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{galletta, levi}di.unipi.it

Types-and-effects are type systems, which allow one to express general semantic properties and to
statically reason about program’s execution. They have been widely exploited to specify static ana-
lyses, for example to track computational side effects, exceptions and communications in concurrent
programs. In this paper we adopt abstract interpretation techniques to reconstruct (following the
Cousot’s methodology) a types-and-effects system developed to handle security problems of a multi-
tier web language. Our reconstruction allows us to show thatthis types-and-effects system is not
sound with respect to the semantics of the language. In addition, we correct the soundness issues in
the analysis and systematically construct a correct analyser.

1 Introduction

Types-and-effects systems are a powerful extension of typesystems which allows one to express general
semantic properties and to statically reason about program’s execution. The underlying idea is to refine
the type information so as to express further intensional orextensional properties of the semantics of
the program: in practice, they compute the type of each program’s sentence and an approximate (but
sound) description of its run-time behavior. Since they aredefined over the well understood theory of
type systems, they are an intuitive framework for specifying and for developing static analyses. Such
systems were originally introduced in [12] to statically track side effects in languages that mix functional
and imperative feature. However, they have been employed tocontrol many other kinds of computa-
tional effects and analyses, e.g. exceptions [18], region inference [22] and communications in concurrent
programs [21]. Recently, they have been used in [2] to handlesecurity issues in LINKS [4].

L INKS is a strict, typed, functional language for web applications. Its main feature is to be multi-tier,
that is, it enables the developer to mix client, server and database source code by delegating the charge
of code and data partitioning to the compiler: from a single source file the compiler generates code for
the database back-end, for the web server and the client front-end, ensuring that all data is stored either
in client or in database. In [2] Baltopoulos and Gordon have shown that storing unencrypted applica-
tion data on the client opens LINKS to attacks that may expose secrets and modify control-flow and
application data. In order to overcome these problems they have proposed a compilation strategy based
on authenticated encryption1 and a types-and-effects system to enforce programs to satisfy a particular
class of integrity constraints (event-based assertions).This types-and-effects system formalizes source
level reasoning about LINKS programs and allows them to prove security properties by inspection of the
source code. For the definition of this system they have followed a methodology characterized by trans-
lating each LINKS expression to an expression of a concurrentλ -calculus with refinement types [3]. This
translation hides the properties of the analysis, and does not guarantee the soundness with respect to the

1a combination of secrecy and integrity protection obtainedby encrypting together data and its hash.
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semantics of the language. Hence, we decided to study the properties of this analysis by reconstructing
it by abstract interpretation [11].

Abstract interpretation [6, 7, 8, 9] is a general theory for approximating the semantics of dynamic
systems. The key idea behind abstract interpretation is that the description of the behavior of a sys-
tem (at various levels of abstraction) is an approximation of its formal semantics. In static analysis this
means that every property of a program can be observed in its semantics and computed as an approx-
imation: the intuition is that the analysis can be systematically derived by throwing away superfluous
information from the semantics. In practice, the approximated semantics (abstract semantics) is obtained
from the standard one (called concrete) by substituting theactual (concrete) domain of computation and
its basic semantic operations with abstract domain and abstract semantic operations, respectively. The
basic idea is that the abstract domain is a representation ofsome properties of interest about concrete
domain’s values, while abstract operations simulate, overthe abstract domain, the behavior of their con-
crete counterparts. Hence the abstract semantics computesthe properties of interest and the analysis
algorithm corresponds to evaluating programs over the abstract domain. Since the abstract domain is a
sound approximation of the concrete one, the analysis algorithm is correct with respect to the semantics
by construction.

Type systems (and corresponding type inference algorithms) have been reconstructed as a hierarchy
of abstract interpretations by Cousot [5]. In order to reconstruct the types-and-effects analysis of LINKS

we extend Cousot’s methodology by defining an abstract domain able to express types augmented by
effects. In this paper we give the following contributions:

• we demonstrate that the analysis defined by Baltopoulos and Gordon is not sound: in fact, the
expressionget(Text( ”Hello!” )) is type-checked but it results in a run-time type error (Section
3)

• we show how to fix this unsoundness issue (Section 3)

• we systematically derive an abstract semantics which represents a correct analyser (we have im-
plemented it in OCaml [16]) (Sections 4 and 5)

In the next sections we first will sketch the type-and-effectsystem proposed for LINKS (Section 2),
then we describe the ideas and the methodology underlying our reconstruction.

