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Abstract

Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory
protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we
developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background
and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA
sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast
with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained
EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser.
We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the
identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary
conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are
easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We
applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue
specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are
significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide
association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic
gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer
predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further
investigate questions in developmental biology.
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Introduction

Eukaryotic gene expression is regulated by a highly orchestrated

network of events, including the binding of regulatory proteins to

DNA, chemical modifications to DNA and nucleosomes, recruit-

ment of the transcriptional machinery, splicing, and post-

transcriptional modifications. Enhancers are genomic regions that

influence the timing, amplitude, and tissue specificity of gene

expression through the binding of transcription factors and co-

factors that increase transcription (as reviewed in [1,2]). In

humans, genetic variation in enhancer regions is implicated in a

wide variety of developmental disorders, diseases, and adverse

responses to treatments [3,4,5].

Enhancers have been discovered in introns, exons, intergenic

regions megabases away from their target genes [6], and even on

different chromosomes [7]. An enhancer frequently drives only

one of many domains of a gene’s expression [8,9] and different cell

types accordingly exhibit considerable differences in their active

enhancers [10,11]. This modularity enables the creation of

complex regulatory programs that can evolve relatively easily

between closely related species [12,13].

Individual enhancers were initially identified using transgenic

assays in cultured cell lines [14,15] and later in vivo in model

organisms, such as mouse, Drosophila, and zebrafish. In the in vivo

experiments, a construct containing the sequence to be tested for

enhancer activity, a minimal promoter, and a reporter gene (e.g.,

lacZ) is injected into fertilized eggs, and transgenic individuals are

assayed for reporter gene expression.

Early efforts to find enhancers at the genome scale used

comparative genomics. Several studies assayed non-coding regions
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conserved across diverse species for enhancer activity [16,17,18],

since functional non-coding regions likely evolve under negative

selection. This approach identified many enhancers at a range of

levels of evolutionary conservation [19,20,21]. However, relying

on evolutionary conservation alone has several shortcomings:

many characterized enhancers are not conserved between species

[22], non-coding conservation is not specific to enhancer elements,

and evolutionary patterns provide little information about the

tissue and timing of enhancer activity.

Enhancer prediction has been revolutionized by recent techno-

logical advances, including chromatin immunoprecipitation cou-

pled with high-throughput sequencing (ChIP-seq) [23], RNA

sequencing (RNA-seq), and sequencing of DNaseI-digested

chromatin (DNase-seq) [24] or formaldehyde-assisted isolation of

regulatory elements (FAIRE-seq) [25]. These ‘‘functional geno-

mics’’ assays enable genome-wide measurement of histone

modifications, binding sites of regulatory proteins, transcription

levels, and the structural conformation of DNA. The ENCODE

project [26], FANTOM project [27], and similar studies focused

on specific cell types [28,29] have dramatically increased the

amount of publicly available functional genomics data.

Functional genomics studies revealed several genomic signatures

of active enhancers. For example, known enhancers are associated

with the unstable histone variants H3.3 and H2A.Z [30,31] and

low nucleosome occupancy [32], although these chromatin states

are not unique to enhancers. Monomethylation of lysine 4 on

histone H3 (H3K4me1), a lack of trimethylation at the same site

(H3K4me3), and acetylation of lysine 27 on histone H3

(H3K27ac) may distinguish active enhancers from promoters

[10,33,34], enhancers that are ‘‘poised’’ for activity later in

development [35,36], and regulatory elements that repress gene

expression [37,38]. Additional features that pinpoint specific

classes of active enhancers include binding of the transcriptional

cofactor p300/CBP [18,39,40,41], clusters of transcription factor

(TF) binding sites [42,43,44,45], and enhancer RNA transcription

(eRNAs) [46]. Collectively, functional genomics data have

pinpointed the locations of many novel enhancers and yielded

insights into sequence and structural determinants of enhancer

activity. However, these patterns have not proven to be universal

[47,48], and there is unlikely to be a single chromatin signature

that identifies all classes of enhancers [11,49,50].

Given the complexity of these functional genomics data sets,

computational methods have been developed to improve and

generalize the enhancer predictions made from simple combina-

tions of these data. Support vector machines (SVMs) and linear

regression models trained to interpret DNA sequence motifs

underlying known enhancers have successfully identified novel

enhancers active in heart [51], hindbrain [52], and muscle [53]

development. Another approach used SVMs to learn patterns of

short DNA sequence motifs that distinguish markers of potential

enhancers, such as p300 and H3K4me1, in different cellular

contexts [54,55]. Random forests have been used to predict p300

binding sites from histone modifications in human embryonic stem

cells and lung fibroblasts [56]. Machine-learning algorithms have

also been applied to the related problem of selecting functional TF

binding sites out of the thousands of hits to a TF’s binding motif

throughout the genome [57,58,59,60,61,62,63]. Finally, two

groups have taken a less supervised approach and used hidden

Markov models (ChromHMM) [64] and dynamic Bayesian

networks (Segway) [65] to segment the human genome into

regions with unique signatures in ENCODE data and then

assigned potential functions, such as enhancer activity, to these

states.

While rich datasets coupled with sophisticated algorithms have

successfully identified many novel enhancers, comprehensive

enhancer prediction is challenging for two main reasons. First,

no single type of data is currently sufficient to identify all

enhancers active in a given context. Many of the approaches

described above use a single mark or motif as a proxy for an

enhancer, but this gives an incomplete representation of all

biologically active enhancers. Second, while a great deal of

functional genomics data are available for different cell lines and

tissues, it is not understood how informative experiments in a given

cellular context are indicative of enhancer activity in other

contexts.

With these issues in mind, we introduce EnhancerFinder, a new

two-step machine-learning method for predicting enhancers and

their tissue specificity. In machine learning, a classification

algorithm is trained to distinguish between labeled training

examples (e.g., enhancers and non-enhancers) based on features

of these labeled examples (e.g., evolutionary conservation,

chromatin signature, DNA sequence). The trained classifier can

then be used to predict the labels for uncharacterized genomic

regions (e.g., which ones are enhancers). Our approach employs

two rounds of a supervised machine-learning technique called

multiple kernel learning (MKL) [66,67]. MKL is based on the

theory of SVMs [68], but provides greater flexibility to combine

diverse data (e.g., evolutionary conservation, sequence motifs, and

functional genomics data from different cellular contexts) and to

interpret their relative contributions to the resulting predictions.

Our implementation of EnhancerFinder applies MKL in two steps

with the goal of generating a genome-wide set of developmental

enhancers to better characterize gene regulation during develop-

ment. The algorithm, which is trained using in vivo validated

enhancers from the VISTA enhancer database [69] and publicly

available genomic data, first aims to distinguish human develop-

mental enhancers from the genomic background and then in a

second step predicts enhancer tissue specificity. In contrast to most

other enhancer prediction strategies, which are trained on

epigenetic marks or sequence motifs that serve as a proxy for a

subset of all active enhancers, our use of a heterogeneous and in

vivo validated set of enhancers, enables us to investigate the

Author Summary

The human genome contains an immense amount of non-
protein-coding DNA with unknown function. Some of this
DNA regulates when, where, and at what levels genes are
active during development. Enhancers, one type of
regulatory element, are short stretches of DNA that can
act as ‘‘switches’’ to turn a gene on or off at specific times
in specific cells or tissues. Understanding where in the
genome enhancers are located can provide insight into
the genetic basis of development and disease. Enhancers
are hard to identify, but clues about their locations are
found in different types of data including DNA sequence,
evolutionary history, and where proteins bind to DNA.
Here, we introduce a new tool, called EnhancerFinder,
which combines these data to predict the location and
activity of enhancers during embryonic development. We
trained EnhancerFinder on a large set of functionally
validated human enhancers, and it proved to be very
accurate. We used EnhancerFinder to predict tens of
thousands of enhancers in the human genome and
validated several of the predictions near three important
developmental genes in mouse or zebrafish. EnhancerFin-
der’s predictions will be useful in understanding functional
regions hidden in the vast amounts of human non-coding
DNA.

Integrative Developmental Enhancer Prediction
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complex suite of features that underlie active regulatory regions.

With appropriate training data, EnhancerFinder could be applied

to study gene regulation at other developmental stages.

Our analyses demonstrate that EnhancerFinder’s integration of

diverse types of data from different cellular contexts significantly

improves prediction of validated enhancers over approaches based

on a single context or type of data. We find that enhancers active

in some developmental contexts are easier to identify than others.

