521 research outputs found

    Your blush gives you away: detecting hidden mental states with remote photoplethysmography and thermal imaging

    Full text link
    Multimodal emotion recognition techniques are increasingly essential for assessing mental states. Image-based methods, however, tend to focus predominantly on overt visual cues and often overlook subtler mental state changes. Psychophysiological research has demonstrated that HR and skin temperature are effective in detecting ANS activities, thereby revealing these subtle changes. However, traditional HR tools are generally more costly and less portable, while skin temperature analysis usually necessitates extensive manual processing. Advances in remote-PPG and automatic thermal ROI detection algorithms have been developed to address these issues, yet their accuracy in practical applications remains limited. This study aims to bridge this gap by integrating r-PPG with thermal imaging to enhance prediction performance. Ninety participants completed a 20-minute questionnaire to induce cognitive stress, followed by watching a film aimed at eliciting moral elevation. The results demonstrate that the combination of r-PPG and thermal imaging effectively detects emotional shifts. Using r-PPG alone, the prediction accuracy was 77% for cognitive stress and 61% for moral elevation, as determined by SVM. Thermal imaging alone achieved 79% accuracy for cognitive stress and 78% for moral elevation, utilizing a RF algorithm. An early fusion strategy of these modalities significantly improved accuracies, achieving 87% for cognitive stress and 83% for moral elevation using RF. Further analysis, which utilized statistical metrics and explainable machine learning methods including SHAP, highlighted key features and clarified the relationship between cardiac responses and facial temperature variations. Notably, it was observed that cardiovascular features derived from r-PPG models had a more pronounced influence in data fusion, despite thermal imaging's higher predictive accuracy in unimodal analysis.Comment: 28 pages, 6 figure

    Camera-Based Heart Rate Extraction in Noisy Environments

    Get PDF
    Remote photoplethysmography (rPPG) is a non-invasive technique that benefits from video to measure vital signs such as the heart rate (HR). In rPPG estimation, noise can introduce artifacts that distort rPPG signal and jeopardize accurate HR measurement. Considering that most rPPG studies occurred in lab-controlled environments, the issue of noise in realistic conditions remains open. This thesis aims to examine the challenges of noise in rPPG estimation in realistic scenarios, specifically investigating the effect of noise arising from illumination variation and motion artifacts on the predicted rPPG HR. To mitigate the impact of noise, a modular rPPG measurement framework, comprising data preprocessing, region of interest, signal extraction, preparation, processing, and HR extraction is developed. The proposed pipeline is tested on the LGI-PPGI-Face-Video-Database public dataset, hosting four different candidates and real-life scenarios. In the RoI module, raw rPPG signals were extracted from the dataset using three machine learning-based face detectors, namely Haarcascade, Dlib, and MediaPipe, in parallel. Subsequently, the collected signals underwent preprocessing, independent component analysis, denoising, and frequency domain conversion for peak detection. Overall, the Dlib face detector leads to the most successful HR for the majority of scenarios. In 50% of all scenarios and candidates, the average predicted HR for Dlib is either in line or very close to the average reference HR. The extracted HRs from the Haarcascade and MediaPipe architectures make up 31.25% and 18.75% of plausible results, respectively. The analysis highlighted the importance of fixated facial landmarks in collecting quality raw data and reducing noise

    Recognising Complex Mental States from Naturalistic Human-Computer Interactions

    Get PDF
    New advances in computer vision techniques will revolutionize the way we interact with computers, as they, together with other improvements, will help us build machines that understand us better. The face is the main non-verbal channel for human-human communication and contains valuable information about emotion, mood, and mental state. Affective computing researchers have investigated widely how facial expressions can be used for automatically recognizing affect and mental states. Nowadays, physiological signals can be measured by video-based techniques, which can also be utilised for emotion detection. Physiological signals, are an important indicator of internal feelings, and are more robust against social masking. This thesis focuses on computer vision techniques to detect facial expression and physiological changes for recognizing non-basic and natural emotions during human-computer interaction. It covers all stages of the research process from data acquisition, integration and application. Most previous studies focused on acquiring data from prototypic basic emotions acted out under laboratory conditions. To evaluate the proposed method under more practical conditions, two different scenarios were used for data collection. In the first scenario, a set of controlled stimulus was used to trigger the user’s emotion. The second scenario aimed at capturing more naturalistic emotions that might occur during a writing activity. In the second scenario, the engagement level of the participants with other affective states was the target of the system. For the first time this thesis explores how video-based physiological measures can be used in affect detection. Video-based measuring of physiological signals is a new technique that needs more improvement to be used in practical applications. A machine learning approach is proposed and evaluated to improve the accuracy of heart rate (HR) measurement using an ordinary camera during a naturalistic interaction with computer

