An Abstract Semanticsfor Inference of Typesand Effectsin a
Multi-Tier Web Language

Letterio Galletta Giorgio Levi
Dipartimento di Informatica, Universita di Pisa
{galletta, levi}di.unipi.it

Types-and-effects are type systems, which allow one toemgpgeneral semantic properties and to
statically reason about program'’s execution. They have bégely exploited to specify static ana-
lyses, for example to track computational side effectseptions and communications in concurrent
programs. In this paper we adopt abstract interpretatiohnigues to reconstruct (following the
Cousot's methodology) a types-and-effects system deeédlaphandle security problems of a multi-
tier web language. Our reconstruction allows us to showtthattypes-and-effects system is not
sound with respect to the semantics of the language. Iniaddite correct the soundness issues in
the analysis and systematically construct a correct aealys

1 Introduction

Types-and-effects systems are a powerful extension ofdysiems which allows one to express general
semantic properties and to statically reason about pragraxecution. The underlying idea is to refine
the type information so as to express further intensionaxbensional properties of the semantics of
the program: in practice, they compute the type of each progrsentence and an approximate (but
sound) description of its run-time behavior. Since theydefined over the well understood theory of
type systems, they are an intuitive framework for specgyamd for developing static analyses. Such
systems were originally introduced [n]12] to staticallgdk side effects in languages that mix functional
and imperative feature. However, they have been employedrtrol many other kinds of computa-
tional effects and analyses, e.g. exceptions$ [18], regifaréncel[22] and communications in concurrent
programs|[211]. Recently, they have been usedlin [2] to haselierity issues in INKS [4].

LINKS is a strict, typed, functional language for web applicatiolts main feature is to be multi-tier,
that is, it enables the developer to mix client, server andldese source code by delegating the charge
of code and data partitioning to the compiler: from a singlarse file the compiler generates code for
the database back-end, for the web server and the clientdrah ensuring that all data is stored either
in client or in database. In[2] Baltopoulos and Gordon hawvens that storing unencrypted applica-
tion data on the client opensiNKs to attacks that may expose secrets and modify control-flagv an
application data. In order to overcome these problems theg proposed a compilation strategy based
on authenticated encryptBrand a types-and-effects system to enforce programs tdysatgarticular
class of integrity constraints (event-based assertiofkjs types-and-effects system formalizes source
level reasoning aboutiNks programs and allows them to prove security properties hyeictson of the
source code. For the definition of this system they havevi@tba methodology characterized by trans-
lating each IINKS expression to an expression of a concurvemmialculus with refinement types|[3]. This
translation hides the properties of the analysis, and doeguarantee the soundness with respect to the

1a combination of secrecy and integrity protection obtaimgencrypting together data and its hash.

L. Kovacs, R.Pugliese, and F. Tiezzi (Eds.): Workshop on
Automated Specification and Verification of Web Systems
(WWV 2011)

EPTCS 61, 2011, pp. 81395, d0i:10.4204/EPTCS|61.6

© L. Galletta, G. Levi
This work is licensed under the Creative Comnions
Attribution-Noncommercial License.

http://dx.doi.org/10.4204/EPTCS.61.6
http://creativecommons.org
http://creativecommons.org/licenses/by-nc/3.0/

82 An abstract semantics for inference of types and effectamulé-tier web language

semantics of the language. Hence, we decided to study tipemies of this analysis by reconstructing
it by abstract interpretation [11].

Abstract interpretation |6,/ 7] 8] 9] is a general theory fpp@ximating the semantics of dynamic
systems. The key idea behind abstract interpretation istiieadescription of the behavior of a sys-
tem (at various levels of abstraction) is an approximatibitsdformal semantics. In static analysis this
means that every property of a program can be observed iertarstics and computed as an approx-
imation: the intuition is that the analysis can be systerallii derived by throwing away superfluous
information from the semantics. In practice, the approx@daemantics (abstract semantics) is obtained
from the standard one (called concrete) by substitutingtiieal (concrete) domain of computation and
its basic semantic operations with abstract domain andadbstemantic operations, respectively. The
basic idea is that the abstract domain is a representatisoroé properties of interest about concrete
domain’s values, while abstract operations simulate, theeabstract domain, the behavior of their con-
crete counterparts. Hence the abstract semantics comimatggoperties of interest and the analysis
algorithm corresponds to evaluating programs over theatisiomain. Since the abstract domain is a
sound approximation of the concrete one, the analysisigigois correct with respect to the semantics
by construction.

Type systems (and corresponding type inference algorjthisage been reconstructed as a hierarchy
of abstract interpretations by Cousot [5]. In order to restarct the types-and-effects analysis ofiks
we extend Cousot’s methodology by defining an abstract domidlie to express types augmented by
effects. In this paper we give the following contributions:

e we demonstrate that the analysis defined by Baltopoulos amdd@ is not sound: in fact, the
expressiorget(Text("Hello!”)) is type-checked but it results in a run-time type error (Bect

B)

e we show how to fix this unsoundness issue (Se¢tion 3)

e we systematically derive an abstract semantics which septe a correct analyser (we have im-
plemented it in OCam[[16]) (Sectiohs$ 4 dnd 5)

In the next sections we first will sketch the type-and-effgaitem proposed foriNks (Section[2),
then we describe the ideas and the methodology underlyingeoanstruction.

