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Effect Capabilities For Haskell

Ismael Figueroa⋆1,2, Nicolas Tabareau1, and Éric Tanter⋆⋆2
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Abstract. Computational effects complicate the tasks of reasoning about and
maintaining software, due to the many kinds of interferences that can occur.
While different proposals have been formulated to alleviate the fragility and
burden of dealing with specific effects, such as state or exceptions, there is no
prevalent robust mechanism that addresses the general interference issue. Build-
ing upon the idea of capability-based security, we propose effect capabilities as
an effective and flexible manner to control monadic effects and their interfer-
ences. Capabilities can be selectively shared between modules to establish secure
effect-centric coordination. We further refine capabilities with type-based per-
mission lattices to allow fine-grained decomposition of authority. We provide an
implementation of effect capabilities in Haskell, using type classes to establish a
way to statically share capabilities between modules, as well as to check proper
access permissions to effects at compile time. We exemplify how to tame effect
interferences using effect capabilities, by treating state and exceptions.

1 Introduction

Computational effects (e.g. state, I/O, and exceptions) complicate reasoning about,
maintaining, and evolving software. Even though imperative languages embrace side
effects, they generally provide linguistic means to control the potential for effect inter-
ference by enforcing some forms of encapsulation. For instance, the private attributes
of a mutable object are only accessible to the object itself or its closely-related peers.
Similarly, the stack discipline of exception handling makes it possible for a procedure
to hide exceptions raised by internal computation, and thereby protect it from unwanted
interference from parties that are not directly involved in the computation.

We observe that all these approaches are hierarchical, using module/package nest-
ing, class/object nesting, inheritance, or the call stack as the basis for confining the
overall scope of effects. This hierarchical discipline is sometimes inappropriate, either
too loose or too rigid. Consequently, a number of mechanisms that make it possible to
either cut across or refine hierarchical boundaries have been devised. A typical exam-
ple mechanism for loosening the hierarchical constraints is friendship declarations in
C++. Exception handling in Standard ML—with the use of dynamic classification [7]
to prevent unintended access to exception values—is an example of a mechanism that
strengthens the protection offered by the hierarchical stack discipline.

Exploiting the intuitive affinity between encapsulation mechanisms and access con-
trol security, we can see classical approaches to side effect encapsulation as correspond-
ing to hierarchical protection domains. The effective alternative in the security commu-
nity to transcend hierarchical barriers is capability-based security, in which authority is
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granted selectively by communicating unforgeable tokens named capabilities [11,13].
Seen in this light, the destructor of an exception value type in Standard ML is a capabil-
ity that grants authority to inspect the internals of values of this type [6]. The destructor,
as a first-class value itself, can be flexibly passed around to the intended parties. Friend-
ship declarations in C++ can also be seen as a static capability-passing mechanism.

Following this intuition we propose effect capabilities, in the context of Haskell3, for
flexibly and securely handling computational effects. Effect capabilities are first-class
unforgeable values that can be passed around in order to establish secure effect-related
interaction channels. The prime focus of effect capabilities is to guarantee, through
the type system, that there is no unauthorized access to a given effectful operation.
Authorization is initially granted through static channel sharing at the module level,
allowing detection of violations at compile time. We do not focus on dynamic sharing
of capabilities, because this can only be done by modules that were already trusted at
compile time.

We start illustrating the main problem addressed by effect capabilities in Haskell:
the issue of effect interference in the monad stack (Section 2). Then we present the main
technical development: a generic framework for capabilities and permissions, which can
be statically shared between modules (Section 3). In this framework we combine several
existing techniques, along with two novel technical contributions. First, a user-definable
lattice-based permission mechanism that checks access at compile time using type class
resolution (Section 3.2). And second, a static secret sharing mechanism implemented
using type classes and mutually recursive modules (Section 3.3). Finally, effect capabil-
ities are implemented using this framework in the particular case of monadic operations
(Section 4), and we illustrate how to implement private and shared state (Section 4.1
and Section 4.2) as well as protected exceptions (Section 4.3).

2 Effect Interference in Monadic Programming

In this section we illustrate the problem of effect interference in monadic pro-
gramming. We start with a brief description of monadic programming in Haskell (Sec-
tion 2.1). Then we illustrate the particular issue of state interference (Section 2.2), also
showing that the currently accepted workaround is not scalable (Section 2.3). Finally,
we illustrate the issue of exception interference (Section 2.4).

