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Abstract

This paper introduces the heterogeneous multicrew scheduling and routing problem (MCSRP)

in road restoration. The MCSRP consists of identifying the schedule and route of heterogeneous

crews that must perform the restoration of damaged nodes used in the paths to connect a

source node to demand nodes in a network a�ected by extreme events. The objective is to

minimize the accessibility time de�ned as the time that the demand nodes remain unconnected

from the source node. The main contributions of the paper include three novel mathematical

formulations that di�er in the way of modeling the scheduling decisions and the synchronization

of the crews, and the development of valid inequalities based on some particular properties

of the problem. Additionally, we prove that the MCSRP is NP-hard. Extensive numerical

experiments with randomly generated instances and a case study based on �oods and landslides

disasters in Rio de Janeiro, Brazil, are performed to assess the e�ciency and applicability of our

approach. In particular, we show that the valid inequalities signi�cantly improve the solvability

of the mathematical models. In terms of managerial implications, our results suggest that the

incorporation of multiple crews helps to reduce the worst-case accessibility times across the

demand nodes, thus providing more equitable solutions.

Keywords: Road restoration problem, heterogeneous crew scheduling and routing, network

repair, humanitarian logistics, disaster relief.

∗Corresponding author
Email addresses: alfredmorenoarteaga@gmail.com (Alfredo Moreno), douglas.alem@ed.ac.uk (Douglas

Alem ), michel.gendreau@cirrelt.net (Michel Gendreau), munari@dep.ufscar.br (Pedro Munari)

Working paper July 12, 2020



1. Introduction

Hurricanes, �oods, landslides and earthquakes are examples of natural hazards that a�ect

millions of people every year (EM-DAT, 2019). Speci�cally, these types of extreme events cause

disruptions in the transportation infrastructure composed of roads, bridges, tunnels, etc., im-

peding access to a�ected areas. For instance, the 2010 Haiti earthquake generated more than

30 million cubic yards of debris (Booth, 2010) from damaged infrastructure, which includes the

airport, seaport and roads within the country, constraining the access of the victims to relief

aid (Van Wassenhove et al., 2010). Other examples of extreme events that have signi�cantly

a�ected road networks, thus compromising the accessibility to a�ected areas, are hurricanes in

the southeastern region of the United States (Rawls and Turnquist, 2010), earthquakes in China

(Hu et al., 2019), and �oods and landslides in Rio de Janeiro State in Brazil (Moreno et al.,

2018). Inaccessible a�ected areas result in a lack of commodities and delays in evacuation, res-

cue and medical assistance activities, thus causing victim su�ering and loss of life. In an attempt

to provide an e�ective emergency response in disaster aftermath, it is essential to restate the

accessibility of the a�ected areas, which is popularly known in humanitarian logistics as road

restoration.

In general, in road restoration problems, the a�ected areas and the damaged components of

the transportation infrastructure are represented by demand and damaged nodes, respectively.

A demand node is called accessible when there exists a path connecting it with a central supply

depot using only undamaged and/or repaired nodes. Consequently, to restate the accessibility

of the demand nodes, a critical subset of damaged nodes must be repaired. In this context, the

multicrew scheduling and routing problem (MCSRP) primarily focuses on the restoration of the

critical subset of damaged nodes that are essential to emergency response operations. Multiple

crews, associated with various agencies, such as civil defense, armed forces, and �re�ghters, are

available to perform the repair operations. The crews must be assigned to repair the damaged

nodes. Additionally, for each crew, the sequence in which the damaged nodes must be repaired

and the route used to reach them and return to the depot must be determined.

The crews consist of workforce teams equipped with heavy machinery, dozers, excavators,

light vehicles, etc., and they may not have the same equipment. For example, one crew may

have dozers and excavators to remove heavy debris from a blocked road, while another may have

only workers using shovels. Some crews may not have enough resources (machinery, workforce,

etc.) to repair some damaged nodes. For instance, during the removal of downed trees and debris

after a �ood, there are potential hazards of electrocution from contact with downed power lines or

tree limbs in contact with power lines (OSHA, 2019). Only crews with the appropriate knowledge

and protective equipment against electrical hazards should remove such debris. Furthermore, a

crew with heavy machinery may take more time to reach the damaged nodes than a crew with

only light vehicles, although the former may perform a faster restoration with the help of heavy

machinery. Consequently, the crews di�er in the time required to repair the damaged nodes, in

the travel time between nodes, and in the set of damaged nodes that they can repair. However, the

consideration of multiple heterogeneous crews in the problem has been neglected in the literature

because of the complexity involved in such consideration. In fact, the single crew scheduling and
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routing problem (SCSRP) is challenging due to the scheduling and routing decisions that must

be integrated (Maya-Duque et al., 2016; Moreno et al., 2019). In the multicrew version of the

problem, an additional complexity factor is the synchronization of the crews at the damaged

nodes (Akbari and Salman, 2017a,b) because these nodes cannot be traversed unless they are

completely repaired, and a crew may have to wait at some damaged nodes, while another crew

performs the restoration of such nodes. In fact, the MCSRP is NP-hard, as we prove in Appendix

A.

The contributions of this paper to the literature are summarized as follows: (1) we de�ne for

the �rst time the multicrew scheduling and routing problem (MCSRP) for road restoration; (2)

we develop three mixed integer programming (MIP) models that di�er in the way of modeling

the scheduling decisions and the synchronization of the crews; (3) we study some particular

properties of the problem and derive valid inequalities based on these properties; (4) we carry

out computational experiments based on a real-world case and randomly generated instances

to compare the performance of the proposed formulations and the e�ectiveness of the valid

inequalities. Regarding practical contributions, we use our models in a thorough, real-world

case study of road restoration after the 2011 megadisaster of the Serrana Region in Rio de

Janeiro, Brazil. Our approach consisting of models and valid inequalities enables us to derive

prescriptive recommendations to the political bodies in charge of the post-disaster operations.

For example, we �nd that the use of more crews signi�cantly reduces the time required to recover

the accessibility of the network at the same time that provides more equitable accessibility times.

Additionally, the proposed approach provides good-quality solutions in reasonable computational

times and can be a �rst step to further develop faster solution approaches and user-friendly

decisions-support tools that can help decision-makers in the aftermath of disasters.

The remainder of the paper is organized as follows. Section 2 reviews the relevant background

literature. Section 3 describes the heterogeneous multicrew scheduling and routing problem.

Section 4 presents the MIP models, while Section 5 de�nes some properties and valid inequalities

for the problem. Section 6 describes the instances and discusses the computational results. We

close with concluding remarks in Section 7.

2. Background literature

In this section, we review the pertinent literature related to the MCSRP. The literature

search was performed on a set of bibliographic databases, namely Web of Science, Scopus, and

JSTOR. The keywords used for the search were the following: �road restoration�, �road repair�,

�arc restoration�, �link restoration�, �network restoration�, �network repair�, �roadway repair�,

�debris clearance�, �debris removal�, and �debris cleanup�. The keywords were selected based on

recent studies on road restoration problems and on a survey of network restoration and recovery

in humanitarian operations (Çelik, 2016). Additionally, a backward and forward reference search

was performed. We limited the search to journal papers published in English and between years

2000 and 2020. The review is mainly focused on the application of quantitative decision making

models to assist the main decisions of the MCSRP. Particularly, we prioritize studies integrating

crew scheduling and routing decisions. Therefore, some related studies (Tzeng et al., 2000; Hu
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and Sheu, 2013; Tuzun Aksu and Ozdamar, 2014; Çelik et al., 2015; Lorca et al., 2017; Aslan

and Çelik, 2018; Sanci and Daskin, 2019) with signi�cant contributions to the road restoration

problem literature were not included in the review since they do not explicitly integrate the

aforementioned decisions.

The integration of crew scheduling and routing in road restoration has been recently studied

in the literature under the assumption of a single crew available to perform the repair operations

and without considering the de�nition of relief paths. Sahin et al. (2016) developed a model to

determine the order and route to visit critical nodes. The objective of the model is to minimize the

total time spent to reach all the critical nodes. Berkta³ et al. (2016) introduced two mathematical

models with di�erent objectives. The �rst model is a reformulation of the one proposed by Sahin

et al. (2016). In the second model, the authors de�ned a new objective function that minimizes

the weighted sum of visiting times using priorities for the critical nodes. Heuristic algorithms

were proposed by the authors to obtain solutions quickly. Similarly, Kasaei and Salman (2016)

developed two mathematical models as well as heuristic methods to �nd the schedule and route

of a crew. The �rst model minimizes the total time to restore the connectivity of disconnected

components of the network while the second maximizes the total components connected in a

given time limit. Ajam et al. (2019) adapted the models proposed by Kasaei and Salman (2016)

to minimize the latency of critical nodes, where the latency of a node is de�ned as the travel

time from the depot to that node, including the repair time of the traversed damaged roads. The

authors developed a metaheuristic based on GRASP and variable neighborhood search.

The SCSRP was recently addressed by Maya-Duque et al. (2016); Moreno et al. (2019)

and Moreno et al. (2020), minimizing the weighted sum of the accessibility time of the demand

nodes. Maya-Duque et al. (2016) proposed a nonlinear formulation for the SCSRP and developed

a dynamic programming algorithm and a GRASP metaheuristic to solve the problem. Moreno

et al. (2019) developed a branch-and-Benders-cut algorithm for the SCSRP. Additionally, the

authors proposed a construction procedure followed by a local search to provide good-quality

initial solutions to warm-start the branch-and-Benders-cut algorithm. Moreno et al. (2020)

proposed two metaheuristics based on decomposition and one hybrid method that combine the

metaheuristics with a branch-and-Benders-cut algorithm. Kim et al. (2018) de�ned a golden

period for the repair operations. Then, they penalized the accessibility after the golden period

at a higher rate. Additionally, they considered the minimization of the completion time of the

repair operations. To solve this problem, the authors developed an ant colony algorithm. Shin

et al. (2019) solved the problem with the same type of algorithm, considering additional relief

goods distribution decisions in the SCSRP and minimizing the time of the relief distribution.

Variants of the problem have been addressed in the literature considering multiple crews.

Feng and Wang (2003) integrated crew scheduling and routing decisions considering homoge-

neous crews. They developed a multi-objective model to maximize the total kilometers of roads

repaired, to maximize the total number of lives saved, and to minimize the risk of the restoration

operations. They neither address relief paths decisions nor impose that damaged nodes cannot

be used before the restoration of other damaged nodes. To incorporate the latter, Yan and Shih

(2007) devised a time-space network MIP model that resorts to copies of the original nodes to
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represent their respective states over the time horizon. The model minimizes the completion

time of the restoration. The authors considered homogeneous crews and did not consider the

synchronization of the crews. Yan and Shih (2012) solved the same problem using an ant colony

algorithm. Yan et al. (2014) incorporated rescheduling repair decisions into the problem. Basi-

cally, they considered that backup repair crews can be dispatched to support the regular crews

when subsequent events after the primary extreme event cause new damaged nodes over the time

horizon. Tang et al. (2009) incorporated both stochastic travel and repair times into the problem

using a two-stage stochastic programming model, while Yan and Shih (2009) integrated relief

distribution decisions to minimize the total time of the distribution together with the comple-

tion time of the restoration. Xu and Song (2015) integrated relief distribution as well, but they

focused on minimizing the time at which relief goods arrive at the demand nodes.

Özdamar et al. (2014) proposed a recursive model to schedule a �eet of homogeneous dozers

that perform the task of debris cleanup from blocked arcs. They did not consider the de�nition

of relief paths or the synchronization of the dozers. Akbari and Salman (2017a) and Akbari and

Salman (2017b) introduced the synchronization of crews to recover the connectivity of a network

a�ected by extreme events, but without integrating the de�nition of relief paths. Akbari and

Salman (2017b) proposed an MIP model to determine the set of a�ected roads that need to

be repaired and the synchronized routes for multiple homogeneous crews. The objective was

to minimize the completion time of the restoration. However, they could not solve practical-

sized instances by using the exact mathematical model. Therefore, they relaxed the problem to

obtain unsynchronized solutions that are later synchronized by a heuristic. The same problem

was addressed by Akbari and Salman (2017a) with a di�erent objective function consisting of

maximizing the network components connected to the depot node. Morshedlou et al. (2018)

also considered multiple homogeneous crews and focused on the restoration of gas, water, and

electrical power infrastructure networks, assuming that no disruption a�ects the transportation

network. Thus, the crews do not have to wait for the restoration of damaged nodes to traverse

the arcs in the road network. In this sense, the authors did not consider the synchronization of

crews as de�ned in this paper. Furthermore, they did not de�ne relief paths between the depot

and the demand nodes.

Table 1 summarizes the main decisions, characteristic and objective functions of the most

related problems considered in the literature. Although previous studies have obtained satisfac-

tory results for the SCSRP (Maya-Duque et al., 2016; Kim et al., 2018; Shin et al., 2019; Moreno

et al., 2019, 2020), their models and solution methods cannot be applied to the MCSRP. In

the MCSRP, the synchronization of the crews requires the explicit de�nition of the arrival and

waiting time of the crews at the damaged nodes, making the problem harder since the di�erent

crews can traverse a damaged node multiple times. In the SCSRP, the waiting time at the dam-

aged nodes does not exist, and when the crew arrives at a damaged node, the crew must repair

it if the node has not yet been repaired, or traverse it without waiting if the node has already

been repaired. Thus, the solution methods for the SCSRP were developed without explicitly

considering the arrival and waiting times of the crews at the damaged nodes, but only the time

at which such nodes are repaired.
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Regarding the variants of the problem considering multiple crews, we notice that there is a

lack of studies considering heterogeneous crews in road restoration problems. In practice, the

crews are workforce teams associated with various governmental and non-governmental agencies

and may not have the same equipment to repair the damaged nodes. However, this heterogeneity

has been neglected in the literature. Furthermore, most works that considered homogeneous

crews lack synchronization constraints that are inherent to the problem. In fact, only two of the

reviewed studies (Akbari and Salman, 2017b,a) addressed the synchronization of homogeneous

crews. These authors de�ned the scheduling and routing of crews to visit critical nodes. Di�er-

ently from the MCSRP, such critical nodes are de�ned a priori and do not necessarily represent

damaged nodes. Furthermore, they did not integrate decisions related to the de�nition of the

relief paths connecting the source node with the demand nodes. In the MCSRP, the considera-

tion of such paths is important because they de�ne the critically damaged nodes that must be

immediately repaired to perform emergency response. In this paper, we help to �ll these gaps by

proposing mathematical formulations and valid inequalities for the MCSRP with synchronized

heterogeneous crews.

Table 1: Main characteristics, objective functions and decisions of the reviewed literature.
Characteristics Objective functions Main decisions
Multi- Synchro- Accessibi- Comple- Distri- Assign- Sche- Rou- Relief Distri-

Reference crew1 nization lity time tion time tion time Other2 ment duling ting path bution
Sahin et al. (2016) S X X X
Berkta³ et al. (2016) S X X X X
Kasaei and Salman (2016) S X X X X
Maya-Duque et al. (2016) S X X X X
Kim et al. (2018) S X X X X X
Moreno et al. (2019) S X X X X
Moreno et al. (2020) S X X X X
Shin et al. (2019) S X X X X X
Ajam et al. (2019) S X X X
Feng and Wang (2003) M-Hm X X X X
Yan and Shih (2007) M-Hm X X X X
Yan and Shih (2009) M-Hm X X X X X X X
Tang et al. (2009) M-Hm X X X X X
Yan and Shih (2012) M-Hm X X X X
Özdamar et al. (2014) M-Hm X X X X X
Yan et al. (2014) M-Hm X X X X
Xu and Song (2015) M-Hm X X X X X X
Akbari and Salman (2017b) M-Hm X X X X X
Akbari and Salman (2017a) M-Hm X X X X X
Morshedlou et al. (2018) M-Hm X X X X
This paper M-Ht X X X X X X
1 S: single crew; M-Hm: homogeneous multi-crew; M-Ht: heterogeneous multi-crew.
2 Visiting time; number of components connected; latency; length of road open; risk; number of life savings; network
inaccessibility; resilience.

3. Problem description

The multicrew scheduling and routing problem (MCSRP) is de�ned on an undirected graph

G = (V, E), in which V is the set of nodes, and E is the set of undirected arcs. The subset Vd ⊂ V
characterizes the demand nodes, while the subset Vr ⊂ V contains the collection of damaged

nodes. Furthermore, there may be intersection nodes that represent the intersection of two or

more arcs. There is one depot (node 0) that is a supply node to be connected to the demand

nodes. Figure 1(a) shows an illustrative example of a graph G representing a damaged network

composed of two municipalities (Nova Friburgo and Teresópolis) and four damaged nodes located

on four highways (RJ-116, RJ-122, RJ-130 and RJ-142).
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A set K of multiple heterogeneous crews is available to perform the restoration activities.

The crews are initially located in the central depot and di�er in the time required to repair the

damaged nodes (δki), in the travel time on the arcs (τke), and in the set of damaged nodes that

each crew can repair. We assume that travel and repair times can be estimated by collecting

post-disaster information on road conditions. This data can be provided by various tools such

as satellite images, geographic information systems or drones (Akbari and Salman, 2017a,b).

Basically, the MCSRP consists of determining (i) the paths to connect the depot to the demand

nodes (relief path decisions), (ii) the assignment of crews to the damaged nodes (assignment

decisions), (iii) the schedule of crews to repair the damaged nodes (scheduling decisions), and

(iv) the routes of crews to repair the damaged nodes and return to the depot (routing decisions).

Figure 1(b) illustrates the main decisions attributed to the MCSRP, highlighting the schedule of

two crews (red arrows), the route of a crew (black arrows), and one relief path (green arrows).