2 Secure Compilation of LINKS

Standard web applications have a multi-tier architecture:user interface, application logic and data ma-
nagement are implemented over three different tiers. Each tier runs on a different computational environ-
ment (web browser, web server and database respectively) characterized by its own language and its data
representation. This heterogeneity gives rise to the problem of impedance mismatch[19]: because each
language has its own data type, data exchanged between tiersof same application have a different rep-
resentation. This problem complicates the development of web applications because programmers need
to define routines to interchange and convert data. To solve this problem a new class of web languages
(multi-tiers languages) have has been developed. These languages allow programmers to blend server,
client and database source code and provide automatic mechanisms for the partition of the application
over tiers.

L INKS is a functional programming language for web applications that belongs to the class of multi-
tiers languages. LINKS enables developers to mix client, server and database source code by delegating
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the charge of code and data partitioning to the compiler: from a single source code the compiler generates
code for the database back-end, for the server and for the client front-end.

In this way LINKS overcomes the problem of impedance mismatch by abstractingdetails of a single
tier and by supporting an unified programming model similar to the one used for GUI applications. To
realize this cross-tier programming model LINKS exploits the mechanism of the web continuation [23].
These continuations are implemented as closures (expression to be executed plus values of free variables)
and are stored in HTML pages either as hidden fields of forms oras URL parameters. This approach
gives rise to security risks since a malicious client may modify those closures to enforce unexpected
computations on the server.

In particular, Baltopoulos and Gordon in [2] have demonstrated that the approach adopted by LINKS

of storing unencrypted data on the client is not secure because an attacker may violate the data secrecy,
the data integrity and the control-flow integrity of the application. To overtake these problems they have
proposed a secure implementation of LINKS that includes a compilation strategy based on authenticated
encryption to protect the closures held in the browser and a types-and-effects system to enable source
level reasoning about security of web applications. This secure implementation has been formalized for
TINY L INKS, a simple subset of LINKS.

TINY L INKS is aλ -calculus augmented with XML values for representing web pages and annotation
expressions for expressing safety properties. Its syntax is shown in Figure 1. HTML pages are values
created by applying the data constructorsText andElem: the first one represents simple text in HTML
document, the second one a generic tag element. To express links and forms exists two ad-hoc data
constructors that contains suspended expressions2. href(E) is a link that, when clicked, evaluates the
expressionE. form([l1, . . . , ln ] , E) is a HTML form with a suspended computation (the expressionE)
which requires user input. The input is represented by labels [l1, . . . , ln ] that will contain the values in-
serted in the input fields of the form. The evaluation ofhref andform can be accomplished by using the
operatorsget andpost, respectively3. The annotationseventL andassertL have no computational
meaning. They allow us to annotate TINY L INKS programs with event-based assertions expressing sui-
table safety properties. An expression is safe if whenever an assertionassertL occurs in the execution,
there exists a previous occurrence of an eventeventL.

Baltopoulus and Gordon have defined a dependent types-and-effects system to verify that each ex-
pression of a program is safe. This system is specified by a setof inductively defined typing judgments.
These judgments are of the formΓ;F ⊢ E

exp
⇒ 〈 : T〉{F′ }, whereΓ is the typing environment,F is the set

of events which have occurred and are needed to safe evaluation of the expressionE (precondition);T
andF′ are, respectively, the type of value and the set of events (post-condition) yielded by the execution
of E.

The typing rules for the operationsget andpost, for the annotationsevent andassert and for the
function application are shown in Figure 2. Rule (T-Get) establishes that the type assigned toget is xml
(that represent the type of a generic HTML tag) with empty effect, provided thatV is another HTML tag.
By (T-Post), the type ofpost expression isxml with empty effect, provided that the values associated
with submission labels are strings and thatU is a HTML tag. By (T-Event)eventL has typeunit and
effect L, provided that the values in the eventL have a type. Rule (T-Assert) is similar to (T-Event)
except that requiresL ∈ F, that is the precondition of the judgment includesL. Rule (T-App) is typical
for application and shows how the mechanism of the annotations works: the expression is type checked
if only if the events in the preconditionF1 of the function have occurred inF with same values. The

2we can look at these values as special kinds of functional abstractions.
3we can look at these operations as special kinds of function application.



