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ABSTRACT 

 

New advances in computer vision techniques will revolutionize the way we interact with 

computers, as they, together with other improvements, will help us build machines that 

understand us better. Combining depth sensors with video data can improve the accuracy of 

recognizing facial expression, body gestures, and posture. The face is the main non-verbal 

channel for human-human communication and contains valuable information about emotion, 

mood, and mental state. Affective computing researchers have investigated widely how facial 

expressions can be used for automatically recognizing affect and mental states. Nowadays, 

physiological signals can be measured by video-based techniques, which can be utilised for 

emotion detection. Physiological signals, are an important indicator of internal feelings and 

affective states, and are more robust against social masking compared with other modalities, 

such as facial expression and body gesture. 

This thesis focuses on computer vision techniques to detect facial expression and 

physiological changes for recognizing non-basic and natural emotions during human-

computer interaction. It covers all stages of the research process from data acquisition, 

integration and application. 

Most previous studies focused on acquiring data from prototypic basic emotions acted out 

under laboratory conditions. To evaluate the proposed method under more practical 

conditions, two different scenarios were used for data collection. In the first scenario, a set of 

controlled stimulus was used to trigger the user‘s emotion. The second scenario aimed at 

capturing more naturalistic emotions that might occur during a writing activity. In the second 
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scenario, the engagement level of the participants with other affective states was the target of 

the system.  

For the first time this thesis explores how video-based physiological measures can be used in 

affect detection. Video-based measuring of physiological signals is a new technique that 

needs more improvement to be used in practical applications. A machine learning approach is 

proposed and evaluated to improve the accuracy of heart rate (HR) measurement using an 

ordinary camera during a naturalistic interaction with computer. Extracted information from 

measured HRs is used for affect detection.  

We evaluated the integration of data from multiple modalities, a popular method that has 

received more attention recently in the affect detection research area. It has been shown that 

adding more channels and modalities can improve the performance of the affect detection 

systems. We have combined three sorts of features that can be extracted from video modality: 

HR features, and appearance-based and geometric-based features from facial expression and 

head movements.     

Overall, the results indicate that affect detection is more accurate under controlled conditions 

compared with the naturalistic situations. In the first scenario (controlled stimulus), fusing the 

HR features with the appearance-based and geometric-based features obtained the best results 

for affect detection using user-dependent models. The fusion model also showed a significant 

improvement over individual channels for detecting normative affective labels in the user-

independent analysis. However, the improvements of the fusion model were not significant 

for affect detection in the naturalistic scenario. For engagement detection, the fusion model 

outperformed individual channels in the user-dependent analysis during the naturalistic 

interactions. Again, the fusion approach did not improve the accuracy of engagement 

detection using the user-independent models. The results also showed that building gender-
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specific models improved the accuracy of affect detection slightly for each channel compared 

with the general model.   

Analysing single channel showed interesting results. Although the HR channel achieved poor 

Kappa scores for detecting valence and arousal, the positive values of the Kappa scores 

showed the possibility of using the HR channel for affect detection. The HR channel obtained 

a moderate accuracy for detecting engagement during naturalistic interaction. It should be 

mentioned that these HR features were extracted by a video-based method, which is 

improved to be adopted in the practical application. Our improvement decreased the root 

mean squared error from 43.76 beats per minute (bpm) to 3.64 (bpm).  

We also realised that the eye region was more informative for engagement detection than the 

mouth region. This is also true for detecting valence and arousal during naturalistic 

interaction. Our finding also suggested that both appearance-based and motion-based features 

are essential for affect detection. The significant impact of distractions on the engagement 

level during naturalistic interaction has also been reflected in our findings.   
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Chapter 1. Introduction  

 

Summary 

In this chapter, the significance and future of affective computing are expressed. I 

focus on the computer vision techniques for recognizing human affective states and 

their potential applications. Current challenges facing facial expression recognition 

techniques are described and discussed briefly. The motivation of this thesis is also 

established in this chapter. I conclude this chapter by providing a walkthrough of the 

following chapters.   
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1.1 Introduction  

Emotion and affective states play an important role in every-day life activities. As stated by 

Picard (2000), emotions control fundamental actions like decision-making, perception, 

rational thinking, and learning directly. In addition, some well-known scientists like Sigmund 

Freud even argued that emotions govern human behaviour (Werbos, 1994). More recently, 

psychologist and Nobel Prize winner Daniel Kahneman (2011) stated that emotion and mood 

can control the rational thinking.    

Given the wide reaching impact of emotions and the fact that computers have become part of 

all aspects in our lives, engineers are looking into how the introduction of new types of 

electronic devices, such as smartphones and tablets, and new sensors like the Microsoft 

Kinect sensor provides more natural (human-like) and simpler ways of interaction with 

computers. In addition, the tendency of using digital devices is increasing over the world. 

According to International Telecommunications Union statistics (Sanou, 2013), the internet 

penetration among the world was 38% in 2013, and this rate is much higher in developed 

countries. Based on their estimation, 78% of the population in the developed world were 

using the internet in 2013. These numbers show the increase of new types of interactions 

between human and computers in everyday lives.  

To enrich the Human-Computer Interactions (HCI), computers would be more useful if they 

could use these new types of devices to recognize the affective states first and then react 

accordingly. Emotional intelligence can maximise the naturalistic communication between 

human and computers to make a true user-friendly environment.  

There are many applications for affect-aware interfaces. Affects and mental states, such as 

motivation, interest, and attention, are recognised as essential in learning with or without 
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computers. Multiple authors have shown the impact of affect-aware systems in increasing the 

quality of learning (Calvo & D‘Mello, 2011; S. Craig, Graesser, Sullins, & Gholson, 2004; R 

W Picard et al., 2004). Automatic affect detection is also important in other research areas, 

such as behavioural science, psychology, neurology, and psychiatry (R.W. Picard, Wexelblat, 

Clifford, & Clifford, 2002). For example, Affective Computing (AC) research has been used 

in the treatment process of people with autism spectrum disorders (Alzoubi, Hussain, & 

Calvo, 2014; C. Liu, Conn, Sarkar, & Stone, 2008). 

Affective computing research tries to develop systems with two main abilities: perceiving and 

expressing emotions. Several methods and techniques have been proposed for sensing, 

detecting, and recognizing a human‘s affective states (Calvo & D‘Mello, 2010; Zhihong 

Zeng, Pantic, Roisman, & Huang, 2009). Facial expressions, voice, posture, physiology, and 

text are the most investigated modalities for affect detection. Among the mentioned 

modalities, facial expression is the most common way to express emotions and regulate social 

interactions (Ekman & Rosenberg 2005). Even though a number of studies have been 

performed in the field of automatic Facial Expression Recognition (FER) (I. Cohen, Sebe, 

Garg, Chen, & Huang, 2003; Fasel & Luettin, 2003; Pantic & Rothkrantz, 2000b; Tian, 

Kanade, & Cohn, 2001), there is an interest to develop systems to detect more complex 

affective states (Baltrusaitis et al., 2011; Bixler & D‘Mello, 2013; D‘Mello & Graesser, 2010; 

Grafsgaard, Wiggins, Boyer, Wiebe, & Lester, 2013).  

Physiology is one of the prominent modalities that has been used for affect detection because 

of its suitability for reflecting inner feeling and robust against deceptive behaviour. It has also 

been used in multimodal affect detection approaches (Hussain, Calvo, & Pour, 2011; 

Soleymani, Pantic, & Pun, 2012). Normally, physiological sensors need to be attached to the 

human body but this might be intrusive and make the application hard to adopt. Wearable 

sensors and devices were proposed to reduce the difficulties of setting up the traditional 
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sensors. Among the current methods of measuring physiological signals, contact-less and 

remote methods are the most desirable. These methods are easy to adopt and cheaper than 

traditional devices (Poh, McDuff, & Picard, 2010). In addition, a remote contactless sensor 

could monitor several subjects at the same time. 

Another approach for detecting affect is to combine multiple modalities (e.g., video and 

sound) that can be utilised in Feature or Decision levels. In the Feature level fusion, the 

extracted features from each modality are combined to make one big dataset. Then the 

classification task will be performed on this dataset. On the other hand, in the Decision level 

fusion, individual classifiers are applied on each modality and the final decision is made by 

analysing the classifiers‘ outputs. Both these approaches were used successfully in the affect 

detection application (Hussain & Calvo, 2011; Kim, 2007; Soleymani, Pantic, et al., 2012). 

The goal of this thesis is developing a video-based method for detecting complex affective 

states in the naturalistic HCI. Cameras are used commonly everywhere, embedded in every 

electronic device. A video-based affect detection system can be adopted easily in many 

applications and environments. Our proposed method is focused on two main modalities that 

have been used for affect detection: face (from video) and physiology.  

The feasibility of using video-based remote physiology sensors for affect detection is the first 

issue that needs to be evaluated. Although the remote sensing methods showed their 

performance for measuring physiological signals in controlled circumstances, the accuracy 

and robustness of these methods needs to be evaluated in more realistic scenarios.  

The second issue relates to exploring the possibility of improving the affect detection by 

combining extracted physiological signals and facial features remotely. Dynamic and static 

facial features are extracted and evaluated for detecting affective states during controlled and 

naturalistic scenarios.  
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The third issue is the possibility of classifying complex affective states using extracted 

features from naturalistic HCI. Detecting complex affective states in the naturalistic scenario 

is a research area rarely explored (D‘Mello & Calvo, 2013; M. E. Hoque, McDuff, & Picard, 

2012). Most previous research tried to recognize basic emotions less likely to occur during an 

interaction between human and computers. Complex mental states like engagement, 

boredom, curiosity, and frustration are the most reported states during HCI (D‘Mello & 

Calvo, 2013). On the other hand, most of the previous attempts to build a prediction models 

relied on the posed affective states recorded in a controlled environment. Using these models 

to predict naturalistic affective states will not produce reasonable accuracy. To increase the 

generalizability of the system for detecting spontaneous affective states, natural affective 

states also need to be considered to build the prediction model (Afzal & Robinson, 2009).  

1.2 Vision-based affect detection  

The motivation of choosing video as the main modality for affect detection is the easiness of 

using video recording sensors at a low cost. A video sensor can be used for detecting and 

measuring facial expression, gesture, posture, and some physiological signals like heartbeats 

and respiration rates. It is expected that a reasonable accuracy can be achieved by considering 

all or a combination of these modalities using an ordinary camera. In this thesis, facial 

expression and heart rate (HR) features are considered as the two main inputs for training the 

models for affect detection.    

As suggested in the literature, ―human face-to-face interaction is an ideal model for 

designing human-computer interaction systems‖ (Pantic & Rothkrantz 2000). As indicated by 

numerous authors (Cowie et al., 2001; Pantic & Rothkrantz, 2003), humans mostly 

communicate emotions through facial expression compared with body gestures and vocal 

intonations. For example, a study by Mehrabian (1968) showed that the contribution of FER 
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for affect detection was 55%, while they only relied on vocal utterances and spoken words by 

38% and 7%, respectively. Another advantage of the facial expression is that most of the 

expressions are associated universally with specific affective states, particularly with basic 

emotions (Ekman & Friesen, 1978).   

Previous studies showed that using just one modality for affect detection is not reliable 

(Jaimes & Sebe, 2007). Even humans do not rely on just one modality during a face-to-face 

interaction. Combining perceived information from different modalities and channels can 

make the HCI systems closer to the natural (human-like) interactions (D‘Mello & Graesser, 

2010; Pantic, Sebe, Cohn, & Huang, 2005). Each modality can cover the weakness of others 

for recognizing affective states.  

Physiology is one of the most common modalities used in combination with other for affect 

detection (Hussain et al., 2011; Soleymani, Pantic, et al., 2012). Although it might less likely 

to be used in human-human interaction, there is potential for using physiological signals in 

affect detection. Physiological signals can reveal the internal feeling of the subject without 

the common issue of social masking or the common tendency to mask, hide, or pretend an 

emotional state due to social reasons. It is not an easy job to control and fake physiological 

responses to emotional stimulus (Kim & Andre, 2006; Peter, Ebert, & Beikirch, 2009). One 

of the main challenges with the physiological sensor is the need for physical contact with the 

subject but utilising contact-less sensors could address this. 

The current challenges of video-based affect detection systems are related to compatibility 

with the real-world conditions and practical applications. Most of the systems reported so far 

have focused on posed and basic emotions, which are not used commonly in practical AC 

applications. Another issue pertains to the real-time processing and affect detection, which is 

rarely addressed. Some of the challenges are also introduced because of the complexity of 

eliciting natural affective states (head movements, lighting conditions, automatic video 
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segmentation, etc.). Despite the current notable progress in developing more naturalistic 

datasets in new application domains, more analysis and evaluation need to be performed to 

improve the accuracy and robustness of the systems. In the following sub-sections, the 

current challenges of vision-based affect detection and motivations of this thesis are 

discussed.   

1.2.1   Video-based sensing of physiology  

It might seem a bit strange, but research suggest that humans naturally detect physiological 

signals and can utilize them to recognize emotions in human-human interactions (RW Picard, 

Vyzas, & Healey, 2001). In most cases, close contact needs to be occur to sense, for example, 

clamminess during shake handing or heart pounding when someone sitting next to you. 

Sometimes it can be recognized remotely, for example, audiences can detect changes in the 

respiration rates of a lecturer (RW Picard et al., 2001). However, computers can provide more 

precise information about the internal feelings of humans, which can be useful for affect 

detection. The precise measuring of physiological signals could be considered as a significant 

advantage of the HCI over the human-human interaction for communicating emotions. 

Complex affective states, such as anxiety, depression, boredom, and frustration, can be 

recognized through analysing physiological patterns (Alzoubi, D‘Mello, & Calvo, 2012; 

Healey & Picard, 2005; RW Picard et al., 2001).  

On the other hand, the intrusiveness of traditional physiological sensors is always one of the 

main challenges for using physiology-based in real-world applications (Calvo & D‘Mello, 

2010). Another challenge relates to the large amount of the noise in the recorded signals due 

to movements of the users in the practical applications. Wearable sensors (Mann, 1997; 

Pantelopoulos & Bourbakis, 2010) and non-contact methods (Fei & Pavlidis, 2010; Li, 
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Cummings, & Lam, 2009) for measuring physiological signals can be used to address the first 

challenge.  

In the HCI application, using a vision-based method for monitoring physiological signals is a 

cheap and convenient method. The accuracy of these methods can also be improved using 

new machine learning techniques. However, these methods have been proposed recently and 

based on our knowledge; this is the first attempt to use a non-contact measurement of HR for 

affect detection.   

1.2.2   Fusion model for affect detection  

Multimodal affect detection techniques are becoming increasingly popular due to their better 

reliability and performance in detecting non-basic affective states (D‘Mello & Graesser, 

2010; Hussain & Calvo, 2011; Pantic & Rothkrantz, 2003; Soleymani, Pantic, et al., 2012). 

Naturally, humans use several modalities when they are interacting with each other. Each 

modality (face, voice, gesture, physiology, etc.) can represent unique aspects of each 

affective state. For example, previous studies showed that boredom and engagement as non-

basic emotions cannot be detected easily using facial expression compared with other 

modalities (S. D. Craig, D‘Mello, Witherspoon, & Graesser, 2008; McDaniel et al., 2007). 

Obviously, considering more modalities can increase reliability and accuracy of affect 

interpretation.  

On the other hand, the way of representing non-basic emotions is different from person to 

person. This difference is even more challenging in the physiological patterns of emotions. 

Accordingly, building a reliable general model for affect detection using multichannel 

physiology still remains a challenging issue (Alzoubi et al., 2012). Adding more information 

from audio-visual modalities can improve the accuracy of affect detection.   
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Despite good progress in the field of multimodal affect detection, a few attempts have been 

made to combine physiology and other visual modalities like facial expression. Due to 

difference in the recording rate of these two modalities, it is hard to implement a fusion 

model in data or feature level. Finding a practical approach to combine different channels to 

achieve the best accuracy is still an open question for detecting naturalistic affective states 

(D‘Mello & Kory, 2012). The ideal fusion model should provide a super additive 

performance, which has been rarely reported in the AC research. In this research, we explore 

the fusion of physiology channel (e.g., HR) and the facial expression channels in the feature 

level for recognizing non-basic affective states.  

1.2.3   Naturalistic and none-basic affective states  

As has been acknowledged in recent surveys (Calvo & D‘Mello, 2010; Zhihong Zeng et al., 

2009), there is a lack of practical datasets for affective computing that contain natural and 

non-basic emotions (M. E. Hoque et al., 2012). In addition, an ideal dataset needs to contain 

those affective states mostly common in AC applications. One reason that leads to this 

insufficiency is the complexity eliciting natural emotions. In most cases, a long session needs 

to be recorded and then analysed to obtain a set of valid emotional instances. Manual 

segmentation of natural affective states is a challenging and time-consuming task that also 

needs some prior knowledge. Concurrent experience sampling methods (Killingsworth & 

Gilbert 2010) might be a good solution to reduce the difficulties of gathering natural affective 

states. This thesis proposes a new method of concurrent experience sampling during HCI and 

evaluates the reliability of recorded samples using this method. 

As the target of our proposed methods, we selected Engagement as a non-basic mental state. 

We selected Engagement because it is related strongly to the HCI applications (Peters, 

Castellano, & de Freitas, 2009) and it has been less targeted by automatic affect detection 



 1.3  Goals and approach of the thesis  10 

 

systems (D‘Mello & Calvo, 2013). The authors of previous experiments have acknowledged 

the significance of detecting and maintaining engagement in learning and psychotherapy 

applications (Christenson, Reschly, & Wylie, 2012a; Kahn, 1990a). The ability of specific 

facial and physiological features for detecting user engagement during HCI needs to be 

evaluated (Hussain, Monkaresi, & Calvo, 2012b). 

There is still a challenging debate about the methods of labelling and representing affective 

states (Russell, 2003). Categorical and dimensional representations are two common ways to 

quantify affect. Both models have advantages and disadvantages and finding a best 

representation of affect in practical AC applications needs more studies. However, 

dimensional models are considered to be more reliable (cross-lingual) for representing non-

basic affective states that might not have equivalent translation in some cultures or languages.    

1.3 Goals and approach of the thesis  

The scope of this research is limited to vision-based automatic non-basic and naturalistic 

affect detection systems. The main objectives of this thesis are categorized in three main 

issues relate to vision-based affect detection techniques. Firstly, the feasibility of using video-

based HR measuring in the HCI is evaluated. The limitation of current methods is evaluated 

and if it is necessary, a computational method is proposed to improve the accuracy of HR 

detection.  

The second issue relates to the possibility of using remote HR sensing to improve non-basic 

affect detection in both controlled and naturalistic conditions. Several video-based methods 

for extracting facial features (geometric-based, appearance-based, and dynamic based 

methods) are implemented and utilized for affect detection. The aim is to explore the relation 

between each channel and each affective state and to find which channel or feature is more 
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appropriate for non-basic affect detection. The performance of a multimodal approach by 

combining all extracted feature is also assessed in this thesis. 

As the third issue, we aim to evaluate the possibility of training models for non-basic affect 

detection using naturalistic self-reporting. 

1.4 Thesis contributions  

The main contributions of this thesis are summarized:  

1. Improvement of remote HR measurement in HCI: A key contribution of this thesis is 

evaluating the use of a contactless physiological method for affect detection that is less-

intrusive and easy to adopt. Previous video-based contactless methods were not accurate for 

measuring HR during naturalistic HCI. A machine learning approach has been utilized to 

improve the accuracy of video-based HR detection in the HCI (Monkaresi, Calvo, & Yan, 

2014). 

2. Using remote sensing in affect detection: The proposed method for accurate remote 

sensing of HR is used to extract HR features for detecting non-basic affective states. The 

performance of these features in combination with other facial features were evaluated in two 

different studies (controlled (Monkaresi, Calvo, & Hussain, 2014) and naturalistic HCI).  

3. Implementing geometric-based and appearance-based methods for affect detection: 

Geometric-based and appearance based features are the two main approaches used for 

recognizing facial expression. To evaluate the ability of the two common types of facial 

features for recognizing non-basic affective states, we have implemented two methods based 

on each approach. A geometric based method was implemented and tested on a previously 

recorded dataset (Monkaresi, Calvo, & Hussain, 2012). The second method, an appearance 
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based method, was implemented and tested on the same dataset and a brief comparison 

reported (Monkaresi, Hussain, & Calvo, 2012a).  

4. Developing and evaluating a fusion model of physiological signals and facial features: 

We developed a fusion model using multiple physiological channels and facial features 

(Monkaresi, Hussain, & Calvo, 2012b). The physiological signals were recorded using the 

sensors that needed physical contacts. The goal was to evaluate the feasibility of using the 

combination of multiple channels from different natures for detecting non-basic emotions. 

The results of this study encouraged us to explore the idea that using the contactless 

physiological sensors could also improve the accuracy of affect detection. In the latest study, 

the fusion model of remotely measured HR and two types of facial features (geometric-based 

and appearance-based features) was evaluated for detecting non-basic affective states in 

controlled and naturalistic conditions. A comprehensive comparison between the accuracies 

obtained by each of these channels for detecting arousal, valence, and engagement has been 

provided. 

5. Building a new dataset for complex and naturalistic affective states during writing: Two 

protocols for affective data acquisition were proposed and utilized in this research. In the first 

one, a set of images from the International Affective Picture System (IAPS) (P. J. Lang, 

Bradley, & Cuthbert, 2008) has been used as emotional stimulus. The second one has been 

designed for a naturalistic HCI. A think-aloud method has been utilized for data labelling, 

and a set of interventions has been used during the recording sessions.  

Other findings that are partially contributed by this research are: 

1. Introducing a meta classifier for combining multiple classifiers for affect detection 

(Hussain et al., 2012b). 
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2. Comparing dimensional vs. categorical representations of affect in an automatic 

multimodal affect detection system during interacting with an intelligent tutoring 

system (Hussain, Monkaresi, & Calvo, 2012a).  

1.5 Thesis overview  

Chapter 2 starts with a brief description of different theories about emotions followed by a 

literature review on FER systems. A discussion is given on expressing the advantages of 

dimensional models of emotion over categorical models, particularly for modelling complex 

emotions. Some of the difficulties in collecting emotions in a naturalistic scenario, which is 

essential for validating emotion recognition systems, are also discussed in this chapter. A 

review on new computer vision techniques for extracting vital physiological signals from 

facial video recording is also presented. 

Chapter 3 presents the methods and techniques used for recording, extracting features, and 

recognizing affective states. Three methods are introduced for feature extraction. The 

proposed framework for recognizing affective states by fusing three types of vision-based 

features is illustrated in the rest of this chapter. First, the Local Binary Pattern in Three 

Orthogonal Planes (LBPTOP) is introduced as a dynamic texture-based method to extract 

appearance-based and motion-based features. Second, the Microsoft Kinect face tracker 

engine (SDK v. 1.5) is used to extract geometric-based features. Third, a new method for 

recovering the HR using computer vision techniques is presented. Two main experiments 

designed and conducted to elicit facial expression in a naturalistic environment are described 

in this chapter. 

Chapter 4 evaluates the accuracy of our proposed method for the remote measuring of HRs. 

The accuracy of the proposed method is reported in three different experiments and the 
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achieved results were compared with the actually recorded HR using an electrocardiograph 

(ECG) device. 

Chapter 5 reports the results for automatic affect detection using three channels described in 

Chapter 3 during a controlled HCI. A dimensional representation of affect in two dimensions 

(valence/arousal) is used in this study. A mapping between dimensional affect and categorical 

representation of affect is also provided in this chapter. User-dependent, gender-specific, and 

user independent analysis are also evaluated. 

Chapter 6 presents the results of automatic affect detection in the third study, which is a 

naturalistic HCI. In this study, the goal is detecting engagement as a complex affective state 

during a writing session using a computer. Besides engagement, the accuracies of the 

proposed methods for detecting dimensional affect are also reported. The impact of feedbacks 

and interventions on the engagement level is explored.  

Chapter 7 concludes by describing the principal outcomes and contributions of this thesis. 

The limitation of our proposed method and some suggestion for future work are also 

presented.    
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Chapter 2. Background and literature review  

 

 

Summary 

Psychological theories of emotion provide theoretical grounding for the development 

of affective computing technologies. This chapter provides a brief description of 

different theories about emotions used in AC, along with a literature review on FER 

systems. A discussion is given on expressing the advantages of dimensional models of 

emotion over categorical models. The importance of implementing systems for 

recognizing complex emotion over basic emotion is discussed. Current attempts in the 

field of affective computing are suffering from lack of enough reliable datasets for 

training and testing their systems. Data gathering (e.g., emotion elicitation) is still a 

challenging issue in this area. This issue is particularly challenging when gathering 

naturalistic emotions and some of the difficulties in collecting emotions in naturalistic 

scenarios are discussed in this chapter. We have introduced current FER works and 

evaluated some of the most popular systems. We also give a review on new computer 

vision techniques for extracting vital physiological signals from facial video 

recording.    
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2.1 Theories of emotions  

Different definitions have been introduced for affect. In each discipline (e.g., psychology, 

social science, neuroscience) it has been defined with specific characteristics from different 

perspectives. Affect often has a broad and ambiguous definition, which includes other 

aspects, such as emotions, feelings, moods, and attitudes (Calvo & D‘Mello, 2010). Emotion 

could be considered as the core of the affective phenomenon. The definition of mood also has 

common features of emotion with some distinctions.  

Like emotion, mood is also a subjective experience, which is expressed using common 

human communicational channels (Moridis & Economides, 2009). The differences between 

emotion and mood can be described by parameters, such as duration, timing, and cause-

reaction (Larsen, 2000). However, studying different theories about emotions can give us a 

better insight into this fuzzy and complex phenomenon. Current theories that try to explain 

emotion are divided to six categories and discussed in the current survey. Four of these 

theories are derived from traditional theories of emotion that consider emotions as expression 

(Darwin, 1872; Frijda, 1987), embodiment (James, 1884), cognitive appraisal (Arnold, 1960), 

or social construct (Averill, 1980). The other two have been introduced later and consider 

emotion as an outcome of neural circuitry (Dalgleish, Dunn, & Mobbs, 2009) or as a 

psychological construction that integrates different perspectives of emotion (Russell, 2003). 

In the rest of this chapter, we introduce two common theories of emotions relevant to this 

research. 

2.1.1   Emotions as expressions        

Expressions are the most common and generally accepted feature of emotions. Most 

emotions are communicated through expression, such as facial expression and body 



 2.1  Theories of emotions  17 

 

movement. Charles Darwin (1872) was the first scientist to explore the emotion from the 

expression perspective. Inspired by his evolutionary theory, he noticed that there are 

similarities between human and animals in terms of some of the basic facial and body 

expressions. Other researchers extended his theory and argued that an action is associated 

with each emotion expressions (Frijda, 1987). Accordingly, to define each emotion category, 

we need to find an explicit action (or tendency) associated with it. For example, to define 

―fear‖ as an emotion expression, the action of ―avoidance‖ was proposed.  

Although this definition of emotion could not explain some emotional behaviours, it has been 

used widely for implementing AC systems. Current technologies allow us to record and 

analyse facial and body expressions to recognize emotions. A large portion of research in 

affect detection has been devoted to analysing facial expressions.  

2.1.1.1 Facial Action Coding System  

Ekman and Friesen (1978) proposed the most common method for modelling facial 

expressions has and this has been called Facial Action Coding System (FACS). They 

introduced a set of 44 facial action units (AUs) that can represent different emotions. In fact, 

each AU can be identified by measuring the movement of specific facial component. For 

example, AU1 means the inner portion of the brows is raised and AU12 represents a lip 

corner pull. Figure 2-1 shows the descriptions of upper face AUs in FACS. As illustrated in 

Figure 2-1, the AUs can be considered in isolation or in combination with other AUs. 

According to Scherer and Ekman (1982),  more than 7000 combinations of AUs have been 

observed. Each combination can also be in two forms: additive or non-additive. In the 

additive combination, the appearance of the AUs will not change after the combination. 

