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ABSTRACT 

 

While logistics research recently has placed increased focus on disruption 

management, few studies have examined the response and recovery phases in post-

disaster operations. We present a multiple-objective, integrated network optimization 

model for making strategic decisions in the supply distribution and network restoration 

phases of humanitarian logistics operations. Our model provides an equity- or fairness-

based solution for constrained capacity, budget, and resource problems in post-disaster 

logistics management. We then generate efficient Pareto frontiers to understand the trade-

off between the objectives of interest. 

Next, we present a goal programming-based multiple-objective integrated 

response and recovery model. The model prescribes fairness-based compromise solutions 

for user-desired goals, given limited capacity, budget, and available resources. An 

experimental study demonstrates how different decision making strategies can be 

formulated to understand important dimensions of decision making.  

Considering multiple, conflicting objectives of the model, generating Pareto-

optimal front with ample, diverse solutions quickly is important for a decision maker to 

make a final decision. Thus, we adapt the well-known Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) by integrating an evolutionary heuristic with optimization-based 

techniques called the Hybrid NSGA-II for this NP-hard problem. A Hypervolume-based 

technique is used to assess the algorithm’s effectiveness. The Hazards U.S. Multi-Hazard 

(Hazus)-generated regional case studies based on earthquake scenarios are used to 

demonstrate the applicability of our proposed models in post-disaster operations. 
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CHAPTER ONE 

 

INTRODUCTION AND MOTIVATION 

 

1.1 Introduction 

The large global impact of an increasing number of natural and man-made 

disasters in recent years has resulted in an increased interest and focus by academic, 

government, and commercial sectors in post-disaster management. According to the 

World Disaster Report 2014 from the International Federation of Red Cross and Red 

Crescent Societies (IFRC), approximately 6,500 disasters took place between 2004 and 

2013 inclusive of natural and technological disasters. These memorable events include 

the Ocean Tsunami in 2004, Hurricane Katrina in 2005, the Haiti Earthquake in 2010, 

and the Earthquake-Tsunami-Nuclear Emergency Japan in 2011. During these years, the 

IFRC (2014) reported more than 1.1 million casualties, over 1.9 billion affected people, 

and an estimated $1.67 trillion in economic damage. These significant losses further 

motivate the need for focused supply chain management (SCM) research on disruption 

management and humanitarian relief logistics operations.  

The humanitarian logistics literature can be categorized into the four phases of the 

disaster management cycle related to pre- and post-disaster operations (McLoughlin 

1985, Celik et al. 2012). While pre-disaster phases include 1) mitigation and 2) 

preparedness, post-disaster phases include both 3) response and 4) recovery. The purpose 

of mitigation is to prevent disasters from happening, while the focus of preparedness is to 

get ready for response before a disaster occurs. Further, the response phase, such as 
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supply distribution and evacuation, has the goal of managing available resources 

efficiently and effectively, as it is important for emergency services and responders to 

save lives as well as to preserve the financial and physical resources in the response stage 

(Celik et al. 2012). At last, the recovery phase’s purpose is to bring both the environment 

and distribution/supply networks back to a “normal” state (e.g., debris management and 

network restoration). Several researchers point to the need for post-disaster-related 

humanitarian logistics research and report that integration among the phases currently is 

quite limited, but important (Altay and Green 2006, Caunhye et al. 2012, Celik et al. 

2012, and Galindo and Batta 2013).   

As the performance of humanitarian operations depends largely on the extent of 

the efficiency and effectiveness of logistics operations, several strategies to improve 

performance and manage SCM with disruption are needed and studied (Celik et al. 2012 

and Ivanov et al. 2014). Further, the ripple effect in the supply chain has been recently 

highlighted to understand how changes to some variables ripple through the rest of the 

supply chain and influences its performance (Ivanov et al. 2013 and Ivanov et al. 2014). 

The same authors discuss an interconnection among efficiency (e.g., cost and service 

level), flexibility (e.g., structural redundancy), and resilience (e.g., preparedness, 

mitigation, stabilization, and recovery) framework, and examine the trade-offs among 

them.  

To combat the data acquisition challenges common in post-disaster settings, the 

Federal Emergency Management Agency (FEMA) developed the Hazards U.S. Multi-

Hazard (“Hazus”) tool.  Based on a geographic information system (GIS), Hazus is a 
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natural hazard loss estimation software package that can estimate potential building and 

infrastructure losses resulting from catastrophic events from earthquake, hurricane, and 

floods. FEMA (2014) reports that Hazus currently is used for both mitigation and 

preparedness, as well as for response and recovery planning by government planners, GIS 

specialists, and emergency managers to determine losses and plan long-term strategies for 

communities to reduce their losses. 

As few OR specialists currently are studying methods for improving humanitarian 

operations, there is a need to transfer techniques from commercial SCM to humanitarian 

logistics research. This is especially true for post-disaster operations, as much of the 

previous research has focused on pre-disaster operations. Considering that integrated 

models for analyzing the various phases of disaster relief management are also scarce in 

the literature, this dissertation will support humanitarian logisticians, fill voids in research 

communities, and contribute to the open literature. Figure 1.1 depicts the relationship 

between the problem domain in this dissertation and the disaster management cycle. 

Specifically, we are interested in equity or fairness of supplying relief items to 

beneficiaries through a disrupted network after a disaster occurs while trying to provide 

decision makers with a list of strategic restoration plans for disrupted nodes and arcs in 

humanitarian operations. We capture both the supply distribution problem during 

response and the network restoration problem during recovery with an integrated 

approach. It is important to emphasize that our problem is motivated from the lack of 

decision support models currently available in the post-disaster area. In addition, an 

integrated approach is considered since it is well observed that decisions to supply units 
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and to restore a network are dependent. Practitioners can use the developed model to 

support decisions for organizations in charge of the distribution of supplies and those 

groups in charge of restoration planning during post-disaster. 

 

Figure 1.1: Research domain problem in the disaster management cycle 

This dissertation is composed of three journal papers focusing on post-disaster 

humanitarian operations. Some redundancies between chapters are removed to make it 

easier to comprehend. Furthermore, the dissertation chapters contain more content than is 

included in the journal submissions. An overview of each chapter/ journal paper is 

presented as follows. 
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Multiple-Objective Analysis of Integrated Relief Supply and Network Restoration in 

Humanitarian Logistics Operations (See publication related to this research in 

Ransikarbum and Mason, 2014) 

 

This research provides a multiple-objective, integrated network optimization 

model for making strategic decisions in the supply distribution and network restoration 

phases of humanitarian logistics operations. The model provides an equity-based solution 

for constrained capacity, budget, and resource problems in post-disaster logistics 

management. Designed experiments are conducted for this NP-hard problem to analyze 

important aspects of the integrated problem for both small- and large-sized networks: full 

vs. partial restoration and pooled vs. separate budgeting approach. The integrated model 

is then applied to a Hazus-generated South Carolina (SC) regional case study based on an 

earthquake scenario. Finally, efficient or Pareto frontiers are generated to understand the 

trade-off between the objectives of interest. 

 

Goal programming-based post-disaster decision making for integrated relief supply 

distribution and network restoration (See publication related to this research in 

Ransikarbum and Mason, 2015a) 

 

 This research extends from the previous research by presenting a goal 

programming-based multiple-objective integrated response and recovery model to 

investigate important supply distribution and network restoration decisions. The model 

prescribes fairness-based compromise solutions for user-specified desired goals, given 

limited capacity, budget, and available resources. An experimental study demonstrates 

how different decision-making strategies can be formulated to understand important 

dimensions of decision making. Hazus-generated regional case studies for two regions 
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(South Carolina and California) demonstrate the applicability of our proposed model in 

post-disaster operations. 

 

A Bi-Criteria Metaheuristic for Integrated Post-Disaster Relief Supply and Network 

Restoration Decisions (See publication related to this research in Ransikarbum and 

Mason, 2015b) 

 

 In the previous research, a multiple-objective integrated response and recovery 

(MOIRR) model is developed for making strategic decisions in both the supply 

distribution and network restoration phases in post-disaster operations. Considering 

multiple, conflicting objectives of the model, generating Pareto-optimal front with ample, 

diverse solutions quickly is important for a decision maker to make an informative, final 

decision. Thus, the well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

is adapted in this research by integrating an evolutionary heuristic with optimization-

based techniques called the Hybrid NSGA-II for this NP-hard problem. A Hypervolume-

based technique is used to assess the algorithm’s effectiveness for a Hazus-generated loss 

scenario in South Carolina (SC) based on an earthquake scenario.   

1.2 Motivation 

1.2.1 Humanitarian Logistics and the Need for Research 

The increase in natural and man-made disasters has recently motivated the 

increased number of humanitarian logistics and relief operations studies. Based on recent 

papers calling for more research in humanitarian logistics and a number of literature 

reviews, several authors (Chandraprakaikul 2010, Tatham and Pettit 2010, Celik et al. 

2012, Caunhye et al. 2012, and Galindo and Batta 2013) point to the need for 
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humanitarian logistics and relief operations research. Chandraprakaikul (2010) and 

Tatham and Pettit (2010) suggest that there are few OR specialists contributing in the 

field of humanitarian logistics and call for researchers in commercial supply chain 

management (SCM) to transfer more techniques into humanitarian logistics research. 

Chandraprakaikul (2010) reviews the literature from 1990-2010 using keywords 

“humanitarian supply chains,” “humanitarian logistics,” “relief chain,” “relief 

operations,” and “humanitarian aid”. She observes that these terms are used 

interchangeably in the literature. The author suggests that further research is needed in 

the following areas: 

 Distribution Planning. 

 Information and Communication System. 

 Sourcing and Supplier Management. 

 Supply Chain Coordination and Integration. 

 Performance Measurement. 

 Transportation, Mode Choice, and Routing. 

 

Tatham and Pettit (2010) discuss the concept of supply network management 

(SNM), using it interchangeably with SCM, and argue that the fundamental principles of 

SNM—the five rights: right product, right time, right place, right price, and right 

quality—as well as additionally the right information, are equally applicable to the 

humanitarian logistics field. The authors suggest two categories for researchers to follow: 

 The application of academic models that target the organizational issues inherent 

in the management of humanitarian supply networks. 

 The application of OR techniques drawn from the commercial SNM environment 

to humanitarian logistics. 

 

Celik et al. (2012) and Caunhye et al. (2012) conduct literature reviews based on 

pre- and post-disaster events and provide similar directions for future research. Celik et 
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al. (2012) base their review on four phases of the disaster management cycle and 

categorize groups in each phase. In addition, the authors also present long-term 

humanitarian development topics addressed in the literature, and suggest that future 

research is needed in the area of disaster recovery, long-term development, integrated 

phases of disaster management cycle, and models considering the effects of multiple 

disasters (e.g., cascading disasters in Japan in 2011 with earthquake and tsunami, 

followed by the nuclear emergency). Caunhye et al. (2012) also segment the literature 

similarly based on pre- and post-disaster events. Specifically, pre-disaster events relate to 

facility location (e.g., location-evacuation, location with relief distribution and stock pre-

positioning), while post-disaster events include relief distribution and casualty 

transportation (e.g., resource allocation and commodity flow). The authors provide 

several research directions: 

 While current research focuses on facility location for the pre-disaster phase, 

research on facility location for post-disaster events is lacking. 

 Research in the recovery phase or casualty transportation is limited. 

 Research is lacking on objectives other than cost efficiency and responsiveness. 

 Research on manpower management during large-scale emergencies is lacking. 

 

1.2.2 Commercial SCM and Humanitarian SCM 

Several researchers (Chan 2003, Wassenhove 2005, Beamon and Balcik 2008, 

Balcik et al. 2009, and Haddow et al. 2011) highlight the similarities and differences 

between commercial SCM and humanitarian SCM. Figure 1.2 is adapted from Beamon 

and Balcik (2008) who illustrate the commercial and humanitarian supply chains. The 

authors discuss the different characteristics between non-profit and for-profit 

organizations based on revenue sources, goals, stakeholders, and performance 
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measurement. The different characteristics between for-profit supply chains and 

humanitarian relief chains are based on strategy goals, demand characteristics and order 

fulfillment (e.g., lead times, reliability of transportation system, pricing). In addition, 

customer characteristics are also discussed in their study. 

 

Figure 1.2: Commercial and humanitarian supply chains (adapted from Beamon and 

Balcik (2008)) 

 

With regard to performance measurement, Beamon and Balcik (2008) compare 

performance measurement in commercial supply chains and with humanitarian relief 

chain measurement. The authors develop new performance metrics for the humanitarian 

relief chain and suggest a performance measurement framework for the relief chain using 

a Sudan relief center as an illustration. Based on the three characteristics used for supply 

chain performance measurement studied earlier, the authors map the humanitarian relief 

chain and provide the following performance metrics: 
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 Resource performance metrics: cost of suppliers, distribution costs, inventory 

holding costs. 

 Output performance metrics: response time, number of items supplied, supply 

availability. 

 Flexibility performance metrics: volume flexibility (e.g., ability to respond to 

different magnitudes of disasters), delivery flexibility (e.g., time to respond to 

disasters), mix flexibility (e.g., ability to provide different types of items). 

 

With regard to coordination roles described as the relationships and interactions 

among different actors operating within the relief environment, Balcik et al. (2009) 

compare and contrast the coordination roles of several actors in commercial supply 

chains and relief chains. Several classification schemas are suggested. First they discuss 

vertical coordination (e.g., an organization coordinates with upstream or downstream 

activities, such as when a non-governmental organization (NGO) coordinates with a 

transportation company). In contrast, horizontal coordination occurs when an 

organization coordinates with other organizations at the same level (e.g., coordination 

among NGOs). In addition, coordination in the relief chain can also be classified as either 

among international relief actors or as between international relief actors and local relief 

actors. Additionally, coordination involving private sector companies is classified as 

either commercial relationships (e.g., vertical relationship with suppliers) or 

philanthropic relationships (e.g., vertical or horizontal relationship with a private-sector 

company providing donations). 

The authors also suggest that strategic partnerships between logistics firms and 

relief organizations are important in humanitarian operations (e.g., between FedEx and 

the American Red Cross or DHL and the International Federation of Red Cross and Red 

Crescent Societies (IFRC)). In addition, the authors describe six factors affecting 
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coordination in humanitarian operations: number and diversity of actors, donor 

expectations and funding structure, competition for funding and the effects of the media, 

unpredictability, resource scarcity and oversupply, and cost of coordination. 

1.2.3 Four Phases of the Disaster Management Cycle 

The humanitarian logistics literature can be categorized into four phases of the 

disaster management cycle (McLoughlin 1985). It is important to note that few research 

studies have been conducted in the response and recovery phase (Celik et al. 2012 and 

Galindo and Batta 2013). Further, as integration among the phases is still limited—these 

two facts motivate my dissertation research interests. 

1.2.3.1 Mitigation Phase  

The activities in this phase either prevent disasters from happening or reduce 

potential effects. The literature can be grouped as follows: 

 Hazardous material transportation (e.g., network design, location of DCs). 

 Location of early warning systems (e.g., location of nuclear threat detectors). 

 Reliable facility location (e.g., facility location with failure considerations). 

 Installation of protection systems (e.g., allocation of police patrol areas). 

 

1.2.3.2 Preparedness Phase  

The activities in this phase involve getting ready for response before the disaster 

occurs. The literature is grouped as follows: 

 Facility location and supply prepositioning (e.g., quantities of prepositioned 

supplies, warehouse location). 

 Infrastructure preparation (e.g., expansion of medical facilities). 
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1.2.3.3 Response Phase  

The activities in this phase involve responding while the disaster is occurring with 

the goal of managing available resources efficiently. The literature can be grouped as 

follows: 

 Supply distribution (e.g., supply flow, vehicle routing). 

 Inventory management (e.g., order quantities). 

 Evacuation (e.g., people transportation, shelter locations). 

 Healthcare (e.g., hospital assignments). 

 Arcs recovery (e.g., recovery of roads and bridges). 

 

1.2.3.4 Recovery Phase  

The activities in this phase involve actions taken after the disaster occurs to bring 

the environment and network back to a normal state. The literature is grouped as follows: 

 Post-disaster debris and waste management (e.g., debris and casualty 

transportation). 

 Infrastructure network restoration (e.g., road and traffic restoration). 

 Relief commodity distribution (e.g., vehicle routing). 

1.2.4 Recent Disasters and Logistics Lessons Learned 

1.2.4.1 Thailand Tsunami (2004) 

The tsunami highlighted many issues related to large-scale humanitarian disasters, 

such as the level of preparedness for such events and how best to manage logistics and 

supply chain activities in volatile conditions. As pointed out by Pettit et al. (2011), many 

organizations, especially in Thailand, now give more attention to issues related to large-

scale emergencies including preparedness and implementation of appropriate plans 

during emergency relief operations. My research hypothesis is that it is not only before 

and during disasters, but also post-disaster in the recovery phase that focused efforts are 
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required. As pointed out by the authors, the Asian tsunami disaster affects at least 14 

countries, including Thailand. Total casualties are almost 200,000 and the financial costs 

associated with the tsunami for Thailand alone are estimated at over US$ 500 million. 

The authors also point that it is obvious that the coordination for humanitarian logistics to 

embrace commerce, academia and the military is needed.  

Economist Intelligence Unit (EIU) (2005) also discusses lessons learned from the 

tsunami based on a series of interviews with disaster response experts, government 

officials, relief agencies, and companies involved in aid work in Thailand and Indonesia. 

Their recommendations are categorized into four main areas: 

 Gaining access: seek to cooperate with the government of the affected country, 

look to the UN for leadership, local participation and ownership is critical, keep 

airport open, recovery work is necessary. 

 Getting the right types of donations: insist on cash or appropriate donations, 

source locally, if possible. 

 Distributing supplies and collecting people: be aware of the threat of intimidation 

from local officials, recognize the pitfalls of oversupply, keep lines of authority 

clear, be alert to racial sensitivities and the need for good communication). 

 Private-sector involvement/what logistics provider can do: establish early on that 

all assistance is given freely, get in early with the right papers, think long-term, 

determine resources required for delivery operations, maintain updated database 

for suppliers, ensure cooperative commitment to disaster response, identify 

volunteers for airport emergency team, and forge partnership with aid agencies. 

1.2.4.2 Hurricane Katrina (2005) 

Hildreth (2009) describes emergency financial responses and their consequences 

during and after hurricane Katrina. Fiscal equilibrium analysis is used in the study as a 

framework to address fiscal policy issues in the aftermath of a catastrophic disaster. The 

author chooses to conduct the study during the disaster recovery phase—often the most 

overlooked phase of disaster management. In addition, Banipal (2006) examines the 
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performance of communication networks and information systems during hurricane 

Katrina, lists causes of failure, and presents designs for reliable and scalable networks. 

Integrated disaster management strategies for coordinated response to disasters are 

described. The author asserts that it is important that organizations involved in the 

disaster recovery phase have quick and accurate access to as much of the necessary 

information as possible, since quick response to disasters has the potential to significantly 

reduce total losses. The author points out that although the resources utilized are 

enormous (e.g., police officers, national guards, Red Cross, and Federal Emergency 

Management Agency (FEMA) workers), the majority of workers participating in search 

and rescue operations are out-of-state residents with little information about the 

geography of the city, street names, landmarks, etc., which often contributes to longer 

times for rescue operation to be completed. 

1.2.4.3 Haiti Earthquake (2010) 

Coles et al. (2010) analyze humanitarian operations during the response and 

recovery phases after the Haitian earthquake via a case study based on interviews with 

relief agencies. According to the authors, agencies responding to an earthquake can 

maximize operational efficiency by working together to reduce duplicated services and 

maximize utilization of available resources. Four areas in the context of optimal resource 

allocation are addressed in the paper: key dynamics affecting partnership efficiency and 

logistics, trends in partnership development and utilization, changes in agencies’ level of 

involvement before and after the earthquake, and common metrics that can be used for 

agency efficiency assessment. In addition, the authors use a commodity flow network to 
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describe the flow of resources and major factors affecting partnership development and 

sustainability. 

1.2.4.4 Japan Earthquake, Tsunami, and Nuclear Emergency (2011) 

Mimura et al. (2011) discuss the earthquake and tsunami that occurred off the 

coast of Tohoku, Japan. Although the Tohoku coast developed the most advanced anti-

earthquake/tsunami system in the world, it was heavily damaged by the March 2011 

event that measured 9.0 on the Richter scale (Mimura et al. 2011 and Fuse and Yokota 

2012). Infrastructure damages reported include roads, bridges, and railway systems, 

which in turn have strong effects on recovery and economic activities. After the 

earthquake and tsunami occurred, significantly widespread damages to roads, railways, 

and lifelines resulted in insufficient supplies of food and gasoline being available to 

impacted areas. The authors suggest several directions for future research: 

 The earthquake and tsunami generated 25 million tons of wreckage—current 

disaster management plans focus on refugees, but seldom consider treatment of 

the wreckage—there is a need to incorporate this issue in disaster recovery 

planning. 

 Disaster prevention should be based not only on improved scientific 

understanding, but also on the possibility of maximum potential hazards. 

 

Fuse and Yokota (2012) illustrate the “chain of survival for disasters” with four 

chains covering each response activity that should be undertaken from a medical 

viewpoint. These chains include rapid search and rescue; early care in the field, 

evacuation centers, and primary clinics; definitive evacuation at disaster-based hospitals; 

and proper evacuation to unaffected areas. The authors suggest that their concept could 
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be used to guide headquarters operations in dealing with the relief commodities 

associated with a disaster. 



 17 

CHAPTER TWO 

MULTIPLE-OBJECTIVE ANALYSIS OF INTEGRATED RELIEF SUPPLY AND 

NETWORK RESTORATION IN HUMANITARIAN LOGISTICS OPERATIONS 

2.1 Introduction 

In this chapter, we present a multiple-objective, integrated network optimization 

model for strategic decision-making regarding supply distribution and network 

restoration decisions during post-disaster operations. Our model seeks to obtain fairness- 

or-equity-based solutions under constrained capacity, budget, and resource limitations. 