Applying EnhancerFinder to the entire human genome allowed us

to predict more than 80,000 developmental enhancers, with tissue-

specific predictions for brain, limb, and heart. These predictions

significantly overlap known non-coding regulatory regions and are

enriched near relevant genome-wide association study (GWAS)

lead single nucleotide polymorphisms (SNPs) and genes expressed

in the predicted tissue. To illustrate the utility and accuracy of our

genome-wide enhancer predictions, we used them to investigate

the enhancer landscape near three developmentally expressed

genes. First, we screened predicted enhancers near FOXC1 and

FOXC2 in transgenic zebrafish, and found that 70% (7 of 10) of

tested EnhancerFinder predictions have confirmed (6) or sugges-

tive (1) developmental enhancer activity. In addition, we validated

a novel cranial nerve enhancer near the ZEB2 locus using a

transgenic mouse enhancer assay. Taken together, our results

suggest that the EnhancerFinder approach of integrating diverse

data sets significantly improves prediction of biologically active

enhancers, providing high-confidence candidate enhancers for

studies in developmental gene regulation.

Results

We present EnhancerFinder, a machine learning-based en-

hancer prediction pipeline that allows the seamless integration of

feature data from a variety of experimental techniques and

biological contexts that have previously been used individually to

predict enhancers (Figure 1). We use MKL to integrate these data.

MKL algorithms learn a weighted combination of different

‘‘kernel’’ functions that quantify the similarity of different feature

data in order to make predictions. In EnhancerFinder, we use

three kernels based on different types of biological feature data:

DNA sequence motifs, evolutionary conservation patterns, and

functional genomics datasets.

EnhancerFinder could be used to predict enhancers active at

any stage and tissue. In this study, we evaluate EnhancerFinder’s

ability to predict developmental enhancers and their tissue

specificity.

A two-step approach to tissue-specific enhancer
prediction

Step 1 of our pipeline aims to distinguish all enhancers active in

the context of interest (e.g., a specific developmental stage) from

non-enhancer regions. Step 2 then builds classifiers to predict the

tissues in which the enhancer candidates from Step 1 are active.

This two-step approach allows us to accurately identify enhancers,

while also distinguishing their tissues of activity.

We train and evaluate EnhancerFinder using the VISTA

Enhancer Browser, which at the time of our analysis contained

over 700 human sequences with experimentally validated

enhancer activity in at least one tissue at embryonic day 11.5

(E11.5) in transgenic mouse embryos. VISTA also contained a

similar number of regions without enhancer activity in this

context. E11.5 in mouse development roughly corresponds to E41

(Carnegie stage 17 [70]) in human development. In Step 1 of

EnhancerFinder, we used all 711 VISTA enhancers as positive

training data, and for negative training data, we created a set of

711 random regions matched to the length and chromosome

distribution of the positives to represent the genomic background.

We did not use the VISTA negatives as negative training examples

in Step 1, because they are not representative of all non-enhancer

regions (see below). Our goal in Step 1 is to develop a method that

can be used to scan the whole genome and distinguish

developmental enhancer regions from non-enhancer regions.

The second step of EnhancerFinder aims to distinguish

enhancers active in a given embryonic tissue from non-enhancers

and enhancers active in other tissues. We consider all enhancers in

VISTA with activity in a tissue of interest as positives and all other

regions in VISTA (including regions not active at E11.5) as

negatives (see Methods). This second step that includes enhancers

active in other tissues as negatives in the training proves to be

essential for obtaining high specificity in predicting tissue of

activity (see below), and it is important to do this in two steps

rather attempting to distinguish enhancers of a given tissue from

genomic background in one step.

To evaluate EnhancerFinder, we compared it to several

commonly used enhancer prediction approaches. Unless otherwise

noted, we evaluated the performance of all prediction algorithms

using 10-fold cross validation to compute the area under the curve

(AUC) for receiver operating characteristic (ROC) curves. We also

computed precision-recall curves (Figure S1) and compared power

at a low false positive rate.

Building a general predictor from a biased training set
Because EnhancerFinder learns enhancer signatures from a

training data set, we first explored biases in the VISTA enhancers

that might affect how well EnhancerFinder could generalize to the

whole genome. The genomic regions tested by VISTA were not

selected randomly, and thus their positives do not represent a

random sample of active enhancers. Nearly all regions tested by

VISTA are evolutionarily conserved across mammals (706 of 711

positives and 727 of 736 negatives). Since our goal is to predict a

broadly applicable, high confidence set of developmental enhanc-

ers, we did not include this feature when making genome wide

predictions. However, with this bias in mind, we did evaluate

several models that incorporate the degree of evolutionary

conservation (see below).

In addition to conservation, several studies deposited in VISTA

have considered enhancer-associated proteins and histone marks,

such as p300, H3K27ac, and H3K4me1. We collected all data sets

of these types from ENCODE and computed their overlap with

VISTA enhancers. Fewer than half of the VISTA positives are

marked by all three of p300, H3K27ac, and H3K4me1 (from any

data set), with substantial percentages marked by only one or two

and 13% (93/711) marked by none (Figure S2). These findings

indicate that VISTA positives are not highly biased towards a

single type of ChIP-seq feature, motivating us to include these

features in our genome-wide predictions, with the caveat that the

trends we observe for VISTA positives might not generalize to all

classes of enhancers. Our analysis also suggests that the standard

practice of equating active enhancers with all regions marked by a

single ChIP-seq feature, or even the union of overlapping peaks

from several ChIP-seq experiments, will fail to identify all active

enhancers in a given context.

EnhancerFinder integrates diverse data types to
accurately identify developmental enhancers

EnhancerFinder predicts enhancers by integrating classifiers

based on distinct data types. In our first evaluation of

EnhancerFinder, we consider: functional genomics data, evolu-

tionary conservation patterns, and DNA sequence motifs. Com-

Integrative Developmental Enhancer Prediction
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bining these different approaches enables EnhancerFinder to

accurately distinguish enhancers from the genomic background

(Figure 2A; AUC = 0.96).

The functional genomics component of EnhancerFinder (which

we refer to as All Functional Genomics) is a linear SVM that

incorporates 2469 datasets generated by the ENCODE project

and smaller scale studies. These include DNaseI hypersensitivity

data and ChIP-Seq for p300, many histone modifications, and

many TFs from many adult and embryonic tissues and cell lines

(Table S1). DNA sequence patterns are integrated via a 4-

spectrum kernel (DNA Motifs), which summarizes the occur-

rence of all length four DNA sequences (4-mers) in input regions

[71]. We found that little was gained by increasing k, considering

multiple k simultaneously, or incorporating knowledge of tran-

scription factor binding site (TFBS) motifs as in a previous

approach [52] (Figures S3 and S4). Finally, evolutionary

conservation information is incorporated with a linear SVM that

uses mammalian phastCons scores [72] as features (Evolutionary
Conservation).

EnhancerFinder performs significantly better than
enhancer prediction approaches based on a single type
of data

One motivation for developing EnhancerFinder was to explore

whether combining previous successful approaches to enhancer

prediction would improve performance. Each of the classifiers

combined in EnhancerFinder is representative of a different

strategy for predicting enhancers. Thus, we compared the

performance of EnhancerFinder to each of its constituents, which

are SVMs trained on the same enhancer data as EnhancerFinder,

but using only one type of the data features (e.g., only sequence

motifs). EnhancerFinder significantly outperformed each of the

individual classifiers (Figure 2A; p = 2.0E-7 for Evolutionary
Conservation, p = 2.6E-8 for DNA Motifs, and p = 4.4E-16 for

All Functional Genomics, McNemar’s test), suggesting that

these different types of data capture unique aspects of enhancers

that are not completely encompassed by any single data type.

Not surprisingly, we found that of the three component

classifiers in EnhancerFinder, Evolutionary Conservation
yields the best performance (AUC = 0.93). As noted above, nearly

all regions tested for enhancer activity by VISTA (positives and

negatives) are evolutionarily conserved compared to the genomic

background. Nonetheless, considering additional features signifi-

cantly improved predictions. The DNA Motifs (AUC = 0.88) and

All Functional Genomics (AUC = 0.89) classifiers also exhibit

strong performance, but also do not perform as well as the

combined classifier. EnhancerFinder has nearly twice the power of

any of the individual classifiers at a 5% false positive rate (FPR),

and its power advantage is even larger at lower FPRs.

