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Abstract

Identifying regions in the genome that have regulatory function is important to the
fundamental biological problem of understanding the mechanisms through which a
regulatory sequence drives specific spatial and temporal patterns of gene expression in
early development. The modENCODE project aims to comprehensively identify func-
tional elements in the C. elegans and D. melanogaster genomes. The genome- wide
binding locations of all known transcription factors as well as of other DNA- binding
proteins are currently being mapped within the context of this project [8]. The large
quantity of new data that is becoming available through the modENCODE project
and other experimental efforts offers the potential for gaining insight into the mech-
anisms of gene regulation. Developing improved approaches to identify functional
regions and understand their architecture based on available experimental data rep-
resents a critical part of the modENCODE effort. Towards this goal, I use a machine
learning approach to study the predictive power of experimental and sequence-based
combinations of features for predicting enhancers and transcription factor binding
sites.
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Chapter 1

Introduction

Development requires the spatial and temporal coordination of complex patterns of

gene expression. Identifying the regions in the genome that have regulatory func-

tion is important to understanding the mechanisms through which a given regulatory

sequence drives a specific pattern of gene expression in early development. The mod-

ENCODE project is a large scale multicenter collaboration directed towards com-

prehensively identifying functional elements in the C. elegans and D. melanogaster

genomes. The genome-wide binding locations of all known transcription factors as

well as of other DNA-binding proteins are currently being mapped within the context

of this project [8]. Developing improved approaches to identify functional regions and

to understand their architecture based on available experimental data represents a

critical part of the modENCODE effort. Towards this goal, I use a machine learning

approach to study the predictive power of experimental and sequence-based combi-

nations of features for predicting enhancers and transcription factor binding sites.

I have pursued an integrative approach to enhancer prediction that leverages the
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wealth of available experimental data on chromatin marks and transcription factor

binding. Using a supervised learning framework, I have identified combinations of

bound transcription factors, chromatin marks, chromatin-associated factors, motifs,

and sequence conservation features that are characteristic of the enhancers in the

CAD database, a compendium of experimentally validated enhancers [55]. I find that

including multiple feature types improves the power of the classifier relative to using

any individual class of features. The improvement in classifier performance using

combinations of types of features relative to any individual feature type suggests that

each class of functional elements plays distinct yet necessary roles in defining enhancer

regions in the cell.

I have also applied supervised learning methods for predicting transcription factor

binding locations based on combinations of regulatory motifs. For each experiment in

a compendium of ChIP-chip studies, I constructed a classifier to distinguish between

regions bound by the given factor and regions bound by any other factor. For each

factor, I compared the performance of subsets of enriched and depleted motifs, and

examined the improvement in classifier performance as individual motifs are added

to the feature set. While the results differ across factors, I found that combinations

of features typically outperformed individual motifs, and predictive power increased

when depleted motifs were included as features. This result suggests that binding

of an individual transcription factor at a given site may be highly dependent on the

local combination of bound factors, which provide both synergistic and antagonistic

influences.



Chapter 2

Experimental Datasets and

Biological Background

In this thesis, I perform integrative analysis on multiple data types. This chapter

describes the data sources included in the integrative analysis.

2.1 Data compendium

A compendium of ChIP-chip studies of transcription factors and other DNA-binding

proteins was assembled (Appendix A). This compendium includes both new data

produced as part of the modENCODE effort and previously published experimental

results. There are a total of 196 experiments in the compendium, including data

on the binding of 77 distinct proteins at a variety of time points throughout the fly

developmental cycle.

Additionally, 185 chromatin mark timecourse experiments were available from
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the White group as part of the modENCODE effort (Appendix A), and 52 chromatin

mark timecourse experiments were performed by the Karpen group (Appendix A).

The White chromatin timecourse includes data on six histone marks at twelve devel-

opmental stages, and also contains a timecourse of the binding of the CBP protein

and of PolII. The Karpen dataset includes information on 25 histone variants, as well

as several other proteins, in BG3 and S2 cells.

2.2 Drosophila life stages and cell lines

The experimental compendium includes data gathered in multiple life stages and cell

lines in the Drosophila embryo.

2.2.1 Drosophila embryogenesis

The early development of D. melanogaster has been subdivided into 17 stages (2.2.1)

[6]. These stages are commonly used to refer to the parts of Drosophila development.

In stages 1 and 2 of Drosophila development, the nuclei divide and migrate to the

periphery of the embryo. However, cells do not form at this stage. During stages 3

and 4, five nuclei move to the surface of the embryo's posterior pole, and are enclosed

in cell membranes, forming the pole cells. The pole cells will generate the gametes of

the adult fly. In the fifth stage, cellularization occurs. At this stage, all of the cells

have the same appearance and shape.

At the sixth stage, gastrulation begins. During gastrulation, the mesoderm, en-

doderm, and ectoderm layers are segregated. The future mesoderm folds inward to



form the ventral furrow, while the endoderm forms pockets at each end of the ventral

furrow and the pole cells move inward. The cephalic furrow also forms at this stage.

Gastrulation completes during the seventh developmental stage. The cells remaining

at the surface of the embryo are the ectoderm and the amnioserosa.

The eighth stage is marked by the formation of the germ band, a collection of

cells which will form the embryo trunk. The germ band elongates during stage 9.

Also during this stage, neuroblasts begin to differentiate from the ectoderm. During

stage 10, the germ band continues to elongate, and the stomodeum, which will give

rise to the foregut, invaginates. The eleventh stage is also marked by the formation

of segmental boundaries in the embryo. In the twelfth stage, the germ band begins

to retract, and germ band retraction is completed in stage 13. In the fourteenth and

fifteenth stages, epidermal cells flatten and spread dorsally, the midgut closes dorsally,

and the head continues to form. During the sixteenth stage, organs and somatic

muscle tissue become visible; organogenesis continues in the seventeenth stage, which

ends with the hatching of the embryo.

2.2.2 Cell lines

The experimental compendium includes studies performed in Drosophila cell lines de-

rived from multiple cell types and developmental stages. Transcription factor binding

has been mapped in multiple distinct cell lines, including cell lines derived from the

nervous system, a blood cell line, and embryonic cell lines (2.2.2).
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2.3 ChIP-chip and ChIP-seq assays

The experimental compendium includes both ChIP-chip and ChIP-seq assays. Both

ChIP-chip and ChIP-seq are powerful techniques for identifying the genome-wide

binding locations of a protein of interest. In ChIP-chip, proteins are first crosslinked

to the DNA by treating nuclei with formaldehyde. The DNA is fragmented, and DNA

segments bound by the protein of interest are isolated by immunoprecipitation with

an antibody specific to the protein. The bound DNA is unlinked from the associated

protein, isolated, and amplified using the polymerase chain reaction. The DNA is

then hybridized to arrays tiled with genomic regions, so that the genomic location of

the bound fragments can be identified [7]. In ChIP-seq, after immunoprecipitation of

the protein of interest, the bound DNA is extracted and sequenced directly, and the

sequence reads are mapped to the genome.

2.4 Histone marks

In the nucleus, DNA is wound around nucleosomes, which are composed of two copies

of each of four distinct histone subunits. The tails of the histones project outward

from the nucleosome surface. These histone tails are subject to a variety of post-

translational modifications which regulate chromatin accessibility and transcriptional

activity. Modifications include acetylation, methylation, phosphorylation, ubiquitiny-

lation and sumoylation[7].