However, in the non-additive combination, the appearance of AUs will change due to 



 2.1  Theories of emotions  18 

 

combinations (AU1+2 and AU1+4 are two examples of non-additive combinations). So, 

recognising non-additive AUs is much more difficult than recognising additive combinations.          

FACS only presented a coding schema for facial movements and does not provide a mapping 

between AUs and specific emotions. Due to its power in describing details of facial 

movements, this coding system has been used successfully in AC applications. Manual 

coding of facial AUs is a difficult and time consuming task, and expertise is needed to 

recognize combinations of AUs during expressing emotions. Training of a certified coder 

needs almost 100 hours. In practice, manual extracting of AUs from one minute of recorded 

video needs approximately one hour (Donato, Bartlett, Hager, Ekman, & Sejnowski, 1999).  

Another issue with this coding system is that the FACS was designed for static images and it 

is difficult to adopt it in a dynamic space. 

     

Figure 2-1: Descriptions of upper face AUs in FACS from Tian et al. (2001) 

To reduce the difficulties associated with the FACS, automatic AU detection systems have 

been proposed (Tian et al., 2001; Tong, Liao, & Ji, 2007; Valstar & Pantic, 2012; Whitehill & 
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Omlin, 2006). The first step in FACS-based affect detection systems is recognizing AUs. 

Afterwards, machine learning techniques (Neural networks, Hidden Markov Models, 

Bayesian networks, etc.) are utilised to predict observed affective states using extracted AUs.  

Besides FACS-based methods, many other methods and techniques have been proposed for 

FER. A comprehensive review on two common approaches for FER systems (geometric-

based and appearance-based methods) is discussed in Section 2-4. Naturally, most of the 

introduced systems for facial and body expression recognition have relied on visual modality. 

In this thesis, we also use the theory of emotions as expressions to extract facial features and 

then recognize emotions. 

2.1.2   Emotions as embodiments  

Considering emotions as embodiments of peripheral physiology is another theory for 

explaining emotion. According to this theory (James, 1884), physiological changes are the 

main reasons for experiencing emotions. For example, feeling ―fear‖ is associated with the 

acceleration in heart rate. By identifying specific patterns of physiological changes, we can 

recognize each associated emotion. This theory also known as James–Lange Theory 

(Cannon, 1927) and is investigated under the topic of psychophysiology.  

Damasio (2008) had a similar argument that assumes the Sympathetic Nervous System (SNS) 

and Parasympathetic Nervous System (PNS), the two parts of the Autonomic Nervous 

System (ANS), are the main source of feeling emotions. The sympathetic part is responsible 

for preparing the body for high levels of physical activities during emergency or stress 

situations. However, the parasympathetic part is trying to keep the body in the state of the rest 

and relaxation (Andreassi, 2007). Accordingly, in response to each emotional stimulus, the 

SNS and PNS produce certain physiological changes in the body. These physiological 

changes are interpreted as emotions in the brain. Based on this theory, for each emotion 
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specific patterns of ANS, activities can be observed. Electrocardiogram (ECG), 

Electromyogram (EMG), Skin Conductivity (SC), and Respiration (RSP) are the main 

methods for measuring the ANS activities. 

By introducing new technologies for monitoring different kinds of physiological signals, this 

theory has been received more attention of academic studies. Many AC systems have utilized 

physiological signals to recognize specific affective states. The main concern about these 

systems is the intrusiveness of sensors used for recording physiological signals (Calvo & 

D‘Mello, 2010). However, this issue has been addressed by introducing wearable sensors 

(Arroyo et al., 2009) and remote sensing techniques (Poh, McDuff, & Picard, 2011).  

2.2 Dimensional vs. categorical models of 

emotions  

Affective states can be represented through either categorical or dimensional models and each 

representation has advantages and disadvantages. The categorical representation considers 

emotions as discrete and independent categories. This representation was inspired by the 

concept of basic emotion introduced by Darwin (1872) and then extended by Ekman and his 

colleagues (Ekman 1992; Ekman & Friesen 1971). According to Ekman and Friesen (2003), 

human can recognise six basic emotions universally and cross-culturally: anger, disgust, fear, 

happiness, sadness, and surprise. Other researchers also specified up to 18 categories as basic 

emotions (Ortony & Turner, 1990). However, Ekman‘s basic categories have been explored 

widely in AC research.  

Despite the ability of categorical representation in modelling basic emotions, it did not show 

a good performance in representing complex affective states or blended emotions (Gunes & 

Pantic, 2010; Yu, Aoki, & Woodruff, 2004). Discrete categories of emotions cannot describe 
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emotions that occurred mostly during every-day human interactions (Zhihong Zeng et al., 

2009). Sometimes it is difficult to specify a rigid border between two complex affective or 

mental states. Another drawback of categorical representation of emotion is that it is not 

always possible to translate an emotion category from one culture (language) to another one. 

For example, there is no  true equivalent for ―disgust‖ in Polish (Russell, 1991). 

To address these issues of the categorical representation of emotions, dimensional models 

have been proposed. In this representation, an affective state is described using one or 

multiple numeric dimensions. Two most common dimensions that reflect the main aspects of 

emotions are valence and arousal. Valence represents the level of pleasure of each affective 

state and ranges from highly negative (e.g., unpleasant) to highly positive (e.g., pleasant) 

feelings. Arousal indicated the level of activation of each affective state that ranges from 

passive (e.g., sleepiness or boredom) to active (e.g., frantic excitement). Researchers have 

considered other dimensions like potency (dominance), control, power, and expectation 

(Mehrabian & Russell, 1974). By using these dimensions, different models of affect can be 

described. For example, Russell (1980) developed a two dimensional (2D) model of affect 

using valence and arousal, as shown in Figure 2-2. 

Both categorical and dimensional models of affective states have received substantial 

attention in the AC research area. Early attempts mostly focused on labelling emotional 

categories (Banse & Scherer, 1996; Kanade, Cohn, & Tian, 2000; Pantic, Valstar, 

Rademaker, & Maat, 2005), whilst new affect databases include dimensional annotations 

(Douglas-Cowie et al., 2007; Soleymani, Lichtenauer, Pun, & Pantic, 2012). Soleymani et al. 

(2012) created a multimodal dataset for affect detection and video implicit tagging. Beside 

emotional labels, they have elicited arousal, valence, dominance, and predictability during 

self-reporting. A Sensitive Artificial Listener (SAL) database (Douglas-Cowie et al., 2007) is 

a public audiovisual database that has been labelled using valence and arousal dimensions. 
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The audiovisual information was recorded during interaction with a SAL in a Wizard-of-Oz 

scenario.  

 

Figure  2-2 : A two dimensional representation of affective states. Adopted from Russell (1980) 

2.3 Emotion elicitation  

Affect elicitation is one of the most challenging issues in affect recognition. Conducting an 

experiment to create a dataset for affect detection is an expensive, time-consuming, and 

difficult task. Several techniques have been proposed for affect elicitation. Due to difficulties 

associated with collecting information in realistic environment, most of the affect elicitation 

experiments take place in laboratories. There is still an open discussion regarding the 

possibility of collecting real emotions in a laboratory (Afzal & Robinson, 2009; R Picard, 

2003). However, designing an experiment protocol for HCI applications to induce genuine 

and spontaneous affective states is still a challenging issue. This issue is more difficult for 

inducing complex affective states. 
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Picard et al. (2001) addressed the main concerns that need to be considered during emotion 

elicitation. The stimulus used for inducing emotions is an important factor in emotion 

elicitation methods. Different stimulus, such as event, image (P. J. Lang et al., 2008), music 

(Lichtenstein, Oehme, Kupschick, & Jürgensohn, 2008) or movies (Soleymani, Pantic, et al., 

2012), have been used to trigger emotions. Awareness of the subject about the purpose of the 

experiment might have an impact on the reliability of the elicited data.  

According to a recent survey (M. E. Hoque et al., 2012), there is still no dataset that contains 

spontaneous non-basic emotions that is ideal for affect recognition systems. Figure 2-3 shows 

the position of current state of the art datasets in terms of spontaneity and complexity of 

emotions. Seven datasets are introduced in this figure: Spaghetti (Douglas-Cowie et al., 

2007); SAL (Douglas-Cowie et al., 2007); Semaine (Mckeown, Valstar, Cowie, & Pantic, 

2010); MMI (Pantic, Valstar, et al., 2005); RU-FACS (Bartlett et al., 2006); and Mind 

Reading (Rana El Kaliouby, 2005). Spaghetti, SAL, and Semaine provided spontaneous 

affective states but they focused mostly on basic emotions. On the other hand, RU-FACS and 

Mind Reading datasets contained more complex affective states while they were mostly 

acted.      
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Figure 2-3 : Comparison of current state of the art dataset by considering two dimensions: 

(spontaneous vs. acted) (basic vs. non-basic) emotions. From Hoque et al. (2012) 

Table 2-1 presents a list of datasets currently used for affect recognition systems. The MMI 

dataset (Pantic, Valstar, et al., 2005) is one of the public datasets used commonly for 

evaluating different video-based affect detection systems. Compared with other datasets, this 

dataset contains a large number of video recordings of subjects from different cultures. Most 

of the videos were recorded in both frontal and profile views of the face. Although it contains 

few samples of spontaneous facial expressions, more than 85% of the facial expressions were 

acted deliberately. Another issue associated with this dataset is lack of complex affective 

states. The Mind Reading dataset (Rana El Kaliouby, 2005) was an early attempt to create a 

visual dataset of complex mental states. Several non-basic mental states, such as thinking, 

concentrating, confused, interested, unsure, agreement, and disagreement, exist in this corpus. 

However, actors posed all of these facial expressions.  

On the other hand, Semaine, SAL, and Cam3D datasets tried to record more naturalistic and 

spontaneous affective states. These three datasets were recorded during dyadic conversations. 
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The SAL dataset consists of audio-visual recordings of a pretended human-computer 

interaction (Wizard-of-Oz approach). The SAL interface contains four characters with four 

different personalities. Interacting with each of them can induce specific emotions of the 

participants: happy, sad, angry, and pragmatic. The data were also annotated using a 2D scale 

(valence/arousal).  

In the Semaine dataset, subjects interacted with an operator who tried to evoke emotional 

reactions from them. The recorded conversations were annotated for five affective 

dimensions: valence, activation, power, anticipation/expectation, and overall emotional 

intensity. In addition to the dimensional annotations, categorical labels were also provided for 

each instance.  

The Cam3D provides a three dimensional (3D) dataset of facial expressions, including the 

upper body. This corpus contains 108 audio-visual segments of natural complex mental states 

recorded during dyadic conversations. The 3D models of the face and the upper body were 

created using the Microsoft Kinect sensor. The recorded videos were segmented manually 

and annotated using crowd-sourcing method. They used categorical labels rather than 

dimensional ones because they asked naive labellers for crowd-sourcing (Mahmoud, 

Baltrusaitis, Robinson, & Riek, 2011). 

Table 2.1: List of available datasets for affect recognition 

 Elicitation method  

S: Spontaneous 

P: Posed 

Modalities 

V:Video 

A: Audio 

Size  

(subject/instances) 

Emotion description 

C: Categories 

D: Dimensions 

Cam3D 

(Mahmoud et 

al., 2011) 

Spontaneity: S A/V Subjects: 7 

Instances: 108 

Basic and Complex 

Labelling: C (12 categories) 

CK+  (P. 

Lucey et al., 

2010) 

Spontaneity: P and 

S 

V Subjects: 210 

Instances: 700  

Basic emotions and AUs 

Labelling: C (6 categories)  

Semaine 

(Mckeown et 

al., 2010) 

Spontaneity: S A/V Subjects: 20 

Instances: 578 

duration 6:30:41 

Basic emotions 

Labelling: D (5 dimensions) and 

C (6 categories) 
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SAL 

(Douglas-

Cowie et al., 

2007) 

Spontaneity: S A/V Subjects: 24 

duration: 4:11:00 

Labelling: C and D 

RU-FACS 

(Bartlett et 

al., 2006)  

Spontaneity: P A/V Subjects: 100 

Instances: N/A 

AUs 

Labelling: C 

MMI (Pantic, 

Valstar, et al., 

2005) 

Spontaneity: P and 

S 

V Subjects: 79 

Instances: 2894 

Basic emotions and AUs 

Labelling: C (6 categories) 

Mind 

Reading 

(Rana El 

Kaliouby, 

2005) 

Spontaneity: P V Subjects: 30 

Instances: 1742 

Complex mental states  

Labelling: C 

GMEP  

(Bänziger & 

Scherer, 

2010) 

Posed (professional 

actors) 

A/V Subjects: 10 

Instances: 7000 

(1260 were 

annotated) 

AUs, 

Labelling: C (18 emotion) 

 

2.3.1   Segmentation  

The observation time for annotation is an important parameter that needs to be specified 

based on the context of the recorded dataset. The annotation could be performed either 

continuously or discretely. Two main approaches for segmentation are interval-based and 

event-based. Different factors need to be considered for choosing the best approach for 

segmentation. The subtleness of reported emotions, complexity of annotation scheme, and the 

frequency of expression occurrence are the most important factors to choose between 

interval-based and event-based approaches (Afzal & Robinson, 2009).  

In interval-based methods, the coder needs to report in certain time intervals. Each segment 

might include one or more affective states, which can increase the complexity of annotation 

task. The size of intervals also depends on the context of the system and annotation scheme. 

For example, the annotation scheme should allow reporting multiple emotions in more 

details. The interval-based segmentation can be done automatically but for event-based 

segmentation, we need an intelligent system expert to recognize appropriate events. Each 

event might contain a facial expression, head, or body movement or a combination of these 
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behaviours. Although manual event-based segmentation is a complex and time-consuming 

task, it can increase the quality of annotations (Mahmoud et al., 2011).    

2.3.2    Annotators  

One important aspect to create a reliable dataset for affect detection is selecting the 

appropriate annotators. Annotation task can be performed by the subject (e.g., learner or user) 

or by an external annotator (e.g., expert, peer, tutor, etc.). Both types of annotations have 

advantages and disadvantages and there is still a debate between pros and cons of each of 

those methods to create a reliable dataset (Porayska-pomsta, Mavrikis, D‘Mello, Conati, & 

Baker, 2013).  

Self-reports: Self-reporting is a common method for assigning emotional labels to each 

recorded instance. This method can represent the internal feeling of the subject perfectly; 

however, the quality of the self-reports depends upon two critical factors: the ability of the 

subject to report his/her feeling, and the complexity of emotions. Age, cultural background, 

and personality of the subject influence the ability of reporting internal feeling. For example, 

researchers showed that children under age of 8 had a naive understanding about emotions, 

particularly complex emotions (Conati & Maclaren, 2009). Accordingly, these factors need to 

be considering when the annotation scheme (e.g., questionnaires, emotion models, etc.) is 

designed. The most important issue associated with this method is creating subjective data. 

Each person has a specific personality with specific interpretation of emotion and internal 

feelings. Training and building general models using subjective self-reports is always a 

challenging task.     

External annotators: External annotators can be a peer, tutor, expert or non-expert judges. 

Similar to self-reports, age and cultural proximity (Elfenbein & Ambady, 2003) to the 

subjects are the most important factors to be considered for selecting annotators. Familiarity 
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with the context of the recorded data is also another important factor that can impact the 

quality of the produced labels. For example, de Vicente (2003) showed that postgraduate 

annotators could annotate their classmate interactions more accurately as indicated by high 

inter-rater agreements. On the other hand, younger and less experienced annotators (e.g., 

undergraduate students) might produce annotations with poor inter-rater agreements. Most 

researchers agreed that training the annotators for assessing emotions is essential (Sayette, 

Cohn, Wertz, Perrott, & Parrott, 2001).  

The main advantage of using external annotators is avoiding subjective differences and 

creating smooth annotations, because all instances will be assessed by the same annotators 

with the same constructs (Porayska-pomsta et al., 2013). However, compared with the self-

reports, the original internal feeling is less reflected through the external annotations.   

2.3.3   Concurrent and retrospective annotation  

The annotation tasks (self-report and external annotation) can be conducted concurrently or 

retrospectively. In the concurrent annotation methods, the reports are collected when the 

affective states are recorded. Different instruments and techniques have been used for 

concurrent annotation based on either free-response techniques, such as think-aloud and 

emote-aloud protocols (S. D. Craig et al., 2008), or forced-response techniques. Though these 

techniques can be adopted for both types of annotators, using concurrent methods for external 

annotators is less common (Porayska-pomsta et al., 2013). Collecting self-reports 

concurrently can increase the quality of annotations because in-the-moment insights of the 

subjects can be captured. On the other hand, the risk of cognitive load implications is 

associated with the concurrent annotation methods. 

The retrospective annotation is much easier to prepare, adopt, and administer compared with 

concurrent annotation. In this method, the annotation reports are collected after the recording 
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sessions through interviews or forced-choice questionnaires. The annotators can watch the 

recorded video/audio as much as they want and focus on assessing the observed emotion in 

more details. This approach is also appropriate for external annotators. As another advantage, 

this method does not produce any additional cognitive load during the recording sessions. 

Accordingly, creating a dataset using this method needs extra time for annotation compared 

with the concurrent method. 

2.4 FER systems using image and video 

classification  

Similar to other pattern recognition systems, FER systems consist of two major components. 

The first and the most important component for FER systems is the facial feature extraction 

component (Fasel & Luettin, 2003). According to the literature (Koelstra, Pantic, & Patras, 

2010; Zhihong Zeng et al., 2009), current approaches for feature extraction are divided into 

two main categories: Geometric-based and Appearance-based approaches and these are 

described in more details in following sub-sections. The second component is the 

classification component that utilizes various types of classifiers or probabilistic models to 

predict the affective states or AUs.   

2.4.1   Geometric-based approach  

Geometric-based methods rely on extracting some features by tracking a set of fixed points or 

landmarks on the face for affect recognition. In the early attempts, these facial landmarks 

were placed manually on the face and then features were extracted by measuring the changes 

in the position of each point compared with the neutral face. However, current systems use 

computer vision techniques to detect and track face and other facial components 
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automatically. A list of FER systems that used geometric-based methods for feature 

extraction is presented in Table 2-2.  

The first group of the geometric-based methods tracks the position of some fixed points on 

the face (Baltrusaitis et al., 2011; R. El Kaliouby & Robinson, 2005; Pantic & Patras, 2006; 

Valstar & Pantic, 2007). Baltrusaitis et al. (2011) proposed a new real-time method for affect 

recognition based on a system implemented by El Kaliouby and Robinson (2005). Besides 22 

facial points, they tried to classify head and body gestures using Hidden Markov Model 

(HMM). In the next step, they used a multi-level dynamic Bayesian Network to identify each 

affective state. They trained and test their system on a new dataset GEMEP-FERA (Valstar, 

Jiang, Mehu, Pantic, & Scherer, 2011) and achieved an average classification accuracy of 

44% that was less than its former implementation. El Kaliouby and Robinson (2005) 

achieved the classification accuracy of 77% when they validated their system using a dataset 

produced by themselves.  
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Table 2.2: Geometric-based systems for affect/AU detection 

 Ref Approach/ 

Method 

Classifier Dataset 

Participants 

Emotion 

model/ labels 

Classification 

Accuracy 

1 El Kaliouby 

and Robinson 

(2005) 

G:1 Facial points 

24 facial points 

HMM, DBN Own dataset 

30 subject 

6 Complex 

mental states 

77% 

2 Baltrusaitis et 

al. (2011) 

G:1 Facial points 

22 facial points + 

gestures 

HMM, DBN GEMEP-

FERA 

6 Emotion 

categories 

44%   

3 Pantic and 

Patras (2006) 

G:1 Facial points Rule based MMI: 19 

subjects 

27 AUs 86.3% 

4 Valstar and 

Pantic (2007) 

G:1 Facial points 

20 facial points 

GentleSVM MMI: 52 

subject 

2 Classes 

Posed vs. 

spontaneous 

smiles 

94% 

5 Chang et al. 

(2006) 

G: 2 Shape 

model 

58 facial 

landmarks 

Probabilistic 

method 

Own dataset 

2 subjects 

6 basic 

emotions 

– 

6 Kotsia and Pitas 

(2007) 

G: 2 Shape 

model  

 

SVM CK 6 basic 

emotions 

99.7% 

7 Tian et al. 

(2001) 

G:3 Facial 

components 

Lips, eyes, 

brows, cheeks 

and furrows 

Neural 

Network 

CK 

 

16 AUs Upper face: 

96.4% 

Lower face: 

96.7% 

8 Valstar and 

Pantic (2012) 

G:3 Facial 

component 

20 facial points 

GentleSVM, 

HMM 

CK, MMI 22 AUs Posed: 95.3% 

Spontaneous: 

72% 

9 Gunes and 

Pantic (2010) 

G: Head gestures SVR SAL 5 dimensions – 

The second group of the geometric-based methods needs to build a facial shape model to 

extract geometrical features (Chang et al., 2006; Kotsia & Pitas, 2007). Chang et al. (2006) 

proposed a method to map facial expression into a low-dimensional space. They created an 

active shape model for tracking 58 facial points and then converted them into a 3D space 

using the Lipschitz embedding method. They used a dataset with only two subjects that was 

not sufficient to create a subject-independent model.  

Kotsia and Pitas (2007) proposed and evaluated two methods using a facial grid model. The 

grid needed to be assigned manually to some depicted facial landmarks at the first frame. In 

their first method, they tracked the facial grid and used a multiclass SVM to predict the 

emotion. In their second method, they tried to classify deformations of facial grid using 
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SVMs to identify specific AUs and then recognize the six basic emotions using certain rules 

applied on detected AUs. They achieved slightly better accuracy when they used the first 

method (99.7% vs. 95.1%).   

The third group of the geometric-based methods tries to model facial components and extract 

geometric features from that model (Tian et al., 2001; Valstar & Pantic, 2012). Eye, lips, 

brows, and furrows are the most common components used for affect detection. As shown in 

Figure 2-4, various geometric features can be measured using the three facial components: 

eyes, brows (white lines above eyes), and cheeks (black solid lines under eyes). For example, 

the height of the left eye can be measured by this equation: (hl1+hl2). The distance between 

two eyebrows is another feature that can be measured by D (see Figure 2-4). These features 

can be considered as the inputs of a classifier to identify specific AU or a facial expression. 

Tian et al. (2001) used a neural network-based recognizer to identify 16 AUs using these 

geometrical features.  

 

Figure 2-4: An example of upper face geometric-based features. From: Tian et al. (2001) 

As shown in Table 2-2, most of the geometric-based systems have used categorical 

representation of emotions. Dimensional emotion prediction using geometric-based features 

has been rarely explored in the FER research area. Gunes and Pantic (2010a) proposed a 

method to predict emotion in five dimensions (arousal, expectation, intensity, power, and 

valence) from head postures. They applied their system on a dataset that contains 
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spontaneous facial expressions and head gestures. Their results demonstrated that building a 

user-independent model for detecting dimensional emotions is feasible.  

2.4.2   Appearance-based approach  

In the appearance-based approach, the motion and deformation of certain regions of the face 

(e.g., skin or texture) are considered to extract facial features. Some facial actions hardly 

detected by geometric method, such as wrinkles, bulges, and furrows, can be recognized 

easily using appearance-based techniques. Researchers used different appearance-based 

techniques, such as Gabor wavelets (Guo & Dyer, 2005; Littlewort et al., 2011; Littlewort, 

Bartlett, Fasel, Susskind, & Movellan, 2006); Optical flows (Anderson & McOwan, 2006); 

Local Binary Patterns (Moore & Bowden, 2011; Shan, Gong, & McOwan, 2009); Active 

Appearance Models (S. Lucey, Ashraf, & Cohn, 2007); and Negative matrix factorization 

(Zhi, Flierl, Ruan, & Kleijn, 2011) for recognizing AUs and affective states. Most of these 

attempts have been focused on recognizing either AUs or basic emotions. Table 2-3 briefly 

summarizes the FER systems that attempted to use appearance-based methods techniques 

together with the best results reported. 
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Table 2.3: List of Appearance-based systems for affect/AU detection 

 Reference Approach/ 

Method 

Classifier Dataset 

Participants 

Emotion 

model 

Result 

(Accuracy) 

1 Guo and Dyer 

(2005) 

A: Gabor 

 

Bayes 

Classifier, 

AdaBoost, 

SVM 

Other: 10 

Japanese 

women 

Seven basic 

emotions 

SVM:92.4% 

2 Bartlett et al. 

(2006) 

Bartlett et al. 

(2005) 

A: Gabor 

 

AdaBoost 

SVM 

CK+EH:119 

RU:12 

AUs and 

Basic 

emotions 

Acc: CK:93.4 

RU: 90.5 

3 Anderson and 

McOwan (2006) 

A: Optical SVM Other: 100 

students 

Six basic 

emotions 

75.32% 

4 Littlewort et al. 

(2011) 

A: Gabor SVM CK+ 19 AUs 

Six basic 

emotions 

AUs: 90.1% 

Emotions: 80% 

5 Shan et al. (2009) A: LBP SVM CK Six Basic 

emotions 

91.5% 

6 Zhi et al. (2011) A: NMF – CK Six Basic 

emotions 

CK: 94.3% 

7 Lucey et al. 

(2007) 

A: AAM SVM CK: 100 

subjects 

AUs Acc: 95% 

8 Asthana et al. 

(2009) 

A: AAM SVM CK Seven basic 

emotions 

Acc: 94.3% 

9 Zhao and 

Pietikäinen 

(2007); Zhao and 

Pietikäinen (2009) 

A: DT, LBP 

 

SVM CK Six basic 

emotions 

10 fold: 

96.26% 

10 Koelstra et al. 

(2010) 

A: DT GentleBoost, 

HMM 

MMI 

CK 

AUs MMI (27 AUs): 

94.3% 

CK (18 AUs): 

89.8% 

11 Tian et al. (2002) A & G Neural 

Networks 

CK 9 AUs Geometric: 

87.6% 

Combine: 

92.7% 

12 Shin (2007) A: locally 

linear 

embedding 

(LLE)  

NN Other: Korean 

dataset 

2 dimensions, 

4 classes 

– 

13 Grafsgaard et al. 

(2013) 

A: using CERT toolbox 

(Littlewort et al., 2011) 

Other Engagement, 

Frustration 

Regression 

models were 

proposed 

The Gabor-wavelet-based method is one of the early appearance-based methods for facial 

expression recognition. Zhang et al. (1998) shown that the Gabor-based method outperforms 

the geometric-based method for facial expression recognition. Guo and Dyer (2005) selected 

34 facial points manually after applying Gabor filters. The calculated amplitudes of each 

fiducial point were used for classifying seven basic emotions. Barlett et al. (2006) first 
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detected the face and eyes and then used Gabor wavelet filters to extract appearance-based 

features. They extracted 165,888 features using Gabor filters in eight orientations and nine 

frequencies. For classification, they evaluated two classifiers (SVM and Adaboost) and 

figured out that the best results can be achieved when the AdaBoost was used for feature 

selection and the SVM classifier was used for training. 

Using optical flow of the face to extract facial features is another common method for affect 

detection. Optical flow is a method to represent motions of facial components. Different 

patterns in facial motions can determine specific affective states. Anderson and McOwan 

(2006) used the multichannel gradient model to extract optical flow features by measuring the 

velocity of different facial regions. They used their system to detect six basic emotions and 

evaluated it in an emotional chat-room and a desktop application.    

Negative matrix factorization (NMF) is a new appearance-based technique that has been used 

recently for emotion detection. This method tries to calculate a sparse representation of the 

face. Zhi et al. (2011) showed that it can recognize successfully six basic emotions even if 

some parts of the face were occluded. Facial occlusion is one of the big issues for automatic 

FER that frequently occurs in naturalistic scenarios. Zhi et al. (2011) selected a set of facial 

images from the CK dataset that were partially occluded and evaluated the performance of 

their system using those images. The detection accuracies of 93.3%, 94%, and 91.4% were 

achieved for eyes, mouth, and nose occlusions, respectively.  

