 2019). Indeed, such disruptions become inevitable in a modern

world featuring growing dynamic and hazardous operating environments (Helbing, 2013).

Economically, they have caused huge economic losses around the globe. In the past 50 years,

more than 22,500 disasters occurred globally impacting about 8 million people and costing
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approximately (in 2019 dollar-adjusted value) $3.7 trillion (CRED, 2021). Annually, only

weather-related outages (excluding malevolent attacks and non-weather natural hazards) are

estimated to have cost the U.S. economy an inflation-adjusted annual average of $18 billion

up to $70 billion (Campbell & Lowry, 2012; Executive Office of the President, 2013).

Interdependencies among infrastructure networks have become more frequent and

complex due to the increasing trend of globalization and technological developments

(Karakoc et al., 2019; Rinaldi et al., 2001; Saidi et al., 2018). However, although

interdependencies can improve the efficiency of networks functionality, this type of complex

coordination often causes them to become more vulnerable to disruptions (e.g., random

failures, malevolent attacks, and natural disasters). As a result, a disruption in some

components of one of the infrastructure networks could cause a malfunction in the

undisrupted components of other dependent networks, resulting in a series of cascading

failures affecting the whole infrastructure network system (Buldyrev et al., 2010; Danziger

et al., 2016; Eusgeld et al., 2011; Karakoc et al., 2019; Little, 2002; Ouyang, 2014; Wallace et

al., 2003). Rinaldi et al. (2001) stated in a seminal paper on infrastructure interdependencies

that “critical infrastructures are highly interconnected and mutually dependent in complex

ways, both physically and through a host of information and communications technologies.”

Although the interdependent nature of “lifeline” infrastructures was acknowledged two

decades ago (Amin, 2002), the literature on the study of interdependent networks has

only recently started appearing and has become a trending topic in resilience engineering

applications (Almoghathawi et al., 2019; Buldyrev et al., 2010, 2011; Cavdaroglu et al., 2011;

Danziger et al., 2016).

The high vulnerability of infrastructure networks against disruptions and the
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associated risks of such events have become a critical concern for decision makers, especially

with the need to account for the interdependencies through recovery planning to obtain

a realistic analysis of their performance (Holden et al., 2013). Moreover, scheduling the

restoration processes separately for interdependent critical infrastructure networks (ICINs)

without considering their interdependencies could cause misutilization of resources, waste of

time and funds, and even might trigger additional inefficiency of distribution systems (Baidya

& Sun, 2017). However, functional connectivity among these CIs is not the only dependency

that should be taken into account; spatial, cyber, social, and logical interdependencies are

other interdependency forms that could impact restoration and recovery planning (Min et

al., 2007; Rinaldi et al., 2001; Sharkey et al., 2015).

Recent events such as Hurricane Harvey (Force, 2013) and the 2016 Ecuador

earthquake (Meltzer et al., 2019) suggest that not all undesired events can be prevented.

In these events and many others, multiple networked systems including the transportation,

power, and water networks are impacted (Manuel, 2013; Meltzer et al., 2019; Mendonca et

al., 2004). Hence, improving recovery planning actions after disruptions is an essential part of

CIs resilience. That is, resilience can be effectively improved by developing optimized plans

for promptly restoring the disrupted service after the occurrence of a disruptive event. In

planning ICINs restoration, prioritizing components is key in improving the recovery process

and system resilience. It is also necessary to consider the practical significant challenges that

face recovery actions such as repair times uncertainty and poor access to damaged facilities

when developing restoration plans (Karagiannis et al., 2017). To this end, the development of

effective restoration strategies and scheduling approaches for CIs post-disruption restoration

is typically accomplished through optimization approaches. In the literature, there are
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numerous studies in the context of post-disruption CI restoration under a mathematical

programming framework (Alkhaleel et al., 2021; Fang & Sansavini, 2017; Nurre & Sharkey,

2014; Vugrin et al., 2014; Zhang et al., 2018). Of course, the main goal of such studies is

to optimize the scheduling process of restoration tasks in order to accelerate the recovery

process and improve the overall resilience (Vugrin et al., 2014).

4.1.2 CIs interdependencies classification

Infrastructure networks are not isolated from each other, but rather they rely on one

another in different ways for their proper functioning. Hence, they exhibit interdependency,

where a pair of infrastructure networks are said to be interdependent if there is a bidirectional

relationship between them through which the state of each infrastructure depends on the

state of the other (Peerenboom et al., 2002; Rinaldi et al., 2001). Interdependencies play

a critical role in the resilience of CIs by not only contributing to the widespread of failure

propagation (e.g., cascading failures), but also by either facilitating or complicating the entire

recovery process (Guidotti et al., 2016). The recovery rate of ICIs components depends

on several factors which are often difficult to understand, model, and predict; hence, this

uncertainty is reflected on planning the recovery strategy and utilizing related resources

(Bruneau et al., 2003; Franchin & Cavalieri, 2015; Guidotti et al., 2016; Sharma et al., 2017).

The need to describe the relationships among infrastructure systems, and the corresponding

propagation of system disruptions led to the definition of several classifications of the nature

of infrastructure interdependencies (e.g., Lee II et al. (2007); Rinaldi et al. (2001); Wallace

et al. (2003); Zhang and Peeta (2011); Zimmerman (2001)). The classification of Rinaldi et

al. (2001) is described as a “self-contained classification” that is capable of capturing the
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Figure 4.1. Examples of electric power infrastructure dependencies (adapted from Rinaldi
et al. (2001))

different nature of interdependencies (Ouyang, 2014).

Rinaldi et al. (2001) classified the interdependencies between infrastructure networks

into four categories: (i) physical interdependency, an output from an infrastructure network

is an input to another one and vice versa, (ii) cyber interdependency, if an infrastructure

network depends on information transmitted through an information infrastructure, (iii)

geographical interdependency, if two infrastructure networks are affected by the same local

disruptive event, and (iv) logical interdependency, all other types of interdependencies

(e.g., the social or legal link between two CIs). Figure 4.1 shows some examples of the

interdependencies between electric power networks and different infrastructure networks.

Throughout this article, we focus on the physical interdependency among different CINs.

This physical interdependency defined by Rinaldi et al. (2001) is equivalent to the so-called

functional or input interdependency in other interdependency classifications (Lee II et al.,

2007).
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4.1.3 Related literature

There are several modeling, optimization, and simulation techniques proposed in

the literature that consider interdependencies between infrastructure networks (see Ouyang

(2014) for a detailed review). Such techniques can be classified into six categories (Rinaldi,

2004): (i) aggregate supply and demand tools, where infrastructures are linked by their

demand for commodities (or services) supplied by other infrastructures (e.g., Enayaty

Ahangar et al. (2020)), (ii) dynamic simulations, which examines infrastructures operations,

the effects of disruptions, and the associated consequences (e.g., Zhang et al. (2016)

(iii) agent-based models, where physical components of infrastructures can be modeled

as agents allowing the analyses of the operational characteristics, the physical states of

infrastructures, and the decision-making policies involved with infrastructure operations

(e.g., Azucena et al. (2021)). (iv) physics-based models, where physical characteristics of

CIs can be analyzed with standard engineering techniques such as power flow in electric

power grids (e.g., Unsihuay et al. (2007)) (v) population mobility models, where this class

of models examines the movement of entities (e.g., people following their daily routines)

through urban regions (e.g., Casalicchio et al. (2009)). (vi) Leontief input-output models,

where Leontief’s model of economic flows can be applied to CIs studies (Haimes & Jiang,

2001). Throughout this article, the focus will be on the first category with aggregated supply

and demand tools.

Post-disruption restoration and recovery problems considering interdependent critical

infrastructures (ICIs) have been addressed in the literature through different approaches.

Almoghathawi et al. (2021) classifies these approaches into two broad categories: (i)
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infrastructure-specific approaches, which consider the physics of different infrastructures

(e.g., DC power flow model) and hence could be applied on these infrastructure networks

only, and (ii) general approaches, which could be applied to any system of interdependent

infrastructure networks. Both approaches often fall under the area of combining network

design and scheduling problems following the lead of Nurre et al. (2012) who introduced the

integrated network design and scheduling problem (INDS) for restoring a single infrastructure

network with the goal of maximizing the cumulative maximum flow over time. Other goals

and problem types of post-disruption recovery can be found in the survey article by Çelik

(2016) who summarized the work on recovering networks for humanitarian operations and

the different problems (decision-making processes) associated with this field of research.

Regarding the infrastructure-specific approaches for interdependent networks

restoration, Coffrin et al. (2012) proposed a randomized adaptive decomposition approach to

solve the problem of restoring two physically interdependent infrastructure networks, namely

power and gas networks. They integrated two network-specific flow models (i.e., a linearized

DC flow model for the power network and a maximum flow model for the gas network) using

a mixed-integer programming (MIP) approach with the objective of maximizing the weighted

sum of interdependent demand over the restoration time horizon. However, their proposed

model did not consider different restoration durations for the disrupted components of both

networks. Baidya and Sun (2017) presented an optimized restoration strategy with the goal

of prioritizing the restoration activities between two physically interdependent infrastructure

networks –power and communication networks– considering their physical properties. The

proposed approach is formulated using MIP with the objective of activating every node in

both networks with the minimum number of activation/energization of branches. Tootaghaj
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et al. (2017) studied the impact of cascading disruption on the physically interdependent

power grid and communication network by considering only disruptions in power networks.

As a result, they proposed a two-step recovery approach. The first step is to avoid further

cascades, for which they formulated the minimum cost flow assignment problem using linear

programming with the objective of finding a DC power flow setting that stops the cascading

failure at minimum cost. The second step is to provide a recovery schedule, for which

they formulated the recovery problem using MIP—with the goal of maximizing the total

amount of delivered power over the recovery horizon—and solved the problem using heuristic

approaches.

Regarding the general approaches for interdependent infrastructure networks

restoration, Lee II et al. (2007) proposed an MIP model for interdependent layer networks

accounting for different interdependencies between the infrastructure networks. The

objective of the model is to minimize the flow costs along with the costs of unmet demand.

Moreover, the model focuses only on determining the set of disrupted components (i.e.,

edges) of the interdependent infrastructure networks that need to be recovered to restore the

performance of each of the infrastructure networks to its pre-disruption functionality level.

Hence, the proposed model does not specify a threshold time at which edges need to be

restored nor the assignment of each work crew to restore which disrupted component. On

the other hand, Gong et al. (2009) focused only on the scheduling problem of a predetermined

set of disrupted components for ICINs with predefined due dates for them. They provided

an MIP multi-objective restoration planning model to find the optimal restoration schedule

for disrupted components. They proposed a logic-based benders decomposition approach to

solve the model, whose objective is to minimize the weighted sum of cost, tardiness, and
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makespan associated with the restoration process. Cavdaroglu et al. (2011) integrated the

two approaches by Lee II et al. (2007) and Gong et al. (2009) by providing an MIP model

that: (i) determines the set of disrupted components (i.e., edges) to be restored, (ii) assigns

and schedules them to work crews. The model was solved using a suggested heuristic solution

method. The objective of the model is to minimize the total cost of flow, unsatisfied demand,

and installation and assignment associated with the full restoration of a set of infrastructure

networks accounting for their interdependencies. In addition, Holden et al. (2013) proposed

an extended network flow approach to simulate the performance of infrastructure networks

at a local scale (i.e., community scale) considering the physical interdependency among

them. They provided a linear programming optimization model with the goal of finding the

optimal performance of the infrastructure networks such that the total cost associated with

production, storage, commodity flow, discharge, and shortage (i.e., unsatisfied demand) is

minimized. However, the proposed approach by Holden et al. (2013) does not explicitly

discuss what is the set of disrupted networks components, their restoration durations, their

restoration priorities, and the availability of work crews. Ouyang and Wang (2015) compared

the effectiveness of five strategies for joint restoration of interdependent infrastructures and

applied a Genetic Algorithm (GA) to generate recovery sequences. Sharkey et al. (2015)

studied the restoration of multiple ICINs under a centralized decision-making framework

and proposed an MIP model to solve the problem. Additionally, González et al. (2016)

proposed an MIP model for optimizing infrastructure systems joint restoration considering

geographical and physical interdependencies between multiple CI systems. Di Muro et al.