Distinct histone modifications are associated with distinct functional regions and

states. Some marks, such as H3K9 acetylation and H3K4 methylation, are associ-
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ated with active regions, while other marks, including H3K9 methylation and H3K27

methylation, are associated with repressed chromatin [31. Heintzman et al. found that

H3K4 monomethylation is associated with enhancer regions, while H3K4 trimethy-

lation is associated with active promoters, but not with enhancers, in human HeLa

cells [20].



Table 2.1: Stages
muenster.de)

of Drosophila Embryogenesis (from http://flymove.uni-

Stage] Time Developmental events
1 0-0:25 h Begins when the egg is laid;

ends after 2 cleavage divi-
sions complete

2 0:25-1:05 h Cleavage divisions 3-8
3 1:05-1:20 h Ninth nuclear division; po-

lar bud formation
4 1:20-2:10 h Syncytial blastoderm stage;

blastoderm nuclei perform
final 4 nuclear divisions;
pole cells form.

5 2:10 - 2:50 h Cellularization; blastoderm
stage

6 2:50-3 h Early gastrulation; forma-
tion of ventral furrow and
cephalic furrow

7 3:00-3:10 Gastrulation completes
8 3:10-3:40 h Germ band extension
9 3:40-4:20 h Germ band elongation
10 4:20-5:20 h Germ band continues elon-

gating; formation of sto-
modeum

11 5:20-7:20 h Segmentation
12 7:20-9:20 h Shortening of germ band
13 9:20-10:20 h Completion of germ band

shortening
14 10:20 - 11:20 h Head involution and dorsal

closure
15 11:20-13:00 Dorsal closure; head invo-

lution continues; beginning
of condensation of ventral
nerve cord

16 13:00 - 16:00 h Differentiation; somatic
musculature, sensory or-
gans, and heart become
visible

17 16:00 - 22:00 h Organogenesis completes;
stage ends with hatching of
embryo



Table 2.2: Drosophila cell lines

CL.8 larval imaginal wing disc
BG3 central nervous system of D. melanogaster 3rd instar larvae [45]
Kc embryonic
Mbn2 hemocyte
S2 embryonic
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Chapter 3

Cis-regulatory module prediction

3.1 Mechanism of action of CRMs

Gene expression is often modulated by genomic regions known as enhancers or cis-

regulatory modules (CRMs). These may be located far from the genes that they

regulate. CRMs are portions of DNA that interact with transcription factors to reg-

ulate a modular portion of the spatiotemporal expression pattern of a gene. CRMs

have been defined experimentally by their ability to drive tissue-specific gene expres-

sion in transgenic studies, and computationally predicted by their increased sequence

conservation in multiple related species, by their abundance of regulatory motif in-

stances, and by specific signatures of chromatin marks and of bound proteins. A

CRM may be located many thousands of base pairs away from the gene that it reg-

ulates, in an intron, in the coding sequence, or following the 3' end of the coding

sequence [24]. Understanding which portions of the genome have regulatory function

is both an important and a difficult step towards understanding the regulatory logic
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that drives gene expression.

Several mechanisms of action have been suggested by which CRMs control the

pattern of expression of genes that may be located many kilobases away. The most

commonly accepted model suggests that enhancer regions physically interact with

the target promoter by looping of the intervening sequence. For example, chromatin

capture studies showed that the androgen receptor loops from the enhancer to the

promoter of the prostate-specific antigen (PSA) gene when the gene is activated.

ChIP-chip studies found similar bound proteins, including androgen receptor, PolII

and CBP, at the enhancer and promoter regions, perhaps because the proteins are

crosslinked to both proximal sequences [47]. Another suggested mechanism, the DNA

scanning model, involves tracking of transcription activators from enhancer to pro-

moter regions. According to this model, a transcription factor complex assembles on

a CRM, and then slides along the DNA sequence until it reaches the promoter of the

target gene. This model could explain the activity of insulator regions, which would

function to block the sliding DNA-protein complex. However, the scanning model

has difficulty explaining the action of enhancers that skip over intervening promoters

to regulate distant target genes, and could not explain the action of enhancers that

regulate expression of a target gene on a different chromosome [24]. Intermediate

mechanisms such as facilitated tracking, in which the enhancer loops part of the way

to the promoter and tracks the rest of the way, and linking, in which a series of

shorter loops form between the enhancer and the promoter to bring the enhancer

region closer to the promoter, have also been suggested [52].

Two general paradigms for enhancer architecture have been proposed. In the
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enhanceosome model, the precise order, number, and arrangement of bound proteins

is crucial in determining the regulatory output of the module. The billboard model

proposes that enhancers function as flexible regulatory units in which the output of

the module depends on the identity and number of binding sites, but not on their

exact arrangement. The human interferon-# enhancer is the canonical example of a

CRM with enhanceosome architecture, in which the precise spacing and arrangement

of binding sites is critical to its overall function [44]. Comparative genomics studies of

enhancers, which have revealed enhancers in related species with conserved regulatory

function but divergent number and arrangements of binding sites, provide support

for the billboard model of enhancer function [5].

3.2 Enhancer Gold Standard

Applying machine learning approaches to enhancer prediction requires the use of a

gold standard for training. I used the CRM Activity Database (CAD) [55] as a gold

standard. CAD is a a compendium of experimentally validated enhancers, assembled

from a literature review, recent experimental results [55], and the REDFly database

of enhancers [18]. CAD contains 525 non-redundant CRMs (Table 3.2).

3.3 Previous approaches to CRM prediction

The majority of previous approaches to predicting enhancer regions are unsupervised

methods based on clustering of transcription factor binding sites. Several methods
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Table 3.1: Most Common Tissue Annotations in CAD
blastoderm 92
dorsal mesothoracic disc 53
embryonic ventral nervous system 47
ectoderm 39
somatic muscle primordium 34
trunk mesoderm primordium 34
embryonic/larval somatic muscle 33
ventral thoracic disc 31
mesoderm anlage in statu nascendi 29
eye disc 27
visceral muscle primordium 26
ectoderm anlage 24
embryonic epidermis 24
ectoderm anlage in statu nascendi 22
embryonic/larval visceral muscle 22
amnioserosa 19
trunk mesoderm anlage 18
trunk mesoderm anlage in statu nascendi 17
ventral ectoderm anlage in statu nascendi 17
peripheral nervous system 15
ventral ectoderm primordium 15

(Ahab, Cister, Cis-analyst) require as input known transcription factor binding site

sequences or position weight matrices in order to find regions enriched in clusters of

binding sites [37, 12, 2]. Sinha et al.'s Stubb algorithm combines transcription factor

binding site position weight matrix information with sequence conservation to identify

clusters of conserved transcription factor binding sites [431. Other approaches (Argos,

CisModule) identify both likely transcription factor binding sites and cis-regulatory

modules by searching for sequences with short, repeated words [37, 54]. PFR-searcher

identifies clusters of conserved, repeated words, while CisPlusFinder predicts cis reg-

ulatory modules by locating clusters of perfectly conserved, ungapped subsequences

in noncoding regions [17, 36]. Several supervised learning algorithms (HexDiff, LWF)

22



that distinguish between enhancers and non-enhancer sequences based on word fre-

quencies have also been developed [9, 33]. While these methods have shown success in

small-scale validation studies of predicted enhancers, more comprehensive validation

of these approaches has been hampered by the time consuming and low-throughput

nature of enhancer validation assays. Methods that draw upon the wealth of recently

available biological data are likely to reveal additional enhancer regions that may not

have been detected by previous enhancer prediction approaches.