Dealing with individual differences needs to be considered during designing a affect 

detection system. On the other hand, an ideal affect detection system should be able to 

generalize the prediction model to previously unseen persons. Chu et al. (2013) proposed a 

solution to personalize a generic classifier using an unsupervised method. They have utilized 

a Selective Transfer Machine (STM) to reweight more the training instances that are closer to 

the test instances. The STM is a classifier-independent technique and can be used with any 
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classifier. They have used the STM with SVM classifier and the results showed that the STM 

technique outperformed generic classifier for detecting eight most frequent action units (Chu 

et al., 2013). 

As reflected in Tables 2-2 and 2-3, most previous works focused on detecting basic emotions, 

but more recently, some researchers have focused on the recognition of complex mental 

states, such as engagement (Bohus & Horvitz, 2009; Grafsgaard et al., 2013), attention (Roda 

& Thomas, 2006; Vertegaal, 2003), and common affective states in learning applications 

(D‘Mello & Graesser, 2010; Graesser et al., 2006; McDaniel et al., 2007). Instead of relying 

on single modality, most of the these researchers try to recognize more complex affective 

states using multiple cues, such as facial expression, head, and body posture and audio, text, 

and physiological signals.  

Grafsgaard et al. (2013) used the computational toolbox proposed by Littlewort et al. (2011) 

to track facial movements within a naturalistic video corpus of naturalistic tutorial dialogue. 

The most frequent facial AUs, including eyebrow raising (inner and outer), brow lowering, 

eyelid tightening, and mouth dimpling, were selected to predict engagement, frustration, and 

learning gains using forward stepwise linear regression. Engagement was measured through 

three different aspects of engagement, such as mental demand, physical demand, temporal 

demand, and performance, using a post-session survey. Their findings suggested that upper 

face movements would be a good predictor of engagement, frustration, and learning, and they 

achieved reasonable agreement between their predictions and manual annotations 

(Grafsgaard et al., 2013). 

2.4.2.1 Dynamic texture-based techniques 

One of the new methods introduced in the appearance-based approach is the Dynamic 

Texture (DT)-based method (Chetverikov & Renaud, 2005; Saisan, Doretto, & Wu, 2001). 
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DT is a specific pattern that can be observed in a spatiotemporal space. Typical examples of 

DTs are smoke, fire, and sea waves. Facial expressions can be considered as DTs. Each 

expression has certain temporal facial features that can be measured by DT-based methods. 

Accordingly, instead of analysing each frame independently, the temporal dynamic of each 

facial component is modelled to recognize specific patterns.  

The system introduced by Zhao and Pietikäinen (2007) was one of the earliest attempts to use 

a DT-based method to recognize six basic emotions. They proposed two methods based on 

Local Binary Patterns (LBP). The first method tried to extend the LBP operator that was 

typically used for modelling static textures. In their first method, Zhao and Pietikäinen (2007) 

adopted the LBP operator in 3D space (x, y and time) called Volume LBP (VLBP). The 

VLBP method was computationally expensive and could not be used in for real-time 

applications. Consequently, they proposed LBP in Three Orthogonal Panels (LBPTOP), 

which was simpler and easier to extend. Both methods have shown reasonable accuracies for 

detecting the six basic emotions when applied to the images collected from CK dataset (see 

Table 2-3). However, Zhao and Pietikäinen (2007) needed to locate the position of the eyes 

manually in the first frame, which is not desirable for practical AC applications. 

Another successful example of using the DT-based method for FER has been proposed by 

Koelstra et al. (2010). They utilized two techniques (Free-form Deformations FFDs or 

Motion History Images (MHIs)) to estimate non-rigid motion between consecutive frames. 

Instead of dividing the face region into pre-defined sub-regions, they used a quad tree 

decomposition method to identify specific sub-regions related to each facial AU. Then 

orientation histogram features were extracted from those sub-regions. They have done a 

comprehensive comparison between their obtained results and other current FER systems. 

Considering temporal features is important for discriminating those AUs that have similar 
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appearance. For example, AU 43 (closed eyes) and AU45 (blink) are similar; however, the 

AU43 usually lasts longer than AU45.       

Both geometric-based and appearance-based approaches have advantages and disadvantages. 

Each method showed better performance in certain conditions and for a group of affective 

states compared with another one. For example, appearance-based methods are more 

sensitive to light conditions, and for applications that have big variations in illumination, 

geometric-based methods are suggested. On the other hand, geometric-based methods are not 

able to measure some facial features, such as furrows and wrinkles, which appearance-based 

systems detected easily. There is still a debate to select the best method based on the 

application and targeted emotions. Some researchers (Ashraf et al., 2009; Tian et al., 2002) 

used both methods to extract facial features and showed that considering both types of 

features can improve the accuracy of affect detection.  

2.5 Physiological-based affect detection 

According to the theory of Emotions as Embodiments, several methods have been proposed 

to detect affective states from physiological changes. According to this theory, each internal 

feeling (e.g., emotion) has a specific physiological pattern. Most of the proposed methods for 

measuring physiological states try to record and analyse the electrical signals produced by the 

heart, brain, muscles, and skin. The main methods and instruments to monitor physiological 

signals include Electrocardiogram (ECG), Electromyogram (EMG), galvanic skin response 

(GSR), Skin Conductivity (SC), and Respiration (RSP). Picard et al. (2001) demonstrated the 

importance of using physiological signals for affect detection.  

Several methods have been proposed to extract physiological features from signals recorded 

for affect detection. HR and heart rate variability (HRV) are two vital measures that have 
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been used widely for affect detection and can be extracted from ECG data. Previous 

researchers showed that HR is a good indicator for discriminating between different affective 

states (Kreibig, 2010; Levenson, Ekman, & Friesen, 1990). For example, the value of 

measured HR during fear, anger, and sadness are higher than during happiness, disgust, and 

surprise (Levenson et al., 1990). Alzoubi et al. (2012) proposed a method to detect non-basic 

affective states using a combination of physiological signals (ECG, EMG, and GSR) during 

naturalistic HCI. They yielded a fair accuracy for detecting naturalistic affective using a user-

independent model. However, according to the literature (Calvo & D‘Mello, 2010), one of 

the main challenges associated with physiological-based AC applications is the intrusiveness 

of physiological sensors. This issue can be addressed by using remote measurement 

techniques.      

2.5.1   Remote sensing of physiological signals 

Remote, contactless monitoring of vital signs can be divided into three categories: microwave 

Doppler radar (Chen, Misra, Wang, Chuang, & Postow, 1986; Greneker, 1997; Li et al., 

2009), thermal imaging (Fei & Pavlidis, 2010; Garbey, Sun, Merla, & Pavlidis, 2004), and 

video-based imaging methods (Poh et al., 2010; Takano & Ohta, 2007; Verkruysse, 

Svaasand, & Nelson, 2008). One of the earliest applications of remote contactless monitoring 

was reported in the 1980s (Chen et al., 1986). Chen et al. (1986) proposed a microwave life-

detection system for sensing the heartbeat and breathing of human subjects lying on the 

ground at a distance of about 30 metres or located behind a cinder block wall. To our 

knowledge, this was the first effort to monitor vital signs remotely using microwave Doppler 

radar. 

In thermal imaging, remote HR detection is performed through the analysis of skin 

temperature modulation. Pulsative blood flow modulates tissue temperature because of the 
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heat exchange by convection and conduction between vessels and surrounding tissue. Such 

modulation is more pronounced in the vicinity of major superficial blood vessels (Garbey et 

al., 2004). A superficial blood vessel should be selected as the region of interest (ROI) for 

image analysis. Detecting and tracking these areas on human bodies is a challenging task. On 

the other hand, remote breathing measurements take advantage of the fact that the expired air 

has a higher temperature than the inspired air due to heat exchange in the lungs and 

respiratory passageways. This thermic nature of breath around the nostril area creates an 

opportunity for thermal measurement (Fei & Pavlidis, 2010). Sprager and Zazula (2013) 

proposed a new method to measure HR and respiration rate from optical interferometric 

signals under two separate conditions: at rest and during cycling.   

Among the above mentioned methods, video-based remote monitoring methods are 

considered cheaper and easier to adopt (Poh et al., 2011). Most of them use the 

photoplethysmography (PPG) methodology to detect HR variability. PPG is a low-cost and 

non-invasive means of sensing the cardiovascular blood volume pulse through variations in 

transmitted or reflected light (Allen, 2007). PPG is based on the principle that blood absorbs 

light more than the surrounding tissue so variations in blood volume affect transmission or 

reflectance correspondingly.  

PPG is measured through reflection of dedicated light sources, such as infrared, with a 

shallower penetration depth in skin. Researchers (Takano & Ohta, 2007; Verkruysse et al., 

2008) demonstrated that pulse measurement could be obtained by analyzing the skin colour 

with ambient light as the illumination source. Poh et al. (2011) proposed the method for 

recovering BVP signals by tracking the face skin colour changes using an ordinary camera. It 

has shown its robustness under a non-laboratory condition with little user motion. Automatic 

face tracking ability enhances the method to work well in a wide range of everyday activities. 
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2.6 Multimodal affect detection 

It is generally accepted that integrating information from multiple cues can improve the 

performance of affect detection. However, a multimodal affect detection system has been 

rarely explored before due to difficulties associated with recording and synchronization of 

multiple sensors (Jaimes & Sebe, 2007). The integration of multiple cues can be implemented 

in three levels. Figure 2-5 illustrates these three levels of fusion. In Data-level fusion (Figure 

2-5-a), the raw data from all sensors is integrated in the early stage before feature extraction 

and classification. Recorded data must have the same temporal resolution to combine them in 

data-level. In addition, this type of fusion cannot be used for combining non-homogenous 

modalities. For example, video and text data cannot be integrated in data-level. Because of 

these mentioned limitations, it has been rarely used for affect detection.  

However, Feature-level fusion goes one step further and combines extracted features from 

each modality. With this approach, non-homogonous modalities with different recorded 

frequencies can be integrated. Feature-level fusion is more common in AC applications 

(Busso et al., 2004; Schuller et al., 2007; Wagner, Kim, & André, 2005). After combining all 

extracted features, a single or a meta classifier is applied on the data set for affect prediction 

(Figure 2-5-b).  

Decision-level fusion is also a popular approach for multimodal affect detection (D‘Mello & 

Graesser, 2010; Pal, Iyer, & Yantorno, 2006; Z. Zeng et al., 2007). In this approach, the 

integration occurs at the end of the analysis (Figure 2-5-b). To be more precise, the prediction 

results from each modality are combined to conclude the final decision. It was assumed that 

the decision-level approach can provide better recognition rate; however, several experiments 

showed that the feature-level approach can outperform the late-integration approach 

(Castellano, Kessous, & Caridakis, 2008; Kim, 2007).  
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For example, Kim (2007) evaluated these two approaches for detecting dimensional affect 

using speech and physiological changes. The feature level fusion obtained better accuracies 

compared with other fusion approaches. Choosing an appropriate approach to integrate 

different modalities depends on the type and number of modalities, context, and application. 

Recently the Hybrid-fusion approach (Hussain et al., 2011; Kim, 2007) was introduced and 

this tries automatically to select the best solution by combining feature level and decision 

level integration.       

 

Figure 2-5: Three levels of fusion in multimodal system for affect detection. From Pantic and 

Rothkrantz (2003) 

Recent attempts of multisensory AC systems focused on detecting non-basic emotions 

(Caridakis, Karpouzis, & Kollias, 2008; Nicolaou, Gunes, & Pantic, 2011; Soleymani, Pantic, 

et al., 2012). Combining audio-visual features received more attention compared with others 

(Zhihong Zeng et al., 2009). Combinations of other modalities, such as text and audio 
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(Forbes-Riley & Litman 2011), tactile and physiological signals, and face and physiological 

signals, were also explored. 

Facial features were usually combined with other audiovisual modalities like head and upper-

body gestures or audio cues, such as acoustic and prosodic features. On the other hand, 

physiological responses were mostly fused with each other, as long as all features extracted 

from wearable and tactile sensors (Alzoubi et al., 2012; Chanel, Ansari-Asl, & Pun, 2007; 

Wagner et al., 2005). Facial expressions and physiological signals were rarely explored 

together (Bailenson et al., 2008; Hussain, Calvo, & Chen, 2013).  

To descriminate two types of emotion (amusement vs. sadness), Bailenson et al. (2008) 

presented a system to monitor 15 physiological measures and 53 facial points when 

participants were watching a film. Bailenson et al. (2008) combined the data at feature level 

and evaluated two classifier (SVM and GentleBoost) for emotion classification. The best F1-

score (0.69) was achieved by the fusion of the face and physiology for amusement detection. 

Their evaluations also showed that the fusion model improved the F1-score of the face and 

physology modalities by 0.06 and 0.20, respectively.  

Recently, some works focused on continuous prediction of affective states using audiovisual 

information in dimensional space (Gunes & Schuller, 2013; Nicolaou et al., 2011).  Nicolaou 

et al. (2011) fused facial expression, shoulder gestures, and audio cues to predict affect in 2D 

space (valence and arousal) continuously. They applied two machine learning techniques: 

Bidirectional Long Short-Term Memory neural networks (BLSTM-NNs) and Support Vector 

Machines for Regression (SVR) on extracted features and evaluated the performance of each 

ones. The results showed a significant agreement between system predictions and human 

coders annotations. They validated their system using the leave-one-sequence-out cross 

validation approach. A root mean squared error (RMSE) of 0.15 and a correlation of 0.796 
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were obtained for valence prediction, and a RMSE of 0.21 and correlation of 0.642 were 

achieved for arousal prediction. 
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Chapter 3. Image analysis and classification 

methods 

Summary 

In this chapter, the proposed framework for recognizing non-basic affective states by 

fusing three types of vision-based features is described in detail. Two main 

experiments were designed and conducted to elicit facial expression in a naturalistic 

environment and are described here. In the first experiment, a set of emotional images 

selected from the IAPS collection was used to trigger a user’s emotions. For the 

second study, a writing session was designed to monitor user’s engagement and 

emotion during the writing task.  

In addition, the methods used for feature extraction and for recognizing expressions 

are presented in the rest of this chapter. Three methods are introduced for feature 

extraction. First, the LBPTOP is a dynamic texture-based method to extract 

appearance-based and motion-based features. Second, the Microsoft Kinect face 

tracker engine (SDK v. 1.5) was used to extract geometric-based features. Third, the 

HR signals recovered by computer vision techniques were also used for affect 

detection. A voting classifier is used for classification, and the Cohen Kappa measure 

was used to measure the performance of the proposed methods.   



 3.1  Introduction  46 

 

3.1 Introduction 

The literature review of Chapter 2 showed a gap in our knowledge on designing and 

implementing automatic non-basic affective state recognition in naturalistic scenarios 

(D‘Mello & Calvo, 2013; M. E. Hoque et al., 2012). The literature also suggested that 

considering the geometric appearance of the face provides a better understanding of the 

affective state (Ashraf et al., 2009; Tian et al., 2002). Adding other modalities, like 

physiological signals, can improve the affect prediction by providing some useful information 

about the user‘s intrinsic feelings. We present a framework for recognizing non-basic 

affective states to combine those three mentioned factors: appearance- and geometric-based 

features and physiological signals. Our proposed framework relies only on vision modality. 

With new advances on computer vision techniques, some physiological signals could be 

extracted through video recording. Gathering more useful information using just one 

modality (e.g., video) is less intrusive and easy to synchronize. A comprehensive overview of 

our proposed framework and its components is presented in this chapter.  

Basically, the affect recognition process consists of two main steps (Fasel & Luettin, 2003): 

feature extraction and classification. In this chapter, two different methods are introduced for 

extracting appearance-based and geometric-based features from facial videos. In addition, an 

improved method for recovering HR signals is introduced to extract some physiological 

features. A combination of these features is passed to the classification component to detect 

the corresponding affective state. A number of classifiers is introduced and evaluated in this 

chapter.        

Existing corpora of video-based facial expressions are focused mostly on basic emotions and 

recorded in a controlled conditions (M. E. Hoque et al., 2012). Most of them used actors to 

play a facial expression. Quite a few accessible corpus still contain non-basic affective states 
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expressed by ordinary people in a naturalistic scenarios (Mckeown et al., 2010). Non-basic 

affective states rarely happen in everyday activities. Gathering these kinds of expressions and 

labelling them is a tough and time-consuming task. Reliability of gathered data is another 

issue, which is more important for these sorts of corpora. We have decided to build a new 

corpus of naturalistic affective states to evaluate our proposed framework. This corpus is also 

described in this chapter.  

3.2 Framework overview 

The main objective of the proposed framework is handling disparate video-based features for 

recognizing non-basic affective states. Facial expressions and physiology are two modalities 

that could be monitored by computer vision techniques. Figure 3-1 illustrates an overview of 

our methodology. Raw data from video and depth sensor composes the input of the system. 

Three types of features are extracted using three different methods. Facial AUs and head-

related features are extracted as a type of geometric-based features. The LBPTOP features are 

the second type of features that represent the appearance-based features. The third type of 

features is extracted from the HR channel. A combination of these features is used for affect 

classification. 

 

Figure 3-1: The proposed model for classifying naturalistic complex mental states 

 



 3.2  Framework overview  48 

 

The fundamental criteria for implementing this framework are: 

 Dynamic representation of affect: Frames inside each video that can be analysed 

independently as static images are not enough for an accurate estimation of an 

affective state. To have a better understanding of a user‘s affective state, a temporal 

model of affect should be considered. This fact is one of the most important factors in 

designing feature extraction methods in the proposed framework. In particular, 

appearance-based features are extracted based on a dynamic-texture method.  

 Unobtrusiveness: In general, contact-less sensors are less-intrusive compared with 

wearable sensors, such as current physiological sensors. New generation of cameras 

could observe some vital signs, such as HR and respiration, remotely. The main 

concern about using a camera as a sensor is privacy. Some people are not comfortable 

with systems that film them as they consider them a threat to their privacy. It is fair to 

consider a trade-off between privacy and performance. If the system could provide a 

reasonable level of performance, the user could be conceived to share more private 

data. On the other hand, current advances technologies for enhancing privacy could 

decrease the privacy concerns in the near future (e.g., local processing could mean 

that only anonymised features are sent outside the device or all the processing 

happens locally).   

 Synchronization: In multimodal affect detection systems, synchronization has always 

been a challenging issue. Different sensors have different frequencies and might use 

different time services. Having one sensor could reduce the complexity of 

synchronization task. The proposed framework relies only on a visionary sensor 

(Microsoft Kinect) that can extract facial features and physiological signals. 
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3.2.1   Geometric-based features  

Geometric-based features can be extracted by detecting certain points of the object (e.g., face) 

in an image and tracking them through a sequence of images. Several methods and 

techniques have been proposed following this approach as discussed in Chapter 2. Among all 

of the proposed methods, AUs (Ekman, Friesen, & Hager, 2002) are still one of the best-

known and useful methods to describe facial expressions. Recent methods are able to detect a 

combination of AUs automatically in real time (Baltrusaitis et al., 2011; Koelstra et al., 2010; 

Torre, Simon, Ambadar, & Cohn, 2011). For instance, Microsoft introduced a software 

development kit (SDK) for its Kinect sensor with the ability to detect 100 facial points and 6 

AUs in real time. This SDK was used in this thesis to extract geometric-based features.  

3.2.2   Appearance-based features  

Appearance-based features aim to describe deformations of facial objects, such as wrinkles 

and furrows, which geometric parameters find hard to model. LBP (Ojala, Pietikäinen, & 

Harwood, 1996) is a powerful method used for detecting micro-patterns in an image. This 

method is also used for FER systems (Shan et al., 2009). LBP itself could not support 

dynamic representation of facial expressions, but LBP in three orthogonal planes is proposed 

to extend the LBP into temporal space. 

3.2.3   Remote sensing of physiological signals 

Currently, two important vital signs – heart pulse and respiration – could be extracted using 

ordinary cameras (Poh et al., 2011). There are still some difficulties with accurate estimation 

of these signals due to lighting conditions and the user‘s body movement. Despite these 
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issues, remote monitoring of physiological signals could improve our understanding about the 

user‘s affective states. Researchers have demonstrated that physiological signals are a useful 

indicator of non-basic affective states (Alzoubi et al., 2012). In the proposed framework, a 

component is devoted to remote sensing of heart pulses.  

3.3 Feature extraction 

3.3.1   Kinect face tracker 

In this study, the Kinect SDK‘s face tracking engine (v1.5) was used for facial feature 

extraction. This engine is able to track head position, ANimation Units (ANUs) and 100 

facial points in real time. It should be mentioned that the description of these ANU labels are 

different from typical AUs proposed by Ekman and Friesen (1978). For example, ANU0 

(Upper Lip Raiser) equals to AU10 in the FACS proposed by Ekman and Friesen (1978). A 

detailed description of each ANU is presented in Table 3-1. Six ANUs are tracked by the face 

tracking engine and these are a subset of what is defined in the Candide3 model (Ahlberg, 

2001). The ANUs are deltas from the neutral face shape. Four ANUs represent lips motions 

and two correspond to eyebrows motions. Each ANU is expressed as a numeric weight 

varying between –1 and +1. For example, ANU0 measures Upper Lip Raiser. The value of 0 

means the upper lip covers the teeth fully; ANU0 equals +1 if the user shows his/her teeth 

fully; and it decreases toward –1 if he/she pushes down the lip. 
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Table 3.1 Animation unit (ANUs) description according to Microsoft Kinect SDK 1.5 user manual 

ANU Name and Value  ANU Value Interpretation  

ANU0 – Upper Lip Raiser  

(Equals to AU10)  

0 = neutral, covering teeth  

1 = showing teeth fully  

–1 = maximal possible pushed down lip  

ANU1 – Jaw Lowerer  

(Equals to AU26/27)  

0 = closed  

1 = fully open  

–1 = closed, like 0  

ANU2 – Lip Stretcher  

(Equals to AU20)  

0 = neutral  

1 = fully stretched (joker‘s smile)  

–0.5 = rounded (pout)  

–1 = fully rounded (kissing mouth)  

ANU3 – Brow Lowerer  

(Equals to AU4)  

0 = neutral  

–1 = raised almost all the way  

+1 = fully lowered (to the limit of the eyes)  

ANU4 – Lip Corner Depressor  

(Equals to AU13/15)  

0 = neutral  

–1 = very happy smile  

+1 = very sad frown  

ANU5 – Outer Brow Raiser  

(Equals to AU2)  

0 = neutral  

–1 = fully lowered as a very sad face  

+1 = raised as in an expression of deep surprise  

The coordinate system used for measuring the position and rotation of the head is based on a 

right-handed coordinate system, and the origin of the coordinate is the position of the Kinect 

sensor. The Z axis is pointing toward the user, the X axis is pointing toward the right side, 

and the Y axis is pointing up. 

The user‘s head rotations are captured by three parameters in 3D space: head pitch, yaw, and 

roll. The head pitch angle is measured in degrees and specifies the rotation of the head 

around the X axis. To be more precise, it can measure if the user is looking down or up. The 

head yaw angle can measure the rotation of the head around the Y axis. If the user is looking 

toward his/her right shoulder, the value of yaw angle would be negative, and if he/she is 

turning his/her head toward his/her left shoulder, this value would be positive. The head roll 

angle measures the rotation of the head around the Z axis. Figure 3-2 shows the description of 

these features graphically.  
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Figure 3-2: Head rotation measurement examples from Microsoft Kinect SDK manual 
1
   

According to the origin of the coordinates, the head position is also measured in meters in 3D 

space using the head translation features in the X, Y, and Z axes. Six ANUs were calculated 

for each detected face, along with three values that specify the head rotation in 3D space and 

three values that indicate the position of the head. Accordingly, 12 features were calculated 

for each frame. To add temporal features, some statistical functions are applied on extracted 

features. Considering each video segment as an instance, seven statistical functions (mean, 

median, standard deviation, max, min, range, difference) were applied on each feature to 

build the final set of 84 (12 features × 7 statistical functions) features. 

3.3.1.1 Validation 

Lighting conditions, distance, and face occlusion are the main factors that might affect the 

accuracy of the face-tracking engine. For example, thick glasses or certain facial hair might 

reduce the accuracy facial point and the ANU tracking. The face-tracking engine is also 

sensitive to the position of the head in front of the camera. According to the SDK user 

                                                 

1
 http://msdn.microsoft.com/en-us/library/jj130970.aspx 
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manual
2
, it can track well when the user‘s head pitch angle is less than 20 degrees, the roll 

angle is less than 90 degrees, and the yaw angle is less than 45 degrees. But it works best 

when the pitch angle is less than 10 degrees, the roll angle is less than 45 degrees, and the 

yaw angle is less than 30 degrees. 

The Kinect sensor works in two modes: default and seated mode. In SDK 1.5, if the sensor is 

set to seated mode, the application can receive full joint information when tracking users as 

close to the sensor as 0.4 meters up to a maximum of 3.0 meters. The user tracking range in 

the default mode is from 0.8 meters to a maximum of 4.0 meters. The seated mode is more 

appropriate for normal HCI applications. According to these limitations and to remove low 

quality and invalid records from extracted features, constraints were applied on extracted 

features (see Table 3-2).  

Table 3.2: Constraints for head movements that used in the proposed framework  

 Constraints used in proposed framework Constraints in the SDK 1.5  

 Minimum value Maximum value Best performance Tracking range 

Distance 0.6 meter 1.4 meter – 
0.4 to 3.0 meters  

(in near mode) 

Pitch – 20 degrees + 20 degrees ± 10 degrees ± 20 degrees 

Roll – 90 degrees + 90 degrees ± 45 degrees ± 90 degrees 

Yaw – 45 degrees + 45 degrees ± 30 degrees ± 45 degrees 

3.3.2   Local Binary Pattern in Three Orthogonal Planes 

3.3.2.1 Local Binary Pattern (LBP) 

The LBP method detects the local-patterns existing in an image. Ojala et al. (1996) proposed 

this method for describing texture images. By applying the LBP operator on all pixels of an 

image (or a sub-region of an image) and computing the distribution of local-patterns, a 

unique histogram could be extracted that describes the occurrence of each specific local 

                                                 
2
 http://msdn.microsoft.com/en-us/library/jj130970.aspx 
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pattern throughout that image. This histogram is a powerful identifier for each image and 

shows good performance in several pattern recognition applications.     

For detecting each local-pattern, the LBP operator obtains the colour value of each centre 

point and considers it as a threshold value. Then it compares the colour value of 

neighbourhood pixel with the threshold and assigns a binary value to that pixel as its label. 

The LBP operator puts labels of the neighbouring pixels together to come up with a binary 

number that specifies a unique local-pattern. Having P neighbourhood pixels could describe 

2
P
 distinguishable local-patterns. For example, if we consider eight neighbourhood pixels, 

256 local-patterns could be addressed. The number of neighbourhood pixels (P) and the radii 

(R) could define the size of each local-pattern. The radii specify the distance between 

neighbourhood pixels and the centre point. The ideal values for R and P depend on the 

application domain and the characteristics of the image. Three examples of LBP operators 

with different values for R and P are presented in Figure 3-3. 

 

Figure 3-3: Examples of different types of LBP operators 

Figure 3-4 illustrates the procedure of calculating a local-pattern using a LBP operator (P = 8, 

R = 1). It is looking for a local-pattern in a 3 × 3 pixel block. According to the colour values, 

the threshold value was set to 120. The labels of neighbourhood pixels were calculated based 

on the threshold value. Finally a binary number was created by putting those labels together 
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based on the clockwise circular order, which indicates that an instance of local-pattern #184 

was detected using this procedure.    

