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Abstract

Background: Dynamic activation and inactivation of gene regulatory DNA produce the expression changes that
drive the differentiation of cellular lineages. Identifying regulatory regions active during developmental transitions is
necessary to understand how the genome specifies complex developmental programs and how these processes are
disrupted in disease. Gene regulatory dynamics are mediated by many factors, including the binding of transcription
factors (TFs) and the methylation and acetylation of DNA and histones. Genome-wide maps of TF binding and DNA
and histone modifications have been generated for many cellular contexts; however, given the diversity and
complexity of animal development, these data cover only a small fraction of the cellular and developmental contexts
of interest. Thus, there is a need for methods that use existing epigenetic and functional genomics data to analyze the
thousands of contexts that remain uncharacterized.

Results: To investigate the utility of histone modification data in the analysis of cellular contexts without such data, |
evaluated how well genome-wide H3K27ac and H3K4me1 data collected in different developmental stages, tissues,
and species were able to predict experimentally validated heart enhancers active at embryonic day 11.5 (E11.5) in
mouse. Using a machine-learning approach to integrate the data from different contexts, | found that E11.5 heart
enhancers can often be predicted accurately from data from other contexts, and | quantified the contribution of each
data source to the predictions. The utility of each dataset correlated with nearness in developmental time and tissue
to the target context: data from late developmental stages and adult heart tissues were most informative for
predicting E11.5 enhancers, while marks from stem cells and early developmental stages were less informative.
Predictions based on data collected in non-heart tissues and in human hearts were better than random, but worse
than using data from mouse hearts.

Conclusions: The ability of these algorithms to accurately predict developmental enhancers based on data from
related, but distinct, cellular contexts suggests that combining computational models with epigenetic data sampled
from relevant contexts may be sufficient to enable functional characterization of many cellular contexts of interest.
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Background

Tissue-specific gene regulatory regions are essential for
specifying the proper gene expression patterns that
drive cellular differentiation and development in ani-
mals [1]. However, the recognition of these regulatory
regions is challenging. Recently, the ability to assay a
range of epigenetic modifications to DNA and histones
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on a genome-wide scale has improved the ability to
interpret the functional potential of non-protein-coding
DNA [2]. In particular, several histone modifications,
such as monomethylation of the fourth residue of his-
tone H3 (H3K4mel) and acetylation of the 27th residue
of H3 (H3K27ac), have been shown to be associated
with genomic regions with long range gene regulatory
enhancer activity [3-5].

ENCODE [6], Roadmap Epigenomics [7], and several
smaller scale projects have performed thousands of these
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so-called “functional genomics” assays on hundreds of cell
lines and tissue samples. Despite their Herculean efforts,
these projects have comprehensively analyzed only a small
fraction the modifications in cellular contexts of interest
to the scientific community. We are still far from a com-
plete picture of the dynamics of DNA modification and
binding across different cells.

Moreover, the initial selection of cellular contexts to
characterize by ENCODE was based mainly on practical
considerations, such as sample availability, ease of growth,
and high yield. The relevance of functional genomic data
from the best characterized cell lines—e.g., the three
“Tier 1”7 ENCODE cell lines: B-lymphocytes (GM12878),
embryonic stem cells (H1-hESC), and a leukemia cell
line (K562)—to other cellular contexts is unclear due to
changes associated with immortalization and the tran-
sition to a cancerous state. In addition, these cell lines’
progenitors are developmentally distant from many cells
of interest. Indeed, most primary tissues and develop-
mental stages have few data sets available, and these are
insufficient to produce a full picture of the functional state
of the genome in these cellular contexts.

In this environment, researchers with interests outside
of the few well characterized cells are presented with a dif-
ficult choice between mapping existing data from other
contexts to their own or performing functional genomics
analyses in their systems of interest. Furthermore, func-
tional genomics analysis of certain cells may never be pos-
sible for technical or ethical reasons, e.g., lack of material
or the use of protected tissues. As a result, the mapping of
functional genomics data from one context to another is
common practice, but the situations in which it is appro-
priate and the potential pitfalls are not clear. A deeper
understanding of the relationships between functional
genomics data across contexts is needed to identify the
conditions in which mapping across contexts is justified.