2 Secure Compilation of LINKS

Standard web applications have a multi-tier architectuser interface, application logic and data ma-
nagement are implemented over three different tiers. Hachuns on a different computational environ-
ment (web browser, web server and database respectivelygatbrized by its own language and its data
representation. This heterogeneity gives rise to the proldfimpedance mismatdi9]: because each
language has its own data type, data exchanged betweewftisgame application have a different rep-
resentation. This problem complicates the developmentedif applications because programmers need
to define routines to interchange and convert data. To shlgeptoblem a new class of web languages
(multi-tiers languages) have has been developed. Thegadges allow programmers to blend server,
client and database source code and provide automatic megtsfor the partition of the application
over tiers.

LINKS is a functional programming language for web applicatidrad belongs to the class of multi-
tiers languages. INKS enables developers to mix client, server and databaseesoade by delegating

L. Galletta, G. Levi 83

the charge of code and data partitioning to the compilemfassingle source code the compiler generates
code for the database back-end, for the server and for tet ¢iont-end.

In this way LINKS overcomes the problem of impedance mismatch by abstradétagls of a single
tier and by supporting an unified programming model simitettie one used for GUI applications. To
realize this cross-tier programming modeNKs exploits the mechanism of the web continuation [23].
These continuations are implemented as closures (expnassbe executed plus values of free variables)
and are stored in HTML pages either as hidden fields of formssddRL parameters. This approach
gives rise to security risks since a malicious client may ifiyothose closures to enforce unexpected
computations on the server.

In particular, Baltopoulos and Gordon [n [2] have demonsttdhat the approach adopted byks
of storing unencrypted data on the client is not secure lsscan attacker may violate the data secrecy,
the data integrity and the control-flow integrity of the dpation. To overtake these problems they have
proposed a secure implementation ofiks that includes a compilation strategy based on authenticate
encryption to protect the closures held in the browser angestand-effects system to enable source
level reasoning about security of web applications. Thisis2implementation has been formalized for
TINYLINKS, a simple subset of INKS.

TINYLINKS is aA-calculus augmented with XML values for representing welpgseand annotation
expressions for expressing safety properties. Its symstakaown in Figuré]ll. HTML pages are values
created by applying the data constructbest andElem: the first one represents simple text in HTML
document, the second one a generic tag element. To expné&ssalnd forms exists two ad-hoc data
constructors that contains suspended expresloh3ef(E) is a link that, when clicked, evaluates the
expressiorE. form([14,...,1,],E) is a HTML form with a suspended computation (the expresgjon
which requires user input. The input is represented by $dhel ..., 1,] that will contain the values in-
serted in the input fields of the form. The evaluatiomo&f andform can be accomplished by using the
operatorsget andpost, respectivelﬁ The annotationgvent L andassertL have no computational
meaning. They allow us to annotaten¥ LINKS programs with event-based assertions expressing sui-
table safety properties. An expression is safe if whenevesaertiorassertL occurs in the execution,
there exists a previous occurrence of an e¥erit L.

Baltopoulus and Gordon have defined a dependent typestutisesystem to verify that each ex-
pression of a program is safe. This system is specified by @t ssductively defined typing judgments.
These judgments are of the folmF - E =P (_:T){F'}, wherer is the typing environmeng is the set
of events which have occurred and are needed to safe ewalEtihe expressioR (precondition);T
andF’ are, respectively, the type of value and the set of eventst{@mdition) yielded by the execution
of E.

The typing rules for the operatioget andpost, for the annotationsvent andassert and for the
function application are shown in Figure 2. Rule (T-Getpbshes that the type assignedgte is xml
(that represent the type of a generic HTML tag) with emptedffprovided that is another HTML tag.

By (T-Post), the type opost expression isml with empty effect, provided that the values associated
with submission labels are strings and tias a HTML tag. By (T-EventleventL has typeunit and
effect L, provided that the values in the evanhave a type. Rule (T-Assert) is similar to (T-Event)
except that requirek € F, that is the precondition of the judgment includesRule (T-App) is typical

for application and shows how the mechanism of the annoigtimrks: the expression is type checked
if only if the events in the preconditioR; of the function have occurred ih with same values. The

2we can look at these values as special kinds of functionatadi®ons.
Swe can look at these operations as special kinds of funcpptication.

84 An abstract semantics for inference of types and effectamulé-tier web language

f,y,x Variables
p Predicates
c :=Unit | Zero | Succ | String Data constructors
|Nil | Cons | Tuple | Elem | Text
gi=—+|—1]x*]|/ Primitive operators
Li=p(Vy,...,Vp) Events: a predicate and a list of values
V,U:=x]|c(Vy,...,Vy) | href(E) Values
|Axy....,%5.E| form([1y,...,1,],E)
E:=V|varx =E;;Ey | g(E1, Ep) Expressions

| V(Uq,...,Uy) | post([11 =Vy, ..., 1y = V4], U)
| get(V) | eventL | assertL
switch(V){
casec(xy,...,Xn) = Eq
| S E,
}

Figure 1: Syntax of INY LINKS

events generated after application include the ones ofdeegondition ofy.

We say that a web applicatiahis safe if and only if there is a derivation within the typesiaeffects
system of the judgment OOE EiX:p<_ : xm1){}, meaning thak is a closed expression which requires no
precondition and which yields a web page without generdtinigper events.