The scheduling decision includes the assignment of crews to damaged nodes.

Figure based on the so-called Megadisaster of Serrana Region in 
Rio de Janeiro – Brazil, described in Section 6.3.

(a) Graph G.

Depot
Damaged node
Demand node
Intersection node
Crew schedule
Route of crew 2
(Crew paths 0-7, 7-0)

Relief path 0-2

(b) Decisions attributed to the MCSRP.

Figure 1: Example of a graph G and decisions attributed to the MCSRP.

The relief path decision de�nes the sequence of nodes and arcs used to connect the depot

with the demand nodes to perform the distribution, evacuation and/or rescue operations. A

given relief path connecting the depot with the demand node i is called a relief path 0− i. For
instance, Figure 1(b) shows an example of a relief path 0− 2 (green arrows), which is de�ned by

the sequence of nodes 0→ 1→ 8→ 2. Multiple paths may be available to reach a given demand

node i. For example, the sequence 0 → 6 → 4 → 5 → 2 is an alternative relief path 0− 2. The

total distance of a relief path 0− i must be less than or equal to a prede�ned maximum distance

ldi . Tight values for l
d
i might help to avoid the selection of long relief paths in terms of distance.

It is also possible to set ldi to a su�ciently large number so as to allow the selection of relief paths

of any length. The damaged nodes used in the relief paths must be repaired by the available

crews as soon as possible to minimize the time that the demand nodes remain inaccessible from

the depot (accessibility time). A demand node i ∈ Vd is called accessible if there exists a relief

path 0− i using only undamaged and/or repaired nodes. Thus, the accessibility time of demand

node i depends on the time at which the damaged nodes used in relief path 0 − i are repaired.
In Figure 1(b), for example, demand node 2 becomes accessible after the restoration of damaged
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node 8. When no damaged nodes are used in a relief path 0− i, the corresponding accessibility
time of demand node i is zero.

The assignment decision determines the damaged nodes that need to be repaired, and the

crew that must perform their restoration. The scheduling decisions de�ne, for each crew, the

repair order of the damaged nodes. Figure 1(b) shows the assignment and scheduling decisions

for two crews (red arrows). Crew 1 is assigned to repair damaged nodes 6 and 8, while crew

2 must perform the restoration of damaged node 7. The schedule for the �rst crew is de�ned

by the ordered set of nodes (0, 8, 6, 0). Thus, node 8 is repaired before node 6. Since the

crews must depart and return to the depot, we include node 0 at the beginning and at the end

of each schedule. The assignments and schedules de�ned for the crews may not need to include

all the damaged nodes. A subset of damaged nodes may be enough to make the demand nodes

accessible. For example, only damaged node 8 needs to be repaired to enable relief path 0 − 2.

However, solutions repairing more than the needed damaged nodes are feasible for the problem.

The routing decisions determine the paths/routes to be used by the crews to repair the

damaged nodes and return to the depot. A path associated with a given crew is a sequence

of nodes and arcs used by this crew to travel between two consecutive damaged nodes in its

schedule. A path used by a crew to travel from node i to node j is called crew path i− j. Crew
path 0 − 7 in Figure 1(b) is de�ned by the sequence of nodes 0 → 6 → 4 → 5 → 7, while crew

path 7− 0 is de�ned by the sequence of nodes 7→ 3→ 4→ 6→ 0. More than one path can be

available for a crew to travel from one damaged node to the next in its schedule. For example,

the path de�ned by nodes 0 → 1 → 8 → 2 → 5 → 7 is an alternative crew path 0 − 7. For a

given crew, a route is a sequence of paths that ends at the depot after repairing all the damaged

nodes in its schedule. The route for crew 2 consists of crew paths 0 − 7 and 7 − 0. Nodes and

edges can be traversed multiple times by the crews. A damaged node i is repaired when it is

visited for the �rst time by crew k assigned to its restoration. In this case, crew k incurs in

the repair time δki. The crews can use the already repaired damaged nodes multiple times after

their restoration without incurring extra repair time. Some damaged nodes cannot be accessed

directly from the depot without the restoration of other intermediate damaged nodes. This is

the case for node 7 in Figure 1(b), for example. The time spent by a given crew to return to the

depot after repairing all the damaged nodes in its schedule does not a�ect the accessibility time

of the demand nodes. Therefore, any feasible path composed of repaired damaged nodes and/or

undamaged nodes can be used by the crews to return to the depot without a�ecting the value

of the objective function. In Figure 1(b), for example, the time spent by crew 1 to return to

the depot using the crew path 6− 0 does not a�ect the accessibility time since the last damaged

node in its schedule (node 6) has been already repaired.

It is assumed that the same crew cannot restore more than one damaged node simultaneously,

and damaged nodes cannot be repaired by more than one crew. As a consequence of the latter

assumption, if a given crew reaches a damaged node that is already being repaired, then this

crew has to wait until the damaged node is totally repaired. This re�ects the practical situations

in which the limited space or other adverse conditions sometimes prevent the use of more than

one crew to perform simultaneously the restoration of a same damaged node. For example, it
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is di�cult for two or more dozers (crews) to act over a landslide in a narrow road or when the

ground remains unstable after the landslide. Given the schedules presented in Figure 1, crew

2 could have to wait to cross damaged node 6, which is repaired by crew 1. In this case, the

time at which crew 2 can cross node 6 must be synchronized with the time at which crew 1

completes the restoration of this node. Alternative solutions for the problem could not require

the synchronization of the crews. This is the case, for example, if crew 2 repairs by itself the

damaged node 6 or if crew 2 uses an alternative path to avoid crossing damaged node 6. In fact,

the waiting time of a crew in a given damaged node i is necessary only if there is not a faster

crew path available.

Di�erent from the single crew version of the problem, the synchronization of crews in the

MCSRP requires the consideration of both the arrival and waiting times at each damaged node

crossed in the paths of the crews. This increases the di�culty of the problem in terms of

tractability of the MIP model representing the MCSRP with respect to the SCSRP given the

number of additional variables and constraints that must be considered. Nevertheless, neglecting

the synchronization in the MCSRP can signi�cantly deteriorate the solutions to the problem.

For instance, consider the schedules presented in Figure 1(b) and assume that crew 1 completes

the restoration of nodes 8 and 6 after 2 and 4 hours, respectively. Additionally, assume that

the travel time of crew 2 is 1 hour for all arcs. Figure 2 shows two possible paths for crew 2

to travel from node 0 to damaged node 7 with and without considering the synchronization of

the crews. Path 1 is de�ned by nodes 0 → 6 → 4 → 5 → 7, while path 2 is de�ned by nodes

0→ 1→ 8→ 2→ 5→ 7. When the synchronization is neglected, we assume that the damaged

nodes visited in paths 1 and 2 can be used without incurring waiting time. In this case, the

best path for arriving at damaged node 7 seems to be path 1, and crew 2 arrives at node 7

after 4 hours. However, when we consider the synchronization of the crews, crew 2 has a waiting

time of 3 hours using path 1 because damaged node 6 can be crossed only after 4 hours. Then,

using path 1 implies crew 2 arrives at node 7 after 7 hours and not after 4 hours as was wrongly

determined when no waiting time was considered. In contrast, path 2 has no waiting time since

damaged node 8 is already repaired when crew 2 arrives. Therefore, ignoring the synchronization

implies neglecting the waiting time, which in turn leads to the selection of path 1. This strategy

delays the restoration of damaged node 7 by 2 hours with respect to the selection of path 2.

Figure 2: Example of the impact of the synchronization in the routing decisions.

0->6 6->4 4->5 5->7

0->1 1->8 8->2 2->5 5->7

0->6 Waiting time 6->4 4->5 5->7

0->1 1->8 8->2 2->5 5->7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

No synchronization: Path 1

No synchronization: Path 2

Synchronization: Path 1

Synchronization: Path 2

Time (hours)

4. Mathematical formulations

In this section, we present three mixed integer programming formulations for the MCSRP

and two families of valid inequalities to strengthen them. The �rst and second formulations di�er
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in the way of modeling the scheduling decisions and the synchronization of the crews. The third

formulation eliminates symmetry related to the routing decisions by dropping certain variables

and imposing new types of constraints.

4.1. First MCSRP formulation (MCSRP1)

The �rst MCSRP formulation is based on the three-index vehicle �ow formulation of the

vehicle routing problem (VRP) (Irnich et al., 2014) to de�ne the schedule of the crews, while the

synchronization of the crews is controlled with a four-index variable. The mathematical notation

is as follows.

Sets

V All nodes.

Vr ⊂ V Damaged nodes.

Vr0 = Vr ∪ {0} Damaged nodes including the source node 0 (depot).

Vu ⊂ V Undamaged nodes (Vu = V \ Vr).
Vd ⊂ V Demand nodes.

E Arcs.

Ei ⊆ E Arcs incident to node i ∈ V.
R = {1, · · · , |Vr|} Positions at which an already repaired damaged node can be

visited in a path between two damaged nodes.

K Available crews.

Ki ⊆ K Crews able to repair the damaged node i ∈ Vr.

Parameters

di Demand of node i ∈ Vd.
δki Repair time of crew k ∈ Ki at node i ∈ Vr.
τke Travel time of crew k ∈ K on arc e ∈ E.
ρkij Shortest travel time of crew k between nodes i ∈ V and j ∈ V without using

damaged nodes.

`e Length of arc e ∈ E.
ldi Maximum distance allowed between node 0 and demand node i ∈ Vd.
M Su�ciently large number.

Decision variables

Wi Binary variable that assumes the value of 1 if and only if node i ∈ Vr is repaired.
Xkij Binary variable that assumes the value of 1 if and only if crew k ∈ K repairs node

j ∈ Vr0 immediately after node i ∈ Vr0 .
Peij Binary variable that assumes the value of 1 if and only if arc e ∈ E is used in the

path from node i ∈ Vr0 to node j ∈ Vr.
Nu
lij Binary variable that assumes the value of 1 if and only if node l ∈ Vu is used in

the path from node i ∈ Vr0 to node j ∈ Vr.
Nr
lhij Binary variable that assumes the value of 1 if and only if node l ∈ Vr is the hth

damaged node visited in the path from node i ∈ Vr0 to node j ∈ Vr.
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Yej Binary variable that assumes the value of 1 if and only if arc e ∈ E is used in the

path from node 0 to node j ∈ Vd.
Vlj Binary variable that assumes the value of 1 if and only if node l ∈ V is used in the

path from node 0 to node j ∈ Vd.
T s
lhj Time at which the crew assigned to repair damaged node j ∈ Vr visits the damaged

node l ∈ Vr in the position h ∈ R in the path to node j ∈ Vr (arrival time).
Tw
lhjWaiting time of the crew assigned to repair damaged node j ∈ Vr at the damaged

node l ∈ Vr visited in the position h ∈ R in the path to node j ∈ Vr.
Zr
i Restoration time of damaged node i ∈ Vr0 .

Zd
i Accessibility time of demand node i ∈ Vd.

The parameter ρkij is computed by solving multiple shortest path problems over a graph in

which the damaged nodes and arcs incident to the damaged nodes have been removed. In some

cases, the removal of the damaged nodes can result in multiple unconnected graph components

in the graph. In these cases, there are no paths between some pair of nodes i− j without using
at least one damaged node, and ρkij is assumed to be a su�ciently large number.

The variables Xkij de�ne the schedule of the crews, while their route is de�ned by variables

Peij , Nu
lij and Nr

lhij , which determine the arcs and nodes to be visited in a crew path i − j.

Variable Nr
lhij controls the position h of the damaged node l visited in such a path. The position

is used to synchronize the arrival and departure of the crews at the damaged nodes. Since no

synchronization is necessary for the undamaged nodes, the position at which a node l ∈ Vu is

visited by the crews is not relevant. Variables Peij , Nd
lij and Nr

lhij are not de�ned for j = 0

since we assume that the crews return to the depot using any feasible path composed of either

repaired damaged nodes and/or undamaged nodes. Finally, variables Yej and Vlj de�ne the arcs

and nodes, respectively, to be visited in relief path 0−j. The MIP model is formulated as follows.

Objective function. The objective function (1) consists of minimizing the weighted sum of

the accessibility time.

min
∑
i∈Vd

di · Zd
i . (1)

Accessibility time evaluation. The accessibility time is de�ned by constraints (2). A demand

node i is accessible if there exists a relief path 0 − i using undamaged and/or repaired nodes.

Thus, the accessibility time Zd
i associated with demand node i ∈ Vd depends on the time Zr

j

when damaged nodes j ∈ Vr in relief path 0− i are repaired.

Zd
i ≥ Zr

j −M · (1− Vji), ∀ i ∈ Vd, j ∈ Vr. (2)

Restoration time constraints. Constraints (3) de�ne the restoration time when no damaged

nodes are visited in crew path i− j or when there is no waiting time associated with the visited

damaged nodes. In this case, for a given node j repaired by crew k, the restoration time Zr
j is

the sum of three components: the restoration time of the predecessor node i (Zr
i ); the travel

time in the path i − j (
∑

e∈E τke · Peij); and the repair time of node j (δkj). These constraints
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also prevent subtours. Constraints (4) de�ne the restoration time when there is waiting time

associated with the damaged nodes visited in a given path i− j. In this case, for a given node j

repaired by crew k, the restoration time Zr
j is the sum of the next components: the time when

the crew departs from the last damaged node l visited in the path (Tw
lhj + T s

lhj); the shortest

travel time from node l to node j without using damaged nodes (
∑

i∈Vr0
ρklj · Nr

lhij); and the

repair time of node j (δkj). Constraints (4) are activated only for the last occupied position h,

i.e., when there is no node visited in the position h+ 1 (
∑

i∈Vr0

∑
l∈Vr Nr

l(h+1)ij = 0).

Zr
j ≥ Zr

i +
∑
e∈E

τke · Peij + δkj −M · (1−Xkij), ∀ i ∈ Vr0 , j ∈ Vr, k ∈ K, (3)

Zr
j ≥

∑
l∈Vr

(Tw
lhj + T s

lhj +
∑
i∈Vr0

ρklj ·Nr
lhij) + δkj −M · (1−

∑
i∈Vr0

Xkij +
∑
i∈Vr

0

∑
l∈Vr

Nr
l(h+1)ij),

∀ j ∈ Vr, h ∈ R \ {|R|}, k ∈ K. (4)

Relief path constraints. For a given relief path 0 − i, constraints (5) force the use of an arc

incident to node 0, while constraints (6) force the use of an arc incident to node i. Furthermore,

for each node l in the middle of this path (Vli = 1), there must be one arc leaving and one arc

arriving at node l, as imposed by constraints (7). Constraints (8) prohibit the use of relief paths

whose distance between the depot and demand nodes is greater than the maximum distance

allowed. Note that constraints (8) can be relaxed by considering su�ciently large numbers for

the maximum distance ldi . ∑
e∈E0

Yei = 1, ∀ i ∈ Vd, (5)

∑
e∈Ei

Yei = 1, ∀ i ∈ Vd, (6)

∑
e∈El

Yei = 2Vli, ∀ j ∈ Vd, l ∈ V \ {0, i}, (7)

∑
e∈E

Yei · `e ≤ ldi , ∀ i ∈ Vd. (8)

Crew routing constraints. If there is a crew path i− j (
∑

k∈KXkij = 1), constraints (9) force

the use of an arc incident to node i in this path, while constraints (10) force the use of an arc

incident to node j. Given a node l in crew path i − j, constraints (11) and (12) ensure that

path i − j contains one arc leaving node l and one arc arriving at node l. Constraints (11) are

associated with undamaged nodes l ∈ Vu, while constraints (12) are associated with damaged

nodes l ∈ Vr. ∑
e∈Ei

Peij =
∑
k∈K

Xkij , ∀ i ∈ Vr0 , j ∈ Vr, (9)

∑
e∈Ej

Peij =
∑
k∈K

Xkij , ∀ i ∈ Vr0 , j ∈ Vr, (10)

∑
e∈El

Peij = 2Nu
lij , ∀ i ∈ Vr0 , j ∈ Vr, l ∈ Vu : l 6= i, (11)
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∑
e∈El

Peij = 2
∑
h∈R

Nr
lhij , ∀ i ∈ Vr0 , j ∈ Vr, l ∈ Vr \ {i, j}. (12)

Crew scheduling constraints. If node j is repaired (Wj = 1), constraints (13) state that

there will be exactly one crew k ∈ Kj designated to repair this node. Constraints (14) represent

the �ow conservation. Constraints (15) establish that each crew k must perform at most one

schedule. ∑
k∈Kj

∑
i∈Vr0:
i 6=l

Xkij = Wj , ∀ j ∈ Vr, (13)

∑
i∈Vr0:
i 6=l

Xkil −
∑
j∈Vr0:
j 6=l

Xklj = 0, ∀ l ∈ Vr0 , k ∈ K, (14)

∑
j∈Vr

Xk0j ≤ 1, ∀ k ∈ K. (15)

Assignment constraints. Constraints (16) and (17) state that node l ∈ Vr must be repaired if

it is used in either a relief path (
∑

i∈Vd Vli > 1) or a crew path (
∑

h∈R
∑

i∈Vr0

∑
j∈Vr N

r
lhij > 1).

|Vd| ·Wl ≥
∑
i∈Vd

Vli, ∀ l ∈ Vr, (16)

|Vr| ·Wl ≥
∑
h∈R

∑
i∈Vr0

∑
j∈Vr

Nr
lhij , ∀ l ∈ Vr. (17)

Synchronization constraints. Constraints (18)-(23) synchronize the arrival of crew k in dam-

aged node l visited in crew path i − j. Here, i and j are damaged nodes repaired by crew k,

while l is a damaged node used in path i − j. Thus, when crew k arrives at this node l, it

either waits for node l to be repaired by another crew if this node is still damaged, or it can

cross without waiting if l has already been repaired. Constraints (18) guarantee that a damaged

node l cannot be visited more than once in the path to node j. Since all the travel times on

the arcs are nonnegative values, the optimal crew path i − j does not need to consider a node

l more than once. Constraints (19) establish that a given crew cannot visit di�erent damaged

nodes simultaneously, i.e., a position h can be occupied for at most one damaged node l in the

path to node j. Constraints (20) ensure that damaged nodes in path i − j must be visited in

consecutive positions. Then, a damaged node cannot be visited in a position h if no damaged

node was already visited in position h− 1. Constraints (21) evaluate the arrival time of crew k

at the �rst damaged node l visited in path i − j. Similarly, constraints (22) de�ne the arrival

time of crew k at the damaged node l visited in position h > 1 based on the departure time of

node v visited in position h− 1. Finally, constraints (23) compute the waiting time of the crew

in damaged node l visited in position h. The waiting time is calculated as the di�erence between

the restoration time of the damaged node l and the arrival time of crew k at damaged node l.∑
h∈R

∑
i∈Vr0

Nr
lhij ≤ 1, ∀ l ∈ Vr, j ∈ Vr, (18)
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∑
l∈Vr

∑
i∈Vr0

Nr
lhij ≤ 1, ∀ h ∈ R, j ∈ Vr, (19)

∑
l∈Vr

Nr
lhij ≤

∑
l∈Vr

Nr
l(h−1)ij , ∀ i ∈ V

r
0 , j ∈ Vr, h ∈ R \ {1}, (20)

T s
l1j ≥ Zr

i +
∑
k∈K

ρkil ·Xkij −M · (1−Nr
l1ij), ∀ i ∈ Vr0 , j ∈ Vr, l ∈ Vr, (21)

T s
lhj ≥

∑
v∈Vr

(Tw
v(h−1)j + T s

v(h−1)j +
∑
i∈Vr0

Nr
v(h−1)ij · ρkvl)−M · (2−

∑
i∈Vr0

(Nr
lhij +Xkij)),

∀ k ∈ K, l ∈ Vr, j ∈ Vr, h ∈ R \ {1}, (22)

Tw
lhj ≥ Zr

l − T s
lhj −M · (1−

∑
i∈Vr0

Nr
lhij), ∀ l ∈ Vr, j ∈ Vr, h ∈ R. (23)

Domain of the decision variables. Constraints (24)-(31) impose the domain of the decision

variables. It is worth mentioning that variables Peij and Yej do not need to be de�ned as binary

variables in the computational implementation because they naturally assume binary values if

variables Nu
lij , N

r
lhij and Vkj are binaries.