The properties of enhancer regions differ from the properties of surrounding non-

enhancer regions. Li et al. (2007) compared the properties of known enhancers in

the REDFLY database and control non-enhancer regions. This study noted that en-

hancers have higher GC content, are more highly conserved, and are more likely to

be transcribed then other noncoding regions. They also found that blastoderm en-

hancers, but not necessarily other classes of enhancers, are likely to contain clusters of

transcription factor binding sites. Moreover, genome-wide studies of chromatin mod-

ification and transcription factor binding events have found that specific chromatin

marks and transcription factor binding sites are associated with enhancer regions

[20, 51]. Enhancer regions are associated with H3K4 monomethylation, and with an

absence of H3K4 trimethylation. The acetyltransferase CBP has also been associated

with CRMs by numerous studies [19, 47]. Visel et al. (2009) accurately predicted

tissue-specific expression of enhancers in mice by identifying sites bound by the CBP

homolog p300 in embryonic forebrain, midbrain, or limb [46].

I have developed supervised learning approaches for enhancer prediction that ex-

ploit the enrichment of transcription factor binding events and specific histone marks

23



in enhancer regions. This project differs from previous work in the use of heteroge-

neous experimental data sources (histone modifications, transcription factor binding

events observed in ChIP-chip assays, motifs, and sequence conservation), rather than

purely sequence and conservation-based information, as a feature set to train classi-

fiers. The supervised learning framework also distinguishes this project from most

previous methods for enhancer prediction, which generally employ unsupervised ap-

proaches.

3.4 Enrichment of bound transcription factors and

of histone marks in classes of CRM regions

I performed enrichment analysis to identify the factors and proteins that are most

enriched in each class of enhancer regions. I examined enrichment of binding of all

transcription factors and chromatin marks in the set of enhancers with at least 15

annotated examples in the CAD database (3-1, 3-2, 3-3).

Enrichment was computed according to the following formula:

Enrichment - BI 0F' (3.1)

where |B| is the number of base pairs included in the array background, F n B

is the number of base pairs in the given set of enhancers that is included in the array

background, IE n F1 is the number of enhancer base pairs bound by the factor, and

|B n F| is the total number of base pairs that are bound by the factor.
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Enrichment of bound factors varied by enhancer class, Transcription factors whose

binding was most enriched for many enhancer classes are known to be functionally

involved in the development of the related tissue. For example, the factor that is

most enriched in enhancers that drive expression in the dorsal mesothoracic disc is

engrailed, with over tenfold enrichment above background. In engrailed mutants, the

dorsal mesothoracic disc fails to develop normally; instead, it takes on the charac-

teristics of the anterior region of the mesothoracic disc [14]. The experiments most

enriched in known blastoderm enhancers probed factors known to be involved in

blastoderm development (such as knirps, tailless, Schnurri, and bicoid) during the

blastoderm stage (2-3h). Enhancers that drive expression in somatic muscle tissue

are most enriched in muscle-associated transcription factors, including bagpipe, my-

ocyte enhancer factor-2, biniou, and twist. Binding of tll, which controls genes that

promote normal development of the head and posterior of the embryo, is among the

transcription factors most enriched in ectoderm enhancers. The transcription fac-

tor whose binding is most enriched in peripheral nervous system enhancers is twist;

twist knockouts have mutant nervous system phenotypes [21]. The transcription fac-

tor whose binding is most enriched in enhancers that drive expression in the trunk

mesoderm primordium is tinman, which is functionally implicated in mesodermal

patterning [22].
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cates factors whose binding is depleted, while red indicates factors whose binding is
enriched.
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3.5 CRM prediction by knowledge-based filtering

I applied a filtering method to identify potential enhancer regions based on the known

characteristics of enhancers. I segmented the genome into 100-base-pair windows, and

identified regions with the following characteristics typical of enhancer regions:

" absence of H3K4 trimethylation, a chromatin mark which is typical of promoters

" presence of H3K4 monomethylation, a chromatin mark which is typical of en-

hancers

" CBP binding

" presence of transcription

After merging adjacent regions, there are 545 regions of the genome meeting these

criteria. These regions overlap ten of the known enhancers in the CAD database, and

are enriched in intronic regions, depleted in coding and promoter sequences (3-4).
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3.6 Integrating multiple data sources to predict

novel blastoderm enhancers

Since enhancer regions are enriched in the binding of many distinct types of transcrip-

tion factors and chromatin marks, combining multiple data types to create an inte-

grated predictor for enhancer regions is likely to result in more accurate predictions

than identifying enhancer regions based on any individual data source in isolation.

In order to predict novel enhancer regions, I combine chromatin marks, transcription

factor binding data, and conservation within a supervised learning framework.

Because of the availability of early embryonic-stage experimental data and of

known blastoderm enhancers, I construct a predictor for blastoderm-stage enhancer

regions. I segment the genome into 1203813 nonoverlapping 100-base pair windows,

and construct a feature vector for each window based on the counts of transcription

factor binding events, chromatin marks, and sequence conservation based on phast-

Cons score, a sequence conservation metric [42]. As a positive gold standard, I use

the union of the set of blastoderm enhancers in the CAD database with the set of

blastoderm enhancers compiled by Papatsenko et al [35, 55]. These gold standards

represent a compendium of experimentally validated enhancer regions, and contain

140 distinct enhancer regions spanning 2196 windows. All other windows were taken

to be negative examples.

To explore the performance of classifiers constructed using various subsets of fea-

tures, I create a classifier using all of the experimental features in the compendium,

as well as various feature subsets. Feature subsets include the five transcription factor
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binding experiments most enriched in known blastoderm enhancers and the five tran-

scription factor binding experiments most enriched in known blastoderm enhancers

as well as the five experiments most depleted in known blastoderm enhancers. I also

examined the performance of feature subsets including only a single experiment for

each transcription factor and chromatin mark. (Since many factors were examined in

multiple experiments, including only one experiment per factor reduces the number

of features). I selected the representative experiments and chromatin marks on the

basis of experimental stage (selecting an experiment for each factor that was closest to

the blastoderm stage, 71 features), highest information gain with known blastoderm

enhancers (105 features), and greatest enrichment in known blastoderm enhancers

(105 features).

Selecting subsets of features results in better performance than including all fea-

tures. I examine performance with a variety of feature sets (3-5). Including only

the 5 transcription factor binding experiments that are most enriched in the set of

known blastoderm enhancers as features, the performance of the classifier based on

six-fold crossvalidation is almost as good as when the full set of features is included.

Including the 5 transcription factors most depleted in the set of known enhancers

further improves the power of the classifier. When only one experiment per unique

transcription factor is included in the feature set, the classifier power improves still

further. Unique transcription factor feature sets were constructed by including the

most stage-appropriate experiment only; the experiment with the highest information

gain for the set of known enhancer regions; and the experiment that is most enriched

in known enhancer regions. Based on six-fold cross-validation, the performance of the
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Figure 3-5: Performance of feature subsets for enhancer prediction.

classifier is highest using the classifier constructed from the unique experiments that

are most enriched in enhancer regions, as well as chromatin mark and conservation

data.