After the definition of typing rules, the standard methodgloequires to state and prove the sound-
ness theorem which guarantees the validity of the analyils ni@spect to the semantics of the lan-
guage. Baltopoulus and Gordon adopt a different approactramglating each iNY LINKS expres-
sion to an expression of a concurrektcalculus withrefinement types This translation hides the
details and the properties of the defined types-and-effegitem, in particular the soundness. For
instance, the expressiatet(Text("Hello!”)) is safe because a derivation exists for the judgment
0; 0 get(Text("Hello!")) Eixzp(_ :xml){ }. However, we will show in the next section that the proposed
types-and-effects system is not sound because, even éxhression is type checked, its evaluation re-
sults in a run-time type error.

3 A Denotational Semanticsfor TINYLINKS

In this paper we adopt the approach described by Cousot in\Wg define a denotational semantics
for TINYLINKS, by considering it as an untyped-calculus. Furthermore, since we deal with effects,
we explicitly consider assertions of events. To this pugpes introduce a special environmenténts
environment which will store occurred events. The semanticsaséertq(Vy,...,V,) will require
checking that; is bound in this environment to valu®s, ..., V,. If this check succeeds, the evaluation
yields aUnit value, otherwise a “sentinel” value indicating an error.

For the sake of simplicity, we restrict the values in an eveirttegers only. We will also assume that
functions have a single argument and predicates in eveatscamd to a single value. Since we regard
TINY LINKS an untyped -calculus, we define the semantics domain of valiesl) as a recursive sum
of cpos, by using the inverse limit construction descritrefRd]. Each element of this sum represents a
specific class of values. For instanc,is the set of integers) andSare singletons of thenit value

L. Galletta, G. Levi 85

val

MFFV<xml
MFEget(V) = (ixm1){ }

(T-Get)

FFFV @string Vie{l....n} FFU@xm

(T-Post) op
MFEpost([(11 =V, ..., 1, =V,)],U0) = (_:xml){ }
Mo fv(F,L) C dom(T)
L=p(Vy,...,Vvy) TFFuRT viel{1...n}
(T-Event) &xp
MFFeventL = (_:unit){L}
Mo fv(F,L) C dom(T) LeF
L=p(Vy,....V,) TFFv:2T, vie{l...n
(T-Assert) p(Vi) { ;i

MFH assertLe:X>p<_:unit>{L}
I',FI—U\§>IT T:<X1:T1,...,Xn:Tn>{F1}—>T2{F2} fV(T):(D

val

MFEV, 2T, vie {1, ...,n} Fi[Vi/x1] ... [Vo/%xa] CF
CFEUVL, ... Vo) S Ty {Fa [Ve/%1] ... [Va/%a] }

(T-App)
Figure 2: Some examples of rules specifying the type-afatiefystem for the correspondences analysis.

and the error valud;, EEnv— Eval — (Evalx EEny, EEnv— (Evalx EEnvy andEEnv— [Eval] —
(Eval x EEny) are the sets of the denotations of functions, links and forespectively.

The environmentEny) is a function from identifierlge) to values Eval). The events environment
(EEnY maps predicatesPfed) to pairs formed by an element Bfval and an element dflark. Dval
denotes values which can occur in an eventark is the state of an evenE indicates that the event
has occurredi Athat has occurred and has been asseAdldat has only been asserted.

We define two semantic functionS[—] : VAL — Env— EEnv— Evalfor values and—] : EXP —
Env— EEnv— (Eval x EEny) for expressions. The semantics of values is straightfawagcause we
only need to construct the corresponding denotation. Somegles of semantic equation are shown
in Figure[3. In the definition, we use injections irEwal (like Unit, Hre f, Fun), continuous semantic
operators (likebindList) and a meta-language which includes:

e ifejtheneelseg (conditional);

e letx= ey ine; as a cleaner notation fgfAx.e;) e);

o let"*x=ejine; for (Ax.e)*ey);

e casegofini(x) > e _—esfor [Axg.e;, Axo.€3,..., AXp.€3];

o let(xyxx) =ejine; forlety=ejinletxy = m(y)letx = m(y)iney;

wherert, | — |, xand[—,..., —] are the standard operators for product, lifting and sum o§¢g@6].
The semantics of expressions is similar to the one of thepaab) -calculus. The most interesting
cases of semantic equations are shown in Figure 4 and belayivesome comments about them.

4this value is used to show a run-time type error
5in the following we will call them denotable values

86 An abstract semantics for inference of types and effectamulé-tier web language

Y[Ax.E]pe = [Fun(A¢@ . AV.[E]p[v/X ¢) |
¥ [Href(E)]pp = [Href(A¢.[Elp¢)]
¥ [Form(11,E)]p @ = | Form(A¢/. Avl.let* p’ = bindList(p, II, vl) in [E]p’ ¢) |

Figure 3: Examples of semantic equations for values.

The semantics ofet(V) asks to evaluat®; if the evaluation results into the denotation of a link
(Href(f)), we evaluate the corresponding suspended expressionlgtheef), otherwise we return an
error value.

The semantics gfost(VL, V) is similar: if the evaluation of is a form Form(f)) and the evaluation
of VL is a list of strings, we return the result of the applicatidthe functional valuef to the denotation
of VL and to the current events environment

The semantics oévent q(V) requires the evaluation of; if the produced value is an integer, we
create a new binding for the predicaién ¢ and return a unit value otherwise we raise an error.