We employ a designed experiment to investigate several important aspects of the 

proposed model, such as partial vs. full restoration and pooled vs. separate budgeting, 

with both small- and large-sized networks to gain managerial insights from the model. 

Finally, the model is applied to a regional case study using loss data generated from 

Hazus based on an earthquake scenario to provide decision makers with candidate 

restoration and distribution plans. This work provides an integrated aspect of distribution 

and restoration of distribution systems. However, as pointed out by several researchers 

(e.g., Yan et al. 2011, Celik et al. 2012, and Ivanov et al. 2013), it is also important to 

consider an integrated approach between production and distribution systems (e.g., 

setting an inventory level and scheduling a distribution plan) as it provides decision 

makers with globally, simultaneously optimized decisions.  

The remaining sections of this chapter are organized as follows. We overview the 

pertinent literature in Section 2.2. Then, our multiple-objective integrated response and 

recovery (MOIRR) model and an experimental design are presented in Section 2.3.  Next, 
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an illustrative, Hazus-case study is discussed in Section 2.4. Finally, Section 2.5 presents 

our research conclusions and outlines directions for future research. This chapter is 

submitted to the journal with the following citation:  

Ransikarbum, K. and Mason, S. J. 2014. Multiple-Objective Analysis of 

Integrated Relief Supply and Network Restoration in Humanitarian Logistics Operations. 

International Journal of Production Research, In Press.  

2.2 Literature Review 

With a focus on disaster-related issues, humanitarian logistics research is 

becoming a key factor in devising improved ways of managing multi-stakeholder relief 

operations. There are interchangeable terms commonly used for humanitarian logistics in 

the literature (e.g., humanitarian SCM, relief chain, disrupted SCM, and emergency 

management). Based on recent papers calling for more research in humanitarian logistics 

and a number of literature reviews, several authors (e.g., Wassenhove 2005, 

Chandraprakaikul 2010, Tatham and Pettit 2010, Caunhye et al. 2012, Celik et al. 2012, 

Galindo and Batta 2013, and Day 2014) suggest that there is a need for operations 

research and management science (OR/MS) specialists to transfer more techniques from 

commercial SCM into humanitarian logistics research. Beamon and Balcik (2008) 

compare commercial and humanitarian SCM and suggest that the ultimate goal to deliver 

the right supplies in the right quantities to the right locations at the right time is similar. 

They also discuss the differences based on revenue sources, goals, stakeholders, and 

performance measurement between the two. Additionally, while high market incentive 



 19 

and low risk are associated with commercial SCM, low market incentive and high risk 

can be observed in humanitarian logistics (Christopher and Tatham 2011). 

 Performance measurement in humanitarian logistics is not necessarily similar to 

commercial logistics (Chan 2003, Beamon and Balcik 2008, Christopher and Tatham 

2011, Celik et al. 2012, and Day 2014). Celik et al. 2012 point that not only 

effectiveness, but also efficiency of post-disaster logistics activities are needed to capture 

performance. Christopher and Tatham (2011) also discuss the need for developing 

appropriate performance metrics for humanitarian operations that capture the aid 

recipient’s viewpoint. The concept of equity and its measurement receives attention from 

several researchers in the literature (Marsh and Schilling 1994, Luss 1999, Ogryczak 

2000, Kostreva et al. 2003, Singh 2007, Viroriano et al. 2011, and Zhu et al. 2010). 

Marsh and Schilling (1994) present a conceptual overview and notation for equity 

measures pertaining to facility location problems. The authors defined equity as each 

group receiving its fair share of the effect of the facility locating decision. Ogryczak 

(2000) introduces the concept of equitable efficiency, which links problems to the 

theories of inequitably measurement using the location problem. Later, Kostreva et al. 

(2003) discuss the concept of equitably efficient solutions to multiple-criteria 

optimization problems and show that this concept is a specific refinement of Pareto-

optimality via a capital budgeting problem illustration. Singh (2007) further develops 

techniques to find equitably efficient solutions using equitable aggregations. Vitoriano et 

al. (2011) consider a problem in the response phase of humanitarian operations and 

develop a multiple-objective model that incorporates equity as a criterion in support of 
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the aid distribution. The proportion of satisfied demand at each node is used as an equity 

measure in their study.  

Minimax, maximin, and maxisum techniques are frequently used in equity- or 

fairness-related research. Luss (1999) studies a resource allocation problem in which it is 

desirable to allocate limited resources equitably among competing activities using a 

lexicographic minimax approach. The author points out that it is called equitable if no 

performance function value can be improved without either violating a constraint or 

degrading an already equal or worse-off performance function value that is associated 

with a different activity. Further, maximin and lexicographic maximin objectives 

analogous to minimax and lexicographic minimax approaches are discussed. That is, 

while the lexicographic minimax objective determines equitable solutions for problems 

where a smaller performance function value is considered better, the lexicographic 

maximin applies to the case when a larger performance function value is considered 

better. Zhu et al. (2010) also use a minimax approach to solve an equitable resource 

allocation problem with multiple depots. The objective is set such that the maximum rate 

of unsatisfied demand among all nodes is minimized. 

Further, the maximin approach has also been applied in several problems (e.g., 

Kaplan 1973, Tang 1987, Zhang and Melachrinoudis 1999, Salles and Barria 2008, and 

Sayin 2013). Kaplan (1973) initially discusses the concept of a maximin objective 

function and shows that it can be transformed and solved by linear programming. Tang 

(1987) presents manufacturing problems formulated as special cases of the maximin 

allocation problem. Salles and Barria (2008) formulate the bandwidth allocation problem 
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and employ the lexicographic maximin criterion to return a solution that satisfies both 

fairness and efficiency properties. The authors find that while this approach guarantees 

desirable features for the allocation of network resources such as fairness and efficiency, 

it requires complex optimization procedures and significant computational time to find a 

solution. Maximin and maxisum approaches also are discussed in the undesirable facility 

location problem (e.g., Zhang and Melachrinoudis 1999 and Sayin 2013). Sayin (2013) 

presents a mixed-integer programming formulation for an undesirable facility location 

problem wherein a facility of undesirable nature is to be located (e.g., nuclear power 

plant) and suggests that maximizing the minimum distance to existing sites (maximin) or 

maximizing the sum of distances (maxisum) may be appropriate.  

In the emergency management literature, the problems are categorized according 

to pre- and post-disaster events in the disaster management cycle (McLoughlin 1985). 

Several researchers have recently published OR-based literature review papers and 

segmented the literature based on this cycle (e.g., Caunhye et al. 2012, Celik et al. 2012, 

and Galindo and Batta 2013). They suggest similarly that future research is needed in the 

area of post-disaster operations with specific focus on disaster recovery, long-term 

development, integrated phases of the disaster management cycle, and models 

considering the effects of multiple disasters. The National Hazards Center (2006) and 

FEMA (2011) suggest that disaster recovery planning should start before a disaster since 

pre-disaster activities have been shown to have a dramatic impact upon a community’s 

ability to respond. For example, in disaster-prone regions, communities can pre-plan 

debris removal and utility restoration enabling speed and a successful recovery plan by 
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having the necessary processes and protocols in place prior to a disaster. This suggestion 

highlights the importance of post-disaster model integration. 

Literature involving mathematical models to alleviate the issues in post-disaster 

relief operations typically considers problems in each phase individually (e.g., Matisziw 

et al. 2009 and Viroriano et al. 2011). However, some recent attempts consider phase-

integrating models (e.g. Balcik et al. 2008 and Celik et al. 2012).  Matisziw et al. (2009) 

focus on the recovery phase via a telecommunication network restoration problem. 

Decision variables to restore disrupted nodes and arcs in a multi-period problem are 

included in their work. Viroriano et al. (2011) develop a goal programming model for the 

response phase based on loads and vehicles to support the aid distribution problem. 

Balcik et al. (2008) develop an integrated preparedness and response model for a last 

mile distribution system in which a local DC stores inventories and distributes emergency 

relief supplies to a number of demand locations. Finally, Celik et al. (2012) discuss an 

integrated approach to combine two models: a medical response model (response) and a 

debris clearance model (recovery). Considering that integrated models for analyzing 

disaster relief management are scarce and that an integrated model that captures both the 

supply distribution problem during response and the network restoration problem during 

recovery does not exist, we present such a model in this chapter. 

2.3 A Multiple-Objective Integrated Response and Recovery (MOIRR) Model 

Multiple-criteria mathematical programming models (MCMP) can be solved by 

either preemptive or non-preemptive methods (Ignizio and Cavalier 1993, Ravindran 

2007). In a preemptive approach, if the decision maker provides the objectives in priority 
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order (e.g., the first objective has the highest priority 
1

p , the second objective has the 

second highest priority 
2

p , etc.), the model can be solved by sequential optimization. On 

the other hand, under a non-preemptive approach, the model is formulated with 

importance factors or criteria weights for each objective (e.g., the first objective has 

associated weight 
1

w , the second objective has associated weight 
2

w , etc.). It follows that 

the model can be solved as a single, linear (weighted) objective model. 

Common techniques to formulate and solve MCMP models include criteria 

normalization and criteria weight computations (Ravindran 2007). When criteria have 

different units of measure, the relative rating of alternatives may change merely because 

of their units of measures’ scales. Therefore, criteria normalization methods (e.g., linear 

normalization, vector normalization, the use of 10 raised to an appropriate power, etc.) 

can be used to allow inter-criterion comparison. Further, several methods (e.g., weights 

from ranks, rating method, ratio weighting method, etc.) can be used to compute weights 

proportional to the relative values of unit changes in criteria value functions. 

2.3.1 MOIRR Model Formulation 

Both response-phase supply distribution options and recovery-phase network 

restoration decisions to reestablish services in a damaged network to pre-disruption 

performance levels so that relief supplies can be transported to affected areas are 

considered in our problem. We present our model formulation and demonstrate how it is 

solved as a weighted objective model with linear normalization. The model is intended to 
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provide decision makers with a set of strategic restoration plans for disrupted nodes and 

arcs in a network such that relief items can be equitably supplied to those in need. 

2.3.1.1 Notation 

Sets 

 G (N, A) Graph consisting of nodes N and arcs A 

N Set of nodes 

A Set of arcs 

S Set of supply port nodes ∈ N 

T Set of transhipment (relief warehouse) nodes ∈ N 

D Set of demand/beneficiary nodes ∈ N 

S
F
 Set of functional supply port nodes ∈ S 

S
D
 Set of disrupted supply port nodes ∈ S 

T
F
 Set of functional transhipment (relief warehouse) nodes ∈ T 

T
D
 Set of disrupted transhipment (relief warehouse) nodes ∈ T 

  Set of arcs between supply port and relief warehouse nodes ∈ A 

  Set of arcs between relief warehouse and demand/beneficiary nodes ∈ A 
F

  Set of functional arcs between supply port and warehouse nodes ∈   
D

  Set of disrupted arcs between supply port and warehouse nodes ∈   
F

  Set of functional arcs between relief warehouse and demand nodes ∈   
D

  Set of disrupted arcs between relief warehouse and demand nodes ∈   
N

  Set of disrupted nodes, where 
N

  = S
D
   T

D
 

A
  Set of disrupted arcs, where 

A
  = 

D
    

D
  

Parameters 

i
s  Supply units available at each supply port node i ∈ S 

i
d  Demand units required at each demand/beneficiary node i ∈ D 

i
  Relief warehouse capacity for each relief warehouse node i ∈ T 

,

S T

i j
  Road capacity for each arc between port and warehouse node (i, j) ∈   

,

T D

i j
  Road capacity for each arc between warehouse and demand (i, j) ∈   

i
  Capacity needed for each unit flow to use relief warehouse node i ∈ T 
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,

S T

i j
  Capacity needed for each unit flow to use road (arc) between supply port 

and relief warehouse node (i, j) ∈   

,

T D

i j
  Capacity needed for each unit flow to use road (arc) between relief 

warehouse and demand/beneficiary node (i, j) ∈   

,i j
c  Cost for transporting each unit flow per mile through each arc (i, j) ∈ A 

S

i
  Cost for restoring each disrupted supply port node i ∈ S

D 

T

i
  Cost for restoring each disrupted relief warehouse node i ∈ T

D
 

,

S T

i j
  Cost for restoring each disrupted arc between supply port and relief 

warehouse node (i, j) ∈ 
D

  

,

T D

i j
  Cost for restoring each disrupted arc between relief warehouse and 

demand/beneficiary node (i, j) ∈ 
D

  
N

b  Budget for total disrupted node restoration  

A
b  Budget for total disrupted arc restoration 

F
b  Budget for total network flow transportation  

S
  Fixed charge for restoring disrupted supply port node  

T
  Fixed charge for restoring disrupted relief warehouse node 

S T
  Fixed charge for restoring disrupted arc between supply port and relief 

warehouse node 
T D

  Fixed charge for restoring disrupted arc between relief warehouse and 

demand/beneficiary node 
N

  Maximum allowable number for disrupted node restoration 

A
  Maximum allowable number for disrupted arc restoration 

,

O D

i j
d  Distance in miles between each origin and destination pair (i, j) ∈ A 

i
w  Important weight setting associated with objective i 

Decision Variables 

,i j
X  Commodity flow integer variable for supplies through arc (i, j) ∈ A 

i
K  Binary variable to restore disrupted supply port node i ∈ S

D
  

i
L  Binary variable to restore disrupted relief warehouse node i ∈ T

D
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,i j
M  Binary variable to restore disrupted arc between port and warehouse (i, j) 

∈ 
D

  

,i j
N  Binary variable to restore disrupted arc between relief warehouse and 

demand/beneficiary (i, j) ∈ 
D

  

i
R  Units of unsatisfied unit variable for each demand node i ∈ D  

V  Minimum percentage of satisfied demand 
S

i
Y  Binary variable for setup cost to restore disrupted supply port  i ∈ S

D
 

T

i
Y  Binary variable for setup cost to restore disrupted warehouse  i ∈ T

D 

,

S T

i j
Y  Binary variable for setup cost to restore disrupted arc between supply port 

and warehouse (i, j) ∈ 
D

  

,

T D

i j
Y  Binary variable for setup cost to restore disrupted arc between relief 

warehouse and demand (i, j) ∈ 
D

  

2.3.1.2 Formulation 

The first objective function in the model is to maximize equity or fairness 

modelled using maximin approach. This can be modelled as a linear program to compute 

the minimum percentage of satisfied demand. 

Maximize V        (2.1) 

Subject to   
,

1 0 0 ;
i j

i T j

X
V j D

d

 
   

 
 

  (2.2) 

The second objective is to minimize total unsatisfied demand. It can be defined as 

the sum of unsatisfied units across all demand/beneficiary nodes. 

Minimize
i

i D

R



 

 

 

    (2.3) 
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The third objective is to minimize the total network cost calculated as the funds 

spent to restore disrupted nodes, restore disrupted arcs, and transport supply units based 

on origin-destination (O-D) pair information. 

Minimize 
, , , , , ,

( , ) ( , ) ( , ) ( , )

, ,

(

D D D D

D D D D

S T S S T T

i i i i i i

i S i T i S i T

S T T D S T S T T D T D

i j i j i j i j i j i j

i j i j i j i j

O D

i j i j

i

K L Y Y

M N Y Y

c d

   

   

   

       

       
          

       
       

       
          

       
       

   

   

,

, )

i j

j A

X



 

 

 



 (2.4) 

Objective functions (2.1), (2.3), and (2.4) can be normalized using a linear 

normalization technique to allow inter-criterion comparison. This technique converts 

objectives to a range between 0 and 1 based on ideal and anti-ideal solutions. Then, the 

weighted objective method can be applied. The objective functions can be formulated as 

a single linear maximization objective function as  

Maximize   

*

1

1 2 3* *

1 1

**

32

* * * *

2 2 3 3

(1) ( 4 )(3)L
w w

H L

LL
w

L H L H


 



    
   

      

  (2.5) 

In (2.5), we note the following definitions:  

*

j
H  is an ideal solution (i.e., Max ( )

j
C x for benefit and Min ( )

j
C x  for cost criteria) 

*

j
L  is an anti-ideal solution (i.e., Min ( )

j
C x for benefit and Max ( )

j
C x  for cost criteria) 

*

* *

( )
j

j j

j
C x L

H L




 is a normalized term for benefit criterion and 

*

* *

( )
j

j j

j
L C x

L H




is a normalized term 

for cost criterion 
3

1

1
i

w  . 
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Now that the model’s objection function has been established, we turn our focus 

to developing the model’s constraints. 

, , ,

( , )

O D F

i j i j i j

i j A

c d X b



 
 

 

   (2.6) 

D D D D

S T S S T T N

i i i i i i

i S i T i S i T

K L Y Y b   

   

       
          

       
       

      (2.7) 

, , , , , ,

( , ) ( , ) ( , ) ( , )
D D D D

S T T D S T S T T D T D A

i j i j i j i j i j i j

i j i j i j i j

M N Y Y b   

       

       
          

       
       

      (2.8) 

Constraint set (2.6) ensures that the transportation cost computed based on the O-

D pair for all commodities through the network does not exceed the available 

transportation budget. Constraint sets (2.7) and (2.8) also ensure that restoration costs 

inclusive of setup cost for disrupted nodes and arcs will not exceed the restoration 

budgets.  

,
;

i j j j

i T

X R d j D



   
  (2.9) 

Further, demand may not necessarily be satisfied. Constraint set (2.9) is modeled 

such that demand uncertainty can be accommodated (e.g., demand is higher or lower than 

supply units). 

,
;

F

i j i

j T

X s i S



  
  (2.10) 
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,
;

D

i j i i

j T

X s K i S



     (2.11) 

Constraint sets (2.10) and (2.11) ensure that the units flowing out of supply nodes 

do not exceed available supply. While supply items are available for functional supply 

nodes, supply items for disrupted supply nodes will be available if and only if they are 

restored by the model. 

, ,
0 ;

i j j k

i S k D

X X j T

 

    
   (2.12) 

Constraint set (2.12) is a flow conservation constraint ensuring that unit flows out 

of and in to each relief warehouse are equal. 

,
;

F

j i j j

i S

X j T 



  
   (2.13) 

,
;

D

j i j j j

i S

X L j T 



     (2.14) 

Relief warehouse capacities are restricted by constraint sets (2.13) and (2.14), as 

capacities at a relief warehouse node are available only when the node is functional. 

, , ,
; ( , )

ST ST F

i j i j i j
X i j        (2.15) 

, , , ,
; ( , )

ST ST D

i j i j i j i j
X M i j       (2.16) 

, , ,
; ( , )

T D T D F

i j i j i j
X i j        (2.17) 

, , , ,
; ( , )

T D T D D

i j i j i j i j
X N i j       (2.18) 
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Constraint sets (2.15) and (2.16) restrict road capacities between a supply node 

and relief warehouse nodes and ensure that road capacities are available only if these 

roads are functional. Constraint sets (2.17) and (2.18) similarly restrict road capacities 

between a relief warehouse and demand nodes. 

;
S D

j j
K Y j S     (2.19)  

;
T D

j j
L Y j T     (2.20) 

, ,
; ( , )

ST D

i j i j
M Y i j      (2.21) 

, ,
; ( , )

T D D

i j i j
N Y i j      (2.22) 

Constraint sets (2.19) through (2.22) ensure that setup costs are incurred when 

restoration decisions for a disrupted supply point (2.19), a disrupted warehouse (2.20), a 

disrupted arc between a supply point and a warehouse (2.21), and a disrupted arc between 

a warehouse and demand nodes are made by the model (2.22). 

D D

N

j j

j S j T

K L 

 

      (2.23) 

, ,

( , ) ( , )
D D

A

i j i j

i j i j

M N

 



 

      (2.24) 

Constraint sets (2.23) and (2.24) limit the maximum allowable number of 

disrupted nodes and disrupted arcs that can be restored based on available resources. 

Finally, constraint sets (2.25) through (2.35) are variable-type constraints. 

 ,
0,1, 2, ..., ; ( , )

i j
X n i j A            (2.25),       0,1 ;

D

i
K i S                (2.26) 
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 0,1 ;
D

i
L i T                             (2.27),        ,

0,1 ; ( , )
D

i j
M i j        (2.28) 

 ,
0,1 ; ( , )

D

i j
N i j                    (2.29),       0 ;

i
R i D                     (2.30) 

0V                                                          (2.31),        0,1 ;
S D

i
Y i S              (2.32) 

 0,1 ;
T D

i
Y i T                            (2.33),        ,

0,1 ; ( , )
ST D

i j
Y i j       (2.34) 

 ,
0,1 ; ( , )

T D D

i j
Y i j   

          (2.35) 

2.3.2 Model Experimentation 

Initial toy problems were created and solved both manually and by the proposed 

model to verify and validate the model’s functionality. Once model validity was 

determined, we shifted our focus to various scenario-based experiments based on 

discussions with emergency relief decisions makers and our review of the open literature. 

2.3.2.1 Experiment 1: Pooled vs. Separate Budgets 

Our first set of experiments investigates the cases of 1) when budgets for 

restoration and transportation are pooled together (e.g., one decision maker authorizes all 

the budgets) vs. 2) individually specified restoration and transportation budgets. 

Mathematically, this can be accomplished by combining constraint sets (2.6), (2.7), and 

(2.8) as follows: 
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(2.36) 

While the separate budgeting approach typically reflects the reality of how 

budgets are approved and distributed for individual organization, the pooled budgeting 

approach can provide decision makers which additional flexibility. 