All Functional Genomics, DNA Motifs, and Evolution-
ary Conservation achieve roughly similar performance from

different feature data, but each individual classifier predicts a

somewhat different set of enhancers during evaluation (Figure 2B).

Roughly two-thirds of the enhancer predictions are shared

between the three classifiers. The improvement provided by

combining these data argues that these data sources are indeed

complementary.

We also compared EnhancerFinder’s performance with several

current computational methods used to identify enhancers. We

were able to make the most direct comparison with CLARE, a

popular method for identifying enhancers from DNA sequence

data, i.e., transcription factor binding site motifs and other

sequence patterns [73]. This approach, which has been success-

fully applied in several contexts [51,52,53,74], makes few

assumptions about the input, and is publicly available as a web

server. On our Step 1 enhancer prediction task, we find that

CLARE achieves an ROC AUC of 0.79. This is much lower than

DNA Motifs (AUC = 0.88), our approach based on sequence

data alone, and the full EnhancerFinder (AUC = 0.96;

Figure 2C). At a 5% FPR, the power of CLARE is about 20%,

compared to approximately 30% for DNA Motifs and more than

60% for EnhancerFinder.

Comparisons with additional methods were complicated by the

fact that most were developed in different contexts. We designed

EnhancerFinder specifically to predict biologically active develop-

mental enhancers. Most existing approaches focus on data from a

single cell line and define enhancers based on specific enhancer-

associated marks or proteins (such as p300 in human embryonic

stem cells) rather than biological activity. Thus, we did not

anticipate that they would perform as well as EnhancerFinder at

developmental enhancer prediction. However, since the predic-

tions of these methods are commonly used outside the specific

contexts in which they were made, we believe that it is useful to

evaluate how well they can identify developmental enhancers and

how much the EnhancerFinder approach applied to developmen-

tal enhancers improves on their performance.

In particular, we compared EnhancerFinder to ChromHMM

and Segway [64,65], two unsupervised machine learning methods

for segmenting the genome into a small number of functional

‘‘states’’ based on consistent patterns in ENCODE data for

individual cell lines. The states resulting from the segmentations of

each cell line’s data are annotated by hand into predicted

functional classes, which include enhancer activity. To evaluate

these methods, we considered the states overlapping our training

and testing regions. Any region with an overlapping enhancer state

was considered a predicted enhancer and all others were predicted

non-enhancers. In this way, we obtained a single point in ROC

space for the state predictions. Since there is no score or

confidence value associated with the state assignments, a full

ROC curve could not be created for these methods. Figure 2C

gives the performance for several versions of ChromHMM and

Segway based on ENCODE data from different cell lines. Both

methods perform better than random, but considerably worse than

EnhancerFinder and CLARE (p<0). We stress that, in contrast to

our supervised method, these methods were not explicitly trained

to perform the same task as EnhancerFinder, and thus we did not

expect them to perform as well as EnhancerFinder. Indeed, these

results argue that their utility in identifying developmental

enhancers is limited compared to specialized approaches.

Figure 1. Overview of the EnhancerFinder enhancer prediction pipeline. In our two-step approach, regions of the genome are characterized
by diverse features, such as their evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence patterns. For
each step, appropriate positive (green) and negative (purple) training examples are provided as input to a multiple kernel learning (MKL) algorithm
that produces a trained classifier. We used 10-fold cross validation to evaluate the performance of all classifiers. In Step 1, we trained a classifier to
distinguish between known developmental enhancers from VISTA and the genomic background. In Step 2, we trained several classifiers to
distinguish enhancers active in tissues of interest from those without activity in the tissue according to VISTA. We applied the trained enhancer
classifier from Step 1 to the entire human genome to produce more than 80,000 developmental enhancer predictions. We then applied the tissue-
specific enhancer classifiers from Step 2 to further refine our predictions.
doi:10.1371/journal.pcbi.1003677.g001
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Integrating diverse functional genomics data improves
enhancer prediction

As illustrated above, our machine learning prediction and

evaluation framework enabled us to quantitatively explore the

utility of different genomics datasets in enhancer prediction by

creating classifiers based on different types of data (i.e., sequence

motifs, evolutionary conservation, and functional genomics) and

comparing their performance. We also used this framework to

investigate other questions about the utility of different subsets of

these data for enhancer prediction. For example, one might expect

that some of the datasets included in All Functional Genomics
(e.g., experiments in cancer cell lines or adult tissues) would not be

as useful as others (e.g., experiments in embryonic tissues) for

predicting developmental enhancers, and that limiting the features

examined by the classifier to the most relevant experiments might

improve performance.

To explore this hypothesis, we trained linear SVM classifiers to

predict VISTA enhancers (as in Step 1 of EnhancerFinder) based

on different subsets of all the functional genomics features (Table 1)

and compared their performance. First, we considered a collection

of 244 datasets from embryonic tissues and cell lines (Embryonic
Functional Genomics). Next, we created a classifier that

considers data from a wider range of contexts by training a linear

SVM using a large, manually curated set of 509 potentially

relevant functional genomics data sets (Relevant Functional
Genomics). This set includes embryonic datasets, along with

additional DNaseI and ChIP-seq data from adult tissues and cell

lines related to the dominant tissues of activity in VISTA. For

example, we included data from human cardiac myocytes, since

there are many developmental heart enhancers in our training

examples. We compared these to the All Functional Genomics
classifier described above that uses all 2496 functional genomics

features.

All Functional Genomics (AUC = 0.89) performed slightly,

but not significantly, better than Relevant Functional Geno-
mics (AUC = 0.87; p = 0.16), and both significantly outperformed

Embryonic Functional Genomics (AUC = 0.83; p = 9.2E-9

and p = 2.7E-6, respectively) (Figure 3A). At low FPRs, the

differences in power between these classifiers were modest. The

Embryonic Functional Genomics classifier included the most

time-appropriate datasets, yet its performance was improved by

Figure 2. Combining diverse data using EnhancerFinder
improves the identification of developmental enhancers. (A)
Enhancer prediction strategies based on functional genomics data,
evolutionary conservation, and DNA sequence motif patterns all
perform well, but EnhancerFinder, which combines these data, provides
significant improvement over each of them alone (p,2.0E-7 for all). (B)
Each of the approaches from (A) predicts that somewhat different sets
of the VISTA regions are enhancers. This suggests that complementary
information is contained in each data source. EnhancerFinder (not
shown), which combines them, captures many of the enhancers that
are unique to each source; it predicts 25 of the 44 enhancers unique to
Functional Genomics, 30 of the 76 unique to DNA Sequence
Motifs, and 34 of the 111 unique to Evolutionary Conservation. (C)
EnhancerFinder outperforms CLARE, a successful enhancer prediction
method based on known regulatory motifs. We also evaluated the
enhancer states predicted by ChromHMM and Segway, two unsuper-
vised clustering methods that have been used to segment the genome
into different functional states based on patterns in functional
genomics data, though these methods were not applied to develop-
mental contexts. The different X’s represent state predictions based on
data from different ENCODE cell types: GM12878 (blue), H1-hESC
(violet), HepG2 (brown), HMEC (tan), HSMM (gray), HUVEC (light green),
K562 (green), NHEK (orange), NHLF (light blue), and all contexts
combined (red).
doi:10.1371/journal.pcbi.1003677.g002
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including additional data sets that seem less relevant to our

classification problem a priori. Thus, we conclude that it can be

advantageous to consider a range of functional genomics features,

especially when few features are available from the context of

interest. The utility of these additional data sets might indicate that

some enhancer features are stable across cell types and develop-

mental stages, but it could also reflect information these data

provide about genomic regions that are not active enhancers

during development (see Discussion).