The semantics ofssertq(V) is similar, but requires the evaluation vfto be equal to the value
bound to the predicatgin ¢. In this case we update the state of the everg &nd return a unit value.

By using the semantic equation gét we prove that the evaluation of the expressien (Text(
"Hello!”)) results in a run-time type error (the valy®/ rongValug¢) |) because the denotation of
Text"Hello!”) is not a link. Although a link is an XML value, it is differentdm other XML values
because it is a special kind of functional abstraction. ¢éothat the type-and-effect system proposed for
TINY LINKS does not handle this special nature of links correctly, beeat assigns the same type to the
all XML values. Note that the same remark can be made for foking above arguments demonstrate
that the types-and-effects system[af [2] is unsound becexisés an expression which is type checked
but its evaluation yields yet a run-time type error. We arthat the solution to this problem is to use
a type system with subtypes. For the sake of simplicity, inreaonstruction we will not use subtypes,
but we will instead define two ad-hoc types for forms and limksch will handled so as have a sound
analysis.

4 An Abstract Semanticsfor | nference of Types and Effects

Following the classical methodology of abstract intergiiet, once we have defined a concrete seman-
tics, we need to define a collecting semantics by extendifig] and[—] to the powerset.

The concrete semantics properties, which we are interesteale the types and the event-based
annotations. We need to define a suitable domain for both. g@ssibility is to define the abstract
domain as the set of Hindley's monotypes (terms) with vdemtpl5,/10] 5[20, 13]. However, this
is not possible, since types are annotated by effects. Fmpbe, a function type will have the form
T1{F1 } — To{Fa }, whereF, are the events which have to be occurred before the functiplication,
wherea¥, are the events which we can consider occurred afterwardsd;l@e/e need to define a domain
of annotated types. The main problem is that the algebraraitated terms is not free. In fact, two types
can be identified even if their syntax is different. For exénthe typeskm1{q(10),p(1) } — xml{ }
andxml{p(1),q(10)} — xml{ } have a different representation, but they are equal bedhaszffects
{q(10), p(1) } and{ p(1), q(10) } denote the same set. Therefore, we cannot use a syntadtiation
algorithm [17] to solve equations between terms.

L. Galletta, G. Levi 87

[get(V)]p g =let"V =¥ [V]pgin
case Vof
Href(f) — fo
-— (|WrongValu¢) | , 1)
[post(VL,V)]p@ =let"V = ¥[V]p@in
let* vo = checkStringLigimap(Ax. ¥ [x]p @) VL) in
case Vof
Form(f) — case y of
V(vl) = fvlg
_— (|WrongValug) |, 1)
_— (|WrongValué) |, 1)
[eventq(V)]p @ =let*d = evalToDval? [V]p @) in
if d =dint(n) then
(LUnit()], @[(d. E)/q])
else
(|WrongValug) |, 1)
[assertq(V)]p @ =let* ev=evalToDva(¥ [V]p @) in
let (eV, m) = @q
if ev=eVthen
(LUnit()], @ [(ev, EA)/q])
else
(|Wrongvalué) | , 1)

Figure 4: Examples of semantic equations for expressions.

One solution would be to use an algorithm for unifying termadn-free algebras (semantic unifica-
tion). Such algorithms do existl[1], but they are not usablpractice.

Our reconstruction does not rely on semantic unificationoouanother approach describedlin/[22].
This approach exploits special annotated types (simpleslypvhere annotations are replaced by vari-
ables (annotation variables), whose values have to saisfie constraint. For example, the annotated
typexml { q(10), p(1) } — xm1{ } becomesml(a) — xml(fB), wherea andf are the minimal annota-
tions A andB which satisfy the constrain& O { q(10), p(1) } andB D { }, respectively. The algebra of
simple types is free. Hence, the introduction of a new kindeofable in terms requires a simple variation
of the unification algorithm: an annotation variable unifigth another annotation variable only.

However, this solution is not completely adequate to defmelastract domain for the properties
which we are concerned with, because the effects dependeowathes. Hence we need to include
them in the abstract domain. Since events in the preconditnal post-condition of a function type may
depend on the value bound to a formal parameter we need taneengt. We then introduce in the set
of terms another kind of variables, called identifier vaeab Identifier variables are handled by simple

88 An abstract semantics for inference of types and effectamulé-tier web language

modification of the unification algorithm: an identifier \ale unifies with another identifier variable
only.

The domain of abstract values will contain also substihgias in[[13]. The role of substitutions
can be explained as follows. At some point in the evaluatibthe abstract semantics (for example,
in the semantics of function abstraction), we will introdutew type variables, with the meaning "any
possible type”. During the evaluation (for example, of thedtion body), this information will be
subject to instantiations, computed by unifications andesgnted as an idempotent substitution. Since
the abstract semantic evaluation functions are definedrbgtatal recursion, the easiest way to provide
the instantiation information to the caller is to includenithe returned value.

Although we have now all necessary information for definingadequate abstract domain, there is
a problem concerning the representation of effects in tmstcaints. Intuitively we can simply repre-
sent them by using a set of pairs, where the first componehkeiptedicate and the second one is the
denotable value. The problem is in partial order, since waikhconsider both set inclusion and the
relative precision of denotable values. We can achievethissing power domains [14, 24]. We use a
different approach: we define an effect as a function frondipeges to denotable values (we will name
it correspondence function). We can then represent camistriay splitting them in two parts: the first
part is a set of pairs (annotation variable, predicate) hadgecond one is a correspondence function.