A number of intriguing observations emerged from this analysis. Firstly, although

chromatin marks or chromatin remodeling factors have poor predictive power in iso-

lation, combining chromatin mark and chromatin factor binding data with TF bind-

ing data substantially improved classifier performance. This result suggested that

separate classes of functional elements play distinct and important roles in defining

enhancer regions. I examined the set of true positive windows that are among the

top 100 predictions of the classifier including chromatin marks as well as transcrip-

tion factor binding data, but not among the top 500 predictions of the classifier using
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Figure 3-6: Performance of individual feature types for enhancer prediction.

transcription factor binding data only. There are 14 such windows from three distinct

parts of the genome, compared with six true positives among the top 100 predictions

of the classifier using only transcription factor binding data, but not among the top

500 predictions of the classifier using all data types. Windows correctly classified as

positives by the classifier including chromatin mark features, but not by the classifier

containing transcription factor binding features only, contained multiple chromatin

marks. The number of false positive predictions that are present in the top 100 predic-

tions of one classifier but absent from the top 500 predictions of the other are similar

for the classifier using only transcription factor binding features and the classifier

using all feature types (5 for the former, 6 for the latter).

Enhancer predictions were validated using cross-validation, as well as by exam-
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ining top predictions for characteristics of known enhancer regions. To ensure that

adjacent windows (which are likely to have similar feature sets, since experimentally

determined transcription factor-bound regions and chromatin marks are generally

longer than the 100-base pair window) are placed in the same crossvalidation fold,

the classifier was trained on enhancer regions in five of the six chromosomes (chr2L,

chr2R, chr3L, chr3R, chr4, chrX), and tested on the remaining chromosome. Six-fold

cross-validation confirmed the ability of the classifier to recover known enhancer re-

gions while excluding regions that are not likely to be enhancers. Top predictions

overlapped recently validated enhancers more than a negative set of previously pre-

dicted enhancers for which experimental validation failed [55]. Moreover, predicted

enhancers were enriched near genes patterned in the blastoderm, and top predictions

included a higher percentage of blastoderm-patterned genes than regions bound by

most individual transcription factors.

3.7 Tissue-specific CRM prediction

3.7.1 Constructing tissue-specific training sets

Since enhancers that drive gene expression in distinct tissues are enriched in distinct

bound factors, I examined the ability of a supervised classification approach to predict

tissue-specific expression. For each of the 21 IMAGO categories with at least fifteen

annotated enhancers, I extract the central 1500 base pairs of each enhancer in the

category. I choose size-matched random negative regions, construct a feature vector
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consisting of overlap with bound transcription factors, conserved motifs, and chro-

matin marks, and learn a classifier to distinguish between the negative and positive

regions.

One concern with setting up the prediction in this way is overfitting due to ad-

jacent enhancer regions that overlap shared features. To determine if overfitting

occurred due to adjacent enhancer regions overlapping similar or identical sets of

bound regions, I examined the effect of varying the crossvalidation scheme on classi-

fier performance. I split the training examples into test and training sets using either

random assignments, or in genomic order, with the first half of enhancers constituting

the training set and the second half comprising the test set. I also examined the per-

formance of fivefold and tenfold crossvalidation, with regions assigned randomly to

folds. In ten of the 21 IMAGO categories, the genomic order split had the lowest pre-

dictive power, and in fourteen of the 21 categories, the genomic order split performs

worse than 2-fold crossvalidation with random fold assignments. While the result

does not achieve statistical significance (p=0.09), the result suggests that genomic

proximity of enhancers may result in a small amount of overfitting using this method

when crossvalidation fold assignments are random (3-8).

3.7.2 Comparing the performance of classifier types

I then tested the performance of a variety of classifier types and parameter settings

(SVM, C4.5 decision tree, Logistic regression, and Naive Bayes classifiers). For the lo-

gistic regression classifier, I tested ridge parameter values 0.1, 1, 10, and 100. (Higher
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Figure 3-8: Effect of crossvalidation scheme on classifier performance

values for the ridge parameter encourage low feature coefficients and control overfit-

ting). The classifier achieved the best performance with ridge parameter of 100 in

fifteen of the 21 categories when the ridge parameter was set to 100 (using the ge-

nomic split), and in fourteen of 21 categories using ten-fold crossvalidation. For the

SVM classifier, I examined performance using all combinations of kernel degree 1,2,3,4

and slack parameter C set to 0.1, 1, 10, and 100. (Increasing the slack parameter C

increases the penalty for errors). In general, linear or second-degree kernel and slack

penalty of 0.1 showed the best performance). For an RBF kernel, I tested gamma set

to 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 with C set to 1. (Lower values of gamma

cause a higher-width kernel, resulting in a smoother classifier). The best performance

was achieved with an intermediate setting for gamma, gamma=0.01. High gamma

values overfit the training data and assign all test data to the same class, while low
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values of gamma fail to separate the training data. For the C4.5 decision tree, I

examined a range of values for the parameters M (minimum number of examples in a

leaf node) and C (pruning confidence, with lower values of C causing heavier pruning

of the tree), and found that the highest predictive power was for M=8 in 10 of the

21 categories. The performance of the classifier was stable across the various tested

values of C. Across the classifiers tested, the best performance was achieved using the

logistic regression classifier in 6 of the 21 IMAGO categories, and the Naive Bayes

classifier in 7 of the 21 IMAGO categories.

3.7.3 Optimizing predictor parameters

To predict novel enhancer regions, I constructed logistic regression classifiers trained

on known enhancers. As a training set, I used enhancers in the CAD database [55] as

positive examples, and randomly selected size-matched regions as negative examples.

I initially selected the thirteen controlled vocabulary terms with the greatest number

of annotated known enhancers in the CAD database for analysis. I also defined several

aggregate categories by combining related terms.

The 592 features provided as input to the classifier included experimental (Chip-

ChIp and Chip-seq) and computational (conserved motifs) features, comprising 189

chromatin mark datasets, 85 chromatin remodeling factor datasets, 171 conserved

motifs, and 147 transcription factor interaction site datasets.

I performed logistic regression using the weka machine learning library (version

3.6.1) [49] after optimization of regression parameters. To determine the logistic
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regression classifier ridge parameter, I compared the area under the curve (AUC) with

values ranging from 0.01, 0.1, 1, 10, 100 under 10-fold crossvalidation on the training

set. A ridge parameter setting of 100, which showed the highest AUC across tissue

types, was selected for further analysis (3-9). The adequate number of randomly

selected negative genomic regions to provide consistent results was determined by

comparing the coefficient of variation of the AUC for 500 trials using between 100

and 2000 random negative regions, with random regions selected separately for each

trial (3-10). Based on this analysis, negative training sets of 1000 bp were used for

further analysis. In order to determine the optimum-sized window for training, I

compared the AUC obtained for each category with windows sizes ranging from 200

to 2500, selecting 500 bp windows as having the best performance for most tissues

(3-11).

To examine the performance of feature subsets, I compared the AUC values ob-

tained using the following feature groups: chromatin timecourse features only, chro-

matin cell line features only, ChIP-features only, motif features only. Enhancer regions

in the training data that overlapped within a 2500-base-pair window were excluded.

I observed that the performance of chromatin timecourse features only and of chro-

matin cell line features only was better than that of any individual group of features

in isolation.

I also investigated the effects of feature selection on classifier performance to deter-

mine whether exclusion of low information gain features would improve classification.