2.3.2.2 Experiment 2: Partial vs. Full Restoration 

Our second experiment illustrates the scenario that occurs when a decision maker 

is allowed to restore a disrupted node partially (i.e., in some fractional amount) or in full 

(i.e., an all-or-nothing approach). In this analysis, we restrict disrupted supply points to 

be fully restored if at all. For a relief warehouse node, we allow the model to choose to 

restore either half or a whole disrupted node. For all disrupted arcs, which assumed to 

represent four-lane highways, we allow the model to restore one, two, three, or all four 

lanes. To accomplish this, we add the following parameters, decision variables, and 

constraint sets to the model: 

Parameters 

1T

i
f  50% fractional restoration for disrupted warehouse node i ∈ T

D
 

2T

i
f  100% fractional restoration for disrupted warehouse node i ∈ T

D
 

1

,

S T

i j
f  25% fractional restoration for damaged arc between supply port and relief 

warehouse node (i, j) ∈ 
D

  
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2

,

S T

i j
f  50% fractional restoration for damaged arc between supply port and relief 

warehouse node (i, j) ∈ 
D

  
3

,

S T

i j
f  100% fractional restoration for damaged arc between supply port and relief 

warehouse node (i, j) ∈ 
D

  
1

,

T D

i j
f  25% fractional restoration for damaged arc between relief warehouse and demand 

node (i, j) ∈ 
D

  
2

,

T D

i j
f  50% fractional restoration for damaged arc between relief warehouse and demand 

node (i, j) ∈ 
D

  
3

,

T D

i j
f  100% fractional restoration for damaged arc between relief warehouse and 

demand node (i, j) ∈ 
D

  

Decision Variables 

i
L  Continuous variable to partially restore disrupted warehouse node i ∈ T

D
  

,i j
M  Continuous variable to partially restore disrupted arc between supply port and 

relief warehouse node (i, j) ∈ 
D

  

,i j
N  Continuous variable to partially restore disrupted arc between relief warehouse 

and demand node (i, j) ∈ 
D

  
1T

i
Q  Binary variable to restrict 50% restoration for disrupted warehouse node i ∈ T

D 

2T

i
Q  Binary variable to restrict 100% restoration for disrupted warehouse node i ∈ T

D 

1

,

S T

i j
Q

 Binary variable to restrict 25% restoration for disrupted arc between supply port 

and relief warehouse node (i, j) ∈ 
D

  
2

,

S T

i j
Q  Binary variable to restrict 50% restoration for disrupted arc between supply port 

and relief warehouse node (i, j) ∈ 
D

  
3

,

S T

i j
Q  Binary variable to restrict 100% restoration for disrupted arc between supply port 

and relief warehouse node (i, j) ∈ 
D

  
1

,

T D

i j
Q  Binary variable to restrict 25% restoration for disrupted arc between relief 

warehouse and demand node (i, j) ∈ 
D

  
2

,

T D

i j
Q  Binary variable to restrict 50% restoration for disrupted arc between relief 

warehouse and demand node (i, j) ∈ 
D

  
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3

,

T D

i j
Q  Binary variable to restrict 100% restoration for disrupted arc between relief 

warehouse and demand node (i, j) ∈ 
D

  

Constraint Sets 

1 1 2 2
;

T T T T D

i i i i i
L f Q f Q i T        (2.37) 

2
;

T D

i i
L f i T       (2.38) 

Constraint sets (2.37) and (2.38) combine to restrict the new decision variables to 

partially restore a disrupted relief warehouse node at two levels:  50% or 100%. 

1 1 2 2 3 3

, , , , , , ,
; ( , )

ST ST ST ST ST ST D

i j i j i j i j i j i j i j
M f Q f Q f Q i j        (2.39) 

3

, ,
; ( , )

ST D

i j i j
M f i j       (2.40) 

1 1 2 2 3 3

, , , , , , ,
; ( , )

T D T D T D T D T D T D D

i j i j i j i j i j i j i j
N f Q f Q f Q i j        (2.41) 

3

, ,
; ( , )

T D D

i j i j
N f i j       (2.42) 

Constraint sets (2.39) and (2.40) allow partially disrupted arcs between a supply 

point and a relief warehouse to be restored at four levels: 25%, 50%, 75%, or 100%. 

Similarly, constraint sets (2.41) and (2.42) restrict the new decision variables to partially 

restore disrupted arcs between relief warehouses and demand nodes. 

0 ;
D

i
L i T      (2.43) 

,
0 ; ( , )

D

i j
M i j       (2.44) 

,
0 ; ( , )

D

i j
N i j       (2.45) 
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Original constraint sets (2.27), (2.28), and (2.29) are modified to become (2.43), 

(2.44), and (2.45), respectively, so that the model can restore a disrupted relief 

warehouse, a disrupted arc between a supply point and a relief warehouse, and a 

disrupted arc between a relief warehouse and a demand node. Finally, constraint sets 

(2.46) through (2.53) restrict the new decision variables to be binary. 

 
1

0,1 ;
T D

i
Q i T                       (2.46),        

2
0,1 ;

T D

i
Q i T           (2.47) 

 
1

,
0,1 ; ( , )

ST D

i j
Q i j                   (2.48),       

2

,
0,1 ; ( , )

ST D

i j
Q i j       (2.49)  

 
3

,
0,1 ; ( , )

ST D

i j
Q i j                    (2.50),       

1

,
0,1 ; ( , )

T D D

i j
Q i j      (2.51) 

 
2

,
0,1 ; ( , )

T D D

i j
Q i j                   (2.52),      

3

,
0,1 ; ( , )

T D D

i j
Q i j     (2.53) 

2.3.3 MOIRR Complexity 

The complexity of the proposed MOIRR model is assessed through a reduction 

technique (Karp 1972). Initially, the set of disrupted nodes and disrupted arcs can be set 

to null, which results in a fully operational network (i.e., S
D
, T

D
,

D
 , and 

D
 =  ). It 

follows that 
N

  and 
A

  = , which make all sets represent only functional network 

elements (S
F
 = S, T

F
 = T, 

F
 =  , and 

F
 =  ). Then, several parameters ( S

i
 , T

i
 , 

,

S T

i j
 , 

,

T D

i j
 , N

b , A
b , S

 , T
 , S T

 , T D
 , N

 , and A
 ) and decision variables (

i
K , 

i
L , 

,i j
M , 

,i j
N , S

i
Y , T

i
Y , 

,

S T

i j
Y , and 

,

T D

i j
Y ) associated with disruption and restoration are 

discarded from the model: constraint sets (11), (14), (16), and (18) associated with node 

and arc disruption; constraint sets (19)-(22) associated with restoration setup cost; 

constraint sets (23)-(24) associated with maximum allowable restoration number; and 
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constraint sets (26)-(29) and (32)-(35) associated with restoration binary variables. 

Finally, the third objective function (4) is revised such that only the transportation cost 

term is included. 

The revised model is therefore reduced to a maximum concurrent flow problem 

(MCFP). We note that while the simplest multi-commodity flow problem (MFP) is the 

maximum multi-commodity flow problem (MMFP), a more complex variation is the 

MCFP (Karakostas 2008). As the parameters (
i

s , 
i

d , 
i

 , 
,

S T

i j
 , 

,

T D

i j
 , 

i
 , 

,

S T

i j
 , 

,

T D

i j
 , 

,i j
c , 

F
b , and 

,

O D

i j
d ) and variables (

,i j
X  and 

i
R ) for unit flows, capacity, cost, budget, and 

distance in the model are integral values, the problem further reduces to the multi-

commodity integral flow problem (MIFP), which is known to be NP-complete (Even et 

al. 1976, Karp 1975). Therefore, through this reduction argument, the complexity of 

MOIRR is NP-hard: M O IR R M C F P M IF P  .  

2.3.4 Model Validation  

In order to gain initial insights into significant model factors, we conduct a full 

factorial experimental design on three factors at two levels each: restoration type (full and 

partial), budget spending approach (pooled and separate), and network size (small and 

large). Full restoration uses an all-or-nothing approach allowing either only full 

restoration for any disrupted node or arc, while partial restoration allows for fractional 

restoration. The pooled budget factor level pools all budgeted funds for transportation, 

node restoration, and arc restoration together, while the separate budget level considers 

each category separately. Finally, the small network contains at most 45 nodes, while the 
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large network contains at most 450 nodes. In total, there are eight experimental scenarios 

of interest: 

 Base Scenario: full restoration, separate budget, small network 

 Scenario 1: full restoration, separate budget, large network 

 Scenario 2: full restoration, pooled budget, small network 

 Scenario 3: full restoration, pooled budget, large network 

 Scenario 4: partial restoration, separate budget, small network 

 Scenario 5: partial restoration, separate budget, large network 

 Scenario 6: partial restoration, pooled budget, small network 

 Scenario 7: partial restoration, pooled budget, large network 

The MOIRR is modeled in AMPL (Fourer et al. 2002) and analyzed using 

CPLEX solver. We use the parameters in Table 2.1 to randomly generate 50 test data sets 

with different levels of disruption to test and verify model functionality. All data sets are 

analyzed on a PC with an Intel (R) Core (TM) i7- 2600 CPU @3.40 GHz and 16.0 GB of 

RAM. The maximum computational time limit allowed for the small and large network is 

1200 and 3600 seconds for each data set, respectively. 

2.3.4.1 Small-Sized Network Results  

The percent demand satisfied (a surrogate measure for fairness) and required 

computational time are analyzed for small-size networks in four scenarios: base, 2, 4, and 

6. The average percent demand satisfied and computational time across the data sets for 

these cases are shown in Table 2.2. Graphical comparisons for percent of demand 

satisfied and required computational time for the small network scenarios are shown in 

Figure 2.1(a) and Figure 2.1(b), respectively, for all 50 test data sets. The percent of 

satisfied demand (fairness) fluctuates across these data sets primarily due to the 
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randomness of network disruption. In terms of computation time, although lesser 

restoration costs result from partial restoration, partial restoration-based models 

(scenarios 4 and 6) require higher computational time. Intuitively, this trade-off exists as 

more variables are required in the partial restoration scenarios.  

2.3.4.2 Large-Sized Network Results  

A similar comparison for large-sized networks is conducted using scenarios 1 3, 

5, and 7. The average percent of demand satisfied and computational time across data sets 

for these models are also shown in Table 2.2. Figure 2.2(a) and Figure 2.2(b) graphically 

illustrate the percent demand satisfied and required computation time across the 50 test 

data sets for all large network scenarios. It is clear that scenarios 3 and 7 that use pooled 

budgeting provide a much higher percent demand satisfaction than do scenarios 1 and 5 

that employ separate budgeting. The pooled budget approach provides flexibility across 

organizations, given that budget parameters are limited in the larger network that contains 

comparably higher levels of disruption. Further, computation time, while fluctuating 

across the large network test data sets, increases with problem size as expected due to the 

NP-hard complexity of the MOIRR model. 
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Table 2.1: Parameters for an experimental design. 
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Table 2.2: Average satisfied demand and computational time across data sets. 

 

 

Figure 2.1: Results across data sets on small network: (a) fairness, (b) computational 

time. 
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Figure 2.2 Results across data sets on large network: (a) fairness, (b) computational time. 

2.4 HAZUS Case Study  

2.4.1 Methodology, Assumptions, and Analysis 

While researchers typically have issues with data acquisition for post-disaster 

operations, data is usually available in pre-disaster studies (e.g., inventory position, 

warehouse location) (Galindo and Batta 2013). We use FEMA’s GIS-based natural 

hazard loss estimation software Hazus as a case study to illustrate the applicability of the 

MOIRR model. We generate a disaster instance with Hazus to obtain predicted loss data 

in a study region of interest in the United States: our university’s home state of South 
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Carolina. Hazus requires both an inventory collection module and a hazard identification 

module as input to the natural hazard impact assessment module. Hazus then calculates 

its output in a risk evaluation module and the resulting Hazus loss data is then used as 

input to the MOIRR model. 

The parameter data and necessary assumptions associated with our Hazus case 

study are given in Table 2.3. While most loss data can be obtained directly from Hazus, 

some parameters are extrapolated from available data. Six major South Carolina airports 

are chosen as relief supply points: Charleston, Columbia, Florence, Greenville, Hilton 

Head, and Myrtle Beach. Hazus’s inventory collection module reports that there are 47 

emergency operations centers (EOCs) in the state; we model them as relief warehouses. 

To simulate a major disruption event, a 9.0 magnitude earthquake with 50 

kilometer depth is modeled to occur in the Columbia, South Carolina metropolitan area 

(Latitude 33.89, Longitude 81.06). The Hazus loss data-related criteria are as follows: 

5:00 pm is considered as the peak commute time; the affected population is based on 

single families and commuters, and Level 1 injuries occur requiring basic medical aid 

without hospitalization. Capacity-related data are extrapolated based on the size and 

infrastructure of selected supply points and warehouses. Census track-based demand data 

is obtained from Hazus’s natural impact assessment module.  

We illustrate how our MOIRR model works with Hazus loss data by setting the 

model with partial restoration and separate budgeting. Although pooled budget allows 

flexible operations with budgeted funds, current practice on how budgets are distributed 

depends on different organization’s functions (Day, 2014). Further, equal objective 
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weights are used implying that fairness, total unsatisfied demand, and total network cost 

have equal importance. CPLEX solver solves the case study optimally in 21.5 seconds. 

The main experimental results for detailed restoration and distributed supply information 

from the relief points are shown in Table 2.4. Further, Hazus-based “before and after” 

disaster instance maps are presented in Figure 2.3. Figure 2.3(a) presents the position of 

the earthquake, as well as the existing infrastructure in South Carolina inclusive of the six 

relief supply points and 47 relief warehouses. Then, Figure 2.3(b) shows loss data output 

from Hazus based on a chosen complete damage probability level of 70% or higher: one 

disrupted relief supply point, 16 disrupted relief warehouses, and 143 demand census 

tracks affected by the earthquake. 
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Table 2.3: Hazus-related assumption list. 
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Table 2.4: Key results from Hazus-based case study. 
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Figure 2.3: Hazus-based South Carolina map illustration: (a) infrastructure before a 

disaster, (b) loss data after a disaster. 

Figure 2.4 shows MOIRR model output for restoration and supply flow decisions. 

Figure 2.4(a) illustrates the model’s resulting restoration decisions comprising five 

existing and one restored relief point, as well as 31 existing, five fully-restored, and four 

partially-restored relief warehouses. Further, Figure 2.4(b) and Figure 2.4(c) show 
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examples of flow decisions from the restored Columbia supply point to its relief 

warehouses and from these warehouses to their associated demand points, respectively. 

 

 

Figure 2.4: MOIRR-based South Carolina map illustration: (a) restoration decisions, (b) 

flow supply decisions from ports, (c) flow supply decisions from warehouses. 

2.4.2 Developing an Approximate Efficient Frontier 

In a minimization example, a solution 
0

x S  is said to be efficient, non-

dominated, or Pareto optimal if 0
( ) ( )

k k
f x f x

 
for some x S  implies that 

0
( ) ( )

j j
f x f x  for at least one other index j . An efficient solution is therefore a feasible 

solution that is not dominated by any other feasible solution and has the property that an 
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improvement in any one objective is possible only at the expense of a poorer solution in 

at least one other objective (Ravindran, 2007). The set of all efficient solutions, the 

efficient frontier, is commonly used to evaluate trade-offs among decision criteria as it is 

useful for visually evaluating a multi-criteria solution space. 

We now develop an approximate efficient frontier based on a selected set of 

efficient solutions to study solution trade-offs for two different pairs of objectives: Pair 1 

(fairness vs. cost) and Pair2 (unsatisfied demand vs. cost). For two chosen objectives, we 

first calculate a weight pair for each efficient solution on an approximate efficient frontier 

based on the rating method (Ravindran, 2007). To illustrate nine efficient points on a 

frontier, we use a scale from one to nine, where nine is the highest importance, so that a 

summation of all ratings is restricted to ten making it convenient to normalize each 

rating,
i

r , to be between 0 and 1 (2.54). For example, the first efficient point is based on a 

rating of one for the first objective and nine for the second objective, and is converted to 

a weight pair of 0.1 and 0.9, respectively. Then, the second efficient point is based on a 

rating of two and eight, and is converted to a weight pair of 0.2 and 0.8. We do this until 

the ninth efficient point is obtained using a rating of nine for the first objective and one 

for the second objective, which is converted to a weight pair of 0.9 and 0.1, respectively. 

That is, weight 
i

w  for objective i  is discretely varied from 0.1 to 0.9 at 0.1 increments. 

Then, given these efficient solution points, we use a polynomial trendline plot to generate 

the predictive objectives in Figure 2.5. 

1

i

i

k

j

j

r
w

r







, where k is the number of objectives      (2.54) 
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Figure 2.5: Efficient frontier: (a) objective pair (fairness and cost) (b) objective pair 

(unsatisfied demand and cost). 

The fairness and cost objective functions in (2.1) and (2.4) are first normalized 

using a linear normalization technique to allow inter-criterion comparison for the Pair 1 

study (2.55). This technique converts a measure of criteria to a proportion between 0 and 

1 along the allowed range of measure based on ideal ( *

j
H ) and anti-ideal ( *

j
L ) solutions, 

where we can obtain from solving one objective alone (Ravindran, 2007). We note that 

*

* *

( )
j

j j

j
C x L

H L




is a normalized term for benefit criterion and 

*

* *

( )
j

j j

j
L C x

L H




 is a normalized term 
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for cost criterion, where ( )
j

C x is a criterion value before normalization. As all criteria 

after normalization are transformed to a maximization problem, we can then use the 

weighted objective method as follows: 

Maximize   

*

1

1 3* *

1 1

*

3

* *

3 3

(1) ( 4 )L
w

H L

L
w

L H






   

  
   

   (2.55) 

By varying the weights from 0.1 to 0.9, the model can be solved to obtain non-

dominated solutions and the approximate efficient frontier (Figure 2.5(a)), thereby 

allowing decision makers to evaluate trade-offs between these two objectives.  

Similarly, the objective functions in (2.3) and (2.4) are normalized and combined 

using the weighted objective method in constraint (2.56) for Pair 2. The approximate 

efficient frontier generated from the Pair 2 study is presented in Figure 2.5(b).  

Maximize   

*

2

2 3* *

2 2

*

3

* *

3 3

( 4 )(3)L
w

H L

L
w

L H




   
  

   

   (2.56) 

2.4.3 Results 

While Figure 2.5(a) illustrates an approximate efficient frontier for a pair of 

maximized and minimized objectives, Figure 2.5(b) shows the frontier for two minimized 

objectives. In Figure 2.5(a), when more weight is given to the fairness objective (e.g., 

1
w =0.7, implying that 

3
w =0.3), the corresponding objective values for fairness and total 

cost are 72.2% demand satisfaction and $1,245,152,004, respectively. However, when 

more weight is given to the cost objective (e.g., 
1

w =0.3 and 
3

w =0.7), the corresponding 

objective values are 28.4% percent demand satisfaction and $239,515,108 for total cost, 
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respectively.  

Consider the Pair 2 study, when more weight is given to the unsatisfied demand 

objective in Figure 2.5(b) (e.g., 
2

w =0.7, implying that 
3

w =0.3), the corresponding 

objective values for unsatisfied demand units and cost are 218,996 units and 

$1,245,079,768, respectively. However, when more weight is given to the cost objective 

(e.g., 
2

w =0.3 and 
3

w =0.7), the corresponding objective values are 567,132 units of 

unsatisfied demand and $220,371,277 in total cost. 

In both the Pair 1 and Pair 2 studies for two objectives, we illustrate the 0.3 and 

0.7 weight setting for the first and second objectives of interest, and vice versa, to show 

how the objectives values react. A decision maker can, however, choose several 

combinations of objective weights for the MOIRR model. For example, a decision maker 

can select any weight pair from 0 to 1 along the frontier, where 
1

1

n

i

i

w



  (e.g., 0.1 and 

0.9, 0.2 and 0.8, and so on). Further, using a polynomial trend line analysis, a decision 

maker can quickly examine how different objective weights affect important trade-offs. It 

is clear that these two approximated Pareto fronts (trade-off curves) can provide benefits 

to a decision maker in visualizing the solution space. The preferred point on a particular 

Pareto front can be identified and optimal decisions can be obtained as illustrated earlier. 

Further, the fronts also provide an objective trade-off in that they inform a decision 

maker on how improving one objective can deteriorate the second one’s performance 

along the curve. 
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2.5 Conclusions and Future Research 

Existing models in post-disaster disruption management are scarce and often lack 

an integrated perspective. We develop a multiple-objective model that integrates the 

supply distribution problem encountered during disaster response with the restoration 

problem that arises during recovery operations, the MOIRR model. As performance 

measures of interest in relief operations are not only cost-based, we also consider an 

equity- or fairness-based solution approach in our multi-criteria analysis. 

It is evident that partial restoration decisions under pooled budgeting approach 

provides flexibility for organizations when budgets are limited in a highly disrupted 

network. Given a hypothetical earthquake scenario, the MOIRR model was applied to a 

South Carolina-based case study using loss data estimated from FEMA’s geographic 

information system-based loss estimation software, Hazus. Our model recommended 

network restoration and supply distribution plans in multi-criteria space, providing 

decision makers with approximately efficient frontiers with which to understand trade-

offs between the different objectives of interest. 

This chapter provides a practical case study for our multiple-objective model with 

capacity, budget, and resource constraints. Hazus is a valuable tool that can and should be 

employed by other researchers interested in post-disaster studies. If a decision maker can 

express his or her desired levels or thresholds of objective function values, a Goal 

Programming (GP) approach that yields a compromise solution could be further 

developed. As it is also important to solve large-scale network problems to obtain 

effective, near-optimal solutions quickly in a real-world disaster scenario, multiple-
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objective metaheuristic approaches can be further investigated and applied to this 

problem in an effort to provide practical, effective solutions to this NP-hard problem in a 

timely manner. 