2.1 Monadic Programming in a Nutshell

Monads [15,25] are the mechanism of choice to embed and reason about computational
effects such as state, I/O or exception handling, in purely functional languages like
Haskell. Using monad transformers [12] it is possible to modularly create a monad that
combines several effects. A monad transformer is a type constructor used to create a
monad stack where each layer represents an effect. Monadic programming in Haskell
revolves around the standard MTL library, which provides a set of monad transformers
that can flexibly be composed together. Typically a monad stack has either the Identity ,
or the IO monad at its bottom. When using monad transformers it is necessary to es-
tablish a mechanism to access the effects of each layer. We now briefly describe current
mechanisms; for a detailed description see [21].

3 Implementation on the GHC compiler available online at: http://pleiad.cl/effectcaps

http://pleiad.cl/effectcaps


Explicit Lifting. A monad transformer t must define the lift operation, which takes a
computation from the underlying monad m , with type m a , into a computation in the
transformed monad, with type t m a . Explicit uses of lift directly determine which
layer of the stack is being used.

Implicit Lifting. To avoid explicit uses of lift , one can associate a type class with each
particular effect, defining a public interface for effect-related operations. Using the type
class resolution mechanism, the monadic operations are routed to the first layer of the
monad stack that satisfies a given class constraint. This is the mechanism used in the
transformers from MTL, where the implicit liftings between them are predefined.

Tagged Monads. In this mechanism the layers of the monad stack are marked using
type-level tags. The tags are used to improve implicit lifting, in order to route op-
erations to specifically-tagged layers, rather than the first layer that satisfies a con-
straint [16,23,21]. In this work we focus only on the standard lifting mechanisms, which
underlie the implementations of tagged monads, and leave for future work the integra-
tion of type-level tags and effect capabilities.

2.2 State Interference

As a running example to illustrate the issue of effect interference as well as its solu-
tion using effect capabilities, we consider the implementation of two monadic abstract
data types (ADTs). These are a queue of integer values, with operations enqueue and
dequeue; and a stack, also of integer values, with operations push and pop.

Regarding state, ideally each ADT should have a private state that cannot be modi-
fied by components external to the module. Before we describe the implementation, let
us recall the standard state transformer and its associated type class:

newtype StateT s m a = StateT (s → m (a, s))

class Monad m ⇒ MonadState s m | m → s where

get ::m s

put :: s → m ()

A typical and reusable implementation of these ADTs is defined using implicit lift-
ing. A straightforward implementation of the structures’ operations is as follows:

enqueue
1
::MonadState [Int ] m ⇒ Int → m ()

enqueue
1
n = do {queue ← get ; put $ queue ++ [n ]}

dequeue
1
::MonadState [Int ] m ⇒ m Int

dequeue
1

= do {queue ← get ; put $ tail queue; return $ head queue }

push
1
::MonadState [Int ] m ⇒ Int → m ()

push
1
n = do {stack ← get ; put (n : stack)}

pop
1
::MonadState [Int ] m ⇒ m Int

pop
1

= do {stack ← get ; put $ tail stack ; return $ head stack }

Thanks to implicit lifting, the functions can be evaluated in any monad stack m that
fulfills the MonadState [Int ] constraint. With the intent of giving each ADT its own
private state, we define a monad stack M with two state layers.

type M = StateT [Int ] (StateT [Int ] Identity)



However, using both ADTs in the same program leads to state interference. The
problem is that implicit lifting will route both enqueue and push operations to the first
layer of M . For example, evaluating:

client1 = do push
1
1

enqueue
1
2 -- value is put into the state layer used by the stack

x ← pop
1

y ← pop
1

-- should raise error because stack should be empty
return (x + y)

yields 3 instead of throwing an error when attempting to pop
1

the empty stack. To
address this issue, one of the ADTs must use explicit lifting to use the second state
layer, for instance we can modify the queue operations:

enqueue ′

1
n = do {queue ← lift get ; (lift ◦ put) (queue ++ [n ])}

dequeue ′

1
n = do {queue ← lift get ; (lift ◦ put) (tail queue); return (head queue)}

However, as discussed by Schrijvers and Oliveira [21], this solution is still unsat-
isfactory. First, the approach is fragile because the number of lift operations is tightly
coupled to the particular monad stack used, thus hampering modularity and reusability.
And second, because the monad stack is transparent, meaning that nothing prevents
enqueue ′

1
or dequeue ′

1
to use get and put operations that are performed on the first

state layer. Conversely, nothing prevents push
1

or pop
1

from accessing the second state
layer. In fact, any monadic component can modify the internal state of these structures.