Let V; be a countable set of type variabl®g, be a countable set of annotation variablelg be a
countable set of identifier variabl®t("VaNIde = 0) andZ = {unit : O,int : 0,string : O,xml : 1 link :

1, form: 1 list : 1, fun: 5} U {tuple, : n| n > 2} be a numerable set of function symb®{,is the set
of terms with variable&4 UV, U Ide modulo renaming, ordered by the inverse instance relatibis
worth noting that we have introduced two new tyg@sm andlink in order to solve the problem relating
forms and links which we described in Sectidn 3. Furthernvegenill use annotation variables xml,
link, formand funonly; in funthere are two annotation variables representing the pd#bom and the
post-condition respectively. We further assume that ttst dirgument offun is an identifier variable.
We obtainTypeSby lifting Ts with idempotent substitutions [13] and by adding a new boteement
Notype

As we described above, the first part of a constraint is a paindtation variable, predicate)d, q)
means that the predicaggs in the effect represented by the variabléNe use inverse inclusion as partial
order: ifC, is included inCy, thenC; has less information thaEy, hence, its value is less precise. Mgt
be the set of annotation variables a@Pid be the set of predicates. We def@enstr=[](V, x Pred).
The second part of a constraint is a correspondence funaetimse domain i§ Pred= Pred — Dval
ordered by using the dual of usual partial order. We assumtecth [7(T Pred) — TPredis the glb
operator and is the bottom element.

The domain of abstract valuesTs/peA= TypeSx Dval x Constrx TPred In the following, we
will denote byError the bottom element of this domain.

The domain of abstract environment (type environmenEswv= Ide — TypeA We are now in
the position to define our abstract domaivs= AEnv— EEnv— TypeAfor values andAE = AEnv—
EEnv— (TypeAx EEny for expressions.

To relate the abstract domain to the concrete one we needite deGalois connection. 10 [11] we
formally built this connection in in various steps, by usprgperly defined representation functions| [22]
and propositions.

Some examples of abstract semantic equations are showgureEib[b and]7. In these definitions,
we assume to have a functiomgy which, given a set of term equations, computes a solutionsioyg
the unification algorithm. If there exists a solution, itiets the unifielS(6); otherwise, it return§ to
denote failure. The set of equations is denotedthy=1, ..., t, =t,}. Since idempotent substitutions

L. Galletta, G. Levi 89

¥ [bret(E)]*p ¢ =
yeV, fresh
let((ts, _,C, f), @) = [E]?p @in
letA = asserf{¢/, @)in
letE = evenfq', @)in
if E=0Ats#NoTypethen
casemg({ tst = xml(y) } Uts.0)of
S(6) »letC =CU{(y.q) |acA}
let f' = cb{ f, eenvToT preiff(¢/, ¢)) } in
((6(link(y)), 8), nodval 6(C"), 8(f"))
-— Error
else
Error
V[Ax.E]Pp@ =
acVy; w, eV, fresh ¢ identity substituition
let (ts, , C1,), @) = [E°p((a, &), var(x), 0, ¢)/X gin
if ts#NoTypethen
let @y = 6(¢)
let C'={ (y1,0) | g€ asserf¢, @) } in
let C" = { (12, 0) | g€ evenfq, @) } in
let f, = eenvToT pretdif f(¢, @))in
((B(fun(x, a, yi, tst, y)), 0),
nodval 6(C;UC' UC"), B(cb{ f1, f2}))
else
Error

Figure 5: The abstract semantics of links and functionalrabsons.

are isomorphic to solved form equations, we will Use=t},...,tn = t,} U 6 to refer the union of
equations ity =t1, ..., ty =t} and equations defined I8} For the sake of simplicity, the components
of the elements of the domainypeSwill be identified by a notation similar to the one used toemscthe
fields of a structure in an imperative language. Gites (t', 8’) € TypeSthentst =t’ andts.0 = 6'.

Given an elemert of Constrand a substitutio®, we will denote byd(C) = {(6(d),)| (,1) € C}
the pair obtained by applyin@ to all the annotation variables @

Given a correspondence functiére T Predand a substitutio®, we defined(f) =Aq.6(f q), where
if d # var(x) for somex then6(d) = d.

Furthermore we assume that fbore T PredandC € Constr f| C andf < C are the correspondence
functions achieved by removing fromthe predicates occurring and not occurringirespectively; that

90 An abstract semantics for inference of types and effectamulé-tier web language

[get ()]0 0 =
yeV, fresh
let (ts, d,C, f) = ¥ [V]%p @in
ifts#£NoTypethen
case mg(f tst = link(y) } Uts.0) of
S(6) —+ letC' = {(6(y), q) € (C) } in
if checkO(f < C'),) then
((B(xm(y)),),
nodval 8(C)\C', 6(f L C)),)
else
(Error, 1)
_— (Error, 1)
else
(Error, 1)
[E1E2]%p 0 =
xeldear eVt yi, b €Va fresh
let ((tst, -, C1, f1), @) = [Ea]"p @
let ((tsz, d, Cz, f2), @) = [E2]"p @1
ifts; #NoType\ts, # NoType then
case mg({ts;.t = fun(x, a, y, tsp.t, o) tU
Uts1.0 Uts,.0) of
S(6) —letC = {(J,q) € 6(Cy) | d € prvar(6(ts;.t)) } in
letC" = {(3,q) € 6(Cy) | d € psvarB(ts; .t)) }in
let f; = 6(f1)[6(x), d2]in
if checkO(f] < C'), @) then
(((B(ts2.1), 8), T, B(C1UC) \ (C'UC)),
cb{ 8(f1) L (C'UC"), B(f2) }),incl(g, (B(f]) +C")))
else
(Error, 1)
_— (Error, 1)
else
(Error, 1)

