2,061 research outputs found

    Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    Get PDF
    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology. © 2014 Erwin et al

    A neural network based model effectively predicts enhancers from clinical ATAC-seq samples.

    Get PDF
    Enhancers are cis-acting sequences that regulate transcription rates of their target genes in a cell-specific manner and harbor disease-associated sequence variants in cognate cell types. Many complex diseases are associated with enhancer malfunction, necessitating the discovery and study of enhancers from clinical samples. Assay for Transposase Accessible Chromatin (ATAC-seq) technology can interrogate chromatin accessibility from small cell numbers and facilitate studying enhancers in pathologies. However, on average, ~35% of open chromatin regions (OCRs) from ATAC-seq samples map to enhancers. We developed a neural network-based model, Predicting Enhancers from ATAC-Seq data (PEAS), to effectively infer enhancers from clinical ATAC-seq samples by extracting ATAC-seq data features and integrating these with sequence-related features (e.g., GC ratio). PEAS recapitulated ChromHMM-defined enhancers in CD14+ monocytes, CD4+ T cells, GM12878, peripheral blood mononuclear cells, and pancreatic islets. PEAS models trained on these 5 cell types effectively predicted enhancers in four cell types that are not used in model training (EndoC-βH1, naïve CD8+ T, MCF7, and K562 cells). Finally, PEAS inferred individual-specific enhancers from 19 islet ATAC-seq samples and revealed variability in enhancer activity across individuals, including those driven by genetic differences. PEAS is an easy-to-use tool developed to study enhancers in pathologies by taking advantage of the increasing number of clinical epigenomes

    Predicting enhancer regions and transcription factor binding sites in D. melanogaster

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 71-75).Identifying regions in the genome that have regulatory function is important to the fundamental biological problem of understanding the mechanisms through which a regulatory sequence drives specific spatial and temporal patterns of gene expression in early development. The modENCODE project aims to comprehensively identify functional elements in the C. elegans and D. melanogaster genomes. The genome- wide binding locations of all known transcription factors as well as of other DNA- binding proteins are currently being mapped within the context of this project [8]. The large quantity of new data that is becoming available through the modENCODE project and other experimental efforts offers the potential for gaining insight into the mechanisms of gene regulation. Developing improved approaches to identify functional regions and understand their architecture based on available experimental data represents a critical part of the modENCODE effort. Towards this goal, I use a machine learning approach to study the predictive power of experimental and sequence-based combinations of features for predicting enhancers and transcription factor binding sites.by Rachel Sealfon.S.M

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    Analysis, Visualization, and Machine Learning of Epigenomic Data

    Get PDF
    The goal of the Encyclopedia of DNA Elements (ENCODE) project has been to characterize all the functional elements of the human genome. These elements include expressed transcripts and genomic regions bound by transcription factors (TFs), occupied by nucleosomes, occupied by nucleosomes with modified histones, or hypersensitive to DNase I cleavage, etc. Chromatin Immunoprecipitation (ChIP-seq) is an experimental technique for detecting TF binding in living cells, and the genomic regions bound by TFs are called ChIP-seq peaks. ENCODE has performed and compiled results from tens of thousands of experiments, including ChIP-seq, DNase, RNA-seq and Hi-C. These efforts have culminated in two web-based resources from our lab—Factorbook and SCREEN—for the exploration of epigenomic data for both human and mouse. Factorbook is a peak-centric resource presenting data such as motif enrichment and histone modification profiles for transcription factor binding sites computed from ENCODE ChIP-seq data. SCREEN provides an encyclopedia of ~2 million regulatory elements, including promoters and enhancers, identified using ENCODE ChIP-seq and DNase data, with an extensive UI for searching and visualization. While we have successfully utilized the thousands of available ENCODE ChIP-seq experiments to build the Encyclopedia and visualizers, we have also struggled with the practical and theoretical inability to assay every possible experiment on every possible biosample under every conceivable biological scenario. We have used machine learning techniques to predict TF binding sites and enhancers location, and demonstrate machine learning is critical to help decipher functional regions of the genome
    • …
    corecore