84 An abstract semantics for inference of types and effects in amulti-tier web language

f,y,x Variables
p Predicates
c ::=Unit | Zero | Succ | String Data constructors
| Nil | Cons | Tuple | Elem | Text

g ::=+ | − | ∗ | / Primitive operators
L ::= p(V1, . . . ,Vn) Events: a predicate and a list of values
V,U ::=x | c(V1, . . . ,Vn) | href(E) Values
| λx1. . . . ,xn.E | form([l1, . . . , ln ] ,E)

E ::=V | varx= E1;E2 | g(E1, E2) Expressions
| V(U1, . . . ,Un) | post([l1 = V1, . . . , ln = Vn ] ,U)
| get(V) | eventL | assertL

|

switch(V){
casec(x1, . . . ,xn)→ E1
→ E2

}

Figure 1: Syntax of TINY L INKS

events generated after application include the ones of the post-condition ofU.
We say that a web applicationE is safe if and only if there is a derivation within the types-and-effects

system of the judgment /0; /0⊢ E
exp
⇐ 〈 : xml〉{}, meaning thatE is a closed expression which requires no

precondition and which yields a web page without generatingfurther events.
After the definition of typing rules, the standard methodology requires to state and prove the sound-

ness theorem which guarantees the validity of the analysis with respect to the semantics of the lan-
guage. Baltopoulus and Gordon adopt a different approach bytranslating each TINY L INKS expres-
sion to an expression of a concurrentλ -calculus withrefinement types. This translation hides the
details and the properties of the defined types-and-effectssystem, in particular the soundness. For
instance, the expressionget(Text(”Hello!” )) is safe because a derivation exists for the judgment
/0; /0⊢ get(Text(”Hello!” ))

exp
⇐〈 : xml〉{ }. However, we will show in the next section that the proposed

types-and-effects system is not sound because, even if thisexpression is type checked, its evaluation re-
sults in a run-time type error.

3 A Denotational Semantics for TINYLINKS

In this paper we adopt the approach described by Cousot in [5]. We define a denotational semantics
for TINY L INKS, by considering it as an untypedλ -calculus. Furthermore, since we deal with effects,
we explicitly consider assertions of events. To this purpose we introduce a special environment (events
environment) which will store occurred events. The semantics ofassertq(V1, . . . ,Vn) will require
checking thatq is bound in this environment to valuesV1, . . . , Vn. If this check succeeds, the evaluation
yields aUnit value, otherwise a “sentinel“ value indicating an error.

For the sake of simplicity, we restrict the values in an eventto integers only. We will also assume that
functions have a single argument and predicates in events are bound to a single value. Since we regard
TINY L INKS an untypedλ -calculus, we define the semantics domain of values (Eval) as a recursive sum
of cpos, by using the inverse limit construction described in [24]. Each element of this sum represents a
specific class of values. For instance,Z is the set of integers;U andSare singletons of theunit value
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(T-Get)
Γ;F ⊢ V

val
⇐ xml

Γ;F ⊢ get(V)
exp
⇒ 〈 : xml〉{ }

(T-Post)
Γ;F ⊢ Vi

val
⇐ string ∀i ∈ {1, . . . ,n} Γ;F ⊢ U

val
⇐ xml

Γ;F ⊢ post([(l1 = V1, . . . ,ln = Vn) ] ,U)
exp
⇒ 〈 : xml〉{ }

(T-Event)

Γ ⊢ ⋄ f v(F,L)⊆ dom(Γ)
L= p(V1, . . . ,Vn) Γ;F ⊢ Vi

val
⇒ Ti ∀i ∈ {1, . . . ,n}

Γ;F ⊢ eventL
exp
⇒ 〈 : unit〉{L}

(T-Assert)

Γ ⊢ ⋄ f v(F,L)⊆ dom(Γ) L ∈ F

L= p(V1, . . . ,Vn) Γ;F ⊢ Vi
val
⇒ Ti ∀i ∈ {1, . . . ,n}

Γ;F ⊢ assertL
exp
⇒ 〈 : unit〉{L}

(T-App)

Γ;F ⊢ U
val
⇒ T T= 〈x1 : T1, . . . , xn : Tn〉{F1 } → T2 {F2 } f v(T) = /0

Γ;F ⊢ Vi
val
⇐ Ti ∀i ∈ {1, . . . ,n} F1 [V1/x1] . . . [Vn/xn]⊆ F

Γ;F ⊢ U(V1, . . . ,Vn)
exp
⇒ T2 {F2 [V1/x1] . . . [Vn/xn]}

Figure 2: Some examples of rules specifying the type-and-effect system for the correspondences analysis.

and the error value4; EEnv→ Eval→ (Eval×EEnv), EEnv→ (Eval×EEnv) andEEnv→ [Eval]→
(Eval×EEnv) are the sets of the denotations of functions, links and forms, respectively.

The environment (Env) is a function from identifier (Ide) to values (Eval). The events environment
(EEnv) maps predicates (Pred) to pairs formed by an element ofDval and an element ofMark. Dval
denotes values which can occur in an event5. Mark is the state of an event:E indicates that the event
has occurred,EA that has occurred and has been asserted,A that has only been asserted.