    Recognising Complex Mental States from Naturalistic Human-Computer Interactions

    Get PDF
    New advances in computer vision techniques will revolutionize the way we interact with computers, as they, together with other improvements, will help us build machines that understand us better. The face is the main non-verbal channel for human-human communication and contains valuable information about emotion, mood, and mental state. Affective computing researchers have investigated widely how facial expressions can be used for automatically recognizing affect and mental states. Nowadays, physiological signals can be measured by video-based techniques, which can also be utilised for emotion detection. Physiological signals, are an important indicator of internal feelings, and are more robust against social masking. This thesis focuses on computer vision techniques to detect facial expression and physiological changes for recognizing non-basic and natural emotions during human-computer interaction. It covers all stages of the research process from data acquisition, integration and application. Most previous studies focused on acquiring data from prototypic basic emotions acted out under laboratory conditions. To evaluate the proposed method under more practical conditions, two different scenarios were used for data collection. In the first scenario, a set of controlled stimulus was used to trigger the user’s emotion. The second scenario aimed at capturing more naturalistic emotions that might occur during a writing activity. In the second scenario, the engagement level of the participants with other affective states was the target of the system. For the first time this thesis explores how video-based physiological measures can be used in affect detection. Video-based measuring of physiological signals is a new technique that needs more improvement to be used in practical applications. A machine learning approach is proposed and evaluated to improve the accuracy of heart rate (HR) measurement using an ordinary camera during a naturalistic interaction with computer

    Remote heart rate monitoring - Assessment of the Facereader rPPg by Noldus

    Get PDF
    Remote photoplethysmography (rPPG) allows contactless monitoring of human cardiac activity through a video camera. In this study, we assessed the accuracy and precision for heart rate measurements of the only consumer product available on the market, namely the Facereader™ rPPG by Noldus, with respect to a gold standard electrocardiograph. Twenty-four healthy participants were asked to sit in front of a computer screen and alternate two periods of rest with two stress tests (i.e. Go/No-Go task), while their heart rate was simultaneously acquired for 20 minutes using the ECG criterion measure and the Facereader™ rPPG. Results show that the Facereader™ rPPG tends to overestimate lower heart rates and underestimate higher heart rates compared to the ECG. The Facereader™ rPPG revealed a mean bias of 9.8 bpm, the 95% limits of agreement (LoA) ranged from almost -30 up to +50 bpm. These results suggest that whilst the rPPG Facereader™ technology has potential for contactless heart rate monitoring, its predictions are inaccurate for higher heart rates, with unacceptable precision across the entire range, rendering its estimates unreliable for monitoring individuals

    Enhancing User Authentication with Facial Recognition and Feature-Based Credentials

    Get PDF
    This research proposes a novel and trustworthy user authentication method that creates individualized and trusted credentials based on distinctive facial traits using facial recognition technology. The ability to easily validate user identification across various login methods is provided by this feature. The fundamental elements of this system are face recognition, feature extraction, and the hashing of characteristics to produce usernames and passwords. This method makes use of the OpenCV library, which is free software for computer vision. Additionally, it employs Hashlib for secure hashing and Image-based Deep Learning for Identification (IDLI) technology to extract facial tags. For increased security and dependability, the system mandates a maximum of ten characters for users and passwords. By imposing this restriction, the system increases its resilience by reducing any possible weaknesses in its defense. The policy also generates certificates that are neatly arranged in an Excel file for easy access and management. To improve user data and provide reliable biometric authentication, this study intends to create and implement a recognition system that incorporates cutting-edge approaches such as face feature extraction, feature hashing, and password creation. Additionally, the system has robust security features using face recognition

    Edge-centric Optimization of Multi-modal ML-driven eHealth Applications

    Full text link
    Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor-edge-cloud framework for an objective pain assessment case study

    Mirror mirror on the wall... an unobtrusive intelligent multisensory mirror for well-being status self-assessment and visualization

    Get PDF
    A person’s well-being status is reflected by their face through a combination of facial expressions and physical signs. The SEMEOTICONS project translates the semeiotic code of the human face into measurements and computational descriptors that are automatically extracted from images, videos and 3D scans of the face. SEMEOTICONS developed a multisensory platform in the form of a smart mirror to identify signs related to cardio-metabolic risk. The aim was to enable users to self-monitor their well-being status over time and guide them to improve their lifestyle. Significant scientific and technological challenges have been addressed to build the multisensory mirror, from touchless data acquisition, to real-time processing and integration of multimodal data

    Live Biofeedback as a User Interface Design Element: A Review of the Literature

    Get PDF
    With the advances in sensor technology and real-time processing of neurophysiological data, a growing body of academic literature has begun to explore how live biofeedback can be integrated into information systems for everyday use. While researchers have traditionally studied live biofeedback in the clinical domain, the proliferation of affordable mobile sensor technology enables researchers and practitioners to consider live biofeedback as a user interface element in contexts such as decision support, education, and gaming. In order to establish the current state of research on live biofeedback, we conducted a literature review on studies that examine self and foreign live biofeedback based on neurophysiological data for healthy subjects in an information systems context. By integrating a body of highly fragmented work from computer science, engineering and technology, information systems, medical science, and psychology, this paper synthesizes results from existing research, identifies knowledge gaps, and suggests directions for future research. In this vein, this review can serve as a reference guide for researchers and practitioners on how to integrate self and foreign live biofeedback into information systems for everyday use
    • …
    corecore