2.3 State Encapsulation Pattern

To the best of our knowledge, the current practice to implement private state in Haskell—
in order to avoid issues like the one above—is to define a custom state-like monad
transformer and hide its data constructor. For instance, a polymorphic queue ADT can
be implemented based on a new QueueT monad transformer, which reuses the imple-
mentation of StateT to represent the queue as a list of values:4

newtype QueueT s m a = QueueT (StateT [s ] m a) deriving ...

The definitions of enqueue and dequeue are similar to those already presented, but
let us consider their types:

enqueue
2
:: s → QueueT s m ()

dequeue
2
::QueueT s m s

Because these definitions are tied specifically to a monad stack where QueueT

(resp. StackT ) is on top, another requirement to integrate with implicit lifting is to
declare a new type class MonadQueue (resp. MonadStack ), whose canonical instance
is given by QueueT (resp. StackT ).

In short, a Queue module that encapsulates its state can be defined as:

4 We do not show it here, but we use the GeneralizedNewtypeDeriving extension of GHC to
derive the necessary instances of the Monad and MonadTrans type classes.



module Queue (QueueT (),MonadQueue (. .), enqueue, dequeue) where

newtype QueueT s m a = QueueT (StateT [s ] m a) deriving ...

class Monad m ⇒ MonadQueue s m where

enq :: s → m ()
deq ::m s

instance Monad m ⇒ MonadQueue s (QueueT s m) where

enq s = QueueT $ StateT $ λq → return ((), q ++ [s ])
deq = QueueT $ StateT $ λq → return (head q , tail q)

enqueue :: (MonadQueue [Int ] m)⇒ Int → m ()
enqueue = enq

dequeue :: (MonadQueue [Int ] m)⇒ m Int

dequeue = deq

Declaring QueueT as instance of MonadQueue requires the implementation of
enq and deq . As QueueT relies on the standard state transformer StateT , the imple-
mentation is straightforward. The crucial point to ensure proper encapsulation is that
the module does not export the QueueT data constructor. This is explicit in the mod-
ule signature as QueueT (), which means that only the type QueueT is exported, but
its data constructors remain private.

Avoiding interference. Using the QueueT and StackT transformers, as well as the
MonadQueue and MonadStack type classes defined using this pattern,we can rephrase
our previous example in order to avoid state interference:

import Queue

type M = QueueT Int (StackT Int Identity)

client2 = do push 1
enqueue 2
x ← pop

y ← pop -- error: popping from empty stack
return (x + y)

Scalability Issues. The main issue of the state encapsulation pattern is that it is not scal-
able. To properly integrate MonadQueue and MonadStack with implicit lifting, we
would need to declare QueueT and StackT as an instance of every other effect-related
type class, and to make every other monad transformer an instance of MonadQueue and
MonadStack as well. If we consider only the 7 standard transformers in the MTL, this
effort amounts to 28 instance declarations! (14 instances for each encapsulated state)
Moreover, when using non-standard transformers, it may not be possible to anticipate
all the required combinations; therefore the burden lies on the user of such libraries to
fill in the gaps. We are not the first to note the quadratic growth of instance declarations
with this approach, e.g. Hughes dismisses monads as an option to implement global
variables in Haskell for this very reason [8].

2.4 Exception Interference

Another form of effect interference can occurr in a program that uses exceptions and ex-
ception handlers. The problem is that due to the dynamic nature of exceptions and han-
dlers, it is possible for exceptions to be inadvertently caught by unintended handlers—



for instance, by “catch-all” handlers. As an illustration, consider an application where
the queue is used by a consume function.

consume :: (MonadQueue Int m,MonadError String m)⇒ m Int

consume = do x ← dequeue

if (x < 0) then throwError“Process error ′′

else return x

This function checks an invariant that values should be positive, and throws an ex-
ception otherwise. Further assume that another process function relies on consume.

process :: (MonadQueue Int m,MonadError String m)⇒ Int → m Int

process val = consume ‘catchError ‘ (λe → return val)

Here process uses an exception handler, catchError , to get a default value val

whenever consume’s invariant does not hold. Consider now a variant of dequeue that
raises an exception when trying to retrieve a value from an empty queue. Its type is

dequeue :: (MonadQueue s m,MonadError String m)⇒ m s

In this scenario, exception interference will occur because the same exception effect
is used to signal two different issues. Consider the following program:

program
1
= do enqueue (−10)

process 23

When evaluated, program
1

yields 23 because the value in the queue breaks the invariant
of consume , triggering the handler of process . Now, consider a second program:

program
2
= process 23

which will also yield 23, but because the queue was empty—not because the invariant
of consume was broken. In this setting, it is not possible to assert non-emptiness of the
queue, because exceptions get “swallowed” by another handler. Similar to state inter-
ference, current solutions rely on custom exception transformers and explicit lifting.