Further, although our research is motivated from a disruption in humanitarian 

logistics domain, it is analogous to a production system. Consider a complex production 

plant, for example, it is similar to when analyzing how raw materials are supplied to 

different machines (i.e., supply distribution problem) given that these machines are 

subject to a simultaneous failure from a power outage (i.e., recovery problem). Another 

direction is also to investigate an integrated aspect between production and distribution 

systems. 
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CHAPTER THREE 

GOAL PROGRAMMING-BASED POST-DISASTER DECISION MAKING FOR 

INTEGRATED RELIEF SUPPLY DISTRIBUTION AND NETWORK 

RESTORATION 

3.1 Introduction 

In this chapter, we extend our previous multiple-objective integrated response and 

recovery (MOIRR) model in the previous chapter (Ransikarbum and Mason 2014) by 

proposing a goal programming (GP)-based methodology for decision makers, given 

completely pre-specified preferences of the decision maker. In the regular multi-criteria 

programming model, these preferences are treated as requirements with hard constraints. 

However, these hard constraints are not sufficient to describe user requirements in a real 

scenario and may be no way to satisfy all the preferences at all. Thus, a decision maker 

has to make a compromise to select a feasible solution. On the other hand, GP treats these 

preferences as targets or goals to aspire for. The model then attempts to find an optimal 

solution that comes as close as possible to the goals using soft constraints. These soft 

constraints make GP find a compromise solution when the regular multi-criteria 

programming model does not have a solution thanks to the negotiation feature (Ravindran 

2007 and Cui et al. 2011). 

We develop key managerial insights by analyzing our GP-based methodology in a 

designed experiment to investigate several important factors: solution method 

(preemptive vs. non-preemptive); objective function formulation (objective-driven, goal-

driven, vs. mixed objective- and goal-driven); and degree of compromise (compromise 
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vs. non-compromise). Our methodology is applied in two Hazus regional case studies 

with differing population densities: South Carolina (SC) and California (CA). Hazus-

generated earthquake scenario loss data is used in the study to provide decision makers 

with appropriate candidate restoration and distribution plans. 

The remaining sections of this paper are organized as follows. First, we discuss related 

previous research efforts in Section 3.2 and problem statement in Section 3.3. Then, we present 

our GP-based MOIRR model and its experimental design in Section 3.4. Hazus-based case 

studies and managerial insights are discussed in Sections 3.5 and 3.6, respectively. Finally, 

Section 3.7 presents our research conclusions and overviews potential directions for future 

research studies. This chapter is submitted to the journal with the following citation:  

Ransikarbum, K. and Mason, S. J. 2015a. Goal Programming Model for an 

Integrated Relief Supply and Network Restoration during Post-Disaster Decisions – 

Hazus based Case Studies. Working Paper. 

3.2 Literature Review 

Sheu (2007) suggests that humanitarian logistics is “a process of planning, 

managing and controlling the efficient flows of relief, information, and services from the 

points of origin to the points of destination to meet the urgent needs of the affected 

people under emergency conditions.” Over the course of the last decade, operations 

research and management science specialists have focused on adapting commercial 

supply chain management techniques to the humanitarian logistics domain (Wassenhove 

2005, Altay and Green 2006, Sheu 2007, Tatham and Pettit 2010, Caunhye et al. 2012, 

Celik et al. 2012, Galindo and Batta 2013, Day 2014). 
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The performance of a humanitarian logistics system is not measured in the same 

way as that of a commercial logistics system (Chan 2003, Beamon and Balcik 2008, 

Christopher and Tatham 2011, Celik et al. 2012, Day 2014). Celik et al. (2012) assert that 

not only the effectiveness, but also the efficiency of post-disaster logistics activities must 

be analyzed appropriately to measure performance. Previous researchers suggested a 

number of strategies to improve emergency relief systems’ performance (Celik et al. 

2012 and Ivanov et al. 2014). Although the vast majority of the metrics used to monitor 

supply network operations are financially based to capture the effectiveness of Non-

Governmental Organization’s (NGO) response, there is a need to include metrics that 

capture the recipient’s viewpoint in order to improve the delivery of goods and services 

to aid recipients, such as fairness or equity (Christopher and Tatham 2011). 

The concept of equity and how it is measured has been widely studied in the 

literature (Ogryczak 2000, Kostreva et al. 2003, Singh 2007, Zhu et al. 2010, Vitoriano et 

al. 2011, Ransikarbum and Mason 2014). Minimax, maximin, and maxisum techniques 

are frequently used in equity- or fairness-related research efforts. Lexicographic minimax 

(maximin) techniques seek equitable solutions for problems wherein a smaller (larger) 

performance or objective function value is desirable (Kaplan 1973, Luss 1999, Zhang and 

Melachrinoudis 1999, Salles and Barria 2008, Sayin 2013, Ransikarbum and Mason 

2014). Kaplan (1973) initially discusses the concept of a maximin objective function and 

shows that it can be transformed and solved by linear programming. Salles and Barria 

(2008) formulate the bandwidth allocation problem and employ the lexicographic 

maximin criterion to return a solution that satisfies both fairness and efficiency 
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properties. While this approach guarantees desirable features for the allocation of 

network resources, such as fairness and efficiency, it requires complex optimization 

procedures and significant computation time to find a solution. Ransikarbum and Mason 

(2014) develop an integrated response and recovery model under supply disruption with 

multiple objectives and use a maximin technique to obtain “fair” solutions in a distributed 

system. 

The humanitarian logistics literature can be categorized according the four phases 

of the disaster management cycle and how it relates to pre- and post-disaster operations 

(McLoughlin 1985). While most efforts are related to pre-disaster issues (Jia et al. 2007, 

Balcik and Beamon 2008, Doerner et al. 2009, Liberatore et al. 2012, Akgun et al. 2014), 

recent research points to the need for analyzing post-disaster-related operations with 

models that consider the integrated aspects and/or the effects of multiple disasters (Altay 

and Green 2006, Caunhye et al. 2012, Celik et al. 2012, Galindo and Batta 2013). Recent 

studies examine the resilience and reliability domains related to infrastructure networks 

both pre- and post-disaster. Liberatore et al. (2012) propose a facility protection model 

that considers the possibility of interdependencies among disruptions for large area 

disruptions to improve the reliability of an existing network using an attacker-defender 

paradigm. Using the same paradigm, Alderson et al. (2014) illustrate how to build and 

solve a sequence of models to assess and improve the resilience of an infrastructure 

system after disruptive events. Akgun et al. (2014) develop a pre-disaster phase model to 

locate prepositioned supplies close to disaster-prone areas such that a reliable facility 

network results that minimizes response time to demand points.  
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Studies focusing on post-disaster relief operations typically consider the problems 

in each phase individually (Matisziw et al. 2009, Vitoriano et al. 2011). Matisziw et al. 

(2009) recovery phase-focused study examines a telecommunication network restoration 

problem using decision variables related to restoring disrupted nodes and arcs in a multi-

period environment. Vitoriano et al. (2011) develop a GP response phase model focused 

on the loads and vehicles that support aid distribution in order to maximize goal attributes 

related to relief operations: equity, reliability, and security. The Humanitarian Aid 

Distribution System is a web-based decision support platform designed to aid non-

experienced users to make more effective decisions during the response phase (Vitoriano 

et al. 2010, Ortuño et al. 2011). 

Recently, research efforts have trended towards phase-integrating models (Balcik 

et al. 2008, Celik et al. 2012, Liberatore et al. 2014, Ransikarbum and Mason 2014). 

Balcik et al. (2008) develop an integrated preparedness and response model for last mile 

distribution systems in which a local DC stores inventories and distributes emergency 

relief supplies to a number of demand locations. Celik et al. (2012) provide an integrated 

approach for two post-disaster questions: medical response (response) and debris 

clearance (recovery). The hierarchical compromise model “RecHADS” was developed by 

Liberatore et al. (2014) to consider both relief distribution and disrupted arcs recovery in 

order to improve reliability and security. The authors compare sequential and coordinated 

optimization to highlight the importance of cooperation among agents. Ransikarbum and 

Mason’s MOIRR model (2014) integrates supply distribution (response) and network 
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restoration decisions (recovery) for post-disaster operations under a fairness-based 

objective. 

Finally, while “hard” (real) constraints are typically formulated in multi-objective 

mathematical programs, GP models often contain “soft” (goal) constraints. The primary 

difference is that real constraints are absolute restrictions whereas goal constraints are 

desirable but not mandatory restrictions to achieve goals (Ravindran 2007). Cui et al. 

(2011) develop a GP model for a web service problem and suggest that including only 

real constraints is not sufficient for describing user requirements; further, there may be no 

way to satisfy all of the real constraints simultaneously. In practice, the user will be 

forced to compromise and select a feasible solution—this is 1) the purpose of the goal 

constraints in GP models and 2) the primary motivation for the proposed GP model in 

this paper. We adapt our previously-developed MOIRR model (Ransikarbum and Mason 

2014) to a GP-based framework and analyze it using an experimental design extended 

from Cui et al. (2011). Next, motivated by Galindo and Batta (2013) who note the lack of 

application-based analyses of mathematical models for post-disaster operations, we 

assess the proposed GP model’s capabilities using two Hazus-generated case studies of 

varying population density. 

3.3 Problem Statement 

The MOIRR model of Ransikarbum and Mason (2014) integrates both response-

phase supply distribution options and recovery-phase network restoration decisions to 

reestablish services in a damaged network to pre-disruption performance levels so that 

relief supplies can be transported to affected areas. The model also directs decision 
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makers to restore disrupted node(s) and/or disrupted arc(s) when necessary such that 

fairness, unsatisfied demand, and cost-based criteria are optimized. In this paper, our 

focus shifts to the decision space containing multiple, conflicting objective functions. 

Given the set of any decision maker’s pre-specified preferences or desired goals, we seek 

to provide a set of restoration plans for the disrupted nodes and arcs in a humanitarian 

relief logistics network that allow for relief items to be quickly and equitably supplied to 

those in need. Figure 3.1 illustrates an instance of a disrupted network. Clearly, the network can 

become disconnected. Unless disrupted nodes (N2 and N3) and/or arcs (A2, A4, A6, A7, A8, and 

A9) are restored, no relief items can reach victims. 

 

 

Figure 3.1: Disrupted network problem instance 
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3.4 A Goal Programming-based Multiple-Objective Integrated Response and Recovery 

Model 

In goal (aka compromise) programming, a decision maker specifies his/her goals 

as desired levels or threshold values for problem attributes (objective functions) of 

interest. GP treats these goals as aspirations to pursue, not as absolute constraints or 

requirements. In other words, GP models seek feasible solutions that most closely 

approach or meet the goals. In stating one or more goals, the decision maker is suggesting 

that although a true optimal solution is desired, he/she would be satisfied by any model 

solution that achieves or is “close” to the stated goal(s). Given desired goal(s) or target 

value(s), GP models prescribe decisions that minimize the deviation(s) from these targets. 

As a branch of multiple-objective programming (MOP), GP models are typically solved 

by either preemptive or non-preemptive methods (Ignizio and Cavalier 1993, Ravindran 

2007). Under a preemptive approach, once the decision maker states the objectives in 

priority order (e.g., the first objective has highest priority 
1

p , the second objective has 

second highest priority 
2

p , and so on), the model can be solved by sequential 

optimization (Arthur and Ravindran 1980). In contrast, non-preemptive approaches 

typically are characterized by models containing importance factors/criteria weights for 

each objective that are solved as a single, linear (weighted) objective model (e.g., the i
th

 

objective is given weight w
i
). 

We formulate the GP analogue of the MOIRR model with a partial restoration 

developed by Ransikarbum and Mason (2014). In this analysis, we do not allow disrupted 
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supply points to be partially restored (i.e., all or nothing restoration is required at supply 

points). However, relief warehouse nodes can be either not restored, have one-half of 

their capabilities restored, or be fully restored. Finally, each disrupted arc in the relief 

network can be restored in increments of 25% of the arc’s capacity (i.e., 0%, 25%, 50%, 

75%, or 100% restoration). 

3.4.1 Model Notation 

Sets 

G (N,A)  Graph consisting of nodes N and arcs A 

N (A)   Set of nodes (arcs) 

S (D)   Set of supply port (demand) nodes ∈ N 

T  Set of transhipment (relief warehouse) nodes ∈ N 

S
F
 (S

D
)  Set of functional (disrupted) supply port nodes ∈ S 

T
F
 (T

D
)  Set of functional (disrupted) transhipment (relief warehouse) nodes ∈ T 

   Set of arcs between supply port and relief warehouse nodes ∈ A 

   Set of arcs between relief warehouse and demand nodes ∈ A 

F
  (

D
 )  Set of functional (disrupted) arcs between supply port and warehouse 

nodes ∈   

F
  (

D
 )  Set of functional (disrupted) arcs between relief warehouse and demand 

nodes ∈   

N
   Set of disrupted nodes, where 

N
  = S

D
   T

D
 

A
   Set of disrupted arcs, where 

A
  = 

D
    

D
  

Parameters 

i
s   Supply units available at each supply port node i ∈ S 

i
d   Demand units required at each demand node i ∈ D 
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i
   Relief warehouse capacity for each relief warehouse node i ∈ T 

,

S T

i j
   Road capacity for each arc between port and warehouse node (i, j) ∈   

,

T D

i j
   Road capacity for each arc between warehouse and demand (i, j) ∈   

i
   Capacity needed for each unit flow to use relief warehouse node i ∈ T 

,

S T

i j
  Capacity needed for each unit flow to use road (arc) between supply port 

and relief warehouse node (i, j) ∈   

,

T D

i j
  Capacity needed for each unit flow to use road (arc) between relief 

warehouse and demand node (i, j) ∈   

,i j
c   Cost for transporting each unit flow per mile through each arc (i, j) ∈ A 

S

i
 ( T

i
 ) Cost for restoring each disrupted supply port node i ∈ S

D
 (relief warehouse 

node i ∈ T
D
)
 

,

S T

i j
   Cost for restoring each disrupted arc between port and relief warehouse 

node (i, j)∈
D

  

,

T D

i j
   Cost for restoring each disrupted arc between warehouse and demand node 

(i, j)∈
D

  

N
b ( A

b ) Budget for total disrupted node (arc) restoration  

F
b   Budget for total network flow transportation  

S
 ( T

 ) Fixed charge for restoring disrupted supply port (relief warehouse) node  

S T
   Fixed charge for restoring disrupted arc between supply port and relief 

warehouse node 
T D

   Fixed charge for restoring disrupted arc between relief warehouse and 

demand node 
N

 ( A
 ) Maximum allowable number for disrupted node (arc) restoration 

,

O D

i j
d   Distance in miles between each origin and destination pair (i, j) ∈ A 

i
w (

i
p )  Importance weight setting (priority) associated with objective i 

Partial Restoration Parameters 
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1 2
, ( )

T T

i i
f f   50%, (100%) restoration for disrupted warehouse node i ∈ T

D
 

1 2 3

, , ,
, ( ), ( )

ST ST ST

i j i j i j
f f f

  
25%, (50%), (100%) restoration for damaged arc between supply 

port and relief warehouse node (i, j)∈
D

  

1 2 3

, , ,
, ( ), ( )

T D T D T D

i j i j i j
f f f  25%, (50%), (100%) restoration for damaged arc between relief 

warehouse and demand node (i, j)∈
D

  

Goal Parameters 

F
g  Minimal fairness decision maker would accept for percent of satisfied demand at 

each node 

U
g  Maximum total units of unsatisfied demands decision maker will tolerate 

C
g  Maximum total cost decision maker will pay for network restoration and aid 

transportation 

Decision Variables 

,i j
X  Commodity flow variable for supplies through arc (i, j)∈ A; integer 

i
K  Restore disrupted supply port node i ∈ S

D
; binary 

i
L  Partially restore disrupted warehouse node i ∈ T

D
  

,i j
M  Partially restore disrupted arc between supply port and relief warehouse node (i, 

j)∈
D

  

,i j
N  Partially restore disrupted arc between relief warehouse and demand node (i, 

j)∈
D

  

i
R  Units of unsatisfied demand for each demand node i∈D; integer 

V  Minimum percentage of satisfied demand 

S

i
Y  Setup cost to restore disrupted supply port  i∈S

D
; binary    

T

i
Y  Setup cost to restore disrupted warehouse  i∈T

D
; binary

 

,

S T

i j
Y  Setup cost to restore disrupted arc between supply port and warehouse (i, j)∈

D
 ; 

binary 
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,

T D

i j
Y  Setup cost to restore disrupted arc between relief warehouse and demand (i, 

j)∈
D

 ; binary 

Partial Restoration Decision Variables 

1 2
, ( )

T T

i i
Q Q   Restrict 50%, (100%) restoration for disrupted warehouse node i ∈ 

T
D
; binary

 

1 2 3

, , ,
, ( ), ( )

ST ST ST

i j i j i j
Q Q Q  Restrict 25%, (50%), (100%) restoration for disrupted arc between 

supply port and relief warehouse node (i, j)∈
D

 ; binary 

1 2 3

, , ,
, ( ), ( )

T D T D T D

i j i j i j
Q Q Q  Restrict 25%, (50%), (100%) restoration for disrupted arc between 

relief warehouse and demand node (i, j)∈
D

 ; binary 

Goal Decision Variables 

F
D

 ( F
D

 ) Positive (negative) deviation of fairness goal  

U
D

 ( U
D

 ) Positive (negative) deviation of unsatisfied demand goal 

C
D

 ( C
D

 ) Positive (negative) deviation of cost goal 

3.4.2 Model 

The GP analogue of the MOIRR model is guided by three different objective 

functions: maximizing equity (fairness), minimizing unsatisfied relief demand, and 

minimizing total network costs. Further, it minimizes three undesired deviational 

variables associated with each goal. 

Maximize 
1

Z V   (3.1) 

Minimize  
2 i

i D

Z R



 
  

 

   (3.2) 
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Minimize 
3 , , , , ,

( , ) ( , ) ( , )

, , ,

( , )

. . .

D D D D

D D D

D

S T S S T T

i i i i i i

i S i T i S i T

S T T D S T S T

i j i j i j i j i j

i j i j i j

T D T D

i j i j i

i j

K L Y Y

Z M N Y

Y c d

   

  



   

     

 

       
          

       
       

     
        

     
     

 
 

 
 

   

  

 ,

( , )

O D

j i j

i j A

X



 

 

 

 

 

 

 

  
  
   



 (3.3) 

Minimize 
4

F
Z D


   (3.4) 

Minimize 
5

U
Z D


   (3.5) 

Minimize 
6

C
Z D


   (3.6) 

Objective function (3.1), when coupled with constraint set (3.7), maximizes 

equity (fairness) via a maximin approach. 

,

1 0 0 ;
i j

i T j

X
V j D

d

 
   

 
 

   (3.7) 

Objective function (3.2) minimizes the total sum of unsatisfied relief units across 

all demand nodes while objective (3.3) minimizes total network costs which are 

calculated as the total funds spent to restore disrupted nodes, restore disrupted arcs, and 

transport supply units between origin-destination pairs. Finally, objective functions (3.4)-

(3.6) minimize deviational variables based on the fairness, unsatisfied demand, and cost 

goals, respectively. 

The model’s constraint sets ensure that any required restrictions or limits are 

followed by any of the GP model’s recommended solutions. Constraint set (3.8) ensures 

that total transportation costs do not exceed the available transportation budget. Similarly, 

constraint sets (3.9)-(3.10) ensure that total restoration costs do not exceed available 

restoration funds. 
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, , ,

( , )

O D F

i j i j i j

i j A

c d X b



   (3.8) 

D D D D

S T S S T T N

i i i i i i

i S i T i S i T

K L Y Y b   

   

       
          

       
       

      (3.9) 

, , , , , ,

( , ) ( , ) ( , ) ( , )
D D D D

S T T D S T S T T D T D A

i j i j i j i j i j i j

i j i j i j i j

M N Y Y b   

       

       
          

       
       

      (3.10) 

As it is possible that all demands may not be satisfied, constraint set (3.11) 

accounts for demand uncertainty (i.e., demand is higher or lower than available supply 

units). 

,
;

i j j j

i T

X R d j D



      (3.11) 

Constraint sets (3.12)-(3.13) ensure that total flow out of the supply nodes does 

not exceed the available supply. While supply items are available from functional supply 

nodes, supply items for disrupted supply nodes are available if and only if the disrupted 

node is restored. 

,
;

F

i j i

j T

X s i S



     (3.12) 

,
;

D

i j i i

j T

X s K i S



     (3.13) 

Constraint set (3.14) ensures flow conservation such that unit flows out of and 

into each relief warehouse are equal. 

, ,
0 ;

i j j k

i S k D

X X j T

 

       (3.14) 
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Relief warehouse capacities are restricted by constraint sets (3.15)-(3.16), as relief 

warehouse nodes only provide capacity when the node is functional. 

,
;

F

j i j j

i S

X j T 



      (3.15) 

,
;

D

j i j j j

i S

X L j T 



     (3.16) 

Constraint sets (3.17)-(3.18) restrict road capacities between supply nodes and 

relief warehouse nodes by ensuring that road capacities are available only if the 

corresponding roads are functional. Similarly, constraint sets (3.19)-(3.20) restrict road 

capacity utilization between relief warehouses and demand nodes. 

, , ,
; ( , )

ST ST F

i j i j i j
X i j        (3.17) 

, , , ,
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i j i j i j i j
X M i j       (3.18) 

, , ,
; ( , )

T D T D F

i j i j i j
X i j        (3.19) 

, , , ,
; ( , )

T D T D D

i j i j i j i j
X N i j       (3.20) 

Constraint sets (3.21) through (3.24) enforce setup cost realization when 

restoration decisions for disrupted supply points (3.21), disrupted warehouses (3.22), 

disrupted arcs between a supply point and a warehouse (3.23), and disrupted arcs 

between a warehouse and demand nodes (3.24) are prescribed by the model. 

