25,168 research outputs found

    A Revision Control System for Image Editing in Collaborative Multimedia Design

    Full text link
    Revision control is a vital component in the collaborative development of artifacts such as software code and multimedia. While revision control has been widely deployed for text files, very few attempts to control the versioning of binary files can be found in the literature. This can be inconvenient for graphics applications that use a significant amount of binary data, such as images, videos, meshes, and animations. Existing strategies such as storing whole files for individual revisions or simple binary deltas, respectively consume significant storage and obscure semantic information. To overcome these limitations, in this paper we present a revision control system for digital images that stores revisions in form of graphs. Besides, being integrated with Git, our revision control system also facilitates artistic creation processes in common image editing and digital painting workflows. A preliminary user study demonstrates the usability of the proposed system.Comment: pp. 512-517 (6 pages

    Culture in the design of mHealth UI:An effort to increase acceptance among culturally specific groups

    Get PDF
    Purpose: Designers of mobile applications have long understood the importance of users’ preferences in making the user experience easier, convenient and therefore valuable. The cultural aspects of groups of users are among the key features of users’ design preferences, because each group’s preferences depend on various features that are culturally compatible. The process of integrating culture into the design of a system has always been an important ingredient for effective and interactive human computer interface. This study aims to investigate the design of a mobile health (mHealth) application user interface (UI) based on Arabic culture. It was argued that integrating certain cultural values of specific groups of users into the design of UI would increase their acceptance of the technology. Design/methodology/approach: A total of 135 users responded to an online survey about their acceptance of a culturally designed mHealth. Findings: The findings showed that culturally based language, colours, layout and images had a significant relationship with users’ behavioural intention to use the culturally based mHealth UI. Research limitations/implications: First, the sample and the data collected of this study were restricted to Arab users and Arab culture; therefore, the results cannot be generalized to other cultures and users. Second, the adapted unified theory of acceptance and use of technology model was used in this study instead of the new version, which may expose new perceptions. Third, the cultural aspects of UI design in this study were limited to the images, colours, language and layout. Practical implications: It encourages UI designers to implement the relevant cultural aspects while developing mobile applications. Originality/value: Embedding Arab cultural aspects in designing UI for mobile applications to satisfy Arab users and enhance their acceptance toward using mobile applications, which will reflect positively on their lives.</p

    EC-IoT : an easy configuration framework for constrained IoT devices

    Get PDF
    Connected devices offer tremendous opportunities. However, their configuration and control remains a major challenge in order to reach widespread adoption by less technically skilled people. Over the past few years, a lot of attention has been given to improve the configuration process of constrained devices with limited resources, such as available memory and absence of a user interface. Still, a major deficiency is the lack of a streamlined, standardized configuration process. In this paper we propose EC-IoT, a novel configuration framework for constrained IoT devices. The proposed framework makes use of open standards, leveraging upon the Constrained Application Protocol (CoAP), an application protocol that enables HTTP-like RESTful interactions with constrained devices. To validate the proposed approach, we present a prototype implementation of the EC-IoT framework and assess its scalability.The research from DEWI project (www.dewi-project.eu) leading to these results has received funding from the ARTEMIS Joint Undertaking under grant agreement n 621353 and from the agency for Flanders Innovation & Entrepreneurship (VLAIO). The research from the ITEA2 FUSE-IT project (13023) leading to these results has re- ceived funding from the agency for Flanders Innovation & Entrepreneurship (VLAIO)

    Communication System For Firefighters

    Get PDF
    Currently firefighters use two-way radios to communicate on the job, and they are forced to write reports based on their memory because there is not an easy way to record the communications between two-way radios. Firefighters need a system to automatically document what happened while they were responding to a call. To save them a significant amount of time when creating reports, our solution is to implement an application that allows firefighters to take pictures, record video and communicate in real time with their team of on-site responders. The proposed system will use a Wireless Local Area Network (WLAN) hosted on the fire truck itself to act as an access point (AP) to which the firefighters can connect. This AP will also save communication between firefighters to a local storage location. Upon return to the fire station, the AP will route all of the information stored locally to a larger database. For now, Wi-Fi will be our communication medium, with a prediction that our technology can eventually be extended to include radio signal

    vPlot

    Get PDF
    Robotic systems under development in the Santa Clara University Robotic Systems Laboratory (RSL) generate large amounts of data that must be interpreted in real-time. Many dimensions of this data must be visualized at once, such as temperature, location, and certainty of the measurement. Current data visualization softwares (such as Mathematica and Simulink) are ill-suited to visualize this much data, due to lack of customization. To solve this, we propose a system that allows users to view real-time streaming data in a virtual reality environment. This allows the user to easily interpret large, detailed datasets through an intuitive interface
    • 

    corecore