Recent work comparing chromatin accessibility and epi-
genetic modification profiles between pluripotent cells
and lineage committed cells has revealed the dynamic
nature of these modifications [8-11]. Embryonic stem
cells display more accessible chromatin and potentially
active regulatory sequence than differentiated cells [12],
and lineage commitment is accompanied by activation of
lineage-specific regulatory regions and an overall repres-
sion of regions active in embryonic stem cells [13]. The
relationships encoded in DNA methylation and chromatin
state profiles of different cell types are often sufficient
to accurately reconstruct hierarchical relationships based
on the anatomical and developmental similarity of cel-
lular lineages [13-15]. These results suggest that, given
the proper models, these relationships could be exploited
to “impute” epigenetic information across related cellular
contexts to enable functional annotation. Indeed, integrat-
ing diverse functional genomics data sets (without regard
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to their developmental relationships) improves gene regu-
latory enhancer prediction [16].

In this paper, I evaluate the ability of existing genome-
wide H3K4mel and H3K27ac data sets to identify known
gene regulatory enhancers active in a related, but dis-
tinct, context. I focus on heart development in mouse,
because this process has both a multi-stage charac-
terization of these two prominent enhancer-associated
histone modifications [9] and several hundred experi-
mentally validated enhancers [17,18]. I introduce a super-
vised machine learning prediction framework in which I
analyze the ability of existing functional genomics data
to predict enhancer activity across three dimensions:
developmental time within an organism, different tissues
within an organism, and corresponding tissues between
species. I find that developmental heart enhancers can
be predicted very accurately using data from related con-
texts. Data from all contexts considered, including across
species, provide useful information and perform better
than random; however, the developmental proximity of
a cellular context to the target is correlated with its
utility.

Results

Preliminaries

My goal was to evaluate the ability of two enhancer-
associated histone modifications, H3K4mel and H3K
27ac, collected from different cellular, developmental,
and organismal contexts to identify known mouse devel-
opmental enhancers (Figure 1). I used H3K4mel and
H3K27ac sites identified via ChIP-Seq on four stages of a
directed differentiation of ES cells (E0) to mesoderm (E4)
to cardiac precursors (E5.8) to cardiomyocytes (E10) [9].
All other histone mark data I used, including marks from
embryonic day 14.5 (E14.5) and eight week old (adult)
hearts, were collected by the ENCODE project [6]. Note
that the heart data from the first four contexts were col-
lected from a single cell type, while the last two are from
full hearts (see Discussion). Other histone modifications
are likely informative about enhancer activity [16]; how-
ever, we only consider H3Kmel and H3K27ac, because
they have been associated with enhancer activity in many
studies and have both been collected in a consistent
manner across a range of cellular and developmental
contexts.

I took mouse enhancers from the VISTA enhancer
browser, a database of experimentally validated DNA
sequences (and their genomic locations) that drive
gene regulatory enhancer activity at E11.5 in trans-
genic mice [17]. The mouse genomic regions tested for
enhancer activity in VISTA were primarily selected due
to evolutionary conservation or association with the P300
transcriptional co-activator protein [17-19]. The data set
consisted of 217 enhancers, 90 of which drove gene
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Figure 1 Overview of the data and analyses. (A) | collected existing genome-wide maps of two histone marks, H3K4me1 and H3K27ac, from
stages of a directed differentiation of mouse embryonic stem (ES) cells into cardiomyocytes, from heart tissues collected from several life stages, and
from several other tissues. | evaluated how well these marks, which are associated with enhancer activity, could predict experimentally validated
heart enhancers in E11.5 mice ("Target”). (B) | took a supervised machine learning approach to this problem by constructing feature vectors for
validated enhancers and control regions based on the presence or absence of these histone modifications at their genomic locations. | created
classifiers based on different subsets of the data from the cellular contexts given in (A) and evaluated them using cross validation.

expression in the heart. In some analyses, I also consid-
ered 88 human DNA sequences shown by VISTA to have
heart enhancer activity in transgenic mice.