We define two semantic functionsV [[−]] : VAL→ Env→ EEnv→ Eval for values and[[−]] : EXP→
Env→ EEnv→ (Eval×EEnv) for expressions. The semantics of values is straightforward, because we
only need to construct the corresponding denotation. Some examples of semantic equation are shown
in Figure 3. In the definition, we use injections intoEval (like Unit, Hre f , Fun), continuous semantic
operators (likebindList) and a meta-language which includes:

• i f e1 thene2 elsee3 (conditional);

• let x= e1 ine2 as a cleaner notation for((λx.e2)e1);

• let⋆ x= e1 ine2 for ((λx.e2)
⋆ e1);

• casee1 o f in1(x1)→ e2 → e3 for [λx1.e1, λx2.e3, . . . , λx2.e3];

• let (x1 x2) = e1 ine2 for let y= e1 in let x1 = π1(y) let x2 = π2(y) ine2;

whereπi , ⌊−⌋, ⋆ and[−, . . . ,−] are the standard operators for product, lifting and sum of cpos [26].
The semantics of expressions is similar to the one of the untypedλ -calculus. The most interesting

cases of semantic equations are shown in Figure 4 and below wegive some comments about them.

4this value is used to show a run-time type error
5in the following we will call them denotable values
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V [[λx.E]]ρ φ =
⌊

Fun(λφ ′.λv. [[E]]ρ [v/x] φ ′)
⌋

V [[Href(E)]]ρ φ =
⌊

Hre f(λφ ′. [[E]]ρ φ ′)
⌋

V [[Form(ll, E)]]ρ φ =
⌊

Form(λφ ′.λvl. let⋆ ρ ′ = bindList(ρ , ll , vl) in [[E]]ρ ′φ ′)
⌋

Figure 3: Examples of semantic equations for values.

The semantics ofget(V) asks to evaluateV; if the evaluation results into the denotation of a link
(Hre f( f )), we evaluate the corresponding suspended expression (theclosure f ), otherwise we return an
error value.

The semantics ofpost(VL, V) is similar: if the evaluation ofV is a form (Form( f )) and the evaluation
of VL is a list of strings, we return the result of the application of the functional valuef to the denotation
of VL and to the current events environmentφ .

The semantics ofeventq(V) requires the evaluation ofV; if the produced value is an integer, we
create a new binding for the predicateq in φ and return a unit value otherwise we raise an error.

The semantics ofassertq(V) is similar, but requires the evaluation ofV to be equal to the value
bound to the predicateq in φ . In this case we update the state of the event inφ and return a unit value.

By using the semantic equation ofget we prove that the evaluation of the expressionget(Text(
”Hello!” )) results in a run-time type error (the value⌊WrongValue()⌋) because the denotation of
Text(”Hello!” ) is not a link. Although a link is an XML value, it is different from other XML values
because it is a special kind of functional abstraction. Notice that the type-and-effect system proposed for
TINY L INKS does not handle this special nature of links correctly, because it assigns the same type to the
all XML values. Note that the same remark can be made for forms. Our above arguments demonstrate
that the types-and-effects system of [2] is unsound becauseexists an expression which is type checked
but its evaluation yields yet a run-time type error. We arguethat the solution to this problem is to use
a type system with subtypes. For the sake of simplicity, in our reconstruction we will not use subtypes,
but we will instead define two ad-hoc types for forms and linkswhich will handled so as have a sound
analysis.

4 An Abstract Semantics for Inference of Types and Effects

Following the classical methodology of abstract interpretation, once we have defined a concrete seman-
tics, we need to define a collecting semantics by extendingV [[−]] and[[−]] to the powerset.

The concrete semantics properties, which we are interestedin, are the types and the event-based
annotations. We need to define a suitable domain for both. Onepossibility is to define the abstract
domain as the set of Hindley’s monotypes (terms) with variables [15, 10, 5, 20, 13]. However, this
is not possible, since types are annotated by effects. For example, a function type will have the form
T1 {F1 } → T2 {F2 }, whereF1 are the events which have to be occurred before the function application,
whereasF2 are the events which we can consider occurred afterwards. Hence, we need to define a domain
of annotated types. The main problem is that the algebra of annotated terms is not free. In fact, two types
can be identified even if their syntax is different. For example, the typesxml{q(10), p(1)}→ xml{ }
andxml{p(1), q(10)} → xml{ } have a different representation, but they are equal becausethe effects
{q(10), p(1) } and{ p(1), q(10) } denote the same set. Therefore, we cannot use a syntactic unification
algorithm [17] to solve equations between terms.
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[[get(V)]]ρ φ = let⋆ v′ = V [[V]]ρ φ in

case v′ o f

Hre f( f )→ f φ
→ (⌊WrongValue()⌋ , ι)