The information gain of each feature was computed on half the training set (selected

from half the genome), and performance was evaluated using the top 5 to 100 features
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Figure 3-12: Predicted enhancer enrichment in REDfly database. The predicted
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the CAD database training set.

on the remaining half of the test dataset. I also examined the effect of merging fea-

tures, so that the value of the ith entry in the feature vector for a given transcription

factor is the sum of the number of time points and cell lines for which the transcrip-

tion factor binds the region of interest. This analysis showed that the full feature set

displays a higher AUC than any of the feature subsets examined.
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3.7.4 Predicting novel tissue-specific enhancer regions

To predict novel enhancers, a logistic regression classifier was trained on the known

enhancers of each tissue category using the optimized parameter values. The genome

was tiled with 500-base pair windows, with each window offset by 100 base pairs,

and the classifier was applied to all windows. To assign a threshhold for enhancer

predictions, I estimated the false discovery rate (FDR) for the predictions. The total

number of enhancers in the genome was assumed to be comparable to the number of

genes in the genome. The number of true enhancers in each tissue category is likely

to differ; to estimate this number, I scaled by the fraction of enhancers in CAD in

a given tissue category. I computed the FDR for the total number of enhancers as

follows: I compute the FDR on the training set, which has ratio r of true positives to

false positives, and scale the FDR based on r', the estimated ratio of true positives

to false positives in the genome. Thus, if the estimated FDR based on the training

set is FP/(TP+FP), the scaled estimate of the FDR is: (/r) For each tissueTP±FP(r/r) *

category, we select as a cutoff threshold the enhancers that have FDR threshold less

than 0.5. Three tissue categories (all, blastoderm, and nervous system aggregate)

met this threshold, and the number of enhancers meeting the cutoff is 26807 (all

enhancers), 6263 (blastoderm), and 40 (nervous system aggregate).

Downstream analysis supported the biological significance of the enhancer predic-

tions. The genomic distribution of the predicted enhancer regions was examined, with

most predicted enhancers located in introns and in intergenic regions. For the pre-

dicted blastoderm enhancers, the fraction of predicted enhancers located near genes

44



known to be patterned in the blastoderm embryo was examined. The most confident

predictions were enriched in genes that are patterned in the blastoderm. Finally,

the ability of the predictions to recover enhancers included in the REDFly database

(downloaded from redfly.ccr.buffalo.edu/ on 1/19/10) but not in CAD was examined.

Top predictions were also enriched in known enhancers not included in the CAD

database (3-12).

3.8 Conclusions

This analysis suggests that multiple data types contribute to predicting enhancer lo-

cations, with conserved motifs, chromatin marks, transcription factor binding sites,

and chromatin remodeling factors all improving classifier power. Enhancers are pre-

dicted by a combination of genetic and epigenetic elements, indicating that multiple

types of features combinatorially define enhancer regions. This complexity may have

arisen to provide the precision needed to control tissue-specific, stage-specific, and

stimulus-specific expression of individual transcripts.

Enhancers in different tissue classes are enriched in the binding of distinct tran-

scription factors, and I constructed tissue-specific enhancer predictions by train-

ing on known enhancers in distinct tissue categories. I predict 26807 general en-

hancers, 6263 blastoderm enhancers, and 40 nervous system enhancers at a false

discovery rate of 0.5. Downstream analysis supported the biological significance of

predicted enhancers, indicating that predicted blastoderm enhancers were enriched

near blastoderm-patterned genes and in known enhancers not included in the CAD
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Chapter 4

Predicting Transcription Factor

Binding

4.1 Background

Understanding the relationship between genome sequence and the observed genome-

wide binding locations of transcription factors is an important problem in compu-

tational biology. Additionally, understanding the range of sequence motifs that are

positively or negatively correlated with binding of specific transcription factors may

provide insight into co-operative and competitive interactions among transcription

factors.

Previous studies have successfully applied sequence and motif-based features within

a supervised framework to predict transcription factor binding. For example, Zhou

and Liu (2008) examined a variety of learning methods for predicting the binding of

transcription factors to DNA [53]. Ernst (2010) combined multiple evidence sources
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using logistic regression to predict ChIP-chip binding sites across the human genome

[11]. Using varying combinations and subsets of features, I have predicted binding

of transcription factors within a supervised learning framework. The goals are to

elucidate the feature sets that are most predictive of binding, providing insight into

the combinations of sequence features that are associated with binding of individual

transcription factors and the synergistic and antagonistic interactions among factors.

Transcription factor motifs were obtained from Transfac, Jaspar, and FlyReg

databases, as described in Kheradpour et al (2007) [25]. Motif conservation was

assessed based on conservation of a motif instance in the phylogenetic tree of twelve

Drosophila species [25]. Thus, a motif at 0.5 conservation is conserved through half

of the phylogenetic tree. 304 distinct motifs are included in the full compendium.

4.2 Methods

I constructed a classifier to predict the binding locations of individual transcription

factors based on sequence features. I segmented the genome into 2000-base pair

windows, constructed a feature vector consisting of counts of 7mer motifs in each

window, and predicted transcription factor binding using logistic regression. As a

positive training set, all windows that are bound in a given experiment and contain

at least one motif were used. All windows that are not bound in any experiment by

the factor, but are bound by some factor in at least one experiment and contain at

least one motif, were used as a negative training set. Thus, the classifier learns to

distinguish between regions bound by a given factor at a given timepoint, and regions
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Figure 4-1: Comparison of performance of classifier using motifs conserved at various
confidence levels. The highest median AUC was obtained with motifs conserved at
the 0.2 confidence level

that are never bound by the factor of interest, but are bound by some factor at some

timepoint.

4.3 Predictive power of sequence combinations

I investigated the combinations of features that were most predictive of transcription

factor binding (4-1). Firstly, binding in nearly all experiments was better predicted

by the smaller set of conserved motifs than by the larger set of motifs without conser-

vation information included. This result suggested that including motif conservation

information improves predictive power. The exceptions were experiments on factors

binding low-complexity motifs, like ultrabithorax, and also several experiments that

bound a very small number of regions. Additionally, I compared performance using
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Figure 4-2: Performance of feature subsets. The performance of the classifier using
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most depleted motifs, and the ten most enriched motifs, were examined. The median
AUC when the feature set included both enriched and depleted motifs was higher
than the median AUC when the feature set included enriched motifs only.

various subsets of features, including only the most enriched motif reported by motif

discovery algorithms, the top 5 most enriched motifs, the top 5 most enriched as well

as the 5 least enriched motifs, and the ten most enriched motifs (4-2). I found that

including depleted as well as enriched motifs improved the power of the classifier,

suggesting that this approach may provide insight into antagonistic as well as syn-

ergistic relationships among transcription factors. The result is consistent with the

hypothesis that additional motifs provide information on synergistic and antagonistic

binding, improving predictive power.

I also compared the predictive power of motifs and kmers as features. While for

some factors, motifs were more predictive than kmers, kmers were more predictive

of binding for other factors. In general, when motifs were far more predictive, the
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more predictive of binding for other factors.



Figure 4-4: Features were ranked based on information gain, and classifiers were
constructed by incrementally adding additional features. The performance of the
classifier to distinguish between regions bound by Su(Hw) and by all other factors
reaches nearly its maximum after the first few features are added; for this factor,
performance does not improve when additional features are added.

motif for the factor was high-information content, while when the k-mers were more

predictive, the associated motif was highly repetitive or has low information-content.

Also, real motifs were more predictive of transcription factor binding than shuffled

control motifs, in 117 of 131 experiments (4-3).

I also clustered the motifs using the method described in Xie (2005), grouping

together motifs with high Pearson correlation [50]. Clustering the motifs reduces

the number of features by merging features that represent motifs that are similar. I

clustered motifs whose similarity based on Pearson correlation ranged from 0.4 to 0.9,

at 0.1 increments. However, in 180 of 195 experiments, performance was better using

the full set of motifs than using any clustered subset

Finally, motifs were ranked based on their information gain for each experiment,
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Figure 4-5: Features were ranked based on information gain, and classifiers were con-
structed by incrementally adding additional features. The performance of the classi-
fier to distinguish between regions bound by Trl continues to increase as additional
motifs are added as features.

and the predictive power of the top k motifs was evaluated for each experiment, for

k ranging from 1 to the total number of motifs. The number of features at which

optimal predictive power was achieved varied by experiment and by factor (4-4, 4-5).