(2016) studied the recovery problem of the system of ICINs in the presence of cascading

failures to mitigate its breakdown. They considered the restoration of disrupted network
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components (i.e., nodes) located at the boundary of the largest connected component in

the functional networks. In their study, they tried to reconnect the boundary nodes to the

largest connected component considering the probability of recovery that halts the cascade.

In recent years, Zhang et al. (2018) optimized the allocation of restoration

resources for a set of physically interdependent infrastructure networks to enhance their

resilience. A genetic algorithm was developed to allocate limited resources to interdependent

infrastructure networks and to determine the optimal restoration budget following a

disruptive event. Mooney et al. (2019) proposed a multi-objective MIP model that integrates

a facilities location problem, that determines where resources should be stationed following a

disruption, and a recovery scheduling problem to optimize the restoration process of a system

of ICIs. Karakoc et al. (2019) proposed a community resilience-driven multi-objective MIP

model to schedule the restoration process of disrupted components of a system of ICIs with

emphasis on social vulnerability of communities. Almoghathawi et al. (2019) proposed a

multi-objective MIP restoration model for systems of interdependent infrastructure networks.

Their goal was to find the minimum-cost restoration strategy of a system of interdependent

networks that achieves a certain level of resilience. Ghorbani-Renani et al. (2020) proposed a

tri-level pre- and post-disruption optimization problem integrating protection, interdiction,

and restoration of a system of interdependent networks to improve both vulnerability and

recoverability of the system. Garay-Sianca and Pinkley (2021) optimized the restoration of

ICIs considering the movement of work crews (machines) through a damaged transportation

network being restored by formulating and solving an MIP model.

It is noticeable that the studies on post-disruption restoration and recovery of ICINs

are based on deterministic assumptions such as complete information on the restoration
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resources and full knowledge of the activities durations (Alkhaleel et al., 2021). However,

the restoration of ICINs is complicated by numerous decisions that need to be made in

a highly uncertain environment (Fang & Sansavini, 2019). Such uncertainty is linked

to several factors including the availability of restoration resources, the time duration

for repairing failed components and the accessibility to failed components through the

underlying transportation network (Alkhaleel et al., 2021). Moreover, existing optimization

approaches do not account for risk measures related to the uncertainty associated with the

execution of the optimal plan. Just recently, Alkhaleel et al. (2021) explored integrating

risk to resilience-based restoration models; this work showed that it is essential to consider

risk-averse decision-making, especially in one-shot applications such as post-disruption

restoration of ICINs. This paper builds upon the previous work by the authors (Alkhaleel

et al., 2021); however, here, we extend the previous work to ICINs with an underlying

transportation network, explore flexible restoration strategies (i.e., multimode repair and

multicrew assignments), and integrate costs of unsatisfied demand (resilience loss equivalent),

repair, and flow into the model; with such modifications, we address some of the limitations

of the previous work such as: (i) the need to choose between either a risk-neutral approach or

a risk-averse one to implement (cannot be combined), (ii) assuming binary functional status

of components (either fully functional or disrupted), (iii) preventing concurrent restoration

of a single component by multiple crews (a single component can only be restored by one

crew), (iv) lack of an economic measure of developed plans (e.g., using only a resilience

measure can cause extra hidden cost in the repair process), (v) unavailability of different

repair modes for failed components (failed components need to be fully restored).
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4.1.4 Overview and research contribution

In this article, we study the interdependent critical infrastructure networks restoration

problem (ICINRP), which seeks to minimize the total cost associated with unsatisfied

demand (resilience loss), repair tasks, and network flow by improving the restoration strategy

of a system of interdependent networks following the occurrence of a disruptive event

considering limited time and resources availability. The goal of this paper is to help decision

makers plan for ICIs recovery following the occurrence of a disruptive event not only by

improving the speed of system recovery, but by also linking risk and its importance level,

assessed by the decision maker, to the restoration plan decisions. Accordingly, a two-stage

stochastic optimization model using mixed-integer linear programming was proposed to solve

the ICINRP under a mean-risk measure. The primary objective of the proposed model is

to determine (i) the set of failed components to be restored, (ii) the repair mode for each

failed component, (iii) the set of failed components for each crew to restore individually or

concurrently, (iv) the baseline restoration sequence across scenarios for each crew in order to

minimize the total cost associated with the restoration process (i.e., disruption, repair, and

flow costs).

The main contributions of this paper are four-fold. (1) This is the first paper that

incorporates a mean-risk approach into ICIs post-disruption restoration models allowing

decision makers to choose a risk-averse optimal plan related to a risk importance factor; (2)

it explores flexible restoration strategies, and partial functioning and dependencies under

uncertainty; (3) it provides an efficient solution approach for solving mean-risk restoration

models compared to standard solvers; and (4) the proposed model, solution approach, and
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flexible restoration strategies are tested using a realistic case study of a system of ICINs in

Shelby County, Tennessee (TN), U.S. under two hypothetical earthquake scenarios.

The remainder of this paper is organized as follows. Section 4.2 presents the

background and methodology pertinent to the developed model and summarizes the proposed

mathematical formulations. Section 4.3 provides the solution approach used in this paper.

Section 4.4 presents a case study on the system of ICINs in Shelby County, TN, U.S. to

illustrate the use and advantage of the suggested model. Finally, concluding remarks and

future research directions are provided in Section 4.5.

4.2 Methodology and model development

4.2.1 Risk measure

Before introducing the risk measure approach used in developing the mean-risk

two-stage stochastic model, we first define the general form of two-stage stochastic models.

Definition 4.1 Given a probability space denoted by (Ω,F ,P), where Ω is the sample space,

F is a σ-algebra on Ω and P is a probability measure on Ω; for a finite probability space,

where Ω = {ω1, . . . , ωN} with corresponding probabilities π1, . . . , πN , the general form of the

two-stage stochastic linear programming problem is defined as (Birge & Louveaux, 2011):

min
x∈X

E(f(x, ω)) = min
x∈X

cTx+ E(Q(x, ξ(ω))) (4.1)

where f(x, ω) = cTx+Q(x, ξ(ω)) is the cost function of the first-stage problem and:

Q
(
x, ξi

)
= min

yi

{(
qi
)T
yi : Lix+W iyi = hi,yi ≥ 0

}
(4.2)

is the second-stage problem corresponding to the realization of the random data ξ(ω) for
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event ωi, denoted by ξi =
(
qi,Li,W i,hi

)
where x and y are the vectors of first-stage and

second-stage decision variables, respectively.

The general two-stage stochastic optimization model is risk-neutral (i.e., there is no

accounting for risk in the objective function). The main goal of such models is to show

the effect of incorporating uncertainty compared to deterministic ones. However, although

solutions to risk-neutral models often perform better than deterministic solutions, both

solutions may be subject to poor performance for certain realizations in practice. Such

realizations are known as worst-case scenarios in the stochastic optimization literature

(Birge & Louveaux, 2011). Given the one-shot nature of CI restoration and its significant

socioeconomic impact, it is of interest to consider stochastic models that account for both

uncertainty and risk when planning restoration; such models are known as mean-risk models

(Noyan, 2012). Mean-risk models are defined as in Definition 4.2:

Definition 4.2 For a specific risk measure ρ : Z → R, where ρ is a functional and Z

is a linear space of F-measurable functions on the probability space (Ω,F ,P), a mean-risk

function is defined as (Noyan, 2012):

min
x∈X
{E(f(x, ω)) + ζρ(f(x, ω))} (4.3)

where ζ is a non-negative trade-off coefficient representing the exchange rate of mean cost

for risk.

The change rate of risk ζ, hereafter referred to as the risk coefficient, is specified by the

decision maker according to the assessment of the associated risk. Toward stating a mean-risk

restoration optimization model in Section 4.2.2, we now summarize the Conditional Value
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at Risk (CVaR) as the risk measure (Krokhmal et al., 2002; Rockafellar & Uryasev, 2000)

and recap some results pertinent to the developed optimization model.

Definition 4.3 Let Z denote a loss random variable (the term “loss” is used here to indicate

that larger values are undesirable) with cumulative distribution function (CDF) F (·). For a

given risk level α ∈ (0, 1], the Value at Risk (VaR) of Z is defined as:

VaRα(Z) = min{t|F (t) ≥ α} = min{t|P (Z ≤ t) ≥ α} (4.4)

Thus, for a continuous random variable Z, VaRα[Z] is the quantile of Z that exceeds the

loss with probability α. The CVaR for Z with risk level α ∈ [0, 1] is the expected loss given

that the loss is at least VaRα(Z), i.e.:

CVaRα(Z) = E (Z|Z ≥ VaRα(Z)) (4.5)

It is known that CVaR can also be expressed as the optimal solution to the optimization

problem:

CVaRα[Z] = min
η∈R

{
η +

1

1− α
E [(Z − η)+]

}
(4.6)

where (a)+ := max(a, 0) (Rockafellar & Uryasev, 2000). Combining Equations (4.3)

and (4.5), the mean-risk model with a CVaR risk measure can be formulated as:

min
x∈X
{E(f(x, ω)) + ζ CVaRα(f(x, ω))} (4.7)

Using the result from Equation (4.6), Equation (4.7) can be rewritten as:

min
x∈X,η∈R

{
E(f(x, ω)) + ζ

(
η +

1

1− α
E [(f(x, ω))− η)+]

)}
(4.8)
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4.2.2 Mean-risk two-stage stochastic program formulation

This section formulates a mean-risk two-stage stochastic program for the ICINRP in

which the first-stage schedules the restoration of failed components for each network using

multiple network-specific repair crews, chooses the repair mode for each failed component

(e.g., perfect or imperfect), and determines the fixed restoration cost of failed components;

and the second-stage determines the resulting costs associated with unmet demand and flow

for networks under a given realization of the random variables (i.e., repair time for each

component and travel times between components). Rather than to optimize explicitly over

all random variables, it is common to sample scenarios from their joint distribution. Let Ω

and Ψ denote the set of scenarios and networks, respectively. For a given scenario ω ∈ Ω,

let ttrψcω denote the time to repair component (either node or arc) c ∈ C
′ψ. Note that

throughout this article we refer to directed (unidirectional) edges as arcs and bidirectional

ones as edges. For travel times, let ttψcc′ denote the travel time from component c ∈ C ′ψ to

component c′ ∈ C ′ψ in the same network. It will also be convenient to define ξ(ω) as a vector

specifying the realized values of all random variables in scenario ω.

An equivalent optimization problem to the mean-risk problem in Equation (4.8) can

be proposed for a finite probability space Ω = {ω1, . . . , ωN} with corresponding probabilities

π1, . . . , πN as shown in Remark 4.1:

Remark 4.1 For a finite probability space Ω = {ω1, . . . , ωN} with |Ω| = N and

corresponding probabilities π1, . . . , πN , an equivalent formulation of the mean-risk problem
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in Equation (4.8):

min
x∈X,η∈R

{
E(f(x, ω)) + ζ

(
η +

1

1− α
E [(f(x, ω))− η)+]

)}
is the following optimization problem:

min
x∈X,y,η∈R

(1 + ζ)cTx+

|Ω|∑
ω=1

πω (qω)T yω + ζ

η +
1

1− α

|Ω|∑
ω=1

πωvω

 (4.9)

s.t.

W ωyω = hω −Lωx, ω = 1, . . . , |Ω|, (4.10)

x ∈ X, (4.11)

yω ≥ 0, ω = 1, . . . , |Ω| (4.12)

vω ≥ (qω)T yω − η, ω = 1, . . . , |Ω| (4.13)

η ∈ R, vω ≥ 0, ω = 1, . . . , |Ω| (4.14)

The proof of Remark 4.1 can be found in Noyan (2012). This result will be used to formulate

the ICINs mean-risk two-stage stochastic programming problem following the notation.

Assumptions

There are several assumptions and considerations for the proposed mean-risk

optimization model to solve the ICINRP:

• Each supply node, demand node, and arc in each infrastructure network has a known

supply capacity, demand, and flow capacity, respectively.