;
S D

j j
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;
T D
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T D D

i j i j
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Next, constraint sets (3.25)-(3.26) restrict the number of disrupted nodes and 

disrupted arcs that can be restored based on available resources. 

D D

N

j j

j S j T

K L 

 

      (3.25) 

, ,

( , ) ( , )
D D

A

i j i j

i j i j

M N

 



 

      (3.26) 

In terms of the GP model’s partial restoration decisions, constraint sets (3.27)-

(3.28) combine to restrict the model’s decision variables to partially restore disrupted 

relief warehouse nodes at only two levels: 50% or 100%. 

1 1 2 2
;

T T T T D

i i i i i
L f Q f Q i T       (3.27) 

2
;

T D

i i
L f i T      (3.28) 

Similarly, constraint sets (3.29)-(3.30) allow partially disrupted arcs between 

supply points and relief warehouses to be restored at four levels: 25%, 50%, 75%, or 

100%, while constraint sets (3.31)-(3.32) restrict the partial restoration of disrupted arcs 

between relief warehouses and demand nodes. 

1 1 2 2 3 3

, , , , , , ,
; ( , )
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3
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M f i j      (3.30) 

1 1 2 2 3 3

, , , , , , ,
; ( , )

T D T D T D T D T D T D D

i j i j i j i j i j i j i j
N f Q f Q f Q i j        (3.31) 

3

, ,
; ( , )

T D D

i j i j
N f i j       (3.32) 

We now turn our focus to the constraint necessary for goal formulation. Given 

three threshold parameters for goals, real constraint sets for the fairness goal (3.33), the 

total unsatisfied demand goal (3.34), and the total network cost goal (3.35) can be 

formulated as follows: 
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F
V g    (3.33) 
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  (3.35) 

In the case when no feasible solution exists that satisfies all goal requirements, 

one can provide the decision maker with a compromise solution by converting the real 

constraints on goals into goal constraints (3.36-3.38) via the introduction of both positive 

and negative deviation variables: 
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 (3.38) 

Clearly, as one of the negative or positive deviational variable will be active in the 

GP model’s objective function (depending on the corresponding maximization or 

minimization directive), it follows that one of the variables in each deviation pair will 

equal zero. 

For example, consider the real fairness constraint (3.33) and its associated goal 

constraint (3.36). If D-F >0
 
(D+F >0), it follows that 

F
V g  (

F
V g ). As the goal is to 
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satisfy 
F

V g , only F
D

  should be minimized in the objective function and F
D

  is 

unconstrained. This is in direct contrast to the real constraints on unsatisfied demand 

(3.34) and total costs (3.35) wherein minimal values are desirable. In the unsatisfied 

demand goal constraint (3.37), if 0
U

D


  ( 0
U

D


 ), it follows that 
i U

i D

R g



  

(
i U

i D

R g



 ). Thus, only U
D

  should be minimized in the objective function while U
D

  

is unconstrained. 

 Finally, constraint sets (3.39)-(3.49) are variable-type constraints, constraint sets 

(3.50)-(3.57) are binary variables required for partial restoration decisions, and constraint 

sets (3.58)-(3.63) denote variable-type constraints for goal-related variables. 
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3.4.3 Complexity 

The complexity of the above model can be assessed through a reduction technique 

(Karp 1972) to show that the GP-based MOIRR model can be reduced to the MOIRR 

model, which is known to be NP-hard (Ransikarbum and Mason 2014). Set all 

parameters (
F

g ,
U

g , and 
C

g ) and decision variables ( F
D

 , F
D

 , U
D

 , U
D

 , C
D

 ,and 

C
D

 ) associated with decision maker goals equal to zero (i.e., discard them from the 

model). It follows that the constraint sets (3.30)-(3.35) and (3.55)-(3.60) that are 

associated with these parameters and decision variables can be ignored. The revised 

model reduces to the MOIRR model with partial restoration. Therefore, through such a 

reduction argument, the complexity of the proposed GP-based MOIRR model is NP-hard 

as G P b a sed M O IR R M O IR R  . 

3.4.4 Experimentation Plan 

A designed experiment is conducted to investigate 1) how multiple objective 

problems are solved (preemptive vs. non-preemptive); 2) how model objective functions 

are formulated (objective-driven vs. goal-driven vs. mixed objective- and goal-driven); 

and 3) how constraint sets are restricted (compromise vs. non-compromise). We seek to 

understand how these three experimental factors impact a) computation time; b) optimal 

directive; and c) infeasibility handling through the following model cases (Table 3.1): 

Multiple-Objective Programming (MOP) 

 Case 0 MOP: non-preemptive, objective-driven, and non-compromise  

 Case 1 MOP: preemptive, objective-driven, and non-compromise 
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Multiple-Objective Goal Programming with Goal-Driven Solutions (MOGPG) 

 Case 2 (MOGPGO): non-preemptive, goal-driven, and compromise 

 Case 3 (MOGPGO): preemptive, goal-driven, and compromise 

Multiple-Objective Goal Programming with Mixed Objective- and Goal-Driven Solutions 

(MOGPMOG) 

 Case 4 (MOGPMOG): non-preemptive, mixed obj.-/goal-driven, and compromise 

 Case 5 (MOGPMOG): preemptive, mixed obj.-/goal-driven, and compromise 

 

We note that Case 0 is the MOIRR model of Ransikarbum and Mason (2014) with 

the weighted objective (i.e., non-preemptive) method for all objective functions (1)-(3), 

subject to the real constraints set. In this paper, we introduce Cases 1-5. While Case 1 

examines the preemptive approach for MOP, Cases 2-5 are GP-based model variations to 

be investigated. 

Table 3.1: Scenario analyses for GP-based MOIRR model 

 

3.4.4.1 Non-Preemptive vs. Preemptive Model Objectives 

While non-preemptive approaches typically employ criteria weights (e.g.,
i

w ) for 

each objective to solve a single, linear (weighted) objective function model, preemptive 
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approaches involve prioritized objectives (e.g.,
i

p ) that are solved by sequential 

optimization. Some difficulties can occur when calculating appropriate weights in a non-

preemptive approach. In terms of computation time, the computation time for a non-

preemptive-based model is determined by running a single, weighted objective model one 

time. Alternately, a preemptive-based model’s computation time is computed as the sum 

of each sequential model run’s total run time. Therefore, given a computational time limit 

l  for the non-preemptive case, the corresponding time limit for the preemptive model 

study will be l * (# of objectives under study). It follows that to investigate the trade-off 

between computation time and solution quality for the different approaches of interest, 

three pairwise comparative studies are required: 1) Case 0 vs. Case 1, 2) Case 2 vs. Case 

3, and 3) Case 4 vs. Case 5. 

 As objectives under the preemptive method are solved sequentially based on 

given priorities, there is no need to use ideal and anti-ideal solutions for inter-criterion 

comparison. On the other hand, objectives for the non-preemptive method must be 

normalized using a linear normalization technique to allow inter-criterion comparison. 

This technique converts each objective function’s values to a range between 0 and 1 

based on ideal and anti-ideal solutions. Then, the weighted objective method can be 

applied and the model is solved as a single linear maximization model. The following 

definitions are used in our non-preemptive methods:  

 ( )
j

C x
 
is a criterion value before normalization 

 H
j

*

 
is an ideal solution (i.e., Max ( )

j
C x

 
for benefit and Min ( )

j
C x  for cost 

criteria) 
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 *

j
L  is an anti-ideal solution (i.e., Min ( )

j
C x

 
for benefit and Max ( )

j
C x  for cost 

criteria) 

 

*

* *

( )
j

j j

j
C x L

H L




 is a normalized benefit criterion and

*

* *

( )
j

j j

j
L C x

L H





is a normalized cost 

criterion 

 
1

1

n

i

i

w



 , where n is the number of objectives used in an inter-criterion 

comparison 

3.4.4.2 Objective-Driven, Goal-Driven, vs. Mixed Objective/Goal-Driven Case 

The objective functions are formulated differently among the MOP, MOGPG, and 

MOGPMOG: objective functions (1)-(3) are used in MOP; objective functions (4)-(6) are 

used in MOGPG; and objective functions (1) and (4)-(6) are used in MOGPMOG. While 

the MOP yields optimal solutions under three objective functions, the MOGPG generates 

optimal solutions that meet as many goals as possible in a shorter amount of computation 

time under three goal-driven deviational variables. The MOGPMOG is a hybrid version 

of the MOP and MOGPG in that it generates an optimal solution for the fairness 

objective/goal using objective functions (1) and (4) while providing optimal solutions 

driven from both the unsatisfied demand and cost goals in objective functions (5) and (6). 

However, depending on the decision maker’s perspective, other combinations of 

objective functions can also be evaluated using the MOGPMOG. 

Given that a trade-off exists between computation time and solution optimality, 

we examine the following two tuples: 1) Case 0 vs. Case 2 vs. Case 4 and 2) Case 1 vs. 

Case 3 vs. Case 5. In particular, objective functions for each case is as follows: 
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Case 0: Maximize 
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  (3.64) 

Case 1: Maximize
1 1

p Z , Minimize
2 2

p Z , Minimize
3 3

p Z  (3.65) 

Case 2: Maximize 
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Case 3: Minimize
1 4

p Z , Minimize
2 5

p Z , Minimize
3 6

p Z  (3.67) 

Case 4: Maximize 
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 
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Case 5: Minimize
1 1

p Z , Minimize
1 4

p Z , Minimize
2 5

p Z , Minimize
3 6

p Z  (3.69) 

3.4.4.3 Non-Compromise vs. Compromise Case 

Finally, while real (non-compromise) constraints are typically formulated in 

multi-objective mathematical programs, GP models contain goal (compromise) 

constraints. As one might expect, infeasibility can be an issue when no feasible solution 

exists that satisfies all real constraints on goals in the model. On the other hand, the GP 

model with goal constraints provides compromise solutions regardless of whether or not a 

goal(s) is achieved. With this in mind, we again conduct a comparative study on the two 

tuples: 1) Case 0 vs. Cases 2 and 4 and 2) Case 1 vs. Cases 3 and 5. In particular, the 

constraint sets can be formulated in two ways, depending on whether real constraints on 

goals (3.70) or goal constraints (3.71) are used: 

Real constraints (7), (8) - (32), Real constraints on goals (33) - (35), and variable-type 

constraints  (3.70) 

 

Real constraints (7), (8) - (32), Goal constraints (36) - (38), and variable-type constraints  

  (3.71)  
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3.5 Hazus-based Regional Case Studies 

3.5.1 Methodology and Assumptions 

While researchers commonly have available data for pre-disaster studies (e.g., 

inventory positions, warehouse locations, etc.), data availability for post-disaster studies 

is limited (Galindo and Batta 2013). In this paper, we use Hazus, FEMA’s GIS-based 

natural hazard loss estimation software, to demonstrate the applicability of our GP-based 

MOIRR model. Hazus requires both an inventory collection module and a hazard 

identification module as inputs to calculate its risk evaluation module’s outputs. We use 

the resulting Hazus loss data as input to the GP-based MOIRR model for all cases in our 

designed experiment. We implement the above mathematical model in AMPL (Fourer et 

al. 2002) and analyze it using CPLEX on a PC with an Intel® Core™ i7- 2600 CPU 

running @3.40 GHz with 16 GB of RAM. The maximum computation time allowed is 

limited to one hour as per Ransikarbum and Mason (2014). 

We generate two disaster instances using Hazus’s earthquake module to obtain 

predicted loss data in two different study regions of interest: 1) a small-sized, low-density 

area as exemplified by SC and 2) a larger-sized, high-density area such as CA. Hazus 

reports that SC has an area of 32,020 square miles with 867 total census tracts, while CA 

has an area of 163,696 square miles with 8,057 total census tracts. 

Two different threshold levels are examined for both the SC and CA case studies 

to illustrate how goal settings can affect the GP-based MOIRR model: conservative and 

aggressive. While the conservative case (low-expectation threshold) is meant to represent 

a decision maker’s goal choices for fairness, unsatisfied demand, and total costs that are 
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presumably easy to achieve (based on budget, capacity, etc.), the aggressive case (high-

expectation threshold) represents comparably harder to achieve goals. 

3.5.1.1 Hazus-generated SC Assumptions 

The parameter data and necessary assumptions associated with the SC case study 

are shown in Table 3.2. While most of the loss data can be obtained directly from Hazus, 

some parameters must be extrapolated from available data. For example, capacity-related 

data are extrapolated based on the size and infrastructure of selected supply points and 

warehouses. Six major SC airports are chosen as relief supply points: Charleston, 

Columbia, Florence, Greenville, Hilton Head, and Myrtle Beach. Hazus’s inventory 

collection module reports that there are 47 emergency operations centers (EOCs) in the 

state; we model them as relief warehouses. We simulate a 9.0 magnitude earthquake in 

the Columbia, SC metropolitan area. Hazus-based “before and after” disaster instance 

maps for the SC case study are shown in Figure 3.2. Figure 3.2(a) presents the position of 

the earthquake, as well as the existing infrastructure in SC, while Figure 3.2(b) shows 

loss data output from Hazus: one disrupted relief supply point, 16 disrupted relief 

warehouses, and 143 demand census tracks affected by the earthquake. 

3.5.1.2 Hazus-generated CA Assumptions 

For comparison purposes, similar assumptions to those in Table 3.2 are used in 

our CA case study. Seven major CA airports are chosen as relief supply points: 

Sacramento, Oakland, San Diego, Jon Wayne, San Francisco, Los Angeles, and San Jose. 

A total of 40 EOCs from Hazus’s inventory collection module are modeled as relief 
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warehouses. A 9.0 magnitude earthquake is modeled to occur near Los Angeles. Figure 

3.2(c) presents the position of the earthquake, as well as the existing infrastructure 

inclusive of relief supply points and warehouses in CA. Next, Figure 3.2(d) shows loss 

data output: one disrupted relief supply point, 12 disrupted relief warehouses, and 1,268 

demand census tracks affected by the earthquake. 

3.5.2 Experimental Study 

The loss data obtained from Hazus for both the SC and CA case studies are used 

as inputs to the GP-based MOIRR model for all Cases 0-5 in the designed experiment in 

order to obtain outputs related to distribution and system restoration decisions. In any 

non-preemptive approach, we use equal objective weights, implying that all objectives 

and/or goal are of equal importance to the decision maker. 

3.5.2.1 SC-specific Results 

Objective Functions Results 

Objective function values for all experimental cases for the SC study are shown in 

Table 3.3. The results are further differentiated based on goal-seeking levels, and then 

associated undesired deviational variables and computation time are reported. We note 

that as the GP-based MOIRR model is a mixed-integer program (MIP) with a limited 

computation time, solutions with MIP optimality gaps are reported. On average, the 

achieved fairness, unsatisfied demand, and total costs values across all cases and goal 

seeking levels are 72.12%, ~224K units, and $1.36 billion, respectively. 
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Table 3.2: Hazus parameter and data list for SC and CA regional case studies 
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Figure 3.2: Hazus-based infrastructure map illustration given an earthquake: (a) 

SC before , (b) SC after, (c) CA before, and (d) CA after 

 

Considering the conservative threshold goal, the associated objective values for the MOP 

(Cases 0 and 1) show optimal values depending on whether different weights are 

assigned or different priorities are given. Although different objective values are obtained 

between the cases, similar objective values are expected when 
1

w  is much larger than
2

w  

and 
3

w . On the other hand, optimal objective values for the MOGPG (Cases 2 and 3) are 

based on goals that are not necessarily similar to the MOP due to different driven 

objectives. With regard to the MOGPMOG (Cases 4 and 5), an optimal value for the 

fairness is driven by both fairness objective and deviational variable for fairness goal and 
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is found to be similar to the MOP, while optimal values for the total unsatisfied demand 

and cost are only driven by goals. There is also a trade-off between computation time and 

optimal values driven by objectives alone, goals alone, or a combination of objectives 

and goals.  

Table 3.3: GP-based MOIRR experimental results: SC and CA case studies 

 

Further, as all deviational variables (
F

D


,
U

D


, and 
C

D


) are driven to zero for 

the low-threshold cases, this confirms that all conservative goals are achieved in the 

conservative threshold cases. Considering our aggressive threshold goals, the MOP did 
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not find a feasible solution that satisfies the real constraints on goals. However, the 

approaches using GP (MOGPG and MOGPMOG) obtain compromise solutions that 

satisfy the goal constraints, regardless of whether or not a goal can be achieved. The 

deviational variables for the high-threshold case that are greater than zero confirm that 

some goals cannot be achieved. 

Computation Time Results 

In terms of computation time, the non-preemptive approach (Cases 0, 2, and 4) 

requires less computation time than does the preemptive approach (Cases 1, 3, and 5), in 

general. However, it can be challenging to choose appropriate levels for weights. On 

average, the computation time for the SC case study is ~1,300 seconds. Table 3.4 depicts 

the computation time trade-offs resulting from different solution methods, model 

categories, desired goal settings, and model approaches. Required computation time is 

monotonically non-decreasing with an increase in the number of objectives under the 

preemptive method. In terms of each modelling approach’s average computation time, 

MOGPG < MOGPMOG < MOP, in general. While high computation time for MOP is 

caused by the method reaching the imposed 3600 second time limit while trying to 

achieve its objective optimality directive, MOGPG requires less computation time to seek 

goal optimality directive. It is clear that given different expected goal thresholds, the 

aggressive case consumes more computation time as compared to the conservative case 

due to its tighter constraints. Finally, while the MOP high-threshold case is infeasible, the 

required computation time for the high-threshold MOGPG and MOGPMOG cases are 

significantly higher than for the corresponding low-threshold cases. 
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Table 3.4: Aggregated computation time by modeling approach for SC and CA case 

studies 

 

Distribution and Restoration Decision Results 

The model’s recommended flow decisions are illustrated using maps of SC for 

Case 0 and Case 2 under a low-expectation threshold to portray both MOP and GP results 

(Figure 3.3). While Figures 3.3(a) and 3.3(b) show examples of the flow decisions 

resulting from the restored Columbia supply point to its relief warehouses and to their 

associated demand points, respectively, for Case 0, Figure 3.3(c) and Figure 3.3(d) 

illustrate the corresponding flows for Case 2. The results confirm that longer travel 

distances are required in Case 2, along with higher transportation costs, due to the 

underlying Origin-Destination (O-D) matrix.  
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Figure 3.3: SC case study: (a) Flow from port for Case 0, (b) Flow from warehouse for 

Case 0, (c) Flow from port for Case 2, and (d) Flow from warehouse for Case 2 

 

Table 3.5 reveals the restoration decisions recommended for all experimental 

cases: the percent restoration inclusive of partial and full restoration based on the number 

of 1) disrupted port nodes, 2) disrupted warehouse nodes, 3) disrupted arcs between port 

and warehouse nodes, and 4) disrupted arcs between warehouse and demand nodes. For 

the conservative case, restoration decisions are similar in most of the cases, except for the 

MOGPG (Cases 4-5) wherein restoration decisions for disrupted arcs between 

warehouses and demand nodes are recommended. However, this is not the case for the 



 86 

aggressive scenario. In this environment, restoration decisions are similar for all GP-

based cases (Cases 2-7) as the goal constraints are tight with unachievable goals. 

Table 3.5: Restoration Decisions for SC and CA case studies 

 

3.5.2.2 CA-specific Results  

Objective Functions Results 

The CA case study results’ objective functions values are also shown in Table 3.3. 

Although the results are comparable to the SC case study, some observed differences are 

evident. Clearly, a much lower fairness, higher unsatisfied demand, and higher cost are 

reported due to the large disruption and dense demand in CA. On average, 22.30% 

fairness, 3.96M units of unsatisfied demand, and $5.04 billion in total costs resulted from 
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our Hazus model investigations. Further, in contrast to the SC study, the unwanted 

deviational variable for total cost goal ( C
D

 ) in the low threshold environment for Case 5 

is positive (i.e., the goals are not achieved), while the associated deviational variables for 

fairness and unsatisfied demand goals equal zero. This occurs because the most important 

priority is fairness, while the least important is total cost in the preemptive approach. 

Computation Time Results 

Although the average computation time for the CA case is much higher than that 

of the SC instance (~3,300 vs. ~1,300 secs), similar trends as those present in the SC case 

are evident. The computation time for the CA study is higher due to the size of the 

problem instance and the NP-hard nature of the problem under study. Computation time 

is also aggregated based on different factors in Table 3.4. The average computation time 

for the preemptive approach is much higher than for the non-preemptive cases. In 

contrast to the SC case study, the average computation time for MOGPMOG is much 

higher than either MOP or MOGPG. This is noteworthy as four objective functions are 

used in the MOGPMOG, while three objectives are used in both MOP and MOGPG. 

When different goal expectations are compared, both the conservative and aggressive 

cases are shown to require quite similar amounts of computation time. Finally, while the 

average computation time for MOGPG in the high-threshold case is higher than the low-

threshold case as expected, this is not the case for the MOGPMOG. 

Distribution and Restoration Decision Results 

Table 3.5 shows the models’ resulting restoration decisions for experimental cases 

in the CA case study. A discussion similar to the SC case study can be drawn with respect 
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to the MOGPG wherein some restoration decisions for disrupted arcs between warehouse 

and demand nodes are suggested. The recommended restoration and flow decisions for a 

restored relief port and relief warehouses are displayed on CA maps in Figure 3.4. Figure 

3.4(a) illustrates the model’s restoration decisions which comprise six existing and one 

restored relief port, as well as 28 existing and seven partially-restored relief 

warehouses—no full-restoration decisions are recommended. Figure 3.4(b) shows 

examples of flow decisions from the restored Los Angeles airport to its relief warehouses, 

while Figures 3.4(c) and 3.4(d) illustrate flow decisions from northern and southern relief 

warehouses to their demand points, respectively. 
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Figure 3.4: CA case study: (a) Restoration decisions, (b) Flow from port, (c) Flow from 

northern warehouse, and (d) Flow from southern warehouse 

3.5.3 Developing the Efficient Frontier (EF) 

We now develop the efficient (non-dominated; Pareto optimal) frontier for the CA 

case study to explore the trade-offs that exist between objectives. By definition, a 
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solution 
0

x S  is said to be efficient if 0
( ) ( )

k k
f x f x

 
for some x S  implies that 

0
( ) ( )

j j
f x f x  for at least one other index j . It is therefore a feasible solution that is not 

dominated by any other feasible solution and has the property that an improvement in any 

one objective is possible only at the expense of a poorer solution in at least one other 

objective (Ravindran, 2007). The set of all efficient solutions, the efficient frontier, is 

commonly used to evaluate trade-offs among decision criteria in objective space.  