Figure 6: The abstract semanticsgeft expression and function application.

f[x, d] for x € Ide, d € DVal and f € T Predis the correspondence function achieved by binding all
predicates which are boundvar(x) in f; that given af € T Predandg € EEnvthe functioncheck f, ¢)

L. Galletta, G. Levi 91

returnstrue if the events represented Byhave been occurred ip, falseotherwise; that fop € EEnv
eenvToT Preflp) is the correspondence function achieved frgmthat giveng,,@ assert@, @) is
the set of predicates of events asserte@yirbut not in ¢, thatevenf{g, @) is the set of predicates
of events generated i but not in¢g and thatdif f (g, @) is the events environment which contains
the events ofg, which are not ing, and the events ofy which changed their value or state ¢n.
Furthermore we assume that, givea Ts, prvar(t) and psvart) denote the set of annotation variables
of t for preconditions and post-conditions, respectively.

[assertq(V)]*0 @ =
let (ts, d,C, f) = ¥ [V]®p @in
if ts# NoType\ (d = nint(n) vd = var(x)) then
case mg({tst =int } Uts.0) of
S(6) —if q ¢ dom(e) v m(¢(q)) =d then
(((unit, 8), nodval 8(C), 8(1)), @[(d, A)/q])
else
(Error, 1)
-— (Error, 1)
else
(Error, 1)
[event q(V)[*p ¢ =
let (ts,d,C, f) = ¥ [V]®p gin
if ts# NoType\ (d = nint(n) vd = var(x)) then
case mg({tst =int } Uts.0) of
S(6) —if q ¢ dom@) v ¢(q) = (d, T) then
(((unit, 8), nodval 8(C), 8(f)), ¢[(d, E)/q))
else
(Error, 1)
-— (Error, 1)
else
(Error, 1)

for somen e Z, x € Ideand wherel € { E, EA}

Figure 7: The abstract semanticsesfent andassert annotations.

The semantics of links consists in the evaluation of theesgonE. If in this evaluation no errors
(ts# NoTyp@ and no new events (this is required by the rule describeceati®[2) occur, then we
check that the computed value has typa. Since in our reconstructiaxml, link and f orm are different

92 An abstract semantics for inference of types and effectamulé-tier web language

types without any relation, this check rejects all the esgi@ns which return a value of typmk or
form. Although this behavior may seem too restrictive, becatsgiects some legal expressions like
href (href(Text("Hello”))), it guarantees us safety and simplicity in the managemetitesi diffe-
rent and unrelated types. If this check has success, waratuabstract value where the simple type is
link and the constraint is risen by properly extending the resiuhe evaluation of.

The semantics of forms is similar. We evalugt@a a type environment where the labalsare bound
to the abstract value with simple tyg&ring and constraint empty and we return an abstract value where
the simple type idorm.

The semantics of functional abstraction consists in thkuatian of the bodE in a type environment,
where the formal parameter is bound to a generic type. If in this evaluation no errorsuoceve
compute the events which are included in the preconditieprésented b¢’ and f;) and in the post-
condition (represented Wy’ and f,). We return an abstract value where the simple type is odxdaliry
applying the substitutiots.8 to the functional typé fun(x, a, y1, tst, y»)) and the constraint is obtained
by combiningC with C’ andC” and f with f,.

The semantics ofet requires the evaluation afto be successful and yields a value of tyj.
If the preconditions are satisfied, that is if they aregirand have occurred before, we construct an
abstract value where the simple typexial and the constraint is obtained from the one returned by the
evaluation ofvV by removing the information about preconditions. The pahniok is returned has in
the first component this abstract value and in the secondhenevients environmermg. This is correct
because the semanticsiafef guarantees that no new events have occurred during theatiealwf the
suspended expression.

The semantics ofost is similar except that we ask that the elements ofilisare strings and that
the value yielded by the evaluation whas typeform.

In the semantics of function application we evaluate theesyiression&; andk,: if both evalua-
tions do not produce errors, we check that the simple tyfd® @ a function type where the argument
has the simple type &, and that the precondition of function is satisfied in the évemvironmentp,,
obtained from evaluating both the sub-expressions. Inracdeerform this last check, we substitute the
denotable value bound toin f; by the one returned by the evaluationBgf Then, by using the function
check we ask that the events required by the function body amg.inf we succeed, we construct an
abstract value where the simple typeigr) and the constraint is obtained by composing those returned
by the evaluation of the sub-expressions, where the evémieconditions and post-conditions are re-
moved. We return a pair composed by this abstract value arildogvents environmengp extended
with the events of the post-condition of the function.

The semantics odssert consists in the evaluation &f If it yields an abstract value whose simple
type isint and whose denotable value is a specific integer or a speafitifier, we check that there is in
@ at most the same event which we are generating. In this wayeveuae that it is impossible to change
the value bound to a predicate. If this check has successyilkdn abstract value where the simple
type isunit and the constraint is the one returned by the evaluatioh dtis abstract value is the first
component of returned pair; the second component conditie @vents environmerg extended with
the new event.