• Each disrupted component in each infrastructure network can be restored under
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different possible repair modes (e.g., perfect and imperfect), where each repair mode

is related proportionally to the restored capacity of the failed component and the

restoration time.

• Imperfect node repair proportionally adjusts a restored node’s ability to generate

supply or consume demand but assumes nodes are uncapacitated for incoming and

outgoing flow (transshipment nodes are only restored in perfect repair mode).

• Each disrupted component in each network can be restored with a different restoration

time under each scenario.

• The flow costs through each arc, unmet demand costs, and restoration costs for

disrupted components in each infrastructure network are known and fixed.

• The number of available network-specific work crews for each infrastructure network

is known.

Notation

A summary of notation follows. In addition to the notation already defined,

the summary defines (i) first-stage binary variables xψcc′k and oψcy in order to encode a

restoration plan and choose repair modes for different components (i.e., some disrupted

critical components need to be fully repaired to restore the performance of the system while

only imperfect repair is needed for other components), (ii) second-stage binary variables

κψckyω(t) and sψcω(t) in order to resolve the status of each disrupted component and each crew

restoration rate for each time period and realized scenario, (iii) second-stage continuous
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variables pψckyω and ιψckyω(t) to mange the assigned restoration task proportion of each

component to crews and check the completion of these tasks under each realized scenario,

and (iv) flow variables fψijω(t) in order to facilitate determining the maximum weighted flow

for each time period and realized scenario. The feasible region of the optimization problem is

denoted by X, and the set of decision variables is represented as {x, o, f, u, s, κ, st, p, ι, η, v}.

Parameters & Sets

Ψ Set of infrastructure networks

Υ Set of interdependent nodes i and i′ between networks ψ and ψ′ (ψ 6= ψ′)

where node i ∈ V ψ requires node i′ ∈ V ψ′ to be operational

((i, ψ) 6= (i′, ψ′))

Gψ(V ψ, Aψ) Directed graph consisting of nodes V ψ and arcs Aψ for each network

ψ ∈ Ψ

{V ψ
+ , V

ψ
∗ , V

ψ
− } Set of {supply, transshipment, demand} nodes for each network ψ ∈ Ψ

T The number of time periods in restoration planning

A
′ψ Set of failed arcs before restoration (A

′ψ ⊂ Aψ) for each network ψ ∈ Ψ

V
′ψ Set of failed nodes before restoration (V

′ψ ⊂ V ψ) for each network ψ ∈ Ψ

Cψ Set of all components (Cψ = Aψ ∪ V ψ) in network ψ ∈ Ψ

C
′ψ Set of all failed components (C

′ψ = A
′ψ ∪ V ′ψ) in network ψ ∈ Ψ

Kψ Set of repair crews for each network ψ ∈ Ψ

Y ψ Set of repair modes for each network ψ ∈ Ψ
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P iψ
+ Supply of node i ∈ V ψ

+ per time period for each network ψ ∈ Ψ

P iψ
− Demand of node i ∈ V ψ

− per time period for each network ψ ∈ Ψ

Pψ
ij Flow capacity of arc (i, j) ∈ Aψ per time period for each network ψ ∈ Ψ

χψy Capacity proportion associated with each repair mode y ∈ Y ψ

ttψcc′ω Travel time between component c ∈ C ′ψ and c′ ∈ C ′ψ for each network ψ

in scenario ω

ttrψcω Time to repair component c ∈ C ′ψ for each network ψ under each

scenario ω

cψr Fixed restoration cost for component c ∈ C ′ψ for each network ψ

cψd Penalty cost of unmet demand in node j ∈ V ψ
− for each network ψ

cψf Unitary flow cost through arc (i, j) ∈ Aψ for each network ψ

ζ Risk coefficient value representing the risk weighted importance chosen by

the modeler

α Risk level chosen by the modeler

Decision Variables

fψijω(t) Flow on arc (i, j) ∈ Aψ in time t ∈ {1 . . . T} for each scenario ω for each

network ψ

fψjω(t) Total flow reaching demand node j ∈ V ψ
− in time t ∈ {1 . . . T} for each

scenario ω
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uψiω(t) Amount of unmet demand at node i ∈ V ψ
− in time t ∈ {1 . . . T} for each

scenario ω

oψcy Binary variable indicating whether (oψcy = 1) or not (oψcy = 0) component

c ∈ C ′ψ will be repaired under mode y ∈ Y ψ

sψcω(t) Binary variable indicating whether (sψcω = 1) or not (sψcω = 0) component

c ∈ Cψ is functioning at time t ∈ {0 . . . T}

stψckω Time at which crew k ∈ Kψ begins repairing component c ∈ C ′ψ in

scenario ω

pψckyω Continuous variable ∈ [0, 1] indicating the proportional repair task for

each crew k ∈ Kψ in restoring component c ∈ C ′ψ under repair mode

y ∈ Y ψ; 0 for no contribution and 1 for full restoration by a single crew

k ∈ Kψ

κψckyω(t) Binary variable that equals 1 if component c ∈ C ′ψ is assigned to crew

k ∈ Kψ under repair mode y ∈ Y ψ and crew k ∈ Kψ restored the assigned

pψckyω by time t ∈ {0 . . . T}; 0 otherwise

xψcc′k Binary variable that equals 1 if crew k ∈ Kψ repairs component c ∈ C ′ψ

before component c′ ∈ C ′ψ \ {c}

ιψckyω(t) Continuous variable ∈ [0, 1] indicating whether the proportional

restoration task assigned to each crew k ∈ Kψ for component c ∈ C ′ψ

under repair mode y ∈ Y ψ is accomplished by time t ∈ {1 . . . T}

η Auxiliary variable representing the VaRα

vω Continuous variable representing the second-stage costs in scenario ω
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The two-stage mean-risk stochastic optimization model for minimizing the expected

total cost of the ICINRP follows:

min
{x,o,f,u,s,κ,st,p,ι,η,v}∈X

(1 + ζ)

(∑
ψ∈Ψ

∑
y∈Y ψ

cψr o
ψ
cyχ

ψ
y

)

+

|Ω|∑
ω=1

πω
∑
ψ∈Ψ

∑
t∈{1...T}

( ∑
ij∈Aψ

cψf f
ψ
ijω(t) +

∑
j∈V ψ−

cψdu
ψ
jω(t)

)

+ ζ

(
η +

1

1− α

|Ω|∑
ω=1

πωvω

)
(4.15)

s.t. ∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t) ≤ P iψ
+ , ∀i ∈ V ψ

+ , ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.16)

∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t) = 0, ∀i ∈ V ψ
∗ , ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.17)

∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t)− uψiω(t) = −P iψ
− , ∀i ∈ V ψ

− , ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ

(4.18)

0 ≤ uψiω(t) ≤ P iψ
− , ∀i ∈ V

ψ
− , ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.19)

0 ≤ fψijω(t) ≤ sψijω(t)Pψ
ij , ∀ij ∈ Aψ, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.20)

0 ≤ fψijω(t) ≤ sψiω(t)Pψ
ij , ∀ij ∈ Aψ,∀i ∈ V ψ,∀t ∈ {1 . . . T},∀ω ∈ Ω,∀ψ ∈ Ψ (4.21)

0 ≤ fψijω(t) ≤ sψjω(t)Pψ
ij , ∀ij ∈ Aψ,∀j ∈ V ψ,∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.22)

0 ≤ fψijω(t) ≤
∑
y∈Y ψ

oψijyχ
ψ
yP

ψ
ij , ∀ij ∈ A′ψ, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.23)
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∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t) ≤
∑
y∈Y ψ

oψiyχ
ψ
yP

iψ
+ , ∀i ∈ V ψ

+ ∩ V
′ψ,∀t ∈ {1 . . . T},∀ω ∈ Ω,∀ψ ∈ Ψ

(4.24)∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t) ≥ −
∑
y∈Y ψ

oψiyχ
ψ
yP

iψ
− ,∀i ∈ V

ψ
− ∩ V

′ψ, ∀t ∈ {1 . . . T},∀ω ∈ Ω, ∀ψ ∈ Ψ

(4.25)

sψcω(0) = 0,∀c ∈ C ′ψ, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.26)

sψcω(0) = 1,∀c ∈ Cψ\C ′ψ, ∀ω ∈ Ω, ∀ψ ∈ Ψ (4.27)

κψckyω(0) = 0, ∀c ∈ C ′ψ,∀k ∈ Kψ,∀y ∈ Y ψ, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.28)∑
y∈Y ψ

oψcy ≤ 1,∀c ∈ C ′ψ,∀ψ ∈ Ψ (4.29)

oψcyt ≥ stψckω + pψckyωχ
ψ
y ttr

ψ
cω −M(1− κψckyω(t)),∀c ∈ C ′ψ,∀t ∈ {1 . . . T},∀k ∈ Kψ,

∀y ∈ Y ψ, ∀ψ ∈ Ψ (4.30)∑
k∈Kψ

pψckyω = oψcy,∀c ∈ C
′ψ, ∀y ∈ Y ψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.31)

sψcω(t) ≤ sψcω(t+ 1) , ∀c ∈ Cψ, ∀t ∈ {0 . . . T − 1}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.32)

κψckyω(t) ≤ κψckyω(t+ 1) , ∀c ∈ C ′ψ,∀t ∈ {0 . . . T − 1},∀k ∈ Kψ,∀y ∈ Y ψ, ∀ω ∈ Ω,∀ψ ∈ Ψ

(4.33)

stψckω +
∑
y∈Y ψ

pψckyωχ
ψ
y ttr

ψ
cω + ttψcc′ω ≤ stψc′kω +Mxψcc′k, ∀c, c

′ ∈ C ′ψ : c 6= c′,

∀k ∈ Kψ, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.34)

stψc′kω +
∑
y∈Y ψ

pψc′kyωχ
ψ
y ttr

ψ
c′ω + ttψc′cω ≤ stψckω +M(1− xψcc′k),∀c, c

′ ∈ C ′ψ : c 6= c′,

∀k ∈ Kψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.35)
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stψckω ≥ (1−
∑
y∈Y ψ

oψcy)T,∀c ∈ C
′ψ, ∀k ∈ Kψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.36)

sψcω(t) ≤
∑
k∈Kψ

∑
y∈Y ψ

ιψckyω(t), ∀c ∈ C ′ψ, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.37)

ιψckyω(t) ≤ κψckyω(t),∀c ∈ C ′ψ,∀t ∈ {1 . . . T},∀k ∈ Kψ,∀y ∈ Y ψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.38)

ιψckyω(t) ≤ pψckyω,∀c ∈ C
′ψ,∀t ∈ {1 . . . T},∀k ∈ Kψ,∀y ∈ Y ψ, ∀ω ∈ Ω,∀ψ ∈ Ψ (4.39)

ιψckyω(t) ≥ pψckyω − (1− κψckyω(t)),∀c ∈ C ′ψ,∀t ∈ {1 . . . T},∀k ∈ Kψ,∀y ∈ Y ψ,∀ω ∈ Ω, ∀ψ ∈ Ψ

(4.40)

sψiω(t)− sψ
′

i′ω(t) ≤ 0 ,∀(i, i′) ∈ Υ: (i, ψ) 6= (i′, ψ′),∀t ∈ {1 . . . T} (4.41)∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t) ≤
∑
y∈Y ψ

oψi′yχ
ψ
yP

iψ
+ ,∀(i, i′) ∈ Υ: (i, ψ) 6= (i′, ψ′), i ∈ V ψ

+ ,

∀t ∈ {1 . . . T},∀ω ∈ Ω,∀ψ ∈ Ψ (4.42)∑
ij∈Aψ

fψijω(t)−
∑
ji∈Aψ

fψjiω(t) ≥ −
∑
y∈Y ψ

oψi′yχ
ψ
yP

iψ
− ,∀(i, i′) ∈ Υ: (i, ψ) 6= (i′, ψ′),∀i ∈ V ψ

− ,

∀t ∈ {1 . . . T},∀ω ∈ Ω,∀ψ ∈ Ψ (4.43)

vω ≥
∑
ψ∈Ψ

∑
t∈{1...T}

( ∑
ij∈Aψ

cψf f
ψ
ijω(t) +

∑
j∈V ψ−

cψdu
ψ
jω(t)