Histone marks and p300 provide complementary
information about enhancer activity

We also explored the utility of individual functional genomics

datasets that are often used as proxies for developmental

enhancers by creating three linear SVM classifiers: H3K27ac,

H3K4me1, and p300. These SVMs were trained to distinguish

VISTA positives from the genomic background (Step 1) using all

available data of the specified type from ENCODE, which include

a range of cell types and tissues (Table S1). All three classifiers

performed better than random (Figure 3B). H3K4me1
(AUC = 0.72) and p300 (AUC = 0.68) performed similarly

(p = 0.25), with p300 performing best at low FPRs and

H3K4me1 best at higher FPRs. Both significantly outperformed

H3K27ac (AUC = 0.61; p = 9.4E-15 and p = 5.5E-9, respective-

ly); however, we caution against extrapolating from this compar-

ison, since it may reflect biases in the feature sets available and the

VISTA positives. Since combinations of these features are often

used to predict enhancers, we next trained a linear SVM classifier

(Basic Functional Genomics) that includes all three data types

together. The combined classifier significantly outperforms all the

individual classifiers (AUC = 0.77; p,2E-7 for each), suggesting

that each data type contributes unique information about

enhancer activity. Also, all four SVM classifiers achieved much

better performance than the common approach of simply

considering regions overlapping with these data (Figure S5).

EnhancerFinder also learns weights for individual features

within classifiers that reflect their contribution to the enhancer

predictions. We found that features known to be associated with

enhancer activity in relevant cellular contexts generally receive

positive weights, while those associated with other types of

elements received negative weights (Text S1 and Figure S6).

EnhancerFinder’s two-step approach enables tissue-
specific enhancer prediction

In the previous sections, we focused on generic developmental

enhancer prediction (Step 1 of EnhancerFinder). Step 2 of

EnhancerFinder applies a second round of MKL to refine and

further annotate predicted enhancers from Step 1 (Figure 1). In

this study, Step 2 consists of training an MKL classifier to

distinguish VISTA enhancers active in a given tissue from VISTA

regions without activity in that tissue, i.e., non-enhancers from

VISTA plus enhancers for other tissues. We did not require that

the positive training examples be active only in the tissue of interest.

Using the same feature data as in Step 1, we created tissue-specific

classifiers for all tissues with more than 50 examples in VISTA:

forebrain, midbrain, hindbrain, heart, limb, and neural tube.

The performance of EnhancerFinder’s tissue specificity predic-

tions varied dramatically between tissues (Figure 4), with the best

performance for heart (AUC = 0.85), followed by limb

(AUC = 0.74), forebrain (AUC = 0.72), midbrain (AUC = 0.72),

hindbrain (AUC = 0.69), and neural tube (AUC = 0.62), which was

the worst of the tested tissue classifiers, but better than random.

We combined all brain enhancers into one class, and the

performance of this generic brain classifier was similar to that of

the more specific brain classifiers (AUC = 0.73). The Enhancer-

Finder tissue-specific classifiers trained with all data types

performed well for most tissues (Table 1); however, classifiers

based on functional genomics alone often performed as well as the

full EnhancerFinder classifier, suggesting functional genomics data

are more informative about developmental enhancer tissue

specificity than degree of conservation or sequence motifs.

Most previous efforts to predict tissue-specific enhancers have

performed a single training step using enhancers or enhancer

marks present in the tissue of interest as positives and non-

enhancer regions or the genomic background as negatives. To test

whether our two-step method improves upon these previous

approaches, we trained one-step MKL tissue-specific classifiers

and compared their predicted tissue distributions to those of

validated enhancers from the VISTA database (Figure 5A). First,

we trained a set of tissue-specific classifiers using enhancers active

in each tissue as positives and the genomic background as

negatives. These classifiers predict very similar sets of enhancers

regardless of the target tissue; and they vastly overestimate the

number of enhancers that are active in multiple tissues (95% of

predictions versus 8% of VISTA) and the number of true

enhancers of each tissue (Figure 5B). In contrast, classifiers trained

as in Step 2 of EnhancerFinder, i.e., using tissue-specific enhancers

as positives and a mix of enhancers active in other tissues and

regions with no activity in VISTA as negatives, show much greater

tissue-specificity in their predictions (76%) and a similar amount of

overlap as among known enhancers (Figure 5C).

Heart enhancers are easier to identify due to several
unique attributes

The relative ease of identifying heart enhancers is likely due to

several unique characteristics. Known heart enhancers at E11.5

are more evolutionarily conserved than genomic background, but

significantly less conserved than enhancers in other tissues [39,41].

In addition, we observed that heart enhancers at this develop-

mental stage are uniquely close to the nearest transcription start

site (TSS) (Figure S7). These two patterns are consistent with a

Table 1. Performance (ROC AUC) of classifiers on each tissue-specific enhancer prediction task (Step 2).

Heart Limb Forebrain Midbrain Hindbrain Neural Tube

Evolutionary Conservation 0.78 0.58 0.52 0.54 0.53 0.52

DNA Motifs 0.83 0.64 0.66 0.63 0.62 0.60

Functional Genomics 0.86 0.74 0.72 0.72 0.69 0.62

Enhancer Finder 0.85 0.74 0.72 0.72 0.69 0.62

doi:10.1371/journal.pcbi.1003677.t001
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recent study of mouse enhancers from different developmental

stages [75]. Finally, we observed that E11.5 heart enhancers have

an unusually high GC content (49%) compared to enhancers of

other tissues at E11.5 (,40%). A simple classifier based solely on

the GC content of a region performs nearly as well as our full

classifier for heart enhancers (Figure S8). In contrast, sequence-

based classifiers do not perform well on the other tissues whose

enhancer GC content is not significantly different from the

genomic background (Table 1). The high GC content of heart

enhancers is not due to overlap with CpG islands. Only about 4%

of VISTA enhancers overlap with a CpG island, and this number

is consistent across tissues. We also did not find enrichment for any

known GC-rich transcription factor binding site motifs in VISTA

heart enhancers. We do see, however, that repeat regions in heart

enhancers are depleted for the very AT-rich repeats seen in other

enhancers, and that most of the repeat regions in heart enhancers

are 40–60% GC. Our results suggest the possible existence of

unknown GC-rich motifs that may be important for gene

regulation in the cardiac lineage.

The heart classifier based on functional genomics data alone

exhibits strong performance compared to other tissue-specific

classifiers as well (Table 1). It is possible that this is due to the

presence of feature data from contexts more relevant to develop-

mental heart activity than to other tissues, rather than unique

attributes of the heart enhancers themselves. Indeed, the highest

weighted features in the heart functional genomics classifier come

from heart tissues. However, the performance of the heart classifier

based only on functional genomics data does not decrease

substantially when we exclude data from the most relevant contexts:

embryonic heart tissue, adult hearts, and stages of a directed

differentiation of stem cells into cardiomyocytes (ROC

AUC = 0.85). Thus, it is possible that feature data from less

obviously relevant contexts are more informative about heart

Figure 3. Integrating diverse functional genomics data improves enhancer prediction. (A) Considering functional genomics features from
contexts and assays not directly associated with developmental enhancer activity (All Functional Genomics and Relevant Functional
Genomics) improves the identification of developmental enhancers (p = 9.2E-9 and p = 2.7E-6, respectively, compared to Embryonic Functional
Genomics only). (B) Combining available H3K4me1, p300, and H3K27ac data, which are commonly used in isolation to identify enhancers, in a linear
SVM (Basic Functional Genomics) is better able to distinguish known developmental enhancers from the genomic background than considering
each type of data alone (p,2E-7, for each). However, combining these marks still performs significantly worse than EnhancerFinder (Figure 2A;
AUC = 0.96) and considering additional data as in (A).
doi:10.1371/journal.pcbi.1003677.g003

Figure 4. Enhancers of heart expression are easier to identify
than enhancers active in other tissues at E11.5. (A) In Step 2 of
our prediction pipeline, we trained EnhancerFinder using the same
features as in Step 1 (Figure 1), but using VISTA enhancers active in a
given tissue as positives and tested regions that did not show activity in
the tissue as negatives. Heart enhancers were dramatically easier to
distinguish from other enhancers than enhancers of expression in other
tissues. The heart enhancers have significantly higher GC content than
other enhancers and the genomic background. This and several other
unique attributes may explain the ease of identifying them (Figures S7
and S8). In general, functional genomics data are the most informative
data type for predicting enhancer tissue specificity (Table 1).
doi:10.1371/journal.pcbi.1003677.g004

Integrative Developmental Enhancer Prediction

PLOS Computational Biology | www.ploscompbiol.org 8 June 2014 | Volume 10 | Issue 6 | e1003677



activity than for other tissues. We suspect that the ease of

distinguishing heart enhancers may be due to the earlier develop-

ment of the heart compared to other tissues (see Discussion).