[[post(VL, V)]]ρ φ = let⋆ v′ = V [[V]]ρ φ in

let⋆ v2 = checkStringList(map(λx.V [[x]]ρ φ)VL) in

case v′ o f

Form( f )→ case v2 o f

V(vl)→ f vl φ
→ (⌊WrongValue()⌋ , ι)

→ (⌊WrongValue()⌋ , ι)
[[eventq(V)]]ρ φ = let⋆ d = evalToDval(V [[V]]ρ φ) in

i f d = dint(n) then

(⌊Unit()⌋ , φ [(d, E)/q])

else

(⌊WrongValue()⌋ , ι)
[[assertq(V)]]ρ φ = let⋆ ev= evalToDval(V [[V]]ρ φ) in

let (ev′, m) = φ q

i f ev = ev′ then

(⌊Unit()⌋ , φ
[

(ev′, EA)/q
]

)

else

(⌊WrongValue()⌋ , ι)

Figure 4: Examples of semantic equations for expressions.

One solution would be to use an algorithm for unifying terms in non-free algebras (semantic unifica-
tion). Such algorithms do exist [1], but they are not usable in practice.

Our reconstruction does not rely on semantic unification buton another approach described in [22].
This approach exploits special annotated types (simple types), where annotations are replaced by vari-
ables (annotation variables), whose values have to satisfysome constraint. For example, the annotated
typexml{q(10), p(1)} → xml{ } becomesxml(α)→ xml(β ), whereα andβ are the minimal annota-
tionsA andB which satisfy the constraintsA⊇ {q(10), p(1) } andB⊇ { }, respectively. The algebra of
simple types is free. Hence, the introduction of a new kind ofvariable in terms requires a simple variation
of the unification algorithm: an annotation variable unifieswith another annotation variable only.

However, this solution is not completely adequate to define an abstract domain for the properties
which we are concerned with, because the effects depend on the values. Hence we need to include
them in the abstract domain. Since events in the precondition and post-condition of a function type may
depend on the value bound to a formal parameter we need to remember it. We then introduce in the set
of terms another kind of variables, called identifier variables. Identifier variables are handled by simple
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modification of the unification algorithm: an identifier variable unifies with another identifier variable
only.

The domain of abstract values will contain also substitutions as in [13]. The role of substitutions
can be explained as follows. At some point in the evaluation of the abstract semantics (for example,
in the semantics of function abstraction), we will introduce new type variables, with the meaning ”any
possible type”. During the evaluation (for example, of the function body), this information will be
subject to instantiations, computed by unifications and represented as an idempotent substitution. Since
the abstract semantic evaluation functions are defined by structural recursion, the easiest way to provide
the instantiation information to the caller is to include itin the returned value.

Although we have now all necessary information for defining an adequate abstract domain, there is
a problem concerning the representation of effects in the constraints. Intuitively we can simply repre-
sent them by using a set of pairs, where the first component is the predicate and the second one is the
denotable value. The problem is in partial order, since we should consider both set inclusion and the
relative precision of denotable values. We can achieve thisby using power domains [14, 24]. We use a
different approach: we define an effect as a function from predicates to denotable values (we will name
it correspondence function). We can then represent constraints by splitting them in two parts: the first
part is a set of pairs (annotation variable, predicate) and the second one is a correspondence function.

Let Vt be a countable set of type variables,Va be a countable set of annotation variables,Ide be a
countable set of identifier variable (Vt ∩Va∩ Ide= /0) andΣ = {unit : 0, int : 0,string : 0,xml : 1, link :
1, f orm : 1, list : 1, f un : 5}∪ {tuplen : n | n≥ 2} be a numerable set of function symbol,Ts is the set
of terms with variablesVt ∪Va∪ Ide modulo renaming, ordered by the inverse instance relation.It is
worth noting that we have introduced two new typesf ormandlink in order to solve the problem relating
forms and links which we described in Section 3. Furthermorewe will use annotation variables inxml,
link, f ormand f unonly; in f un there are two annotation variables representing the precondition and the
post-condition respectively. We further assume that the first argument off un is an identifier variable.
We obtainTypeSby lifting Ts with idempotent substitutions [13] and by adding a new bottom element
Notype.

As we described above, the first part of a constraint is a pair (annotation variable, predicate):(δ , q)
means that the predicateq is in the effect represented by the variableδ . We use inverse inclusion as partial
order: ifC1 is included inC2, thenC1 has less information thanC2, hence, its value is less precise. LetVa

be the set of annotation variables andPred be the set of predicates. We defineConstr=℘(Va×Pred).
The second part of a constraint is a correspondence functionwhose domain isTPred= Pred→ Dval
ordered by using the dual of usual partial order. We assume that cb: ℘(TPred)→ TPred is the glb
operator andζ is the bottom element.