I evaluated the ability of the different histone mod-
ification data to identify known heart enhancers in a
supervised machine learning framework (Figure 1). This
type of approach has had great success at identifying
enhancers in previous studies [16,20-22]. In short, I aimed
to classify genomic regions as either positive (having heart
enhancer activity at E11.5) or negative (no heart enhancer
activity at E11.5) based on the overlap of H3K4mel and
H3K27ac datasets from different cellular, developmen-
tal, and species contexts. I refer to these data as “fea-
tures” In most analyses, validated heart enhancers were
the positives. I considered two different sets of nega-
tives that are expected to have different properties: ran-
dom genomic regions without known enhancer activity
matched to the chromosome and length distribution of
the heart enhancers (“genomic background”) and vali-
dated enhancers of gene expression in other E11.5 tis-
sues (“other enhancers”). I anticipated that the histone
modifications would be better able to distinguish heart
enhancers from the genomic background regions than
enhancers active in other tissues. When the random
regions were used as negatives, I included 10 matched
negatives for each positive. I used six common machine
learning algorithms to explore how well these features can

predict heart enhancers. I performed five-fold cross vali-
dation, in which 20% of the known examples were held out
for evaluation of classifiers trained on the remaining data,
and evaluated the results by calculating receiver operating
characteristic (ROC) curves averaged over the five folds.
Unless otherwise stated, I report the results obtained with
Random Forests [23], because they performed well and, as
described in the Results, the conclusions are robust to the
the algorithm used.

Heart enhancers can be identified accurately using data
from different developmental stages

In this section, I evaluate the ability of mouse H3K4mel
and H3K27ac data from different stages of heart devel-
opment to predict validated mouse heart enhancers at
E11.5.1first trained a random forest classifier using all the
mouse heart histone mark datasets as features (Figure 1A)
to distinguish the heart enhancers from matched regions
taken from the genomic background. This classifier was
able to accurately identify E11.5 heart enhancers; the area
under the resulting ROC curve (ROC AUC) was 0.96
(Figure 2A).

Next, I evaluated the ability of classifiers trained using
the same features to distinguish the heart enhancers from
enhancers active in a diverse set of other tissues (listed
in Additional file 1: Table S1) at the same developmen-
tal stage. As expected from recent results [16], this task
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Figure 2 Heart enhancers can be identified accurately using data from different cellular contexts. A random forest classifier was trained to
distinguish E11.5 heart enhancers from the genomic background and from enhancers active in other tissues. Each classifier used H3K4me1 and
H3K27ac patterns from different sets of cellular contexts as features (Figure 1). (A) In five-fold cross validation, the classifiers based on data from
other stages of heart development accurately identified E11.5 heart enhancers; these classifiers achieved ROC AUCs of 0.96 vs. the genomic
background and 0.85 vs. other enhancers. (B) The classifiers that used data from non-heart tissues as features performed well (AUCs of 0.91 and
0.72), but were worse than the developmental-stage-based classifiers. (C) When mapped between species, the histone marks from mouse heart
development were also able to identify human developmental enhancers better than random (AUCs of 0.87 and 0.82). Note that the results in (C)
should not be directly compared to the Stage and Tissue results, because they are based on different sets of enhancers. As expected, distinguishing

heart enhancers from the genomic background was easier than from non-heart enhancers in each scenario.

proved more challenging, but the random forest classifier
still performed well (Figure 2A; ROC AUC = 0.85).

Histone marks from developmental stages nearby the
target stage are the most informative
To investigate the contribution of histone marks from
different developmental stages to the predictions, I com-
puted the normalized “feature importance” for each
feature dataset in the random forest using the Gini
impurity metric [23,24]. For both prediction tasks—heart
enhancers vs. background and vs. other enhancers—
histone marks from the two stages adjacent to the target
stage (E10 and E14.5) had the majority of the impor-
tance (Table 1). In both cases, the importance of fea-
tures decreased monotonically with distance from the
target stage. Not surprisingly, given their pluripotent
state, marks from embryonic stem cells were the least
important.