)
− η (4.44)

xψcc′k ∈ {0, 1}, ∀c ∈ C
′ψ,∀c′ ∈ C ′ψ \ {c}, ∀k ∈ Kψ, ∀ψ ∈ Ψ (4.45)

oψcy ∈ {0, 1},∀c ∈ C
′ψ,∀y ∈ Y ψ, ∀ψ ∈ Ψ (4.46)

κψckyω(t) ∈ {0, 1},∀c ∈ C ′ψ, ∀t ∈ {0 . . . T},∀k ∈ Kψ,∀y ∈ Y ψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.47)

sψcω(t) ∈ {0, 1},∀c ∈ Cψ, ∀t ∈ {1 . . . T},∀ω ∈ Ω,∀ψ ∈ Ψ (4.48)

pψckyω ∈ [0, 1],∀c ∈ C ′ψ,∀k ∈ Kψ, ∀y ∈ Y ψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.49)

ιψckyω(t) ∈ [0, 1],∀c ∈ C ′ψ, ∀t ∈ {1 . . . T}, ∀k ∈ Kψ,∀y ∈ Y ψ,∀ω ∈ Ω,∀ψ ∈ Ψ (4.50)
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η ∈ R (4.51)

vω ≥ 0,∀ω ∈ Ω (4.52)

The goal of model (4.15)–(4.52) is to determine (i) the set of failed components to be

restored, (ii) the repair mode for each failed component, (iii) the set of failed components

for each crew to restore individually or concurrently, and (iv) the baseline restoration

sequence across scenarios for each crew in order to minimize the total cost associated with

unsatisfied demand (loss of resilience):
∑

j∈V ψ−
cψdu

ψ
jω(t), restoration:

∑
y∈Y ψ c

ψ
r o

ψ
cyχ

ψ
y , and

flow:
∑

ij∈Aψ c
ψ
f f

ψ
ijω(t) for each network ψ ∈ Ψ. Constraints (4.16)–(4.18) are flow balance

constraints for each network ψ. Constraint (4.19) ensures that the unsatisfied demand

uψiω(t) for each demand node j ∈ V ψ
− does not exceed demand P iψ

− in every time period.

Constraints (4.20)–(4.22) ensure that the flow on each arc (i, j) ∈ Aψ in each time period

does not exceed its capacity if the arc and both of its end nodes i, j are functioning (flow

is 0 if the arc or one of its nodes is failed). Constraint (4.23) ensures that the flow on each

arc (i, j) ∈ A′ψ in each time period does not exceed its capacity associated with the chosen

repair mode χψyP
ψ
ij , where χψy is the percentage of capacity restored for each component

under repair mode y ∈ Y ψ. Similarly, Constraints (4.24)–(4.25) limit the outgoing flow

from each failed supply node i ∈ V ψ
+ ∩ V

′ψ and the incoming flow to each failed demand

node i ∈ V ψ
− ∩ V

′ψ to the capacities of the nodes associated with the chosen repair modes.

Constraints (4.26) and (4.27) set the initial state of components to be 0 for failed components

and 1 for other components. Similarly, Constraint (4.28) prevents the completion of failed

components restoration by time 0. Constraint (4.29) prevents assigning more than one
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repair mode for each failed component. Constraint (4.30) ensures that crew k ∈ Kψ has

completed its task of restoring failed component c ∈ C
′ψ under repair mode y ∈ Y ψ the

assigned proportion pψckyω by time t ∈ {1 . . . T} if and only if the restoration start time

added to the task repair time is no more than t. Note that the restoration time of a

component as well as its restored capacity depends on the repair mode y ∈ Y ψ; that is,

for a repair mode y ∈ Y ψ with percentage χψy = %q, both capacity and repair time are

reduced by %(1− q). Constraint (4.31) ensures that restoration assignments for each failed

component c ∈ C
′ψ to all crews do not exceed the restoration task for that component

under repair mode y ∈ Y ψ. Constraint (4.32) ensures that components for each network ψ

in C
′ψ remain functioning after being restored, and components in Cψ\C ′ψ are functioning

for the entire restoration period. Constraint (4.33) imposes a similar restriction on the

κψckyω(t)-variables; that is, if crew k ∈ Kψ completed the task of repairing component c ∈ C ′ψ

by time period t ∈ {1 . . . T − 1}, where κψckyω(0) = sψcω(0) at t = 0 by Constraint (4.28), then

this task remains completed by time period t + 1. Constraints (4.34)–(4.35) manage the

restoration scheduling process by ensuring that each crew k ∈ Kψ can work on repairing

at most one component at a time, according to the schedule specified by the xψcc′k-variables.

Relative to Constraints (4.34)–(4.35), Constraint (4.36) prevents scheduling non-selected

failed components for repair throughout the restoration total time T . Defining ttrψmax
ijω and

ttψmax
iji′j′ω as the maximum repair time parameter of any failed component in each network under

all scenarios and the maximum travel time parameter between any two failed components

in each network under all scenarios, M = |A′ψ|(ttrψmax
ijω + ttψmax

iji′j′ω) is sufficiently large

in Constraint (4.30) and Constraints (4.34)–(4.35). Constraints (4.37)–(4.40) ensure the

completion of the restoration process for each selected component c ∈ C ′ψ under repair mode

136



y ∈ Y ψ by checking the functional status of each failed component at time t ∈ {1 . . . T} in

Constraint (4.37) based on the completion of each crew k ∈ Kψ its assigned task in restoring

the failed component in Constraints (4.38)–(4.40). Specifically, Constraints (4.38)–(4.40)

impose that ιψckyω(t) = pψckyωκ
ψ
ckyω(t) and Constraint (4.37) imposes that component c ∈ C ′ψ

is only functioning at time t ∈ {1 . . . T} if the cumulative restoration proportion (across

all crews) under the selected repair mode y ∈ Y ψ is 1. Note how Constraint (4.37)

represents the sum of the products of pψckyω and κψckyω(t) decision variables via ιψckyω(t),

and that Constraints (4.38)–(4.40) are introduced to linearize the bilinear terms of the

sum. Constraints (4.41)–(4.43) are the interdependence constraints across networks Υ; such

constraints ensure that interdependencies between networks given by a set of interdependent

nodes across networks Υ are respected. In particular, Constraint (4.41) ensures that a node i

in network ψ that is dependent on node i′ in network ψ′, where ψ 6= ψ′, cannot function before

the functioning of node i′. Similarly, Constraints (4.42)–(4.43) restrict the capacity of node

i in network ψ that depends on failed node i′ in network ψ′, where ψ 6= ψ′, which is restored

under repair mode y ∈ Y ψ to the proportional capacity χψy associated with the chosen

repair mode of node i′. Constraint (4.44) sets η = VaRα based on the second-stage costs

associated with unmet demand and flow costs. Constraints (4.45)–(4.48) require the xψcc′k-,

oψcy-, κ
ψ
ckyω(t)-, and sψcω(t) variables to be binary. Constraints (4.49)–(4.47) require the pψckyω-

and ιψckyω(t) variables to be bounded between 0 and 1. Finally, Constraints (4.51)–(4.52)

require η to be a real number and vω variables to be positive real numbers.

Model Variants

I Flexible restoration strategies
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Compared to a previous work (Alkhaleel et al., 2021), the proposed optimization

model (4.15)–(4.52), referred to as the standard model hereafter, addresses some limitations

(i.e., restricting the restoration of each component to a single crew and allowing only a

single maximal repair mode) by considering different flexible recovery strategies including

multicrew (MC) and multimode (MM) restoration options. In the former, multiple work

crews are allowed to restore a single component of the network ψ ∈ Ψ in time t ∈ {1 . . . T}.

Compared to a single crew (SC) setting where only one crew is allowed to work on a single

component (i.e., each component is restored by at most one crew), it is expected that the

MC approach would improve the resilience of the system via minimizing the unsatisfied

demand cost, especially when critical components are disrupted. Indeed, changing between

an MC setting and an SC setting in the standard model is fairly an easy task. We only

need to change the nature of the pψckyω decision variables from a continuous space ∈ [0, 1] for

the MC setting to a binary space ∈ {0, 1} for the SC setting. In the latter strategy, each

failed component is restored to a certain level of capacity associated with a repair mode

(i.e., for a repair mode with percentage %q, both capacity and repair time are reduced by

%(1 − q)). Compared to a single mode (SM) repair setting, this strategy can help reduce

the repair time of components, especially the ones which do not operate at full capacity

before disruption. In Section 4.4, we compare these restoration strategies and show the

added benefit of incorporating such flexible strategies in restoration planning of ICINs under

uncertainty.

II Partial functioning and interdependency

In addition to the flexible restoration strategies adapted in the standard model, partial
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functioning and interdependency (PFI) can be implemented by changing the nature of the

sψcω(t) decision variables from binary to continuous variables bounded between 0 and 1.

When partial functioning is implemented, components can operate at any capacity in time

t ∈ {1 . . . T} below either the full capacity (for a perfect repair mode) or the proportional

capacity (for an imperfect repair mode). That is, the binary status assumption of components

of the interdependent networks (i.e., either fully functional or failed) is relaxed. Similarly,

partial dependence between nodes allows a dependent node to be partially functioning if the

node or nodes it depends on are partially functioning as well. However, if the operational

nature of the component prevents it from being functional at any partial capacity but instead

at only a few possible steps (e.g., a power supply station has four generators and can only

function partially depending on the number of working generators at 25%, 50%, 75%, and

10%0), then the model can accommodate this change by slight modifications. First, define

mψ
c and m′ψcω(t) as an integer parameter representing the number of units per component and

an integer decision variable representing the number of operational units per component at

time t ∈ {1 . . . T} under scenario ω ∈ Ω, respectively. Then, by adding a set of constraints

of the form:

mψ
c s

ψ
cω(t) ≥ m′

ψ
cω(t) (4.53)

for each component composed of several units and replacing associated sψcω(t) decision

variables in Constraints (4.20)–(4.22) with
m′ψcω(t)

mψ
c

, we allow stepwise partial functioning

linked to the number of operational units. For a system of ICINs that features PFI, it is

expected for the system to be more resilient than a counterpart the does not feature PFI due

to the reduction in time between the failed state and the first time the disrupted component
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starts functioning. We compare the PFI setting against the binary status of components in

Section 4.4 to show how PFI affects restoration planning of ICINs under uncertainty.

4.2.3 ICIs resilience metric

The resilience of a single CI is commonly characterized with respect to a measure

of performance (e.g., flow, connectivity, amount of demand satisfied) ϕ(t) that evolves over

time (Henry & Ramirez-Marquez, 2012; Hosseini et al., 2016). In this study, the focus is

on the recovery period after disruption, for which a model that optimizes a restoration plan

over a finite planning horizon is proposed. Here, we consider the resilience metric proposed

by Fang et al. (2016) as the resilience measure of the restoration plans resulting from the

standard model. Fang et al. (2016) defines system performance as the maximum amount

of weighted flow consumed by the demand nodes. Let weights wψj ∈ Z+ be assigned to

each demand node j ∈ V ψ
− for network ψ ∈ Ψ. These weights are incorporated to enable

prioritizing certain types of demand nodes (e.g., it is more important to deliver power to a

hospital than to a residential household). Formally, the performance for network ψ ∈ Ψ is

defined as:

ϕψ(t) =
∑
j∈V ψ−

wψj f
ψ
j (t) (4.54)

where fψj (t) is the total flow reaching demand node j in time period t ∈ {1 . . . T}.