 

Figure 3-4: The procedure of calculating LBP when P = 8, R = 1 

3.3.2.2 LBP in Three Orthogonal Planes (LBPTOP) 

LBP methods were originally proposed for recognizing static texture images. Different 

variations of this method have been proposed for recognizing dynamic textures in different 

applications. Zhao and Pietikäinen (2007) introduced one of the most successful extensions 

of LBP for detecting facial expressions. To extract LBP features from a video segment, the 

authors divided a video segment into three sets of orthogonal planes. A video segment could 

be considered as a sequence of static images (XY planes) in the time axis. In another 

perspective, we can analyse a video segment as a stack of XT planes in the Y axis or a stack 

YT planes in the X axis (see Figure 3-5). Figure 3-5-a shows that how a video segment is 

divided into three sets of orthogonal planes. Figures 3-5-b and 3-5-c illustrate an instant from 

each set of planes extracted from mouth area for two for two different affective states 

(happiness and disgust).  
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(a) 

 

(b) 

 

(c) 

Figure 3-5: (a) Dividing a video segment into three orthogonal planes. (b) Happiness example. (c) 

Disgust example 
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Zhao and Pietikäinen (2007) calculated the LBP for each set of planes and created three 

separate histograms for each set. Detected local-patterns in the XY planes and local-patterns 

in XT and the YT planes represent the dynamic motions of each local region of the image in 

the Y and X directions, respectively. By concatenating these three histograms, the LBPTOP 

features were created for a video segment. Accordingly, 3 × 2
P
 features could be extracted for 

each video segment (where P = number of neighbouring pixels). However, the radius in axes 

X, Y, and T and the number of neighbouring pixels in the XY, XT, and YT planes can also be 

different, and can be marked as RX, RY, and RT, PXY, PXT , and PYT. The corresponding set of 

features is denoted as LBPTOPPXY;PXT;PYT;RX;RY;RT. In this thesis, three variations of the 

LBPTOP method were used for feature extraction that were different in the radius and in the 

number of neighbourhood points (LBPTOP8,8,8,1,1,1, LBPTOP6,6,6,2,2,2 and LBPTOP8,8,8,3,3,3).  

Each LBPTOP description provides information about the numbers of occurrences of each 

specific local-pattern throughout the video segment without any extra information about their 

occurrence locations. This is not desirable for some applications like FER systems. In FER, a 

specific local-pattern in one region of the face (e.g., eyes) has a different meaning from the 

same local-pattern in another region of the face (e.g., mouth). Accordingly, Zhao and 

Pietikäinen (2007) proposed to divide the face area into several blocks and calculate 

LBPTOP histograms for each block separately. Finally, by concatenating all histograms, a 

new set of features could be obtained that considers the approximate location of each local-

pattern. If the image divides into N blocks, the number of bins (features) in the final 

histogram would be N × 3 × 2
P
.  

In our proposed model, the face is tracked using an extended boosted cascade classifier 

(Viola & Jones, 2001) implemented in Open source Computer Vision (OpenCV
3
) library. 

                                                 
3
 http://opencv.org/ 
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Then three blocks of facial components are extracted from the detected face region: left-eye, 

right-eye, and mouth. To have the same size of blocks in each image, the detected objects are 

resized to fixed sizes. The LBPTOP operator is applied on each block separately, and the 

final feature set is created by concatenating the results from each block. Totally, 3 × 3 × 2
P
 

features are extracted from each video segment.    

3.3.3   Video-based HR measurement 

Among the current methods of remote physiological sensing, video-based techniques are 

considered cheaper and easier to adopt. Most of these attempts use the PPG methodology to 

detect cardiovascular blood volume pulse. The PPG method was introduced in 1937 

(Hertzman & Spealman, 1937) and typically measures the light reflection from the skin tissue 

to detect physiological signals like oxygen saturation (pulse oxymetry), HR, and blood 

pressure. It works based on the principle that the amount of light absorption differs 

significantly between blood loaded with oxygen and blood lacking oxygen. Accordingly, 

after each heart pulse, fresh blood is pumped to the skin and the capability of light absorption 

will increase. To be more precise, variations in blood volumes in the skin tissue can affect the 

transmission or reflectance. As shown in Figure 3-6, detectable changes in light absorption 

caused by heart pulses (pulsatile) are very small compared with the absorption due to non-

pulsatile arterial blood. These small changes should be detected and amplified to measure HR 

signal.  
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Figure 3-6 A breakdown of light absorbtion in the PPG signal adopted from Cheang and Smith 

(2003)   

Typically, PPG uses a dedicated light source that emits light (e.g., infrared wavelength) into 

the skin and measures the transmission or reflectance using another sensor. To the best of our 

knowledge, almost all PPG sensors need to be in contact with the skin to avoid ambient lights 

that might introduce noise (Cheang & Smith, 2003; Hummler, Engelmann, Pohlandt, Högel, 

& Franz, 2004). However, Verkruysse et al. (2008) showed for the first time that PPG signals 

could be detected remotely on the human face with a normal ambient light (as the only 

illumination source) using an ordinary digital camera. This attempt opened a door to the 

multiple new applications in the remote physiological sensing research area. Later, Poh et al. 

(2010) introduced an improvement on their work, using the Independent Component Analysis 

(ICA) method. They compared their algorithm with a BVP sensor and achieved a Pearson 

correlation coefficient of 0.98 for detecting HR at rest. 

We have proposed a new method (described in (Monkaresi, Calvo, & Yan, 2014)) to extract 

HRs from facial video recording based on the algorithm proposed by Poh et al. (2010). Figure 

3-7(a) shows the flowchart of automatic recovering HR signals as described by Poh et al. 
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(2010). Our variation of their method is also illustrated in Figure 3-7(b). Different steps of the 

proposed method are explained. 

3.3.3.1 Face Tracking  

The goal is recovering the heart pulses from the face. The first step is to detect and track the 

face in the recorded or live video. An extended boosted cascade classifier implemented in 

OpenCV (v. 2.2) library is used for face tracking (Viola & Jones, 2001). The PPG signal 

could not be recovered from some parts of the face covered by hair. The algorithm should 

focus on the regions more likely contain uncovered skin like forehead and cheeks. On the 

other hand, the face area detected by OpenCV library might contain parts of the background 

regions. These regions should be omitted before further analysis. Poh et al. (2010) suggested 

that we could consider the centre 60% of width of the detected face as the ROI to make sure 

that there are no unwanted background regions.    

In addition, to increase the calculation speed and reduce the false face detection rate due to 

background artefacts (false positives), a robust face tracking algorithm is implemented. 

According to this method, after detecting the face for the first time, the algorithm remembers 

the location of the face in the image for the next frame and the next face detection task starts 

by focusing on that region. If the face were not found, the search region is expanded to the 

whole image and this procedure is repeated for the next frames.  
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Figure 3-7: The flowchart of HR extraction from video recording. (a) The method proposed by Poh 

et al. (2010); (b) Extended method improved by machine learning techniques 

3.3.3.2 RGB Extraction 

To recover the HR signal, a sequence of images needs to be considered. The length of each 

sequence is set to 30 seconds. As mentioned in the face-tracking sub-section (Section 

3.3.3.1), a rectangular area of 60% width and the full height of the detected face is considered 

as the ROI in each frame. Each ROI is divided to the RGB channels and the average of each 

colour (RGB) amplitude value is calculated across all pixels in the ROI. The sequence of 

these averages based on the length of the measurement (30 or 60 seconds) composes the raw 
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signals for red, green, and blue channels. These three raw signals are considered as the inputs 

for the ICA. 

3.3.3.3 Pre-processing 

Before applying ICA, the raw traces are deterended and normalised to improve the quality of 

the signals. Deterending could remove the long-term fluctuation in the baseline of the RGB 

traces that might occur by fast head movements. A smoothness priors implementation 

(Tarvainen, Ranta-aho, & Karjalainen, 2002) is used for deterending the data. Then, each 

deterended signal 𝑥(t) is normalized based on the following equation (Equation 3-1): 

𝒙′(𝒕) =
𝒙(𝒕)−𝝁

𝝈
         3-1 

where μ and σ are the mean and standard deviation of x(t), respectively. The ICA performs 

on these normalized raw traces.   

3.3.3.4  Independent Component Analysis (ICA) 

ICA (Comon, 1994) is a special case of the Blind Source Separation (BSS) techniques, which 

try to separate a multivariate signal into statistically independent subcomponents by assuming 

that the subcomponents are non-Gaussian signals. To be more precise, ICA finds the 

independent components by maximizing the statistical independence of the estimated 

components. To do this, two main approaches were proposed:  

1. Minimization of mutual information by measuring statistical factors like maximum 

entropy. 

2. Maximization of non-Gaussianity using iterative methods to minimize the cost functions 

like kurtosis and negentropy that are used to measure non-Gaussianity. The central limit 

theorem motivated these sort of algorithms (Trotter, 1959).  
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Here we adopted a linear ICA based on the Joint Approximate Diagonalization of 

Eigenmatrices (JADE) algorithm (Cardoso, 1999). In the linear ICA, it is assumed that the 

observed signals contain linear mixtures of source signals. Typically, the ICA cannot identify 

the actual number of source signals but the number of recoverable sources is less than or 

equal to the number of observations. So the observed data are represented by the random 

vector 𝑥 = (𝑥1 , 𝑥2 , 𝑥3)𝑇  and the source components as the random vector 𝑠 = (𝑠1 , 𝑠2, 𝑠3)𝑇. 

The goal is finding a matrix 𝑊 to transform the observed data 𝑥 into independent 

components 𝑠 as shown in Equation 3-2. 

𝒔 = 𝑾 𝒙     3-2 

To do this, the ICA assumes that each observed signal 𝑥𝑖  is defined as a linear mixture of 

source signals 𝑠𝑘 , (ℎ𝑒𝑟𝑒: 𝑘 = 1, 2, 3), as shown in Equation 3-3: 

 𝒙𝒊 =   𝒂𝒊𝒋 
𝟑
𝒋=𝟏 𝒔𝒋     3-3 

where the  𝑎𝑖𝑗  are the mixing weights for each 𝑥𝑖 . Equation 3-3 can be represented in a 

vertical and compact format: 

𝒙 = 𝑨 𝒔 3-4 

where the mixing matrix 𝐴 = (𝑎1 , 𝑎2 , 𝑎3) consists of coefficient columns 

𝑎𝑖 =  𝑎𝑖 ,1 , 𝑎𝑖 ,2 , 𝑎𝑖 ,3  , 𝑖 = 1,2,3 . 

The task is estimating the mixing matrix 𝐴 and source signals 𝒔 using this model and 

observation values (𝑥𝑖  vectors). A cost function, which either maximizes the nongaussianity 

of the calculated 𝑠𝑖 = 𝑤𝑇𝑥 or minimizes the mutual information, needs to be set up. This 

could be done using an iterative approach to maximise or minimise the cost function. In fact, 
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𝑊 is an estimation of the inverse mixing matrix 𝐴 and the original sources could be 

recovered by multiplying the observed signals 𝑥 with the unmixing matrix (Equation 4-2).  

3.3.3.5 Component selection 

The ICA is also unable to determine the correct ordering of the source signals. So to identify 

the component that contains the HR signals further, analysis need to be done. Poh et al. 

(2010) selected the second component manually, as they argued that the HR signal could be 

observed clearly from that component. They computed the Power Spectrum Density (PSD) 

curve for the second component and considered the frequency of highest peak in the PSD 

curve as the frequency of heart beats. However in their latest report (Poh et al., 2011), they 

were looking for the HR signal among all three components. For this reason, they performed 

the PSD analysis on the three output components, and then the component that contained the 

spectrum with the highest peak among all spectra was selected. The frequency of that 

spectrum was considered as the frequency of the cardiovascular signal.  

The later approach (Poh et al., 2011) is more systematic and reliable than the manual 

component selection. It was assumed that the HR signal is the most powerful spectrum in the 

operational frequency range. The operational range was set to [0.75, 4] Hz corresponding to 

[45, 240] bpm to provide a wide range of HR measurements. However, other sources might 

provide some noises in this operational range that are more powerful than the HR signal. In 

these cases, the highest peak in the PSD curve does not represent the HR signal. The HR 

signal might be represented through other peaks (for example, the second peak) in the same 

component or even in the other components. Poh et al. (2010) proposed a noise reduction 

method to address this issue.  

Besides those estimations, the spectrum which contains the highest peak among all three 

components can be considered as the third estimation. We refer to this estimation as MPA 
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(Maximum Peak among All) in the rest of this dissertation. The component selection module 

has been improved by ML techniques in our implementation. 

3.3.3.6 Noise reduction 

To avoid selecting wrong values produced because of noises, Poh et al. (2010) proposed a 

historical estimation method. This method set a threshold of 12 bpm and evaluated the 

current estimation of the HR with the previous accepted estimation (taken 1 second apart). If 

the absolute difference between current and previous estimation was less than or equal to the 

threshold, the current estimation was accepted. Otherwise, the current estimation was rejected 

and the method looked for HR frequency by evaluating the next highest peak in the 

operational frequency range that met this constraint. If there was no peak in that range that 

met the constraint, the last accepted estimation was considered for the current estimation.  

3.3.3.7 Machine learning techniques 

We proposed a new technique to find the spectrum that contains the HR signal. We cannot 

rely only on one component to obtain the HR signal, particularly on noisy occasions when the 

observed signals are affected by head movements and changes in illumination. By obtaining 

some information from each output components and applying ML techniques, a better 

estimation could be obtained. In our proposed method, nine features were extracted from the 

three PSD curves of the independent components. The set of features includes the frequency 

of highest peaks in the PSD curves before and after applying noise reduction method and the 

depth of searches in the noise reduction method for each component to form the rest of the 

features. Two machine learning techniques – Linear Regression and k-Nearest Neighbour 

(kNN) – are proposed for HR estimation using these nine features.  
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Linear regression is a method that tries to model a linear relationship between one dependent 

variable and one or more independent variables by fitting a linear equation to the observed 

data. Here, the HR is the dependent variable and the extracted features are independent 

variables. This linear equation describes how the heart rate (ℎ𝑟) changes with nine 

explanatory variables (fij , j = 1,2, . . . ,9). Accordingly, the multiple linear regression with 𝑛 

observations for our problem is presented in Equation 3-5: 

𝒉𝒓𝒊 = 𝒃𝟎 + 𝒃𝟏𝒇𝒊𝟏 +  … + 𝒃𝟗𝒇𝒊𝟗        𝒇𝒐𝒓  𝒊 = 𝟏, 𝟐, … , 𝒏  3-5 

The goal is finding the best values for the regression coefficients (𝑏𝑗 ) to fit the line to the 

observed data. The best fitting line is typically calculated by minimizing the sum of the 

squares of the vertical deviations from each data point to the line. After building this model 

using observed data points, the unknown HR value could be estimated using observed 

features.  

k-Nearest Neighbour (kNN) is a type of instance-based learning algorithm typically used for 

classification problems. It uses a simple distance measure to find the training instance closest 

to the current test instance and considers the same class as this training instance (Aha, Kibler, 

& Albert, 1991). However, if the target parameter (e.g., HR) has a numeric value, the kNN 

would be considered as a regression problem. In this case, the k neighbours nearest to the test 

instance are selected first, and then the average of their target values is assigned to the test 

instance. In our problem, suppose we have training data (𝐹1 , ℎ𝑟1), … , (𝐹𝑛 , ℎ𝑟𝑛), where 

𝐹1 , 𝐹2 , … , 𝐹𝑛  ∈  ℝ𝑝 ,  ( 𝑝 = number of features ),  ℎ𝑟1 , ℎ𝑟2, … , ℎ𝑟𝑛  ∈  ℝ. If 𝐹∗ is a test vector 

where  𝐹∗ ∈  ℝ𝑝  , we can predict ℎ𝑟∗ by finding the k nearest neighbours of  𝐹∗ and then 

computing the mean of the k nearest training values (ℎ𝑟𝑟1, ℎ𝑟𝑟2 , … , ℎ𝑟𝑟𝑘 )  as shown in 

Equation 3-6. 
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𝒉𝒓∗ =
𝟏

𝒌
  𝒉𝒓𝒓𝒊

𝒌

𝒊=𝟏

 3-6 

The training and testing processes for both methods (Linear Regression and kNN) are 

performed separately with a 10-fold cross validation approach. The Waikato environment for 

knowledge analysis Weka (Witten & Frank, 2005) is used for executing these techniques. 

The mean absolute error (MSE), root mean squared error (RMSE), and Pearson‘s correlation 

coefficient are calculated for the estimated HR and actual HR extracted from the reference 

ECG. Bland–Altman plots (Bland & Altman, 1986) are used for comparing proposed 

methods and actual HR values. The mean differences with 95% limits of agreement (± 1.96 

SD) are also reported for each method. The Limits of Agreement (LoA) specify a range that 

most of the measurement errors lie within. 

3.4 Classification of affective states 

3.4.1   Feature selection 

The methods described extract a large number of features. Some of them might not be related 

to affective states and some of them might provide some kind of redundancy. A feature 

selection technique needs to be applied on the extracted features before classification to 

remove unnecessary features. In addition, analysing the selected features could give us a 

better understanding about the relation between certain features and each affective state.  

There are two broad categories for feature selection algorithms: wrappers and filters. 

Wrappers try to search throughout the features space and use a learning algorithm to build a 

model for evaluation. This approach is expensive computationally and might lead to an over 

fitting problem. On the other hand, filter methods evaluate the features according to a simple 
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filtering measure instead of using a model-based evaluation. This approach is much faster 

than wrappers, especially when large data-bases are evaluated. The Correlation-based Feature 

Selection (CFS) (Hall, 2000) method is one filter algorithm that has been tested successfully 

on various applications and proposed for both discrete and continues features.      

3.4.1.1 Correlation-based Feature Selection (CFS) 

The CFS evaluates different possible subsets of features and ranks them based on its measure. 

The CFS measure works on the basis of the following hypothesis: ―Good feature subsets 

contain features highly correlated with the classification, yet uncorrelated to each other‖ 

(Hall, 2000).  This measure is calculated using following equation (Equation 3-7): 

𝐌𝐞𝐫𝐢𝐭𝐬 =
𝐤 𝐫𝐜𝐟   

 𝐤 + 𝐤 𝐤 − 𝟏   𝐫𝐟𝐟   
 3-7 

where Merits  is the measure of a subset feature S that contains k features;  rcf    specifies the 

average correlation between features; and class rff    indicates the average correlation between 

each pair of features. The correlation between the subset and the target class is measured in 

the numerator of that equation. The denominator could be a measure for showing the level of 

redundancy between the features. Equation 3-7 could evaluate different combinations of 

features and find efficient subsets of features for classification.   

3.4.2   Classification 

Various algorithms and methods have been proposed for affect classification (Calvo & 

D‘Mello, 2010) and multiple studies have aimed to find the best algorithm for affect 

classification (Hussain et al., 2012b; Monkaresi, Calvo, et al., 2012). Some of them were 

successful in classifying affect using facial features but were not suitable for physiological 

features. To be more precise, introducing a single classifier that performs well for multiple 
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modalities is difficult. In this thesis, we have two different modalities (facial expression and 

physiological signal) and utilizing a single classifier cannot produce an appropriate result. 

One solution is using combining classifiers. According to Mangai et al. (2010), there are two 

main reasons for combining classifiers. First, when there is a combination of features from 

different types and modalities, a specific classifier cannot perform well. In this occasion, 

combining classifiers can improve the performance of classification. The second reason is 

increasing the generalization power of the classification. Sometimes a specific classifier fails 

when it is faced with a new set of test data beyond the training data set. Our previous study 

(Hussain et al., 2012b) also suggested that combining classifiers could increase the accuracy 

of affect detection in multimodal systems. 

Techniques that combine classifiers use a collection of individually trained classifiers to 

predict the classification of an instance by combining their individual predictions. There are 

two main strategies to combine these individual classifiers: classifier fusion (L. I. Kuncheva, 

2004) and classifier selection (L I Kuncheva, 2002). In the classifier fusion strategy, all 

classifiers are provided the same input from the feature space. The result is calculated by 

combining the individual results predicted by each classifier. However, in the classifier 

selection strategy, each classifier is known as an expert in each specific domain and each 

specific part of the feature space is dedicated to each classifier. Another classifier is 

responsible for combining the result and makes the final decision.  

We used the classifier fusion strategy for our problem because it is not clear which classifier 

is the expert in classifying affect using our feature space. Three techniques are proposed for 

fusing classifiers based on the type of classifiers outputs. If the outputs are crisp labels, the 

abstract level techniques, such as majority vote or weighted majority vote, are used. The 

―rank level‖ or ―measurement level‖ techniques are used when the outputs of classifiers are a 
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―subset of possible matches‖ or ―probabilistic confidence measures‖, respectively (Mangai et 

al., 2010).  

In this study the vote classifier with the average probability rule is used for combining the 

base classifiers. For the base classifiers, we selected the common types of classifiers widely 

used and showed reasonable performance in affect classification (Hussain et al., 2012b; 

Nguyen, Bass, Li, & Sethi, 2005). Support Vector machine (SVM), (kNN, and Decision 

Trees are considered as base classifiers. Figure 3-8 illustrates the overall process of 

combining classifier with an ensemble of three classifiers. 

   

 

Figure 3-8: The classification process 

3.4.2.1 Support vector machines (SVMs) 

SVMs are powerful supervised learning algorithms used widely in different applications, 

including FER (Bartlett et al., 2005; Michel & El Kaliouby, 2003; Valstar, Mehu, Jiang, 

Pantic, & Scherer, 2012; Zhao & Pietikäinen, 2007). Vladimir Vapnik invented the original 
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SVM algorithm in 1995 (Cortes & Vapnik, 1995). The basic format of a SVM gets a set of 

input data and makes a model to distinguish two separate classes. This model predicts 

whether a new instance belongs to the target class or not. It can also be applied on multiclass 

separation problems.  

The SVMs show high accuracies in a wide variety of applications and theoretically, they can 

deal well with the over-fitting problem. According to Michel and El Kaliouby (2003), the 

SVMs outperform neural networks in several applications. The main advantage of a SVM is 

the capability to learn from small datasets and generalize the model accurately. The size of 

datasets in the FER systems is typically small and SVMs are suitable in this application. The 

facial images also contain lots of noise due to head and body movements and illumination 

changes. The SVMs perform well in dealing with noisy data because of their generalization 

performance and the ability of separating samples, which are difficult to separate (Michel & 

El Kaliouby, 2003).      

A SVM tries to construct a hyper-plane or a set of hyper-planes in a higher dimensional space 

as a decision boundary between two classes. The goal is finding an optimize hyper-plane by 

maximizing the margin (distance between the boundary and nearest instance). Figure 3-9 

shows an example of a linear decision boundary. Sometimes the data are not spreadable using 

a linear equation. For these cases, the kernel tricks (Boser, Guyon, & Vapnik, 1992) can be 

applied on feature space to create a non-linear decision boundary and maximize the margin. 

The kernel trick is a way of transforming observations from a general set into an inner 

product space to make them linearly separable. Figure 3-10 shows a transformation of 

nonlinearly separable classes into a linearly separable classes using the kernel function 𝜑. 

Some common kernel functions include Polynomial, Gaussian radial basis function, and 

Hyperbolic tangent.  
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Figure 3-9 : An example of SVM classification of two classes (circles and crosses) for the separable 

case. The red instances are the support vectors. 

 

 

Figure 3-10: An example of mapping nonlinearly separable classes into linearly separable form. 

(Adapted from Polikar (2006)) 

In general, SVMs are considered a binary classifier; however, they can be applied on 

multiclass classification problems by reducing that into multiple binary problems. There are 

different reduction techniques, such as all-against-one or one-versus-one techniques. In all-

against-one approach, n (n = number of classes) distinct classifiers need to be built for each 

class that can distinguish between the instances that belong to that specific class and the rest 
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of labels. Each classifier gives a score to each instance and finally the label of that instance is 

detected by comparing the scores. The new instance belongs to the class with the highest 

score. However, in the one-versus-one approach, n × (n – 1) / 2 distinct classifiers for each 

pair of labels are built. To classify a new instance, each one-versus-one classifier is applied 

on the instance and the number of votes to each label will be computed. Finally, the label that 

received the maximum number of votes is assigned to that instance.  

We use the Sequential Minimal Optimization (SMO) algorithm to train the SVMs 

implemented in the Weka package. This algorithm reduced the complexity and increased the 

speed of the training process by breaking very large quadratic programming (QP) 

optimization problems into a set of smaller QP problems that can be solved using analytical 

methods (Platt, 1998). A linear kernel function is used for the SVM and a one-versus-one 

approach is used in this implementation.  

3.4.2.2 k-Nearest neighbour (kNN) 

The kNN algorithm is a type of instance-based or lazy learning method to classify samples 

based on closest training examples. In lazy learning algorithms, the classification task is 

postponed until the new query is received, whilst in the eager learning, the method tries to 

make the training model before receiving new classification queries (Witten & Frank, 2005). 

The kNN algorithm is used widely in affect classification problems using different 

modalities, such as physiological signals (Wagner et al., 2005), facial expressions (Bourel, 

Chibelushi, & Low, 2002), and speech (Lee & Narayanan, 2005). 

The kNN algorithm is very simple to implement, and it works well in basic classification 

problems. It can be applied on the feature space that is not linearly separable (Hand, Mannila, 

& Smyth, 2001). The main issue with this algorithm is that it needs a large memory space. In 

fact, it keeps all training instances in its memory to make its judgment about new examples. 
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This problem could be solved using advanced implementation of kNN, such as IB1 and IBk 

(Aha et al., 1991). The IBk implementation showed its robustness in dealing with noises and 

irrelevant attributes (Aha et al., 1991). We use this implementation of kNN in our proposed 

system, which is presented in the Weka classification library (Witten & Frank, 2005).  

One of the main variables of a kNN algorithm that needs to be defined is the similarity 

function. This function defines the closeness measure of each training instance and new 

examples. The common similarity function is Euclidean distance, which can be used for 

continuous variables. To calculate the similarity between two discrete variables, other 

methods, such as the overlap metric or Hamming distance (Hamming, 1950), can be used. In 

the Euclidean method, the distance between two instances is calculated using the ordinary 

method for measuring distance between two points and is given by the Pythagorean formula. 

For example, in the n dimensional space, if  𝑝 =  𝑝1, 𝑝2, … , 𝑝𝑛  and 𝑞 =  𝑞1 , 𝑞2, … , 𝑞𝑛  are 

two points in Euclidean n-space, then the distance between 𝑝 and 𝑞 is given by: 

𝑑 𝑝, 𝑞 =   (𝑞𝑖 − 𝑝𝑖)
2

𝑛

𝑖=1

 3-8 

Another important parameter for each kNN implementation is the number of nearest 

neighbouring 𝑘s to explore. The label of each nearest neighbour is considered in a voting 

mechanism and finally the majority of nearest labels will select the label of the test sample. 

Figure 3-11 shows the impact of selecting two different values for the 𝑘 parameter in a 2D 

space. The task is classifying the test sample represented by a white cross. When the kNN (k 

= 3) is applied to this example, the test sample is classified as the green circle class. If the 

kNN (k = 7) is applied to this example, the test sample is assigned to the red square class. 
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Figure 3-11 : An example of kNN classification using k = 3 and k = 7 

The basic kNN classifier with the majority voting mechanism could be biased toward the 

more frequent classes, especially when the class distribution is skewed. It means the samples 

of the most frequent class are likely to appear among the k nearest neighbours. Using a 

weighted kNN could address this problem by considering the actual distances in the voting 

mechanism.  

3.4.2.3  Decision Trees 

The Decision Tree algorithm is one of the most common methods in machine learning. It is 

generally used to support the decision making process based on the tree structure (Rokach & 

Maimon, 2008). It can be used for classification problem by considering each interior node as 

a condition on each attribute. The leaf nodes of the decision tree represent the label of each 

class. Compared with the black box models, such as neural networks, the tree structure 

provides a white box model that is simple to understand and can evaluate the impact of each 

attribute during classification process. Another advantage of decision trees is that they can 

perform well even with small number of data. Both numeric and discrete features can be 

evaluated using decision trees. An example of a simple decision tree is illustrated in Figure 3-

12. In this example, the decision tree tries to classify the costumers of a company for 
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advertising purposes. The internal nodes (circles) represent the conditional attributes and the 

leaf nodes (triangles) represent the class label. The classification process is started from the 

root of the tree. The navigation through the tree is continued based on conditions until a leaf 

is reached.  

 

 

Figure 3-12: An example of a decision tree (Source : Rokach & Maimon (2008), p. 10) 

Decision trees are applied successfully on different applications, including affect detection. 