We predict more than 80,000 developmental enhancers
across the human genome

One of the main motivations for developing algorithms that can

distinguish active enhancers is to apply them to unannotated

genomic regions to aid the exploration and interpretation of the

gene regulatory landscape of the human genome (Figure 1). To

produce a genome-wide set of candidate developmental enhanc-

ers, we divided the genome into 1.5 kb blocks overlapping one

another by 500 bp and applied Step 1 of EnhancerFinder to each

of these regions. EnhancerFinder produces a score for each region;

positive scores indicate membership in the positive set (enhancers),

and negative scores indicate membership in the negative set (non-

enhancers). To focus on high confidence predictions in this

genome-wide analysis, we used the cross-validation-based evalu-

ation described above to find a 5% FPR score threshold, and only

considered regions exceeding this threshold. After merging

overlapping positive predictions, we identified 84,301 develop-

mental enhancers across the human genome with median length

of 1,500 bp and total genome coverage of 183,695,500 bp

(5.86%).

The 5% FPR threshold we used corresponds to a 65% true

positive rate (TPR). To calculate the false discovery rate (FDR), we

must estimate the unknown fraction of 1.5 kb blocks of the human

genome that harbor developmental enhancer regions. If this

fraction were as high as 50%, a 5% FPR would correspond to a

9% FDR. If instead we estimate that 10% of 1.5 kb windows

contain a developmental enhancer, we see an FDR of 47% at a

5% FPR. While this may seem high, our recent analysis of

predicted enhancers with human-specific substitution rate accel-

eration found a lower failure rate at E11.5 (17%, 5/29) [74], and

only three of ten tested predictions did not validate with confirmed

or suggestive activity in our zebrafish assay (see below). This

suggests that the FDR may be lower in experimental applications,

especially when predicted enhancer regions are analyzed in the

context of other relevant data. However, to accurately measure the

true FDR would require experimental testing of a very large,

random set of EnhancerFinder predictions, which is beyond the

scope of this study.

In our genome-wide analysis, we used the smaller Relevant
Functional Genomics data set in order to reduce the

computational time required. We also did not include evolutionary

Figure 5. EnhancerFinder’s two-step approach captures tissue-
specific attributes of enhancers. (A) The true overlap of human
enhancers of brain, heart, and limb in the VISTA database. The vast
majority of characterized enhancers are unique to one of these tissues
at this stage. For example, of the 84 validated heart enhancers, 71 are
unique to heart, five are shared with brain, four with limb, and four with
both. (B) The predicted overlap of VISTA enhancers based on
predictions made with a single training step using MKL with only
enhancers of that tissue considered positives and the genomic
background as negatives. This approach overestimates the number of
enhancers active in multiple tissues. Each classifier mainly learns general
attributes of enhancers, rather than tissue-specific attributes. (C) The
predicted overlap based on EnhancerFinder’s two-step approach. These
predictions are much more tissue-specific and exhibit overlaps between
tissues similar to the true values (A). Predicted tissue distributions are
similar when the methods are applied to other genomic regions, as
illustrated in our genome-wide predictions, but only predictions on
VISTA enhancers are shown here to enable comparisons to the
distribution for validated enhancers (A).
doi:10.1371/journal.pcbi.1003677.g005
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conservation data, because the positives in our training data are

almost universally conserved. While most enhancers likely exhibit

some evolutionary conservation, this extremely high fraction is

likely due to bias in the selection of the tested regions in VISTA

and could reduce our ability to detect less highly conserved novel

enhancers genome-wide (see Discussion). The resulting conser-

vation-free classifier still performed extremely well in cross

validation (AUC = 0.92). Supporting this approach, non-con-

served regions make up over 20% of our genome-wide enhancer

predictions. As noted above, we did not observe any other

dramatic biases in the feature data associated with human VISTA

enhancers.

Next, we applied Step 2 of EnhancerFinder to all enhancer

regions predicted in Step 1. We focused on brain, limb, and

heart, because these tissues are highly represented in VISTA and

have been extensively studied in previous analyses of develop-

mental enhancers. We predicted 7,400 limb enhancers, 19,051

heart enhancers, and 11,693 brain enhancers (Figure 6) at a 5%

FPR threshold tuned separately for each tissue. Since Enhancer-

Finder makes predictions for each tissue independently, there are

no constraints on the distribution of tissues in the resulting

genome-wide predictions. Nonetheless, we find a high level of

tissue-specificity; nearly 90% of the limb, heart, and brain

enhancers are predicted to be active in just one of the three

tissues.

All genome-wide enhancer predictions are available as tracks

for import into the UCSC Genome Browser (Data File S1).

These lists of high-confidence tissue-specific enhancers should

not be viewed as exhaustive; we found thousands of regions

with positive, but less significant scores from Step 2 of

EnhancerFinder.

Predicted enhancers are associated with relevant
functional genomic regions

To characterize and further validate our genome-wide enhancer

predictions, we examined their genomic distribution with respect

to several independent indicators of function (details in Text S1).

Genes near brain and heart enhancers are enriched for expression

in relevant tissues (Tables S2 and S3). Similarly, Gene Ontology

(GO) Biological Process enrichment analyses of nearby genes

suggest that our predicted developmental enhancers target genes

that function in relevant cell types and tissues (Figure 6). The most

prevalent transcription factor binding site motifs found in the

sequences of predicted enhancers differed between enhancers of

different tissues and included many relevant developmental TFs

(Table S4). Finally, our predicted enhancers contain 676 lead

SNPs associated with significant effects in GWAS (Table S5); this

is significantly more than expected at random (permutation p,

0.001).

Taken together, these analyses suggest that EnhancerFinder

identifies many active regulatory regions that contain functionally

relevant variation. Our tissue-specific enhancer predictions give

valuable annotations to thousands of non-coding regions of the

human genome that had not previously been linked to develop-

Figure 6. Predicted tissue-specific enhancers exhibit tissue-specific characteristics. EnhancerFinder identifies thousands of novel high-
confidence (FPR,0.05) heart, brain, and limb enhancers. These enhancers are enriched for tissue-specific GO Biological Processes. The five most
enriched GO Biological Processes among genes near each enhancer set (as calculated using GREAT) are listed in the colored boxes. Nearly 90% of
EnhancerFinder predicted heart, brain, and limb enhancers are unique to a single tissue. The larger number of high-confidence heart enhancers
relative to brain and limb enhancers is the result of the superior performance of the heart classifier.
doi:10.1371/journal.pcbi.1003677.g006
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mental regulation. For example, thousands of SNPs associated

with disease by GWAS are in non-coding regions with limited

functional annotations [76]. Our genome-wide enhancer predic-

tions provide a resource for exploring the mechanisms and

functional effects of these uncharacterized GWAS hits.

EnhancerFinder predictions function as enhancers in the
developing embryo

To demonstrate that genome-wide EnhancerFinder predictions

can facilitate the discovery of functional regulatory elements, we

present two case studies in which we identify and validate novel

enhancers near genes active during development.

EnhancerFinder identifies many novel enhancers near

FOXC1 and FOXC2. To evaluate several EnhancerFinder

predictions, we took advantage of a transgenic enhancer assay

in embryonic zebrafish (Methods). We tested enhancer activity of

ten predicted human enhancers near FOXC1 and FOXC2, two

forkhead box TFs. The mouse homologs Foxc1 and Foxc2 have

been studied extensively and have been shown to be required for

proper embryonic development; Foxc1 null and Foxc2 null

mutants are pre- or perinatal lethal [77,78,79]. In humans,

complete lack of FOXC1 is also typically pre- or perinatal lethal,

and deletions near and point mutations in FOXC1 contribute to

eye and brain development disorders [80,81]. Figure 7 shows the

genomic context of FOXC2, along with the candidate enhancers

that we tested (FOXC2 Enhancer Candidates, or F2ECs). FOXC1

results are shown in Supplementary Figure S10 (FOXC1

Enhancer Candidates, or F1ECs). Six of the ten predicted

human enhancer sequences showed consistent enhancer activity

in zebrafish at 24 or 48 hours post fertilization (hpf) (F1EC-1,

F1EC-6, F2EC-1, F2EC-2, F2EC-3, and F2EC-4). One addi-

tional candidate enhancer (F1EC-3) showed suggestive enhancer

activity. EnhancerFinder predicted tissue specificity for eight of

the ten candidate enhancers, and we saw the predicted

expression pattern confirmed for just one candidate enhancer

(F2EC-3, predicted heart enhancer), and suggestive expression

for another (F1EC-6, predicted heart enhancer). However, it is

difficult to interpret this result, since the tested stages (24 and

48 hpf) do not directly correspond to single stages of mammalian

development, and some of the studied tissues are not homolo-

gous. Also, since we tested predicted human enhancer sequences

in zebrafish, it is possible that differences in developmental

regulation between human and fish contributed to this result.