Some factors were well predicted by just a few motifs, and little additional predictive

power was gained as more features are added. For some factors, predictive power

began to degrade due to the addition of extra motifs. Su(Hw) is an example of a

factor for which across all experiments studying the factor, the binding was well pre-

dicted with just a few features, while Trl is an example of a factor for which the

binding required many features to reach the optimal predictive power across multi-

ple experiments. Intriguingly, consistent with the computational finding that more

features contribute information towards Trl binding than towards Su(Hw) binding,

in the Drosophila interaction database DroID, Trl has twice the number of physical
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interactions with transcription factors as Su(Hw) (8 interactions vs. 4 interactions).

This result suggests that the larger number of motifs that have predictive power for

Trl relative to Su(Hw) may capture physical interactions between factors that stabilize

or destablize binding.

4.4 Conclusions

The variation in the optimal subset size to predict different factors suggests that there

is a wide range of mechanisms underlying the combined affects of motifs in predicting

factor binding. Binding that is well predicted by just a few motifs may indicate a

factor with highly specific sequence recognition that is well represented by existing

motifs, while binding that requires many motif features to reach optimal predictive

power suggests cooperative or competitive interactions, recognition of multiple dis-

tinct motifs, less specific binding, or sequence specificities that are not well captured

by the existing motif compendium.

Previous studies based on sequence analysis and gene expression have suggested

that expression is controlled via combinations of transcription factor sites [1, 29].

Studies of a mouse strain carrying human chromsome 21 support the hypothesis that

gene expression is determined not by the cellular environment but by differences in

the regulatory sequence [48, 10]. A thermodynamic model in conjunction with stud-

ies of synthetic promoters in yeast suggests that interaction between transcription

factors contributes to binding stabilization and cooperativity [16]. Previously, testing

whether in fact the binding of specific proteins is determined by cooperative motif ef-

54



fects has not been possible. The present study shows using genome-wide experiments

and analysis that positive and negative cooperativity of sequence motifs contributes

directly to determining the probability of transcription factor binding in a eukaryotic

species. These results are a step towards correlating sequence with regulation of gene

expression and help set the stage towards a better understanding of the combinatorial

sequence code underlying regulation.

Sequence analysis and expression-based computational studies, predominantly in

yeast, suggest that relative position, orientation, location relative to transcription ini-

tiation sites, and presence of multiple binding sites may all contribute to the control of

gene regulation. Future studies of the modENCODE data are likely to contribute to a

greater understanding of the detailed mechanism by which DNA sequences determine

transcription factor binding and gene expression.
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Chapter 5

Conclusions

In this thesis, I identify novel enhancer regions in D. melanogaster by integrating

multiple data types, including transcription factor binding site, conservation, and

chromatin mark data. I find that the combination of all data types performs better in

recovering known enhancers than any individual type of data. I also generate tissue-

specific enhancer predictions by training classifiers on sets of known enhancers in

specific tissues. Finally, I predict transcription factor binding sites from combinations

of motifs, and show that for distinct factors, the number of motifs required to achieve

optimal predictive power differ. Also, including both enriched and depleted motifs

contributes to classifier performance, and the optimal number of motifs to reach peak

predictive power differs by factor.

This analysis is relevant in the context of the modENCODE project, which seeks

to generate a comprehensive catalog of all sequence-based genomic elements and has

examined the genome-wide binding of a diverse compendium of proteins as well as

the genome-wide occurrence of multiple histone marks. Previous work to examine the
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relationship between combinatorial transcription factor binding and gene regulation

has relied primarily on sequence analysis[1, 29, 41]. Analysis based on observed

binding of proteins permits a direct examination of the relationships between sequence

elements and observed binding as well as between transcription factor binding and

gene expression. Recent large-scale experiments, which map the genome-wide binding

of proteins and occurrence of histone marks, hold the promise of allowing a better

understanding of the combinatorial code underlying gene regulation.

This work has examined the relationship between combinations of sequence motifs

and transcription factor binding within defined windows of the genome, and gener-

ated a predictor based on diverse data types for enhancer regions. Future directions

include developing methods to link enhancer regions to specific genes, and incorpo-

rating gene expression data to examine the relationship between sequence, observed

binding and gene expression. Examination of finer relationships between sequence and

observed binding, such as the location, spacing, and orientation of sequence motifs,

would facilitate an understanding of the relationship between sequence and expres-

sion. Highly specific, precise, and reproducible gene expression, both in space and

time, is necessary for critical biological processes such as development. Thus, it is

likely that there are subtle relationships between sequence and binding sites relevant

to the control of gene expression that could be elucidated from protein binding data.



Chapter 6

Appendix A

6.0.1 Table 1: Compendium of transcription factor binding

experiments

Table 6.1: Compendium of transcription factor binding experiments

factor timepoint/cell line lab reference

1 BEAF-32 EO-12hr kw [8]

2 BEAF-32 Kc vc [4]

3 BEAF-32 Mbn2 vc [4]

4 BEAF-32 S2 gk [8]

5 CBP EO-4hr kw [8]

6 CTCF BG3 gk [8]

7 CTCF BG3 gk [8]

8 CTCF BG3 gk [8]

9 CTCF BG3 gk [8]

10 CTCF EO-12hr kw [8]

11 CTCF EO-12hr kw [8]

12 CTCF Kc kw [8]

13 CTCF Kc vc [4]

14 CTCF Mbn2 vc [4]

15 CTCF S2 gk [8]

16 CTCF S2 gk [8]

17 CTCF S2 gk [8]

18 CTCF S2 kw [8]

19 CTCF S2 kw [8]



20 CTCF S2 kw [8]

21 Chro BG3 gk [8]

22 Chro CL8 gk [8]

23 Chro Kc gk [8]

24 Chro S2 gk [8]

25 Chro S2 gk [8]

26 Cp190 E0-12hr kw [8]

27 Cp190 Kc vc [4]

28 Cp190 Mbn2 vc [4]

29 Cp190 S2 gk [8]

30 CtBp E0-12hr kw [8]

31 D E0-12hr kw [8]

32 D EO-8hr kw [8]

33 D E2-3hr b [31]

34 DlI EO-12hr kw [8]

35 Dspl E4-12hr cv [40]

36 E(z) E8-16hr kw [8]

37 E(z) S2 gk [8]

38 E2f2 Kc ma [15]

39 EcR L3 kw [8]

40 EcR WPP1O-llhr kw [8]

41 EcR WPP30-33hr kw [8]

42 GATAe E0-8hr kw [8]

43 HP1 S2 gk [8]

44 Kr EO-8hr kw [8]

45 Kr E2-3hr b [28]

46 Kr E2-3hr b [28]

47 Kr Kc kw [8]

48 Mad E2-4hr z [51]

49 Mad E2.5-3.5hr b [31]

50 Med E2.5-3.5hr b [31]

51 Mef2 E10-12hr f [39]

52 Mef2 E10-12hr f [39]

53 Mef2 E2-4hr f [39]

54 Mef2 E2-4hr f [39]

55 Mef2 E4-6hr f [39]

56 Mef2 E4-6hr f [39]

57 Mf2 E6-8hr f [39]

58 Mef2 E6-8hr f [39]

59 Mef2 E8-80hr f [39]

60 Mef2 E8-10hr f [39]

61 Myb Kc ma [15]

62 NELF-B S2 b [27]

63 Nelf-E S2 b [27]



64 O-GlcNAc L3:disc jm [13]

65 Pc BG3 gk [8]

66 Pc EO-16hr rw [26]

67 Pc E4-12hr cv [40]

68 Pc L3:haltere rw [26]

69 Pc S2 gk [8]

70 Sfmbt L3:disc jm [34]

71 Snrl pupae kw [8]

72 Stat92E EO-12hr kw [8]

73 Trl BG3 gk [8]

74 Trl BG3 gk [8]

75 Trl EO-12hr kw [8]

76 Trl E4-12hr cv [40]

77 Trl Kc kw [8]

78 Trl S2 b [31]

79 Trl S2 gk [8]

80 Trl S2 gk [8]

81 Trl S2 gk [8]

82 Ubx EO-12hr kw [8]

83 Ubx E3-8hr kw [8]

84 Ubx E3-8hr kw [8]

85 Ubx E3-8hr kw [8]

86 bab1 EO-12h kw [8]