The domain of abstract values isTypeA= TypeS×Dval×Constr×TPred. In the following, we
will denote byError the bottom element of this domain.

The domain of abstract environment (type environment) isAEnv= Ide→ TypeA. We are now in
the position to define our abstract domainsAV = AEnv→ EEnv→ TypeAfor values andAE= AEnv→
EEnv→ (TypeA×EEnv) for expressions.

To relate the abstract domain to the concrete one we need to define a Galois connection. In [11] we
formally built this connection in in various steps, by usingproperly defined representation functions [22]
and propositions.

Some examples of abstract semantic equations are shown in Figures 5, 6 and 7. In these definitions,
we assume to have a functionmgu, which, given a set of term equations, computes a solution byusing
the unification algorithm. If there exists a solution, it returns the unifierS(θ); otherwise, it returnsF to
denote failure. The set of equations is denoted by{t1 = t ′1, . . . , tn = t ′n}. Since idempotent substitutions
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V [[href(E)]]aρ φ =

γ ∈Va f resh

let ((ts, ,C, f ), φ ′) = [[E]]aρ φ in

let A = assert(φ ′, φ) in

let E = event(φ ′,φ) in

i f E = /0∧ ts 6= NoType then

casemgu({ ts.t = xml(γ)}∪ ts.θ)o f

S(θ)→ let C′ = C∪{ (γ , q) | q∈ A}

let f ′ = cb
{

f , eenvToT pred(di f f (φ ′ , φ))
}

in

((θ(link(γ)), θ), nodval, θ(C′), θ( f ′))

→ Error

else

Error

V [[λx.E]]aρ φ =

α ∈Vt γ1, γ2 ∈Va f resh ε identity substituition

let ((ts, ,C1, f1), φ ′) = [[E]]aρ [((α , ε), var(x), /0, ζ )/x] φ in

i f ts 6= NoType then

let φd = θ(φ)
let C′ =

{

(γ1, q) | q∈ assert(φ ′ , φd)
}

in

let C′′ =
{

(γ2, q) | q∈ event(φ ′, φd)
}

in

let f2 = eenvToT pred(di f f (φ ′, φd)) in

((θ( f un(x, α , γ1, ts.t, γ2)), θ),
nodval, θ(C1∪C′∪C′′), θ(cb{ f1, f2}))

else

Error

Figure 5: The abstract semantics of links and functional abstractions.

are isomorphic to solved form equations, we will use{t1 = t ′1, . . . , tn = t ′n} ∪ θ to refer the union of
equations in{t1 = t ′1, . . . , tn = t ′n} and equations defined byθ . For the sake of simplicity, the components
of the elements of the domainTypeS, will be identified by a notation similar to the one used to access the
fields of a structure in an imperative language. Givents= (t ′, θ ′) ∈ TypeS, thents.t = t ′ andts.θ = θ ′.

Given an elementC of Constrand a substitutionθ , we will denote byθ(C) = {(θ(δ ), l) | (δ , l)∈C}
the pair obtained by applyingθ to all the annotation variables inC.

Given a correspondence functionf ∈TPredand a substitutionθ , we defineθ( f ) = λq.θ( f q), where
if d 6= var(x) for somex thenθ(d) = d.

Furthermore we assume that forf ∈ TPredandC∈Constr f↓C and f ←C are the correspondence
functions achieved by removing fromf the predicates occurring and not occurring inC respectively; that
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[[get(V)]]aρ φ =

γ ∈Va f resh

let (ts, d,C, f ) = V [[V]]aρ φ in

i f ts 6= NoTypethen

case mgu({ ts.t = link(γ) }∪ ts.θ) o f

S(θ)→ let C′ = { (θ(γ), q) ∈ θ(C) } in

i f check(θ( f ←C′), φ) then

(((θ(xml(γ)), θ),
nodval, θ(C)\C′, θ( f ↓C)),φ)

else

(Error, ι)
→ (Error, ι)

else

(Error, ι)
[[E1E2]]

aρ φ =

x∈ Ideα1 ∈Vt γ1, γ2 ∈Va f resh

let ((ts1, ,C1, f1), φ1) = [[E1]]
aρ φ

let ((ts2, d2,C2, f2), φ2) = [[E2]]
aρ φ1

i f ts1 6= NoType∧ ts2 6= NoType then

case mgu({ ts1.t = f un(x, α , γ1, ts2.t, γ2)}∪

∪ ts1.θ ∪ ts2.θ) o f

S(θ)→ let C′ = { (δ , q) ∈ θ(C1) | δ ∈ prvar(θ(ts1.t))} in

let C′′ = { (δ , q) ∈ θ(C1) | δ ∈ psvar(θ(ts1.t)) } in

let f ′1 = θ( f1)[θ(x), d2] in

i f check(θ( f ′1←C′), φ2) then

(((θ(ts2.t), θ), ⊤, θ(C1∪C2)\ (C
′∪C′),

cb
{

θ( f1) ↓ (C
′∪C′′), θ( f2)