We examine two objective pairs using the non-preemptive approach and the 

rating method in Ransikarbum and Mason (2014): 1) max
1

Z fairness vs. min
3

Z cost and 

2) min
2

Z  unsatisfied demand vs. min
3

Z  cost. A selected set of efficient solutions is 

generated by varying the weight 
i

w  for objective i  discretely from 0.1 to 0.9 at 0.1 

increments; this yields at most nine efficient solutions points. Given these points, we 

generate a polynomial trendline to describe the objectives. By using similar notation as in 

Section 3.4, Pairs 1 and 2 are normalized using a linear normalization technique to allow 

inter-criterion comparison in (3.72) and (3.73), respectively: 

Maximize 

*

1 1

1 2* *

1 1

*

3 3

* *

3 3

Z L
w

H L

L Z
w

L H






   

  
   

   (3.72) 

Maximize 

*

2 2

1 2* *

2 2

*

3 3

* *

3 3

L Z
w

H L

L Z
w

L H




   
  

   

   (3.73) 

 

3.5.3.1 EF Sensitivity Analysis 

The fairness achieved in the CA case study is relatively low when compared to 

the SC case. Thus, a sensitivity analysis is conducted by varying parameters that restrict 

the fairness for the CA high demand case. Initial experiments with several parameters 
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identified a key parameter that restricts the increase in fairness achievable: the capacity of 

an arc between relief supply port and warehouse nodes (
,

S T

i j
 ). An implication of varying 

this parameter is that when a disruption occurs under expected high demand, a post-

disaster strategy to increase road capacity could be employed (e.g., reversing a lane’s 

traffic flow). We conduct the following sensitivity analyses: 

 EF Base Case: 
,

S T

i j


 
is set to 5,000 units (the ‘as-is’ parameter value in Table 3.2) 

 EF Case 1: 
,

S T

i j
  is set to 10,000 units (the ‘what-if’ parameter value) 

 EF Case 2: 
,

S T

i j
  is set to 20,000 units (the ‘what-if’ parameter value) 

3.5.3.2 EF Results 

Figure 3.5(a) (3.5(b)) illustrates the approximate EFs for the Case 1 (Case 2) pair 

of objectives. It is clear that increasing capacity improves fairness and lowers unsatisfied 

demand, but at the expense of higher costs. Using Figure 3.5(a) with the EF Base case as 

an example, when more weight is given to the fairness objective (e.g., 
1

w =0.6, 
2

w =0.4), 

the corresponding objective values for fairness and total cost are 23.35% and $5.27 

billion, respectively. However, when more weight is given to the cost objective (e.g., 

1
w =0.4, 

2
w =0.6), the corresponding objective values are 13.59% and $1.78 billion. A 

similar interpretation can be drawn from EF Exp. 1 and EF Exp. 2, when arc capacity is 

increased. 

An interpretation for the second pair of objectives study is quite similar (Figure 

3.5(b)). Given a (
1

w =0.8, 
2

w =0.2) weighting preference, the corresponding objective 

values for unsatisfied demand units and cost for EF base, EF Exp. 1, and EF Exp. 2 are 



 92 

(3.89M units, $5.12 billion), (2.69M units, $9.36 billion), and (713K units, $15.75 

billion), respectively. If/when a decision maker can cost-justify increasing arc capacities, 

such as in EF Cases 1 and 2, the benefit will be increasing fairness to an acceptable or 

desired level. 

 

Figure 3.5: Efficient frontier for CA case study with sensitivity analysis: (a) Fairness and 

Cost, (b) Unsatisfied demand and Cost 

This approximate EF can also be used to fit a polynomial trendline so that the 

general shape of the front can be quickly obtained for any case and objective pair set. 

Considering objective pair 1 in Figure 3.5(a), if 20% fairness is desired, a decision maker 
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can see that the associated costs for EF base, EF Case 1, and EF Case 2 are ~$4.0B, 

~$2.0B, and ~$0.6B, respectively. Similarly, if a decision maker is interested to spend at 

most $4.0B, it follows from the trendline that the corresponding expected fairness values 

would be 20%, 31%, and 43%, respectively. 

 

3.6 Managerial Insights 

One way to treat multiple criteria is to select one criterion as the primary one used 

in the objective function and consider the others as secondary objectives that can be 

assigned “acceptable” values in constraint right hand sides. However, if careful 

consideration is not given while selecting the acceptable levels by decision makers, a 

feasible design that satisfies all the constraints may not exist—our GP-based model 

overcomes this potential issue. 

Further, a trade-off clearly exists between solution quality and computation time. 

A decision maker can choose a combination of model scenarios related to a chosen 

multiple-objective solution method, optimality directive, and compromise tolerance that 

satisfy his/her requirements. While the non-preemptive method requires less computation 

time than the preemptive method, this comes at the expense of difficulty in specifying 

appropriate weights. If a near- (non-) optimal solution is acceptable, computation time 

can also be decreased. The use of goal constraints can also benefit decision makers via 

compromise solutions. 

The EF sensitivity analysis we describe suggests that capacity-related strategic 

planning can be implemented for a high disruption event. An understanding of the trade-
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offs among objectives via an exploration of the EF is important as these frontiers can help 

a decision maker to visualize the objective space. The Pareto fronts also provide an 

objective function trade-off curve that informs a decision maker on how improving one 

objective can deteriorate the second one’s performance, and vice versa. 

3.7 Conclusions and Future Research 

A review of the post-disaster disruption management research reveals little if any 

models that produce integrated recommendations across the disaster management cycle. 

We transform the previously developed multiple-objective response and recovery model 

for the integrated supply distribution and the restoration problem into a goal 

programming model. This new, extended model, using goal constraints, provides decision 

makers with compromise solutions under desired goals for this challenging, practically-

motivated research problem. 

Analysis of our experimental study confirms that the GP-based model provides a 

compromise solution when no solution exists that satisfies strict or real constraints. Road 

capacity-related decisions are investigated to increase fairness given a disruption. Further, 

by analyzing a combination of design factors, we present the trade-off that exists between 

solution quality and computation time so that decision makers can choose the most 

appropriate modelling approach for their use. Two case studies, based on hypothetical 

earthquake scenario loss data estimated from FEMA’s Hazus software, are used to 

provide efficient frontier and sensitivity analysis results discussion. 

This GP-based multiple-objective approach contains capacity, budget, and 

resource constraints for which a decision maker can express his/her desired levels or 
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goals. As it is important to analyze large-scale disaster relief network problems quickly to 

obtain a diverse collection of effective, near-optimal solutions in a real-world disaster 

scenario, multiple-objective metaheuristic approaches could be further investigated—

their application to this problem would provide practical, effective solutions to this NP-

hard problem in a timely manner to aid in critical disaster relief decisions. 
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CHAPTER FOUR 

A BI-CRITERIA METAHEURISTIC FOR INTEGRATED POST-DISASTER RELIEF 

SUPPLY AND NETWORK RESTORATION DECISIONS 

4.1 Introduction 

In this chapter, we investigate a metaheuristic optimization approach using an 

evolutionary algorithm (EA) for our MOIRR model developed earlier (Ransikarbum and 

Mason 2014). The MOIRR provides a strategic decision-making tool aiding supply 

distribution and network restoration decisions with fairness- or-equity-based solutions 

under constrained capacity, budget, and resource limitations. Considering multiple, 

conflicting objectives of the model, generating Pareto-optimal front with ample, diverse 

solutions quickly is important for a decision maker to make an informative, final 

decision. By decomposing this problem, we adapt the NSGA-II (Deb et al. 2002) by 

integrating an evolutionary heuristic with optimization-based techniques called the 

Hybrid NSGA-II in this paper to find multiple, non-dominated solutions quickly in real-

world scenarios for this NP-hard problem. After applying the algorithm to a Hazus-

generated loss scenario in SC from an earthquake, comparisons between the 

mathematical model and the Hybrid NSGA-II algorithm are done using a Hypervolume-

based technique, percentage of solutions in the first front, and computation time.  

The remaining sections of this chapter are organized as follows. We overview the 

pertinent literature in Section 4.2 and discuss the MOIRR model in Section 4.3. The 

Hybrid NSGA-II algorithm with a designed experiment and experimental results are 

discussed in Section 4.4 and Section 4.5, respectively. Finally, Section 4.6 presents our 
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managerial insights and Section 4.7 shows research conclusions and outlines directions 

for future research. This chapter is submitted to the journal with the following citation:  

Ransikarbum, K. and Mason, S. J. 2015b. A Metaheuristic for Post-Disaster  

Integrated Relief Supply and Network Restoration Decisions. Working Paper. 

4.2 Literature Review 

Humanitarian logistics research is becoming a key driver for devising improved 

ways of managing multi-stakeholder relief operations. Sheu (2007) defines humanitarian 

logistics as “a process of planning, managing, and controlling the efficient flows of relief, 

information, and services from the points of origin to the points of destination to meet the 

urgent needs of the affected people under emergency conditions.” A number of literature 

reviews suggest that more research in humanitarian logistics is needed (Wassenhove 

2005, Altay and Green 2006, Tatham and Pettit 2010, Caunhye et al. 2012, Celik et al. 

2012, Galindo and Batta 2013, and Day 2014). In addition, previous authors commonly 

cite the need to transfer more techniques from commercial SCM into humanitarian 

logistics research. 

Performance measurement in humanitarian logistics differs from commercial 

logistics metrics (Chan 2003, Beamon and Balcik 2008, and Christopher and Tatham 

2011). Beamon and Balcik (2008) discuss the different characteristics between non-profit 

and for-profit organizations based on revenue sources, goals, stakeholders, and 

performance measurement. Haddow et al. (2011) provide a thorough discussion of 

stakeholder roles in each phase of disaster management and suggest that these 

stakeholders have different objectives, which are often in conflict. Celik et al. (2012) 
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point out that not only effectiveness, but also the efficiency of post-disaster logistics 

activities are needed to capture performance. Strategies to improve emergency relief 

performance are also discussed by Synder et al. (2012) and Ivanov et al. (2014). Synder 

et al. (2012) motivate the need to understand how disruption propagates from upstream to 

downstream in multi-echelon systems. Ivanov et al. (2014) similarly highlight the ripple 

effect in supply chains to understand how changes to some variables influence 

performance in the rest of the chain. Christopher and Tatham (2011) also discuss the need 

for developing appropriate performance metrics for humanitarian operations that capture 

aid recipients’ viewpoints; one such metric is fairness or equity. 

The concept of equity and its measurement receives attention from several 

researchers in the literature (e.g., Ogryczak 2000, Kostreva et al. 2003, Singh 2007, Zhu 

et al. 2010, and Ransikarbum and Mason 2014). Minimax, maximin, and maxisum 

techniques are frequently used in equity- or fairness-related research. While minimax 

objectives determine equitable solutions for problems wherein smaller objective function 

values are desirable, maximin objectives are used when larger performance function 

values are considered better (Luss 1999). The maximin approach has been applied in 

several problems (Kaplan 1973, Zhang and Melachrinoudis 1999, Salles and Barria 2008, 

Sayin 2013). Kaplan (1973) initially discusses the concept of a maximin objective 

function and shows that it can be transformed and solved by linear programming. Salles 

and Barria (2008) assert that this approach often requires complex optimization 

procedures and significant computation time to find a solution. 
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The humanitarian logistics literature can be categorized into the four phases of the 

disaster management cycle related to pre- and post-disaster operations (McLoughlin 

1985). While most previous research models are related to pre-disaster issues (Jia et al. 

2007, Balcik and Beamon 2008, and Doerner et al. 2009), recent research points to the 

need for post-disaster-related operations as well as integrated disaster management cycle 

phases (Celik et al. 2012, Galindo and Batta 2013). A similar line of research addresses 

the models in a resilience and reliability domain for an infrastructure network during the 

pre- and post- disasters (Synder et al. 2006, Liberatore et al. 2012, Akgun et al. 2014, and 

Alderson et al. 2014). For example, Liberatore et al. (2012) propose a facility protection 

model considering the possibility of interdependencies among the disruptions to improve 

the reliability of an existing network using attacker-defender models. Similarly, Alderson 

et al. (2014) illustrate how to build and solve a sequence of models to improve the 

resilience of an infrastructure system from disruptive events based on the attacker-

defender paradigm.  

Previous research using mathematical models to alleviate issues in post-disaster 

relief operations typically considers each problem phase individually (Matisziw et al. 

2009, Vitoriano et al. 2010, Ortuño et al. 2011, and Vitoriano et al. 2011). Matisziw et al. 

(2009) focus on the recovery phase via a telecommunication network restoration problem 

wherein decision variables are used to restore disrupted nodes and arcs in a multi-period 

problem. Vitoriano et al. (2011) develop a goal programming model for the response 

phase based on loads and vehicles to support the aid distribution problem using equity, 

reliability, and security as goals. Recent research also proposes phase-integrating models 



 100 

(Balcik et al. 2008, Liberatore et al. 2014, and Ransikarbum and Mason 2014). Balcik et 

al. (2008) develop a model that integrates pre- and post- disaster operations—an 

integrated preparedness and response model for a last mile distribution system in which a 

local distribution center stores inventories and distributes emergency relief supplies to a 

number of demand locations. Liberatore et al. (2014) develop a hierarchical compromise 

model “RecHADS” that considers both relief distribution and recovery for disrupted arcs 

alone. The authors compare sequential and coordinated optimization to highlight the 

importance of cooperation among agents. 

One important outcome in multiple-objective mathematical research is the 

generation of non-dominated or Pareto-efficient solutions. For any two points in the 

efficient frontier, there exists the “trade-off” property: a gain in objective value from one 

efficient point to another can only happen given a sacrifice in at least one other 

objective’s value (Ravindran 2007 and Deb 2011). Several researchers state that 

evolutionary algorithms (EAs) can be used to find “near” Pareto-optimal solutions via a 

population-based search procedure (Murata et al. 1996, Deb 2011, and Auger and Bader 

2012). EA-based techniques can be used for both single- and multiple-objective 

problems. Deb (2011) suggests the pros and cons of an EA as compared to a 

mathematical algorithm. For example, while the use of a population in an EA’s search 

mechanism causes an inherent parallel search in one single simulation run that makes it 

computationally attractive, it is not necessarily guaranteed to find Pareto-optimal points 

as would a provable mathematical algorithm. Murata et al. (1996) propose a multiple-

objective genetic algorithm (GA) for a flowshop scheduling problem. The authors 
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introduce variable weights in the selection procedure to obtain a spread or diversified 

Pareto-optimal front. Deb et al. (2002) develop NSGA-II and show that it has three key 

features: an elitist principle, an explicit diversity preserving mechanism, and a non-

dominated sorting emphasis. NSGA-II has been adapted by several researchers since its 

publication (Cakici et al. 2012 and Bandyopadhyay and Bhattacharya 2013). Cakici et al. 

(2012) develop an integrated production and distribution model and apply NSGA-II-

based algorithms to the distribution part of the integrated problem. The authors suggest 

that, in addition to crossover and mutation operators, an immigration operator should be 

added. Bandyopadhyay and Bhattacharya (2013) propose a modified NSGA-II based on a 

new crossover algorithm for a fuzzy variable in a supply chain problem. The authors 

point out that there is no universal crossover or mutation operator that may be applicable 

to all types of problems.  

Performance measurement for the EA-based techniques is an important issue 

(Deb 2011). Zitzler et al. (2003) suggest that the two ideal goals of multiple-objective 

optimization are 1) to find multiple, non-dominated points as close to the Pareto-optimal 

front as possible and 2) to find solutions that are diverse enough to represent the entire 

range of the front. Three different sets of performance measures exist in the literature: 1) 

metrics evaluating convergence to the Pareto-optimal front alone (e.g., error ratio 

measure); 2) metrics evaluating the spread of solutions alone (e.g., chi-square deviation 

measure); and 3) metrics evaluating certain combinations of convergence and spread of 

solutions (e.g., Hypervolume coverage, and R-metrics). The authors suggest that the 

notion of performance includes both the quality of the outcome (e.g., the Pareto-optimal 
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front) and the computational resource requirements (e.g., overall run-time). Auger and 

Bader (2012) discuss a theoretical framework for the Hypervolume indicator and discuss 

the influence of a reference point used in the Hypervolume indicator calculation to its 

quality. While et al. (2012) describe an algorithm for calculating the Hypervolume and 

suggest that the Hypervolume measures the size of the portion of objective space that is 

dominated by those solutions collectively. Hall and Posner (2007) suggest that in addition 

to performance measure, it is also important to correctly predict the relative performance 

difference between an optimization algorithm and a heuristic solution procedure by using 

the mean, the variance, and computing a confidence interval (CI). 

In this chapter, we develop a metaheuristic programming model “Hybrid NSGA-

II” that combines the evolutionary heuristic from NSGA-II and an optimization-based 

technique. We demonstrate this model by solving the MOIRR problem developed by 

Ransikarbum and Mason (2014) with two objectives. Our Hybrid NSGA-II uses an 

evolutionary heuristic for the network restoration portion of the MOIRR problem and an 

optimization-based technique for supply distribution decisions. The Hybrid NSGA-II is 

applied to the MOIRR problem in an effort to generate non-dominated solutions in a 

timely manner for disaster relief operations support. 

4.3 Multiple-Objective Integrated Response and Recovery (MOIRR) Model 

The MOIRR model with a partial restoration (Ransikarbum and Mason 2014) 

integrates both response-phase supply distribution options and recovery-phase network 

restoration decisions to reestablish services in a damaged network to pre-disruption 

performance levels so that relief supplies can be transported to affected areas. The model 
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also directs decision makers to restore disrupted node(s) and/or disrupted arc(s) when 

necessary such that fairness, unsatisfied demand, and cost-based criteria are optimized. In 

the partial restoration analysis, while all or nothing restoration is required for disrupted 

supply points, relief warehouse nodes can be alternatively not restored, have one-half of 

their capabilities restored, or be fully restored. Finally, each disrupted arc in the relief 

network can be restored in increments of 25% of its capacity (i.e., 0%, 25%, 50%, 75%, 

or 100% restoration). The bi-criteria MOIRR model of Ransikarbum and Mason (2014) is 

now presented here for completeness. 

4.3.1 MOIRR Model Notation 

Sets 

G (N,A)  Graph consisting of nodes N and arcs A 

N (A)   Set of nodes (arcs) 

S (D)   Set of supply port (demand) nodes ∈ N 

T  Set of transhipment (relief warehouse) nodes ∈ N 

S
F
 (S

D
)  Set of functional (disrupted) supply port nodes ∈ S 

T
F
 (T

D
)  Set of functional (disrupted) transhipment (relief warehouse) nodes ∈ T 

   Set of arcs between supply port and relief warehouse nodes ∈ A 

   Set of arcs between relief warehouse and demand nodes ∈ A 

F
  (

D
 )  Set of functional (disrupted) arcs between supply port and warehouse 

nodes ∈   

F
  (

D
 )  Set of functional (disrupted) arcs between relief warehouse and demand 

nodes ∈   

N
   Set of disrupted nodes, where 

N
  = S

D
   T

D
 

A
   Set of disrupted arcs, where 

A
  = 

D
    

D
  
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Parameters 

i
s   Supply units available at each supply port node i ∈ S 

i
d   Demand units required at each demand node i ∈ D 

i
   Relief warehouse capacity for each relief warehouse node i ∈ T 

,

S T

i j
   Road capacity for each arc between port and warehouse node (i, j) ∈   

,

T D

i j
   Road capacity for each arc between warehouse and demand (i, j) ∈   

i
   Capacity needed for each unit flow to use relief warehouse node i ∈ T 

,

S T

i j
  Capacity needed for each unit flow to use road (arc) between supply port 

and relief warehouse node (i, j) ∈   

,

T D

i j
  Capacity needed for each unit flow to use road (arc) between relief 

warehouse and demand node (i, j) ∈   

,i j
c   Cost of transporting each unit flow per mile through each arc (i, j) ∈ A 

S

i
 ( T

i
 ) Cost of restoring each disrupted supply port node i ∈ S

D
 (relief warehouse 

node i ∈ T
D
)
 

,

S T

i j
   Cost of restoring each disrupted arc between port and relief warehouse 

node (i, j)∈
D

  

,

T D

i j
   Cost of restoring each disrupted arc between warehouse and demand node 

(i, j)∈
D

  

N
b ( A

b ) Budget for total disrupted node (arc) restoration  

F
b   Budget for total network flow transportation  

S
 ( T

 ) Fixed charge for restoring disrupted supply port (relief warehouse) node  

S T
   Fixed charge for restoring disrupted arc between supply port and relief 

warehouse node 
T D

   Fixed charge for restoring disrupted arc between relief warehouse and 

demand node 
N

 ( A
 ) Maximum allowable number for disrupted node (arc) restoration 

,

O D

i j
d   Distance in miles between each origin and destination pair (i, j) ∈ A 
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i
w (

i
p )  Importance weight setting (priority) associated with objective i 

Partial Restoration Parameters 

1 2
, ( )

T T

i i
f f   50%, (100%) restoration for disrupted warehouse node i ∈ T

D
 

1 2 3

, , ,
, ( ), ( )

ST ST ST

i j i j i j
f f f

  
25%, (50%), (100%) restoration for damaged arc between supply 

port and relief warehouse node (i, j)∈
D

  

1 2 3

, , ,
, ( ), ( )

T D T D T D

i j i j i j
f f f  25%, (50%), (100%) restoration for damaged arc between relief 

warehouse and demand node (i, j)∈
D

  

Decision Variables 

,i j
X  Commodity flow variable for supplies through arc (i, j)∈ A; integer 

i
K  Restore disrupted supply port node i ∈ S

D
; binary 

i
L  Partially restore disrupted warehouse node i ∈ T

D
  

,i j
M  Partially restore disrupted arc between supply port and relief warehouse node (i, 

j)∈
D

  

,i j
N  Partially restore disrupted arc between relief warehouse and demand node (i, 

j)∈
D

  

i
R  Units of unsatisfied demand for each demand node i∈D; integer 

V  Minimum percentage of satisfied demand 

S

i
Y  Setup cost to restore disrupted supply port  i∈S

D
; binary    

T

i
Y  Setup cost to restore disrupted warehouse  i∈T

D
; binary

 

,

S T

i j
Y  Setup cost to restore disrupted arc between supply port and warehouse (i, j)∈

D
 ; 

binary 

,

T D

i j
Y  Setup cost to restore disrupted arc between relief warehouse and demand (i, 

j)∈
D

 ; binary 

Partial Restoration Decision Variables 
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1 2
, ( )

T T

i i
Q Q   Restrict 50%, (100%) restoration for disrupted warehouse node i ∈ 

T
D
; binary

 

1 2 3

, , ,
, ( ), ( )

ST ST ST

i j i j i j
Q Q Q  Restrict 25%, (50%), (100%) restoration for disrupted arc between 

supply port and relief warehouse node (i, j)∈
D

 ; binary 

1 2 3

, , ,
, ( ), ( )

T D T D T D

i j i j i j
Q Q Q  Restrict 25%, (50%), (100%) restoration for disrupted arc between 

relief warehouse and demand node (i, j)∈
D

 ; binary 

4.3.2 MOIRR Model Formulation 

The MOIRR model with two objective functions are shown below: maximizing 

equity (fairness) and minimizing total network costs. 