Xkij ,Wj ∈ {0, 1}, ∀ i ∈ Vr0 , j ∈ Vr0 , k ∈ K, (24)

Nr
lhij ∈ {0, 1}, ∀ i ∈ Vr0 , j ∈ Vr, l ∈ Vr, h ∈ R, (25)

Nu
lij ∈ {0, 1}, ∀ i ∈ Vr0 , j ∈ Vr, l ∈ Vu, (26)

Peij ≥ 0, ∀ i ∈ Vr0 , j ∈ Vr, e ∈ E, (27)

Vli ∈ {0, 1}, ∀ i ∈ Vd, l ∈ V, (28)

Yel ≥ 0, ∀ l ∈ Vd, e ∈ E, (29)

T s
lhj , T

w
lhj ≥ 0, ∀ l ∈ Vr, j ∈ Vr, h ∈ R, (30)

Zr
i , Z

d
j ≥ 0, ∀ i ∈ Vr0 , j ∈ Vd. (31)

4.2. Second MCSRP formulation (MCSRP2)

The second formulation for the MCSRP is based on the two-index vehicle �ow formulation

of the VRP to de�ne the crew scheduling, while the synchronization of the crews is controlled

with a new three-index variable. For this formulation, consider the following notation:

Decision variables

W ′ikBinary variable that assumes the value of 1 if and only if node i ∈ Vr is repaired by

crew k.

X ′ij Binary variable that assumes the value of 1 if and only if node j ∈ Vr0 is repaired

immediately after node i ∈ Vr0 .
Nlij Binary variable that assumes the value of 1 if and only if node l ∈ V is visited in the

path from node i ∈ Vr0 to node j ∈ Vr.
Rlhj Binary variable that assumes the value of 1 if and only if node l ∈ Vr is the hth

damaged node visited in the path to node j ∈ Vr.

The two-index variable X ′ij de�nes the restoration order of the damaged nodes, independent
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of the crew that performs this activity. The assignment of the crews to the damaged nodes

is achieved with variable W ′ik. Furthermore, the position of the damaged nodes in the crew

paths is controlled with the new variable Rlhj . The objective function (1), the accessibility time

evaluation (2), and the relief paths constraints (5)-(8) are the same as in MCSRP1. The other

group of constraints is modi�ed as follows.

Restoration time and crew routing and scheduling constraints. In constraints (32)-(38), we

use variables X ′ij and/or W ′kj instead of Xkij and/or Wj . Additionally, in constraints (33),

variable Rlhj is used instead of Nr
lhij , and in constraints (39), variable Nlij is used instead of

Nr
lhij . Constraints (39) control the arcs incident to any node l ∈ V in a given path i−j instead of

constraints (11) and (12) that are associated with undamaged nodes l ∈ Vu and damaged nodes

l ∈ Vr separately. Furthermore, unlike MCSRP1, the �ow conservation constraints (34) are not

de�ned for each crew.

Zr
j ≥ Zr

i +
∑
e∈E

τke · Peij + δkj −M · (2−X ′ij −W ′kj), ∀ i ∈ Vr, j ∈ Vr, k ∈ K, (32)

Zr
j ≥

∑
l∈Vr

(Tw
lhj + T s

lhj + ρklj ·Rlhj) + δkj −M · (1−W ′kj +
∑
l∈Vr

R(h+1)lj),

∀ j ∈ Vr, h ∈ R \ {|R|}, k ∈ K, (33)∑
i∈Vr0:
i 6=j

X ′ij =
∑
k∈K

W ′kj , ∀ j ∈ Vr, (34)

∑
i∈Vr0:
i 6=l

X ′il −
∑
j∈Vr0:
j 6=l

X ′lj = 0, ∀ l ∈ Vr0 , (35)

∑
j∈Vr

X ′0j ≤ |K|, (36)

∑
e∈Ei

Peij = X ′ij , ∀ i ∈ Vr0 , j ∈ Vr, (37)

∑
e∈Ej

Peij = X ′ij , ∀ i ∈ Vr0 , j ∈ Vr, (38)

∑
e∈El

Peij = 2Nlij , ∀ i ∈ Vr0 , j ∈ Vr, l ∈ V \ {i, j}. (39)

Assignment constraints. Constraints (40) and (41) de�ne which nodes must be repaired.

Additionally, constraints (42) are introduced to guarantee that if nodes i and j are considered

in the same schedule (X ′ij = 1), both are repaired by the same crew. Constraints (43) force the

consideration of di�erent crews for di�erent schedules. If X0i = 1 and X0j = 1, i and j are the

�rst nodes of two di�erent schedules. Thus, if crew k repairs node i (W ′ki = 1), a di�erent crew

k′ must repair node j, i.e.,
∑

k′∈K:
k′ 6=k

Wk′j ≥ 1.

|Vr| ·
∑
k∈Kl

W ′kl ≥
∑
i∈Vr0

∑
j∈Vr

Nlij , ∀ l ∈ Vr, (40)

|Vd| ·
∑
k∈Kl

W ′kl ≥
∑
i∈Vd

Vli, ∀ l ∈ Vr, (41)
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W ′kj ≥W ′ki +X ′ij − 1, ∀ i ∈ Vr, j ∈ Vr, k ∈ K, (42)∑
k′∈K:
k′ 6=k

Wk′j ≥Wki +X0i +X0j − 2, ∀ i ∈ Vr, j ∈ Vr : i 6= j, k ∈ K. (43)

Synchronization constraints. The new set of constraints (44) is introduced to enforce the

allocation of damaged nodes l considered in path i− j (Nlij = 1) to some position h de�ned by

variable Rlhj . Constraints (45)-(47) de�ne the position of a damaged node l in the path to node

j. Constraints (48)-(50) de�ne the arrival and waiting time of the crews at the damaged node l

visited in the path from node i to node j.∑
i∈Vr0

Nlij =
∑
h∈R

Rlhj , ∀ l ∈ Vr, j ∈ Vr, (44)

∑
h∈R

Rlhj ≤ 1, ∀ j ∈ Vr, l ∈ Vr, (45)

∑
l∈Vr

Rlhj ≤ 1, ∀ j ∈ Vr, h ∈ R, (46)

∑
l∈Vr

Rlhj ≤
∑
l∈Vr

R(h−1)lj , ∀ j ∈ Vr, h ∈ R \ {1}, (47)

T s
l1j ≥ Zr

i +
∑
k∈K

W ′kj · ρkil − (2−X ′ij −Rl1j) ·M, ∀ i ∈ Vr0 , j ∈ Vr, l ∈ Vr, (48)

T s
lhj ≥

∑
p∈Vr

(Tw
(h−1)pj + T s

(h−1)pj +R(h−1)pj · ρkpl)− (2−Rlhj −W ′kj) ·M,

∀ k ∈ K, l ∈ Vr, j ∈ Vr, h ∈ R \ {1}, (49)

Tw
lhj ≥ Zr

l − T s
lhj −M · (1−Rlhj), ∀ l ∈ Vr, j ∈ Vr, h ∈ R. (50)

Domain of the decision variables. Constraints (51) and (53) impose the domain of the decision

variables.

X ′ij ,W
′
kj ∈ {0, 1}, ∀ i ∈ Vr0 , j ∈ Vr0 , k ∈ K, (51)

Rhij ∈ {0, 1}, ∀ i ∈ Vr, j ∈ Vr, h ∈ R, (52)

Nlij ∈ {0, 1}, ∀ i ∈ Vr0 , j ∈ Vr, l ∈ V. (53)

4.3. Third MCSRP formulation (MCSRP3)

The third formulation is a modi�ed version of MCSRP2 with the elimination of some variables

related to the routing decisions. Furthermore, some additional constraints are introduced to

prohibit the restoration of the damaged nodes that do not a�ect the accessibility of the demand

nodes. For instance, consider the schedule (0, 1, 2, 0) for one crew and assume that damaged

node 2 is not considered either in the relief paths or in the crew paths. Then, the restoration

time of node 2 does not a�ect the accessibility of the demand nodes. In this case, several

solutions considering di�erent crew paths from node 1 to node 2 have the same cost as the

solution considering the schedule (0, 1, 0). We say that such solutions are symmetric and can

be eliminated by prohibiting the restoration of unnecessary damaged nodes. For the MCSRP3,
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consider the additional notation as follows.

Decision variables

P ′eij Binary variable that assumes the value of 1 if and only if arc e ∈ E is used either in the

path from node i ∈ Vr0 to node j ∈ Vr or from node j ∈ Vr to node i ∈ Vr with i < j.

N ′lij Binary variable that assumes the value of 1 if and only if node l ∈ Vr is used either in the

path from node i ∈ Vr0 to node j ∈ Vr or from node j ∈ Vr to node i ∈ Vr with i < j.

Variables P ′eij and N
′
lij are de�ned only for path i − j, where i < j. The objective function

(1), the accessibility time evaluation (2), the relief paths constraints (5)-(8), and the scheduling

constraints (34)-(36) are the same as in MCSRP2. The other constraints are posed as follows.

Restoration time constraints. Constraints (54) and (55) de�ne the restoration time at the

damaged nodes when i < j and i > j, respectively. Constraints (33) are also included in

MCSRP3.

Zr
j ≥ Zr

i +
∑
e∈E

τke · P ′eij + δkj − (2−X ′ij −W ′kj) ·M, ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr : i < j, (54)

Zr
j ≥ Zr

i +
∑
e∈E

τke · P ′eji + δkj − (2−X ′ij −W ′kj) ·M, ∀ k ∈ K, i ∈ Vr, j ∈ Vr : i > j. (55)

Crew routing constraints. Constraints (56)-(60) de�ne the paths of the crews for i < j only.∑
e∈E0

P ′e0j = X ′0j , ∀ j ∈ Vr, (56)

∑
e∈Ej

P ′e0j = X ′0j , ∀ j ∈ Vr, (57)

∑
e∈Ei

P ′eij = X ′ij +X ′ji, ∀ i ∈ Vr, j ∈ Vr : i < j, (58)

∑
e∈Ej

P ′eij = X ′ij +X ′ji, ∀ i ∈ Vr, j ∈ Vr : i < j, (59)

∑
e∈El

P ′eij = 2N ′lij , ∀ i ∈ Vr0 , j ∈ Vr, l ∈ V \ {i, j} : i < j. (60)

Assignment constraints. Constraints (61) replace constraints (40) to force the restoration

of nodes used in crew paths i − j with i < j. Constraints (62) are introduced to prohibit

the restoration of some unnecessary damaged nodes. Thus, the last damaged node l repaired

by a crew (X ′l0 = 1) must be used either in a relief path (
∑

i∈Vd Vli > 1) or in a crew path

(
∑

i∈Vr0

∑
j∈Vr:
i<j

N ′lij > 1). Constraints (41)-(43) are also included in MCSRP3.

|Vr| ·
∑
k∈Kl

W ′kl ≥
∑
i∈Vr0

∑
j∈Vr:
i<j

N ′lij , ∀ l ∈ Vr, (61)

∑
k∈Kl

W ′kl ≤
∑
i∈Vd

Vli +
∑
i∈Vr0

∑
j∈Vr:
i<j

N ′lij −X ′l0 + 1, ∀ l ∈ Vr. (62)

Synchronization constraints. Constraints (63)-(65) enforce the allocation of damaged nodes l
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considered in crew path i− j to some position h de�ned by variable Rlhj . Constraints (45)-(50)

are also included in MCSRP3.∑
h∈R

Rlhj ≥ N ′lij +X ′ij − 1, ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, (63)

∑
h∈R

Rlhi ≥ N ′lij +X ′ji − 1, ∀ i ∈ Vr, l ∈ Vr, j ∈ Vr : i < j, (64)

∑
h∈R

∑
j∈Vr

Rlhj =
∑
i∈Vr0

∑
j∈Vr:i<j

N ′lij , ∀ l ∈ Vr. (65)

Domain of the decision variables. Finally, constraints (66) and (67) impose the domain of

the decision variables introduced in MCSRP3.

N ′lij ∈ {0, 1}, ∀ l ∈ V, i ∈ Vr0 , j ∈ Vr : i < j, (66)

P ′eij ≥ 0, ∀ e ∈ E, i ∈ Vr0 , j ∈ Vr : i < j. (67)

Table 2 summarizes the variables and constraints considered in the three MIP models and

shows examples of the number of binary variables and constraints in two arbitrary instances of

di�erent sizes.

Table 2: Variables and constraints of the proposed MIP formulations.

MCSRP1 MCSRP2 MCSRP3
Binary variables Wi, Xkij , N

u
lij , N

r
lhij , Vlj W ′ik, X

′
ij , Nlij , Rlhj , Vlj W ′ik, X

′
ij , N

′
lij , Rlhj , Vlj

Continuous variables Peij , Yej , T
s
lhj , T

w
lhj , Z

r
i , Z

d
i Peij , Yej ,

T slhj , T
w
lhj , Z

r
i , Z

d
i

P ′eij , Yej , T
s
lhj , T

w
lhj , Z

r
i , Z

d
i

Objective function (1) (1) (1)
Constraints (2)-(31) (2), (5)-(8), (27)-(53) (2), (5)-(8), (28)-(31),

(33)-(36), (41)-(43),
(45)-(52), (54)-(67)

# of binary variables1 |Vr|+ |Vr||Vd|+ |K||Vr|2+
|Vu||Vr|2+ |R||Vr|3

|Vr||K|+ |Vr||Vd|+
|Vr|2+ |V||Vr|2+ |R||Vr|2

|Vr||K|+ |Vr||Vd|+ |Vr|2+
(|V|/2)(|Vr|2 − |Vr|)+

|R||Vr|2
# of continuous variables1 |Vd|+ |Vr|+ |E||Vd|+

|E||Vr|2+2|R||Vr|2
|Vd|+ |Vr|+ |E||Vd|+
|E||Vr|2+ 2|R||Vr|2

|Vr|+ |Vd|+ |E||Vd|+
(|E|/2)(|Vr|2 − |Vr|)+

2|R||Vr|2
# of constraints1 |K|+ 3|Vr|+ 3|Vd|+ |R||Vr|+

|Vr||K|+ |Vd||Vr|+ |Vd||V|+
|Vr||R||K|+ |Vr|2+ |V||Vr|2+

2|R||Vr|2+ |K||Vr|2+
|K||R||Vr|2+ |Vr|3

3|Vd|+ 4|Vr|+ |Vd||V|+
2|Vr||R|+ |Vd||Vr|+
|Vr||R||K|+ 4|Vr|2+
|V||Vr|2+3|K||Vr|2+

|R||Vr|2+|K||R||Vr|2+|Vr|3

3|Vd|+ 7|Vr|+ |Vd||Vr|+
|Vd||V|+ 2|Vr||R|+
|Vr||R||K|+

(|V|/2)(|Vr|2 − |Vr|)+
|K||R||Vr|2+ 2|Vr|2+

3|K||Vr|2+ |R||Vr|2+ 2|Vr|3
# binary variables (and con-
straints) in an instance with
|Vr| = 1, |Vd| = 15, |K| = 1, |V| = 21

38 (409) 39 (413) 18 (394)

# binary variables (and con-
straints) in an instance with
|Vr| = 29, |Vd| = 28, |K| = 5, |V| = 64

741,762 (261,953) 80,011 (249,217) 52,171 (244,171)

1 We approximate |Vr0| as |Vr| and |R| − 1 as |R| in the calculation of the number of variables and constraints.

Note that the numbers of binary variables and constraints are strongly in�uenced by the

number of damaged nodes |Vr|. Thus, small changes in the number of damaged nodes can have

a signi�cant impact on the size of the problem, and thus, on the di�culty of solving it. The

number of demand nodes |Vd| and crews |K| seem to have a smaller impact on the number

of variables and constraints when compared with |Vr|. As can be observed in Table 2, the

main shortcoming of MCSRP1 relies on the high number of binary variables, which is greatly
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in�uenced by the three-index variable Xkij and by the four-index variable Nr
lhij . In an e�ort to

reduce the number of binary variables, we eliminate one index from these variables to come out

with model MCSRP2. Furthermore, in model MCSRP2, we observe that variables Nlij and Peij

do not need to be de�ned for all the pairs of damaged nodes i − j. Thus, in model MCSRP3,

we de�ne these variables only for pair of damaged nodes i − j such that i < j. In addition, we

eliminate some symmetric solutions by prohibiting the restoration of unnecessary damaged nodes

in model MCSRP3. In general, the number of variables considered in the models is reduced from

MCSRP1 to MCSRP2 and from MCSRP2 to MCSRP3. Regarding the number of constraints,

from MCSRP2 to MCSRP3, several constraints de�ned for i > j were eliminated, but new

constraints were also added. In general, a smaller number of constraints in MCSRP3 is expected

compared to both MCSRP2 and MCSRP1. The computational results in Section 6.2 show that

there is no model unrestrictedly recommended for all situations, e.g., some models are better to

quickly return optimal solutions, whereas others are better to always �nd feasible solutions.