EnhancerFinder predictions highlight a novel enhancer

near ZEB2. Next, we sought to investigate a novel enhancer

prediction in a mammalian system. We selected the locus

containing ZEB2, a zinc finger E-box-binding homeobox-2 TF,

which has many roles throughout embryonic and postnatal

development, in particular in cortical neurogenesis

[82,83,84,85]. Mutations in ZEB2 are associated with Mo-

wat-Wilson syndrome, a complex developmental disorder [86].

However, relatively little is known about the genetic mecha-

nisms that orchestrate ZEB2’s expression. A long-range

enhancer of postnatal expression in developing kidney cells

(E1 in Figure 8) was recently discovered 1.2 megabases (Mb)

downstream of ZEB2 in the adjacent gene desert [87]. Since

this enhancer does not fully recapitulate the expression timing

and domains of ZEB2, the authors speculated that the gene has

many other, potentially long-range, enhancers. Supporting this

theory, there are two validated E11.5 brain enhancers near

ZEB2 in the VISTA Enhancer Browser (Figure 8, VISTA

hs407 and VISTA hs1802). Finally, there is an enrichment of

human accelerated regions (HARs) [88,89] near ZEB2,

suggesting that it may have human-specific regulatory patterns.

Our EnhancerFinder predictions support the existence of a rich

regulatory program specified in the non-coding sequence nearby

ZEB2; there are 54 predicted enhancers for which it is the nearest

TSS. This puts ZEB2 in the top 0.2% of all genes with respect to

Figure 7. Four novel developmental enhancers near FOXC2. This UCSC Genome Browser (http://genome.ucsc.edu) snapshot shows the
genomic context of four candidate human enhancers tested in transgenic zebrafish. For each enhancer, we show a zebrafish image that is
representative of the reproducible expression patterns. FOXC2 Enhancer Candidate 1 (F2EC-1) drives expression at 48 hpf in the eye and epidermis
(arrows). F2EC-2 shows expression at 24 hpf in the forebrain, midbrain, and nerve. F2EC-3 drives expression at 48 hpf in the epidermis and heart.
F2EC-4 shows expression at 48 hpf in the notochord, spinal cord, and heart. See Table S6 for full list of expressed tissues seen in each candidate
enhancer and Figure S10 for results on candidate enhancers near FOXC1.
doi:10.1371/journal.pcbi.1003677.g007
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the number of adjacent enhancer predictions. Supporting the

validity of our predictions, the known VISTA enhancers both

overlap EnhancerFinder predicted enhancers, while the regions

known to be inactive or active at later postnatal developmental

stages (E1) [87] do not

We selected an EnhancerFinder predicted enhancer (indicated

in the zoomed pane of Figure 8) for further experimental analysis

due to its high EnhancerFinder score and overlap with a HAR

(2xHAR.240). We interrogated the potential of the human and

chimp sequences at this region to drive gene expression at E11.5 in

transient transgenic mouse embryos. All seven embryos with

staining showed cranial nerve expression (Figure 8 red box; Figure

S11), regardless of whether the construct contained the human or

chimp sequence. Thus, we have identified a novel enhancer within

the ZEB2 locus that overlaps one of its expression domains;

however, whether this enhancer targets ZEB2 remains to be

proven.

This is not the only HAR enhancer validated to date. In a

recent publication, we showed that many HARs function as

developmental enhancers [90]. In that study, we experimentally

tested 29 HARs that EnhancerFinder predicts to function as

developmental enhancers, and found, in agreement with the cross-

validation and zebrafish experimental validation rates here, that

24 of the regions (83%) show positive enhancer activity at E11.5.

In addition, one EnhancerFinder negative showed no enhancer

activity.

While none of the enhancer predictions tested so far were

randomly selected, our results suggest that EnhancerFinder is a

powerful tool for accurately characterizing developmental regula-

tory potential in many useful contexts. Our enhancer predictions

highlight many additional candidates for further investigation, and

we believe that they will enable similar analyses of the regulatory

potential of many other genes and regions of interest.

Discussion

In this study, we developed EnhancerFinder, a new machine-

learning framework for predicting regulatory enhancers from

diverse data sources. In contrast to most previous enhancer

identification strategies, which have based their predictions on one

or a small number of data types, EnhancerFinder enables us to

flexibly integrate the large and continually expanding collection of

evolutionary, DNA sequence, and functional genomics data that

are informative about enhancer function. Our analysis of the

EnhancerFinder algorithm and its predictions makes three major

contributions. First, we demonstrate that integrating diverse types

of data from many cellular contexts, including some unexpected

ones, can accurately predict in vivo validated developmental

Figure 8. A novel cranial nerve enhancer in the ZEB2 locus. This UCSC Genome Browser snapshot shows a dense region of predicted
enhancers in a 1.5 Mb window on human chromosome 2 including ZEB2 and part of the adjacent gene desert. Tracks give the locations of four
human accelerated regions (HARs), two validated VISTA enhancers (hs407 and hs1802), and the E1 region recently shown to have postnatal enhancer
activity [87]. The inset shows a zoomed in view of ZEB2 (hg19.chr2:145,100,000–145,425,000) along with summaries of several ENCODE functional
genomics datasets and evolutionary conservation across placental mammals. We tested the predicted enhancer overlapping 2xHAR.240 for enhancer
activity at E11.5 in transgenic mice. Both the human and chimp versions of this sequence drive consistent expression in the cranial nerve (Figure S11).
doi:10.1371/journal.pcbi.1003677.g008
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enhancers. Second, we show that a two-step approach in which

enhancer tissue-specificity is individually evaluated after general

enhancer prediction improves the identification of enhancers’

tissues of activity. Finally, our genome-wide developmental

enhancer annotations, including tissue-specific predictions for

heart, brain, and limb, assign novel functions in development to

thousands of genomic regions. We show that these predictions are

enriched for a number of independent indicators of regulatory

functions. As a result, we expect our predictions to prove useful in

the annotation of non-coding genomic regions, as illustrated in the

identification of novel enhancers near ZEB2, FOXC1, and FOXC2.

Our genome-wide predictions are freely available as a UCSC

Genome Browser track.

A biologically active in vivo definition of ‘‘enhancer’’
We chose to define developmental enhancers for training as

genomic regions that are experimentally shown to activate gene

expression in vivo in embryonic mouse assays. We believe that this

definition is better suited to identifying regions for further

exploration and experimental characterization than approaches

based on single data sources, such as p300, H3K4me1, or

H3K27ac, associated with enhancers in individual cell lines. We

showed that our predicted enhancers, based on this biologically

active definition, significantly overlap data sets commonly used as

proxies for enhancer activity, such as H3K27ac and p300 binding.

However, these other data alone are not sufficient to identify all

enhancers, as we demonstrated for H3K27ac, H3K4me1, and

p300 in Figure 3B. Similarly, when we evaluated the ability of

other computational methods to identify enhancers, we find that

they perform better than random, but that EnhancerFinder

significantly outperforms them at identifying biologically active

developmental enhancers. This is not surprising given the different

contexts in which some enhancer predictions, such as those from

ChromHMM and Segway, were developed.

While EnhancerFinder could be used to predict enhancers in

well-characterized cell lines, it is particularly useful at identifying

enhancers in complex tissues that contain multiple cell types and in

cell types that do not have much specific functional genomics data

available. Other computational approaches to enhancer prediction

have focused on identifying enhancers in individual cell types using

functional genomics data from the same cells [56] or using the

differences in cell type specific transcription factor binding to

identify cell-type specific binding motifs [61]. These methods

generally perform well, but they do not address enhancer

prediction in cell types with little or no functional genomics data,

or in tissues that contain multiple cell types.

Why do seemingly irrelevant data improve our enhancer
predictions?