As argued by Harper [6], the standard semantics of exceptions difficult the modular
composition of programs because of the potentially modified exception flows. Indeed,
issues like this has been identified in the context of aspect-oriented programming [3].
In Section 4.3 we show how effect capabilities allows us to define exceptions that, like
in Standard ML, can be protected from unwanted interception.

3 A Generic Static Framework for Capabilities and Permissions

This section presents the main technical development of this work: a generic frame-
work for capabilities, upon which effect capabilities are built, in the next section. First,
we define capability-based access as a computational effect (Section 3.1). Then, we
refine simple capabilities with type-based and user-definable permission lattices (Sec-
tion 3.2); and show how capabilities can be shared between modules (Section 3.3).
Finally we describe how the framework supports two key features of capabilities-based
mechanisms: delegation and attenuability (Section 3.4).

3.1 Private Capabilities as a Computational Effect

A private capability is a singleton type whose type is public but whose constructor is
private. For instance, consider the capability for read/write access to some state:



data RWCap = RWCap

We turn this capability into a notion of protected computations by using a specific
reader monad transformer for capabilities, CapT . Using the reader transformer allows
us to embed the actual capability used to run a computation into the read-only environ-
ment bound to a reader monad. Similar to state encapsulation, CapT is defined in terms
of the canonical reader monad transformer ReaderT .

newtype CapT c m a = CapT (ReaderT c m a) deriving ...

fromCapT :: c → CapT c m a → m a

fromCapT ! c (CapT ma) = runReaderT ma c

A capability has a public type but a private value, but as Haskell is lazy, a malicious
module can always forge a capability for which it has no access by passing ⊥ as the
capability argument to evaluate fromCapT .5 To avoid this situation, we use a strictness
annotation ! in the implementation of fromCapT . Note this issue would not be present
in a strict setting. As an example, consider a module A that uses RWCap to restrict
access to a state monad holding a value of type s .

module A (getp, putp,RWCap ()) where

data RWCap = RWCap

getp :: CapT RWCap (State s) s
putp :: s → CapT RWCap (State s) ()

A module B that imports A will get access to both operations, but will not be able
to perform any of them because it will lack the RWCap value, which can only be
constructed in the context of module A.

3.2 Private Lattice of Permissions

Capabilities are unforgeable authority tokens that unlock specific monadic operations.
Ideally, a system should follow the principle of least privilege [18], which in our context
means that it should not be necessary to have write permissions just to read the value of
a state monad; and conversely, reading access is not necessary to update such a state.

We now refine the model of capabilities with the possibility to attach permissions to
a capability, in order to allow a finer-grained decomposition of authority. A permission
denotes the subset of operations that the capability permits. Now capabilities are defined
as type constructors with a single argument, the permission; and permissions are defined
as singleton types.

Permission Lattices. Permissions can be organized in a lattice specified by a ⊐ type
class. ⊐ is a simple reflexive and transitive relation on types defined as:6

class a ⊐ b

instance a ⊐ a -- generic instance for reflexivity

The type class ⊐ must not be public because it would allow a malicious user to
add a new undesirable relation in the lattice to effectively bypass permission checking

5 ⊥ is an expression that pertains to all types, and directly fails with an error if evaluated. Hence,
it can pass as any capability, fulfilling the expected type of fromCapT .

6 Unlike logic programming, transitivity cannot be deduced from a generic instance, due to an
ambiguity issue during type class resolution; hence all pairs of the relation must be explicit.