Looking at these data in the simpler terms of the over-
lap of known enhancers with the different histone marks
reveals a similar pattern. I computed the enrichment of

Table 1 Normalized feature importance (Gini impurity) for
data from different developmental stages in random
forest prediction of E11.5 heart enhancers

EO E4 E5.8 E10 E145 8weeks
Vs. background 0.01 0.01 0.07 0.19 0.69 0.06
Vs. other enhancers 005 0.07 017 037 0.23 0.11

each heart histone mark dataset within the E11.5 heart
enhancers compared to the background regions. All his-
tone mark datasets showed significant enrichment (p <
0.0003 for each; Fisher’s exact test) for overlap with
the enhancers (Figure 3; odds ratios >5 for all), but as
expected, marks collected from the closest developmental
stages to the target (E10 and E14.5) are the most enriched
for overlap with the enhancers (odds ratios from 60.5 to
213.9). The embryonic stem cell's marks showed the least
significant enrichment.

Histone marks from different tissues can accurately
identify heart enhancers

Next, I evaluated the ability of data from non-cardiac
mouse tissues to predict E11.5 heart enhancers. I used
H3K27ac and H3K4mel from 29 different mouse non-
cardiac tissues and cell lines collected by the ENCODE
project (listed in Additional file 1: Table S1) to train
random forest classifiers. This classification strategy also
performed well at distinguishing heart enhancers from the
genomic background (Figure 2B; ROC AUC = 0.91); how-
ever, it did not achieve the level of accuracy attained with
heart data. The non-heart features performed relatively
poorly at distinguishing heart enhancers from other types
of enhancers (Figure 2B; ROC AUC = 0.72). Consistent
with these patterns, classifying the other (i.e., non-heart)
enhancer regions against the genomic background using
the diverse set of non-heart histone marks achieved strong
performance (ROC AUC of 0.91) and was better than
using heart histone marks alone for this task (ROC AUC



Capra BMC Genomics (2015) 16:104

250

1 1
[ H3K4mel
0 H3K27ac
Hl Both

N

o

o
!

=
wu
o
T
!

=
o
o
1
|

w
o
1

Odds Ratio for E11.5 Enhancer Overlap

L e

EO E4 E5.8 E10 E14.5 Adult
Stage

Figure 3 Odds ratios for E11.5 heart enhancer overlap by
H3K4me1 and H3K27ac from different cellular contexts. Mouse
E11.5 heart enhancers are significantly enriched, compared to
matched regions from the genomic background, for H3K4me1 and
H3K27ac from all developmental stages listed (p < 0.01 for all; Fisher's
exact test). As expected, the modifications from contexts flanking
E11.5—E10 and E14.5—show the strongest enrichment, while the
early stages and adult heart tissue have lower enrichment. Only three
E11.5 heart enhancers are not marked by at least one of H3K4me1 or
H3K27ac at E14.5.

of 0.83). This suggests that these feature data can be
used across tissues to find active regulatory regions, but
without data from the relevant tissues, predicting specific
tissues of activity is more challenging.

An H3K4mel dataset from adult placental tissue
received the highest normalized feature importance
(10.2%) in the non-heart tissue based classifier of heart
enhancers vs. the genomic background. However, I found
few clear patterns in the feature importances for these
classifiers (Additional file 2: Table S2). No tissue domi-
nated the importances, and many datasets from a variety
of tissues including liver, limb, embryonic fibroblasts, and
brain, had at least 5% of the importance. A largely differ-
ent set of tissues and marks were found among the most
important in the classifier of heart vs. other enhancers.

Histone marks from mouse heart tissues can accurately
identify human heart enhancers

It may never be possible to collect sufficient material for
histone mark mapping from some cellular contexts due to
ethical or technical reasons. In such cases, using histone
marks from model organisms to analyze the target species
is appealing. To model this situation, I evaluated the effi-
cacy of using H3K4mel and H3K27ac collected in mouse
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hearts to predict known human heart enhancers. Stud-
ies of the similarity of transcription factor binding [25],
methylation [26], and gene expression [27] suggest that
this may be feasible due to the considerable similarity
in these events in corresponding tissues across distant
species.