Based on that, the resilience Rψ(T ) for network ψ ∈ Ψ is defined as the

cumulative performance restored during the restoration horizon normalized by dividing by

the cumulative performance that would be restored over the same horizon if the system

could be restored to pre-disruption performance instantaneously. That is, network resilience

140



is given by (Fang et al., 2016):

Rψ(T ) =

∑t=T
t=1 [

∑
j∈V ψ−

wjf
ψ
j (t)− ϕψ(0)]

T (
∑

j∈V ψ−
wjP

jψ
− − ϕψ(0))

, T ≥ 1 (4.55)

where
∑

j∈V ψ−
wjP

jψ
− = ϕψ(t0) denotes the network performance if not affected by the

disruption. For one realization ω ∈ Ω, fψjω denotes the flow into demand node j ∈ V ψ
−

in network ψ under scenario ω ∈ Ω; hence, we can define the resilience Rψ(T, ξ(ω)) of

network ψ under scenario ω ∈ Ω as:

Rψ(T, ξ(ω)) =

∑t=T
t=1 [

∑
j∈V ψ−

wψj f
ψ
jω(t)− ϕψ(0)]

T (
∑

j∈V ψ−
wψj P

jψ
− − ϕψ(0))

, T ≥ 1 (4.56)

Hence, ICIs system resilience is defined by combining each network resilience in a total

resilience term R(T, ξ(ω)) as follows:

R(T, ξ(ω)) =
∑
ψ∈Ψ

γψRψ(T, ξ(ω)) (4.57)

where γψ is the weight of importance for each network ψ such that
∑

ψ∈Ψ γ
ψ = 1.

4.3 Solution approach

4.3.1 Scenario generation and reduction

To ensure a representative set of scenarios for the developed optimization model, a

maxi-min Latin hypercube sampling (LHS) technique (Wyss & Jorgensen, 1998) is adapted

to generate a large set of scenarios Ω. Using LHS ensures a fair amount of coverage of

each random variable’s range, and it has been shown to be advantageous when incorporated

within a sample average approximation approach (Alkhaleel et al., 2021; Chen et al., 2014;

Kleywegt et al., 2002). However, stochastic optimization models tend to be intractable when

the number of generated scenarios is large (Morales et al., 2009). One method often used to
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overcome this obstacle is to reduce the number of scenarios such that the resulting problem’s

optimal solution remains close to the solution of the original optimization problem (Fang

& Sansavini, 2019; Heitsch & Römisch, 2003; Horeǰsová et al., 2020). To apply a reduction

of scenarios, it is common to select scenarios based upon a probability distance between the

original and reduced set of scenarios (Dupačová et al., 2003). The most common probability

distance used in stochastic optimization is the Kantorovich distance, DK(·), defined between

two probability distributions Q and Q′ on Ω by the following problem (Dupačová et al.,

2003; Rachev, 1991):

DK (Q,Q′) = inf
θ

{∫
Ω×Ω

c (ω, ω′) θ (dω, dω′) :
∫

Ω
θ (·, dω′) = Q∫

Ω
θ(dω, ·) = Q′

} (4.58)

Problem (4.58) is known as the Monge–Kantorovich mass transportation problem (Rachev,

1991), where c (ω, ω′) is a nonnegative, continuous, and symmetric function, often referred to

as cost function. The infimum is taken over all joint probability distributions defined on Ω×Ω

represented by θ (ω, ω′) in (4.58). Note that DK(·) can only be properly called Kantorovich

distance if function c(·) is given by a norm. When Q and Q′ are finite distributions

corresponding to the initial set of scenarios Ω and the reduced set of scenarios Ωs ⊆ Ω,

the Kantorovich distance can be determined (see Dupačová et al. (2003) for details) by:

DK (Q,Q′) =
∑

ω∈Ω\Ωs

πω min
ω′∈Ωs

c (ω, ω′) (4.59)

where πω represents the probability of scenario ω in Ω (Dupačová et al., 2003).

Expression (4.59) can be used to derive several heuristics for generating reduced scenario

sets that are close to an original set (Dupačová et al., 2003; Morales et al., 2009). One

well-known algorithm is the fast forward selection algorithm (Heitsch & Römisch, 2003). This
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algorithm is an iterative greedy process that starts with an empty set; and in each step of

the algorithm, a scenario that minimizes the Kantorovich distance between the reduced and

original sets is selected from the set of non-selected scenarios (Ω\Ωs), where Ωs represents

the set of selected scenarios. Then, this scenario is included in the reduced set Ωs. The

algorithm terminates either when a pre-specified number of scenarios is found or by reaching

a pre-defined Kantorovich distance threshold (Morales et al., 2009).

In the fast forward selection algorithm, as described by Heitsch and Römisch (2003),

the distance between two scenarios ω and ω′ is expressed by the function c (ω, ω′) representing

the difference between pairs of random vectors. The function c (ω, ω′) can be defined based

upon probability metrics (Dupačová et al., 2003), optimal objective function values where

first-stage decision variables are fixed (Morales et al., 2009), or the wait-and-see objective

value for each scenario, which has been shown to practically outperform the other two

methods in restoration modeling (Alkhaleel et al., 2021) and other applications (Bruninx,

2014). Here, we use the objective function value zWS
ω of the wait-and-see solution (WS) for

each scenario ω ∈ Ω (i.e., the objective function resulting from solving model (4.15)–(4.52)

when it is populated with ω as its only scenario) to define c(·, ·) as follows:

c(ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ (4.60)

The resulting fast forward selection algorithm can be found in Alkhaleel et al. (2021).

4.3.2 Decomposition algorithm

Decomposition algorithms are often used for solving continuous and mixed-integer

large-scale two-stage and multi-stage optimization problems (Escudero et al., 2017;
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Rahmaniani et al., 2017). One of those types of algorithms is the well-known Benders

decomposition (Benders, 1962), which is commonly used in the stochastic optimization

literature to solve the scenario-based resulting mixed-integer linear programs (MILPs).

Benders decomposition is a variable partitioning technique in which a restricted master

problem is solved considering only the complicating variables of the problem. Such variables

are temporarily fixed, and the resulting individual or multiple subproblems are solved to

identify cuts to be added to the restricted master problem. In this context, the mean-risk

model separates into one linear program per scenario ω—forming the subproblem (SP)—in

the reduced scenario set Ωs after fixing the binary oψcy- and sψcω(t)-variables.

Formally, for each scenario ω ∈ Ωs, let zω denote a fixed assignment of values to all

o- and s-variables corresponding to the index ω. The resulting SP for scenario ω ∈ Ωs is the

linear program:

SP(zω) : min
∑
ψ∈Ψ

∑
t∈{1...T}

( ∑
ij∈Aψ

cψf f
ψ
ijω(t) +

∑
j∈V ψ−

cψdu
ψ
jω(t)

)
(4.61)

s.t. (4.16)–(4.25) and (4.42)–(4.43) for scenario ω (4.62)

Because SP(zω) is a linear program in which zω appears only in the constraints, the dual of

SP(zω) can be formulated as a linear program of the form:

DSP(zω) : max (bω −Bωzω)dω (4.63)

s.t. dω ∈ D (4.64)

where bω is the right-hand side vector of (4.62), Bω is the left-hand side coefficient matrix

of (4.62), dω is the dual variable vector corresponding to constraint (4.62), and D represents

the dual feasible region. Let Dp and Dr respectively denote the extreme points and extreme
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rays of D, and let Dωnp ⊆ Dp and Dωnr ⊆ Dr respectively denote a subset of the extreme

points and extreme rays produced prior to iteration n of Benders decomposition. Using the

optimal solutions of DSP(z̄nω) from previous iterations {0 . . . n − 1}, the restricted master

problem (RMP) for iteration n can be formulated as:

min (1 + ζ)

(∑
ψ∈Ψ

∑
y∈Y ψ

cψr o
ψ
cyχ

ψ
y

)
+ λ1 + ζλ2 (4.65)

s.t.

λ1 ≥
|Ωs|∑
ω=1

πω (bω −Bωzω)d
i

ω, i = 0 . . . n− 1 (4.66)

λ2 ≥ ηi +
1

1− α

|Ωs|∑
ω=1

πωv
i
ω, i = 0 . . . n− 1 (4.67)

viω ≥ (bω −Bωzω)d
i

ω − ηi,∀ω ∈ Ωs, i = 0 . . . n− 1 (4.68)

0 ≥ (bω −Bωzω)d
i

ω,∀ω ∈ Ωs, i = 0 . . . n− 1 (4.69)

constraints (4.26)–(4.41) and (4.45)–(4.52)

where i denotes the ith iteration cut generated prior to the current iteration related to Dωnp

for Constraints (4.66)–(4.67) and Dωnr for Constraint (4.69). Note that Constraint (4.68) is

equivalent to Constraint (4.44) in the standard model. Constraints (4.66)–(4.67) and (4.69)

are respectively known as optimality cuts and feasibility cuts.

In the proposed Benders algorithm (Algorithm 1), the first step is to set the upper

bound, lower bound, and iteration counter at∞, 0 and 0, respectively. In iteration n, RMP is

solved first to obtain an optimal solution z̄n. Letting z̄nω denote the partial solution associated

with the o- and s-variables corresponding to the index ω, DSP(z̄nω) is solved (note that since

the linear program in (4.61)–(4.62) and so its dual (4.63)–(4.64) are scenario indexed, they

can be solved in parallel providing multicuts), yielding either an extreme point dω ∈ Dp (if
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the model is solved to optimality) or an extreme ray dω ∈ Dp (if the model is concluded to be

unbounded). In the former case, dω is added toDωnp (i.e., Dω,n+1
p ← Dωnp ∪{dω} andDω,n+1

r ←

Dωnr ), resulting in a new optimality cut; otherwise, dω is added to Dωnr (i.e., Dω,n+1
p ← Dωnp

and Dω,n+1
r ← Dωnr ∪ {dω}), yielding a new feasibility cut. The RMP objective provides

a lower bound to the optimal solution of the original problem (4.15)–(4.52); furthermore,

the dual subproblem DSP(zω) always has an optimal solution due to the feasibility and

boundedness of the SP(zω), which can be easily proven by showing that the restricting the

flow under each scenario to 0 provides a feasible solution and that the flow is bounded by the

capacities of the demand nodes (see Alkhaleel et al. (2021) for details). This remark shows

that feasibility cuts are not needed in the decomposition procedure; therefore, only optimality

cuts are generated and added to the RMP in each iteration (as shown in Algorithm 1) and

the convergence of the algorithm is accelerated. The optimality gap for this algorithm can

be estimated using the upper and lower bounds found at each step. That is, the optimality

gap is calculated as Gap(%) =
UB − LB

UB
=
µ̂+ λ∗ − (µ̂+ λ)

µ̂+ λ∗
=
λ∗ − λ
µ̂+ λ∗

.

4.4 Case study

In this section, we test the proposed mean-risk optimization model and solution

algorithm, and explore the introduced flexible restoration strategies and PFI using a realistic,

well-known case in the literature on the system of ICINs in Shelby County, TN, U.S. This

county, containing the city of Memphis, is continually under earthquake hazard due to its

proximity to the New Madrid Seismic Zone (NMSZ) (Almoghathawi et al., 2021; González

et al., 2016). Here, we consider two cases similar to the hypothetical earthquake scenarios
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with magnitudes Mw ∈ {6, 7} presented by González et al. (2016).