}

), incl(φ2, (θ( f ′1)←C′′)))

else

(Error, ι)
→ (Error, ι)

else

(Error, ι)

Figure 6: The abstract semantics ofget expression and function application.

f [x, d] for x ∈ Ide, d∈DVal and f ∈ TPredis the correspondence function achieved by bindingd to all
predicates which are bound tovar(x) in f ; that given af ∈TPredandφ ∈EEnvthe functioncheck( f , φ)
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returnstrue if the events represented byf have been occurred inφ , f alseotherwise; that forφ ∈ EEnv
eenvToT Pred(φ) is the correspondence function achieved fromφ ; that givenφ1,φ2 assert(φ2, φ1) is
the set of predicates of events asserted inφ2 but not in φ1, that event(φ2, φ1) is the set of predicates
of events generated inφ2 but not inφ1 and thatdi f f (φ2, φ1) is the events environment which contains
the events ofφ2 which are not inφ1 and the events ofφ1 which changed their value or state inφ2.
Furthermore we assume that, givent ∈ Ts, prvar(t) and psvar(t) denote the set of annotation variables
of t for preconditions and post-conditions, respectively.

[[assertq(V)]]aρ φ =

let (ts, d,C, f ) = V [[V]]aρ φ in

i f ts 6= NoType∧ (d = nint(n)∨d = var(x)) then

case mgu({ ts.t = int }∪ ts.θ) o f

S(θ)→ i f q /∈ dom(φ)∨π1(φ(q)) = d then

(((unit, θ), nodval, θ(C), θ( f )), φ [(d, A)/q])

else

(Error, ι)
→ (Error, ι)

else

(Error, ι)
[[eventq(V)]]aρ φ =

let (ts, d,C, f ) = V [[V]]aρ φ in

i f ts 6= NoType∧ (d = nint(n)∨d = var(x)) then

case mgu({ ts.t = int }∪ ts.θ) o f

S(θ)→ i f q /∈ dom(φ)∨φ(q) = (d, T) then

(((unit, θ), nodval, θ(C), θ( f )), φ [(d, E)/q])

else

(Error, ι)
→ (Error, ι)

else

(Error, ι)

for somen∈Z , x∈ Ide and whereT ∈ {E, EA}

Figure 7: The abstract semantics ofevent andassert annotations.

The semantics of links consists in the evaluation of the expressionE. If in this evaluation no errors
(ts 6= NoType) and no new events (this is required by the rule described in Section 2) occur, then we
check that the computed value has typexml. Since in our reconstructionxml, link and f ormare different
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types without any relation, this check rejects all the expressions which return a value of typelink or
f orm. Although this behavior may seem too restrictive, because it rejects some legal expressions like
href(href(Text(”Hello”))), it guarantees us safety and simplicity in the management ofthese diffe-
rent and unrelated types. If this check has success, we return an abstract value where the simple type is
link and the constraint is risen by properly extending the resultof the evaluation ofE.

The semantics of forms is similar. We evaluateE in a type environment where the labelsll are bound
to the abstract value with simple typestring and constraint empty and we return an abstract value where
the simple type isf orm.

The semantics of functional abstraction consists in the evaluation of the bodyE in a type environment,
where the formal parameterx is bound to a generic type. If in this evaluation no errors occur, we
compute the events which are included in the precondition (represented byC′ and f2) and in the post-
condition (represented byC′′ and f2). We return an abstract value where the simple type is obtained by
applying the substitutionts.θ to the functional type( f un(x, α , γ1, ts.t, γ2)) and the constraint is obtained
by combiningC with C′ andC′′ and f with f2.

The semantics ofget requires the evaluation ofV to be successful and yields a value of typelink.
If the preconditions are satisfied, that is if they are inφ and have occurred before, we construct an
abstract value where the simple type isxml and the constraint is obtained from the one returned by the
evaluation ofV by removing the information about preconditions. The pair which is returned has in
the first component this abstract value and in the second one the events environmentφ . This is correct
because the semantics ofhref guarantees that no new events have occurred during the evaluation of the
suspended expression.