For example D‘Mello et al. (2007) achieved an accuracy of 77% for detecting frustration by 

applying decision trees on features. Nguyen et al. (2005) suggested that combining decision 

trees with SVM classifiers could improve the accuracy of emotion detection. In another study 

(Barreto, Zhai, & Adjouadi, 2007), the results showed a reasonable accuracy for decision 

trees to discriminate two affective states (stress vs. relax) using physiological signals.    

One of the most common classification algorithms based on decision trees is called C4.5 

developed by Ross Quinlan (1993). The C4.5 creates the decision tree based on training 

samples using information entropy metric (Borda, 2011). It starts with a set of training 
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samples and tries to find the attribute that can split the training samples into the known class 

labels effectively. It uses the normalized information gain (difference in entropy) as a metric 

for selecting the most effective attribute in each iteration. This process is repeated on the 

smaller subsets to build the final decision tree. If all the samples in the sub-set belong to the 

same class, the iteration is stopped and a leaf with the same label is created. In this thesis, we 

utilize an open source Java implementation of the C4.5 algorithm in the Weka package (J48). 

3.4.3   Performance metrics (F1-score, Kappa) 

Several metrics are proposed for evaluating the performance of a classification algorithm. 

The most common metric is the Accuracy of a classifier that is measured by the proportion of 

correctly classified instances to the total number of test instances. This metric is useful but 

does not represent some valuable information, in particular when the class distribution is 

skewed (He & Garcia, 2009). For example, 90% of samples belong to class A and 10% of 

them belong to class B. In this case, if the classifier simply assign the same label A to all 

instances, it can achieve a reasonable accuracy (Accuracy = 90%). This example shows the 

weakness of the Accuracy metric in representing the performance of a classifier. To have a 

better understanding of the performance of a classifier other metrics, such as Precision, 

Recall, F-measure, and Kappa measure, were proposed. 

3.4.3.1 Precision and recall 

Precision and recall are two well-known metrics in pattern recognition and information 

retrieval. To explain the precision and recall in the classification context, the confusion 

matrix needs to be defined first. The result of each classification task can be presented in a 

confusion matrix. The rows of the matrix represent the actual classes and the columns 

represent the predicted class labels using the classifier as shown in Table 3-3.  
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Table 3.3: The confusion matrix. Adopted from Witten and Frank (2005) p.162   

 
Predicted class 

+ – 

Actual class 

+ 
TP (true positive) 

Correct result 

FN (false negative) 

Missing result 

– 
FP (false positive) 

Unexpected result 

TN (true negative) 

Correct absence of result 

 

According to Table 3-3, true positives (TP), true negatives (TN), false positives (FP), and 

false negatives (FN) are calculated by comparing the predicted results and the actual values. 

TP and TN represent correct classification whilst FP and FN represent a misclassification 

results. The precision is the number of correctly classified samples as belonging to the class 

(TP) divided by the total number of all samples classified as belonging to the class, no matter 

if they are labelled correctly or incorrectly as the positive class (TP + FP). Precision can 

represent the exactness of the classification task. However, recall can measure the 

completeness of the prediction by the ratio of the correct classified samples as the positive 

labels divided by the total number of the total number of samples that actually belong to the 

positive class. The actual number of samples belonging to the positive class includes the 

number of correctly classified positive samples (TP) and the number of misclassified samples 

as the negative class (FN). The precision and recall can be calculated using Equations 3-9 and 

3-10: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

3-9 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

3-10 

If the precision value is equal to 1, it means that the classifier detected all positive samples 

correctly and did not classified any negative samples as the positive class. The value of 1 for 
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the recall metric indicates that the classifier was 100% successful in classifying positive 

samples and did not misclassify any positive samples as the negative class. Both precision 

and recall metrics should be considered at the same time to have a reliable assessment of the 

classification performance.  

The F1 score (F-measure) is another popular metric that takes these metrics into account in its 

measurement. In fact, the F1 score is the harmonic mean of precision and recall and is given 

by Equation 3-11: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

3-11 

The F1 score ranges from 0 to 1. The value of 1 indicates the highest performance of the 

classifier. This metric can be a reliable alternative of the accuracy metric as it is less sensitive 

to skewed class distributions (Joshi, 2002). The F1 score also can be used for measuring the 

performance in multiclass detection problem. To do this, the F1 score for each individual 

class is calculated and the average of these values is considered as the final F1 score.  

In this thesis, we evaluate the performance of the proposed system using F1 score besides 

other metrics because we anticipate that we might face with imbalanced class distribution in 

our experiments. 

3.4.3.2 Cohen’s Kappa 

Another measure used commonly for measuring the performance of a classifier is Cohen‘s 

Kappa. It is used widely in affective computing applications (D‘Mello & Graesser, 2010; M. 

E. Hoque, Kaliouby, & Picard, 2009; McDaniel et al., 2007; Tian et al., 2001; Valstar & 

Pantic, 2012). The Cohen‘s Kappa was introduced originally for measuring the inter-rater or 

inter-annotator agreement of those observing the same phenomenon (J. Cohen, 1960). 

Compared with other simple agreement measures (e.g., percent), the Cohen‘s Kappa is a 
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robust measure because it is less sensitive to the agreement occurring by chance. The 

Cohen‘s Kappa is typically proposed for measuring the agreement between two annotators. 

Other metrics like the Fleiss‘s Kappa (Fleiss, 1971) is used when the number of annotators is 

more than two. 

In the FER domain, researchers always use self-reports or ask experts to annotate an image or 

a video segment. This information is considered as the ground truth for the classification task. 

The Cohen‘s Kappa is a good measure to assess the level of agreement of annotators to build 

a reliable data-set. The Cohen‘s Kappa can measure the classification performance by 

measuring the level of agreement between the classifier prediction and the actual class labels. 

We will refer to the Cohen‘s Kappa by the term ―Kappa measure‖ in the rest of this thesis. 

The Kappa measure is calculated using the following formula:   

𝐾𝑎𝑝𝑝𝑎 =
Pr a −  Pr e 

1 −  Pr e 
 

3-12 

where Pr a  refers to the relative agreement among raters, and Pr e  represents the probability 

of chance agreement. A Kappa value of 1 indicates the prefect agreement between two raters, 

whereas the value of 0 indicates that there is no agreement between raters. To have a better 

understanding in calculating the Kappa measure in the classification context, it is useful to 

explain it through the confusion matrix.  

Table 3.4: Confusion matrix 

 
Predicted class 

+ – Total 

Actual class 

+ 20 5 25 

– 10 15 
25 

Total 30 20 
50 
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Suppose that the results of a classification task are reported in Table 3-4. According to this 

table, 20 positive and 15 negative samples (out of 50 samples) are classified correctly, so the 

total agreement probability is: 

Pr a =
20 + 15

50
= 0.7 

To compute the probability of chance agreement between predicted and actual class, 

Equation 3-13 needs to be calculated: 

Pr e =
Nap  ×  Npp

N
+  

Nan  ×  Npn

N
 

3-13 

where N is the total number of samples; Nap  is the number of actual positive samples‗ Npp is 

the number of predicted positive samples; Nan  is the number of actual negative samples; and 

Npn  is the number of predicted negative samples. Hence, the Pr e  for the mentioned example 

is: 

Pr e =
25 ×  30

50
+  

25 ×  20

50
= 0.5 

Having Pr a  and Pr e , the Kappa measure is given by: 

𝐾𝑎𝑝𝑝𝑎 =
0.7 −  0.5

1 −  0.5
= 0.4 

The Kappa measure of 0.4 represents a fair agreement between actual and predicted class 

labels. This metric is also useful in assessing the performance of the classifier when the class 

distribution is skewed. In general, a Kappa measure between 0.4 and 0.6 is considered as a 

fair accuracy, and the value greater than 0.75 is considered as an excellent agreement 

(Robson, 2011). D‘Mello et al. (2007) achieved the maximum kappa measure of 0.54 for 

discriminating flow and boredom using the user‘s posture pattern during interaction with an 

intelligent tutoring system. Alzoubi et al. (2012) also proposed a model to detect eight 
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affective states (boredom, confusion, curiosity, delight, flow/engagement, surprise, and 

neutral) using physiological signals and this obtained the mean Kappa measure of 0.25. 

In this thesis, the Kappa measure is also reported to evaluate the performance of the proposed 

system and reliability of class labels. 

3.4.4   Validation  

In this section, we explain the techniques for evaluating the generalization power of the 

prediction model. There are several possible ways to select training and testing data and 

evaluate the performance of the prediction model. Two main approaches are described here: 

k-fold cross validation and leave-one-out cross validation approach. 

3.4.4.1 k-fold cross validation 

In k-fold cross validation, the dataset is randomly divided into k folds with equal sizes. In 

each iteration, one fold is considered as the test set and the model is trained by the rest of k–1 

folds. This process is repeated k times for each fold separately, and the performance metric of 

the system is stored for all evaluations. The final metric can be calculated by averaging over 

the k results (Witten & Frank, 2005). The value of k could be varied in different application. 

Ten-fold cross validation is the most common technique for evaluating the performance of a 

classifier. Using various combinations of training and testing samples could represent the 

generalization power of the system. This approach could prevent the biased evaluation that 

might occur due to using a bad configuration of training and testing sets (e.g., overlapping in 

training and testing datasets). 

3.4.4.2 Leave-one-out cross validation 

This approach could be considered as a specific type of k-fold cross validation. In this case, 

the number of folds (k) is equal to the number samples (Polikar, 2006). In some classification 
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problems, the dataset is grouped by certain parameters. For example, in user-independent 

analysis, the dataset could be divided into the portions, including individual data. The LOO 

cross-validation can be utilized on the user level. To be more precise, if the dataset is a 

combination of N samples from M users, we can leave the portion of one user as the test set 

and use the rest of the dataset as the training set. Similar to the k-fold cross validation 

approach, this process is also repeated M times. This technique is also called as ―Leave-one-

subject-out‖ cross validation. Due to intentional separation of the dataset, we can estimate the 

performance of our system in the real world when it is faced with unknown users.  

In this report, we use the 10-fold cross validation technique to validate the classification 

accuracies in user-dependant analysis. For the user-independent analysis, we use the leave-

one-subject-out technique to have a more reliable estimation of the performance of our 

system in predicting affective states.   

3.5 Corpora 

In affective computing research, existing databases are mostly focused on basic emotions 

(Afzal & Robinson, 2009). Most of these databases were recorded in a controlled 

environment and the emotional scenes were played by actors (M. E. Hoque et al., 2012). 

Several databases have been developed for detecting affective states in HCI applications. 

However D‘Mello and Calvo (2013) showed that non basic emotions are more important but 

less investigated in the HCI applications. They have provided evidence that four non-basic 

affective states (engagement, boredom, confusion, and frustration) are the most common in 

the interaction between human and computer. However, eliciting and analysing naturalistic 

data are complex and expensive. To evaluate our proposed system to detect naturalistic 

complex emotions, we need to create a new dataset. 
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In this section, we explain the method for collecting naturalistic expressions of non-basic 

emotions during human and computer interactions. New less-intrusive methods and sensors to 

record user‘s behaviour and expressions could improve the accuracy of affect detection. 

Hence, in this study, the Microsoft Kinect sensor is used to record depth, video, and audio 

simultaneously. 

3.5.1   Procedure 

The experiment consists of two main parts. In the first part, the participants were required to 

write about a given topic using a computer-based system. In the second part, they were asked 

to watch a certain number of standard emotional images from the International Affective 

Picture System (IAPS) (P. Lang & Bradley, 1997) collection and report their affect. The 

second part takes about 30 minutes. The detailed procedure for each part is conducted as 

described in following subsections. Table 3-5 provides the summary of the data acquisition 

protocol. 

Table 3.5: Overview of our data acquisition protocol 

 Part Duration Coders Segmentation Coding time Annotation 

scheme 

Affect 

content 

1 Writing 60 min Self-report Interval-based Concurrent Categorical Engagement 

Event-based Retrospective Categorical Emotion list * 

Event-based Retrospective Dimensional Valence/ 

Arousal 

2 IAPS 30 min Normative Interval-based Pre-defined Dimensional Valence/ 

Arousal 

Self-report Interval-based Concurrent Categorical Emotion list* 

Interval-based Concurrent Dimensional Valence/ 

Arousal 
* Emotion list: Calm, Relaxed, Bored, Annoyed, Glad, Content, Delighted, Excited, Depressed, Gloomy, Afraid, 

Angry and Other. 
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3.5.1.1 Part 1: Writing session (60 minutes) 

In our writing studies, participants were asked to write a travel piece (journalistic genre) 

about a location that they visited recently. The task required some research but not much 

prior knowledge, and feedback could be provided that triggered higher arousal emotions. The 

writing session is based on a draft-review-final activity, and after receiving the topic:  

1) They write a draft and submit it (30 minutes).  

2) They wait for 10 minutes to receive feedback. They are asked to stay seated while 

feedback is being processed but they are free either to work on other manuscripts or browse 

the internet.  

3) They receive human and automated feedback. The feedback contains suggestions on how 

to improve the quality of the writing.  

4) They have an additional 20 minutes to revise their manuscript according to the feedback 

and submit the final version. 

During the writing session and every two minutes, the system produces an auditory probe to 

notify the subject to report its level of engagement verbally. A list of examples is given to the 

participant before the session and they just need to say the corresponding affective state. The 

voice is also recorded and analyzed later. This method is one of the most simple and non-

intrusive methods for concurrent self-reporting, which provides more accurate and valuable 

annotation compared with interrupting the recording session by traditional questionnaires 

(Afzal & Robinson, 2009).  

We utilize a web-based system called Tracer (M. Liu, Calvo, & Pardo, 2013) that manages 

the writing activities and records the writing process, saving versions of the document every 

20 seconds. This text-in-time data allows us to mine some of the cognitive processes 
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associated with writing from the patterns of text additions, edits, deletions, and pauses. 

Distracting noises (e.g., someone coming in the office, telephone ringing) are produced and 

annotated during the session to simulate more a naturalistic environment. 

3.5.1.2 Part 2: IAPS images (30 min) 

A total number of 60 images for 10 seconds each one is presented, followed by 10 seconds 

pauses between the images for annotation. The images are selected from the IAPS database. 

It provides a set of emotional stimuli to trigger emotion and attention, and it is widely used in 

affective computing research.  

Each picture in this database was rated by approximately 100 participants in terms of three 

dimensions: valence, arousal, and dominant (P. J. Lang et al., 2008). A 1–9 rating scale was 

used for each dimension. The ratings were averaged and provided with the pictures. The 

corpus also provides gender specific ratings. Different patterns in the ratings are observed for 

each gender. For example the ―EroticFemale‖ picture (image number 4235) was rated as a 

normal picture by female participants (v = 3.67, a = 3.97), whereas it was rated as a highly 

emotional pictures by male participants (v = 7.29, a = 6.73). It shows the importance of 

considering gender for designing emotional stimulus in affective computing research. We 

used these ratings to organize two gender specific groups for our experiment. Each gender 

specific group was divided into four categories based on arousal and valance normative rates. 

Table 3-6 represents the thresholds for selecting images in each category. Fifteen images 

were selected for each category based on the criteria presented in Table 3-6. More specific 

information about the selected pictures in each category is provided in Appendix A. 

Table 3.6: Used criteria for selecting images from the IAPS database 

  

Categories 

Male Female 

Valence Arousal Valence Arousal 

 Available range in IAPS [1.5, 8.39] [1.55, 7.8] [1.15, 8.74] [1.87, 7.77] 
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1 Low Valence - Low Arousal < 4.0 < 4.0 < 4.0 < 4.1 

2 Low Valence - High Arousal < 4.0 > 5.71 < 4.0 > 5.81 

3 High Valence - Low Arousal > 6.1 < 4.0 > 6.21 < 4.1 

4 High Valence - High Arousal > 6.1 > 5.71 > 6.21 > 5.81 

3.5.2   Segmentation 

After the experiment, various processes are done on the gathered data. First, the video is 

divided to certain meaningful segments for annotation. Interval-based and event-based 

segmentation are the two common types of video segmentation. Each method has its 

strengths and weaknesses. Choosing the method of video segmentation depends on the nature 

of the data. The behaviour of the user is unpredictable during writing in the first part of the 

experiment. In these conditions, researchers (Afzal & Robinson, 2009; Mahmoud et al., 

2011) have suggested that event-based segmentation provides more useful annotations. 

Accordingly, the event-based segmentation is considered for segmenting recorded videos in 

writing sessions. In this case, each segment shows a single event, such as a change in facial 

expression, head, and body posture movement. 

However, interval-based segmentation is suited for the second part of the experiment (IAPS 

session) because the time and the length of each interval could be defined corresponding to 

the time of each presented image. So, 60 ten-second video segments could be produced from 

the second part of the experiment (IAPS images). 

3.5.3   Annotation 

3.5.3.1 Part 1 

The participant is asked to annotate their recorded video when the segmented videos are 

ready. These annotations are elicited after the writing session as a retrospective report. They 

are free to play each segment as many times as needed to form a better judgment. The 

questionnaire asks the following questions regards to engagement: Were you engaged in the 
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task or not? and Were you thinking about the topic or not? These questions are designed 

based on the experience sampling study by Killingsworth and Gilbert (2010).  

The second group of questions related to the participant emotion. A 1–9 scale of valence and 

arousal was collected using the Self-Assessment Manikin (SAM) method (P. Lang & 

Bradley, 1997). A set of affect categories were provided for the participant: Calm, Relaxed, 

Bored, Annoyed, Glad, Content, Delighted, Excited, Depressed, Gloomy, Afraid, Angry, or 

―Other‖. In addition, the emotions that had been said aloud during the session by the subjects 

were extracted from the recordings. Figure 3-13 shows a screenshot of the retrospective self-

report questionnaire. 

 

3-13: A screenshot of the retrospective labelling questionnaire 

3.5.3.2 Part 2 

For the second part of the experiment, two types of annotation were provided for each video 

segment: normative-rating and self-report. The normative-rating was extracted from the 

IAPS dataset and this indicated the emotional level of each presented image in terms of 

valence and arousal, regardless of the user‘s reaction. In addition, for this part of the 
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experiment, the self-reports were collected concurrently during the experiment. After viewing 

each image, the participants were asked to fill-out a questionnaire to indicate their degree of 

valence and arousal. The SAM protocol (P. Lang & Bradley, 1997) was used for this reason. 

They were also asked to report their affective states by choosing an affect category among 

provided categories. These annotations were used as the ground truth for evaluating our 

proposed system. Figure 3-14 presents a snapshot of the annotation page. 

 

Figure 3-14: An example of the concurrent self-report form 
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Chapter 4. Study 1: Evaluating the video-

based method for HR estimation 

 

 

Summary 

In this chapter, the proposed method for contact-less measuring of Heart Rate (HR) is 

evaluated under three different conditions. In the first experiment, we validated our 

implementation when the user was at rest. Then we evaluated and compared Poh et 

al.’s (2010) with our proposed method under two new conditions; naturalistic human 

computer interaction and exercising scenarios that contain more user motion, bigger 

dynamic range, and different lighting conditions. We analyzed the limitations of Poh 

et al.’s method and provided our own improvements using Machine Learning 

techniques. 
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4.1 Introduction 

The recent work of Poh et al. (2010) for producing heart rate signals from a webcam has 

opened the opportunity to numerous new applications. This technique uses video of the face 

and Independent Component Analysis (ICA) (Comon, 1994) to detect core physiological 

signals such as heart rate and respiration. This technology can be used to help monitor the 

health parameters of both individuals with cardiovascular disease and healthy individuals in 

nonlaboratory conditions.  

Poh et al. (2010) improved previous attempts (Takano & Ohta, 2007; Verkruysse et al., 

2008), to develop a low-cost accurate video-based method for contact free HR measurement. 

The algorithm is based on a Blind Source Separation (BSS) technique that recovers 

unobserved signals or sources from a set of observed mixtures with no prior information 

about the mixing process. There are several techniques for BSS, including ICA (Comon, 

1994) used by Poh et al. (2010). ICA is a technique for uncovering the independent source 

signals from a set of observations that are composed of linear mixtures of the underlying 

sources. The source signal in this study is the Blood Volume Pulse (BVP) that propagates 

throughout the body. High degrees of agreement (correlation coefficient r = 0.99) were 

achieved for measures of HR using the proposed method and HR extracted from the BVP 

sensor.  

In this chapter we evaluated our proposed method for remote measuring heart rate described 

in Chapter 3 (See section 3-3-3) in different conditions and compared the results achieved by 

our method with the method proposed by Poh et al. (2010). Our evaluation consists of three 

experiments. First the implementation of  Poh et al. (2010) method was replicated using a 

new dataset. In the second experiment, the accuracy of this method was evaluated on a long 
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naturalistic HCI. Thirdly, the robustness of the method was also assessed under new 

conditions which included motion artifacts and a wide-range of HR changes. 

For evaluation, the mean absolute error (MSE), root mean squared error (RMSE) and 

Pearson's correlation coefficient are calculated for the estimated HR and actual HR extracted 

from the reference ECG. Bland-Altman plots (Bland & Altman 1986) are used for comparing 

proposed methods and actual HR values. The mean differences with 95% limits of agreement 

(± 1.96 SD) are also reported for each method. The Limits of agreement (LoA) specify a 

range that most of the measurement errors lie within it. 

4.2 Studies, participants and recording 

methods 
4.2.1   First Experiment–Recording at rest 

Ten volunteer participants (mean age=26.7 years, 8 males, 2 females, 80% Caucasian and 

20% Asian) from The University of Sydney participated in the first and second experiment. 

All participants signed an informed consent form prior to data collection. This experiment 

was approved by the University of Sydney's Human Ethics Research Committee prior to data 

collection. 

All participants were seated in front of the same computer running Windows XP in a normal 

indoor environment. Video recording was carried out using an ordinary webcam (Logitech 

Webcam Pro 9000) mounted on the screen. All videos were recorded in colour (24-bit RGB 

with 3 channels, 8 bits/channel) at 30 frames per seconds (fps) with pixel resolution of 640 × 

480 pixels and saved in AVI format. In order to record physiological changes, 

electrocardiogram (ECG), respiration, and galvanic skin response (GSR) sensors were placed 

on participants‘ bodies. BIOPAC MP150 system with AcqKnowledge (v. 3.8.2) software was 
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used to acquire the physiological signals at a sampling rate of 250 Hz. Two electrodes were 

placed on the wrists for collecting ECG. The ECG-100C amplifier was used for ECG 

recording. GSR was recorded from the index and middle finger of the left hand and a 

respiration band was strapped around the chest to collect respiration rate. GSR and respiration 

rate data were not used in this experiment. The participants were asked to keep their 

movement to a minimum for one minute to record the baseline physiological signals. This 

part was used in the first experiment. The experiment was conducted in a normal room with 

normal artificial fluorescent ceiling light in combination with a varying amount of sunlight 

coming through windows from the left side of the participant. 

4.2.2   Second Experiment–Naturalistic HCI 

The second experiment was conducted using the same materials used in the first experiment. 

Immediately after completing the first experiment participants were asked to create their 

personal websites in Google sites. They were allowed to explore the Internet and use external 

resources for completing the tasks. During the interaction, video and ECG signals were 

recorded simultaneously. Each interaction lasted about 30 minutes (±10 min).  

4.2.3   Third Experiment–Indoor Cycling 

This experiment was conducted in an indoor gym environment with the participation of a 

female participant. The only illumination source was the ambient artificial fluorescent light. 

The same camera was mounted in front of a cycling machine for recording the participant's 

upper body. Two electrodes were placed on the participant's wrists and the earth electrode 

was placed on her left arm to record ECG. The participant's physiological signals were 

recorded while the participant was cycling (Figure 4-1). 
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Figure 4-1: Experiment setup for the third experiment. 

The experiment consisted of seven levels. In the first and last parts, the participant was seated 

on the cycling machine at rest position (no cycling) for two minutes. The other parts of the 

experiment were captured while the participant was cycling at different resistance levels (as 

shown in Table 4-1). The resistance of the cycling machine was gradually increased up to 

level 4 and returned to the easiest level. The participant was cycling for two minutes in the 

"Easy" levels and for three minutes in "Normal" and "Hard" cycling levels.  

Table 4.1: Levels of activity in the indoor cycling experiment 

Part Level Duration 

1 Rest 2 min 

2 Easy cycling 2 min 

3 Normal cycling 3 min 

4 Hard cycling 3 min 

5 Normal cycling 3 min 

6 Easy cycling 2 min 

7 Rest 2 min 
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4.3 HR estimation results 

In this section, we have reported the HR estimation results achieved after utilizing our 

proposed method which was described in the Section 3-3-3. 

4.3.1   First experiment: validation 

This study aimed to replicate the results of Poh et al. (2010) with our own implementation of 

the algorithm, and our own data. The first one minute of each participant's video recording in 

which their movements were kept to a minimum were analyzed at this stage. Thirty one 

estimations were performed for each participant. The first 30-second window was considered 

to estimate the HR at t=30.  The standard deviations of the x- and y-coordinates of the face 

tracker of all participants were 4.56 and 2.57 pixels respectively. The average actual HR of 

78.80 bpm was extracted from ECG signals among all participants. The standard deviation of 

extracted actual HR was 8.84 bpm (Table 4-2). 

Table 4.2:  The first experiment description: validation of the implemented method for estimating 
heart rate 

 Poh et al.'s Study First Experiment 

Parameters   

Window size (seconds) 30 30 

Experiment length  (seconds) 60 60 

# of participants 12 (2 F, 10 M) 10 (2 F, 8 M) 

Recording rate (fps) 15 30 

# of frames 10800 18000 

# of measurements 372 310 

SD of x- coordination (pixels) - 4.56 

SD of y- coordination (pixels) - 2.57 

Range of x- movement (pixels) - 23 

Range of y- movement (pixels) - 18 

Face Detection Acc FN=0%, FP=0% FN=0%,FP=0% 

Mean actual HR - 78.80 

SD of actual HR - 8.84 



 4.3  HR estimation results  96 

 

F=Females, M=Males, FN = false negative, FP = false positive. 

Table 4-3 presents a comparison of our implemented algorithms applied in this experiment 

and Poh et al.'s experiment results. It should be mentioned that after ICA analysis, the third 

component produced the best results among all three components. The MPA method 

produced a similar performance. The results achieved from the third component are presented 

in Table 4-3. A correlation coefficient of 0.99 between estimated HR and the actual HR was 

achieved in this study. The RMSE of measurement at rest in (Poh et al., 2010) was 2.29, 

while in this study the RMSE was reduced to 1.69. Furthermore, using this experimental data, 

the mean bias was 0.86 bpm and the LoA span was 5.7 bpm, slightly better than Poh et al.‘s 

(Poh et al., 2010) results in the sitting still experiment (mean bias = 0.05 bpm, LoA span = 

8.99 bpm). Our results also showed  reasonable accuracy compared to a new method for HR 

measurements at rest using Fiber Bragg grating-based sensor (Dziuda, Skibniewski, Krej, & 

Baran, 2013) (mean bias = - 0.01 bpm, LoA span = 3.64 bpm). Overall, the results showed 

that the accuracy of our implementation and this new dataset was comparable with Poh et 

al.'s report. 

Table 4.3: Comparison of the results published by Poh et al. and our study using the same 
algorithm 

 Poh et al.'s Study First Experiment 

Method ICA ICA 

Selected component 2nd 3rd 

Mean bias (bpm) -0.05 0.86 

SD of bias (bpm) 2.29 1.46 

Upper limit (bpm)  4.44 3.71 

Lower limit (bpm) -4.55 -1.99 

RMSE 2.29 1.69 

Corr. coefficient 0.98*** 0.99***
 

***: (p<0.001); 
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4.3.2   Second experiment: Evaluate the algorithm in HCI 

The goal of this experiment was to evaluate the robustness and reliability of the video based, 

non-contact HR measurement in a naturalistic HCI scenario. For this reason, participants 

were free to move and no advice was provided regarding positions. The interaction with the 

computer was immediately started after one minute of a no-movement situation which was 

also used in the first study. We considered the whole session as one dataset. On average, each 

session lasted about 30 minutes but in order to compare across the same length for all 

participants the first 20 minutes of each session were analyzed here. This analysis has been 

done based on 30-second moving window. Table 4-4 provides more information about this 

study. 