Algorithm 1: Benders decomposition algorithm
Step 0: UB ←∞, LB ← 0, iteration counter n = 0

Step 1: Solve the RMP (4.65)–(4.69) to obtain its optimal solution
(
z, λ1, λ2

)
and let µ̂ be

the optimal first-stage cost and λ = λ1 + ζλ2, LB ← max{LB, µ̂+ λ}
Step 2: For each ω ∈ Ωs:

Solve the DSP(zω) to obtain its optimal solution d
n

ω and objective value
(bω −Bωzω)d

n

ω

End For

Step 3: Find the α-quantile η across all DSP(zω) and associated CVaRα function, denoted
as λ̂2:

λ̂2 = η + 1
1−α

(∑|Ωs|
ω=1 πω[(bω −Bωzω)d

n

ω − η]+
)

Step 4: Let (ηn, vnω) = (η, [(bω −Bωzω)d
n

ω − η]+)

Step 5: Find the mean-risk function value, denoted as λ∗, of the current recourse cost
solution:

λ∗ =
∑|Ωs|

ω=1 πω (bω −Bωzω)d
n

ω + ζ λ̂2

UB ← min{UB, µ̂+ λ∗}
Step 6: If UB − LB ≤ ε : . ε is a predefined tolerance

Stop and report solution

Else:

(a) Add optimality cuts of the form:
λ1 ≥

∑
ω∈Ωs

πω (bω −Bωzω)d
n

ω

λ2 ≥ ηn + 1
1−α

∑|Ωs|
ω=1 πωv

n
ω to the RMP

(b) Add a total number of |Ωs| Benders optimality cuts of the form:
vnω ≥ (bω −Bωzω)d

n

ω − ηn,∀ω ∈ Ωs to the RMP

(c) n ← n+ 1 and go to Step 1

End If

4.4.1 System description

The system of interdependent networks considered in this study consists of two ICINs

located in Shelby County, TN: power and water as depicted in Figure 4.2 (González et al.,

2016). The system of networks contains 256 network components divided into 109 nodes

and 147 edges. The power network is composed of 60 nodes and 76 edges, and the water

147



network is composed of 49 nodes and 71 edges. For the water system, storage tanks and

large pumps are modeled as generation (supply) nodes and pipe intersections are modeled as

water distribution (demand) nodes (Kim et al., 2007). Moreover, gate stations are modeled

as power generation (supply) nodes and substations are modeled as power distribution

(demand) nodes for the power network. The actual system, managed by the Memphis Light,

Gas, and Water (MLGW), is a heterogeneous mix of unidirectional arcs and bidirectional

edges (Kim et al., 2007). However, it can be modeled either as a system of directed networks

or undirected networks using network flow approaches (Ahuja et al., 1993). In this study, we

model the utility networks as directed networks where directed arcs are modeled to send flow

in one direction and bidirectional edges are modeled as two directed arcs. Additionally, the

functional dependency considered in this study is unidirectional (i.e., only the water network

depends on the power network) where each water generation node is dependent on at least

one power distribution node. Flow units per hour are in MWh for the power network and

million gallons hourly (MGh)×102 or 10kGh for the water network.

4.4.2 Uncertainty representation

The proposed model assumes that the time to repair each component and the

travel time between failed components are uncertain, but the remaining parameters

are deterministic. The remainder of this section summarizes the assumed probability

distributions for the uncertain parameters.

Let C ′ ⊆ C denote the set of disrupted components, and ttrc denote the time to

repair of component c ∈ C ′ψ. We assume ttrc has a Weibull distribution—commonly used

to model activity times (Abdelkader, 2004)—with scale parameter νc and shape parameter
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βc. The probability density function of ttrc is given by:

h(t, βc, νc) =
βc
νc

(
t

νc

)βc−1

e−( t
νc

)
βc

, t ≥ 0 (4.70)

As for travel times, for c ∈ C ′ψ and c′ ∈ C ′ψ, let ttψcc′ denote the travel time between

components c and c′ in network ψ. We derive a deterministic estimate of the travel time

from c to c′ using a separate transportation network.

In the transportation network, each edge has an associated length and speed limit,

and its traversal time dl is estimated assuming it will always be possible to travel at the

speed limit. The deterministic estimate of ttψcc′ , hereafter denoted as dttψcc′ , is obtained by

determining the shortest path length between two nodes in the transportation network,

namely those that are the closest to the midpoint of failed arcs and to failed nodes in

the utility networks. To represent the uncertainty of ttψcc′ , we populate a distribution for

traversal time of edges in the transportation network; given dl, the random traversal time

drl is distributed according to the probability mass function:

P (drl = t) =


0.3, t = dl

0.3, t = 1.5 dl

0.4, t = 2 dl

(4.71)

and each scenario-indexed ttψcc′ω is found by solving the shortest path problem as explained.

This approach follows other disaster relief and emergency response studies with the

assumption that random traversal times are based on a coefficient multiplication of the

transportation network constant traversal times (Alkhaleel et al., 2021; de la Torre et al.,

2012; Mete & Zabinsky, 2010).
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(a)

(b)

(c)

Figure 4.2. Graphical representations of the, (a) power, (b) water, and (c) combined water
and power networks in Shelby County, TN (adapted from González et al. (2016))
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4.4.3 Parameters and computational information

Among the hypothetical earthquake scenarios in Shelby County, TN presented by

González et al. (2016) with different magnitudes, assuming different failure probabilities

of system components with each hypothetical earthquake scenario, we consider two possible

scenarios with magnitudesMw ∈ {6, 7} and a similar number of disrupted components chosen

randomly. Additionally, we consider four different risk coefficients (i.e., ζ ∈ {0, 0.5, 1, 2})

associated with each scenario. The number of disrupted components for each network,

the percentage of the total number of components for each network, and the associated

performance drop for each network in the system under each hypothetical earthquake

scenario are summarized in Table 4.1.

Table 4.1. Disruption size and performance drop considering the two magnitudes of
hypothetical earthquake scenarios

Case
No. of disrupted

components
Disruption percentage Performance drop

Power Water System Power Water System Power Water System

Case 1 (Mw = 6) 10 6 16 7.35% 5.00% 6.25% 18.64% 20.00% 19.27%
Case 2 (Mw = 7) 19 10 29 13.97% 8.33% 11.33% 22.13% 85.64% 50.87%

Regarding the repair parameters, the Weibull distributed repair time shape and scale

parameters are assumed to be 2 and 5, respectively, for all components. Such assumptions

are made following other studies in the literature in terms of probability distribution chosen

and parameters (Fang & Sansavini, 2019). Hence, the mean-time-to-repair (MTTR) used in

the deterministic model is about 4.43 hours. In addition, the restoration planning horizon

T is chosen as 20 hours, which is sufficient to restore the network performance to its original

state under both cases with the chosen number of work crews for each case (total of 4 for case

1 and 5 for case 2 as illustrated in Table 4.3). For possible repair modes for each network, it
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is assumed that there are two repair modes for each network (Y ψ = {1, 2}): (1) perfect repair

mode (i.e., the component is restored to its full capacity), and (2) imperfect repair mode

(i.e., the component is restored to 50% of its full capacity). Regarding cost parameters, it is

assumed that unitary flow cost, unitary unsatisfied demand cost, and fixed repair cost per

component are the same for both networks. For unitary flow cost, we use an estimated flow

cost of $30 per flow unit, which is equivalent to the approximate cost of transmission and

distribution of 1 MWh of electricity (Fares & King, 2017). For the unsatisfied demand cost,

referred to as disruption cost hereafter, the average residential cost of one MWh of electricity

in Shelby County, TN is approximately $97.2; and for the water network, the cost per 10k

gallon is about $30 (MLGW, 2021). However, the economic impact of unsatisfied demand

is significantly higher than the cost of services. That is, estimates of service interruption

vary significantly with estimated numbers ranging from $100 up to $100,000 per demand unit

(Wolfram, 2021). Here, it is estimated to be about $10,000 per demand unit based on the the

Interruption Cost Estimate (ICE) tool funded by the Energy Resilience Division of the U.S.

Department of Energy’s Office of Electricity (OE) for the examined case study area (ICE,

2021). Regarding restoration costs, we assume a fixed repair cost per component. However,

repair cost per CI component can vary significantly from thousand dollars to hundreds of

million dollars (Assad et al., 2020; HDR, 2012). Nonetheless, a fixed repair cost of $500,000

per component was estimated to keep both the flow and restoration costs combined lower

than the disruption costs to prioritize resilience improvement as the main objective. Table 4.2

summarizes the parameters of cost, risk, and repair for each case.

For the scenario generation process of random variables (i.e., repair and travel times),

1000 scenarios are generated for each case. After that, the scenario reduction algorithm was
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Table 4.2. Parameters of cost, risk, and repair for each case of the hypothetical earthquake
scenarios

Case
Cost parameters Risk parameters Repair parameters

Disruption cost
(per demand unit)

Repair cost
(per component)

Flow cost
(per flow unit)

α ζ χψy νc, βc

Case 1 (Mw = 6)
$10,000 $500,000 $30

0.9
0, 0.5, 1, 2 χψ1 = 0.5, χψ2 = 1 5, 2

Case 2 (Mw = 7) 0.8

used to reduce the number of scenarios into a smaller set. The total number of scenarios is

reduced to 10 scenarios. Solutions to the MILPs used in the scenario reduction procedure

and the stochastic optimization models were computed using CPLEX 12.10 (CPLEX, 2021)

and programmed using Python 3.7 (Python, 2021) on a 3.2 GHz Intel Core i5 iMac machine

with 24 GB of RAM.

Regarding solution times and optimality gaps, we would like to emphasize that

solving ICIs deterministic restoration problems using commercial MILP solvers such as

CPLEX is hard, especially for large problem instances involving travel time and vehicle

routing considerations (Garay-Sianca & Pinkley, 2021; Moreno et al., 2019; Morshedlou et

al., 2018). In such deterministic problems, optimality gaps can go up to 50% or even higher

(Garay-Sianca & Pinkley, 2021; Morshedlou et al., 2018). Hence, the stochastic problem

instances considered here for both cases cannot be solved for optimality within a prescribed

time limit. However, based on our preliminary analysis, a time limit of 6 hours (21600

seconds) is the approximate time after which the optimality gap tends to level off with the

implementation of Benders algorithm to solve all instances. Algorithm 1 was implemented

using callbacks with Benders cuts added as lazy constraints. Table 4.3 summarizes the

dimensions of problem instances.
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Table 4.3. Problem size of different study instances

Instance
No. of

continuous
variables

No. of
binary

variables

No. of
constraints

No. of
Scenarios

No. of
work crews

(power, water)

Number of
repair modes

(power, water)

Max
computational

time (s)

Case 1 (Mw = 6) 336,971 359,372 503,670 10 2,2 2,2 21,000
Case 2 (Mw = 7) 406,511 428,572 608,850 10 2,3 2,2 21,000

Deterministic (Case 1) 33,696 36,182 51,002 1 2,2 2,2 1,800
Deterministic (Case 2) 40,647 43,686 61,043 1 2,3 2,2 3,600

4.4.4 Results

The first part of this section summarizes the results related to the various features

of the developed mean-risk model including a comparison of the proposed solution approach

to standard MILP solvers, and the second part shows the added benefit of implementing

flexible restoration strategies and PFI in total cost reduction and resilience improvement.

Mean-risk model

The developed ICINRP using a mean-risk measure is solved using Algorithm 1.

Table 4.4 compares the proposed Benders decomposition algorithm with CPLEX showing the

added value of the proposed solution algorithm. The solutions found by the decomposition

algorithm outperformed the ones found by CPLEX in all instances. Additionally, the

decomposition algorithm was capable of solving all instances with a maximum optimality

gap of about 24%. In contrast, CPLEX was not able to find any feasible solution for one of

the instances (i.e., Mw = 6 (ζ = 0.5)). The maximum optimality gap of solved instances for

CPLEX was approximately 57%. It is worth pointing out that the lower bounds found by

CPLEX and the decomposition algorithm for the instances were similar, which are higher

(tighter) than the WSs lower bounds by about 10% for all instances. For the first case

(Mw = 6), the highest optimality gap found using Benders decomposition algorithm was
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14.637% compared to more than triple that value at 50%.456 for CPLEX. Furthermore, in

the second case (Mw = 7), the highest optimality gap found using Benders decomposition

algorithm was 23.319% compared to 56.88% for the commercial solver. Using the proposed

Benders algorithm, the average optimality gaps for cases 1 and 2 were about 13% and 20%,

respectively. In contrast, the average optimality gaps using CPLEX solver for cases 1 and 2

were about 32% and 46%, respectively. These average values are about double the average

gaps of the decomposition algorithm. Overall, these findings favor the proposed solution

approach and show the added benefit of adapting it over commercial solvers.