The semantics advent is similar except that we ask that, if the event igirthen its state has to be
eitherE or EA

L. Galletta, G. Levi 93

5 Implementation and Examples

Both the concrete and the abstract semantics have beenmmapied as OCaml [16] programs. The
language provides a feature, the mechanism of functorsghaidiows us to have a unigue semantic
function (realised by the funct@®emantics), parametrized with respect to the primitive operations an
the semantic domain. We can thus construct the concretensiesimterpreter, which executes programs,
and the abstract interpreter, which analyzes programgnmstef types and effects, by instantiating the
same functoBemantics.
Programs are represented in abstract syntax, althougthdarake of simplicity, we will use in the

following LINKs-like syntax. For example, the expression

fun buy(value, dbpass) {
var _ = assert Pricels(value);
Text ("Hello")
}
defines a function which requires that the eveniceIs(value) has occurred and which returns an
XML value. The result of its evaluation by the abstract seticarinterpreter is
(type - :
Function(_#value#varO_, Integer(), _annvarO_,
Function(_#dbpass#varl_, _typevarl annvar2_,
Xml(_annvar4_), _annvar3_),

-

annvaril)
No_dval [(_annvar2_,PricelIs)] {Pricels -> _#value#varO_}, {})

meaning that the computed type is a function type whose figstraent has a type integer and the se-
cond one has type variatflevhere the precondition (represented by the annotatiombi@riannvar2)
includes the event composed by the predi®atieceIs and the value bound to the first formal parameter.
If we give a value (for example 5) to the first parameter, theralst semantics is

(type - :

Function(_#dbpass#var3_, _typevar3_, _annvar7_,

Xml (_annvar9_), _annvar8_)

Unknown [(_annvar7_,PricelIs)] {PricelIs -> 5}, {})
that is the computed type is a specialization of that one edetpforbuy where the predicattricels
is bound to the valus in the precondition. The abstract semantics of the appicatf the functionbuy
to5and"a" is an error

Exception: No_type "apply_fun: no preconditions"

because we are applying a function whose precondition isatified.

6 Conclusions

We have described how to reconstruct a types-and-effesteray proposed to handle some security is-
sues in LNKsS, as an abstract interpretation of a denotational semaahizsh explicitly models the types

and the effects. By our reconstruction we have preciselynddfthe relation between the semantics and
the analysis, we have systematically constructed a caaredyser and we have shown that the proposed
types-and-effects system was not sound. We have stressati¢hunsoundness derived from the fact of

6since thelbpass parameter is not used in the body, the analyzer cannot cenapmiore precise type

94 An abstract semantics for inference of types and effectamulé-tier web language

considering forms and links as simple XML values forgettihgir own differentiating features. In our
reconstruction we have solved this problem by using two meeific types and we have managed them
in ad-hoc manner. We plan to extend our reconstruction tgiden a type system with sub-types so as
to be able to manage links and forms in a more uniform and etegay and to use additional values in
the effects.

One advantage of abstract interpretation approach on peesystem approach is that the analysis
is directly derived from the semantics and is sound by caostm. This forces one to tackle from the
very beginning subtle problems such as the ones descrikigekitiori B that might only be revealed while
trying to prove the soundness theorem following the typeéesysapproach. On the other hand we have
shown that abstract interpretation can easily handle siiea of types, such as types and effects. There
is only one example in the literature of an abstract intagi@n reconstruction of a type and effect static
analysis[[25].

References

[1] F. Baader & J. H. Siekmann (1994\nification theory In Dov M. Gabbay, Christopher J. Hogger, J. A.
Robinson & Jorg H. Siekmann, editoidandbook of Logic in Atrtificial Intelligence and Logic Pragnming
(2). Oxford University Press, pp. 41-126.

[2] I. G. Baltopoulos & A. D. Gordon (20098ecure Compilation of a Multi-Tier Web Language TLDI '09:
Proceedings of the 4th international workshop on Typesriguage design and implementatiéd@M, New
York, NY, USA, pp. 27-38, doi:0.1145/1481861.1481866.

[3] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon & Sffisla (2008): Refinement Types for Secure
Implementationsin: Proceedings of the 2008 21st IEEE Computer Security FoiordaSymposiumEEE
Computer Society, Washington, DC, USA, pp. 17-32, ini1109/CSF.2008.27. Available athttp://
portal.acm.org/citation.cfm?id=1380848.1381243.

[4] Ezra Cooper, Sam Lindley, Philip Wadler & Jeremy Yall@®07):Links: Web Programming Without Tiers
In Frank de Boer, Marcello Bonsangue, Susanne Graf & Wilkem# de Roever, editorgzormal Methods
for Components and Objectsecture Notes in Computer Sciené@09, Springer Berlin / Heidelberg, pp.
266-296, doit0.1007/978-3-540-74792-5_12.

[5] P. Cousot (1997)Types as Abstract Interpretations, invited papér: Conference Record of the Twenty-
fourth Annual ACM SIGPLAN-SIGACT Symposium on PrinciplesRrogramming Language&CM Press,
New York, NY, Paris, France, pp. 316—331, doi: 1145/263699.263744.