The face tracking algorithm was robust enough in detecting the face during head movement. 

However, sometimes because of the large degree of head tilting and turning (more than 45 

degrees) or the occlusion of the face, the algorithm could not find the frontal face in the 

recorded images. In order to have a fair evaluation of the ICA analysis, the time windows 

which included false negative image frames were ignored for further analysis. Thus, among 

11710 potential 30-second windows, only 9329 were selected for ICA analysis. The average 

range of the x- and y-coordinates of the detected faces was 64.00 and 35.5 pixels 

respectively. 
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Table 4.4: Second experiment description: heart rate estimation during human-computer 
interaction 

 Second Experiment 

Parameters  

Window size (seconds) 30 

Experiment length  (seconds) 1200 

# of participants 10 (2 female, 8 male) 

Recording rate (fps) 30 

# of frames 360000 

# of measurements 9329 (of 11710) 

SD of x- coordination (pixels) 12.16 

SD of y- coordination (pixels) 7.24 

Range of x- movement 64.00 

Range of y- movement 35.50 

Face Detection Acc FN=0.04%, FP=0% 

Minimum actual HR 61.27 

Maximum actual HR 111.79 

Mean actual HR 80.55 

SD of actual HR 9.52 

4.3.2.1 User-dependent analysis 

In this part, we have evaluated different components to estimate HR for each participant. The 

third component achieved the best results among eight out of 10 participants by comparing 

RMSEs. The MPA method improved the HR estimation for the remained two participants. 

The best results obtained by ICA analysis for each participant are presented in Table 4-5. In 

addition, the results achieved by applying kNN and linear regression are also presented in this 

table. The figures show the significant improvement of ICA with the kNN method over the 

former method (only ICA) for all participants. The regression did not improve the 

performance very much. These results imply the feasibility of building personal models for 

HR estimation during HCI in naturalistic scenarios.  

4.3.2.2 Combined-participant analysis 

Data from individual participants were combined to yield one large dataset. This dataset was 

used for training and testing the models with the 10-fold cross validation approach. On the 
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other hand the HR was also estimated by the ICA methods. Here, the third component also 

provided the best performance among all three components. The descriptive statistics of HR 

estimation through different approaches are presented in Table 4-6. 

Table 4.5: Results for hr estimation using the ICA method and the improved method by ml 
techniques (Participant-dependent analysis) 

ID Method R MAE RMSE 

1 

ICA (3rd Comp.) -0.38 8.67 21.16 

ICA + kNN 0.85 0.63 1.20 

ICA + Reg. 0.44 1.49 1.92 

2 

ICA (3rd Comp.) 0.10 2.79 4.34 

ICA + kNN 0.81 0.63 1.38 

ICA + Reg. 0.16 1.68 2.20 

3 

ICA (3rd Comp.) 0.29 46.83 59.13 

ICA + kNN 0.92 0.44 1.09 

ICA + Reg. 0.34 1.77 2.54 

4 

ICA (3rd Comp.) 0.41 45.34 57.39 

ICA + kNN 0.93 0.43 0.92 

ICA + Reg. 0.48 1.39 2.12 

5 

ICA (MPA) 0.18 33.92 41.98 

ICA + kNN 0.90 0.69 1.62 

ICA + Reg. 0.47 2.48 3.20 

6 

ICA (3rd Comp.) 0.29 3.96 8.20 

ICA + kNN 0.92 0.48 0.95 

ICA + Reg. 0.49 1.54 2.06 

7 

ICA (3rd Comp.) -0.34 32.41 44.31 

ICA + kNN 0.83 0.72 1.19 

ICA + Reg. 0.50 1.37 1.77 

8 

ICA (3rd Comp.) -0.02* 14.27 28.35 

ICA + kNN 0.86 0.58 1.18 

ICA + Reg. 0.46 1.51 1.98 

9 

ICA (MPA) 0.15 56.85 63.62 

ICA + kNN 0.81 0.84 1.75 

ICA + Reg. 0.18 2.27 2.81 

10 

ICA (3rd Comp.) 0.25 16.92 28.67 

ICA + kNN 0.91 1.38 3.10 

ICA + Reg. 0.49 5.15 6.37 

*: p<0.05;  p<0.001 for the rest;  kNN(k=1); Reg.: Linear Regression; r: Pearson's correlation coefficient; MAE: 

Mean Absolute Error; RMSE: Root Mean Squared Error 
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Table 4.6: The descriptive statistics of hr estimation using the ICA method and improved method 
by ML techniques (combined-participants analysis) 

 Second Experiment 

Method ICA [1] ICA + kNN ICA + Regression 

Selected component 3rd - - 

Mean bias (bpm) -25.38 0.06 0.00 

SD of bias (bpm) 35.65 3.65 9.10 

RMSE 43.76 3.64 7.31 

Corr. Coefficient -0.10***
 0.93*** 0.29*** 

Mean absolute error   27.17 1.32 9.10 

Relative absolute error 3.43 0.16 0.92 

Root relative squared error 21.14 0.38 0.95 

***: (p<0.001); 

 

The large values for the mean bias -25.38 bpm (SD=35.65 bpm) would also indicate the 

weakness of the ICA method in detecting HR in the natural HCI environments. Applying ML 

techniques and the ICA method significantly reduced the absolute error of the HR estimation. 

The mean absolute error reduced from 27.17 bpm to 1.32 bpm and 9.10 bpm by applying 

kNN (k=1) and linear regression techniques respectively. The ICA and kNN technique also 

obtained a strong correlation with the reference sensor by reaching the Pearson's correlation 

coefficient of 0.93 (p<0.001).  

The results of the Bland-Altman analysis for the three methods of HR prediction are 

presented in Figure 4-2. The LoA range was very wide for the ICA and for ICA and 

regression predictions. In contrast, the ICA and kNN method achieved the best accuracy with 

the LoA from -7.09 to 7.21 bpm (Figure 4-2(c)). In Figure 4-2(c), the difference values have 

more variations for mid-range average values (around 80 to 90) and smaller variations for 

small and large average values. One possibility is that there are more samples in the mid-

range. That is, there are more people in this range and fewer people at two extremes. When 

there are more people, you would naturally have a wider range of difference values. 

However, there were no systematic or proportional errors observed for the ICA and kNN 

method as shown in Figure 4-2(c). 
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 According to Figure 4-2(a), even though the actual HR range was between 61.27 and 111.79 

bpm the ICA method predicted very large values most of the time. This might be because 

other strong frequencies appeared in the 3rd independent component. Figure 4-2(b) shows a 

case of proportional error for the ICA and regression method. It suggests that the relation 

between the nine features and actual HR might not be linear. 
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(a) 

 
(b) 

 
(c) 

Figure 4-2: Bland-Altman Plots analysing the agreement between measured actual HR and 
measured HR using (a) ICA, (b) ICA with Regression and (c) ICA with kNN in the second experiment 



 4.3  HR estimation results  103 

 

4.3.3   Third experiment- Indoor exercising  

In this study, the participant was asked to keep her movement to a minimum during the 

experiment. Obviously, some unwanted movement during the cycling was acceptable. The 

false negative ratio was 0.0.  

We explored here the robustness of the proposed algorithm for a wide dynamic range of HR. 

In the second study, the average of the range and standard deviation of actual HRs among all 

participants were 16.50 bpm and 3.00 bpm respectively. In this study the HR of the 

participant started from 75 bpm, reached 130 bpm in the middle of the experiment and went 

down to 85 bpm. Figure 4-3 presents the actual HR changes during the experiment extracted 

from the ECG signals. Seven parts of the experiment are shown in the corresponding columns 

in Figure 4-3. The range and standard deviation of actual HR in the first, second and sixth 

parts were smaller than in the other parts. 

 

Figure 4-3: Actual HR changes during the third experiment (Indoor exercising) extracted from ECG. 

The results of applying the proposed algorithm on these parts are presented in Table 4-7. The 

strategy for component selection in each part was to choose the component which contains 

the spectrum that minimizes the RMSE value. Consequently, the 3rd component was selected 
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in part 4, the 2nd component was selected in part 5 and the 1st component was selected in the 

other parts. Our evaluations also stated that the HR spectrum could not be estimated 

accurately by considering the spectrum containing the highest peak among all three 

components. 

As shown in Table 4-7, the ICA method achieves acceptable results in the first and second 

parts with RMSE values of 5.30 and 4.32. In these two parts the range of actual HR changes 

was smaller than other parts except part 6 which did not achieve a good RMSE. On the other 

hand, the algorithm showed the worst result in part 4 which contained a gradually increased 

HR.  

Table 4.7: Summary of the third experiment results: HR estimation during indoor exercising using 
the ICA method 

Parts 1 2 3 4 5 6 7 

Moving window size 30 sec 

Recording rate 15 fps 

Length (sec) 120 120 180 180 180 120 120 

# of measurements 91 91 151 151 151 91 91 

SD of x- coordination  4.92 5.06 6.54 9.97 8.65 8.06 4.05 

SD of y- coordination  5.14 4.10 1.68 3.39 3.9 2.53 1.75 

Range of x- coordination 36 30 28 50 46 39 18 

Range of y- coordination 27 35 11 24 22 14 11 

Range of Actual HR 

(bpm) 
7.85 6.32 8.34 10.37 13.08 3.62 9.24 

SD of Actual HR (bpm) 2.13 1.55 2.02 2.63 3.74 1.00 2.68 

Results Using ICA 

Selected Component 1st 1st 1st 3rd 2nd 1st 1st 

Mean bias (bpm) 2.82 -4.07 11.95 -1.59 2.55 -10.30 10.42 

SD of bias (bpm) 4.47 1.94 6.07 20.27 5.70 1.50 9.04 

Max bias (bpm)  14.12 0.12 27.22 25.40 14.17 -7.93 31.06 

Min bias (bpm)  -12.95 -8.89 -0.38 -49.13 -15.47 -18.43 -2.08 

RMSE 5.30 4.52 13.44 20.34 6.25 10.47 13.84 

 

However, exploring the whole experiment as one dataset showed that the 3rd component 

produced the RMSE of 35.23 which was the best value among the components and the MPA 

method. On the other hand the kNN technique dramatically increased the performance of the 
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estimation. Figure 4-4 illustrates an example of the improvement of ML techniques over the 

ICA in measuring HR. 

 

Figure 4-4: Actual HR changes during the 3rd experiment (Indoor exercising) extracted from ECG. 

The Bland-Altman analysis showed that the best agreement between actual HR measured by 

ECG and the proposed methods was achieved by the ICA and kNN method. This method 

reduced the mean bias from -24.37 bpm to 0.05 bpm with 95% LoA -8.20 to 8.76. Table 4-8 

summarizes the results of HR detection in the third study. These results represented the 

robustness of the proposed method in a new condition which includes lots of user motions 

and a large range of HR changes (from 69.5 bpm to 130.79 bpm). 

Table 4.8: The descriptive statistics of HR estimation using ICA method and ML techniques during 
indoor exercising (third experiment) 

 Third Experiment 

 ICA ICA + kNN ICA + Regression 

Selected component 3rd - - 

Mean bias (bpm) -24.37 -0.28 0.05 

SD of bias (bpm) 25.54 4.33 13.70 

RMSE 35.31 4.33 13.69 

Corr. Coefficient 0.53***
 0.97*** 0.58*** 

Mean absolute error   28.53 1.41 11.24 

Relative absolute error 2.09 0.10 0.82 

Root relative squared error 4.37 0.25 0.81 

***: (p<0.001); 
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4.4 Conclusion 

We have evaluated a method for remote HR measuring in three applications: a controlled 

laboratory task, a naturalistic HCI and an indoor cycling exercise. This study evaluated Poh et 

al.‘s method and showed the feasibility of their methodology to measure HR at rest. Their 

seminal work is one of the successful attempts at remote physiological sensing. However 

their proposed method did not show positive results in naturalistic HCI and indoor exercise 

situations. The study analyses the problems caused by unwanted movements and the wide 

dynamic range of HR which are common during real world measurement. We have addressed 

these issues by building and training specific models for each participant using ML 

techniques. The results suggest that the kNN based technique outperforms other approaches 

(manual or computational) that try to select the best independent component for HR 

estimation. On average the mean of absolute errors in HR estimation is reduced to 0.68 bpm 

by applying kNN technique to the ICA outputs among 10 participants in the HCI scenario. 

The kNN technique also improved the accuracy of the HR estimation over the former method 

in indoor exercising conditions.  

Although the accuracy of estimation using the proposed approach is increased, in some 

applications (e.g. emergency severity index (ESI) triage) the achieved accuracy is not 

acceptable and more improvements are needed to implement a more accurate estimation. 

Another limitation might be the objection to drawing major generalizations from the small 

number of subjects studied in the third study. It should be noted that the purpose of the third 

study was to measure the impact of a larger dynamic range on the measurements. The 

lighting conditions and other environmental variables were kept the same. Recruiting more 

participants for generalizing our findings from the third study is considered for possible 

future work. However building a user-independent model to yield reliable results when 
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presented with new users without the need for retraining is one of our concerns for future 

work. 
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Chapter 5. Study 2: Detecting non-basic 

emotion in HCI (IAPS) 

 

Summary 

In this chapter, the second part of the experiment introduced in Chapters 3 is 

analysed. In this experiment, 60 images were used as emotional stimulus. For each 

participant, 60 video segments were recorded and analysed here. The results of two 

types of concurrent self-report are reported first. Then the result of applying feature 

extraction methods are presented. The classification results are also analysed at the 

end of this section. User-dependent, gender-specific, and user independent analysis 

are evaluated (Monkaresi, Calvo, & Hussain, 2014).   

 

  



 5.1  Introduction  109 

 

5.1 Introduction 

Several methods, techniques, and devices have been proposed in the past for affect detection. 

Some of them relied on single modalities like facial expression, voice, and physiological 

signals that were successful for detecting even complex affective states (Calvo & D‘Mello, 

2010). However, multimodal affect detection techniques are becoming increasingly popular 

due to their reliability and performance in detecting complex affective states (D‘Mello & 

Graesser, 2010; Hussain & Calvo, 2011; Pantic & Rothkrantz, 2003; Soleymani, Pantic, et 

al., 2012). Naturally, humans use several modalities when they are interacting with each 

other. Each modality (face, voice, gesture, physiology, etc.) has a unique characteristic of an 

affective state and considering more modalities can increase reliability and accuracy of affect 

interpretation. 

Physiology is a prominent modality that has been used for affect detection because it is 

suitable for reflecting inner feelings, is robust against social marking, and offers good time 

resolution. It has also been used in multimodal affect detection approaches (Hussain et al., 

2011; Soleymani, Pantic, et al., 2012).  

Normally, physiological sensors need to be attached to the human body, which might be 

intrusive and make the application hard to adopt. Wearable sensors and devices were 

proposed to reduce the hardships of setting up the traditional sensors. Among the current 

methods of measuring physiological signals, contact-less and remote methods are more 

desirable. These methods are easy to adopt and much cheaper than traditional devices (Poh et 

al., 2010). A remote, contactless sensor can monitor several subjects at the same time.  

In this chapter, we utilize the proposed method in Section 3-3-3 to measure HR remotely and 

use it for affect detection in combination with facial expression features. A dynamic approach 
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has been used to extract facial expression features based on local binary patterns in three 

orthogonal planes (LBPTOP) (See Section 3-3-1). As for the third channel, the Kinect face 

tracker engine (See Section 3-3-2) was used to extract facial geometric-based features. Then a 

fusion model was utilized to classify affective states using these three channels. In the 

following section, we briefly explain two preliminary experiments for evaluating the 

possibility of using geometric-based in combination with physiological channels for affect 

detection.  

5.2 Preliminary studies 

Before this study, two preliminary studies were undertaken to evaluate the possibility of 

detecting non-basic affective states using a combination of geometric-based features from the 

face and physiological signals. We used the dataset recorded by two colleagues from our 

group (Learning & Affect Technologies Engineering, LATTE). The dataset included the data 

collected from 20 participants. Ninety images from the IAPS dataset were selected and used 

for triggering participants‘ affective states. The annotations were recorded in 2D space that 

contained three levels (low, medium, and high) for valence and three levels for arousal. A 

video of frontal face and four physiological signals were recorded while the participants 

viewed the images. The video was recorded using a webcam. Four physiological signals, 

including electrocardiogram (ECG), electromyogram (EMG), respiration, and galvanic skin 

response (GSR) were recorded using a BIOPAC MP150 system with AcqKnowledge 

software at 1000 samples per second for all channels. The achieved Kappa measures for each 

method are shown in Table 5-1. 
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Table 5.1: Average kappa measures for detecting three levels of normative Valence (V) and 
Arousal (A) in preliminary studies 

Preliminary studies Kappa measures  

 

User-Dependent 

Model 

General 

 model 

Gender Specific 

Male Female 

AVI 

(Monkaresi, Calvo, 

et al., 2012) 

kNN Classifier (k=1), 

one modality  

(head movements) 

V:0.37 

A:0.30 

V:0.14 

A:0.16 

– – 

SMC 

(Monkaresi, 

Hussain, et al., 

2012b) 

Vote classifier,  

Fusion model  

(Head movements and 

physiological signals) 

V:0.47 

A:0.38 

V:0.22 

A:0.19 

V: 0.32 

A: 0.16 

V: 0.24 

A: 0.22 

 

 

In the first study (Monkaresi, Calvo, et al., 2012) geometric-based features that indicated the 

position of the head were extracted and used for non-basic affect detection. Three classifiers 

(kNN, linear SVM, and Bayesian Network) were used for affect classification, and the kNN 

classifier showed the better performance compared with the others. The results showed that 

the user-independent model could not be crated based on extracted head movement features 

for valence and arousal detection. Other features from the face needed to be added to the 

model to increase the accuracy of affect detection. However the user-dependent models 

yielded moderate accuracy for discriminating between the three levels of valence and arousal.  

In the second study (Monkaresi, Hussain, et al., 2012b), a fusion model was proposed to 

combine the physiological data head movement features for affect prediction. A combination 

of classifiers (Vote classifier with the average probability rule) was used for classification. 

On average, the vote classifier showed the better performance compared with the three 

classifiers used in first preliminary study. The results also showed that the fusion model 

outperformed the physiological channels for detecting valence and arousal using user-

dependent and gender-specific models. According to the Kappa scores, the fusion model 

obtained better accuracies for valence detection compared with the video channel. However, 
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the fusion model did not show any improvement over the video channel for detecting arousal 

levels. 

5.3 Participants 

For this study, 23 undergraduate/postgraduate engineering students from the University of 

Sydney were recruited for the experiments. The participants‘ ages ranged from 20 to 60 years 

(M = 34 years, SD = 11) and there were 14 males and 9 females. There were 5 Asians and 17 

Whites, and 6 participants wore eyeglasses. We advertised our experiment by circulating the 

flyer through the University of Sydney‘s student newsletter and the Centre of the Research 

and Innovation website
4
. An example of the flyer is presented in Appendix B. The University 

of Sydney‘s Human Ethics Research Committee approved the study prior to data collection. 

The participants signed an informed consent prior to the study. The approved consent form is 

available in Appendix C. 

All participants fulfilled both parts of the experiment (writing session and IAPS session). 

There was a synchronization problem between video segments and self-reports for one 

participant and the participant was ignored for feature extraction and affect classification. 

Therefore, the classification results are only reported for the recorded data of 22 participants.  

5.3.1   Sensors and experiment setup 

The experiment was conducted indoors with a varying amount of ambient sunlight entering 

through windows in combination with normal artificial fluorescent light. Participants were 

asked to sit in front of a computer and interact normally while a Microsoft Kinect sensor (PC 

version) recorded their video. All videos were recorded in colour (24-bit RGB with 3 

                                                 
4
 http://sydney.edu.au/research/involved/volunteer.shtml 
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channels, 8 bits/channel) at 30 frames per seconds (fps) with pixel resolution of 640 × 480 

pixels and saved in AVI format. Two physiological signals, ECG and respiration, were also 

recorded using a BIOPAC MP150 system with AcqKnowledge (v. 3.8.2) software. The 

acquisition sampling rate was 250 Hz for both channels. Three electrodes were placed on the 

participant‘s body to record the ECG signals: two electrodes were placed on their arms and 

the ground electrode was placed on their ankle. Instead of the wrists, the electrodes were 

placed on the arms to reduce the noises that might be introduced by hand movement during 

typing. Figure 5-1 shows the experimental setup was used in the studies reported in this 

chapter and Chapter 6. 

 

Figure 5-1: Experiment setup for Studies 2 (IAPS images) and 3 (Writing) 

5.4 Analysis of self-reports 

Two types of self-reports were recorded for this experiment: dimensional (valence/arousal) 

and categorical self-reports. These annotations were extracted concurrently during the 

experiment. All 23 participants completed the experiment and finally, 1380 instances were 
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produced (23 participants × 60 video segments). The statistics of each reported score and 

emotional category were reported. 

5.4.1   Valence/arousal 

Valence and arousal levels were recorded using a standard 1–9 rating scale. Since we tried to 

select the images from different rating scales, we expected that there was an adequate number 

of labels for each rating scale. Figure 5-2 shows the distribution of reported scores in this 

experiment. According to Figure 5-2, a normal distribution of reported scores can be 

observed.  

 

Figure 5-2: Distribution of reported scores in concurrent self-reports (IAPS experiment) 

To address the individual variations in ratings, the reported scores were standardized 

(converted to z-scores) for each participant. After standardization, the mean of the participant 

ratings was equal to zero. The z-score was negative when the raw score as below the mean, 

and it was positive when above. Then, the positive z-scores were considered as ―High 

Arousal‖ (or ―Positive Valence‖), and the negative z-scores were considered as ―Low 

Arousal‖ (or ―Negative Valence‖). Accordingly, the classification task discriminates between 

two levels in valence and arousal dimension. Figure 5-3 shows the percentage of reported 
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values in each class after this conversion. Figure 5-3 shows an almost balanced class 

distribution in valence and arousal dimensions, which is desirable for training a classifier.  

 

Figure 5-3: The percentage of reported valence and arousal after standardization and grouping 
into two levels (IAPS experiment) 

5.4.2   Categories 

One thousand, three-hundred and eighty emotional categories were also concurrently reported 

by all 23 participants. Figure 5-4 presents the percentage of each reported category using a 

pie chart (Calm: 164, Relaxed: 260, Bored: 111, Annoyed: 106, Glad: 102, Content: 37, 

Delighted: 63, Excited: 99, Depressed: 97, Gloomy: 61, Afraid: 90, Angry: 60, Others: 130). 

Relaxed and Calm were reported more frequently in the IAPS experiment. Content, Gloomy, 

and Angry were reported less than other categories.  
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Figure 5-4: The percentage of each reported emotional category in the concurrent self-report (IAPS 
experiment) 

5.4.3   Categorical vs. dimensional affect 

The relations between dimensional scores and emotional categories were explored. 

Standardized scores were used for this reason. The average valence and arousal z-scores were 

calculated for each category across all labels. The position of each category in 2D space 

(valence vs. arousal) is plotted in Figure 5-5. The result almost supports the well-known 

circumplex of affect reported by Russell in 1980. Excited had the highest level of arousal and 

a high level of valence, whilst Angry had a high arousal with the most negative value of 

valence. 
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Figure 5-5: Mapping the reported categories on the 2D space of affect (valence/arousal) 

5.5 Feature extraction 

Three types of video-based features were extracted and analysed in this study. For each video 

segment, 84 features were extracted by the Kinect Face Tracker method. Two thousand, three 

hundred, and four LBPTOP features were extracted for each video segment as described in 

Chapter 3. The HR signal was also extracted using the method proposed in Chapter 4. Each 

video segment last 10 seconds and for each second, there is an estimate for HR. Seven 

statistical features were extracted from the HR estimations for each video segment. 

Altogether, 2395 features were extracted and then synchronized with corresponding 

annotations (normative ratings and concurrent self-reports). The following section reports the 

classification accuracies for detecting valence and arousal. The performance of each modality 

in discriminating between two levels of valence and arousal was also explored and reported.   

Two participants were too close to the screen while viewing the stimuli and facial features 

could not be extracted. The eye-related features could not be extracted for three participants 
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due to occlusion caused by eyeglasses. Therefore, the classification results are reported based 

on recorded data from 17 participants. 

5.6 Classification results 

This section reports the classification results for detecting degrees of valence and arousal 

using three set of features (channels) and a feature level fusion of these three channels. The 

results are reported in three sub-sections: user-dependent, gender-specific, and general (user-

independent) models. For each model, six classification tasks were performed for detecting 

six types of affect representations. Valence and arousal was considered independently in four 

representations and in two representations, a combination of valence and arousal was 

considered. Table 5-2 describes these six types of affect representation, which have been used 

in the following classification. 

Table 5.2: List of six classification tasks used for each model 

Abbreviation Source Affect # of classes Name of classes 

selfVal Concurrent Self-report, 

Dimensional 

Valence 2 Low-valence,  

High-valence 

selfAro Concurrent Self-report, 

Dimensional 

Arousal 2 Low-arousal, 

High-arousal 

selfDim Concurrent Self-report, 

Categorical 

Valence × Arousal 5 Low-val_low-aro, 

Low-val_high-aro, 

High-val_low-aro, 

High-val_high-aro, 

Other 

normVal Normative rating Valence 2 Low-valence,  

High-valence 

normAro Normative rating Arousal 2 Low-arousal, 

High-arousal 

normDim Normative rating Valence × Arousal 4 Low-val_low-aro, 

Low-val_high-aro, 

High-val_low-aro, 

High-val_high-aro, 
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5.6.1   User-dependent models 

In user-dependent analysis, 17 specific models were trained and tested for each participant. 

Figure 5-6 presents the average Kappa scores for classifying affective states using three 

separate channels (HR, FT, LBP) along with the fusion model. The performance of each 

channel in detecting the six types of affective states using user-dependent models is discussed 

here. 

 

Figure 5-6: The average Kappa scores for classifying affective states using 10-fold cross validation 
approach (user-dependent models) 

 

Fusion model: For all classes, on average fusion models achieved the best results with a 

reasonable accuracy compared with each individual channel. The best result (Kappa = 0.65) 

was achieved by the fusion model for classifying two levels of normative valence. The 

improvements of fusion model over the HR and FT channels were statistically significant in 

all six cases as specified by paired samples t tests (p < 0.05). The paired samples t tests also 

indicated that the fusion model significantly improved the Kappa scores over the LBP 

channel for detecting selfDim (t(16) = –3.00, p < 0.05) and normAro (t(16) = –2.59, p < 0.05). 

However, the improvements of the fusion model over the LBP channel were not significant 
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for detecting selfVal (t(16) = –1.00, p = 0.33), selfAro (t(16) = –0.61, p = 0.55), normVal 

(t(16) = –0.70, p = 0.49) and normDim (t(16) = 1.71.00, p = 0.11). In general, these results 

suggest that adding the FT and HR to the LBP channel could improve the accuracy of affect 

detection. 

HR: The HR channel showed a weak performance for detecting normDim average Kappa 

measure of 0.10. The HR modality obtained an average Kappa measure of 0.04 for detecting 

self-reported combination of valence and arousal (selfDim). This channel did not show any 

improvement over the chance estimations as indicated by negative values of Kappa scores. 

HR obtained the maximum Kappa measure of 0.47 for detecting selfAro using HR channel. 

FT: The Kinect face tracker features set (FT) was successful in discriminating between 

negative and positive self-reported valences, selfVal (average Kappa = 0.29). Even though it 

achieved positive Kappa scores for classifying other types of affective state, the average 

performance was not accurate enough. On the other, the FT channel showed an excellent 

performance for some participants. For example, this channel achieved the Kappa measure of 

0.93 for detecting normative valence (normVal). Compared with other channels, the FT 

channel represented better performance for classifying self-reported labels than normative 

ratings.     