87 bab1 pupae kw [8]

88 bap E6-8hr f [23]

89 bap E6-8hr f [23]

90 bcd E2-3hr b [28]

91 bcd E2-3hr b [28]

92 bin E10-12hr f [23]

93 bin E10-12hr f [23]

94 bin E12-14hr f [23]

95 bin E6-8hr f [23]

96 bin E6-8hr f [23]

97 bin E8-10hr f [23]

98 bin E8-10hr f [23]

99 brm pupae kw [8]

100 cad AdultFemale kw [8]

101 cad EO-4hr kw [8]

102 cad EO-4hr kw [8]

103 cad EO-4hr kw [8]

104 cad E2-3hr b [28]

105 cad E4-8hr kw [8]

106 cad E4-8hr kw [8]

107 chinmo EO-12hr kw [8]



108 cnc EO-12hr kw [8]

109 da E2-3hr b [31]

110 disco EO-8hr kw [8]

111 dl E2-3hr b [31]

112 dl E2-4hr:Toll10b z [51]

113 en EO-12hr kw [8]

114 en E7-24hr kw [8]

115 eve E1-6hr kw [8]

116 ftz-fl EO-12hr kw [8]

117 ftz E2.5-3.5hr b [31]

118 gro EO-12hr kw [8]

119 gro E0-12hr kw [8]

120 gro EO-12hr kw [8]

121 gsb-n EO-12hr kw [8]

122 gsb-n E7-24hr kw [8]

123 gt E2-3hr b [28]

124 h E0-8hr kw [8]

125 h E2.5-3.5hr b [31]

126 h E2.5-3.5hr b [31]

127 hb E2-3hr b [28]

128 hb E2-3hr b [28]

129 hkb E0-8hr kw [8]

130 hkb E2-3hr b [31]

131 hkb E2-3hr b [31]

132 hkb E2-3hr b [31]

133 insv EO-12hr kw [8]

134 insv E2-6hr kw [8]

135 insv E6-10hr kw [8]

136 inv EO-12hr kw [8]

137 inv E0-12hr kw [8]

138 jumu E0-8hr kw [8]

139 kn EO-12hr kw [8]

140 kni E2-3hr b [28]

141 kni E2-3hr b [28]

142 lin-52 Kc ma [15]

143 mip120 Kc ma [15]

144 mip130 Kc ma [15]

145 mod(mdg4) BG3 gk [8]

146 mod(mdg4) E0-12hr kw [8]

147 mod(mdg4) E8-16hr kw [8]

148 ph-p E4-12hr cv [40]

149 ph-p L3:disc jm [13]

150 pho EO-16hr rw [26]

151 pho E4-12hr cv [40]



152 pho E6-12hr jm [34]

153 pho L3:disc jm [34]

154 pho L3:haltere rw [26]

155 phol E4-12hr cv [40]

156 prd E2.5-3.5hr b [31]

157 prd E2.5-3.5hr b [31]

158 run EO-12hr kw [8]

159 run E2.5-3.5hr b [31]

160 run E2.5-3.5hr b [31]

161 sbb E0-12hr kw [8]

162 sbb E0-4hr kw [8]

163 sens E4-8hr kw [8]

164 sens E4-8hr kw [8]

165 sens E4-8hr kw [8]

166 shn E2.5-3.5hr b [31]

167 shn E2.5-3.5hr b [31]

168 sip1 E2.5-3.5hr b [31]

169 sna E2-3hr b [31]

170 sna E2-3hr b [31]

171 sna E2-4hr:ToIll0b z [51]

172 su(Hw) E0-12hr kw [8]

173 su(Hw) EO-12hr kw [8]

174 su(Hw) Kc vc [4]

175 su(Hw) Mbn2 vc [4]

176 su(Hw) S2 gk [8]

177 su(Hw) S2 gk [8]

178 tin E2-4hr f [30]

179 tin E4-6hr f [30]

180 tin E6-8hr f [30]

181 til E2-3hr b [31]

182 trx E4-12hr cv [40]

183 trx E4-12hr cv [40]

184 trx S2 gk [8]

185 ttk E0-12hr kw [8]

186 twi E2-3hr b [28]

187 twi E2-3hr b [28]

188 twi E2-4hr:Toll10b z [51]

189 twi E2-4hr f [38]

190 twi E2-4hr f [38]

191 twi E4-6hr f [38]

192 twi E4-6hr f [38]

193 twi E6-8hr f [38]

194 z E7.5-9.5hr b [32]

195 zfh1 EO-12hr kw [8]



(Lab key: kw = Kevin White; gk = Gary Karpen; b = Mark Biggin; f = Eileen

Furlong; z = Julia Zeitlinger; vc = Victor Corces; rw = Robert White; ma = David

Macalpine; cv = Giacomo Cavalli; jm = Jurg Muller)

6.0.2 Table 2: Chromatin mark timecourse (Kevin White

group)

Table 6.2: Compendium of chromatin marks (Kevin White group)[8]