Data such as p300 binding sites and H3K4me1 have been used

in previous studies to identify enhancers, and these data are major

contributors to our enhancer predictions. However, data from

other sources and contexts less directly associated with enhancer

activity provide complementary information that improves our

predictions. Some of these data may be negatively correlated with

enhancer activity, allowing EnhancerFinder to learn what features

distinguish regions that are not developmental enhancers. Others

may help reinforce patterns present in data from more relevant

contexts, reflecting some degree of stability in the features of

enhancer regions across developmental stages and cell types. For

example, we found that features measured in embryonic stem cells

are quite useful for E11.5 enhancer prediction; their removal from

the classifier degrades performance and/or they have large

(positive or negative) MKL weights. Examination of these features

suggests that some identify ‘‘poised’’ regions that will become

active enhancers upon differentiation, while others seem to help

distinguish stem cell enhancers (i.e., non-enhancers at E11.5) from

those specific to differentiated lineages. We note that despite these

interesting observations, most individual functional genomics

features do not carry a great deal of information and the power

of EnhancerFinder comes from the integration of different types of

data. It is also possible that as a more complete experimental

characterization of chromatin state and protein-DNA binding

from E11.5 tissues is obtained, data from less relevant contexts will

not provide as much improvement as it did in this study.

What data are most informative about enhancer activity?
We focused on a single developmental stage with a large

number of validated enhancers. To efficiently extend enhancer

detection and validation to new contexts, it will be very important

to select the most informative data to collect. Even though the

ENCODE project has produced an impressive amount of data, it

still has not extensively assayed most contexts of interest to

researchers, in particular developmental biologists. The perfor-

mance of classifiers trained on subsets of all our data and the

weights we learned for feature sets and individual features provide

some guidance for future experiments. Evolutionary conservation

and DNA sequence patterns are broadly useful in the identifica-

tion of enhancers, but our results suggest that adding functional

genomics data is necessary to make more precise predictions about

the contexts of activity. H3K4me1 and p300 are two of the most

useful functional genomics data types overall (Figure S6), but many

others are useful in particular contexts. However, the non-random

sampling of functional genomics data and enhancers makes

definitively determining the relative utility of different data types

challenging.

Why are heart enhancers easier to predict than other
types of enhancers?

We saw a broad range in our ability to predict the tissue

specificity of enhancers from existing data. Heart enhancers were

dramatically easier to identify than other tissue-specific enhancers.

Heart enhancers have significantly higher GC content than

enhancers of other tissues, are less evolutionarily conserved, and

are closer to the nearest TSS than other known enhancers at

E11.5, and we show that GC content alone is sufficient to

accurately predict many heart enhancers (Figures S7 and S8).

However, functional genomics data alone were also able to

accurately predict heart enhancers. The underlying biological

explanation for these patterns may have to do with relative

developmental age of different organs and tissues. At E11.5, the

heart is further along its developmental trajectory than the other

tissues considered, and heart enhancers have completed their most

conserved developmental stage, whereas forebrain enhancers are

most strongly conserved at E11.5 and E14.5 [75]. At E11.5, many

of the less conserved, mammal-specific features of the heart are

developing [91,92], whereas other tissues are still developing under

more general, less species-specific conserved regulatory programs

at E11.5 [93]. A recent study of enhancers in the adult mouse

retina found that high local GC content was strongly correlated

with enhancer activity [94]. Paired with our result, this suggests

that GC content is a distinguishing feature of certain classes of

enhancers.

Limitations of our approach
In spite of the strong overall performance of EnhancerFinder at

predicting tissue-specific developmental enhancers, our approach
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has some limitations. First, we rely heavily upon the VISTA

Enhancer Browser for training examples, because it is the largest

collection of validated mammalian enhancers currently available.

This resource provides an impressive catalog of validated human

regulatory enhancers, but it is limited to a single developmental

stage and experimental system. Without more data and analysis, it

is difficult to evaluate how specific our predictions are to this

context. Applying EnhancerFinder to known enhancers in model

organisms, such as zebrafish and fly, would provide additional

opportunities to evaluate our approach and findings, while

potentially demonstrating differences in how enhancers function

in these different species.

Second, most of the enhancers present in VISTA are

evolutionarily conserved. As a result, the VISTA enhancers

cannot be viewed as an exhaustive catalog of the full range of

enhancers. However, these regions have validated enhancer

activity in vivo, and thus provide an appealing alternative to

approaches that use single-mark proxies for enhancer activity (e.g.,

considering all H3K27ac peaks as active enhancer regions). In

addition to being conserved, these regions contain many signatures

of enhancers in their sequence motifs and functional genomics

composition that are useful for predicting enhancers. To

emphasize these features and mitigate the impact of bias towards

conserved regions, we removed evolutionary conservation as a

feature from EnhancerFinder when we applied it to predict

enhancers genome-wide. Our goal in doing so was to improve our

ability to discern less conserved enhancers in these genome-wide

predictions, and indeed, we predicted thousands of non-conserved

enhancers (,20% of all predictions).

Third, though our predictions are based on a large collection of

genome-wide chromatin state, protein-binding, and sequence

information from many contexts, we are still limited by data

availability. Even with the impressive efforts of ENCODE and

related projects, producing data that are perfectly matched to all

contexts of interest is time consuming and sometimes impossible,

especially when studying humans. Thus, it will be important to

develop a principled understanding of how different data can be

generalized across tissues, developmental stages, and between

species. In our analysis, many of the highest weighted features

come from contexts close to the developmental stage of interest,

and thus we anticipate that gathering more data from develop-

mentally relevant cells and tissues will significantly improve our

ability to annotate genomic regions involved in the regulation of

embryonic development. However, data from other, seemingly

unrelated, contexts may continue to prove useful.

Extensions and future applications
This study annotates regulatory elements in the human

genome and provides tools for interpreting the effects of

mutations in non-coding regions. Our case studies on regions

around ZEB2, FOXC1, and FOXC2 illustrate how our

predictions can facilitate the rapid identification of novel

enhancers. In addition, the statistical enrichment for GWAS

SNPs in our genome-wide enhancer predictions suggests that

they may be a good resource for pinpointing causal mutations

in potential disease loci.

EnhancerFinder is a general framework for enhancer prediction

and evaluation of different data sources that aim to annotate the

regulatory functions of the human genome. It could easily be

extended to include additional types of data, such as population-

level variation at each locus, information about the three-

dimensional state of the genome from Hi-C and 5C, and

predictions of potential target genes for each enhancer. It could

also be used to analyze additional aspects of the data we already

consider, such as accounting for the relative genomic position of

different features [66].

The EnhancerFinder two-step approach enables delineation of

features common to all enhancers versus those that characterize

enhancers of different types. For example, we find that predicting

enhancers that are unique to a single tissue is more difficult than

those that are active in multiple tissues (Figure S9), that certain

features make prediction of heart enhancers particularly easy, and

that different features are selected in classifiers for general

enhancers and those for specific tissues. Together, these results

suggest that there may be distinct classes of enhancers, even

among those active in a given tissue at a single developmental

stage. Further analysis of EnhancerFinder classifiers based on

different types of data may help suggest biological mechanisms

underlying the functional distinctions and genomic features of

these different classes of enhancers.

Methods

Ethics statement
Transgenic mice were generated by Cyagen Biosciences

(http://www.cyagen.com/). Their facility meets and often

exceeds animal health and welfare guidelines. Animals were

euthanized using techniques recommended by the American

Veterinary Medical Association. All procedures were carried

out in line with Gladstone Institutes and University of

California guidelines. All zebrafish work was approved by

the UCSF Institutional Animal Care and Use Committee

(protocol number AN100466).

Genomic data
All work presented in this paper is based on the February 2009

assembly of the human genome (GRCh37/hg19) downloaded

from the UCSC Genome Browser (http://genome.ucsc.edu/).

Any data that was not in reference to this build was mapped over

using the liftOver tool from the UCSC Kent tools (http://

hgdownload.cse.ucsc.edu/admin/jksrc.zip).

Multiple kernel learning-based prediction of
developmental enhancers

In our framework, genomic regions are associated with a

common set of descriptive features. We then apply machine-

learning algorithms that use the features of known training

examples to learn a function of the feature data that distinguishes

the positives (enhancers) from the negatives (non-enhancers). This

function can then be applied to the features associated with

uncharacterized genomic regions to predict their enhancer status.

A positive score for a genomic region indicates predicted

membership in the positive class (enhancers) and a negative score

indicates predicted membership in the negative class (non-

enhancers).

Training examples. We obtained all of our positive training

data and our tissue-specific negative training data from the VISTA

Enhancer Browser [69] on April 4, 2012. We downloaded the

location, DNA sequence, and expression contexts for all human

sequences tested in the VISTA mouse E11.5 enhancer screen.