altogether. Still, we want to be able to impose constraints based on the private lattice in
other modules. To do that, we define a public lattice ⊃ that exports the private lattice
without being updatable from the outside of the module, because extending it always
requires to define an instance on the private lattice.7

class a ⊐ b ⇒ a ⊃ b

instance a ⊐ b ⇒ a ⊃ b

Permission Lattices in Practice. Going back to the previous example, we now define the
RWCap capability, as well as the ReadPerm , WritePerm and RWPerm permissions,
denoting read-only, write-only and read-write access, respectively. We also define the
private and public permission lattices ⊐RW and ⊃RW , for state access permissions:

module RWLattice (⊃RW ,RWCap (),ReadPerm,WritePerm,RWPerm) where

data RWCap p = RWCap p

data ReadPerm = ReadPerm

data WritePerm = WritePerm

data RWPerm = RWPerm

-- private lattice
class a ⊐RW b

instance a ⊐RW b

-- private instances, not updateable externally
instance RWPerm ⊐RW ReadPerm

instance RWPerm ⊐RW WritePerm

-- public lattice
class a ⊐RW b ⇒ a ⊃RW b

instance a ⊐RW b ⇒ a ⊃RW b

Crucially, we use module encapsulation to hide the private lattice ⊐RW . Thus we
only export the public lattice ⊃RW , which can be used as a regular class constraint.
Otherwise, obtaining write-access from a read-only permission is as simple as:

module BypassRW where

import RWLattice

instance ReadPerm ⊐RW WritePerm

Using the public permission lattice allows developers to impose fine-grained access
constraints using the public type class ⊃RW . For instance, the functions getp and putp

can be refined as:
getp :: perm ⊃RW ReadPerm ⇒ CapT (RWCap perm) (State s) s
putp :: perm ⊃RW WritePerm ⇒ s → CapT (RWCap perm) (State s) ()

As a final remark, recall from Section 3.1 that type class resolution statically checks for
proper permissions when a computation is evaluated using fromCapT .

Capabilities as namespaces for permissions. Capability constructors, such as RWCap,
may appear superfluous, because we are interested in the permissions for protected
operations. However, such constructors serve the crucial role of serving as namespaces

7 Haskell type classes are open, that is, instances of publicly exported type classes can be added
in any part of the system. Private type classes are confined to the module that defines them.



for permissions. This allows a module to have restricted read-only access to some state,
while still having full read-write access to another state.

3.3 Static Sharing of Capabilities

We now describe how to go beyond private capabilities and support the ability to allow
specific modules to have access to capabilities. The issue addressed here is that most
module systems, including that of Haskell, do not make it possible to expose bindings
to explicitly-designated modules. For example, as we illustrate in Section 4.2, for effi-
ciency reasons a Queue module can provide read-only access to its internal state to a
PriorityQueue module, which simply acts as another interface on top of the queue.

Conceptually, the idea of static sharing is to use public accessors to selectively share
capabilities. However this requires a trusted mechanism by which modules can be iden-
tified properly by the accessors. The development of this idea yields a mechanism for
static message passing, using type classes, loosely inspired by the π-calculus notion of
messages and channels [19].

Message sending as type class instances. In analogy with capabilities, a channel is just
a singleton type whose type is public, but whose (unique) value is private. Channels are
governed by the Channel monad reader which prevents from the use of ⊥:

newtype Channel ch a = Channel (Reader ch a) deriving ...

fromChannel :: ch → Channel ch a → a

fromChannel ! ch (Channel ma) = runReader ma ch

We define a type class Send for message sending:

class Send ch c p where

receive :: p → Channel ch (c p)

This type class requires three types: a channel ch , a capability c, and a permission
p; and it provides the receive method. Sending a message of type c p on ch amounts
to declaring an instance Send ch c p. Conversely, receiving a message of type c p

on ch amounts to applying the function receive to p and getting the value back us-
ing fromChannel .8 Observe that the messaging protocol is rather asymmetric, because
capabilities are sent statically by declaring type classes instances, but are received dy-
namically by calling receive. This is not problematic because type class resolution will
check that all calls to receive are backed up by an instance of Send , or else typecheck-
ing will fail. Therefore, the protocol ensures that one module can only receive a message
that has been sent to it. 9

For instance, following the motivation example, the Queue module can send the
RWCap capability with read permission to the PQChan channel provided by the
PriorityQueue module (full example in Section 4.2):

instance Send PQChan RWCap ReadPerm

where receive ReadPerm = return $ RWCap ReadPerm

8 The expected result type c p has to be provided explicitly, because messages of different types
can be sent on the same channel.

9 We rely on GHC support for mutually recursive modules for inter-module communication. See
http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html

http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html


module A where

import B -- to send capability to BChannel

instance Send BChannel RWCap ReadPerm where

receive ReadPerm = return $ RWCap ReadPerm

module B where

import A -- to get the capability sent by A

import C -- to send capability to CChannel

data BChannel = BChannel

instance Send CChannel RWCap ReadPerm where

receive ReadPerm = return $ (fromChannel BChannel $ receive ReadPerm)

module C where

import B -- to get the capability sent by B

data CChannel = CChannel

cap :: RWCap ReadPerm

cap = fromChannel CChannel $ receive ReadPerm

Fig. 1: Static delegation of capabilities

Of course, this mechanism is less expressive than message passing in process calculi—
only one message of type c p can be sent on a specific channel—but it is sufficient for
our purposes since permissions are singleton types.

