37 research outputs found

    Lucretia - intersection type polymorphism for scripting languages

    Full text link
    Scripting code may present maintenance problems in the long run. There is, then, the call for methodologies that make it possible to control the properties of programs written in dynamic languages in an automatic fashion. We introduce Lucretia, a core language with an introspection primitive. Lucretia is equipped with a (retrofitted) static type system based on local updates of types that describe the structure of objects being used. In this way, we deal with one of the most dynamic features of scripting languages, that is, the runtime modification of object interfaces. Judgements in our systems have a Hoare-like shape, as they have a precondition and a postcondition part. Preconditions describe static approximations of the interfaces of visible objects before a certain expression has been executed and postconditions describe them after its execution. The field update operation complicates the issue of aliasing in the system. We cope with it by introducing intersection types in method signatures.Comment: In Proceedings ITRS 2014, arXiv:1503.0437

    SMIL State: an architecture and implementation for adaptive time-based web applications

    Get PDF
    In this paper we examine adaptive time-based web applications (or presentations). These are interactive presentations where time dictates which parts of the application are presented (providing the major structuring paradigm), and that require interactivity and other dynamic adaptation. We investigate the current technologies available to create such presentations and their shortcomings, and suggest a mechanism for addressing these shortcomings. This mechanism, SMIL State, can be used to add user-defined state to declarative time-based languages such as SMIL or SVG animation, thereby enabling the author to create control flows that are difficult to realize within the temporal containment model of the host languages. In addition, SMIL State can be used as a bridging mechanism between languages, enabling easy integration of external components into the web application. Finally, SMIL State enables richer expressions for content control. This paper defines SMIL State in terms of an introductory example, followed by a detailed specification of the State model. Next, the implementation of this model is discussed. We conclude with a set of potential use cases, including dynamic content adaptation and delayed insertion of custom content such as advertisements. © 2009 Springer Science+Business Media, LLC

    Koka: Programming with Row Polymorphic Effect Types

    Full text link
    We propose a programming model where effects are treated in a disciplined way, and where the potential side-effects of a function are apparent in its type signature. The type and effect of expressions can also be inferred automatically, and we describe a polymorphic type inference system based on Hindley-Milner style inference. A novel feature is that we support polymorphic effects through row-polymorphism using duplicate labels. Moreover, we show that our effects are not just syntactic labels but have a deep semantic connection to the program. For example, if an expression can be typed without an exn effect, then it will never throw an unhandled exception. Similar to Haskell's `runST` we show how we can safely encapsulate stateful operations. Through the state effect, we can also safely combine state with let-polymorphism without needing either imperative type variables or a syntactic value restriction. Finally, our system is implemented fully in a new language called Koka and has been used successfully on various small to medium-sized sample programs ranging from a Markdown processor to a tier-splitted chat application. You can try out Koka live at www.rise4fun.com/koka/tutorial.Comment: In Proceedings MSFP 2014, arXiv:1406.153

    Note on Algol and Conservatively Extending Functional Programming

    Get PDF
    A simple Idealized Algol is considered, based on Reynolds\u27s essence of Algol. It is shown that observational equivalence in this language conservatively extends observational equivalence in its assignment-free functional sublanguage

    Interfacing concepts: Why declaration style shouldn't matter

    Get PDF
    A concept (or signature) describes the interface of a set of abstract types by listing the operations that should be supported for those types. When implementing a generic operation, such as sorting, we may then specify requirements such as “elements must be comparable” by requiring that the element type models the Comparable concept. We may also use axioms to describe behaviour that should be common to all models of a concept. However, the operations specified by the concept are not always the ones that are best suited for the implementation. For example, numbers and matrices may both be addable, but adding two numbers is conveniently done by using a return value, whereas adding a sparse and a dense matrix is probably best achieved by modifying the dense matrix. In both cases, though, we may want to pretend we're using a simple function with a return value, as this most closely matches the notation we know from mathematics. This paper presents two simple concepts to break the notational tie between implementation and use of an operation: functionalisation, which derives a set of canonical pure functions from a procedure; and mutification, which translates calls using the functionalised declarations into calls to the implemented procedure.publishedVersio

    Effect Capabilities For Haskell

    Get PDF
    International audienceComputational effects complicate the tasks of reasoning about and maintaining software, due to the many kinds of interferences that can occur. While different proposals have been formulated to alleviate the fragility and burden of dealing with specific effects, such as state or exceptions, there is no prevalent robust mechanism that addresses the general interference issue. Build- ing upon the idea of capability-based security, we propose effect capabilities as an effective and flexible manner to control monadic effects and their interfer- ences. Capabilities can be selectively shared between modules to establish secure effect-centric coordination. We further refine capabilities with type-based per- mission lattices to allow fine-grained decomposition of authority. We provide an implementation of effect capabilities in Haskell, using type classes to establish a way to statically share capabilities between modules, as well as to check proper access permissions to effects at compile time. We exemplify how to tame effect interferences using effect capabilities, by treating state and exceptions

    Effect Capabilities For Haskell

    Get PDF
    International audienceComputational effects complicate the tasks of reasoning about and maintaining software, due to the many kinds of interferences that can occur. While different proposals have been formulated to alleviate the fragility and burden of dealing with specific effects, such as state or exceptions, there is no prevalent robust mechanism that addresses the general interference issue. Build- ing upon the idea of capability-based security, we propose effect capabilities as an effective and flexible manner to control monadic effects and their interfer- ences. Capabilities can be selectively shared between modules to establish secure effect-centric coordination. We further refine capabilities with type-based per- mission lattices to allow fine-grained decomposition of authority. We provide an implementation of effect capabilities in Haskell, using type classes to establish a way to statically share capabilities between modules, as well as to check proper access permissions to effects at compile time. We exemplify how to tame effect interferences using effect capabilities, by treating state and exceptions

    A Concurrent Logical Relation

    Get PDF
    Abstract—We present a logical relation for showing the correctness of program transformations based on a new type-and-effect system for a concurrent extension of an ML-like language with higher-order functions, higher-order store and dynamic memory allocation. We show how to use our model to verify a number of interesting program transformations that rely on effect annotations. In particular, we prove a Parallelization Theorem, which expresses when it is sound to run two expressions in parallel instead of sequentially. The conditions are expressed solely in terms of the types and effects of the expressions. To the best of our knowledge, this is the first such result for a concurrent higher-order language with higher-order store and dynamic memory allocation. I
    corecore