Table 4.4. Comparison of Benders decomposition and CPLEX solver solutions for the
different instances with 10 reduced scenarios

Case
CPLEX standard solver Benders decomposition

Computational
time (s)

Gap(%)
Objective

value
Computational

time (s)
Gap(%)

Objective
value

Mw = 6 (ζ = 0) 21648.783 17.279 18.142 21617.794 12.849 17.514
Mw = 6 (ζ = 0.5) 21600.000 - - 21618.569 14.477 30.599
Mw = 6 (ζ = 1) 21605.193 50.456 58.771 21616.394 14.637 42.986
Mw = 6 (ζ = 2) 21609.664 29.233 81.635 21661.764 12.791 66.632

Mw = 7 (ζ = 0) 21612.699 56.880 90.808 21664.057 23.319 47.302
Mw = 7 (ζ = 0.5) 21606.937 38.043 96.661 21615.361 21.666 75.205
Mw = 7 (ζ = 1) 21612.841 41.277 143.474 21614.859 20.328 102.743
Mw = 7 (ζ = 2) 21607.326 50.304 271.706 21620.736 17.480 154.189

Regarding the mean-risk model, the choice of the risk coefficient ζ in the proposed

framework can alter the optimal plan; that is, increasing the value of ζ increases the relative

importance of the risk term resulting in more conservative (risk-averse) plans. For instance,

the CVaR values for case 1 showed a significant decrease with the increase of the risk

coefficient value from 0 to 2 as shown in Figure 4.3. This decrease in CVaR values is

associated with a gradual increase in the expected total cost across scenarios for the different

risk coefficients as illustrated in Figure 4.3. The same findings are true for case 2 with a
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steeper trend in CVaR values as shown in Figure 4.4.
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Figure 4.3. Case 1 (Mw = 6): Detailed expected cost values of demand, repair, flow, and
the overall expected total cost, as well as the CVaR information for different values of ζ

In ICINs restoration problems, disruption costs are expected to be higher than other

costs combined, otherwise optimal solutions can be found by prioritizing a reduction in repair

and flow costs over disruption costs (Almoghathawi et al., 2021). Here, the detailed costs

are presented for both cases in Figures 4.3 and 4.4 showing that disruption cost constitutes

the major portion of the total cost under all risk coefficients. In addition, trends of objective

values, total and disruption costs, and CVaR values under both cases across the different

risk coefficients are shown in Figures 4.5 and 4.6; this shows that in mean-risk models, the

objective value increases linearly with the increase of the risk coefficient. Moreover, both the

expected total and disrupted costs exhibit a similar raising trend with the change of the risk

coefficient; this similarity can be explained by knowing that the disruption cost represents
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Figure 4.4. Case 2 (Mw = 7): Detailed cost values of demand, repair, flow, and the overall
expected total cost, as well as the CVaR information for different values of ζ

the major portion of the total cost as explained earlier.

Tables 4.5 and 4.6 summarize the detailed outputs of the model for both cases—using

different choices of the risk coefficient—including cost values, system and individual network

resilience values, objective values, and other outputs for both cases. For case 1, the

total resilience (or system resilience) and its related total disruption cost both decrease

with the risk coefficient increase. The repair cost, however, looks constant across all risk

coefficients indicating that the number of chosen disrupted components to be restored and

their associated repair modes are almost the same for case 1. For case 2, the repair cost

shows a similar behavior across all the values of ζ. Additionally, the flow cost could be

described as constant across the values of ζ for both cases. The resilience curves of the

power network, water network, and system under the different risk coefficients can be found
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Figure 4.5. Case 1 (Mw = 6): Trends of objective value, expected total cost, expected
disruption cost, and CVaR with the increase of ζ

in the Appendix.

To assess the added value of stochastic models compared to a deterministic approach,

the value of stochastic solution (VSS) is a well-known measure in the literature, which is

designed to indicate whether the added benefit of modeling randomness using a risk-neutral

stochastic optimization approach (Birge & Louveaux, 2011). However, the VSS cannot

be implemented directly on risk-averse problems (Noyan, 2012). Accordingly, we adopt

the risk-averse version of the VSS known as the mean-risk value of stochastic solution

(MRVSS) (see Noyan (2012) for details), which measures the possible gain from solving

stochastic models incorporating a mean-risk function. In particular, this measure represents

the difference between the mean-risk expected value (MREV) problem (which results from

solving the standard model with fixed first-stage decision variables whose values are obtained
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Figure 4.6. Case 2 (Mw = 7): Trends of objective value, expected total cost, expected
disruption cost, and CVaR with the increase of ζ

by solving a deterministic version of the standard model that replaces all random parameters

with their expected values) and the mean-risk standard model solution. Higher values of

MRVSS indicate a more added value in adapting a mean-risk approach over an expected

value approach. Note that the MRVSS is equivalent to VSS when the risk coefficient ζ = 0.

For case 1 (Mw = 6), it can be seen that the MRVSS values are positive numbers

ranging between 2.285M and 10.295M and increase with the increase of the risk coefficient

ζ; this indicates the significance of solving mean-risk models over the expected value

(deterministic) approaches. However, the increase of MRVSS with ζ is not reflected on

the ratio between the MRVSS and the associated objective value, which does not show a

clear trend with approximate values of 13%, 11%, 12%, and 15% for ζ = 0, 0.5, 1, and

2, respectively. For ζ = 0, the added value of a stochastic solution is $2.285M (i.e., the
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Table 4.5. Case 1 (Mw = 6): Detailed expected cost values, MRVSS, expected flow, and
expected resilience information under different risk coefficients

Risk coefficient parameter

ζ = 0 ζ = 0.5 ζ = 1 ζ = 2

Objective value (M) 17.514 30.599 42.986 66.632
CVaR ($M) 25.016 21.904 21.843 21.352
MRVSS (M) 2.285 3.417 4.962 10.295
Total disruption cost ($M) 12.962 13.347 13.846 13.880
Total repair cost ($M) 2.750 3.000 2.750 2.750
Total flow cost ($M) 1.803 1.801 1.798 1.798
Total resilience 0.816 0.810 0.805 0.804

Power network disruption cost ($M) 6.707 6.729 7.945 7.879
Power network repair cost ($M) 1.750 2.250 2.000 2.000
Power network flow cost ($M) 0.989 0.989 0.983 0.983
Power network resilience 0.821 0.820 0.788 0.789
Power network aggregated received flow (MWh) 19389.300 19387.118 19265.504 19272.070

Water network disruption cost ($M) 6.255 6.618 5.901 6.001
Water network repair cost ($M) 1.000 0.750 0.750 0.750
Water network flow cost ($M) 0.814 0.812 0.815 0.815
Water network resilience 0.812 0.801 0.822 0.819
Water network aggregated received flow (MG) 159.545 159.182 159.899 159.799

overall cost of the deterministic solution is $2.285M higher than the stochastic solution).

For other values of ζ, the MRVSS varies between a ζ-weighted value of 3M up to 10M. For

case 2 (Mw = 7), the values of MRVSS are even higher given the larger disruption scenario

for this case despite the higher overall optimality gaps in this case compared to case 1. In

fact, implementing the deterministic approach for this case can cause a 10-20% increase in

the expected economic losses compared to a mean-risk plan with a specific risk level α and

risk weighted importance ζ. Hence, this shows that applying deterministic plans for larger

disruptions involves high risk and could result in more socioeconomic losses. Overall, these

results indicate that it is significant to solve mean-risk models to obtain preferred solutions

for a specified set of risk parameters.
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Table 4.6. Case 2 (Mw = 7): Detailed expected cost values, MRVSS, expected flow, and
expected resilience information under different risk coefficients

Risk coefficient parameter

ζ = 0 ζ = 0.5 ζ = 1 ζ = 2

Objective value(M) 47.302 75.205 102.743 154.189
CVaR ($M) 52.293 50.606 49.313 46.646
MRVSS (M) 9.678 10.415 16.287 16.772
Total disruption cost ($M) 40.892 41.495 42.277 45.007
Total repair cost ($M) 4.750 4.500 4.750 4.750
Total flow cost ($M) 1.660 1.657 1.653 1.639
Total resilience 0.757 0.726 0.752 0.725

Power network disruption cost ($M) 16.402 16.474 12.786 14.996
Power network repair cost ($M) 2.500 2.500 2.500 2.500
Power network flow cost ($M) 0.939 0.939 0.958 0.947
Power network resilience 0.686 0.629 0.712 0.662
Power network aggregated received flow (MWh) 18419.820 18412.648 18781.405 18560.355

Water network disruption cost ($M) 24.490 25.022 29.491 30.011
Water network repair cost ($M) 2.250 2.000 2.250 2.250
Water network flow cost ($M) 0.721 0.718 0.695 0.693
Water network resilience 0.828 0.824 0.792 0.789
Water network aggregated received flow (MG) 141.310 140.778 136.309 135.789

Flexible restoration strategies and PFI

As illustrated in Section 4.2, the proposed optimization model for solving the ICINRP

considers flexible restoration strategies that are expected to enhance the resulting optimal

plans. In addition, the proposed model allows for partial functioning and interdependency,

with a slight modification to the standard model formulation, supporting non-binary state

ICIs restoration. Here, we compare the applied flexible restoration strategies to restricted

ones and study the impact of PFI on restoration plans.

Regarding the restoration strategies, Tables 4.7 and 4.8 summarize the detailed

outputs (i.e., cost values, system and individual network resilience values, and CVaR values)

of the model with risk coefficient ζ = 1 under flexible (i.e., multicrew and multimode repair

settings) and restricted (i.e., single crew and single mode settings) plans for cases 1 and 2,

respectively. In Tables 4.7 and 4.8, the first column represents the standard model with
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ζ = 1, the second column represents the standard model with ζ = 1 except that each

failed component is restored by at most one crew (single crew setting), the third column

represents the standard model with ζ = 1 except that each failed component can only be

fully restored (single repair mode), and the PFI column represents the standard model with

ζ = 1 except that partial functioning and interdependencies are allowed. Overall, both the

objective value and CVaR value are lower under flexible restoration strategies for cases 1 and

2. This indicates that flexible restoration planning can significantly reduce the main costs

associated with restoration, namely disruption and repair costs, as well as the associated risk

measure. Comparing the multicrew setting to the single crew setting, the reduction in the

objective value is about 25% and 36% for cases 1 and 2, respectively. For multimode repair

vs. single mode repair, the reduction in the objective value is approximately 12% and 20% for

cases 1 and 2, respectively. Note that the gain from adapting flexible restoration strategies

is more significant for the second case with a higher number of disrupted components.

Disruption costs behave similarly to the objective value for both cases and under both

restoration strategies (i.e., multicrew and multimode repair). In contrast, repair costs are

similar between the multicrew and single crew settings; however, they are higher in the single

repair mode setting, significantly higher for case 2, indicating that the imperfect repair mode

for multiple components is optimal. Surprisingly, multimode repair did not only reduce the

repair costs by %8 and 27% for cases 1 and 2, respectively, but also reduced the disruption

costs (improved resilience) for both cases by 10% for case 1 and 20% for case 2.

For a resilience-based benchmarking of the different restoration strategies, a

comparison of the resilience of power network, water network, and system under flexible and

restricted restoration plans for cases 1 and 2 is shown in Figures 4.7 and 4.8, respectively.
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Table 4.7. Case 1 (Mw = 6): Detailed cost values, flow, and resilience information under
SC, SM, and PFI for ζ = 1

Standard
Model
(ζ = 1)

Single
Crew

Single
Repair
Mode

PFI

Objective value (M) 42.986 57.604 48.968 29.463
CVaR ($M) 21.843 29.642 25.773 14.381
Total disruption cost ($M) 13.846 20.699 15.405 7.753
Total repair cost ($M) 2.750 2.750 3.000 2.750
Total flow cost ($M) 1.798 1.763 1.790 1.829
Total resilience 0.805 0.712 0.781 0.893

Power network disruption cost ($M) 7.945 14.127 7.946 5.506
Power network repair cost ($M) 2.000 2.000 2.000 2.250
Power network flow cost ($M) 0.983 0.951 0.983 0.995
Power network resilience 0.788 0.622 0.788 0.853
Power network aggregated received flow (MWh) 19265.504 18647.284 19265.372 19509.405

Water network disruption cost ($M) 5.901 6.571 7.459 2.247
Water network repair cost ($M) 0.750 0.750 1.000 0.500
Water network flow cost ($M) 0.815 0.812 0.808 0.834
Water network resilience 0.822 0.802 0.775 0.932
Water network aggregated received flow (MG) 159.899 159.229 158.341 163.553

From the first glance, one can see that the resilience of both networks and the system is

higher with multicrew and multimode restoration strategies. For instance, in case 1, the

power network resilience under multicrew setting is significantly higher than under a single

crew setting. This indicates the existence of critical components in the power network whose

rapid restoration can significantly improve the resilience of the network. In contrast, the

effect of multicrew setting on the water network resilience is minor. Conversely, multimode

repair improved only the resilience of the water network under the same case. For case

2, with a higher number of disrupted components, the resilience of both power and water

networks showed a substantial improvement under multicrew and multimode settings. All

these improvements in the resilience of both individual networks are clearly reflected on the

system resilience for both case studies and under both flexible restoration strategies.