LBPTOP: The LBP channel obtained the best Kappa scores among the three channels for 

detecting different types of affect representations. Adding HR and FT features did not 

provide a big improvement over the accuracies achieved by the LBP channel. Except for the 

selfDim, the LBP channel showed a good performance for affect detection, with average 

Kappa measures ranging from 0.40 to 0.68. An excellent agreement between classified and 

actual labels was achieved for normative valence and arousal, with average Kappa measures 

of 0.62 and 0.51, respectively. The results for detecting self-reported valence (average Kappa 

= 0.56) and arousal (average Kappa = 0.46) were also promising using the LBP channel. The 
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results also demonstrated that the LBP channel performs significantly better than other 

individual channels.       

Compare Affective states: According to Figure 5-6, the performance of the system for 

detecting valence was better than arousal and the combination of valence and arousal 

(selfDim and normDim). From the figures, we discovered that considering valence and 

arousal separately could produce a more accurate prediction. For example, the fusion model 

predicted normative valence and arousal with Kappa measures of 0.65 and 0.58, respectively, 

whilst the Kappa measure for detecting normDim was 0.45. 

On the other hand, the results show that compared with self-reported labels, normative ratings 

were classified more accurately. This can demonstrate the reliability of the IAPS labels, 

which is expected because an adequate number of participants (around 100) were used to 

produce those labels. However, in our study, each subject might have had his/her own 

understanding about the rating scales and subjective variations might be one reason for the 

reduction in affect detection accuracies.  

5.6.2   Gender-specific models 

For this analysis, we separated our dataset into two parts, with one part containing only male 

participants‘ data (n = 10) and the other part only female participants‘ data (n = 7). Then, data 

from individual participants were standardized (converted to z-scores) to address individual 

variations of head behaviour and physiological differences. We built and trained specific 

models for each of the datasets to compare the performance of gender-specific models. A 

leave-one-out cross-validation approach was used to evaluate these models, which was 

described in Section 3-4. The Kappa measure for detecting affective states in the males and 

females models are shown in Figures 5-7 and 5-8 respectively.  
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Figure 5-7: The Kappa measures for classifying affective states using leave-one-out cross validation 
approach (Gender-specific: males) 

 

Male model: As Figure 5-7 shows, no reasonable accuracy was achieved for classifying self-

reported affective states. The best result among self-reports was obtained by the LBP 

channel, with a Kappa measure of 0.12 for detecting valence. Subjective variations across the 

male participants‘ ratings might be the main reason for the weak performance of the system 

for detecting self-reported affect. However, the achieved results for detecting normative 

affective states were more promising. All channels achieved positive Kappa measures. Again, 

the LBP channel obtained the best result for classifying normative valence for male 

participants. The fusion of the FT, HR, and LBP channels improved the Kappa measures for 

detecting normative arousal and normative combination (of valence and arousal) by 0.07 and 

0.03, respectively, whereas the fusion of these channels failed to improve the accuracy of 

normative valence.   
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Figure  5-8: The Kappa measures for classifying affective states using leave-one-out cross validation 
approach (Gender-specific: females) 

 

Female model: In the females gender-specific model (Figure 5-8), the best performance was 

achieved by the LBP channel for detecting self-reported valence (Kappa measure = 0.32). 

The fusion model was also successful in discriminating between different degrees of self-

reported valence (Kappa measure = 0.32) and normative arousal (Kappa measure = 0.032). 

The best Kappa score for the HR channel was obtained for detecting normative arousal 

(Kappa measure = 0.15). The HR channel also achieved the Kappa measure of 0.10, which 

represents a weak performance for detecting four classes of affective states in valence × 

arousal space (NormDim).  

Except for the SelfVal, NormAro, and NormDim, the fusion model failed to improve the 

accuracy of affect detection. For the rest of the affect types, the fusion model improved the 

accuracy of affect detection slightly.  

Overall, the female gender-specific model showed the higher Kappa measures compared with 

the male gender-specific model. This finding suggests that females express their emotions 

through facial expressions more than males. The higher Kappa values in self-reported 



 5.6  Classification results  124 

 

affective states could reflect the quality of the self-reports, which might be because of more 

effort from the females in filling out the questionnaires.   

5.6.3   General model 

To build a user-independent model, data from individual participants were first standardized 

and then combined to yield one large data set with 1,020 instances. The Kappa measures 

were calculated based on leave-one-participant-out cross validation approach. Figure 5-9 

shows the Kappa measures for detecting the affective states using the general model. 

 

Figure 5-9: The kappa measures for classifying affective states using leave-one-out cross validation 
approach (User-independent model) 

 

As expected, the results for the self-reported affective states were not promising enough. The 

best result for detecting self-reported valence was achieved by the LBP channel with a Kappa 

measure of 0.13. The fusion model improved the accuracy of self-reported arousal detection 

by 0.10. 

However, in the normative ratings, the fusion model improved the results achieved by all 

other channels successfully. The Kappa measures were increased from 0.13 and 0.08 to 0.15 

and 0.18 for detecting normative valence and arousal, respectively. A supper additive 
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improvement was also achieved by the fusion model for discriminating between four classes 

in valence and arousal space (NormDim). These improvements showed the success of the 

fusing the HR, FT, and LBP channels in affect detection. 

The HR channel also produced positive Kappa measures for classifying normative valence 

and arousal.  

5.7 Feature selection 

To have a better understanding about the contribution of each channel in the affect 

classification task, we report the selected features here. In this section, we only discuss the 

selected features for the user-independent model as shown in Table 5-3. In this table, the 

name of LBPTOP features starts with P character followed by the pattern number. The name 

of HR features start with HR, and the rest of the features belong to the FT features.  

According to Table 5-3, the LBPTOP features (P) contributed in classification of all types of 

affective states. The FT features also had a good contribution for affect detection. The 

interesting results were about the HR features. The results indicated that the HR related 

features contributed in detecting four out of six types of affect. Among seven HR-related 

features, HR-median was the most common feature contributing to affect detection. 
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  Table 5.3: List of selected features from the fusion model (user-independent analysis) 

Selected features from Fusion model 

SelfVal SelfAro SelfDim NormVal NormAro NormDim 

ANU2-std ANU4-max Ty-mean ANU5-max Tz-std Tz-mean 

ANU5-min ANU4-range P803 Rx-mean HR-mean HR-median 

Tz-mean HR-mean P814 Ty-min HR-median HR-max 

Tz-max HR-median P835 Tz-mean HR-min HR-range 

P107 P70 P853 Tz-median HR-max P17 

P114 P427 P886 HR-median HR-range P348 

P216 P1877 P983 HR-max P17 

 P230 P1955 P1386 P62 P48 

 P773 P1968 P1558 P72 P201 

 P795 P1973 P1620 P165 P348 

 P820 

 

P1707 P216 P352 

 P931 

  

P764 P463 

 P942 

  

P894 P563 

 P984 

  

P1316 P974 

 P1337 

  

P1617 P1001 

 P1341 

  

P1650 P1373 

 P1684 

  

P1658 P2022 

 

   

P1684 P2038 

 

   

P1739 P2091 

 

   

P1773 

  

   

P1777 

  

   

P2221 

  
The HR features had their maximum contribution in detecting normative arousal where the 

fusion model achieved the best results (Kappa measure = 0.18). Five out of seven HR 

features were selected for the normative arousal detection. In addition, 50% of selected 

features for detecting NormDim were also from the HR features. Overall, these results 

showed that the HR changes play an important role for affect detection in HCI applications.   

ANU5 and Tz-related features appeared among the selected features for detecting SelfVal and 

NormVal. This suggested that these features could be the good indicators for valence 

detection. ANU5 indicates the level of ―Outer Brow Raiser‖ and Tz indicates the motion of 

the head in the Z axis. Tz also contributed in detecting other types of normative affective 

states. This finding suggested that moving the head in the Z axis can be a good indicator for 
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affect detection. When you have a positive feeling about an image you are watching, you 

probably move toward the screen to watch it precisely. Within the face tracker (FT) features, 

ANU4, which specifies the ―Lip corner depressor‖, was the best indicator for detecting 

SelfAro. 

Figures 5-10 and 5-11 show the contributions of different LBPTOP features more precisely. 

These figures divide the selected features into six categories from two perspectives. In the 

first perspective (Figure 5-10), the selected features were divided based on two regions: eyes 

and mouth. In the second perspective (Figure 5-11), the selected features were divided 

according to the planes set that they belong to. The XY-related features were considered as 

appearance-based features, and features extracted from XT and YT planes were considered as 

the motion-based features. 

 

Figure 5-10: The percentage of contributions of the facial objects (eyes and mouth) in selected 
LBPTOP features for affect detection using the fusion model (user-independent analysis) 

 

In general, among the LBPTOP features, eyes-related features contributed more in the affect 

classification. Seventy-five percent of selected LBPTOP features for detecting normative 

affective states were selected from the eyes-related features. However, the distribution of 

mouth-related features among the selected LBPTOP features for classifying SelfAro and 
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NormVal was more than the eyes-related features. On the other hand, the mouth-related 

features did not contribute in detecting normDim. 

 

Figure 5-11: The percentage of contributions of appearance-based and motion-based LBPTOP 
features for affect detection using the fusion model (user-independent analysis) 

 

According to Figure 5-11, the appearance-based features were more involved for detecting 

self-reported and normative valence compared with the motion-based features. On the other 

hand, the motion-based features contributed more in detecting self-reported and normative 

arousal than appearance-based features. There was the same contribution of these two types 

of LBPTOP features for detecting NormDim whilst the appearance-based features contributed 

more than motion-based features for detecting Self-Dim. Overall, the results suggested that 

the appearance-based features were more useful for detecting valence and the motion-based 

features were useful for detecting arousal. It should be mentioned that both types of features 

are essential for affect detection. 

5.8 Conclusion 

This chapter introduced a new fusion model for affect detection. In this model HR-related 

features extracted from facial videos were combined with geometric-based and appearance-
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based facial features. The results showed that combining these HR features with other facial 

expression features (e.g., LBPTOP features) could improve the accuracy of affect detection 

using the normative rating. The HR channel was more successful in detecting normative 

arousal for female participants (Kappa measure = 0.15). The fusion model also showed 

reasonable accuracy for detecting affect (normative rating) in user-independent analysis. 

However, the dynamic features (LBPTOP) achieved the best performance in discriminating 

between different levels of each type of affective states.  

This study demonstrates the feasibility of using contact-less physiological signal 

measurements for affect detection even though the improvement was slight. Replacement of 

traditional physiological sensors with a camera could significantly increase the usability of an 

affect detection system. The approach in this chapter is the first attempt in using remote 

physiological measurement with other channels for affect detection and improvements needs 

to be done. Extracting more physiological signals, such as inter-beats intervals and respiration 

rates using the video-based method and adding them to the fusion model could be considered 

as future works. 

Three types of analysis have been evaluated in this chapter: user-dependent, gender-specific, 

and a general model. In most of the analysis, fusion models achieved the best results. As 

expected, the user-dependent models obtained the best results compared to other two 

analyses. Evaluating the gender-specific models also suggested that developing a separate 

model for each gender could increase the accuracy of affect detection.   

At the end of this chapter, a comparison between selected features has been provided, which 

gives a better understanding about the relation between each affective state and each set of 

extracted features. 
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Chapter 6. Study 3: Detecting engagement and 

affect during writing  

 

Summary 

In this chapter, we report the results of a study into detecting user’s engagement level 

and his/her affective states during computer-based writing session using the methods 

introduced in Chapter 3. This chapter starts with providing the information about the 

participants and materials followed by the self-reports analysis. The extracted 

features using the presented methods and their ability in detecting engagement and 

affect are evaluated through analysis of feature selection results. Then, the 

classification accuracies are calculated and validated with 10-fold segment-level 

cross validation for user-dependent models and leave-one-subject-out validation for 

user-independent models. 
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6.1 Introduction 

As mentioned in the literature review, most previous research on affect detection focused on 

detecting basic emotions (D‘Mello & Calvo, 2013; Zhihong Zeng et al., 2009). More 

recently, researchers in the this field have shifted towards recognizing complex mental states 

and particularly, attention and engagement (Bohus & Horvitz, 2009; Grafsgaard et al., 2013; 

McDaniel et al., 2007; Nakano & Ishii, 2010). Engagement is an important mental state 

related to productivity and learning (Christenson, Reschly, & Wylie, 2012b; Kahn, 1990b). 

For example by measuring the level of student‘s engagement in a classroom, the teacher can 

change the teaching method to promote or hinder engagement. Nowadays, computer-based 

activities are more popular in workplaces and educational environments. Measuring task 

engagement during human computer interaction needs more specific considerations. Peters et 

al. (2009) discussed different aspects of engagement that need to be considered in the HCI 

applications. Several researchers have defined three types of engagement (Fredricks, 

Blumenfeld, & Paris, 2004; Peters et al., 2009): behavioural engagement, which can be 

observed by someone; emotional engagement, which can be assessed by measuring emotional 

reactions to a task; and cognitive engagement, which is an internal mental activity and hard to 

measure.  

In this chapter, we use our proposed methodology to detect engagement and affective states 

during the writing activity. Writing is one of the most common activities in the workplace 

and in educational environments. Enabling computer-based writing tools to recognize a user‘s 

engagement and affective state can help users enjoy their writing activities. The possible 

relation between engagement and affective states (valence and arousal) has been explored. In 

addition, the impact of feedbacks and casual interventions on participants‘ affective states 

and engagement has been analysed.   
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6.2 Participants 

Twenty-three undergraduate/postgraduate engineering students from the University of 

Sydney were recruited for the experiments. The participants‘ ages ranged from 20 to 60 years 

(M = 34 years, SD = 11), and there were 14 males and 9 females. We advertised our 

experiment by circulating the flyer through the University of Sydney‘s student newsletter and 

the Centre of the Research and Innovation website
5
. An example of the flyer is presented in 

Appendix B.  

All participants fulfilled both parts of the experiment (writing session and IAPS session). 

They were asked to come back one week after the experiment for s retrospective self-

reporting for the writing session. One subject did not come back to complete the annotation 

and data for this participant was ignored.  

6.3 Analysis of self-reported engagement and 

affect 

6.3.1   Concurrent self-report (Engagement) 

In the concurrent self-reports, the participants were asked to report their level of engagement 

verbally every two minutes in each writing session. As each session lasted an hour, 30 

notifications were produced for each participant. Among 22 participants, two participants did 

not pay attention to any of them and did not report their level of engagement during the 

session. Other participants forgot to report their engagement level in some cases. In total, 530 

                                                 
5
 http://sydney.edu.au/research/involved/volunteer.shtml 
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responses were obtained in response to 660 notifications. Participants indicated that they 

were engaged for 425 cases (80%) compared with not being engaged (105 cases or 20%).  

6.3.2   Retrospective self-report  

Extracted video segments from the recorded videos in writing sessions were used for the 

retrospective self-reporting. Based on the procedure explained in Section 3-5-2, a researcher 

did the segmentation process. In total, 1325 video segments were extracted from 1320 

minutes recording (22 participants × 60 minutes).  

6.3.2.1 Engagement 

For each participant on average, 60.23 (SD = 8.25) video segments were extracted. The 

average length of each video segment was 9.78 seconds (SD = 2.23). According to the 

participants‘ self-reports, they were engaged for a majority of the segments (996 instances or 

75%). However, they reported not being engaged for 315 segments (24%). Fourteen instances 

(1%) were labelled as ―Not Applicable (N/A).‖ 

6.3.2.2 Valence/Arousal 

Valence and arousal scores were reported in a 1–9 rating scale. The distribution of each 

reported score is presented in Figure 6-1. Almost normal distributions can be observed for 

reported valence (53%) and arousal (26%). The most frequent score was ―score 5‖ for both 

dimensions (53% of valence and 26% of arousal scores).  
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Figure 6-1: Distribution of reported scores in retrospective self-reports during writing sessions 

Figure 6-1 shows a skewed class distribution towards the middle of the rating scale. To make 

a balanced distribution of classes ideal for creating a prediction model, the following 

calculations were conducted. First, the reported scores were standardized (converted to z-

scores) for each participant. Then, reported values higher than the individual participant‘s 

mean were considered as ―High Arousal‖ (or ―Positive Valence‖) and the values smaller than 

or equal to participant‘s mean were considered as ―Low Arousal‖ (or ―Negative Valence‖). 

Accordingly, the classification task will discriminate between two levels in valence and 

arousal dimension. Figure 6-2 shows the percentage of reported values in each group. 

 

Figure 6-2: The percentage of reported valence and arousal after standardization and grouping 
into two levels (writing experiment) 
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6.3.2.3 Categories 

Participants reported 1325 emotional categories retrospectively. Figure 6-3 presents the 

percentage of reporting each category using a pie chart (Calm 26%; Relaxed 23%; Bored 

18%; Annoyed 5%; Glad 4%; Content 4%; Delighted 2%; Excited 2%; Depressed 1%; 

Gloomy 1%; Afraid 0%; Angry 0%; Others 13%). Calm and Relaxed, which could be 

considered as positive emotions, were reported more frequently in the writing experiment. 

 

Figure 6-3: The percentage of each reported emotional category in the retrospective self-report 
during writing sessions 

 

6.3.3   Engagement and affect during the writing session 

To evaluate the reliability of annotations, we plotted the average engagement level of 

participants obtained from concurrent and retrospective self-reports over the time. A strong 

relationship between concurrent and retrospective engagement reports (the Pearson 
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correlation was 0.82, p < 0.001) was observed, as shown in Figure 6-4. This provides a 

support for the reliability of the self-report measures.  

According to Figure 6-4, on average 90% of participants were engaged at the beginning of 

the task and as they approached the middle of the task, their engagement levels decreased 

gradually. At the middle of the session, they had to submit their manuscripts and wait for 10 

minutes to receive feedback. This decrease continued until t = 34 minutes and immediately 

after that time, their engagement level started to increase. The graph shows a peak at t = 42 

minutes for concurrent engagement and again, their engagement waned as they neared the 

end of the session.  

 

 Figure 6-4: Average engagement level (from retrospective and concurrent reports) of participants 
and their emotions (valence/arousal) over the time 

 

In Figure 6-4, the average changes of valence and arousal were plotted according to 

retrospective self-reports. This graph is based on two levels of valence and arousal 

dimensions. However, the graph shows random fluctuations of valence and arousal levels 
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during the session. No significant correlation between affect (valence/arousal) and 

engagement was observed. 

6.3.4   Impact of events on engagement and affect    

We also analysed the impact of two types of interruptions during the writing session: 

feedback and distractions (loud beeps). To simulate some common distractions in an office, a 

loud beep was produced twice during the writing session. The amounts of reported engaged 

states before and after receiving the feedbacks are compared in Table 6-1. A significant 

difference between the engagement levels before (82%) and after (64%) receiving the 

feedback was observed as specified by a paired-samples t test (t(21) = 3.36, p < 0.005). 

However, the difference in participants‘ affect (valence and arousal) was not statistically 

significant before and after receiving feedback (valence: t(21) = 0.99, p = 0.33; arousal: t(21) 

= 1.43, p = 0.17).  

We explored the impact of noises by analysing two minutes before and after each distraction. 

The results indicates that the engagement level was significantly reduced from 90% to 80% 

after each distraction (t(21) = 2.08 , p < 0.05). There was no significant differences for 

valence and arousal before and after distractions as specified by a paired-samples t test 

(valence: t(21) = 0.29, p = 0.77; arousal t(21) = –0.13, p = 0.89). 

Table 6.1: Average values of reported engagement, valence and arousal before and after feedback 
and distractions 

Self-reports Before feedback After feedback Before distraction 

(2 min) 

After distraction 

(2 min) 

Engaged (%) 82* 64* 90** 80** 

Not engaged (%) 18 36 11 24 

Valence (1–9 average) 5.18 5.08 5.14 5.11 

Arousal (1–9 average) 4.03 3.85 4.26 4.28 

* p < 0.005 : statistically significant 

** p < 0.05 : statistically significant 
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6.3.5   Affect in engaged vs. not-engaged states 

In this section, we explore the relation between affective states and engagement level. The 

percentage of reported affective categories in each engagement level is presented in Table 6-

2. Accordingly, ―Bored‖ was the most reported affective state (49%) when participants were 

not engaged, whilst ―Calm‖ was the most frequent affective state (29%) when engagement 

was reported by them. 

Table 6.2: Descriptive statistics of reported emotion categories during engaged and not-engaged 
status 

 Most reported categories Valence Arousal 

Engaged Calm (29%), Relaxed (25%), Others (15%), Bored (10%) Mean = 5.22 

SD = 0.68 

Mean = 4.01
* 

SD = 1.34 

Not-engaged Bored (49%), Calm (18%), Relaxed (19%), Others (8%) Mean =5.11 

SD = 0.78 

Mean = 3.34
*
 

SD = 1.33 

* p < 0.005: statistically significant 

 

Although there was a slight difference for reported valence between engaged and not-

engaged reports, a paired-samples t test showed that this difference was not significant (t(19) 

= 0.85, p = 0.41). 

On the other hand, a paired-samples t test showed a significant difference of reported arousal 

scores between engaged reports (M = 4.01, SD = 1.34) compared with not-engaged reports 

(M = 3.34, SD = 1.33), t(19) = 4.77, p < 0.005). This finding can support this hypothesis: 

People are more likely to arouse emotionally when they are engaged on a task. Further 

analysis showed that the correlation between engagement and both valence (r = 0.13, p = 

0.56) and arousal (r = 0.18, p = 0.44) were weak and non-significant.  
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6.4 Classification results 

In this section, the performance of the vote classifier for discriminating two levels of valence, 

arousal and engagement, using different channels is reported. According to the methods 

explained in Chapter 3, for each video segment, 84 features were extracted using Microsoft 

Kinect Face Tracker (FT), 2,304 features were extracted using the LBPTOP method, and 

seven features were extracted for HR channel. Besides these three channels, two 

combinations of channels are also explored in this section. The first fusion model (Fusion2) 

combined HR and LBP-TOP channels. In the second fusion model (Fusion3), all three 

channels were combined. 

Before analysing the extracted features, the features were synchronized with corresponding 

retrospective and concurrent labels. Prior to each classification task, the feature selection 

technique (CFS) was applied on the extracted features to reduce the dimensionality of the 

feature space. The results are reported separately for retrospective and concurrent labels. It 

should be mentioned that retrospective self-reports had labels for engagement, valence, and 

arousal compared with concurrent reports that only had engagement labels. First, the 

classification results for retrospective labels (valence, arousal, and engagement) are presented 

in two sub-sections: user-dependent and user-independent models. Then, in Section 6-4-2, the 

results for classifying concurrent reported engagement are also presented in user-dependent 

and user-independent sub-sections.  

6.4.1   Retrospective affective states and engagement 

Extracted labels from the retrospective self-reports were used for classification in this section. 

The participants rated each video segment in three aspects: valence, arousal, and engagement 

levels. The nine rating scales for valence and arousal were converted to the binary levels as 
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described in Section 6-3-2-2. It should be mentioned that one participant labelled all instances 

with the same scale (e.g., 5) and there were not any instances in the ―Positive Valence‖ 

group. For the engagement labels, two participants labelled all video instances with Engaged 

label. Those data sets could not provide valid data for classification. Those participants were 

ignored for classification. On the other hand, the LBPTOP method was not able to extract 

features from 75% of instances for two participants due to their appearances in front of the 

camera. One of the participants wore glasses with a thick frame and the eye-related features 

could not be extracted. The head position of another participant skewed toward the left and 

the face tracker could not track the face. Therefore, the classification results are reported 

based on recorded data from 17 participants.   

6.4.1.1 User-dependent models 

In the user-dependent analysis, 17 specific models were trained and tested for each 

participant. Table 6-3 reports the Kappa measures for each individual model to classify 

engagement, arousal, and valence levels reported in the retrospective self-reports. Figure 6-5 

also presents the average Kappa measures for classifying affective states using three separate 

channels (HR, FT, LBP) along with the fusion models. The performance of each channel in 

detecting the two dimensions of affective states and engagement are discussed in this sub-

section. 

Table 6.3: The mean, standard deviation, maximum, and minimum of Kappa measures for 
classifying engagement, arousal (SelfAro), and valence (SelfVal) using three individual channels 

(HR, FT, and LBPTOP) and two fusion models (Fusion2, Fusion3) 

 Engagement SelfAro SelfVal 

 HR FT LBP Fusion2 Fusion3 HR FT LBP Fusion2 Fusion3 HR FT LBP Fusion2 Fusion3 

Mean 0.13 0.28 0.40 0.43 0.55 0.04 0.06 0.39 0.39 0.40 0.03 0.07 0.34 0.35 0.37 

Std 0.24 0.29 0.39 0.38 0.31 0.23 0.24 0.23 0.23 0.25 0.18 0.16 0.24 0.23 0.24 

Max 0.72 0.74 0.94 0.94 0.94 0.72 0.62 0.81 0.84 0.84 0.66 0.52 0.88 0.91 0.91 

Min -0.10 -0.03 -0.05 -0.05 0.00 -0.31 -0.42 0.00 0.00 0.00 -0.18 -0.09 0.00 0.00 -0.03 
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Figure 6-5: The average Kappa measures for detecting engagement, arousal, and valence (user-

dependent models) 

HR: On average, the HR channel obtained positive values of Kappa measure for detecting 

engagement, valence, and arousal. The best performance of this channel was for detecting 

engagement (Kappa = 0.13, SD = 0.24) across all participants. It should be mentioned that 

this channel achieved the maximum Kappa measure of 0.72 for one participant for 

engagement detection. The HR channel did not show a fair performance in arousal (Kappa = 

0.04 SD = 0.23) and valence (Kappa = 0.03 SD = 0.18) detection.  

FT: The Face Tracker channel also showed a fair accuracy in engagement detection with an 

average Kappa measure of 0.28 (SD = 0.29), whilst the results for arousal and valence 

detection were not promising. An average Kappa measure of 0.06 and 0.07 was achieved for 

classifying valence and arousal, respectively.  

LBP: The LBPTOP channel was the most successful single channel among the three single 

channels for detecting affective states and engagement. This could demonstrate the impact of 

considering the dynamic features of facial expression in affect detection. The average Kappa 

measures of 0.40, 0.39, and 0.34 were obtained for detecting engagement, arousal, and 
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valence, respectively, which was a good performance. The paired t tests also specified that 

this channel significantly outperformed the HR channel (p < 0.05). The Kappa measures of 

LBP for detecting arousal and valence were significantly higher than the values achieved by 

the FT channel (p < 0.05). However, the paired two samples t test showed that the average 

Kappa measure achieved by LBP channel for engagement detection was not statistically 

higher than the Kappa measure obtained by the FT channel (t(16) = –1.30, p = 0.21).   

Nevertheless, adding these two channels (HR and FT) to the LBP channel might increase the 

accuracy of affect detection. We explored the impact of adding HR and FT features to the 

LBP features by introducing two fusion models (Fusion2, Fusion3).  

Fusion2: This fusion model combined LBP and HR features in the feature level. The feature 

selection function and the classification task were applied after this combination. The main 

reason for exploring this fusion model was to investigate the impact of adding HR features in 

affect detection. As specified by two samples t tests, the observed improvement of the 

Fusion2 model over the LBP channel was not statistically significant (Engagement: t(16) = –

1.66, p = 0.12; Arousal: t(16) = –1.00, p = 0.33; Valence: t(16) = –1.04, p = 0.31). These 

results suggested that adding the HR channel to the LBP channel would not improve the 

accuracy of affect detection. 

Fusion3: This fusion model was created by adding the FT channel to other two channels used 

for the Fusion2 model. For classifying engagement, the Fusion3 model improved the average 

Kappa measure (achieved by Fusion2 model) by 0.12, which was statistically significant as 

indicated by a paired two sample t test (t(16) = –2.51, p < 0.05). The Kappa measure of 0.55 

obtained by the Fusion3 model had the best accuracy among all other channels, and indicated 

a good agreement between predicted engagement levels and self-reported levels. However, 

the Fusion3 model was not successful in improving the accuracy of arousal and valence 
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detection compared with the Fusion2 model, as indicated by paired two samples t tests 

(Arousal: t(16) = –0.96, p = 0.35; Valence: t(16) = –0.66, p = 0.52).    