3.4 Delegation and Attenuability

Capabilities-based mechanisms feature two characteristics called delegation and attenu-

ability [11]. In combination, these characteristics allow an entity to transmit (a restricted
version of) its capabilities to another entity in the system. We describe how these char-
acteristics are supported in the framework.

Delegation. The sharing mechanism allows for static delegation of capabilities. A mod-
ule B that receives a capability from other module A, can in turn transmit the capability
to another module C . This is sound because B cannot transmit more capabilities than
those it receives from A. Figure 1 shows static delegation of the RWCap ReadPerm

capability.

Attenuability. A capability with a high permission in a permission lattice can be atten-
uated into another capability with a lower permission implied by the former. To support
attenuability, we force capabilities to define a function attenuate using the type class:

class Capability c ⊃ | c → ⊃ where

attenuate :: p1 ⊃ p2 ⇒ c p1 → p2 → c p2

Here attenuate degrades the permission if it respects the lattice structure of ⊃. If mod-
ule A needs to provide a limited version of a capability to module B it can provide a
sub-permission based on the existing permission lattice using the function attenuate .
Note that ⊃ is a parameter of the class because different capabilities may be defined on
different lattices, but the functional dependency c → ⊃ imposes that only one lattice is
attached to a capability. If the required permission is not already provided by the exist-
ing lattice, one can always define a refined lattice (and redefine associated functions).



class Monad m ⇒ MonadStateP c s m | m → s where

getp :: (Capability c ⊃RW , p ⊃RW ReadPerm) ⇒ CapT (c p) m s

putp :: (Capability c ⊃RW , p ⊃RW WritePerm)⇒ s → CapT (c p) m ()

newtype StateTP c s m a = StateTP (StateT s m a) deriving ...

instance Monad m ⇒ MonadStateP c s (StateTP (c ()) s m) where

getp = lift ◦ StateTP $ get
putp = lift ◦ StateTP ◦ put

Fig. 2: Protected versions of the monad state type class and state monad transformer.

4 Effect Capabilities: Upgrading Monads with Capabilities

We now delve into the main subject of this work: how to use capabilities to con-
trol monadic effects and their interferences in an effective and flexible manner. Build-
ing upon the generic capabilities framework, which can be used to restrict access to
arbitrary monadic operations, the essential idea of effect capabilities is to secure the
operations of the layers in the monad stack using capabilities.

Concretely, this means that we define protected versions of monad transformers,
and of the type classes associated to their effects, in which all the monadic operations
are wrapped by the CapT monad transformer. This way, while an external component
can still access any layer of the monad stack using explicit lifting, it will not be able to
perform operations on them unless it can present the required capability.

In particular, we define protected versions of the state and exception MTL trans-
formers and their associated type classes. As a naming convention we append the P

suffix to the name of the protected monad transformers and type classes. We now il-
lustrate how to implement private and shared state (Section 4.1 and Section 4.2) and
protected exceptions (Section 4.3).

4.1 Private Persistent State

Based on the state permission lattice (Section 3.2), we define the protected versions
of the state monad transformer and corresponding type class (Figure 2). To use the
getp function, one needs to have a capability c that implies the ReadPerm read per-
mission; and dually to use the putp function, one needs the capability that implies the
WritePerm write permission.

To illustrate, consider the following polymorphic Queue using private state:

module Queue (enqueue, dequeue,QState ()) where

data QState p = QState p

instance Capability QState ⊃RW where

attenuate (QState ) perm = QState perm

enqueue ::MonadStateP QState [s ] m ⇒ s → m ()
enqueue s = do queue ← fromCapT (QState ReadPerm) getp

fromCapT (QState WritePerm) $ putp (queue ++ [s ])

dequeue ::MonadStateP QState [s ] m ⇒ m s

dequeue = do queue ← fromCapT (QState ReadPerm) getp
fromCapT (QState WritePerm) $ putp (tail queue)
return (head queue)



Thanks to the use of the QState capability and the secure MonadStateP class,
the internal state of the queue is private to the Queue module. Since the QState data
constructor is not exported, external access is prevented—even if explicit lifting can be
used to access the respective instance of MonadStateP , it cannot be used to perform
any monadic operation on it because the proper capability is required. We still require
to export QState as a type, in order to create a suitable monad stack, e.g. to instantiate
an integer queue:

type M = StateTP (QState ()) [Int ] Identity

To construct a monad stack we are only interested on the capability type, but not in any
particular permission—however permissions will still be checked statically as required
for each operation—hence we use () as the permission type in the definition of M .