I mapped validated human heart enhancer sequences to
their corresponding locations in the mouse genome, and
then used the same random forest strategy to distinguish
these regions from the genomic background and other
known non-heart human enhancers mapped to mouse.
Only 7% of the human heart enhancers overlapped a val-
idated mouse heart enhancer, so they represent a largely
independent set of genomic regions to classify. (This
should not be taken as an estimate of the number of
enhancers conserved between these species, because test-
ing of both the human and mouse sequences for a region
was relatively rare).

The mouse H3K4mel and H3K27ac heart marks were
able to accurately identify the human heart enhancers
in both prediction tasks (Figure 2C; ROC AUCs of 0.87
and 0.82); however, they did not perform as well as they
did for mouse heart enhancers (Figure 2A). Interestingly,
the cross species data were better able to distinguish
the human heart enhancers from other types of human
enhancer than the marks from mouse non-heart tissues
were for mouse heart enhancers (Figure 2B, ROC AUC =
0.72). This is consistent with the greater similarity in gene
expression in corresponding tissues across species than
between different tissues within the same species. How-
ever, direct comparison is complicated by the fact that
different enhancer regions are being classified in these two
analyses.

The human heart enhancers considered here were
tested in transgenic mice at E11.5; as a result, the set of
human heart enhancers is biased in (at least) two ways.
First, they are sufficiently evolutionarily conserved to be
mappable between species; 23% of human enhancers did
not reliably map to the mouse genome. It is possible that
non-conserved human enhancers could be more difficult
to predict using mouse data. Second, these regions are
active when placed in a mouse. This second bias is unlikely
to have a dramatic effect, since the basic transcrip-
tional machinery evolves far more slowly than the regula-
tory sequences that it acts upon. Indeed, non-conserved
enhancer sequences have been shown to maintain activity
over much greater distances [28].

The heart enhancer prediction results are robust to the
machine learning algorithm used

Finally, to ensure that the patterns I found in the abil-
ity of different histone mark datasets to predict heart
enhancers were not specific to a particular classification
framework, I repeated all the predictions and evaluations
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using six common machine learning algorithms: ran-
dom forests, boosting (AdaBoost), linear support vector
machines (SVMs), decision trees, naive Bayes, and k-
nearest neighbor (KNN) classification. Random forests,
AdaBoost, and SVMs all performed similarly well and
outperformed the three other approaches (Table 2). No
matter the algorithm or overall performance, my general
conclusions held: histone marks from diverse contexts can
predict heart enhancers better than random, and heart
enhancers can be better identified using heart histone
mark data than data from other tissues.

Histone modifications can be accurately predicted using
modifications from other contexts
Thus far, I have focused on predicting enhancers using
histone modification data. However, histone modifica-
tions are informative about functions beyond enhancer
activity, and thus, predicting histone modifications them-
selves across cellular contexts could have broader utility.

To explore this possibility, I evaluated the ability of
mouse histone marks to predict each other. In other
words, rather than predicting known enhancers, I held
out the histone marks collected from each heart devel-
opmental stage in turn and trained a classifier to distin-
guish them from the genomic background using the other
marks as features. The locations of both H3K4mel and
H3K27ac at each heart developmental stage were able
to be determined more accurately than random guess-
ing (Table 3). However, there was considerable variation
in performance. Not surprisingly given their pluripotent
state and the broadly active regulatory landscape that
accompanies it [12,13], modifications in EO cells were
by far the most difficult to identify from the available
data. Stages in the middle of the differentiation attained
the highest scores, likely due to the presence of more
temporally flanking modification data.