5. Properties and valid inequalities

In this section, we state a few properties of the problem and derive valid inequalities (VIs)

based on them. We divide the VIs into two groups. In Section 5.1, we show the VIs related to the

relief path decisions, while in Section 5.2, we present the VIs related to the crew scheduling and

routing decisions. The VIs related to the relief path decisions are the same for the three models,

while those related to routing decisions are speci�c for each model. For the sake of brevity, we

detail only the VIs for MCSRP1 in this section. The VIs related to the routing decisions for the

second and third formulations are presented in Appendix B.

5.1. VIs related to the relief path decisions

Multiple relief paths 0− i may be available to reach a demand node i. Let Pd
i be the set of

possible 0− i relief paths. We call Ep and Vp as the set of arcs and nodes used in path p ∈ Pd
i .

Similarly, Vrp and Vup are the set of damaged and undamaged nodes used in path p ∈ Pd
i . We

de�ne wp as the sum of the length of the arcs used in path p, i.e., wp =
∑

e∈Ep
`e. Since a

relief path p connecting the depot with a demand node i must fall within a prede�ned maximum

distance ldi , p is a feasible path if wp ≤ ldi . This condition is valid, even if ldi is set as a su�ciently

large number. We also de�ne θdpi as the accessibility time of the demand node i if path p is

selected to connect the depot with the demand node i and θrj as the restoration time of the

damaged node j.

Given two paths p, p′ ∈ Pd
i such that p 6= p′, we say that p dominates p′ if Vrp ⊆ Vrp′ and

wp ≤ ldi . In this case, p′ is a dominated path. For special cases where wp ≤ ldi , wp′ ≤ ldi and

Vrp = Vrp′ for p 6= p′, we can eliminate one of the paths, either p or p′, from set Pd
i . We de�ne

Sdi ⊆ Pd
i as the set of nondominated paths from the depot to demand node i. Given that Sdi

considers only nondominated paths, there are not two di�erent paths using the same damaged

nodes, i.e., Vrp 6= Vrp′ ∀p, p′ ∈ Sdi : p 6= p′. Finally, let Pd∗
i = {p ∈ Sdi | Vrp = ∅} be the set of

nondominated paths that do not visit any damaged node and p∗i be an element of set Pd∗
i . Using

the notation above, we state Propositions 1 and 2 as follows.
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Proposition 1. There is at least one optimal solution for MCSRP1 in which the paths used to

connect the depot with the demand nodes are nondominated paths. Such a solution satis�es the

following inequalities.

|Ep∗i |+ |V
u
p∗i
| =

∑
e∈Ep∗

i

Yei +
∑
j∈Vu

p∗
i

Vji, ∀ i ∈ Vd, p∗i ∈ Pd∗
i : Pd∗

i 6= ∅, (68)

(|E|+ |V|) · (|Vrp | −
∑
j∈Vrp

Vji) ≥
∑

e∈E\Ep

Yei +
∑

j∈V\Vp

Vji,∀ i ∈ Vd, p ∈ Sdi : Pd∗
i = ∅. (69)

Proof. Let p′ ∈ Pd
i be a feasible dominated path and assume that p′ is used to connect the

depot to the demand node i. The accessibility time of node i depends on the restoration time of

the damaged nodes in path p′. Then, θdp′i = max
j∈Vr

p′
θrj . Given that p′ is a dominated path, there

is one nondominated path p that dominates p′, i.e., Vrp ⊆ Vrp′ and wp ≤ ldi . Thus, p is also a

feasible path. Furthermore, max
j∈Vrp

θrj ≤ max
j∈Vr

p′
θrj since Vrp ⊆ Vrp′ . Consequently, θdpi ≤ θdp′i, and we

can select p instead of p′ without deteriorating the accessibility time of demand node i. The

selection of the nondominated paths over dominated paths is imposed with inequalities (68) and

(69). When there is a path p∗i , this path is the only nondominated path to reach demand node

i and can be �xed in the solution to MCSRP1 by using equations (68). If Pd∗
i 6= ∅, the term∑

j∈Vrp Vji = |Vrp | indicates that the damaged nodes of nondominated path p have been selected

to reach demand node i, and inequalities (69) prohibit the selection of nodes and arcs that are

not in the nondominated path p.

Proposition 2. If Pd∗
i = ∅, the following inequalities can be added to MCSRP1 to set lower

bounds for the accessibility time of the demand nodes:∑
j∈Ui

Vji ≥ 1, ∀ i ∈ Vd : Pd∗
i = ∅, (70)

Zd
i ≥ min

k∈K,j∈Ui
(ρ∗k0j + δkj), ∀ i ∈ Vd : Pd∗

i = ∅, (71)∑
j∈ni

Vji = |ni|,∀ i ∈ Vd : Pd∗
i = ∅, (72)

Zd
i ≥ Zr

j , ∀ j ∈ ni, i ∈ Vd : Pd∗
i = ∅, (73)

Zd
i ≥

∑
j∈Vr

min
k∈K,l∈Vr0:

l 6=j

{
ρ∗klj + δkj

|K|

}
· Vji,∀ i ∈ Vd : Pd∗

i = ∅, (74)

where ρ∗kij is the shortest time for crew k to travel from node i to node j; Ui =
⋃
p∈Sdi
Vrp contains

all the damaged nodes of the nondominated paths; and ni =
⋂
p∈Sdi
Vrp contains the damaged nodes

that are used in all the nondominated paths.

Proof. If Pd∗
i = ∅, it is clear that at least one damaged node j of the nondominated paths in Sdi

must be used in the relief path 0− i (inequalities (70)). In this case, some crew must arrive and

repair such damaged node j. We know that to repair any damaged node j with a given crew k,
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the crew must arrive at node j consuming at least some travel time ρ∗k0j and some repair time

δkj . In this way, by selecting the minimum travel time plus the repair time to repair one of the

damaged nodes of the nondominated paths in Sdi , inequalities (71) establish a lower bound for the
accessibility time of demand node i. If a node j exists in all the nondominated paths in set Sdi ,
such node must be necessarily used in the relief paths 0− i (inequalities (72)), and the demand

node i does not become accessible before the restoration of such damaged node j (inequalities

(73)). Finally, inequalities (74) state that all the damaged nodes that must be used in the paths

from the depot to the demand node i should be repaired before node i becomes accessible. Given

that we do not know the crew that will perform the restoration of each damaged node or the

paths used by the crews in advance, we select the shortest repair time plus the travel time to

arrive at the damaged nodes. Since any crew can be used to perform the restoration, the shortest

time is divided by the number of crews.

5.2. VIs related to the routing decisions

The VIs for the routing decisions are similar to those de�ned for the relief path decisions.

We de�ne Pr
ij as the set of possible i − j crew paths. Let tvkjp be the arrival time of crew k at

damaged node j ∈ Vrp in path p; twkjp be the waiting time of crew k at the damaged node j ∈ Vrp
in path p; and tkp be the total travel time of crew k in path p, i.e., tkp =

∑
e∈Ep

τke. We de�ne

Pr∗
kij (resp. Fr∗

kij) as the set of paths with the shortest travel time between nodes i and j with

crew k using (resp. not using) damaged nodes, i.e.,

Pr∗
kij = {p ∈ Pr

ij |tkp ≤ tkp′ ,∀p′ ∈ Pr
ij}, ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr,

Fr∗
kij = {p ∈ Pr

ij | Vrp = ∅ , tkp ≤ tkp′ ,∀p′ ∈ Pr
ij : Vrp′ = ∅}, ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr.

Given two paths p′, p ∈ Pr
ij : p 6= p′, we say that p dominates p′ for a crew k if Vrp ⊆ Vrp′ and

tkp ≤ tkp′ . For cases where Vrp = Vrp′ and tkp = tkp′ for p 6= p′, we can eliminate one of the paths,

either p or p′, from set Pr
ij . We de�ne Srkij ⊆ Pr

ij as the set of nondominated paths from node i

to node j using crew k. We also de�ne Dp as the set of paths using nodes of set Vrp that are not

dominated by p. In this way,

Dp = {p′ ∈ Srkij |Vrp ⊆ Vrp′ , tkp ≥ tkp′}, ∀p ∈ Srkij , k ∈ K, i ∈ Vr0 , j ∈ Vr.

Let p∗kij and f
∗
kij be the elements of sets Pr∗

kij and Fr∗
kij , respectively. Additionally, we de�ne

hp as the hth damaged node visited in path p, for h = 1, ..., H, where H = |Vrp |. In this way, Hp

denotes the last damaged node visited in path p. Let ρkij be the shortest travel time required for

crew k to travel from node i to node j without using damaged nodes. Based on this notation,

we state Propositions 3 and 4, which assume that crew k can repair both nodes i and j.

Proposition 3. There is at least one optimal solution for MCSRP1 in which the paths used by

crew k to travel from node i to node j are nondominated paths, where i and j are consecutive
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nodes in the schedule of crew k, i.e., Xkij = 1. Such a solution satis�es the following inequalities:∑
e∈Ef∗

kij

Peij +
∑

l∈Vu
f∗
kij

Nu
lij ≥ (|Ef∗kij |+ |V

u
f∗kij
|) ·Xkij , ∀k ∈ K, i ∈ Vr0 , j ∈ Vr : Fr∗

kij 6= ∅, tkf∗kij = tkp∗kij ,

(75)

(|E|+ |V|) · (1 + |Vrp | −Xkij −
∑
h∈R

∑
l∈Vrp

Nr
lhij) ≥

∑
e∈E\

⋃
p′∈Dp

Ep′

Peij +
∑

l∈V\
⋃

p′∈Dp

Vp′

Nu
lij ,

∀ k ∈ K, i ∈ Vr0 , j ∈ Vr, p ∈ Srkij : (Fr∗
kij = ∅) ∨ (Fr∗

kij 6= ∅, p 6= f∗kij , tkf∗kij > tkp∗kij ). (76)

Proof. We need to prove that given a dominated path p′, we can replace it by a nondominated

path p without increasing the restoration time of damaged node j. According to constraints (3)

and (4), the restoration time θrj of node j repaired by a given crew k that uses path p as crew

path i − j is calculated as θrj = θri + tkp + δkj if Vrp = ∅, and θrj = max{θri + tkp + δkj , t
w
kHpp

+

tvkHpp
+ ρkHpj + δkj} if Vrp 6= ∅. We focus on the case with Vrp 6= ∅, and the development for the

other case follows similarly. The arrival time tvkhpp at the hth damaged node in path p can be

computed as tvkhpp = tvk(h−1)pp
+ twk(h−1)pp

+ ρk(h−1)php . Then, recursively, t
v
kHpp

can be evaluated

as

tvkHpp =

h′=H−1∑
h′=1

twk(h′)pp
+

h′=H−1∑
h′=1

ρk(h′)p(h′+1)p
+ ρki1p + θri .

Then,

twkHpp + tvkHpp + ρkHpj = twkHpp +

h′=H−1∑
h′=1

twk(h′)pp
+

h′=H−1∑
h′=1

ρk(h′)p(h′+1)p
+ ρki1p + θri + ρkHpj .

Grouping similar terms, we obtain

twkHpp + tvkHpp + ρkHpj =
h′=H∑
h′=1

twk(h′)pp
+ tkp + θri =

∑
l∈Vrp

twklp + tkp + θri ,

in which tkp =
h′=H−1∑
h′=1

ρk(h′)p(h′+1)p
+ ρki1p + ρkHpj . Therefore, the calculation of θrj can be

expressed as

θrj = max{θri + tkp + δkj ,
∑
l∈Vrp

twklp + tkp + θri + δkj}. (77)

Now, let us consider a path p′ dominated by a nondominated path p. We have tkp ≤ tkp′

according to the de�nition. Then, θri + tkp + δkj ≤ θri + tkp′ + δkj . Additionally, since Vrp ⊆ Vrp′ ,
the use of path p′ implies waiting for the restoration of the nodes that belong to set Vrp and

waiting for the restoration of additional damaged nodes that belong to Vrp′ \ Vrp . Therefore,∑
l∈Vrp t

w
klp + tkp + θri + δkj ≤

∑
l∈Vr

p′
twklp′ + tkp′ + θri + δkj . Consequently, we can use p instead

of p′ without increasing the restoration time of node j. Inequalities (75)-(76) are analogous to
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inequalities (68)-(69) to force the selection of a nondominated path over dominated paths. If

Fr∗
kij 6= ∅ and tkp∗kij = tkf∗kij , f

∗
kij is the only nondominated path in set Srkij and can be �xed in the

solution to MCSRP1 with equations (75) if Xkij = 1. Inequalities (76) prevent the selection of

dominated paths over nondominated paths. If path p is a nondominated path and the damaged

nodes of path p are used to travel from node i to node j (
∑

h∈R
∑

l∈Vrp N
r
lhij = |Vrp |), inequalities

(76) prohibit the use of a path dominated by path p if Fr∗
kij = ∅ or if Fr∗

kij 6= ∅, p 6= f∗kij and

tkf∗kij > tkp∗kij .

Proposition 4. The following inequalities can be added to MCSRP1 to set lower bounds for the

restoration time of the damaged nodes.

Zr
j ≥ (tkp∗k0j

+ δkj) ·Xk0j +
∑
i∈Vr

((tkp∗k0i
+ δki + tkp∗kij + δkj) ·Xkij), ∀ k ∈ K, j ∈ Vr, (78)

Zr
j ≥ Zr

i + tkp∗kij + δkj −M · (1−Xkij), ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr. (79)

Proof. Inequalities (78) are based on the fact that any damaged node j considered in the schedule

of a given crew k must be reached by it using some path p. Although path p is unknown, if j is

the �rst node in the schedule of crew k (Xk0j = 1), tkp∗k0j
can be used as a lower bound for the

travel time in this path. Furthermore, if j is not the �rst node in the schedule of crew k, this

crew must spend additional time to arrive and repair some node i (tkp∗k0i
+ δki) before traveling

to node j. Inequalities (79) are similar to constraints (3) replacing the term
∑

e∈E τke ·Peij with
a lower bound for the travel time between nodes i and j (tkp∗kij ).

The number of nodes in set R can be rede�ned for each pair of nodes i and j based on the

number of damaged nodes of the nondominated paths. Thus, instead of R, we can use a set Rij
de�ned as follows:

Rij = {1, ..., max
p∈Srkij ,k∈K

|Vrp |}.

This rede�nition of R can drastically reduce the number of variables depending on the position

h because the use of fewer damaged nodes in the nondominated paths is expected.

5.3. Separation algorithms for the VIs

To generate the VIs related to relief path decisions, we need the estimation of sets Ui,Pd∗
i , ni,

and Sdi . Analogously, to generate the VIs related to routing decisions, we need to estimate sets

Pr∗
kij ,Fr∗

kij , and Srkij . Pd∗
i , ni,Pr∗

kij , and Fr∗
kij can be estimated by separation algorithms based

on the shortest path problem (SPP) and executed before solving the optimization models. For

instance, Pr∗
kij is found by solving the SPP between damaged nodes i and j over the original

graph G. Additionally, Fr∗
kij is evaluated by solving the SPP between damaged nodes i and j

over a graph G′, in which the damaged nodes l ∈ Vr : l 6= i, l 6= j and the arcs incident to them

are removed. Similarly, Pd∗
i is determined by solving the SPP between the depot and demand

node i over the same graph G′. Set ni can be determined by solving one SPP for each damaged

node l ∈ Vr. Basically, to know if a damaged node l is an element of ni, we remove node l and

its incident arcs from graph G, and the SPP between the depot and demand node i is solved. If
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there is a path from the depot to demand node i with a cost less than or equal to ldi , node l is not

an element of ni. Otherwise, we insert node l into ni. Set ni can also be found as ni =
⋂
p∈Sdi
Vrp

if set Sdi is available. In Appendix E, we detail the separation algorithms used to generate sets

Pd∗
i ,Pr∗

kij ,Fr∗
kij , and ni.