The semantics ofpost is similar except that we ask that the elements of listVL are strings and that
the value yielded by the evaluation ofV has typef orm.

In the semantics of function application we evaluate the sub-expressionsE1 andE2: if both evalua-
tions do not produce errors, we check that the simple type ofE1 is a function type where the argument
has the simple type ofE2 and that the precondition of function is satisfied in the events environmentφ2,
obtained from evaluating both the sub-expressions. In order to perform this last check, we substitute the
denotable value bound tox in f1 by the one returned by the evaluation ofE2. Then, by using the function
check, we ask that the events required by the function body are inφ2. If we succeed, we construct an
abstract value where the simple type isθ(α) and the constraint is obtained by composing those returned
by the evaluation of the sub-expressions, where the events of preconditions and post-conditions are re-
moved. We return a pair composed by this abstract value and bythe events environmentφ2 extended
with the events of the post-condition of the function.

The semantics ofassert consists in the evaluation ofV. If it yields an abstract value whose simple
type isint and whose denotable value is a specific integer or a specific identifier, we check that there is in
φ at most the same event which we are generating. In this way we are sure that it is impossible to change
the value bound to a predicate. If this check has success, we build an abstract value where the simple
type isunit and the constraint is the one returned by the evaluation ofV. This abstract value is the first
component of returned pair; the second component consists of the events environmentφ extended with
the new event.

The semantics ofevent is similar except that we ask that, if the event is inφ , then its state has to be
eitherE or EA.
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5 Implementation and Examples

Both the concrete and the abstract semantics have been implemented as OCaml [16] programs. The
language provides a feature, the mechanism of functors, which allows us to have a unique semantic
function (realised by the functorSemantics), parametrized with respect to the primitive operations and
the semantic domain. We can thus construct the concrete semantics interpreter, which executes programs,
and the abstract interpreter, which analyzes programs in terms of types and effects, by instantiating the
same functorSemantics.

Programs are represented in abstract syntax, although, forthe sake of simplicity, we will use in the
following L INKS-like syntax. For example, the expression

fun buy(value, dbpass) {

var _ = assert PriceIs(value);

Text("Hello")

}

defines a function which requires that the eventPriceIs(value) has occurred and which returns an
XML value. The result of its evaluation by the abstract semantics interpreter is

(type - :

Function(_#value#var0_, Integer(), _annvar0_,

Function(_#dbpass#var1_, _typevar1_, _annvar2_,

Xml(_annvar4_), _annvar3_),

_annvar1_)

No_dval [(_annvar2_,PriceIs)] {PriceIs -> _#value#var0_}, {})

meaning that the computed type is a function type whose first argument has a type integer and the se-
cond one has type variable6 where the precondition (represented by the annotation variable annvar2 )
includes the event composed by the predicatePriceIs and the value bound to the first formal parameter.
If we give a value (for example 5) to the first parameter, the abstract semantics is

(type - :

Function(_#dbpass#var3_, _typevar3_, _annvar7_,

Xml(_annvar9_), _annvar8_)

Unknown [(_annvar7_,PriceIs)] {PriceIs -> 5}, {})

that is the computed type is a specialization of that one computed forbuy where the predicatePriceIs
is bound to the value5 in the precondition. The abstract semantics of the application of the functionbuy
to 5 and"a" is an error

Exception: No_type "apply_fun: no preconditions"

because we are applying a function whose precondition is notsatisfied.

6 Conclusions

We have described how to reconstruct a types-and-effects system, proposed to handle some security is-
sues in LINKS, as an abstract interpretation of a denotational semanticswhich explicitly models the types
and the effects. By our reconstruction we have precisely defined the relation between the semantics and
the analysis, we have systematically constructed a correctanalyser and we have shown that the proposed
types-and-effects system was not sound. We have stressed that the unsoundness derived from the fact of

6since thedbpass parameter is not used in the body, the analyzer cannot compute a more precise type
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considering forms and links as simple XML values forgettingtheir own differentiating features. In our
reconstruction we have solved this problem by using two new specific types and we have managed them
in ad-hoc manner. We plan to extend our reconstruction to consider a type system with sub-types so as
to be able to manage links and forms in a more uniform and elegant way and to use additional values in
the effects.

One advantage of abstract interpretation approach on the type system approach is that the analysis
is directly derived from the semantics and is sound by construction. This forces one to tackle from the
very beginning subtle problems such as the ones described inSection 3 that might only be revealed while
trying to prove the soundness theorem following the type system approach. On the other hand we have
shown that abstract interpretation can easily handle extensions of types, such as types and effects. There
is only one example in the literature of an abstract interpretation reconstruction of a type and effect static
analysis [25].
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