I also evaluated the ability of the heart H3K27ac and
H3K4mel marks to identify a set of H3K27ac sites with
differential activity in cardiomyocytes from adult mouse

Table 2 Some classification algorithms perform better
than others, but all yield similar conclusions

Heart features Non-heart features
Random forest 0.85 0.72
Linear SYM 0.84 0.73
AdaBoost 0.82 0.70
Naive bayes 0.79 0.69
Decision tree 0.77 0.62
KNN (k = 3) 0.74 0.66

This table gives ROC AUCs (averaged over five cross-validation folds) for six
common algorithms at distinguishing E11.5 heart enhancers from other
enhancers based on marks from heart or non-heart tissues.
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Table 3 ROC AUCs for predicting heart histone
modification sites using histone modification data from all
other heart developmental contexts

H3K4mel H3K27ac
EO 0.70 0.65
E4 0.76 091
E5.8 0.88 092
E10 0.94 0.95
E145 0.80 0.92
Adult 0.81 0.87

hearts exposed to transverse aortic constriction, a sur-
gical procedure that leads to cardiac hypertrophy [29].
The histone marks from healthy contexts were able to
accurately predict these hypertrophy-sensitive sites from
the genomic background (ROC AUC of 0.93). However,
predicting whether a hypertrophy sensitive H3K27ac site
would increase or decrease in strength was difficult (ROC
AUC of 0.61), and the addition of modifications from
non-heart contexts did not improve performance. A list
of H3K27ac sites that did not change in activity was not
available, so I could not test the ability to distinguish
hypertrophy sensitive from insensitive sites.

Discussion

The results of my analyses suggest that there is consid-
erable promise in using functional genomics data across
contexts for the common task of identifying putative gene
regulatory regions. However, the poor results based on
data from early developmental stages indicate that, as
expected, there is considerable variability in the utility of
different data sets depending on the target context. This
underscores the need for methods to highlight the most
informative contexts in which to collect new functional
genomics data and to “interpolate” across contexts using
existing data.

The analyses presented here required the integration
of several datasets from different sources, and attributes
of these data must be kept in mind while interpret-
ing the results. First, though the heart enhancers vali-
dated by VISTA are commonly used to explore attributes
of enhancers, they are likely not representative of all
developmental heart enhancers. Most heart enhancers
in VISTA were selected for analysis based on mam-
malian evolutionary sequence conservation or the pres-
ence of P300 in heart tissue [17]. Thus, it is possible
that enhancers that do not have these attributes, e.g.,
species-specific enhancers, might be harder to identify
using histone modifications [30]. It is likely that enhancer
prediction performance could be improved further by
incorporating additional features, such as other histone
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modification profiles, DNA sequence patterns, and evo-
lutionary conservation as in previous studies [16,22],
but achieving the most accurate enhancer prediction
was not the main goal of this study. Nonetheless, my
approach performs very well on this high confidence set
of functionally validated enhancers. The differences in
the ability of the histone modifications to distinguish
heart enhancers from the genomic background and from
other enhancers underscores the fact that identifying
regions that have enhancer activity is easier than predict-
ing their contexts of activity [16], and it suggests that
different sets of features may be most informative for each
task.

To obtain H3K4mel and H3K27ac from as wide a range
of heart developmental contexts as possible, I combined
data collected from two different sources. The data from
stages prior to the target stage (E0-E10) come from a
directed differentiation of cardiomyoctyes, while the data
from after the target (E14.5 and adult) were collected from
whole hearts. Given that both data types show a clear
trend of increasing performance with proximity to the
target, I am confident in this trend. However, given this
difference in origin, the feature importances assigned to
marks from before and after the target stage may not be
directly comparable representations of the relevance of
these developmental stages to the target.

As more functional genomics data collected over suc-
cessive developmental stages become available, it will be
possible to model the gene regulatory landscapes of dif-
ferent developing tissues. For example, Nord et al. [31]
recently collected genome-wide H3K27ac modification
profiles from seven developmental stages (starting with
E11.5 through adulthood) for mouse heart, liver, and fore-
brain tissues and found rapid and pervasive turnover in
the H3K27ac modification landscape across the develop-
ment of these tissues. As illustrated in their description
of the two phases of liver development, integrating phys-
iological knowledge about the development of different
tissues with genome-wide modification profiles will likely
be necessary to identify the most informative contexts to
assay and to fully characterize developmental enhancer
usage. Also, given the diversity of histone modifications, it
is likely that the most informative contexts to sample will
vary across modifications.

The analyses presented here take an initial step towards
the ultimate goal of understanding how and when func-
tional genomics data should be mapped across contexts.
Understanding the dynamics of genome modifications
across cell types will be relevant beyond this enhancer pre-
diction case study; genome-wide profiles of TF binding
and DNA and histone modification are informative about
many possible functions of DNA.