factor timepoint/cell line platform

1 CBP AdultFemale Array

2 CBP AdultFemale Seq

3 CBP AdultMale Array

4 CBP AdultMale Seq

5 CBP EO-4hr Array

6 CBP EO-4hr Seq

7 CBP E12-16hr Array

8 CBP E12-16hr Seq

9 CBP E16-20hr Array

10 CBP E16-20hr Seq

11 CBP E20-24hr Array

12 CBP E20-24hr Seq

13 CBP E4-8hr Array

14 CBP E4-8hr Seq

15 CBP E8-12hr Array

16 CBP E8-12hr Array

17 CBP LI Array

18 CBP Li Seq

19 CBP L3 Array

20 CBP L3 Seq

21 CBP Pupae Array

22 CBP Pupae Seq

23 H3K27ac AdultFemale Seq

24 H3K27ac AdultMale Array

25 H3K27ac AdultMale Array

26 H3K27ac AdultMale Seq

27 H3K27ac EO-4hr Array



28 H3K27ac EO-4hr Array

29 H3K27ac E0-4hr Seq

30 H3K27ac E12-16hr Array

31 H3K27ac E12-16hr Seq

32 H3K27ac E16-20hr Array

33 H3K27ac E16-20hr Seq

34 H3K27ac E20-24hr Array

35 H3K27ac E20-24hr Seq

36 H3K27ac E4-8hr Array

37 H3K27ac E4-8hr Seq

38 H3K27ac E8-12hr Array

39 H3K27ac E8-12hr Seq

40 H3K27ac Li Array

41 H3K27ac Li Seq

42 H3K27ac L2 Array

43 H3K27ac L2 Seq

44 H3K27ac L2 Seq

45 H3K27ac L3 Array

46 H3K27ac L3 Seq

47 H3K27ac Pupae Array

48 H3K27ac Pupae Seq

49 H3K27me3 AdultFemale Array

50 H3K27me3 AdultMale Array

51 H3K27me3 AdultMale Array

52 H3K27me3 AdultMale Seq

53 H3K27me3 E0-4hr Array

54 H3K27me3 EO-4hr Seq

55 H3K27me3 E12-16hr Array

56 H3K27me3 E12-16hr Seq

57 H3K27me3 E16-20hr Array

58 H3K27me3 E16-20hr Seq

59 H3K27me3 E20-24hr Array

60 H3K27me3 E20-24hr Seq

61 H3K27me3 E4-8hr Array

62 H3K27me3 E4-8hr Seq

63 H3K27me3 E8-12hr Array

64 H3K27me3 E8-12hr Seq

65 H3K27me3 Li Array

66 H3K27me3 Li Seq

67 H3K27me3 L2 Array

68 H3K27me3 L2 Seq

69 H3K27me3 L3 Array

70 H3K27me3 L3 Seq

71 H3K27me3 Pupae Seq



72 H3K4mel AdultFemale Array

73 H3K4me1 AdultFemale Seq

74 H3K4mel AduItMale Array

75 H3K4mel AdultMale Seq

76 H3K4mel E0-4hr Array

77 H3K4mel E0-4hr Seq

78 H3K4mel E12-16hr Array

79 H3K4mel E12-16hr Seq

80 H3K4mel E16-20hr Array

81 H3K4mel E16-20hr Seq

82 H3K4mel E20-24hr Array

83 H3K4mel E20-24hr Seq

84 H3K4mel E4-8hr Array

85 H3K4mei E4-8hr Seq

86 H3K4mel E8-12hr Array

87 H3K4mel E8-12hr Seq

88 H3K4mel Li Array

89 H3K4mel Li Seq

90 H3K4mel L2 Array

91 H3K4mel L2 Seq

92 H3K4mel L3 Array

93 H3K4mel L3 Seq

94 H3K4mei Pupae Array

95 H3K4me1 Pupae Seq

96 H3K4me3 AdultFemale Array

97 H3K4me3 AdultFemale Seq

98 H3K4me3 AdultMale Array

99 H3K4me3 AdultMale Seq

100 H3K4me3 E0-4hr Array

101 H3K4me3 E0-4hr Seq

102 H3K4me3 E12-16hr Array

103 H3K4me3 E12-16hr Seq

104 H3K4me3 E16-20hr Array

105 H3K4me3 E16-20hr Seq

106 H3K4me3 E20-24hr Array

107 H3K4me3 E20-24hr Seq

108 H3K4me3 E4-8hr Array

109 H3K4me3 E4-8hr Seq

110 H3K4me3 E8-12hr Array

111 H3K4me3 E8-12hr Seq

112 H3K4me3 Li Array

113 H3K4me3 Li Seq

114 H3K4me3 L2 Array

115 H3K4me3 L2 Seq



116 H3K4me3 L3 Array

117 H3K4me3 L3 Seq

118 H3K4mc3 Pupae Array

119 H3K4me3 Pupae Seq

120 H3K9ac AdultFemale Array

121 H3K9ac AdultFemale Seq

122 H3K9ac AdultMale Array

123 H3K9ac AdultMale Array

124 H3K9ac AdultMale Seq

125 H3K9ac E0-4hr Array

126 H3K9ac E0-4hr Seq

127 H3K9ac E12-16hr Array

128 H3K9ac E12-16hr Seq

129 H3K9ac E16-20hr Array

130 H3K9ac E16-20hr Seq

131 H3K9ac E20-24hr Array

132 H3K9ac E20-24hr Seq

133 H3K9ac E4-8hr Array

134 H3K9ac E4-8hr Seq

135 H3K9ac E8-12hr Array

136 H3K9ac E8-12hr Seq

137 H3K9ac Li Array

138 H3K9ac Li Seq

139 H3K9ac L2 Array

140 H3K9ac L2 Seq

141 H3K9ac L3 Array

142 H3K9ac L3 Seq

143 H3K9ac Pupae Array

144 H3K9ac Pupae Seq

145 H3K9me3 AdultFemale Array

146 H3K9me3 AdultMale Array

147 H3K9me3 E0-4hr Array

148 H3K9me3 EO-4hr Array

149 H3K9me3 EO-4hr Seq

150 H3K9me3 E12-16hr Array

151 H3K9me3 E12-16hr Seq

152 H3K9me3 E16-20hr Array

153 H3K9me3 E16-20hr Seq

154 H3K9me3 E20-24hr Array

155 H3K9me3 E20-24hr Seq

156 H3K9me3 E4-8hr Array

157 H3K9me3 E4-8hr Seq

158 H3K9me3 E8-12hr Array

159 H3K9me3 E8-12hr Seq



160 H3K9me3 Li Array

161 H3K9me3 Li Seq

162 H3K9me3 L2 Array

163 H3K9me3 L2 Seq

164 H3K9me3 L3 Array

165 H3K9me3 Pupae Array

166 H3K9me3 Pupae Seq

167 PolI AdultFemale Array

168 PolII EO-4hr Array

169 PolI E12-16hr Array

170 PolII E12-16hr Seq

171 PolII E16-20hr Array

172 PolII E16-20hr Seq

173 PolII E20-24hr Seq

174 PolI E4-8hr Array

175 PolII E4-8hr Seq

176 PolII E8-12hr Seq

177 PolII Li Seq

178 PolII L2 Array

179 PolII L2 Array

180 PolI L2 Seq

181 Poul L3 Array

182 PolII L3 Array

183 PolII L3 Seq

184 PolII Pupae Array

185 PolII Pupae Seq

6.0.3 Table 3: Chromatin marks across cell lines (Gary Karpen

group)

Table 6.3: Compendium of chromatin marks (Gary Karpen group)[8]

factor timepoint/cell line

1 Chro BG3

2 Chro S2

3 H1 BG3

4 HI S2

5 H2BK5ac S2

6 H2Bubiq BG3



7 H2Bubiq S2

8 H3Kl8ac BG3

9 H3Kl8ac S2

10 H3K23ac BG3

11 H3K23ac S2

12 H3K27ac BG3

13 H3K27ac S2

14 H3K27me3 BG3

15 H3K27me3 S2

16 H3K36mel BG3

17 H3K36mel S2

18 H3K36me3 BG3

19 H3K36me3 S2

20 H3K4mel BG3

21 H3K4mel S2

22 H3K4me2 BG3

23 H3K4me2 S2

24 H3K4me3 BG3

25 H3K4me3 S2

26 H3K79mel BG3

27 H3K79mel S2

28 H3K79me2 BG3

29 H3K79me2 S2

30 H3K9ac S2

31 H3K9me2 BG3

32 H3K9me2 S2

33 H3K9me3 BG3

34 H3K9me3 S2

35 H4acTetra S2

36 H4 BG3

37 H4K12ac S2

38 H4Kl6ac BG3

39 H4Kl6ac S2

40 H4K5ac S2

41 H4K8ac S2

42 H4 S2

43 HP1 BG3

44 HPlc BG3

45 HPlc S2

46 HP1 S2

47 Pc BG3

48 Pc S2

49 RpII BG3

50 RpII S2



51 Su(var)3-9 BG3

52 Su(var)3-9 S2
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