The estimation of Ui,Sdi and Srkij is not trivial and may require the development of specialized
algorithms that are not the focus here. Thus, we approximate these sets in such a way to maintain

the inequalities valid, although they might be weaker. For instance, instead of considering all

the nondominated paths in Srkij , we consider a subset Ŝrkij ⊆ Srkij with some nondominated

paths. The algorithm used to �nd subset Ŝrkij is outlined in Algorithm 1. First, we �nd the

shortest path p from the depot to demand node i considering the original graph G. Path p is

a nondominated path since it is the path with the smallest tkp. Then, we remove the damaged

nodes Vrp used in path p from graph G, and the SPP is solved again. The new path p′ is a

path that is nondominated by p because it uses di�erent damaged nodes. Furthermore, p′ is the

shortest path using nodes Vrp′ and dominates other paths using such nodes but at a higher cost.

The process is repeated iteratively until the shortest path algorithm cannot �nd more paths that

are feasible. A similar idea can be used to �nd a subset Ŝdi ⊆ Sdi .

Algorithm 1 Algorithm to �nd the set Ŝrkij .
Input:

Graph G = (V, E); Indices i, j, k; Parameter τke, ∀e ∈ E;
Output:

Paths p ∈ Ŝrkij ;
1: Initialization:
2: tkp := 0;
3: while tkp < +∞ do

4: Find the shortest path p from node i to node j;
5: if path p exists then
6: tkp :=

∑
e∈Ep

τke;

7: Save path p in set Ŝrkij ;
8: Remove nodes in Vr

p and the arcs incident to them from graph G;
9: else

10: tkp := +∞;
11: end if

12: end while

13: return set Ŝrkij ;

Set Ui is simply considered as Ui = Vr, which maintains the validity of the inequalities

involving Ui. Finally, since we do not have the exact set Srkij , Rij is approximated as follows:

Rij = {1, ..., max
p∈Pr

ij

|Vrp |},

where max
p∈Pr

ij

|Vrp | is equal to the number of nodes in the path with more damaged nodes in Pr
ij .

Such a calculation can be performed with an algorithm to �nd the elementary longest path (the

one with more damaged nodes) from node i to node j. We use an integer linear programming

model from the literature (Bui et al., 2016) to �nd such a path.
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6. Computational results

The goal of this section is twofold: �rst, to compare the performance of the proposed for-

mulations and valid inequalities (Section 6.2); second, to analyze the solutions of the problem

in a practical case based on a real-world natural disaster (Section 6.3). From this analysis, we

illustrate the implication of the multiple crews in the problem and provide managerial insights

that might be useful in practice. All the algorithms were coded in the C++ programming lan-

guage and run on a PC with an AMD Opteron 6172 processor with 16.0 GB of RAM and a

single thread. The MIP models were solved by the IBM CPLEX Optimization Solver 12.8. To

avoid running out of memory, we allow CPLEX to store the branch-and-bound tree in a �le. The

stopping criterion was either the elapsed time exceeding the time limit of 3,600 seconds or the

optimality gap being smaller than 10−4. All the remaining parameters of CPLEX were kept at

their default values.

6.1. Instance and experiment description

The models were tested using two di�erent sets of instances. The �rst set (set L) is derived

from the benchmark instances for the SCSRP. We selected the �rst 12 classes of instances used

in Maya-Duque et al. (2016) and Moreno et al. (2019). Originally, the instances were proposed

by Maya-Duque et al. (2016) considering di�erent proportions of damaged arcs in randomly

generated networks. For each damaged arc, the authors included one or more damaged nodes in

the middle of some arcs. For each class, we consider 12 instances. The second set of instances

(set CS) is based on a real network a�ected by a disaster in the State of Rio de Janeiro in Brazil.

This disaster has been studied before in the literature (Alem et al., 2016; Moreno et al., 2016,

2018) but with a di�erent focus. The authors considered some damaged arcs along the network

for di�erent disaster scenarios, but they did not focus on the restoration of such arcs. Six main

highways and 13 main cities were a�ected by this disaster. Although the highways may have been

a�ected in more than one point, we consider some instances assuming one damaged node in each

one of the a�ected highways. Additionally, we generated instances based on the original network

of the disaster but randomly selected the location of the damaged nodes. In this respect, we

generate instances with 6, 10 and 14 damaged nodes. Further details on the instance generation

are provided in Appendix C.

Repair and travel times for the multiple crews were generated based on the literature (Taillard,

1999). They are stated as τke = α1
kτ
′
e and δkj = α2

kδ
′
j , where α

1
k and α2

k are travel and repair

factors randomly generated either in the interval [0.4, 1.0] or in the interval [1.0, 2.0], while

δ′j and τ
′
e are the repair and travel times in the SCSRP, respectively. We generate the velocity

factors in such a way that no single crew is much better or worse than the others. We also

consider that the crews with heavier machinery may perform a faster restoration but may spend

more time arriving at the damaged nodes. Thus, the crew with a travel factor generated in

the interval [0.4, 1.0] has a repair factor generated in the interval [1.0, 2.0], and vice versa.

Table 3 shows the main characteristics of the proposed instances. The �rst crew has factors

α1
1 = α2

1 = 1.0. In this way, we keep the travel and repair times of this crew as those used in

the SCSRP. Additionally, the crews have di�erent factors over the classes of instances. There
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are 144 instances from the literature and 114 instances based on the real-world case. We run

experiments with 1, 3 and 5 crews, totaling 774 instances.

Table 3: Set of instances.

Instance Travel (repair) factors of the crews1 Demand Damaged Total Total Total
class Crew 1 Crew 2 Crew 3 Crew 4 Crew 5 nodes nodes nodes arcs instances
L1 1.0 (1.0) 0.7 (1.2) 1.5 (0.7) 0.7 (1.3) 1.8 (0.9) 15 1 to 9 21 to 29 40 to 48 12
L2 1.0 (1.0) 0.7 (1.9) 1.7 (0.6) 0.9 (1.7) 1.3 (0.8) 15 1 to 9 21 to 29 38 to 46 12
L3 1.0 (1.0) 0.6 (2.0) 1.1 (0.4) 0.7 (1.6) 1.3 (0.9) 15 1 to 9 21 to 29 38 to 46 12
L4 1.0 (1.0) 0.7 (1.8) 1.6 (0.9) 0.9 (1.4) 1.6 (0.9) 19 2 to 10 27 to 35 42 to 50 12
L5 1.0 (1.0) 0.9 (1.8) 1.1 (0.6) 0.7 (1.8) 1.4 (0.6) 19 1 to 9 26 to 34 38 to 48 12
L6 1.0 (1.0) 0.8 (1.7) 1.8 (0.4) 0.5 (2.0) 1.8 (0.9) 19 1 to 9 26 to 34 40 to 48 12
L7 1.0 (1.0) 0.4 (1.9) 1.7 (0.6) 0.8 (1.6) 1.1 (0.8) 24 4 to 20 34 to 50 87 to 103 12
L8 1.0 (1.0) 0.8 (1.7) 1.4 (0.9) 0.7 (1.1) 1.6 (0.6) 24 4 to 22 34 to 52 93 to 111 12
L9 1.0 (1.0) 0.7 (1.5) 1.7 (0.9) 0.8 (1.9) 1.9 (0.5) 24 4 to 21 34 to 51 88 to 105 12
L10 1.0 (1.0) 0.7 (1.4) 1.4 (0.8) 0.6 (1.1) 1.4 (0.6) 28 5 to 29 40 to 64 123 to 147 12
L11 1.0 (1.0) 0.6 (1.3) 1.3 (0.5) 0.8 (1.1) 1.2 (0.9) 28 5 to 28 40 to 63 120 to 143 12
L12 1.0 (1.0) 0.5 (1.4) 1.6 (0.5) 0.9 (2.0) 1.8 (0.4) 28 5 to 28 40 to 63 118 to 141 12
CS0 1.0 (1.0) 0.7 (1.2) 1.5 (0.7) 0.7 (1.3) 1.8 (0.9) 13 6 66 95 6
CS1 1.0 (1.0) 0.7 (1.2) 1.5 (0.7) 0.7 (1.3) 1.8 (0.9) 13 6 to 14 66 to 74 95 to 103 18
CS2 1.0 (1.0) 0.7 (1.9) 1.7 (0.6) 0.9 (1.7) 1.3 (0.8) 13 6 to 14 66 to 74 95 to 103 18
CS3 1.0 (1.0) 0.6 (2.0) 1.1 (0.4) 0.7 (1.6) 1.3 (0.9) 13 6 to 14 66 to 74 95 to 103 18
CS4 1.0 (1.0) 0.7 (1.8) 1.6 (0.9) 0.9 (1.4) 1.6 (0.9) 20 6 to 14 66 to 74 95 to 103 18
CS5 1.0 (1.0) 0.9 (1.8) 1.1 (0.6) 0.7 (1.8) 1.4 (0.6) 20 6 to 14 66 to 74 95 to 103 18
CS6 1.0 (1.0) 0.8 (1.7) 1.8 (0.4) 0.5 (2.0) 1.8 (0.9) 20 6 to 14 66 to 74 95 to 103 18
Total 258 · 3 = 774
1 Values for α1

k(α2
k). For instances with |K| < 5 consider the �rst |K| crews.

The computational experiments considering the proposed models and valid inequalities were

conducted in four phases, as presented in Table 4. First, we run the three formulations with-

out including any valid inequality. Second, we run them all but include all the devised valid

inequalities. Third, we run only formulation MCSRP3 with some of the VIs. The objective is

to verify the impact of the di�erent types of VIs on the performance of the formulations. In

this respect, VIs were divided into four groups: (VIs1) VIs to set lower bounds for variables Zd
i

and Vji; (VIs2) VIs to impose and select nondominated relief paths over dominated relief paths;

(VIs3) VIs to set lower bounds for variables Zr
i ; (VIs4) VIs to impose and select nondominated

crew paths over dominated crew paths. Finally, we apply the graph reduction strategy proposed

by Moreno et al. (2019) to improve the performance of the MRRP3+VIs approach. The graph

reduction consists of solving the problem over a graph with a reduced number of nodes, thus

deriving lower bounds for the variables of the original problem. It relies on the elimination of

intersection nodes and arcs that are not directly connected to either damaged or demand nodes.

The reduced graph is commonly built by splitting the set of damaged nodes into subsets accord-

ing to an initial solution. Since we do not resort to trivial initial solutions, the damaged nodes

are labeled from 1 to |Vr|, and the subsets are built by selecting the nodes in increasing order of

the label. We consider reduced graphs with 4 damaged nodes, which can be easily solved by the

proposed formulations. A description of the graph reduction strategy is presented in Appendix

D.

6.2. Computational performance of the mathematical formulations

In this section, we analyze the computational performance of the proposed models and valid

inequalities. First, we compare the three MCSRP formulations (MCSRP1, MCSRP2, MCSRP3)

with and without the VIs. Figure 3 presents the performance pro�les (Dolan and Moré, 2002)

for the MCSRP models based on the optimality gap for the considered instances. The optimality

gap is computed as gap = ZU−ZL

ZU , in which ZU is the upper bound or cost of the best integer
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Table 4: Solution strategies.
Strategy Description
MCSRP1 First MCSRP formulation.
MCSRP2 Second MCSRP formulation.
MCSRP3 Third MCSRP formulation.

MCSRP1+VIs First MCSRP formulation + all VIs.
MCSRP2+VIs Second MCSRP formulation + all VIs.
MCSRP3+VIs Third MCSRP formulation + all VIs.
MCSRP3+VIs1 Third MCSRP formulation + VIs (70)-(74).
MCSRP3+VIs2 Third MCSRP formulation + VIs (68),(69).
MCSRP3+VIs3 Third MCSRP formulation + VIs (B.3),(B.4).
MCSRP3+VIs4 Third MCSRP formulation + VIs (B.5)-(B.8).
MCSRP3+VIs* Third MCSRP formulation + all VIs + graph reduction.

solution and ZL is the lower bound. Given a set P of instances and a set F of solution methods,

let gapfp be the gap of the solution of instance p solved by method f . The value P (f, q) (y-

axis) when q > 0 (x-axis) indicates the fraction of instances for which a strategy f provides

solutions with a gap within a factor of 2q of the best obtained gap, i.e., the fraction of instances

for which gapfp + ε ≤ 2q · min
f ′∈F
{gapf ′p + ε}, where ε = 0.01 is a near-zero value. The value

of P (f, q) when q = 0 is the fraction of instances for which the strategy f reached the best

gap. For example, the red asterisk (*) in Figure 3 indicates that for 92% of the instances,

strategy MCSRP1+VIs provides solutions with gaps within a factor of 20.54 (1.45) of the best

gap. Indeed, gapfp+ε ≤ 1.45·min
f ′∈F
{gapf ′p+ε} for 92% of the instances, with f = MCSRP1+VIs

and F = {MCSRP1, MCSRP2, MCSRP3, MCSRP1+VIs, MCSRP2+VIs, MCSRP3+VIs}.
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Figure 3: Performance pro�les based on gap for the MCSRP formulations.

Note that the VIs signi�cantly improve the computational performance of the three formu-

lations. Without the VIs, models MCSRP1, MCSRP2, and MCSRP3 �nd the best gap for

54.65%, 54.39%, and 54.52% of the instances, respectively. When the inequalities are included,

the percentage of instances with the best gap increases to 86.69%, 82.04%, and 79.32%, re-

spectively. With the VIs, model MCSRP1 demonstrates good performance in approximately

92% of the considered cases, but it presents the worst convergence when all the instances are
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considered. MCSRP2+VIs and MCSRP3+VIs showed a more stable convergence, even though

they achieved the best gap for a smaller number of instances when compared to MCSRP1+VIs.

MCSRP3 outperformed MCSRP2, both with and without the VIs.

Table 5 shows the number and percentage of instances for which CPLEX found feasible solu-

tions (#feas, %feas), the number and percentage of instances that CPLEX solved to optimality

(#opt, %opt), the average elapsed time in seconds (Avg. time), and the average number of

nodes processed in the branch-and-cut tree (nodes B&C). Tables F.9 and F.10 in Appendix F

present additional results of the three models with and without the VIs for instances with dif-

ferent numbers of crews. For all models, the elapsed time is signi�cantly reduced by the VIs.

On average, for model MCSRP1 (MCSRP2, MCSRP3) the elapsed time is reduced by 51.82%

(51.30%, 41.42%) in set L and 52.05% (29.52%, 23.80%) in set CS. The impact of the VIs is more

pronounced in the CS instances. For example, the number of instances solved to optimality with

model MCSRP3 in set CS increased 80.87% with the VIs, while in set L, it increased 18.36%.

Table 5: Average results of the MCSRP formulations.
Set L (432 instances) Set CS (342 instances)

Solution Avg. time Avg. time Nodes
method #feas %feas #opt %opt (seconds) #feas %feas #opt %opt (seconds) B&C1

MCSRP1 365 84.49 316 73.15 1,065 121 35.38 113 33.04 2,427 24,078
MCSRP2 379 87.73 300 69.44 1,170 126 36.84 113 33.04 2,372 30,950
MCSRP3 381 88.19 305 70.60 1,151 126 36.84 115 33.63 2,362 17,566

MCSRP1+VIs 426 98.61 376 87.04 512 316 92.40 242 70.76 1,194 10,571
MCSRP2+VIs 432 100.00 373 86.34 570 328 95.91 209 61.11 1,590 26,020
MCSRP3+VIs 432 100.00 361 83.56 674 342 100.00 208 60.82 1,718 68,565
1 Values based on the feasible solutions. Values for MCSRP1, MCSRP2, and MCSRP3 are not representative.

In both sets of instances, L and CS, MCSRP1 outperformed MCSRP2 and MCSRP3 re-

garding the number of optimal solutions, but it had di�culty in �nding feasible solutions in

more cases. Eliminating some symmetric solutions in the third formulation was e�ective in

�nding feasible solutions for all the considered instances within the time limit, but the num-

ber of solutions that proved optimal was smaller than in MCSRP1+VIs. The e�ectiveness of

MCSRP3+VIs in �nding feasible solutions appeared to be related to the number of nodes that

can be processed in the B&C tree, which is signi�cantly higher when solving MCSRP3+VIs

compared to the other two formulations. For the instances based on the real-world disaster af-

termath (set CS), model MCSRP1+VIs is 30.54% faster than MCSRP3+VIs and solves 14.05%

more instances to optimality, although it fails to �nd feasible solutions in 7.6% of the cases.

In contrast, MCSRP3+VIs �nds feasible solutions for all CS instances. Evidently, there is a

trade-o� that can be explored in practical situations according to preferences or necessities of

the decision-maker. On the one hand, MCSRP1+VIs is better at �nding optimal solutions for

some instances quickly, while it struggles to �nd feasible solutions in some other instances. On

the other hand, MCSRP3+VIs always �nds feasible solutions (many good-quality ones), but

optimality certi�cate is slightly compromised. The second model presents a balance between

the �rst and the third models. Regarding MCSRP1+VIs, MCSRP2+VIs returns more feasible

solutions at the expenses of increased computational times, and fewer solutions proven optimal;

whereas regarding MCSRP3+VIs, MCSRP2+VIs is faster and provides more optimal solutions,

even though it �nds fewer feasible solutions.
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Figure 4 presents the performance pro�les based on the optimality gap to compare how the

di�erent valid inequalities a�ect the performance of MCSRP3. The impact of the di�erent VIs

in the performance of models MCSRP1 and MCSRP2 is similar. Notice that the performance

pro�les did not converge to P (f, q) = 1, indicating that none of the compared strategies could �nd

feasible solutions for all the considered instances. The VIs with the highest impact on the gap of

the solutions are those used to impose and select nondominated relief paths over dominated relief

paths (VIs2), which found feasible solutions in 98.71% of the cases. The fraction of instances

solved with the best gap increased from approximately 60% to 88% when the VIs2 were included.