6.4.1.2 User-independent model 

Building and analysing a general model for affect detection is always an important part of an 

automatic affect detection research. Here, the results of the user-independent models are 

reported. All instances from 17 participants used in the user-dependent analysis were 

standardized and combined to build the general model. The final model contained 1033 

instances. The leave-one-out approach was used to validate the performance of our system. In 

each evaluation task, data from one participant were removed from the training set and used 

as a test set. The average Kappa measure for classifying affect and engagement are presented 

in Figure 6-6.  

 

Figure 6-6: The Kappa measures for classifying affective states using leave-one-out cross validation 
approach (User-independent model) 

 

The interesting result for the user-independent model was the performance of the HR channel 

for detecting engagement. The HR channel achieved the highest Kappa measure of 0.11. 
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Even the fusion models could not obtain better values for Kappa measure. As was suggested 

in the user-independent analysis (Section 6-4-1-1), the HR channel could be a good indicator 

for engagement detection. For arousal detection, the LBP channel and the Fusion2 model 

obtained the best results (Kappa = 0.15). However, the reported Kappa measures for detecting 

valence were not promising for all single channels and fusion models.    

6.4.2   Concurrent-reported engagement 

This section reports the performance of the system for classifying the engagement levels 

reported concurrently during the writing sessions. As mentioned in Section 6-3-1, two 

participants forgot to report their level of engagement during the session and they were 

ignored in the feature extraction and classification. We extracted three types of features (HR, 

FT, and LBPTOP) for the rest of participants (19 participants). The user-dependent and user-

independent models were built using these extracted data and are reported in following sub-

sections.   

Concurrent labels have been reported in specific times during the writing sessions. Before 

extracting the features, we needed to specify a time span for each label. We considered a 10-

second window before each reported time and extracted all three types of features from those 

time windows.  

6.4.2.1 User-dependent models 

For each individual participant, a separate model was trained and validated using 10-fold 

cross validation approach. The average Kappa measures for discriminating Engaged and Not-

engaged states were reported in Figure 6-7. Similar to previous analysis, besides single 

channels, two fusion models were also utilized for detecting engagement. 
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Figure 6-7: The average Kappa measure for classifying engagement levels reported concurrently 
(user-dependent models) 

 

According to the average Kappa measures, combining three channels achieved the best 

performance (Kappa = 0.28) for detecting concurrent engagement. The improvement of the 

Fusion3 model over the HR and FT channels were statistically significant (p < 0.05). 

However, paired two samples t tests indicated that the Fusion3 model did not significantly 

improve the LBPTOP channel (t(18) = 1.66, p = 0.11) and the Fusion2 model (t(18) = 1.39, p 

= 0.18). 

The instances used in the concurrent self-reports were segmented automatically. This means 

the video segment might contain an incomplete part of a meaningful action or facial 

expression. Therefore, as reflected in the results, the obtained Kappa measures for detecting 

engagement were lower than the Kappa measures achieved by the retrospective reported 

engagement. 

6.4.2.2 User-independent model 

The extracted features from 19 participants were combined to build a general model for 

detecting concurrent reported engagement. Altogether, a data set with 509 instances was 

created. A leave-one-out approach was followed to evaluate the system and calculate the 
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performance metrics. The Kappa measures obtained by each channel and two fusion models 

are reported in Figure 6-8.   

 

Figure 6-8: The Kappa measures for classifying concurrent reported engagement using leave-one-
out cross validation approach (user-independent model) 

 

Surprisingly, the HR channel showed the best performance. The Kappa measure of 0.26 was 

achieved by this channel was significantly higher than the Kappa measures obtained by the 

other two facial related channels: FT and LBPTOP (p < 0.05). This result shows the 

importance of the HR related features for detecting engagement, particularly when fixed 

segmentation has been used. The paired two samples t tests showed that the HR channel did 

not significantly overcome the Fusion2 (t(18) = 2.02, p = 0.06) and Fusion3 models (t(18) = 

1.63, p = 0.12). According to Figure 6-8, adding the FT and LBPTOP channels to the HR 

features had a negative effect for detecting engagement. 

6.5 Feature selection results 

Analysing the features selected by the CFS gives us a better insight into important features 

for detecting valence, arousal, and engagement. This analysis shows the relation between 

different types of features from each channel (HR, FT, LBPTOP) and the participant‘s 
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engagement and affective state. Finding the most important features can be useful to build the 

general model for affect detection. In the following subsections, we discuss the selected 

features for detecting affective states and engagement levels reported retrospectively and the 

engagement levels reported concurrently.   

6.5.1   Retrospective affective states and engagement 

In this section, we discuss the selected features for classifying retrospective self-reports as 

shown in Table 6-4. These features were selected from the Fusion3 model, which contained 

all features from three channels. The selected features were grouped in three main categories 

based on the channels. According to the Table 6-4, the FT and LBPTOP features contributed 

to detecting engagement, arousal, and valence. However, the HR features were only selected 

for engagement detection. Figure 6-9 presents the distribution of appearance-based and 

motion-based features in the selected LBPTOP features. Figure 6-10 also shows the 

contribution of LBPTOP features based on the facial components: eyes and mouth.  

Table 6.4: List of selected features by the CFS method for detecting retrospective reported 
engagement, valence and arousal (user-independent model) 

 Selected features from Fusion model 

 Engagement SelfAro SelfVal 

FT 

Features 

ANU3-max, ANU4-max,  

Rx-mean, Rx-max, Ry-range, 

Rz-median,  

Tx-median, Tx-min, Tz-std, Tz-

min 

ANU3-diff, ANU4-max,  

Rx-median,  

Ty-max 

 

ANU0-min, ANU0-diff, ANU1-

std, ANU1-diff, ANU2-mean, 

ANU2-std, ANU3-diff, ANU5-

median,  

Rx-mean, Ry-min,  

Tx-median, Tz-range 

HR 

Features 

HR-std, HR-min, HR-max, HR-

range 

– – 

LBPTOP 

Features 

P35, P62, P87, P102, P109, 

P124, P150, P152, P160, P175, 

P197, P214, P221, P227, P737, 

P780, P786, P811, P814, P848, 

P858, P860, P862, P924, P926, 

P940, P941, P942, P949, P964, 

P996, P1013, P1016, P1085, 

P1445, P1515, P1609, P1611, 

P1625, P1638, P1646, P1654, 

P1655, P1709, P1715, P1726, 

P1746, 

P26, P28, P74, P106, P120, 

P152, P182, P187, P227, 

P824, P828, P834, P853, 

P854, P860, P874, P875, 

P886, P939, P1457, P1559, 

P1628, P1646, P1701, 

P1747, P1953, P2034, 

P2059, P2123, 

P74, P221, P234, P371, P806, 

P807, P810, P811, P812, P844, 

P861, P874, P886, P913, P931, 

P939, P941, P949, P981, P1003, 

P1025, P1571, P1622, P1646, 

P1699, P1747, P1807, 
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HR and FT: The selected HR features showed that changes in the HR in each video segment 

had a relationship with the engagement level. A combination of FT features contributed to 

engagement detection, which contained two features from animation units, four features from 

head rotation, and four features from the head translation. However, the distribution of 

selected ANU related features for valence detection was more than arousal detection. Almost 

all types of ANU features (except ANU4) were contributed in valence detection.  

 

Figure 6-9: The percentage of contributions of appearance-based and motion-based LBPTOP 
features for engagement and affect detection (retrospective self-reports) 

 

 

Figure 6-10: The percentage of contributions of the facial objects (eyes and mouth) in selected 
LBPTOP features for engagement and affect detection (retrospective self-reports) 
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LBPTOP: On the other hand, for engagement detection, most of the selected features among 

the LBPTOP features were from the appearance-based features. Eighty-four percent and 89% 

of selected features were from appearance-based features for detecting arousal and valence, 

respectively. According to Figure 6-9, motion-related features did not contribute much in 

engagement and affect detection. This might be because of the nature of the experiment, 

which was an HCI activity. Figure 6-10 shows that the eyes-related features were selected 

more for engagement detection compared with the mouth-related features. This was also true 

for arousal and valence detection. In general, exploring the selected features suggested that 

eyes-related and appearance-based features were good indicators for detecting engagement, 

valence, and arousal during writing sessions.    

6.5.2   Concurrent engagement 

The list of selected features for detecting concurrent reported engagement is reported in Table 

6-5. Four HR features among seven features participated in the engagement detection. The 

HR-std and HR-range were also selected for detecting engagement, which were reported 

retrospectively. It suggests that measuring the changes of the HR can be a good indicator for 

engagement detection.  

Table 6.5: List of selected features by the CFS method for detecting concurrent reported 
engagement (user-independent model) 

 Selected features from Fusion model 

 Concurrent Engagement 

FT 

Features 

ANU2-range, ANU5-std, Rx-max, Ty-range, Tz-min 

HR 

Features 

HR-mean, HR-median, HR-std, HR-range 

LBPTOP 

Features 

P20, P51, P92, P111, P118, P123, P150, P179, P199, P214, P245, 

P569, P778, P782, P844, P853, P1561, P1598, P1659, P1707, P1709, 

P1710, P1751, 
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The proportion of selected features from each type of LBPTOP features are presented in 

Figure 6-12. According to Figure 6-12,  eyes-related features contributed more than mouth-

related features for engagement detection, which was the same for retrospective reported 

engagement. In addition, the same result was observed for the appearance-based and motion-

based features. Similar to the retrospective self-reports, appearance-based (96%) features 

were selected more than motion-based (4%) features for engagement detection.  

 

Figure 6-11: (a) The percentage of contributions of the facial objects (eyes and mouth) (b) The 
percentage of contributions of appearance-based and motion-based features in selected LBPTOP 

features for engagement detection (concurrent self-reports) 

 

6.6 Conclusion  

It has been shown that detecting engagement as a complex mental state and affective states is 

feasible using a multichannel approach. The results also showed that using the video-based 

HR measurement for affect detection is possible and that extracted features from this method 

can improve the accuracy of engagement detection. All of this information was recorded 

using a single Microsoft Kinect camera that can record video and depth at the same time. 

These kinds of sensors tend to be popular in the feature, and this method can be used in broad 

types of applications.   
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No significant correlation between engagement and affect was observed in our study. 

However, as expected, this study showed that peripheral distraction has a negative impact on 

engagement levels of the user. Current technologies can also monitor the contextual 

parameters and detect different distraction and noises (e.g., phone call, acoustic noises, etc.). 

Automatic detection of distractions can provide useful information for AC applications.    

The combination of appearance-based (LBPTOP), geometric-based (Kinect FaceTracker), 

and physiological cues (HR) yielded the best result for classifying engagement that has been 

reported retrospectively. That combination (Fusion3) also outperformed all other channels for 

detecting concurrently reported engagement in user-dependent analysis. However, the HR 

channel showed better performance in a user-independent analysis that might indicate the 

universality of changes in HR compared with facial features that are more subjective. This 

result could show the importance of the HR related features for detecting engagement, 

particularly when fixed segmentation has been used. 

A comprehensive analysis on selected features by the Correlation-based Feature Selection 

(CFS) method was provided at the end of this chapter. In general, analysing the selected 

features suggested that eyes-related and appearance-based features were good indicators for 

detecting engagement, valence, and arousal during writing activities. 
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Chapter 7. Conclusion 

 

Summary 

The main outcomes and contributions of the thesis are described in this chapter. The 

limitation of our proposed method and some suggestions for future work to develop a 

general computational model for recognizing complex affective states are also 

presented. 
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7.1 Outcomes 

This thesis focused on developing a multichannel video-based framework for detecting 

naturalistic and non-basic emotions. Besides extracting traditional video-based features, such 

as facial expressions and head gestures, we proposed and evaluated a method for extracting 

physiological signals using the video modality. The combination of facial expression, head 

posture, and HR has been used for affect detection that was rarely explored in the AC 

research.   

The fusion models outperformed the individual channels for affect detection in the semi-

natural scenario with controlled stimulus presentation (second study). The fusion model also 

showed a small improvement over the individual channels using the user-dependent models 

in the naturalistic scenario (writing), while in the user-independent models; the fusion of 

channels did not improve the accuracy of affect detection. This finding showed the impact of 

the spontaneousness of the data in the accuracy of affect detection. As indicated by a 

comprehensive survey over the current multimodal affect detection systems (D‘Mello & 

Kory, 2012), the multimodal approach can achieve a better performance over individual 

modalities when applied on the acted data compared with the natural data.  

The ability of each channel or modality for detecting each affective state was assessed in this 

thesis. Some modalities or channels play a more significant role in affect detection compared 

with others. Recognizing channels that are more important can help us to create an effective 

combination of channels by assigning meaningful weights to each channel. Appearance-

based, geometric-based, and chromatic features extracted from facial expressions and head 

gestures along with the HR features were evaluated. Unlike the basic emotions, more 

complex emotions, which occur commonly during human-computer interactions are not 

easily distinguishable by static features.  
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In this thesis, dynamic texture-based features were the most successful channel for non-basic 

affect detection in both controlled and naturalistic scenarios. This evidence showed the 

importance of the dynamic (temporal) changes in the appearance of the face for recognising 

non-basic affective states. Current studies also showed that considering dynamic changes is 

essential for discriminating basic emotions and non-basic ones. Although the HR channel did 

not show a good performance when used individually, some slights improvements were 

obtained by combining the HR channel with facial expressions.    

Discovering the relation between each specific feature and each affective state is always a 

goal of affective computing research. For instance, to detect a smile, it is obvious that the 

system needs to be focused on the mouth region. The involvement rate of each set of features 

for detecting valence, arousal, and engagement has been investigated. Our results suggested 

that eye region contains more information about the engagement compared with the mouth 

region. There was also higher correlation between affective states and eye-related features in 

the naturalistic interactions.   

Despite the current advances in remote-sensing physiological signals, a practical study to 

evaluate the possibility of using these techniques in affective computing applications was 

unexplored. We evaluated one of the state of the art methods (Poh et al., 2011) for remote HR 

measurement in three conditions and found that some modification is needed for use in 

naturalistic human computer interaction. A machine learning approach for improving that 

method has been proposed in this thesis and used for affect detection. The results indicated 

the possibility and usefulness of video-based HR monitoring system for affect detection.  

Surprisingly, the HR channel showed a comparable accuracy in engagement detection using 

user-independent models. This might indicate that the physiological features were less 

subjective than facial features and that global physiological patterns could be defined for 

complex mental states like engagement. 



 7.1  Outcomes  155 

 

Several studies have demonstrated that the appearance and temporal structure of posed 

expressions is different from natural/spontaneous ones (Cohn & Schmidt 2004; Hoque & 

Picard 2011). To have a robust and accurate system for recognizing natural expression and 

emotions, the system needs to be trained with natural data. In this thesis, the affect prediction 

models were trained and tested with two different experiments that contained naturalistic 

interactions. In the first scenario, a set of controlled stimulus was used to trigger natural 

emotional reactions of the users. Secondly, in a more naturalistic scenario, we have evaluated 

our system to detect users‘ emotions when they were writing using a personal computer 

system. As was expected, the system performed better in the first scenario compared with the 

second one, where the intensity of the affective states was lower due to the context of the 

experiment (writing task). The range of changes in valence and arousal levels during a 

normal writing is not so wide, so detecting the differentiation between two or more states 

with slight differences is not an easy task. On the other hand, affect detection systems might 

achieve a better accuracy when applied on an emotionally enriched application, such as 

action computer games.      

One of the main goals of the affect detection studies is building a general model that can be 

applied on new and unseen users to detect their emotions accurately. It is a challenging issue, 

and most of the proposed systems could not outperform user-dependent models. In this thesis, 

user-dependent and user-independent models were developed and evaluated for detecting 

naturalistic affective states. Compared with the user-dependent models, the combination of 

individual channels did not improve the accuracy of affect detection for the user-independent 

models. By dividing general models into gender-specific models, the performance of 

individual channels for affect detection was improved significantly. This evidence suggests 

new approaches for building universal models. For example, by integrating a gender-specific 
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affect detection system with an automatic gender detection system, a general model with 

higher-performance can be implemented.   

Considering the context of the application is an important factor for detecting affective states 

in practical environments, environmental conditions and peripheral interventions can have 

either positive or negative impact on the user‘s affective states. Phone calls, email alerts, and 

other vocal noises occur commonly during human-computer interactions. Our findings 

showed that the peripheral noises could significantly decrease the engagement level of the 

users during the writing sessions. Accordingly, monitoring contextual variables using digital 

devices like cameras and microphones can give us cues regarding the user‘s affective and 

mental states. 

7.2 Limitations 

The face is the main source of extracting valuable information for affective states in the FER 

systems. It is always hard to record a full frontal view of the face in practical applications. 

Head movement and face occlusion are the main challenges associated with the FER systems. 

In our case, due to hand over the face, eyes occlusion by glasses, and fast and rigid head 

movements, the Kinect face tracker could not track the face accurately for some participants. 

Currently, novel methods have been proposed that can be used to detect affect through 

partially occluded faces (Zhi et al., 2011).  

The position of the head was another problem in our experiment. Making sure that the subject 

and the camera were in the correct positions is a challenging task in practical applications. 

For example, one of the participants tended to be too close to the monitor during the writing 

session, which was out of the camera‘s field of view.  
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Changes in light conditions can introduce problems for video-based techniques. For example, 

continuous changing of sunlight on a partly cloudy day can change the amount of reflected 

light from the face, which produces noise for methods based on skin colour changes for either 

measuring heart pulses or detecting affective states.    

Some people might not like to be filmed in every moment. This is a latent issue associated 

with all video-based methods. There is a trade-off between privacy and performance in using 

pervasive technologies. For instance, nobody likes to be traced by browser and internet 

search engines, but when they can reduce the searching time and offer them exactly what they 

are looking for, they will let their activities be traced! This is true for the video-based affect 

detection systems. If the system can detect emotions accurately and react accordingly, this 

issue tends to be resolved.  

7.3 Future work 

As has been mentioned in the outcomes section (Section 7.1), developing a general model for 

detecting non-basic and naturalistic affective states still needs more improvements. Current 

automatic affect detection systems perform well when they were trained with individuals but 

the reported results for user-independent models were not so promising. Eliciting more 

natural data from large population could be a solution in increasing the generalizability of the 

affect detection systems that could be considered as a future work.      

Video-based methods are the most popular means used for multiple purposes (e.g., 

communications, surveillance, security, gaming, etc.), and the quality of services can be 

improved by adding the affect detection ability. Combinations of different video-based 

channels, such as facial expression, posture, gesture, and recently, physiological signals, is a 

way to improve the accuracy of the system that does not need extra equipment. New cameras 
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with the ability to record in-depth information can be used for affect detection in special 

conditions, for example, in low light environments. In addition, other physiological features 

that can be extracted using video-based methods, such as Inter Beat Intervals and respiration 

rates, can also be used for affect detection.     

All of the mentioned information captured by video modality can be combined with other 

modalities, such as voice, text, physiology, and contextual information to improve the 

accuracy of affect detection.  

Current studies showed that the emotional model has an impact on the accuracy of the affect 

detection. Most of the current systems aimed to assign a label to a video segment. Video 

segmentation needs to be done before the classification process. This issue can be an obstacle 

to adopting an automatic affect prediction system in a practical application. It is also hard to 

divide a video segment into four common phases (neutral, onset, apex, and offset) that has 

been used for basic emotion. For a naturalistic affect, there might not be a clear difference 

between these four phases or even between two subsequent affective states. Developing new 

methods for automatic segmentation and continuous prediction of affective states is one of 

the essential directions of future works.   

Most of the current datasets of natural affect were recorded in laboratory settings. New 

powerful and portable devices like smart-phones provide more opportunities to record natural 

data. New datasets for video-based affect detection using electronic handheld devices (e.g., 

smart phones, tablets, etc.) should be developed in the future.  
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APPENDIX A 

The list of IAPS pictures used for emotion elicitation in Chapter 5 

(Male subjects) 

Male subjects 
Low Valence - Low Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

Woman 2039 3.81 1.15 3.44 1.91 

Fingerprint 2206 3.91 1.51 3.56 2.18 

Woman 2399 3.9 1.15 3.72 1.93 

CryingFamily 2456 3.17 0.99 3.51 1.98 

Man 2490 3.96 1.93 3.83 2.24 

Smoking 2715 3.6 1.71 3.99 2.12 

Cemetery 9000 2.81 1.65 3.9 2.12 

Cemetery 9001 3.41 2.15 3.74 2.35 

Family 9046 3.87 1.19 3.85 1.55 

Puddle 9110 3.78 1.41 3.9 2.18 

Garbage 9291 3.29 1.05 3.52 2.14 

HomelessMan 9331 3.09 1.27 3.42 1.67 

EmptyPool 9360 3.96 1.43 2.49 1.83 

Dishes 9395 3.23 1.31 3.73 2.12 

Cigarettes 9832 3.31 1.55 3.9 2.01 

 

Male subjects 
Low Valence - High Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

NativeBoy 2730 3.4 2.92 6.6 2.25 

Mutilation 3060 1.94 1.39 6.89 2.08 

Mutilation 3068 2.47 1.92 6.44 2.46 

Mutilation 3071 2.06 1.59 6.61 2.13 

BurnVictim 3102 1.62 1.39 5.88 2.79 

BabyTumor 3170 1.77 1.31 6.79 1.93 

Surgery 3213 3.63 1.57 6.89 1.55 

AimedGun 6260 2.53 1.63 7.1 1.9 

DeadTiger 6415 2.81 1.63 5.86 2.27 

Fire 8485 3.23 1.71 6.63 1.97 

WarVictim 9250 2.85 1.47 6.5 1.66 

Vomit 9322 2.64 1.36 5.8 2.08 

Soldier 9410 1.96 1.56 6.38 2.26 

Hanging 9413 2.23 1.32 6.06 2.35 

Explosion 9940 1.91 1.29 7.37 2.03 
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Male subjects 
High Valence - Low Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

Butterfly 1604 6.4 1.31 3.17 1.98 

Rabbit 1610 7.28 1.47 2.82 2.01 

Fish 1900 6.4 1.67 3.04 2.07 

Kid 2035 7.07 1.28 3.34 1.92 

ChildCamera 2302 6.31 1.09 3.48 1.97 

Girl 2304 6.42 1.23 3.17 1.85 

Binoculars 2314 6.88 1.06 3.56 1.83 

ThreeMen 2370 6.71 1.32 2.85 2.07 

Couple 2501 6.33 1.86 2.67 2.3 

Flowers 5200 6.96 1.62 3.46 2.06 

Clouds 5551 6.79 1.49 3.28 2.01 

Grain 5726 6.15 1.61 3.1 2.26 

Nature 5760 7.69 1.28 2.77 2.16 

Leaves 5800 6.21 1.83 2.54 2.22 

Watermelon 7325 6.48 1.47 3.24 2.06 

 

Male subjects 
High Valence - High Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

AttractiveFem 4007 7.7 1.53 7.39 1.3 

Bikini 4090 7.64 1.26 7.18 1.3 

AttractiveFem 4150 7.8 1.36 6.41 2.18 

EroticFemale 4180 8.21 1.34 7.43 1.97 

AttractiveFem 4250 8.39 0.93 7.02 2.02 

EroticCouple 4607 7.99 1.09 7.19 1.88 

EroticCouple 4659 7.7 1.64 7.43 1.8 

Beach 5833 8.15 1.19 6.37 2.37 

Sailing 8080 7.73 1.25 7.12 1.95 

Hiker 8158 6.36 1.68 6.43 1.58 

Bungee 8179 6.96 1.58 6.86 2.26 

Skier 8190 8.13 1.29 6.41 2.6 

Rafting 8370 7.67 1.19 6.46 2.22 

Rollercoaster 8492 7.36 1.87 7.07 1.8 

Money 8501 8.14 1.24 6.86 2 
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(Female Subjects) 

Female 

subjects 

Low Valence - Low Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

Woman 2039 3.55 1.59 3.48 1.97 

Boy 2280 3.97 1.73 3.96 2.02 

Man 2490 2.74 1.51 4.06 1.77 

ElderlyWoman 2590 3.46 2.24 3.86 1.93 

Jail 2722 2.94 1.61 3.77 2.2 

EroticFemale 4001 3.58 1.74 3.88 2.13 

Prostitute 4233 3.89 1.7 3.43 1.85 

EroticFemale 4235 3.67 1.82 3.97 2.44 

Jail 6010 3.37 1.61 4.06 1.91 

Cemetery 9001 2.82 1.88 3.6 2.27 

Exhaust 9090 3.83 1.49 3.75 2.16 

Puddle 9110 3.75 1.44 4.04 2.29 

Woman 9190 3.63 1.58 4.08 1.71 

Smoke 9280 2.69 1.47 4.05 2.35 

Bridge 9472 3.9 1.31 4.04 2.01 

 

Female 

subjects 

Low Valence - High Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

Snake 1120 3.03 1.74 7.2 1.86 

Spider 1201 2.93 1.81 6.87 2.09 

Baby 2053 2.17 1.9 5.83 2.38 

SadChildren 2703 1.59 0.87 5.81 2.47 

Mutilation 3071 1.69 1.14 7.1 1.95 

Mutilation 3080 1.33 0.75 7.61 1.81 

DeadBody 3120 1.33 0.74 7.49 1.96 

BabyTumor 3170 1.2 0.57 7.55 1.98 

Soldier 6212 1.81 1.41 6.53 2.35 

AimedGun 6230 2.06 1.59 7.56 1.96 

Attack 6313 1.61 1.22 7.27 2.29 

Attack 6520 1.59 1.01 7.12 1.72 

Soldier 9410 1.2 0.58 7.54 1.78 

DeadMan 9412 1.4 0.69 7.26 1.59 

Hanging 9413 1.43 0.7 7.35 1.71 
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Female 

subjects 

High Valence - Low Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

Gannet 1450 6.87 1.54 2.8 1.87 

Butterfly 1602 7.08 1.67 3.66 2.19 

Rabbit 1610 8.39 0.91 3.33 2.36 

Antelope 1620 7.95 1.19 3.49 2.36 

Adult 2000 7.1 1.62 3.72 2.31 

ChildCamera 2302 6.51 1.46 3.76 1.92 

ThreeMen 2370 7.43 1.49 2.93 2.2 

Kids 2388 8.1 1.15 3.73 2.46 

Couple 2530 8.25 1.1 3.8 2.17 

Flower 5000 7.59 1.63 2.9 1.92 

Nature 5780 7.68 1.44 3.4 2.47 

Flowers 5811 7.88 1.24 3.12 2.66 

Clouds 5870 6.92 1.86 2.56 2.02 

Ocean 7545 7.04 1.71 3.24 2.45 

Violin 7900 6.5 1.69 2.37 2.01 

 

Female 

subjects 

High Valence - High Arousal 

 

Valence Arousal 

Image Title IAPS # Mean SD Mean SD 

Baby 2045 8.17 1.21 6.02 2.29 

Bride 2209 7.95 1.46 5.91 2.4 

Children 2216 7.85 1.18 6.29 2.13 

EroticMale 4538 7.04 1.74 6.14 2.27 

Wedding 4626 7.8 1.76 6.06 2.51 

Romance 4640 7.64 1.85 5.94 2.46 

EroticCouple 4643 6.73 1.68 5.92 2.19 

EroticCouple 4698 6.38 1.56 6.58 1.79 

SkyDivers 5621 7.8 1.54 7 2.13 

Hiker 5629 7.15 1.51 6.52 2.04 

Basketball 8001 7.46 1.28 6.62 1.83 

Skier 8030 7.35 1.86 7.38 1.91 

Rafting 8370 7.86 1.37 6.98 2.25 

Rollercoaster 8492 7.11 2.49 7.48 1.51 

Money 8501 7.67 1.97 6.02 2.5 
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APPENDIX B 

Experiment Flayer 
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APPENDIX C 

Consent Form
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