Maximize 
1

Z V   (4.1) 

Minimize 
2 , , , , ,

( , ) ( , ) ( , )

, , ,

( , )

. . .

D D D D

D D D

D

S T S S T T

i i i i i i

i S i T i S i T

S T T D S T S T

i j i j i j i j i j

i j i j i j

T D T D

i j i j i

i j

K L Y Y

Z M N Y

Y c d

   

  



   

     

 

       
          

       
       

     
        

     
     

 
 

 
 

   

  

 ,

( , )

O D

j i j

i j A

X



 

 

 

 

 

 

 

  
  
   



 (4.2) 

Objective function (4.1), when coupled with constraint set (4.2), maximizes 

equity (fairness) via a maximin approach. 

,

1 0 0 ;
i j

i T j

X
V j D

d

 
   

 
 

   (4.3) 

Objective function (4.2) minimizes total network costs which are calculated as the 

total funds spent to restore disrupted nodes, restore disrupted arcs, and transport supply 

units between origin-destination pairs. 
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The model’s constraint sets ensure that any required restrictions or limits are 

followed by any of the model’s recommended solutions. Constraint set (4.4) ensures that 

total transportation costs do not exceed the available transportation budget. Similarly, 

constraint sets (4.5) and (4.6) ensure that total restoration costs do not exceed available 

restoration funds. 

, , ,

( , )

O D F

i j i j i j

i j A

c d X b



 
 

 

   (4.4) 

D D D D

S T S S T T N

i i i i i i

i S i T i S i T

K L Y Y b   

   

       
          

       
       

      (4.5) 

, , , , , ,

( , ) ( , ) ( , ) ( , )
D D D D

S T T D S T S T T D T D A

i j i j i j i j i j i j

i j i j i j i j

M N Y Y b   

       

       
          

       
       

      (4.6) 

As it is possible that all demands may not be satisfied, constraint set (4.7) 

accounts for demand uncertainty (i.e., demand is higher or lower than available supply 

units). 

,
;

i j j j

i T

X R d j D



      (4.7) 

Constraint sets (4.8) and (4.9) ensure that total flow out of the supply nodes does 

not exceed the available supply. While supply items are available from functional supply 

nodes, supply items for disrupted supply nodes are available if and only if the disrupted 

node is restored. 

,
;

F

i j i

j T

X s i S



     (4.8) 

,
;

D

i j i i

j T

X s K i S



     (4.9) 
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Constraint set (4.10) ensures flow conservation such that unit flows out of and 

into each relief warehouse are equal. 

, ,
0 ;

i j j k

i S k D

X X j T

 

       (4.10) 

Relief warehouse capacities are restricted by constraint sets (4.11) and (4.12), as 

relief warehouse nodes only provide capacity when the node is functional. 

,
;

F

j i j j

i S

X j T 



      (4.11) 

,
;

D

j i j j j

i S

X L j T 



     (4.12) 

Constraint sets (4.13) and (4.14) restrict road capacities between supply nodes and 

relief warehouse nodes by ensuring that road capacities are available only if the 

corresponding roads are functional. Similarly, constraint sets (4.15) and (4.16) restrict 

road capacity utilization between relief warehouses and demand nodes. 

, , ,
; ( , )

ST ST F

i j i j i j
X i j        (4.13) 

, , , ,
; ( , )

ST ST D

i j i j i j i j
X M i j       (4.14) 

, , ,
; ( , )

T D T D F

i j i j i j
X i j        (4.15) 

, , , ,
; ( , )

T D T D D

i j i j i j i j
X N i j       (4.16) 

Constraint sets (4.17) through (4.20) enforce setup cost realization when 

restoration decisions for disrupted supply points (4.17), disrupted warehouses (4.18), 

disrupted arcs between a supply point and a warehouse (4.19), and disrupted arcs 

between a warehouse and demand nodes (4.20) are prescribed by the model. 

;
S D

j j
K Y j S     (4.17) 

;
T D

j j
L Y j T     (4.18) 

, ,
; ( , )

ST D

i j i j
M Y i j      (4.19) 
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, ,
; ( , )

T D D

i j i j
N Y i j      (4.20) 

Next, constraint sets (4.21) and (4.22) restrict the number of disrupted nodes and 

disrupted arcs that can be restored based on available resources. 

D D

N

j j

j S j T

K L 

 

      (4.21) 

, ,

( , ) ( , )
D D

A

i j i j

i j i j

M N

 



 

      (4.22) 

In terms of the partial restoration decisions, constraint sets (4.23) and (4.24) 

combine to restrict the model’s decision variables to partially restore disrupted relief 

warehouse nodes at only two levels: 50% or 100%. 

1 1 2 2
;

T T T T D

i i i i i
L f Q f Q i T       (4.23) 

2
;

T D

i i
L f i T      (4.24) 

Similarly, constraint sets (4.25) and (4.26) allow partially disrupted arcs between 

supply points and relief warehouses to be restored at four levels: 25%, 50%, 75%, or 

100%, while constraint sets (4.27) and (4.28) restrict the partial restoration of disrupted 

arcs between relief warehouses and demand nodes. 

1 1 2 2 3 3

, , , , , , ,
; ( , )

ST ST ST ST ST ST D

i j i j i j i j i j i j i j
M f Q f Q f Q i j        (4.25) 

3

, ,
; ( , )

ST D

i j i j
M f i j      (4.26) 

1 1 2 2 3 3

, , , , , , ,
; ( , )

T D T D T D T D T D T D D

i j i j i j i j i j i j i j
N f Q f Q f Q i j        (4.27) 

3

, ,
; ( , )

T D D

i j i j
N f i j       (4.28) 

Finally, constraint sets (4.29) through (4.39) are variable-type constraints for the 

MOIRR model and constraint sets (4.40) through (4.47) are binary variables required for 

the partial restoration. 
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 ,
0,1, 2, ..., ; ( , )

i j
X n i j A     (4.29),  0,1 ;

D

i
K i S    (4.30) 

0 ;
D

i
L i T      (4.31), 

,
0 ; ( , )

D

i j
M i j     (4.32) 

,
0 ; ( , )

D

i j
N i j      (4.33), 0 ;

i
R i D    (4.34) 

0V       (4.35),  0,1 ;
S D

i
Y i S        (4.36) 

 0,1 ;
T D

i
Y i T        (4.37),  ,

0,1 ; ( , )
ST D

i j
Y i j      (4.38) 

 ,
0,1 ; ( , )

ST D

i j
Y i j   

      
(4.39),  

1
0,1 ;

T D

i
Q i T        (4.40) 

 
2

0,1 ;
T D

i
Q i T         (4.41),  

1

,
0,1 ; ( , )

ST D

i j
Q i j      (4.42) 

 
2

,
0,1 ; ( , )

ST D

i j
Q i j           (4.43),   

3

,
0,1 ; ( , )

ST D

i j
Q i j       (4.44) 

 
1

,
0,1 ; ( , )

T D D

i j
Q i j           (4.45),   

2

,
0,1 ; ( , )

T D D

i j
Q i j     (4.46) 

 
3

,
0,1 ; ( , )

T D D

i j
Q i j                  (4.47) 

4.3.3 Seeking the Efficient Frontier  

4.3.3.1 Hazus Case Study 

FEMA’s GIS-based natural hazard loss estimation software Hazus is used in 

Ransikarbum and Mason (2014) to obtain predicted loss data from an earthquake scenario 

in South Carolina (SC). The parameter data and assumptions associated with the Hazus 

case study are given in Table 4.1. Six major SC airports are chosen as relief supply 

points: Charleston, Columbia, Florence, Greenville, Hilton Head, and Myrtle Beach. 

Hazus’ inventory collection module reports that there are 47 emergency operations 

centers (EOCs) in the state, which are modeled as relief warehouses. A 9.0 magnitude 

earthquake is simulated to occur in the Columbia, SC metropolitan area. Hazus-based 

“before and after” disaster instance maps are shown in Figure 4.1. Figure 4.1(a) presents 

the position of the earthquake and overviews the existing infrastructure in SC. Next, 

Figure 4.1(b) shows loss data output from Hazus: one disrupted relief supply point, 16 
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disrupted relief warehouses, and 143 demand census tracks affected by the earthquake. 

Table 4.1: Hazus-related parameter and data assumption list 
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Figure 4.1: Hazus-based SC map illustration: (a) infrastructure before a disaster, (b) loss 

data after a disaster. 

4.3.3.2 Pareto-Optimal Front from the Mathematical Model 

A Pareto-optimal solution is a feasible solution that is not dominated by any other 

feasible solution and has the property that an improvement in any one objective is 

possible only at the expense of at least one other objective (Ravindran 2007). The set of 

all Pareto-optimal solutions, the “Pareto front,” is commonly used to visually evaluate 

trade-offs among decision criteria in objective space. 
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Using the SC case study, the Pareto front for the fairness vs. cost study in 

Ransikarbum and Mason (2014) is adapted to compare previous solutions generated by 

the mathematical model with the EA-based technique proposed in this paper. By using 

the non-preemptive (weighted) method, the fairness and cost objective functions in (4.1) 

and (4.2) are normalized using a linear normalization technique to allow inter-criterion 

comparison: 

Maximize   

*

1 1

1 2* *

1 1

*

2 2

* *

2 2

Z L
w

H L

L Z
w

L H






   

  
   

,  where
2

1

1
i

i

w



   (4.48) 

This technique converts a criterion to value between 0 and 1 along the allowed 

range of the measure based on ideal ( *

j
H ) and anti-ideal ( *

j
L ) solutions which we obtain 

from solving each objective alone. The terms 
*

* *

( )
j

j j

j
C x L

H L





 and 

*

* *

( )
j

j j

j
L C x

L H




 

are normalized 

terms for benefit and cost criteria, respectively, where ( )
j

C x
 
is the criterion value before 

normalization. 

The MOIRR is modeled in AMPL (Fourer et al. 2002) and analyzed using 

CPLEX on a PC with an Intel® Core™ i7- 2600 CPU running @3.40 GHz with 16 GB 

of RAM. The Pareto front is generated by varying weight 
i

w  for objective i  discretely 

from 0.1 to 0.9 at increments of 0.1; this yields a total of nine points (Figure 4.2). The 

front illustrates objective function trade-offs and informs decision makers on how 

improving one objective can deteriorate the second objective. For example, when more 

weight is given to the fairness objective (e.g., 
1

w =0.7,
2

w =0.3), the objective values for 

fairness and total cost are 72% demand satisfaction and $1.245 billion, respectively. 
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However, when more weight is given to the cost objective (e.g., 
1

w =0.3 and 
2

w =0.7), the 

corresponding objective values are 28% percent demand satisfaction and $0.239 billion 

for total cost, respectively. 

 

Figure 4.2: Pareto-optimal front for the objectives fairness and cost 

4.4 A Proposed Hybrid NSGA-II Algorithm  

4.4.1 Hybrid NSGA- II Algorithm  

We develop our Hybrid NSGA-II algorithm using the evolutionary algorithm 

NSGA-II (Deb et al. 2002) and an optimization technique. After decomposing the 

MOIRR model, NSGA-II is applied to the network restoration problem, while the 

optimization technique is employed in the supply distribution problem. NSGA-II uses a 

population-based approach to simultaneously find multiple, non-dominated solutions 

portraying the trade-off among objectives in a single simulation run (Deb 2011). Three 

properties that make the NSGA-II algorithm efficient are 1) an elitist principle, 2) an 

explicit diversity-preserving mechanism, and 3) a non-dominated sorting emphasis (Deb 
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et al. 2002). Figure 4.3 shows the outline of the Hybrid NSGA-II procedure. The key 

differences between the Hybrid NSGA-II and the NSGA-II algorithms are also 

highlighted in the Figure (Steps 1.3-1.4 and 2.1-2.4).  

4.4.1.1 Step 1 Initialize Parent Population  

Step 1.1 Create a Representation for Each Chromosome  

Deb et al. (2002) illustrate the NSGA-II with both real number and binary 

representations and suggest that a real number-coded NSGA-II can find better solution 

spreads. In our analysis, a real-number representation is obtained using the uniform 

distribution (0,1). By concatenating all variables involved in the restoration process, we 

are able to obtain the chromosome representation. Figure 4.4(a) illustrates a real number-

coded chromosome representation concatenated from restoration decision variables for 

disrupted supplied ports, disrupted warehouses, disrupted arcs between ports and 

warehouses, and disrupted arcs between warehouses and demand points. 
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Figure 4.3: Outline of the Hybrid NSGA-II procedure for the MOIRR model 

Step 1.2 Return Restoration Variables from Chromosome Representation 

After obtaining the chromosome representation, each genotype is transformed to a 
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restoration variable with the aid of a probability restriction (Figure 4.4(b)). In terms of the 

percent restoration, we allow disrupted supply ports to be fully restored or not (0 or 1), 

disrupted relief warehouses to be partially restored (0, 0.5, or 1), and disrupted highways 

to be partially restored (0, 0.25, 0.50, 0.75, or 1). 

 

 

Figure 4.4: A chromosome (a) representation for the restoration variables, (b) logic to 

return restoration variables 
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Step 1.3 Check Restoration Variable Feasibility 

After obtaining the restoration variables, it is possible that the limits in constraint 

sets (4.6), (4.7), (4.22), and/or (4.23) are violated. While constraint sets (4.6) and (4.7) 

relate to budgetary limits for disrupted nodes and disrupted arcs, respectively, constraint 

sets (4.22) and (4.23) correspond to the maximum allowable numbers of disrupted nodes 

and disrupted arcs, respectively. Thus, restoration variables are checked for feasibility. If 

infeasibility is found either in budgetary or maximum allowable restoration aspects, a 

non-zero genotype in a chromosome is randomly reduced by 1.0, 0.5, or 0.25 if it 

represents a disrupted supply port, a disrupted relief warehouse, or a disrupted arc, 

respectively. A reduction loop continues until feasibility is obtained. Then, an updated 

restoration variable is reverse-transformed to a real number-coded genotype using the 

probability restriction in Figure 4.5 for subsequent processing. 

Step 1.4 Obtain Supply Flow Variables 

After obtaining feasible restoration variables, they are used as inputs in the 

MOIRR model. The model is solved to find optimal solutions for supply flow variables. 

Murata et al. (1996) suggest variable weights in the selection procedure of their heuristic 

algorithm to obtain a spread for the Pareto front. Similarly, by varying weights in 0.1 

increments for different objectives, the algorithm randomly chooses a weight pair in the 

updated mathematical model so that a spread of Pareto-optimal front is ensured. The 

mathematical model then returns objective values associated with objectives (4.1) and 

(4.2). We note that when all restoration variables are treated as parameters and all supply 

flow variables are assumed to be continuous, the problem becomes linear program (LP) 
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which can easily be solved. 

 

 

Figure 4.5: Variation operator (a) crossover operation, (b) mutation operation 

4.4.1.2 Step 2 Generate Offspring Population 

Step 2.1 Use a Binary Selection Operator for Crossover/Mutation Operations 

Prior to performing any crossover or mutation operation, a binary selection 



 120 

operator is used such that two chromosomes are randomly picked from the population 

and the better of the two based on rank and crowding distance (i.e., Steps 4 and 5) is 

selected. This operation ensures that better solutions are chosen to be in the mating pool.  

Step 2.2 Perform Crossover Operations 

Both the crossover and mutation operators are ‘variation’ operators used to 

generate a modified population (Deb 2011). Crossover picks two chromosomes (parents) 

from the pool and creates two child chromosomes by exchanging information among the 

parent chromosomes. In this analysis, a string of real numbers is randomly generated 

(“alpha vector”). Then, child chromosomes from two parent chromosomes (P1 and P2) 

are generated according to equations (49) and (50). Crossover probability Cp is used to 

limit the number of chromosomes in the parent pool that participate in crossover 

operations.   

( 1) : ( * 1 (1 ) * 2 )C h ild a lp h a P a lp h a P      (4.49) 

( 2 ) : ( * 2 (1 ) * 1)C h ild a lp h a P a lp h a P      (4.50) 

For example, given two parent chromosomes and the alpha vector in Figure 5(a), 

the first genotype of both child 1 and child 2 chromosomes is calculated based on 

information from the first genotype of both parents 1 and 2 and the alpha vector. That is, 

0.571 = (0.696*0.796) + (1-0.696)*0.058 for child 1 and 0.282 = (0.696*0.058) + (1-

0.696)*0.796 for child 2. Other genotypes are calculated in a similar manner. 

Step 2.3 Perform Mutation Operations 

For mutation operations, a parent operator is chosen via binary selection and then 
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perturbed in its neighborhood to create a mutant. We randomly choose two locations 

(genotypes) I and J from the parent chromosome to perform the mutation. In our analysis, 

the mutation operator is randomly selected as one of three types: swap, slide, and flip. In 

the swap operation, genotypes in locations I and J are swapped, while in a slide 

operation, the genotype in location I is replaced with the genotype in location I+1, and so 

on until the genotype in location J is reached; it is replaced by the genotype in location I. 

Finally, in a flip operation, the genotypes in locations I and J replace each other, the 

genotypes in locations I+1 and J-1 replace each other, and so on (Figure 4.5(b)). A 

mutation probability Mp is used to limit the number of chromosomes in the parent pool 

that participate in mutation operations. 

Step 2.4 Perform Immigration Operations 

An immigration operation is a simple move of a chromosome in one generation to 

the next generation without making any perturbation (Cakici et al. 2012). Cakici et al. 

(2012) evaluate NSGA-II with 10% immigration probability and find that it is 

competitive with NSGA-II without any immigration. We use immigration probability Ip 

to indicate the proportion of population members to immigrate to the next generation. 

4.4.1.3 Step 3 Mate Parent and Offspring Populations  

After the parent population of size N and the offspring population (also of size N) 

are obtained, they are combined to create a mating pool of size 2N. Because it contains 

both the old and the newly created population members, elitism ensures that algorithm’s 

performance is monotonically non-degrading.  
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4.4.1.4 Step 4 Sort Non-Dominated Front  

Steps 4.1 – 4.4 illustrate the non-dominated sorting procedure used to obtain 

different non-dominated fronts. Figure 6 (adapted from Deb et al. (2002)) gives a 

schematic for this algorithm when the combined population is classified/sorted into 

different non-dominated fronts. While all solutions in the same front are not dominated 

by each other, they dominate other solutions in different fronts, such that the points in the 

first front dominate the points in the second front, and so on. Then, after all fronts are 

obtained, the new population is filled by starting with points in the first non-dominated 

front and continuing with the second non-dominated front, and so on. Given 2N solutions 

in the mating pool, it is clear that not all fronts can be accommodated within the N slots 

available for the new population. Thus, all fronts that cannot be accommodated are 

deleted. For the last allowed front (e.g., the 3
rd

 front in Figure 4.6), the most diverse 

points are chosen using crowding distance as in Step 5. 

 

Figure 4.6: Non-dominated sorting procedure (adapted from Deb et al. 2002) 
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4.4.1.5 Step 5 Calculate Crowding Distance 

Crowding distance values are calculated in descending order to preserve diversity 

for all points in the last allowed front, where points from the top of the ordered list are 

chosen first (i.e., greater crowding distance value means more diversity). Steps 5.1-5.3 

detail how crowding distance is calculated. For example, by setting the crowding distance 

values of the first (i=1) and last (i=n) points in the front to infinity, the crowding distance 

of solution i for objective m, CDim, is calculated (4.51). Then, a total crowding distance 

scalar of each solution i, CDi, can be calculated across all the objectives as in (4.52). 
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4.4.1.6 Step 6 Choose Next Parent Population 

Based on the non-dominated sorting and crowding distance procedures in Steps 4 

and 5, the next parent population containing the N best solutions is selected from the 

mating pool. 