[6] P.Cousot & R. Cousot (197 7)bstract interpretation: a unified lattice model for statioalysis of programs
by construction or approximation of fixpoints: Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languag€M Press, New York, NY, Los Angeles,
California, pp. 238-252, ddi0.1145/512950.512973.

[7] P. Cousot & R. Cousot (1979Bystematic design of program analysis framewoiks Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Prinkdp of Programming LanguagesCM
Press, New York, NY, San Antonio, Texas, pp. 269—-282,1doit 145/567752.567778.

[8] P. Cousot & R. Cousot (1992)bstract Interpretation and Application to Logic Progrand®urnal of Logic
Programmind.3(2-3), pp. 103-179, dai0.1016/0743-1066(92) 90030-7.

[9] P. Cousot & R. Cousot (1992)bstract Interpretation Frameworkgournal of Logic and Computati@{4),
pp. 511-547, doi0.1093/1ogcom/2.4.511.

[10] L. Damas & R. Milner (1982)Principal type-schemes for functional progranis: POPL '82: Proceedings
of the 9th ACM SIGPLAN-SIGACT symposium on Principles of gramming language6CM, New York,
NY, USA, pp. 207-212, doi0.1145/582153.582176.

http://dx.doi.org/10.1145/1481861.1481866
http://dx.doi.org/10.1109/CSF.2008.27
http://portal.acm.org/citation.cfm?id=1380848.1381243
http://portal.acm.org/citation.cfm?id=1380848.1381243
http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://dx.doi.org/10.1145/263699.263744
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1145/582153.582176

L. Galletta, G. Levi 95

[11] L. Galletta (2010):Una semantica astratta per I'inferenza dei tipi ed effettiun linguaggio multi-tier
Master’s thesis, Universita di Pisa.

[12] D. K. Gifford & J. M. Lucassen (1986)ntegrating functional and imperative programminig: Proceedings
of the 1986 ACM conference on LISP and functional prograngriifrP '86, ACM, New York, NY, USA,
pp. 28—-38, doit0.1145/319838.319848

[13] R. Gori & G. Levi (2002):An Experiment in Type Inference and Verification by Absthatetrpretation In:
VMCAI '02: Revised Papers from the Third International Welkop on Verification, Model Checking, and
Abstract InterpretatiarsSpringer-Verlag, London, UK, pp. 225-239, d@i: 1007/3-540-47813-2_16.

[14] C. A. Gunter & D. S. Scott (19905emantic Domaingshapter 12, pp. 634-674. Handbook of Theoretical
Computer Science, Elsevier Science.

[15] R. Hindley (1969): The Principal Type-Scheme of an Object in Combinatory Loditansactions of the
American Mathematical Societ46, pp. 29-60.

[16] INRIA: The Caml LanguageAvailable athttp://caml.inria.fr. WWW publication.
[17] J.-L. Lassez, M. J. Maher & K. Marriott (1988)nification revisited In: Foundations of deductive databases
and logic programmingMiorgan Kaufmann Publishers Inc., San Francisco, CA, U$AS87-625.

[18] X. Leroy & F. Pessaux (2000)fype-based analysis of uncaught exceptioA€M Trans. Program. Lang.
Syst.22, pp. 340-377, dai0.1145/349214 .349230.

[19] E. Meijer, W. Schulte & G. Bierman (2003Programming with circles, triangles and rectangleB: In
XML Conference and Exposition

[20] B. Monsuez (1992)Polymorphic Typing by Abstract Interpretatiom: Proceedings of the 12th Conference
on Foundations of Software Technology and Theoretical QdencienceSpringer-Verlag, London, UK,
pp. 217-228, doi:0.1007/3-540-56287-7_107.

[21] F. Nielson & H. Nielson (1994)Constraints for polymorphic behaviours of concurrent.Mh Jean-Pierre
Jouannaud, editoiConstraints in Computational Logidsecture Notes in Computer Scieng45, Springer
Berlin / Heidelberg, pp. 73—88, da.1007/BFb0016845.

[22] F. Nielson, H. Riis Nielson & C. Hankin (2005Principles of Program Analysjslst ed. 1999. corr. 2nd
printing, 1999 edition. Springer.

[23] C. Queinnec (2000)The influence of browsers on evaluators or, continuationpragram web servers
SIGPLAN Not.35, pp. 23—-33, dol:0.1145/357766.351243.

[24] D. Schmidt (1986)Denotational Semantics: A Methodology for Language Deprakent William C Brown
Pub.

[25] J. Vouillon & P. Jouvelot (1995)Type and Effect Systems via Abstract Interpretatiwailable athttp://
www.cri.ensmp.fr/classement/doc/A-273.pdf

[26] G. Winskel (1993)The Formal Semantics of Programming Languadd#l Press.

http://dx.doi.org/10.1145/319838.319848
http://dx.doi.org/10.1007/3-540-47813-2_16
http://caml.inria.fr
http://dx.doi.org/10.1145/349214.349230
http://dx.doi.org/10.1007/3-540-56287-7_107
http://dx.doi.org/10.1007/BFb0016845
http://dx.doi.org/10.1145/357766.351243
http://www.cri.ensmp.fr/classement/doc/A-273.pdf
http://www.cri.ensmp.fr/classement/doc/A-273.pdf

	1 Introduction
	2 Secure Compilation of Links
	3 A Denotational Semantics for TinyLinks
	4 An Abstract Semantics for Inference of Types and Effects
	5 Implementation and Examples
	6 Conclusions