The VIs4, whose goal is to impose and select nondominated crew paths over dominated crew

paths, also had a relevant impact on the gap. VIs2 and VIs4 helped to signi�cantly reduce

the number of solutions that needed to be explored by cutting o� solutions with nondominated

paths. VIs1 and VIs3 helped to improve the linear relaxation of the problem by setting lower

bounds for the accessibility (Zd
i ) and restoration (Zr

j ) time. VIs1 had a more pronounced impact

than VIs3 because the accessibility time is directly penalized in the objective function, while the

restoration time of a given damaged node i does not directly a�ect the cost of the problem if

node i is not considered in some relief path.
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Figure 4: Performance pro�les based on gap for the model MCSRP3 with di�erent type of VIs.

Table 6 compares the average results of MCSRP3+VIs and the same strategy applying the

graph reduction strategy (MCSRP3+VIs*). Additional results of the MCSRP3+VIs and MC-

SRP3+VIs* are presented in Tables F.11 and F.12 in Appendix F. The graph reduction strategy

improved the average upper, lower bound and gap of the solutions. The average gap was reduced

from 5.75% to 3.45% for L instances and from 9.70% to 4.71% for CS instances. The average

elapsed time was slightly longer when the graph reduction strategy was applied because of the

prepossessing step required to reduce and solve the reduced graphs. On average, the instances

based on the real case were harder to solve than the instances from the literature. The average

time, for example, was 719 seconds with the MCSRP3+VIs* strategy for the L instances, while
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the average time of the strategy MSCRP3+VIs* for CS instances was 1,810 seconds. Further-

more, the average gap was smaller in the instances of set L. Moreover, on average, the instances

at a higher number of crews were harder to solve.

Table 6: Average results of the MCSRP3+VIs and MCSRP3+VIs* strategies.
Ins- Solution Avg. upper Avg. lower Avg. gap Avg. time
tance method #Crew #Ins #Opt %Opt bound bound (%) (seconds)

Set L

MCSRP3 + VIs

1 144 126 87.50 11,251 9,231 5.42 578.49
3 144 117 81.25 5,562 4,420 5.47 734.53
5 144 118 81.94 4,734 3,725 6.35 710.60

MCSRP3 + VIs*

1 144 126 87.50 11,104 9,810 3.68 633.61
3 144 129 89.58 5,321 4,756 3.11 761.51
5 144 128 88.89 4,390 3,977 3.54 763.07

Set CS

MCSRP3 + VIs

1 114 85 74.56 127,720 115,219 5.26 1,247.62
3 114 63 55.26 80,824 64,543 10.78 1,884.45
5 114 60 52.63 72,640 59,176 13.05 2,024.23

MCSRP3 + VIs*

1 114 86 75.44 126,348 116,578 4.16 1,396.17
3 114 84 73.68 73,970 69,258 4.18 1,950.79
5 114 71 62.28 69,881 63,952 5.79 2,083.51

Finally, Figure 5 presents the percentage of CS instances solved to optimality and the average

elapsed times for di�erent values of β. β is the factor by which the distance of a relief path 0− i
can increase in relation to its shortest distance dist0i. Then, ldi = (1+β)·dist0i, and thus larger β
values imply larger maximum distances ldi in the relief paths. As the results indicate, the larger

the β's, the easier to solve the corresponding instance. In fact, when the constraints related

to the maximum distances are relaxed (β = ∞), all instances are solved to optimality and the

average elapsed time decreases more than 88% in relation to the case with β = 5. Basically, by

allowing larger values for ldi , it is rather straightforward to �nd non-dominated relief paths, which

increases the e�ectiveness of the inequalities proposed in Property 1. Also, with larger ldi values,

the non-dominated relief paths tend to use fewer damaged nodes, thus reducing the number

of repaired nodes and, consequently, simplifying the crew scheduling and routing decisions. In

general, MCSRP3 + VIs* is able to return good-quality solutions within 1 hour of time limit

for most of the practical instances, which is a reasonable time considering that the multicrew

approach can signi�cantly reduce the accessibility time of the demand nodes, as shown in the

next section.
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Figure 5: Proportion of optimal instances and average elapsed times for di�erent values of β.

6.3. Practical Relevance: Road restoration in the Megadisaster of Rio de Janeiro in 2011

We now analyze our case study based on the so-called megadisaster of the Serrana Region in

Rio de Janeiro, Brazil. This event that occurred in 2011 was characterized by heavy rain, �oods,

and landslides, compromising water, electricity, and transportation infrastructure systems. It
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claimed hundreds of lives and a�ected thousands of people (Rio de Janeiro, 2011). Figure 6 shows

the main cities and highways a�ected by the disaster, according to the Legislative Assembly of

Rio de Janeiro (Rio de Janeiro, 2011). Figure 6 reveals that some cities (PE, TE, AR, TR,

SA, SU, SJ) can be connected to the depot without using damaged nodes. For these cities, the

proposed formulations found the optimal relief paths whose accessibility time was zero. For the

other cities (NF, CO, BJ, MA, SS, SM), at least one damaged node have to be used to de�ne

the relief paths.

Affected cities: Nova Friburgo (NV), Cordeiro (CO), Macuco (MA), Bom Jardim (BJ), São Sebastião do Alto (SS), Santa Maria Madalena (SM), 
Petrópolis (PE), Teresópolis (TE), Areal (AR), São José do Vale do Rio Preto (SJ), Três Rios (TR), Sapucaia (SA), Sumidouro (SU).

Figure 6: Main cities and highways a�ected by the disaster.

A total of 342 CS instances were derived from the real case disaster by considering di�erent

number of damaged nodes, crews, and β values, as described in Appendix C. The average results

of the CS instances are presented in Table 7. This table shows the total cost; the proportion of

nodes repaired (% rep); the proportion of the repaired nodes that are used only in the relief paths

(% rep relief paths), i.e., repaired nodes not used in the middle of crew paths; the proportion of

required crews (% crew used); the proportion of demand nodes that need at least one damaged

node to become accessible (% demand nodes); the best-case, the worst-case and the average

accessibility time between demand nodes (best, worst, mean); the total accessibility time of the

demand nodes (total); the di�erence between the worst-case and the best-case accessibility time

(range = worst - best); and the average distance of the relief paths in kilometers.

The average proportion of nodes repaired was 42.85%. Thus, not all damaged nodes must be

repaired to recover the accessibility of the network. Repaired damaged nodes are used in relief

paths and/or crew paths. On average, 87.77% of the repaired damaged nodes were used in the

relief paths only. The other repaired nodes were used in both the crew paths and the relief paths.

As expected, the problem prioritizes the restoration of the damaged nodes in the relief paths.

The proportion of repaired damaged nodes is not signi�cantly a�ected by the number of crews.

In fact, although the average proportion of repaired damaged nodes increases by 2.13% from

42.33 with 1 crew to 43.23 with 5 crews, for some instances the number of repaired damaged

nodes decreases. This is the case of instance with β = 5 in class CS0, represented by the network
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Table 7: Average results for di�erent number of crews, damaged nodes, and β values.
Damaged β Total % rep re- % crew % demand Accessibility time (hours)2 Dist. relief
nodes # crew (%) cost % rep lief paths1 used1 nodes Best Worst Mean Total Range paths (km)

6

1

5 151,737 73.81 91.43 100.00 80.00 2.93 17.23 9.97 136.40 14.30 86.54
10 150,029 69.05 91.43 100.00 76.70 2.93 16.53 9.86 134.39 13.60 86.67
25 135,733 64.29 94.29 100.00 72.36 2.87 16.18 7.60 93.95 13.30 91.03
50 49,487 40.48 88.89 100.00 52.80 2.23 7.20 3.65 37.43 4.97 100.92
100 44,736 40.48 88.89 100.00 42.36 2.23 7.20 3.26 25.62 4.97 159.87
∞ 0.00 0.00 NA NA 0.00 0.00 NA NA NA NA 288.31

3

5 88,574 71.43 90.71 90.48 80.00 1.99 7.40 4.66 61.50 5.41 86.07
10 88,279 69.05 87.86 85.71 76.70 1.99 7.29 4.63 59.57 5.31 86.49
25 80,576 66.67 90.00 85.71 72.36 1.92 7.51 4.17 50.24 5.59 90.71
50 35,647 40.48 94.44 77.78 52.80 1.06 3.47 2.26 24.28 2.41 101.37
100 33,146 40.48 94.44 77.78 42.36 1.71 3.52 2.25 17.75 1.81 164.84
∞ 0.00 0.00 NA NA 0.00 0.00 NA NA NA NA 288.31

5

5 83,994 71.43 90.71 68.57 80.00 1.92 6.24 4.15 53.38 4.32 86.09
10 83,715 69.05 90.71 62.86 76.70 1.92 6.24 4.15 51.66 4.32 86.47
25 74,876 66.67 92.86 60.00 72.36 1.92 6.14 3.68 42.90 4.22 90.55
50 35,413 42.86 83.33 53.33 52.80 1.06 3.47 2.21 23.87 2.41 101.24
100 32,748 40.48 94.44 53.33 42.36 1.71 3.47 2.23 17.58 1.77 165.63
∞ 0.00 0.00 NA NA 0.00 0.00 NA NA NA NA 288.31

10

1

5 231,130 63.33 81.49 100.00 89.87 4.51 28.36 15.44 231.52 23.85 87.44
10 226,349 61.67 81.19 100.00 89.87 4.51 28.40 14.53 217.88 23.89 88.66
25 207,713 53.33 82.22 100.00 89.87 3.15 24.21 10.84 157.17 21.06 91.54
50 92,286 38.33 91.67 100.00 67.50 2.77 12.36 6.53 70.65 9.59 104.66
100 82,477 35.00 87.50 100.00 55.32 2.77 11.15 5.52 46.99 8.38 168.40
∞ 16,058 6.67 100.00 100.00 35.45 1.23 1.23 1.23 7.45 0.00 379.33

3

5 125,001 63.33 81.09 100.00 89.87 2.06 11.02 6.34 93.67 8.96 87.58
10 123,009 61.67 80.79 100.00 89.87 2.06 11.02 5.87 87.84 8.96 87.89
25 113,911 55.00 76.11 100.00 89.87 2.06 9.22 4.99 74.59 7.15 91.50
50 58,984 41.67 80.00 83.33 67.50 1.95 6.01 3.49 38.90 4.07 104.53
100 52,608 35.00 84.72 77.78 55.32 1.95 5.70 3.29 27.57 3.75 169.99
∞ 7,152 6.67 100.00 33.33 35.45 0.92 0.92 0.92 3.64 0.00 381.81

5

5 117,847 63.33 81.09 90.00 89.87 2.02 8.78 5.51 81.02 6.76 87.03
10 115,892 61.67 86.35 86.67 89.87 2.01 8.80 5.09 75.45 6.79 87.95
25 105,184 56.67 82.22 83.33 89.87 1.97 7.83 4.33 63.42 5.86 91.28
50 58,061 41.67 75.83 63.33 67.50 1.92 5.07 3.32 37.16 3.15 104.44
100 51,917 35.00 70.83 56.67 55.32 1.92 4.55 3.17 26.33 2.63 175.49
∞ 7,152 6.67 100.00 20.00 35.45 0.92 0.92 0.92 3.64 0.00 369.50

14

1

5 259,270 57.14 81.35 100.00 90.71 3.82 34.96 18.81 281.70 31.14 86.91
10 255,115 55.95 87.37 100.00 90.71 3.82 35.36 17.69 265.60 31.54 88.73
25 227,120 40.48 83.33 100.00 89.87 3.87 25.34 12.25 173.00 21.47 94.79
50 87,220 29.76 86.11 100.00 74.68 2.02 12.49 6.12 76.06 10.46 104.62
100 79,207 27.38 91.67 100.00 64.17 2.02 11.45 5.46 56.55 9.43 144.62
∞ 16,317 4.76 100.00 100.00 35.45 1.24 1.24 1.24 7.55 0.00 417.68

3

5 152,538 59.52 78.41 100.00 90.71 2.39 13.82 8.12 119.36 11.43 87.09
10 146,287 57.14 83.50 100.00 90.71 2.60 14.36 7.80 115.61 11.75 88.03
25 129,439 42.86 86.35 100.00 89.87 1.69 10.92 6.00 87.77 9.23 93.30
50 57,273 30.95 91.67 88.89 74.68 1.52 6.48 3.81 48.86 4.96 105.80
100 51,413 27.38 87.50 83.33 64.17 1.52 6.60 3.49 36.96 5.08 149.84
∞ 7,255 4.76 100.00 33.33 35.45 0.92 0.92 0.92 3.68 0.00 393.31

5

5 137,891 58.33 83.37 90.00 90.71 1.99 12.82 6.95 102.79 10.83 87.11
10 136,825 55.95 82.90 86.67 90.71 1.99 11.69 6.69 99.29 9.71 87.85
25 117,443 45.24 83.97 83.33 89.87 1.64 10.71 5.21 75.74 9.06 93.31
50 56,273 30.95 85.56 63.33 74.68 1.52 5.41 3.59 46.30 3.89 104.35
100 49,479 27.38 95.83 50.00 64.17 1.52 5.57 3.17 33.62 4.05 146.69
∞ 7,255 4.76 100.00 20.00 35.45 0.92 0.92 0.92 3.68 0.00 434.01

Average 1 128,444 42.33 88.75 100.00 66.54 2.88 17.11 8.82 118.82 14.23 148.37
per number 3 75,061 43.00 87.51 83.38 66.54 1.78 7.42 4.30 55.99 5.64 147.69
of crews 5 70,665 43.23 87.06 64.20 66.54 1.70 6.39 3.84 49.29 4.69 149.29

5 149,776 64.63 84.41 93.23 86.86 2.62 15.63 8.89 129.04 13.00 86.87
Average 10 147,278 62.35 85.79 91.32 85.76 2.65 15.52 8.48 123.03 12.87 87.64
per 25 132,444 54.58 85.71 90.26 84.04 2.34 13.12 6.56 90.98 10.77 92.00
β (%) 50 58,961 37.46 86.39 81.11 64.99 1.78 6.88 3.89 44.83 5.10 103.55
values 100 53,081 34.29 88.43 77.65 53.95 1.93 6.58 3.54 32.11 4.65 160.60

∞ 6,799 3.81 100.00 51.11 23.63 1.03 1.03 1.03 4.94 0.00 360.06
Average all 91,390 42.85 87.77 82.53 66.54 2.12 10.31 5.65 74.70 8.19 148.45
1 Values computed considering only the solutions with at least one repaired damaged node.
2 Values computed considering only the demand nodes with accessibility time higher than 0.
NA: Not available.

given in Figure 6 and with optimal schedule shown in Figure 7.

Note in Figure 7 that with one crew, three damaged nodes (RJ-130, RJ-116, RJ-150) were
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Figure 7: Scheduling of the crews.

repaired to restate the accessibility of the network after 8.15 hours. With three crews, the

total time to restate the accessibility of the network decreased to 4.75 (41.71%) hours. Only

two damaged nodes (RJ-130, RJ-148) were repaired in this case. With �ve crews, the solution

indicates the restoration of two damaged nodes (RJ-130, RJ-116), and the time to restate the

accessibility of the network was 4.03 hours, a reduction of 15.15% in relation to the case with

3 crews. A trade-o� can be observed between increasing the number of crews, which may have

a logistic cost in practice, and reducing the time to restore the accessibility of the demand

nodes. However, at some point, increasing the number of crews may not signi�cantly a�ect the

accessibility time of the demand nodes. For the instance with β = 5% in class CS0, for example,

no signi�cant improvement was observed when �ve additional crews with the same characteristics

than the �rst �ve crews were considered. Consequently, when the number of crews increases,

more crews can become idle. Note in Table 7 that the utilization of the crews decrease from

100% with one crew to 64.20% with 5 crews.

Insight 1. There is a remarkable trend in avoiding the damaged nodes not only in the relief

paths but also in the route of the crews; thus, only a (usually) small number of damaged nodes

end up being repaired to restore the accessibility of the network. Consequently, a further increase

in the number of crews is not necessarily followed by a relevant reduction in the accessibility time.

In spite of it, if the decision-maker hires more crews, it is likely that some of them will become

idle.

More crews evidently cause a decrease in the accessibility time and, consequently, in the

worst-case accessibility time. However, the impact concerning the average accessibility time

was less pronounced when we have increasingly more crews, especially in networks with fewer

damaged nodes. For example, the average accessibility time with 6 damaged nodes and β = 5%

decreased from 9.97 with 1 crew to 4.66 (53.26%) with three crews, while the reduction in the

average accessibility time from 3 to 5 crews was 10.94%. Additionally, our results reveal that

the multiple crews have a more pronounced e�ect in reducing the worst-case accessibility time

between the demand nodes. For the instances with 6 damaged nodes and β = 5%, the reduction

in the worst-case accessibility time was 15.68% from three to �ve crews, while the reduction in

the best-case accessibility time was 3.52%. Figure 8 shows the accessibility times of the instance

with β = 5% in class CS0 for di�erent numbers of crews. For this particular case, the worst-case

accessibility was reduced 50.55%, from 8.15 hours with 1 crew to 4.03 hours with 5 crews.
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Figure 8: Nodes used in the relief paths to connect the depot with the demand nodes.

Insight 2. Multiple crews help to decrease the accessibility time and to achieve more equitable

accessibility times across the di�erent demand nodes, which is a desirable feature in post-disaster

settings.

Figure 8 also illustrates the damaged nodes used in the relief paths to reach the demand nodes.