4.4.1.7 Step 7 Update Next Iteration 

The algorithm continues until the stopping criterion is met. Deb (2011) suggests 

that a predetermined number of iterations are commonly used as a termination criterion in 

an EA. Other stopping criteria include computation time limits or tolerance gap limits. 

We use a maximum number of iterations to limit the searching procedure in our 
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approach. 

4.4.2 Experimental Design  

We test the performance of our Hybrid NSGA-II algorithm using the 

experimental design in Table 2. Four levels of population size (Npop = 10, 20, 50, and 

100) and four levels of stopping criterion (ITmax = 10, 20, 50, and 100) are considered. 

Further, two levels of variation operators based on different proportions of Cp, Mp, and Ip 

are examined: 1) (Cp, Mp, Ip) = (0.6, 0.3, 0.1) and 2) (Cp, Mp, Ip) = (0.3, 0.6, 0.1). Finally, 

two different supply flow variable types are explored: integer (resulting in an MILP) and 

continuous (resulting in an LP). Our experimental design yields 64 test combinations. 

Hall and Posner (2007) suggest that mean and variance measures are used to predict the 

relative performance of any developed algorithm. Thus, for each test combination for 

examining the SC Hazus case study, 10 replications are performed and mean and 

standard deviation values are collected to form a 95% confidence interval. 

Table 4.2: An experimental design for the Hybrid NSGA-II algorithm 
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4.5 Performance Assessment  

In multiple-objective research, a typical desired outcome is the non-dominated or 

Pareto-optimal frontier (Deb 2011 and Auger and Bader 2012). The goals of multiple-

objective optimization are 1) to find multiple non-dominated solutions as close to the 

Pareto-optimal front as possible and 2) to find solutions that are diverse to represent the 

entire range of the Pareto-optimal front. We use the Hypervolume indicator in our 

analysis as it evaluates convergence to the Pareto-optimal front (While et al. 2012). 

Further, there are trade-offs between using mathematical- and EA-based algorithms. 

Although a mathematical algorithm may guarantee optimal solutions on the Pareto front, 

it can require several runs and consume computational resources (Deb 2011). Thus, the 

percentage of non-dominated solutions in the first frontier is used as a second 

performance criterion in our analysis. Finally, as computational resource requirements 

(e.g., overall run-time) are also essential to assess the performance of an algorithm 

(Zitzler et al. 2003), we use overall computation time (in seconds) as our third 

performance criterion. 

4.5.1 Comparing the Non-Dominated Fronts  

Each of the non-dominated fronts from our Hybrid NSGA-II is compared with the 

Pareto-optimal front generated by the mathematical approach in Section 4.3.2. Figures 

4.7(a) and 4.7(b) illustrate such comparison with 50 populations at 10 and 100 iterations, 

respectively. Then, to depict elitism progress over time, we graphically illustrate the 

fronts for our Hybrid NSGA-II with four levels of population size and four levels of total 

iterations for the (Cp, Mp, Ip) = (0.6, 0.3, 0.1) and MILP case in Figure 4.8. Figures 4.8(a)-
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4.8(d) show the non-dominated front results for population size 10 with 10, 20, 50, and 

100 iterations, respectively. Similarly, Figures 4.8(e)-4.8(h), 4.8(i)-4.8(l), and 4.8(m)-

4.8(p) show the non-dominated front results for a population size of 20, 50, and 100 for 

the same numbers of total iterations.  

 

Figure 4.7: Non-dominated frontier examples with 50 populations (a) 10 iterations, and 

(b) 100 iterations 

It is clear that as elitism progresses, an increased number of total iterations causes 

the non-dominated front to converge to the Pareto-optimal front. Further, with a relatively 

small population size of 10 and 20, only the first sorted front is found at a different 
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iteration levels (Figures 4.8(a)-4.8(h)). However, different sorted fronts result as 

population size increases (Figures 4.8(i)-4.8(p)). As solutions in the first front dominate 

solutions in the second front and so on, the non-dominated solutions in the first front are 

more desirable. Clearly, trade-offs exist in population size and total number of iterations 

(which combine to dictate computation time) and solution quality. 

 

Figure 4.8: Non-dominated frontier from the Hybrid-NSGA II with varied population and 

iteration levels (a-d) population size 10, (e-h) population size 20, (i-l) population size 50, 

and (m-p) population size 100 

4.5.2 Hypervolume Indicator Result and Discussion 

To assess both our algorithm’s convergence to the Pareto-optimal front and the 
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diversity of our solutions, we employ a hypervolume indicator. The Hypervolume of a set 

of solutions measures the size of the portion of objective space dominated by those 

solutions collectively (While et al. 2012). It is usually measured relative to a reference 

point, often the anti-optimal or “worst” possible point in space. If a set of solutions S’ has 

a greater Hypervolume than a set of solutions S”, S’ is considered to be a better set of 

solutions than S”. Figure 4.9 illustrates the Hypervolume area (Hyp-1) of a set of 

solutions generated using a population size of 10, given the reference point (0, 2*10
9
). In 

our analysis, we define the Hypervolume based performance ratio (PRH) as the ratio 

between the Hypervolume of a set of solutions generated from our Hybrid NSGA-II and 

the one from the mathematical modelling-based algorithm: 

( )

( )
H

H y p H y b r id N S G A II
P R

H y p P a r e to O p tim iz a tio n


     (4.53) 

The PRH results from our designed experiment are shown in Table 4.3. The 

average, standard deviation, lower bound (LB), and upper bound (UB) of the 95% CI are 

reported. It is clear that higher PRH values result when larger populations and/or number 

of iterations are used; however, this comes at the expense of higher computation times. 

We highlight a combination of levels that yields 0 .8
H

P R   in bold italics. Further, 

bolded, italicized, and underlined values represent recommended or desired performance 

combinations with regard to PRH value, the percentage of solutions in the first front, and 

computation time. 

When comparing different population levels or numbers of total iterations, the 

non-overlapping LB and UB regions confirm that PRH  is significantly different. For 
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example, in the MILP case with 0.6-0.3-0.1 variation operator type and 10 iterations, 

there is a significant difference between population sizes of 10 populations ([LB, UB] = 

[0.38, 0.43]) and size 20 ([0.48, 0.51]). When we compare variation operator types, the 

overall mean of the PRH value for the 0.6-0.3-0.1 case is found to be higher than the 0.3-

0.6-0.1 case for both the MILP and LP relaxation cases. Further, the overall mean of PRH 

across all cases is found to be at 0.73.   

 

 

Figure 4.9: The example of Hypervolume (Hyp-1) area calculation 
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Table 4.3: Hypervolume based performance ratio (PRH) results 

 

4.5.3 Percentage of Solutions in the First Front  

Having a high number of solutions in the first non-dominated front is important 

for a decision maker to make an informed decision. In mathematical optimization, 

multiple runs are required to obtain more solutions to represent a Pareto-optimal front 

(Deb 2011). As discussed in Section 4.3.3, generating nine Pareto-optimal solutions using 

the non-preemptive method, one at a time, imposes a burden on computational resources. 

The percentage of solutions in the first front is calculated in Table 4.4. Bold, italicized 

values illustrate an experimental design combination that caused all solutions to be 
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present in the first front (i.e., 100% achievement when all 20 solutions in the population 

are non-dominated). Further, bold, italicized, and underlined values suggest a desirable 

combination of 100% non-dominated solutions in the first frontier, a less than one hour 

run time, and 0 .8
H

P R  . 

At the smaller population levels like a population size of 10, 100% is achieved 

with a small number of iterations. However, as population size increases, more iterations 

are required to achieve 100%. Comparing the variation operators, the 0.3-0.6-0.1 setting 

produces more combinations that achieve 100% than does its competitor. Finally, the 

overall mean of both the MILP and the LP relaxation cases is approximately 85%.  

Table 4.4: Percentage of non-dominated solutions in the first frontier results 
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4.5.4 Computation Time Results  

Both the quality of the outcome and the computation resource requirements are 

important to evaluate the performance of an algorithm (Zitzler et al. 2003). In 

mathematical optimization, the runtime limit for each Pareto-optimal solution is set to 

3,600 seconds. It follows that the upper bound on the amount of time required to generate 

nine Pareto-optimal solutions representing the approximate Pareto-optimal front is 

9(3600) = 32,400 seconds. However, the highest computation time reported for 

population size = 100 with 100 iterations (which can be considered as a similar upper 

bound for our Hybrid NSGA-II method) is 24,973 seconds. Not only is this faster than 

the mathematical optimization, but it is a more attractive option as additional non-

dominated solutions are obtained (Table 4.5). Similarly, we highlight test combinations 

that use less than 3,600 seconds in bold italics. Again, desirable performance settings are 

depicted in bold, italics, underlined values. 

4.6 Managerial Insights 

The MOIRR model of Ransikarbum and Mason (2014) provides humanitarian relief 

operations decision makers with a set of restoration plans for disrupted nodes and arcs in 

a network such that relief items can be equitably supplied to those in need. Considering 

the conflicting objectives of the model, non-dominated solutions comprising the Pareto-

front is a desirable output due to the trade-offs it bring to light. The use of an 

optimization algorithm to obtain such a front requires heavy computational efforts, 

thereby making it impractical in urgent, real-world scenarios. Further, the number of non-

dominated solutions present in the front generated by an optimization-based algorithm is 
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at most equal to the number of runs performed. In contrast, our Hybrid NSGA-II 

approach can efficiently find multiple, diverse non-dominated solutions that are close to 

Pareto-optimal solutions in one single run that requires significantly less computational 

time. 

Table 4.5: Computational time results 
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4.7 Conclusions and Future Research 

Existing models for post-disaster disruption management are scarce and can lack 

an integrated system view. Previously, a multiple-objective model that provides equity- 

(fairness-) based solutions for the integrated supply distribution problem encountered 

during disaster response and the restoration problem that arises during recovery 

operations is developed. However, as it is important to find solutions quickly for real-

world scenarios, we reconstitute the previous MOIRR model by developing a Hybrid 

NSGA-II heuristic to obtain multiple, diverse, non-dominated solutions quickly for this 

NP-hard problem. By decomposing the problem, the algorithm utilizes both evolutionary 

algorithm- and optimization-based techniques to simultaneously obtain multiple solutions 

in a timely manner. 

Through a designed experiment, several factors are analyzed to assess the 

performance of the algorithm: population size, number of total iterations, variation 

operator associated with crossover, mutation, and immigration probabilities, and supply 

flow variable type restrictions. We assess the performance of the algorithm in terms of 

quality (e.g., convergence to the Pareto-optimal front, diversity of the solutions in the 

front, and number of non-dominated solutions) and computational requirements (e.g., 

computation time). There exist clear trade-offs among these performance assessment 

metrics and obtaining desired Hypervolume-based performance ratio (PRH) values. While 

higher population sizes with higher number of total iterations achieve better PRH values, 

smaller population sizes with higher number of iterations can attain the best percentage of 

non-dominated solutions in the first front. However, the fastest computation times result 
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when small population sizes are used in concert with lower total iterations. Although the 

variation operator with 0.6 crossover, 0.3 mutation, and 0.1 immigration probabilities is 

superior to its competitor to attain the best PRH values, it produces slightly fewer 

solutions in the first front. Given individual preferences for PRH, the percentage of 

solutions in the first front, and/or computation time, a decision maker can choose the test 

settings that best suit their interest. 

This chapter provides a novel multiple-objective methodology for decision 

makers who desire to solve large-scale disrupted network problems to obtain effective, 

near-optimal solutions quickly in real-world disaster scenarios. Our Hybrid NSGA-II 

algorithm is an effective method for obtaining multiple, non-dominated solutions quickly 

so that a decision maker can make a final, informed decision. Further, our method’s 

convergence to known Pareto-optimal solutions and its ability to generate a diverse range 

of non-dominated solutions is demonstrated. In the future, as parameter uncertainty is an 

important characteristic in emergency relief logistics, stochastic programming-based 

methods, such as two-stage stochastic programming, could be further investigated and 

applied to this problem in an effort to account for data uncertainty at the time when the 

decision is made. Further, as different risk measures can lead to different decisions, 

another direction to investigate would be both risk-neutral and risk-averse decision 

making using a bi-level programming approach, such as leader/follower models or the 

well-known Stackelberg game (e.g., see Alderson et al. 2014). 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE RESEARCH 

5.1 Summary 

We have presented three different multiple-objective programming approaches 

that deal with the integrated supply distribution problem encountered during disaster 

response and network restoration problem that arises during recovery operations of the 

post-disaster management cycle. Under different circumstances, a multiple-objective 

programming model, a goal programming model, and a metaheuristic optimization 

programming model are used in the analyses to provide an equity- or fairness-based 

solution for constrained capacity, budget, and resource problems in post-disaster logistics 

management.  

In Chapter 2, we proposed the multiple-objective model with three objectives that 

integrates the supply distribution problem encountered during disaster response with the 

restoration problem that arises during recovery operations, the MOIRR model. The first 

objective function in the model is to maximize equity or fairness modelled using 

maximin approach. The second objective is to minimize total unsatisfied demand across 

all demand/beneficiary nodes. The third objective is to minimize the total network cost 

calculated as the funds spent to restore disrupted nodes, restore disrupted arcs, and 

transport supply units based on origin-destination (O-D) pair information. The MOIRR 

model was applied to a South Carolina-based case study using loss data estimated from 

FEMA’s GIS-based loss estimation software, Hazus. We employed a designed 
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experiment to investigate several important aspects of the proposed model, such as partial 

vs. full restoration and pooled vs. separate budgeting, with both small- and large-sized 

networks to gain managerial insights from the model. An approximate efficient frontier 

was developed based on a selected set of efficient solutions to study solution trade-offs 

for two different pairs of objectives: Pair 1 (fairness vs. cost) and Pair 2 (unsatisfied 

demand vs. cost). It is clear that these two approximated Pareto fronts (trade-off curves) 

can provide benefits to a decision maker in visualizing the solution space. The fronts also 

provide an objective trade-off in that they inform a decision maker on how improving one 

objective can deteriorate the second objective’s performance along the curve. 

Next, we extended our previously developed multiple-objective model that 

provides the equity- or fairness-based solution in the integrated supply distribution and 

the restoration problem with a goal programming approach called the GP-based MOIRR 

model in Chapter 3. The extended model under goal constraints provides a decision 

maker with compromise solutions, under desired goals. The GP analogue of the MOIRR 

model is guided by three different objective functions: maximizing equity (fairness), 

minimizing unsatisfied relief demand, and minimizing total network costs. Further, it 

minimizes three undesired deviational variables associated with each goal. Through a 

designed experiment, a number of model scenarios were developed based on three 

factors: multiple-objective solution method (preemptive and non-preemptive); objective 

function’s optimality directive (optimal, non-optimal, and mixed optimal/non-optimal); 

and constraint set’s compromise solution tolerance (compromise and non-compromise). 

Two levels of goal seeking (conservative and aggressive) were also illustrated in the 
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study. It is evident that a GP-based model provides a compromise solution when no 

solution exists that satisfies a strict or hard constraint. Further, through a combination of 

these factors, trade-offs between solution quality and computation time were elaborated 

so that a decision maker can choose a model configuration of interest. Given hypothetical 

earthquake scenarios with loss data estimated from FEMA’s Hazus system, the GP-based 

MOIRR model was validated with two different population densities: South Carolina 

(SC) and California (CA). Efficient frontiers and sensitivity analysis were then provided 

to understand trade-offs between different objectives of interest. Road capacity related 

strategic planning was found to increase percent fairness given an expected high 

disruption. 

Finally, as it is important to find solutions urgently for real-world scenarios, we 

extended our previously developed MOIRR model by analyzing the heuristic algorithm 

Hybrid NSGA-II to obtain multiple, diverse, non-dominated solutions quickly for this 

NP-hard problem in Chapter 4. By decomposing the problem, the algorithm utilizes both 

evolutionary algorithm and optimization techniques to simultaneously obtain multiple 

solutions in a timely manner. Through a designed experiment, several factors with 

different levels associated with the Hybrid NSGA-II were analyzed to test the 

performance of the algorithm: population size; iterations; variation operator associated 

with crossover, mutation, and immigration probabilities; and sub-model for the supply 

flow variables. We assessed the performance of the algorithm for both quality (e.g., 

convergence to the Pareto-optimal front, diversity of the solutions in the front, and ample 

non-dominated solutions) and computational (e.g., computation time) aspects using the 
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Hypervolume-based performance ratio (PRH), percentage of non-dominated solutions in 

the first front, and computation time in the analyses. There are clear trade-offs among 

these performance assessment metrics to obtain better PRH  and better percentage of non-

dominated solutions at the expense of the computation time. That is, higher population 

sizes with higher iterations were found to achieve better PRH, lower population sizes with 

higher iterations attained better percentage of non-dominated solutions in the first front, 

and lower population sizes with lower iterations resulted in faster computation times. The 

variation operator with 0.6 crossover, 0.3 mutation, and 0.1 immigration probabilities was 

found to attain the better PRH; while the variation operator with 0.3 crossover, 0.6 

mutation, and 0.1 immigration probabilities was found to obtain a higher percentage of 

solutions in the first front. Finally, the LP relaxation case shows to obtain better 

computation times than the MILP case. Given a preference in terms of either the PRH , the 

percentage of solutions in the first front, and/or computation time, a decision maker can 

choose a test combination that suits their interest. 

5.2 Concluding Remarks 

Existing models in post-disaster disruption management are scarce and often lack 

an integrated perspective. Further, stakeholders’ roles in each phase of disaster 

management often have different objectives, which are often in conflict. It is thus our 

objective to develop a multiple-objective model that integrates the supply distribution 

problem encountered during disaster response with the restoration problem that arises 

during recovery operations. Further, as performance measures of interest in relief 
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operations are not only cost-based, we also consider an equity- or fairness-based solution 

approach in our multi-criteria analysis to reflect the aid recipient’s viewpoint.  

Through our analysis, partial restoration decisions under a pooled budgeting 

approach provides flexibility for organizations when budgets are limited in a highly 

disrupted network. Hazus is also found to be a valuable tool that can and should be 

employed by other researchers interested in post-disaster studies. By analyzing Pareto 

fronts, it is clear that Pareto fronts (trade-off curves) can provide benefits to a decision 

maker in visualizing the solution space, such that the preferred point on a particular 

Pareto front can be identified and optimal decisions can be obtained.  

Although one way to treat multiple criteria is to select one criterion as primary 

used in the objective function and the others as secondary assigned acceptable values in 

constraints, if careful consideration is not given while selecting the acceptable levels by a 

managerial team or decision makers, a feasible solution that satisfies all the constraints 

may not exist. Thus, the GP-based model overcomes this issue.  

By investigating a multiple-objective solution method, an optimality directive, 

and compromise tolerance, a trade-off clearly exists between solution quality and 

computation time such that a decision maker can choose a combination of model 

scenarios that satisfies his or her interest. That is, the non-preemptive method provides a 

lesser computation time than the preemptive method, but at the expense of difficulty to 

choose appropriate weights. If a near- or non-optimal solution is acceptable, computation 

time will also be less than when optimality is desired. The goal (soft) constraints also 

benefit decision makers with compromise solutions. The efficient frontier sensitivity 
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analysis also suggests that capacity-related strategic planning can be implemented for a 

high disruption event.  

Considering the conflicting objectives of the model, a non-dominated or Pareto-

optimal front is an interesting outcome due to its ‘trade-off’ property. This property 

makes the non-dominated front attractive for decision makers to find a wide variety of 

solutions before making a final, informative decision. Although an optimization 

algorithm can be used to obtain such a front, it requires a heavy computational load and 

multiple runs, making it not practical for urgent, real-world scenarios. The number of 

non-dominated solutions in the front from an optimization algorithm is also limited by 

the number of runs.  In contrast, the evolutionary algorithm-based Hybrid NSGA-II is 

found to efficiently find multiple, diverse non-dominated solutions closed to Pareto-

optimal solutions in a single run with much less computational resources. 

5.3 Future Work 

As parameter uncertainties (e.g., demand and supply uncertainties) are one 

important characteristic of emergency relief logistics, stochastic programming, such as 

two-stage stochastic programming, can be further investigated and applied to this 

problem in an effort to account for data uncertainty at the time the decision is made 

during real disaster scenarios. To extend the work developed from previous chapters 

using a two-stage stochastic programming model, a timeframe hypothesis could be such 

that once a disaster occurs, information on the number of disrupted nodes and arcs are 

known with certainty (or high probability), while relief demands are uncertain 

information. Thus, a decision maker will make a first-stage restoration decision. Then, 
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once the actual demands are realized (e.g., different scenarios with high, average, and low 

disruption), a recourse or second-stage distribution supply decision could be made.  

In another direction, as different risk measures can lead to different decisions, an 

investigation on both risk-neutral and risk-averse decisions could be made. For example, 

a risk-neutral-based model could be developed, such that expected values of the objective 

functions are optimized. On the other hand, a risk-averse-based model could be 

developed using the bi-level programming approach following the leader/follower model, 

the attacker/defender model, or the well-known Stackelberg competition game. That is, 

the worst-case event or the event that disrupts system function the most could be chosen 

as the attacker model. Then, the decision to optimize the network after a worst-case 

attack occurs could be modeled with the defender model.  

Finally, as decisions in humanitarian logistics operations are dynamic, a study 

using system dynamics simulation to find how one decision from a stakeholder affects 

other stakeholders in humanitarian operations could be studied. This would be an 

interesting area as it is well-observed that although several papers using simulation are 

proposed in the commercial SCM literature, papers related to simulation of humanitarian 

operations are very scarce. Further, a focus on technique combination (e.g., hybrid 

models between system dynamics and agent-based simulations could also be explored.  
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