4.2 Shared Persistent State

We now illustrate capability sharing with shared persistent state. We define a module
PriorityQueue that adds a notion of priority on top of Queue. In a priority queue one
can access directly the most recent element having a high priority, using the peekBy

function. For efficiency, the PriorityQueue module needs direct access to the internal
state of the queue. As we do not want to do this by publicly exposing the capability
QState , we send the capability on the channel PQChan provided by PriorityQueue.

module Queue (enqueue, dequeue,QState ()) where

import PriorityQueue -- to get PQChan channel

newtype QState p = QState p

instance Capability QState ⊃RW where

attenuate (QState ) perm = QState perm

instance Send PQChan QState ReadPerm where

receive perm = return $QState perm

-- enqueue and dequeue operations as before

The implementation of PriorityQueue is as follows:

module PriorityQueue (PQChan (), peekBy) where

import Queue

data PQChan = PQChan

queueState ::QState ReadPerm

queueState = fromChannel PQChan $ receive ReadPerm

peekBy :: (Ord s,MonadStateP QState [s ] m)⇒ (s → s → Ordering)→ m (Maybe s)
peekBy comp = do queue ← fromCapT queueState getp

if null queue then return Nothing

else return (Just $maximumBy comp queue)

To use the internal state of the queue, the PriorityQueue module imports Queue ,
defines and exports its channel PQChan, and retrieves the capability QState with the
read-only permission, as prescribed by Queue . peekBy can access the internal state of
the queue by using the queueState capability and fromCapT .



class (Monad m,Error e)⇒ MonadErrorP c e m | c m → e where

throwErrorp :: perm ⊃Ex ThrowPerm ⇒ e → CapT (c perm) m a

catchErrorp :: perm ⊃Ex CatchPerm ⇒ m a → (e → m a)→ CapT (c perm) m a

newtype ErrorTP c e m a = ErrorTP {runETP :: ErrorT e m a } deriving ...

instance (Monad m,Error e)⇒ MonadErrorP c e (ErrorTP (c ()) e m) where

throwErrorp = lift ◦ ErrorTP ◦ throwError
catchErrorp m h = lift ◦ ErrorTP $ catchError (runETP m) (runETP ◦ h)

Fig. 3: Protected versions of the monad error type class and error monad transformer

4.3 Protected Exceptions

Exception handling may be seen as a communication between two modules, one that
raises an exception, and one that handles it. For correctness or security reasons, we may
wish to ensure that a raised exception can only be handled by specific modules. Pro-
tecting exception handling can be achieved using exception capabilities, similar to how
state capabilities control shared state. First, we define the private and public lattices,
⊐Ex and ⊃Ex, as permissions for throwing and catching exceptions:

module ExLattice (⊃Ex,ThrowPerm,CatchPerm,TCPerm) where

data ThrowPerm = ThrowPerm

data CatchPerm = CatchPerm

data TCPerm = TCPerm

-- private lattice
class a ⊐Ex b

instance a ⊐Ex a

-- private instances
instance TCPerm ⊐Ex ThrowPerm

instance TCPerm ⊐Ex CatchPerm

-- public lattice
class a ⊐Ex b ⇒ a ⊃Ex b

instance a ⊐Ex b ⇒ a ⊃Ex b

Then, in Figure 3 we define the protected versions of the standard ErrorT monad trans-
former and MonadError type class, following the same approach as for protected state.
Going back to our running example, we can make dequeue raise an exception when ac-
cessing an empty queue, in order to allow for recovery. Using a QError exception
capability we can control which modules are allowed to define their own handlers:



module Queue (enqueue, dequeueEx,QState (),QError ()) where

-- QState definition, type class instances and enqueue as before ...
data QError p = QError p

instance Capability QError ⊃Ex where

attenuate (QError ) perm = QError perm

dequeueEx :: (MonadStateP QState [s ] m,MonadErrorP QError String m)⇒ m s

dequeueEx = do queue ← fromCapT (QState ReadPerm) getp
if null queue then fromCapT (QError ThrowPerm) $ throwErrorp "Empty..."