For instance, the relief path to reach MA with one crew is de�ned by D→RJ-130→BJ→CO→RJ-

116→MA. We did not consider intersection nodes in Figure 8. With one crew, MA was the last

demand node to become connected, which occurred after 8.15 hours, when nodes RJ-116 and

RJ-130 were repaired. SSA became connected after RJ-130 and RJ-150 were repaired while NF,

CO, BJ, and SM became connected after RJ-130 was repaired. As expected, the cities with

greater demand, NF and BJ, were some of the �rst cities to become accessible after 4.13 hours.

However, some cities that have a smaller demand, such as CO and SM, also became accessible

within 4.13 hours.

Insight 3. Cities with greater demand are likely to be the �rst to become accessible from the

depot. However, some cities with smaller demand can also became quickly accessible when their

corresponding relief paths use the same damaged nodes as the relief paths associated with the

cities with greater demand.

With three crews, SS and MA became connected after RJ-148 was repaired, while NF, CO,

BJ and SM became connected after RJ-130 was repaired. With �ve crews, SS and MA became

connected after RJ-130 and RJ-116 were repaired, while NF, CO, BJ and SM became connected

after RJ-130 was repaired. In the cases with 3 and 5 crews, only two crews performed the

restoration of two damaged node. However, the repaired damaged nodes changed depending on

the characteristics of the crews. For the considered instance, although two crews were enough

to perform the restoration, the use of crew 4 instead of crew 1 reduced the total time to restate

the accessibility of the network. The relief paths were also a�ected by the characteristics of the

crews. For instance, relief path 0− SM using RJ-116 is a good relief path only when crew 4 is

available. Particularly, damaged node RJ-116 has a short repair time but it is far away from the

depot. Crew 4, that has shorter travel times than crew 1, can perform a faster restoration of
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RJ-116. Consequently, RJ-116 became better than RJ-150 (used in the case with one crew) and

RJ-148 (used in the case with three crews) in the relief path 0− SM . In general, when multiple

crews are available, farther damaged nodes are usually allocated to the crews with shorter travel

times to those nodes, while damaged nodes with longer repair times are allocated to crews that

can perform a faster restoration, thus saving travel and restoration times, respectively. Moreover,

the crews are usually allocated to repair groups of damaged nodes that are geographically close

to each other, which also saves time.

Insight 4. The heterogeneous characteristics of the crews can signi�cantly a�ect the scheduling

and relief paths decisions of the problem. The allocation of the crews to the damaged nodes

depends on their characteristics, location of the damaged nodes, and repair times.

Interestingly, in Figure 8 we can observe that SS and SM required repairing di�erent damaged

nodes to be accessible, even though such cities are geographically close to one another. The

reason for this result is the maximum distance ldi allowed for the relief paths. For SS and SM,

the maximum distances were ldSS = 156.27 and ldSM = 165.41, respectively. The feasible relief

paths 0−SS used one of the damaged nodes RJ-150, RJ-148 or RJ-116, while there was a relief

path 0− SM that did not require the use of those nodes. Such an alternative path was shorter

than ldSM and then feasible to reach SM, but it was higher than ldSS and then infeasible to reach

SS. If ldSS increases to 165, it would be possible to de�ne a path to SS without using any of

damaged nodes RJ-150, RJ-148 or RJ-116.

Insight 5. The de�nition of the path to reach the demand nodes from the depot is not trivial since

even nodes that can be geographically near each other could require the restoration of di�erent

nodes to become accessible. The reason for such behavior is mainly the maximum distance ldi

imposed for the relief paths. The decision-maker should select ldi carefully since even small changes

in this parameter for a given demand node i might lead to signi�cantly di�erent solutions.

Table 7 reveals that the maximum distance ldi , which is computed using di�erent β values,

can signi�cantly a�ect the accessibility time and the number of repaired damaged nodes in the

problem. Evidently, the accessibility time decreases for larger β values, mainly because more

feasible relief paths are available. A straightforward consequence of having more feasible relief

paths is the reduced number of demand nodes that need the restoration of at least one damaged

node to be accessible since the additional relief paths might not require the use of such damaged

nodes. For instance, the average number of demand nodes that require damaged nodes to become

accessible decreases from 86.86% with β = 5 to 23.63% with β = ∞. In contrast, the average

distance of the relief paths increases signi�cantly for larger choices of β. Note, e.g., that the

average distance increases more than four times, from 86.87 km when β = 5% to 360.06 km

when β =∞. Larger values of β imply in the restoration of fewer damaged nodes. In fact, when

the maximum distance constraint is relaxed, no damaged node need to be repaired to recover

the accessibility of the network in some cases. For example, damaged networks with 6 damaged

nodes and β =∞ did not require the restoration of these nodes. A clear example of this situation

is the instances in class CS0 de�ned by the network in Figure 6, in which it is possible to �nd
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relief paths without requiring damaged nodes if β =∞. However, when the number of damaged

nodes increases, they become necessary to de�ne the relief paths, even in the cases with β =∞.

Insight 6. In general, shorter maximum distances imply fewer feasible relief paths, which may

increase the accessibility time of the demand nodes and increase the number of repaired damaged

nodes. Longer maximum distances may reduce the accessibility time of the demand nodes and the

number of repaired damaged nodes. However, they can lead to the selection of longer relief paths,

which is undesirable in practical distribution or evacuation operations in post-disaster situations.

Evidently, there is a trade-o� between good accessibility times and the quality of the relief paths

in terms of distance.

Finally, Figure 9 illustrates the average accessibility time for di�erent number of damaged

nodes and instance classes. On average, the increase in the damaged nodes in a network of

a given class increases the accessibility time of the solutions. However, such behavior can be

di�erent when we compare instances of di�erent classes. For example, the average accessibility

time for the instances of class CS4 with 10 damaged nodes was 6.76, while for the instances

of class CS6 with 14 damaged nodes was 5.85 (13.46% smaller). Therefore, the increase in the

accessibility time depends not only on the number of damaged nodes but also on the location of

the damaged nodes. In Figure 6, for example, it is possible to observe some regions where fewer

damaged nodes disrupting the accessibility could have a higher impact than a higher number of

damaged nodes in regions where there is no demand nodes.
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Figure 9: Average accessibility time for di�erent damaged nodes and instance classes.

7. Conclusions

This paper proposed three novel mathematical formulations for the multicrew scheduling and

routing problem in road restoration. New valid inequalities were also developed. The �rst two

formulations are based on the three-index and two-index formulation of the VRP. The third

formulation eliminates a few variables and introduces new constraints to reduce the symmetry

in the solutions of the problem. The valid inequalities are based on the dominance of the

paths between nodes in the damaged network. We performed computational experiments using

instances from the literature and based on a real disaster situation. The three mathematical

formulations showed improvement with the addition of the VIs. The model based on the two-

index VRP formulation showed the best performance for most of the instances. Furthermore,
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the elimination of symmetric solutions in the third formulation improved the performance of

the model, especially in �nding feasible solutions. The model based on the three-index VRP

formulation provides optimality guarantees for a higher number of instances, but it has di�culty

�nding feasible solutions in some cases. The graph reduction strategy for deriving cuts from

networks with fewer nodes also improves the results. Thus, the best approach was able to obtain

good-quality solutions with less than 7% of the average optimality gap for the di�erent instance

classes.

The analysis of the practical case showed that, as expected, the use of more crews to solve

the problem signi�cantly reduces the time required to make the demand nodes accessible. How-

ever, the impact concerning the average accessibility time was less pronounced when we had

increasingly more crews, especially in the networks with fewer damaged nodes. The multiple

crews mainly a�ect the worst-case accessibility time between the demand nodes, thus providing

more equitable accessibility times. Usually, the farthest damaged nodes were allocated to the

crews that had the shortest travel time, while the damaged nodes with higher repair time were

allocated to crews that can perform a faster restoration. The restoration of damaged nodes in

the relief paths was prioritized over nodes in the crew paths. A few additional damaged nodes

are repaired only if they are strictly necessary in the path of the crews to reach other damaged

nodes. Furthermore, on average, fewer than 55% of the damaged nodes were required to restore

the accessibility of the network. Such a proportion decreased when paths with higher distances

were allowed to connect the depot with the demand nodes, but it is not signi�cantly a�ected by

the increase in the number of available crews.

We believe that the current research could be further developed in a number of directions.

First, as repair and/or travel times can be di�cult to estimate in the immediate disaster after-

math, alternative formulations to handle uncertainty settings should be investigated. Second,

modeling the interaction or synergy of more than one crew could help to further reduce acces-

sibility times, thus this is also a promising future development. Finally, it would be useful to

strengthen our collaboration with humanitarian organizations to get feedback from practitioners

on the usefulness of our mathematical models and algorithms. Certainly, we would need to build

a user-friendly tool �rst to show the solutions we can come up with. Such feedback would be

fundamental to re�ne the models and better understand the relevance of our approach.
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Appendix A. NP-hardness proof of the MCSRP

Proposition 5. The MCSRP is NP-hard.

Proof. To prove that the MCSRP is NP-hard, we prove that the MCSRP is at least as hard as

the traveling salesman problem (TSP). For this purpose, let us consider a TSP problem over a

complete graph G = (N,E), with N = {0, 1, 2, . . . , n}. Node 0 represents the origin city. Let cij

be the travel cost from node i to node j. We assume that the travel costs satisfy the triangular

inequality. The TSP can be easily reduced to a MCSRP instance, as presented in Figure A.10,

under the following assumptions:

� Only one crew k is available.

� Node 0 represents the depot.

� A dummy node n′ is introduced in the same position of the depot, but representing a

damaged node. There is not arc connecting node 0 to node n′.

� There is only one demand node f and it is connected solely to node n′.

� The demand of node f is df = 1 and the maximum distance allowed for relief path 0− f
is ldf = |N |+ 1.

� The repair time is null (δkj = 0) and the shortest travel time of crew k between nodes i

and j without using damaged nodes is

ρkij =


cij , if i ∈ N and j ∈ N,
ci0, if i ∈ N \ {0} and j = n′,

M, otherwise,

(A.1)

where M is large enough. Since we assume that the TSP instance satis�es triangular

inequality, the shortest path from node i to node j is the direct arc e connecting nodes

i− j. The travel time τke of crew k on arc e connecting nodes i and j is set as ρkij .

� The length of arcs e ∈ E is

`e =


1, if arc e connects nodes i− j, for i ∈ N, j ∈ N and j = i+ 1,

1, if arc e connects nodes n− n′ or n′ − f,
M, otherwise,

(A.2)

where M is large enough. This way, given that ldf = |N |+ 1, the only feasible relief path is

0→ 1→ 2→ . . .→ n→ n′ → f . Consequently, the optimal relief path 0− f uses all the

damaged nodes and all the damaged nodes must be repaired.

The optimal objective function value of the MCSRP instance is

df · Zd
f = df · max

j∈N∪{n′}
{Zr

j }.
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Given that ρkn′j = M, ∀j ∈ N , n′ should be the last damaged node repaired by the crew in the

optimal solution of the MCSRP. Then,

max
j∈N∪{n′}

{Zr
j } = Zr

n′ =
∑
i∈N

∑
j∈N∪{n′}

(δkj + ρkij)X̂kij =
∑
i∈N

∑
j∈N∪{n′}

cijX̂kij ,

where X̂kij indicates if node j was repaired immediately after node i. Therefore,

df · Zd
f =

∑
i∈N

∑
j∈N∪{n′}

cijX̂kij ,

which is the same cost of this solution in the TSP instance. Thus, by solving the MCSRP

instance presented in Figure A.10, we can obtain a solution with the same objective value for

the TSP problem. Since the TSP is known to be an NP-hard problem, the MCSRP must be also

NP-hard.
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Figure A.10: MCSRP instance created from the TSP instance.

Note that we proof the NP-hardness of the MCSRP by considering the particular case when

one crew is available. Consequently, we also prove that the SCSRP is NP-hard.

Appendix B. VIs related to routing decisions for the second and third MCSRP

formulations

Inequalities (B.1)-(B.4) are the valid inequalities related to routing decisions for MCSRP2.
Inequalities (B.1),(B.2) are equivalent to inequalities (75),(76) to select non-dominated paths
over dominated paths. Inequalities (B.3), (B.4) are equivalent to inequalities (78), (79) to set
lower bounds for the variables Zr

j .∑
e∈Ef∗

kij

Peij +
∑

l∈Vu
f∗
kij

Nu
lij ≥ (|Ef∗kij

|+ |Vuf∗kij
|) · (X ′ij +W ′kj − 1),

∀k ∈ K, i ∈ Vr0 , j ∈ Vr : Fr∗
kij 6= ∅, tkf∗kij

= tkp∗kij
, (B.1)

(|E|+ |V|) · (2 + |Vrp | −X ′ij −W ′kj −
∑
h∈R

∑
l∈Vr

p

Nr
lhij) ≥

∑
e∈E\

⋃
p′∈Dp

Ep′

Peij +
∑

l∈V\
⋃

p′∈Dp

Vp′

Nu
lij ,

∀ k ∈ K, i ∈ Vr0 , j ∈ Vr, p ∈ Srkij : (Fr∗
kij = ∅) ∨ (Fr∗

k0j 6= ∅, p 6= f∗kij , tkf∗kij
> tkp∗kij

), (B.2)
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Zr
j ≥ (tkp∗k0j

+ δkj) ·X ′0j +
∑
i∈Vr

((tkp∗k0i
+ δki + tkp∗kij

+ δkj) ·X ′ij)−M · (1−W ′kj),

∀ k ∈ K, j ∈ Vr, (B.3)

Zr
j ≥ Zr

i + tkp∗kij
+ δkj −M · (2−W ′kj −X ′ij), ∀ k ∈ K, i ∈ Vr0 , j ∈ Vr. (B.4)

Inequalities (B.3),(B.4) are the same for MCSRP3. Additionally, we can state the following
valid inequalities for this formulation.∑

e∈Ef∗
k0j

Pe0j +
∑

l∈Vu
f∗
k0j

Nu
l0j ≥ (|Ef∗k0j

|+ |Vuf∗k0j
|) · (X ′0j +W ′kj − 1),

∀k ∈ K, j ∈ Vr : (Fr∗
k0j 6= ∅, tkf∗k0j

= tkp∗k0j
), (B.5)

(|E|+ |V|) · (2 + |Vrp | −X ′0j −W ′kj −
∑
h∈R

∑
l∈Vr

p

Nr
lh0j) ≥

∑
e∈E\

⋃
p′∈Dp

Ep′

Pe0j +
∑

l∈V\
⋃

p′∈Dp

Vp′

Nu
l0j ,

∀ k ∈ K, j ∈ Vr, p ∈ Srk0j : (Fr∗
k0j = ∅) ∨ (Fr∗

k0j 6= ∅, p 6= f∗k0j , tkf∗k0j
> tkp∗k0j

) (B.6)∑
e∈Ef∗

kij

Peij +
∑

l∈Vu
f∗
kij

Nu
lij ≥ (|Ef∗kij

|+ |Vuf∗kij
|) · (X ′ij +X ′ji +W ′kj − 1),

∀k ∈ K, i ∈ Vr, j ∈ Vr : (Fr∗
kij 6= ∅, tkf∗kij

= tkp∗kij
, i < j), (B.7)

(|E|+ |V|) · (2 + |Vrp | −X ′ij −X ′ji −W ′kj −
∑
h∈R

∑
l∈Vr

p

Nr
lhij) ≥

∑
e∈E\

⋃
p′∈Dp

Ep′

Peij +
∑

l∈V\
⋃

p′∈Dp

Vp′

Nu
lij ,

∀ k ∈ K, i ∈ Vr, j ∈ Vr, p ∈ Srkij : (Fr∗
kij = ∅, i < j) ∨ (Fr∗

kij 6= ∅, p 6= f∗kij , tkf∗kij
> tkp∗kij

, i < j). (B.8)

Inequalities (B.5)-(B.6) are de�ned for i = 0 and are equivalent to inequalities (B.1)-(B.2).

Inequalities (B.7)-(B.8) are de�ned for i 6= 0 and are equivalent to inequalities (B.1)-(B.2).

Appendix C. Instance generation from the real case disaster

The Megadisaster of the Serrana region of Rio de Janeiro a�ected di�erent cities and caused

tra�c blockages due to landslides and �ooding in di�erent points of six of the main highways

(Rio de Janeiro, 2011). Initially, we have assumed one damaged node in each of the a�ected

highways. Since some of the highways were a�ected in more than one location, we also generate

instances considering a higher number of damaged nodes. The demand in the di�erent cities is

shown in Table C.8. For cities 1-13 the demand is equal to the number of a�ected people in the

disaster in 2011. There was no reported demand for cities 14-20. Thus, we generate the demand

of the cities 14-20 as a proportion of their total population.

The damaged network based on the real disaster is shown in Figure C.11. The real distance

of the arcs was calculated via Google Maps®. The travel time for a single crew was computed

based on the distance and assuming a speed of 25 kilometers per hour for the crew. We have not

found information about the repair time of the damaged nodes. This way, for a single crew, we

have generated the repair time based on the travel time (which is proportional to the distance)

on the highway where the damaged node is located. The idea was to generate higher repair times

for longer highways, in general higher than the travel times. Thus, for a single crew, the repair

time of a damaged node i located in a given arc (highway) e was randomly generated from the
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Table C.8: Demand of the a�ected cities (Rio de Janeiro, 2011).
City Demand

1 Nova Friburgo 6,637
2 Cordeiro 43
3 Macuco 52
4 Bom Jardim 2,669
5 São Sebastião do alto 107
6 Santa Maria Madalena 328
7 Petrópolis 7,214
8 São José do Vale do Rio Preto 395
9 Três Rios 9
10 Areal 737
11 Sapucaia 40
12 Teresópolis 17,029
13 Sumidouro 801
14 Conceição de Macabu 782
15 Casimiro de Abreu 1305
16 Trajano de Moraes 454
17 Cachoeiras de Macacu 2005
18 Duas Barras 406
19 Cantagalo 731
20 Carmo 643

Total 42,387

interval [2 · timee , 5 · timee], in which timee is the travel time on arc e. Travel and repair times

for the multiple crews were generated from the values of a single crew, as described in Section

6.1. The maximum distance from the depot to the demand nodes (ldi ) was calculated as in the

literature (Maya-Duque et al., 2016; Moreno et al., 2019), using a parameter β that indicates

the factor by which the distance between the depot and the demand nodes can increase with

respect to the shortest distance. Thus, ldi = (1+β) ·dist0i, in which dist0i is the shortest distance
between the depot and the demand node i. We consider six values for β (0.05, 0.1, 0.25, 0.5, 1,

∞), where ∞ represents a su�ciently large number indicating that the constraint imposing the

maximum distance ldi is relaxed.