Regarding PFI, Tables 4.7 and 4.8 summarize the detailed outputs (i.e., cost values,

system and individual network resilience values, and CVaR values) of the standard model,
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Table 4.8. Case 2 (Mw = 7): Detailed cost values, flow, and resilience information under
SC, SM, and PFI for ζ = 1

Standard
Model
(ζ = 1)

Single
Crew

Single
Repair
Mode

PFI

Objective value (M) 102.743 161.303 128.854 83.569
CVaR ($M) 49.313 83.061 61.543 39.845
Total disruption cost ($M) 42.277 67.719 52.712 32.521
Total repair cost ($M) 4.750 4.500 6.500 4.750
Total flow cost ($M) 1.653 1.523 1.600 1.703
Total resilience 0.752 0.613 0.684 0.788

Power network disruption cost ($M) 12.786 19.160 16.831 12.551
Power network repair cost ($M) 2.500 2.250 3.500 2.500
Power network flow cost ($M) 0.958 0.925 0.937 0.959
Power network resilience 0.712 0.568 0.621 0.717
Power network aggregated received flow (MWh) 18781.405 18144.010 18376.940 18804.894

Water network disruption cost ($M) 29.491 48.559 35.881 19.970
Water network repair cost ($M) 2.250 2.250 3.000 2.250
Water network flow cost ($M) 0.695 0.598 0.663 0.744
Water network resilience 0.792 0.658 0.747 0.859
Water network aggregated received flow (MG) 136.309 117.241 129.919 145.830

under risk coefficient ζ = 1, with and without PFI for both cases. It can be seen that partial

functioning and interdependency significantly reduced the disruption costs for both cases.

That is, resilience is improved by PFI since allowing a disrupted component to partially

function—before full restoration—can help deliver more flow to demand nodes, especially in

the first time periods after disruption. This situation is the opposite of a binary status

setting of components where disrupted components continue to be disrupted until fully

restored. In addition, the reduction in disruption costs decreases the risk gradually compared

to a non-PFI setting. The results from applying PFI can link resilience to reliability and

maintainability engineering through systems with multiple states or state-dependent systems.

It might be of interest to study the relation between resilience, reliability, and maintainability

for a network having state-dependent critical components and how a tri-level framework can

be developed to improve all three aspects. To sum up, ICINs systems featuring PFI are

expected to be more resilient than non-PFI due to the flexibility of their post-disruption
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Figure 4.7. Case 1 (Mw = 6): Comparison of the resilience of the overall system and
individual networks under SC vs. MC, and SM vs. MM settings

restoration plans.

4.5 Conclusion and future work

In this paper, a two-stage stochastic restoration optimization model using

mixed-integer linear programming is proposed to solve the ICINRP under a mean-risk

cost-based objective function. Moreover, the mean-risk model features flexible restoration

planning strategies including multicrew repair of a single component and multimode repair,

and also considers partial functioning and interdependencies of components across networks.

The proposed model: (i) determines the set of failed components to be restored, (ii) selects

the repair mode for each failed component, (iii) assigns each crew the set of failed components

to be restored individually or concurrently, (iv) and schedules the baseline restoration

sequence across scenarios for each crew such that the associated costs of disruption,
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Figure 4.8. Case 2 (Mw = 7): Comparison of the resilience of the overall system and
individual networks under SC vs. MC, and SM vs. MM settings

repair, and flow of the system of ICIs are minimized. Additionally, as post-disruption

restoration tasks occur in a highly dynamic environment, which is subject to a fair amount of

uncertainty, the mean-risk model considers two important sources of uncertainty associated

with restoration panning: (i) repair task durations, and (ii) travel times of crews between

failed components.

The proposed approach was demonstrated using a real-life case study based on the

system of power and water networks in Shelby County, TN, U.S. under two hypothetical

earthquakes. The mean-risk model was solved using the developed Benders decomposition

algorithm, which outperformed the CPLEX standard solver as demonstrated. Our first

finding was the significance of adapting mean-risk stochastic models over deterministic

counterparts. This was demonstrated through the positive values of MRVSS under all

cases. It is also found that the restoration plan can be altered based on the associated risk
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weighted importance. In particular, smaller values of the risk weighted importance factor can

result in plans with low expected total costs but with high costs under worst-case scenarios.

In contrast, higher values of the risk weighted importance factor can result in plans with

slightly higher expected total costs but with less costs associated with worst-case scenarios.

Regarding the flexible restoration strategies and PFI, both implementations demonstrated

the added value in reducing the overall costs and mitigating risks.

As for future work, the proposed model could be extended to consider the

transportation network as a direct interdependent network. That is, the current approach

assumes that CI networks, other than the underlying transportation network, are the ones

being restored. Hence, the problem becomes not only focused on the restoration of CIs, but

also on coordinating the process of finding the best routes and schedules for crews to repair

damaged components in the transportation network. In addition, it is possible to extend

the current model to introduce a facility location problem where work crews are dispatched

to disrupted component locations rather than a direct travel between components. In such

problems, the goal is to find the optimal location of these facilities from a set of candidate

sites considering the fixed cost of establishing such facilities as well as other crew-related

variable costs. Moreover, considering economic measures of the resilience of communities

interacting with these ICINs, as well as the associated risks can be one of the future directions

of this work. This future direction can also be associated with studying other types of

interdependencies that affect both CIs and communities such as geographic interdependency

to mitigate the related socioeconomic risks.
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Appendix A

A.1 Resilience of the system and individual infrastructure networks under

different risk coefficient solution plans

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

Figure 4.9. Case 1 (Mw = 6): Comparison of system resilience curves under different risk
coefficient solution plans for a sample of reduced scenarios

168



0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8
R

es
il

ie
n

ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

0 5 10 15 20

Time (h)

0.0

0.2

0.4

0.6

0.8

R
es

il
ie

n
ce

ζ = 0

ζ = 0.5

ζ = 1

ζ = 2

WS

Figure 4.10. Case 1 (Mw = 6): Comparison of power network resilience curves under
different risk coefficient solution plans for a sample of reduced scenarios
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Figure 4.11. Case 1 (Mw = 6): Comparison of water network resilience curves under
different risk coefficient solution plans for a sample of reduced scenarios
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Figure 4.12. Case 2 (Mw = 7): Comparison of system resilience curves under different risk
coefficient solution plans for a sample of reduced scenarios
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Figure 4.13. Case 2 (Mw = 7): Comparison of power network resilience curves under
different risk coefficient solution plans for a sample of reduced scenarios
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Figure 4.14. Case 2 (Mw = 7): Comparison of water network resilience curves under
different risk coefficient solution plans for a sample of reduced scenarios
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Chapter 5

Summary and Future Work

5.1 Risk and resilience-based optimal post-disruption restoration for critical

infrastructures under uncertainty

Chapter 3 proposes risk-neutral and risk-averse two-stage stochastic optimization

models for CI restoration planning, where post-disruption restoration tasks occur in a highly

dynamic environment and thus subject to a considerable amount of uncertainty. The models

address two important challenges facing restoration planning, which are the accessibility of

failed components and uncertainty associated with restoration task durations and possible

starting times. The proposed approach was demonstrated using a real-life case study

based on the RTE 400 kV French electric power transmission network. Additionally, the

proposed models in Chapter 3 present a practical framework for risk-neutral and risk-averse

resilience-based applications and possibly other applications with task scheduling procedures

involving a fair amount of uncertainty. However, the models in the present study assume

that the restoration plan is determined initially and cannot be altered afterwards. Indeed,

relaxing this assumption by enabling sequential change of the plan as time goes on will add

more flexibility to the models. However, migrating the models from the two-stage setting

into a more dynamic multi-stage stochastic optimization framework will significantly increase

the computational time. Such computational differences can be tested using time-consistent

risk-averse measures such as Expected CVaR (Homem-de-Mello & Pagnoncelli, 2016) and

Expected Conditional Stochastic Dominance (Escudero et al., 2017). In addition, the
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presented study considers the transportation network as a factor affecting the restoration

plan without being restored when damaged. Therefore, coordinating the restoration of the

transportation network with another critical infrastructure network could be considered for

future work. In fact, the literature on resilience of transportation networks is generally

studied separately from other critical infrastructures due to the different nature of such

networks and their restoration planning strategies (Zhou et al., 2019). Thus, an effort

to merge both the resilience of transportation networks and other critical infrastructure

networks could be a valuable extension to the current model and to the related literature.

Additionally, the current approach only focuses on one phase of resilience planning (i.e.,

restoration). Hence, considering multi-phase planning for resilience, with an understanding

of the tradeoffs between the available vulnerability reduction resources and the resilience

achieved through restoration enhancement could be among the future research directions.

For instance, integrating interdiction approaches with recovery plans seems to be a good

starting point for resilience planning (Ghorbani-Renani et al., 2020). Finally, resilience

planning could be investigated by studying the network criticality analysis of its components,

which affects the network failure as well as the recovery process.

5.2 Model and solution method for mean-risk cost-based post-disruption

restoration of interdependent critical infrastructure networks

In Chapter 4, we propose a two-stage stochastic restoration optimization model

using mixed-integer linear programming to solve the interdependent critical infrastructure

networks restoration problem (ICINRP) under a mean-risk cost-based objective function.

Moreover, the mean-risk model features flexible restoration planning strategies including
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multicrew repair of a single component and multimode repair, and also considers partial

functioning and interdependencies of components across networks. The proposed model:

(i) determines the set of failed components to be restored, (ii) selects the repair mode for

each failed component, (iii) assigns each crew the set of failed components to be restored

individually or concurrently, (iv) and schedules the baseline restoration sequence across

scenarios for each crew such that the associated costs of disruption, repair, and flow of

the system of interdependent critical infrastructures (ICIs) are minimized. Additionally, as

post-disruption restoration tasks occur in a highly dynamic environment, which is subject

to a fair amount of uncertainty, the mean-risk model considers two important sources of

uncertainty associated with restoration panning: (i) repair task durations, and (ii) travel

times of crews between failed components. The proposed approach was demonstrated using

a real-life case study based on the system of power and water networks in Shelby County,

TN, U.S. under two hypothetical earthquakes.

As for future work, the proposed model could be extended to consider the

transportation network as a direct interdependent network. That is, the current approach

assumes that critical infrastructure (CI) networks, other than the underlying transportation

network, are the ones being restored. Hence, the problem becomes not only focused on

the restoration of CIs, but also on coordinating the process of finding the best routes

and schedules for crews to repair damaged components in the transportation network. In

addition, it is possible to extend the current model to introduce a facility location problem

where work crews are dispatched to disrupted component locations rather than a direct travel

between components. In such problems, the goal is to find the optimal location of these

facilities from a set of candidate sites considering the fixed cost of establishing such facilities
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as well as other crew-related variable costs. Moreover, considering economic measures of

the resilience of communities interacting with these interdependent critical infrastructure

networks (ICINs), as well as the associated risks can be one of the future directions of

this work. This future direction can also be associated with studying other types of

interdependencies that affect both CIs and communities such as geographic interdependency

to mitigate the related socioeconomic risks. Additionally, considering different sources of

uncertainty is a possible extension to the current approach (Reilly et al., 2021). Finally,

integrating the current restoration framework with immediate post-disruption machine

learning damage detection approaches (Xu et al., 2019) could be a useful addition to the

literature on disaster management.
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