else do fromCapT (QState WritePerm) $ putp (tail queue)
return (head queue)

Recall from Section 2.4 the example of exception interference. Now the consume func-
tion can catch the exceptions it is interested in, while exceptions thrown by dequeueEx

will simply pass-through. Actually, it is not possible for process to catch those excep-
tions unless the QError capability is shared from the Queue module.

consume :: (MonadStateP QState [Int ] m,MonadError String m,

MonadErrorP QError String m)⇒ m Int

consume = do x ← dequeueEx

if (x < 0) then throwError“Process error ′′

else return x

process :: (MonadStateP QState [Int ] m,MonadErrorP QError String m,

MonadError String m)⇒ Int → m Int

process val = consume ‘catchError ‘ (λe → return val)

Consider a debug function in a module that has access to the QError capability
with permission implying CatchPerm . Then, debug can define a custom handler:

debug val = fromCapT (QError CatchPerm) $
process val ‘catchErrorp‘ (λe → error "...")

Finally, for cases where the client is not trusted and cannot catch the exception, we
can export a function dequeueErr, that reraises the error using the QError capability:

dequeueErr :: (MonadStateP QState [s ] m,MonadErrorP QError String m)⇒ m s

dequeueErr = fromCapT (QError CatchPerm) $ dequeueEx ‘catchErrorp‘ error

5 Related Work

Extensible effects (EE) [9] proposes an alternative representation of effects that is
not based on monads or monad transformers, that still subsumes the MTL library by
providing a similar API. EE presents a client-server architecture where an effectful
operation is requested by client code and is then performed by a corresponding han-

dler. The internal implementation of EE uses a continuation monad, Eff , to implement
coroutines, along with a novel mechanism for extensible union types. An effectul value
has type Eff r where r is a type-level representation, based on the novel union types,
of the effects currently available; thus defining a type-and-effect system for Haskell. EE
does not describes any mechanism for restricting access to effects. Any effect available
in the type-level tracking of effects is available to any component. To add two copies of
the same effect, the user is required to define a wrapper using a newtype declaration.



The Effects [1] library is a effect system implemented in the dependently-typed
language Idris, based on algebraic effect handlers, also as an alternative to monads and
monad transformers. Similar to EE, Effects keeps track of the available effects that can
be used in a heterogeneous list. Performing an effectful operation requires a proof that
the given effect is indeed available, but such proof is automatically generated if the
effect is available. As with EE, Effects do not address the issue of controlling the access
to effects. Any available effect can be used by any part of the system; and references
to copies of a same effect are available (e.g.two integer states) are disambiguated using
labels in the effect-tracking list.

Effect capabilities are orthogonal to the mechanism used to implement effects. We
have shown how to apply them in the context of monad transformers as a solution to
known interference issues, and indeed the same approach should be applicable to other
approaches like EE and Effects.

6 Future Work

We identify several venus for future work. A first one, regarding safety, arises from
the fact that we have ignored a number of Haskell features that defeat the integrity of the
type system. For instance, module boundaries can be violated using Template Haskell
or the GeneralizedNewtypeDeriving language extension, or generic programming. Re-
cently, Safe Haskell [24] has been proposed as an extension to Haskell, implemented
in GHC (as of version 7.2). Safe Haskell protects referencial transparency and module
boundaries by disabling the use of these unsafe features. Because the privacy of capa-
bilities relies on effective module boundaries, we plan to integrate the effect capabilities
library as an extension of Safe Haskell.

A second line of work aims to lower the amount of boilerplate code that is re-
quired, like the instances of Capability and Channel classes. This situation can be
improved using generic programming (e.g.using the GHC .Generics library), to pro-
vide default implementations for the receive and attenuate functions. This is already
done in the downloadable implementation. A complementary approach is using Tem-
plateHaskell [22], a template meta-programming facility for Haskell.

Another line of work concerns the integration of capabilities with tagged monads. In
the model, each protected layer of the monad stack must be labeled with the capability
namespace to which it is bound. This is similar to how a layer in a tagged monad setting
must possess a tag in order to enable tag-directed type class resolution. The idea is to
use the capability type constructor for both purposes at the same time; thus benefitting
from the robustness with respect to the layout of the monad stack, provided by tagged
monads, in addition to controlling access to each layer.

Finally, we are interested in studying effect capabilities for other effects, like non-
determinism, concurrency, continuations, and particularly I/O. Currently, access to I/O
operations through the IO monad has no granularity. Using effect capabilities we can
split access into several categories (e.g. file access, network access, etc.).
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