From the damaged network of Figure C.11, we generate seven classes of instances. The class

CS0 has 6 damaged nodes located in the highways originally a�ected by the disaster in 2011.

Furthermore, class CS0 considers the �rst 13 cities (cities 1-13) as the demand nodes. Considering

the six values for β, a total of 6 instances were generated in class CS0. In class CS1, we have

generated 3 damaged networks considering 6, 10 and 14 damaged nodes. Damaged networks in

a same class share some damaged nodes. Let CS1-|Vr| be the damaged network of class CS1

with |Vr| damaged nodes. In the damaged network CS1-6, the 6 damaged nodes were located

in 6 randomly selected arcs. Similar to the categorization used in Akbari and Salman (2017b),

we divide the arcs into three groups according to their proximity to the a�ected areas, as high,

medium and low-risk arcs. Then, for the location of a given damaged node, the probability

of selecting a high, medium and low-risk arc was set to 0.15, 0.35, and 0.5, respectively. The

damaged network CS1-10 considers the 6 damaged nodes in CS1-6 and 4 additional randomly

located damaged nodes. Similarly, the damaged network CS1-14 considers the 10 damaged

nodes in CS1-10 and 4 additional randomly located damaged nodes. For each one of the three

damaged networks, the six values of β were considered, totaling 18 instances in class CS1. The

same procedure was used to generate classes CS2 and CS3. Classes CS1-CS3 consider the �rst

13 cities in Table C.8 as the demand nodes. Finally, classes CS4-CS6 are based on the the same
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Figure C.11: Damaged network based on the real disaster.

damaged networks of classes CS1-CS3, but considering all the cities presented in Table C.8 as the

demand nodes. Thus, there are 114 instances based on the real-world case. We run experiments

with 1, 3 and 5 crews, totaling 342 CS instances.

Appendix D. Graph reduction strategy

Originally proposed by Moreno et al. (2019), the idea of the graph reduction strategy is to set

lower bounds for the accessibility time of the a�ected areas based on the solution of the problem

in graphs with a reduced number of demand and damaged nodes. Let L ⊆ Vr be a subset of

the damaged nodes and F ⊆ Vd be a subset of the demand nodes in the original graph G. GLF

is de�ned as the subgraph obtained from G by deleting all the damaged nodes that are not in

L and transforming all the demand nodes that do not belong to F into intersection nodes. The

subgraph GLF is further reduced by removing intersection nodes that are not directly connected

to damaged nodes. For each node i removed from GLF , the arcs adjacent to this node are deleted

and new arcs are created connecting each pair of nodes j and k that were neighbors of i in GLF ,

such that j 6= k. The cost cjk of the new arc j−k is set as cjk = cji+ cik. The resulting graph is

denoted by ḠLF . From a feasible solution of the MCSRP de�ned using ḠLF , valid inequalities

can be derived for the original problem, as pointed out in Proposition 6.

Proposition 6. Given L ⊆ Vr and F ⊆ Vd, let KḠLF
be an optimal solution of the MCSRP

de�ned using the reduced graph ḠLF of the original graph G. Let Θ̂ḠLF
be the optimal value and

θ̂Ḡ
LF

i be the value of the variable Zdi in the optimal solution KḠLF
, for all i ∈ F . Then, the
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following inequalities are valid for the original MCSRP de�ned using the graph G:∑
i∈F : di·θ̂Ḡ

LF

i >0

di · Zdi ≥ Θ̂ḠLF
, (D.1)

∑
j∈L

Vji ≥ 1, ∀i ∈ F : θ̂Ḡ
LF

i > 0. (D.2)

Proof. The proof of equation (D.1) is given in Moreno et al. (2019). If θ̂Ḡ
LF

i > 0, the relief paths

to demand node i use at least one of the damaged nodes in set L, thus equation (D.2) is valid.

Appendix E. Separation algorithms

In this section, we show the separation algorithms developed to obtain sets Pd∗
i ,Fr∗

kij ,Pr∗
kij , and

ni, which are all based on the shortest path problem (SPP). Algorithm 2 outlines the procedure

used to �nd set Pr∗
kij . For each i, j, k, the set Pr∗

kij is found by solving the SPP between damaged

nodes i and j over the original graph G = (V, E) (line 2 of Algorithm 2) considering the cost τke

in the arcs e ∈ E of the graph (line 1 of Algorithm 2) .

Algorithm 2 Algorithm to �nd set Pr∗
kij .

Input:

Graph G = (V, E); Indices i, j, k; Parameter τke, ∀e ∈ E;
Output:

Paths p ∈ Pr∗
kij ;

1: Set cost τke, ∀e ∈ E;
2: Find the shortest path p from node i to node j for crew k over graph G;
3: Insert path p into set Pr∗

kij ;
4: return set Pr∗

kij ;

Algorithm 3 outlines the procedure to �nd set Fr∗
kij . Basically, Fr∗

kij is found by solving the

SPP between damaged nodes i and j over a graph G′ (line 8 of Algorithm 3), in which the

damaged nodes l ∈ Vr : l 6= i, l 6= j and the arcs incident to them are removed (line 5 of

Algorithm 3). In this case, the cost of the arcs in G are set as τke (line 1 of Algorithm 3).

Similarly, Algorithm 4 shows that set Pd∗
i is determined by solving the SPP between the depot

and demand node i over the same graph G′ (line 8 of Algorithm 4) considering the cost `e in the

arcs e ∈ E of the graph (line 1 of Algorithm 4).
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Algorithm 3 Algorithm to �nd set Fr∗
kij .

Input:

Graph G = (V, E); Indices i, j, k; Parameter τke, ∀e ∈ E;
Output:

Paths p ∈ Pr∗
kij ;

1: Set cost τke, ∀e ∈ E;
2: Set G′ := G;
3: for l = 1 to |V| do
4: if {l ∈ Vr and l 6= i and l 6= j} then

5: Remove node l and arcs e ∈ El from graph G′;
6: end if

7: end for

8: Find the shortest path p from node i to node j for crew k over graph G′;
9: Insert path p into set Fr∗

kij ;
10: return set Fr∗

kij ;

Algorithm 4 Algorithm to �nd set Pd∗
i .

Input:

Graph G = (V, E); Index i; Parameter `e, ∀e ∈ E;
Output:

Paths p ∈ Pd∗
i ;

1: Set cost `e, ∀e ∈ E;
2: Set G′ := G;
3: for l = 1 to |V| do
4: if l ∈ Vr then

5: Remove node l and arcs e ∈ El from graph G′;
6: end if

7: end for

8: Find the shortest path p from node 0 to node i over graph G′;
9: Insert path p into Pd∗

i ;
10: return set Pd∗

i ;

Finally, set ni can be determined by solving one SPP for each damaged node l ∈ Vr. Basically,
to know if a damaged node l is an element of ni, we create a graph G′ removing node l and its

incident arcs from graph G (line 5 of Algorithm 5), and the SPP between the depot and demand

node i is solved (line 6 of Algorithm 5). If there is a path from the depot to demand node i with

a cost less than or equal to ldi , node l is not an element of ni. Otherwise, we insert node l into

ni (lines 10 and 13 of Algorithm 5).
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Algorithm 5 Algorithm to �nd set ni.

Input:

Graph G = (V, E); Index i; Parameters `e, ∀e ∈ E, ldi ,∀i ∈ Vd;
Output:

Set ni;

1: Set cost `e, ∀e ∈ E;
2: for l = 1 to |V| do
3: if {l ∈ Vr} then

4: Set G′ := G;
5: Remove node l and arcs e ∈ El from graph G′;
6: Find the shortest path p from node 0 to node i over graph G′;
7: if path p exists then
8: tp :=

∑
e∈Ep

`e;

9: if tp > ldi then

10: Insert node l into ni;
11: end if

12: else

13: Insert node l into ni;
14: end if

15: end if

16: end for

17: return set ni;

Appendix F. Additional computational results

Tables F.9 and F.10 show the average results of the three proposed formulations with and

without the valid inequalities for di�erent numbers of crews. The average upper bound, lower

bound, and gap presented in columns 9 to 11 are computed using all the instances with feasible

solutions and hence they cannot be compared directly for di�erent approaches since some of

them do not return feasible solutions for some instances. On the other hand, the average upper

bound, lower bound and gap presented in columns 6 to 8 are computed using only the results

of instances for which all solution approaches found feasible solutions and hence they can be

directly compared. These values con�rm the discussion presented in Section 6.2, showing that

the VIs help to improve the average gap, upper bound and lower bound of the solutions.

Tables F.11 and F.12 show the average results of the MCSRP3+VIs and MCSRP3+VIs*

strategies, respectively, for the di�erent classes of instances.
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Table F.9: Average results of the three MCSRP models with and without the VIs for the instances from the
literature.

Common feasible instances1 All feasible instances2

Solution # Avg. time Avg. upper Avg. lower Avg. gap Avg. upper Avg. lower Avg. gap
method Crew %Feas %Opt (seconds) bound bound (%) bound bound (%)

MCSRP1

1 84.72 75.00 994.15 8,510 7,103 3.21 9,091 7,119 4.31
3 84.03 72.22 1,088.66 3,976 3,244 4.07 3,976 3,244 4.07
5 84.72 72.22 1,113.14 4,000 2,903 4.86 3,950 2,872 4.78

MCSRP2

1 88.89 76.39 926.83 8,456 7,905 1.16 10,098 8,026 3.82
3 87.50 65.28 1,275.78 3,953 3,194 3.83 4,387 3,304 5.48
5 86.81 66.67 1,310.07 3,702 2,896 4.76 3,935 2,884 6.49

MCSRP3

1 88.89 77.08 952.37 8,609 7,263 2.45 10,447 7,291 5.33
3 87.50 68.06 1,208.17 4,055 2,904 6.12 4,352 3,015 7.04
5 88.19 66.67 1,293.73 3,920 2,796 5.88 4,129 2,752 8.28

MCSRP1 + VIs

1 100.00 86.11 512.33 8,456 8,455 0.00 11,168 9,164 5.61
3 97.92 86.11 552.49 3,924 3,750 0.75 5,039 4,296 3.76
5 97.92 88.89 473.48 3,597 3,596 0.00 4,187 3,754 3.45

MCSRP2 + VIs

1 100.00 87.50 466.59 8,456 8,456 0.00 11,675 9,209 5.64
3 100.00 86.81 574.45 3,923 3,913 0.05 6,615 4,489 5.87
5 100.00 84.72 669.77 3,598 3,552 0.34 4,616 3,891 5.30

MCSRP3 + VIs

1 100.00 87.50 578.49 8,456 8,453 0.01 11,251 9,231 5.42
3 100.00 81.25 734.53 3,930 3,811 0.50 5,562 4,420 5.47
5 100.00 81.94 710.60 3,626 3,464 0.80 4,734 3,725 6.35

1 Values based on solutions of instances that are feasible in all solution approaches.
2 Values based on all the instances with feasible solutions for a given approach.

Table F.10: Average results of the three MCSRP models with and without the VIs for the instances based on the
real case.

Common feasible instances1 All feasible instances2

Solution # Avg. time Avg. upper Avg. lower Avg. gap Avg. upper Avg. lower Avg. gap
method Crew %Feas %Opt (seconds) bound bound (%) bound bound (%)

MCSRP1

1 42.11 39.47 2,223.74 78,474 75,549 3.14 78,474 75,549 3.14
3 31.58 28.07 2,559.94 35,929 33,902 5.02 35,454 33,482 4.88
5 32.46 31.58 2,496.00 35,560 34,669 1.58 35,560 34,669 1.58

MCSRP2

1 42.11 38.60 2,156.08 78,467 75,944 2.10 78,467 75,944 2.10
3 34.21 28.95 2,534.52 35,929 33,205 6.26 37,113 34,599 5.78
5 34.21 31.58 2,426.17 35,560 34,669 1.58 38,413 37,568 1.50

MCSRP3

1 42.11 38.60 2,156.10 78,467 75,944 2.10 78,467 75,944 2.10
3 33.33 29.82 2,532.74 35,929 34,483 3.24 38,069 36,699 3.07
5 35.09 32.46 2,395.94 35,560 34,669 1.58 37,912 37,088 1.46

MCSRP1 + VIs

1 93.86 68.42 1,264.27 78,467 78,467 0.00 125,474 111,894 5.55
3 93.86 76.32 1,015.12 35,929 35,929 0.00 69,168 65,841 3.87
5 89.47 67.54 1,302.04 35,560 35,560 0.00 65,888 59,970 7.60

MCSRP2 + VIs

1 97.37 71.93 1,225.11 78,467 78,467 0.00 125,612 113,517 5.13
3 94.74 58.77 1,670.53 35,929 35,929 0.00 71,501 63,627 7.36
5 95.61 52.63 1,873.20 35,560 35,560 0.00 68,479 58,362 10.78

MCSRP3 + VIs

1 100.00 74.56 1,247.62 78,467 78,467 0.00 127,720 115,219 5.26
3 100.00 55.26 1,884.45 35,929 35,929 0.00 80,824 64,543 10.78
5 100.00 52.63 2,024.23 35,560 35,560 0.00 72,640 59,176 13.05

1 Values based on solutions of instances that are feasible in all solution approaches.
2 Values based on all the instances with feasible solutions for a given approach.
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Table F.11: Average results of the MCSRP3+VIs strategy for the di�erent instance classes.
Avg. upper Avg. lower Avg. gap Avg. time

Instances #Crew #Ins #Opt %Opt bound bound (%) (seconds)

L1, L2, L3

1 36 36 100.00 14,121 14,118 0.00 180.65
3 36 33 91.67 6,708 6,453 0.69 407.86
5 36 32 88.89 6,114 5,768 1.09 406.77

L4, L5, L6

1 36 36 100.00 11,101 11,095 0.00 298.64
3 36 31 86.11 4,811 4,669 0.99 533.29
5 36 31 86.11 4,371 4,178 1.56 626.29

L7, L8, L9

1 36 27 75.00 6,395 4,789 7.80 902.51
3 36 27 75.00 3,615 2,956 5.62 902.10
5 36 29 80.56 2,751 2,206 6.44 804.15

L10, L11, L12

1 36 27 75.00 13,389 6,920 13.87 932.17
3 36 26 72.22 7,114 3,603 14.58 1,094.88
5 36 26 72.22 5,699 2,747 16.30 1,005.20

CS0

1 6 6 100.00 19,686 19,686 0.00 0.12
2 6 6 100.00 18,995 18,995 0.00 1.83
3 6 6 100.00 18,976 18,975 0.00 1.96

CS1, CS2, CS3

1 54 43 79.63 106,250 101,232 2.94 1,125.37
2 54 29 53.70 69,936 57,229 9.92 2,060.88
3 54 29 53.70 65,193 53,880 11.83 2,051.85

CS4, CS5, CS6

1 54 36 66.67 161,192 139,821 8.16 1,508.48
2 54 28 51.85 98,581 76,918 12.84 1,917.19
3 54 25 46.30 86,049 68,939 15.71 2,221.30

Table F.12: Average results of the MCSRP3+VIs* strategy for the di�erent instance classes.
Avg. upper Avg. lower Avg. gap Avg. time

Instances #Crew #Ins #Opt %Opt bound bound (%) (seconds)

L1, L2, L3

1 36 36 100.00 14,121 14,120 0.00 191.86
3 36 36 100.00 6,684 6,684 0.00 413.08
5 36 36 100.00 6,026 6,025 0.00 406.98

L4, L5, L6

1 36 36 100.00 11,101 11,101 0.00 326.91
3 36 36 100.00 4,811 4,811 0.00 622.01
5 36 36 100.00 4,361 4,361 0.00 639.57

L7, L8, L9

1 36 27 75.00 6,242 5,103 5.50 903.19
3 36 31 86.11 3,464 3,197 2.32 904.10
5 36 30 83.33 2,644 2,315 3.88 888.68

L10, L11, L12

1 36 27 75.00 12,951 8,916 9.24 1,112.49
3 36 26 72.22 6,325 4,334 10.13 1,106.88
5 36 26 72.22 4,530 3,207 10.26 1,117.06

CS0

1 6 6 100.00 19,686 19,686 0.00 0.22
2 6 6 100.00 18,995 18,995 0.00 1.84
3 6 6 100.00 18,976 18,976 0.00 2.41

CS1, CS2, CS3

1 54 43 79.63 106,142 101,807 2.50 1,292.92
2 54 40 74.07 63,816 60,840 3.20 2,078.90
3 54 34 62.96 61,371 57,419 4.69 2,139.12

CS4, CS5, CS6

1 54 37 68.52 158,404 142,114 6.27 1,654.53
2 54 38 70.37 90,233 83,260 5.62 2,039.23
3 54 31 57.41 84,047 75,483 7.53 2,259.14
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