Given the success of these relatively simple models at
predicting histone modifications themselves, I anticipate
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that more explicit models of the dynamics of these fea-
tures over developmental time in different tissues will
enable interpolation of histone marks between different
contexts and help identify the most informative contexts
to assay. For example, a statistical method for modeling
DNA methylation dynamics across development that can
accurately impute missing methylation data across blood
cell differentiation was recently published [32]. Similar
approaches are likely to enable these analyses for other
dynamic modifications and cellular lineages.

Conclusion

I'show that integrating enhancer-associated histone marks
from different cellular contexts achieves accurate pre-
diction of heart enhancer activity in a context from
which no data were collected. Thus, extrapolating exist-
ing functional genomics datasets across developmental,
cellular, and species contexts has the potential to enable
accurate gene regulatory enhancer prediction in many
contexts, especially when paired with complementary
data about evolutionary conservation and DNA sequence.
More broadly, this suggests the promise of “interpolating”
existing functional genomics data to related contexts to
complement ongoing experimental efforts to characterize
the diversity of mammalian cells.

Materials and methods

Data

All analyses were performed using the February 2009
assembly of the human genome (GRCh37/hg19) and the
July 2007 assembly of the mouse genome (MGSCv37/
mm9). Any data that were not in reference to these
builds were mapped over using the liftOver tool from the
UCSC Genome Browser’s Kent tools (http://hgdownload.
soe.ucsc.edu/admin/exe/). This tool was also used to
map genomic locations between the human and mouse
genomes.

Human and mouse enhancer sequences, genomic loca-
tions, and expression contexts were downloaded from
the VISTA Enhancer Browser [17] on January 6, 2014.
This consisted of 217 mouse enhancers, 90 of which had
heart activity in E11.5 transgenic mice, and 848 human
enhancers, 88 of which had heart activity.

The H3K4mel and H3K27ac genome-wide profiles
were taken from two sources: a recent directed differ-
entiation of mouse embryonic stem cells into cardiomy-
ocytes [9] and mouse heart and non-heart tissues analyzed
by the ENCODE project [6]. Each study performed chro-
matin immunoprecipitation followed by high-throughput
sequencing (ChIP-Seq) to identify DNA associated with
modified histones. I used the peak calls released by each
study. Supplementary Table 1 lists all cellular contexts
considered.
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I classified genomic regions based on their enhancer activ-
ity. Different analyses considered different sets of regions
as positive and negative training examples as outlined in
the Results. However, in general, for each genomic region
of interest, a feature vector was created by intersecting the
genomic locations of H3K4mel and H3K27ac peaks from
the relevant contexts with its location. The feature vector
and the enhancer status were then used to train and eval-
uate supervised classification algorithms. Chromosome
and length matched genomic regions were generated for
each set of positives using the randomBed program from
the BEDtools suite [33].

I used the python scikit-learn v0.14.1 machine learning
module [24] to perform all supervised classification anal-
yses and cross validated evaluations. I used the default
scikit-learn implementation of six supervised classifica-
tion algorithms: Random Forests with 10 trees and max-
imum depth of 5 [23], linear Support Vector Machines
(SVMs) with the ¢% norm and C of 0.1, AdaBoost [34] with
50 Decision Trees and learning rate 1, Gaussian Naive
Bayes, Decision Trees with maximum depth 5, and K-
Nearest Neighbors with k of 3. For Random Forests, the
scikit-learn implementation combines the probabilistic
predictions from each tree, instead of letting each classi-
fier vote for a single class. For Decision Tree and Random
Forest classifiers, Gini impurity was used as the metric
and to compute feature importance. All other statistical
analyses were performed with scipy [35].

Additional files

Additional file 1: Table S1. List of H3K3me1 and H3K27ac data sets used
in the analyses.

Additional file 2: Table S2. Feature importances for Random Forest
classifiers using histone marks from non-heart mouse tissues to predict
heart enhancers versus the genomic background and versus enhancers of
other tissues.
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