This consisted of 711 validated human enhancers and 736

genomic regions that did not exhibit enhancer activity in this

context (http://enhancer.lbl.gov/). The median length of the

enhancers in VISTA is 1,545 bp.

In the first step of EnhancerFinder (Figure 1), we used all 711

VISTA enhancers as positive training data. For negative training

data, we generated a set of 711 random genomic regions matched
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to the length and chromosome distribution of the positives, and

filtered to remove known VISTA enhancers and assembly gaps.

In the second step of EnhancerFinder, we used tissue-specific

subsets of the 1,447 VISTA regions for training. For example,

when predicting heart enhancers, our positive training data were

the 84 VISTA regions with heart expression in E11.5 mice, and

our negative training data were the remaining 1,363 VISTA

regions that were tested and showed no heart expression at E11.5,

even though they may be enhancers in other tissues or none at all.

We did not require that a region be active only in the tissue of

interest. We included the VISTA negatives in this analysis,

because they share many attributes in common with known

enhancers and may have enhancer activity in contexts other than

E11.5. Our results did not change dramatically when the VISTA

negatives were not included in the training. We trained tissue-

specific classifiers for the six tissues with more than 50 examples in

VISTA: forebrain, midbrain, hindbrain, heart, limb, and neural

tube. We also trained a brain enhancer classifier on the combined

the forebrain, midbrain, and hindbrain enhancers.

Feature data. We considered three main types of data as

features in our analysis: functional genomics data, evolutionary

conservation, and DNA sequence motifs. We obtained our

functional genomics feature data from the ENCODE data

repository at the UCSC Genome Browser (http://genome.ucsc.

edu/ENCODE/ and [95]). These data include histone modifica-

tions, such as H3K4me1, H3K4me3, H3K27ac, protein-DNA

associations for many TFs and p300, and several measurements of

open chromatin (DNaseI hypersensitivity, FAIRE, digital genomic

footprinting), from hundreds of cell types [95]. We also included

heart p300 data from [39]. For a full list of the functional genomics

data considered, see Table S1. We associated each genomic region

with a binary vector that represents the presence or absence of

overlap with each functional genomics data set. To determine this

feature vector, we intersected the genomic location of the region of

interest with the peaks defined by the original researchers (from

the broadPeak or narrowPeak files) using intersectBed [96]. We

found that considering non-binary functional genomics features

based on experimental data, like the density of sequence reads

from a ChIP-seq study, did not significantly improve performance

(data not shown). However, we suspect that with consistent peak

calling and appropriate normalization this might be an avenue for

future improvement.

To summarize the DNA sequence motif patterns in a genomic

region, we calculated the number of occurrences of all possible 4-

mers in the sequence.

Evolutionary conservation estimates were taken from the

mammalian phastCons elements [72] obtained from the phastCon-

sElements46wayPlacental track in UCSC Genome Browser. Each

genomic region was assigned its maximum overlapping phastCons

score or zero if it did not overlap any phastCons elements.

Machine-learning algorithms. EnhancerFinder is an ex-

tension of the SVM supervised learning framework that allows the

integration of multiple data types into a single discrimination

function. Standard 1-norm MKL augments the usual SVM

discrimination function, f, with additional parameters, bj, that

weight the contribution of each kernel function kj:

f (x)~
XN

i~1

ai

XM

j~1

bjkj(x,xi)zb

where N is the number of training examples, M is the number of

kernels, ai are the training example weights, and b is the bias [66].

We include three kernel functions in EnhancerFinder, each of

which corresponds to one of the three types of feature data

described above. These kernels quantify the similarity of the

features of the appropriate type for any two genomic regions. To

combine the kernels, the MKL algorithm simultaneously learns

weights for the associated kernels, in addition to learning the bias

and weights for each training example as in a standard SVM. We

use the 4-spectrum kernel [71] for our sequence features; this

kernel has been shown to perform well in a variety of DNA

sequence-based prediction tasks including enhancer prediction

[54]. For the functional genomics and evolutionary conservation

data, we use linear kernels, which are equivalent to dot products of

the feature vectors. We explored the use of alternative, non-linear

kernels for these features and found that they performed similarly

(data not shown). Each kernel was variance normalized, and we

balanced the misclassification costs by class size [97]. In addition

to EnhancerFinder classifiers, we also trained and evaluated the

constituent single kernel SVMs. All analyses were performed using

the implementation of SVMs and MKL in the SHOGUN

Machine Learning Toolbox v1.1.0 [98].

Performance evaluations
To evaluate the performance of trained classifiers, we

performed 10-fold cross-validation on the training data and

quantified our results with ROC AUC, precision-recall curves,

and power estimates at fixed false positive rates. We computed p-

values for the difference in performance between classification

methods using McNemar’s test [99,100]. To estimate false

discovery rates, we trained EnhancerFinder classifiers at 1:1,

1:10, and 1:100 ratios of positive to negative enhancers and used

the resulting 10-fold cross-validation results to calculate the

proportion of false discoveries genome-wide at a 5% FPR if the

true proportion of 1.5 kb windows containing an enhancer was

50%, 10%, or 1%.

Comparison to existing enhancer prediction methods
We compared EnhancerFinder’s predictions to those of several

previous enhancer prediction methods. We obtained the perfor-

mance of CLARE on our Step 1 prediction task, by inputting our

positive and negative data into the CLARE web server [73]. We

downloaded the genomic segmentations and annotations pro-

duced by ChromHMM [64] and Segway [65]. We considered the

ChromHMM predictions based on different ENCODE cell lines

both individually and together. Any genomic region in our

evaluation data set that overlapped an enhancer state was

considered a predicted enhancer, and all others were considered

predicted non-enhancers. For Segway, we also considered the ‘‘TF

activity’’ state.

Identification of tissue-specific enhancers across the
human genome

We predicted tissue-specific developmental enhancers through-

out the human genome by applying a trained MKL classifier (Step

1 of EnhancerFinder) without conservation (see Results) to sliding

windows of 1500 bp, moving along the human genome in 500 bp

steps. The feature profile for each window was computed as

described above. To focus on high-confidence predictions, we

filtered the enhancer scores for the windows at a 5% FPR,

estimated from cross-validation using the genomic background,

and combined the remaining overlapping windows to produce

84,301 high-confidence predicted enhancers.

To predict tissue specificity, we applied trained brain, limb, and

heart classifiers (Step 2 of EnhancerFinder) without conservation

to all 299,039 windows with positive enhancer scores in Step 1. We
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then applied a 5% FPR cutoff for each tissue and concatenated the

remaining overlapping windows into merged enhancer regions.

Using this approach, we predicted 19,051 heart enhancers, 11,693

brain enhancers, and 7,400 limb enhancers.

Analysis of genome-wide tissue-specific enhancer
predictions

We characterized the expression patterns of the gene nearest to

each predicted enhancer using the GNF Atlas 2 [101]. It contains

expression data for genes in 79 different tissues, with expression

measured using Affymetrix microarrays. For each of these 79

tissues, we used a paired t-test to determine if the nearest genes of

predicted heart enhancers had significantly different mean values

of expression than the nearest genes of brain enhancers. We did

not include the limb enhancers in this analysis due to the lack of

relevant expression data in the GNF Atlas 2.

We examined genomic regions near predicted developmental

enhancers for enrichment of Gene Ontology functional annota-

tions, known phenotypes, and pathways using GREAT [102].

Results were computed using the hypergeometric test for genome-

wide significance, with the default settings and the ‘‘basal plus

extension’’ association rule (proximal 5 kb upstream, 1 kb

downstream, plus distal up to 100 kb).

We identified the sequence motifs present in each set of

enhancers using the FIMO tool (Find Individual Motif Occur-

rences) from the MEME Suite of sequence motif analysis tools

[103]. We considered known transcription factor binding motifs

from the April 2011 release of the TRANSFAC database with a

FIMO score threshold of 10e-5. We identified those occurrences

that fell in predicted enhancers, and summarized motifs to identify

the most prevalent TFs in each tissue-specific set of enhancers.

We analyzed the overlap of predicted enhancers with GWAS

SNPs, based on the NHGRI catalog of 9,687 GWAS SNPs

downloaded from the UCSC Genome Browser in October 2012.

Unadjusted permutation p-values were calculated by randomizing

genomic locations of predicted enhancers (matching for length and

chromosome, and avoiding assembly gaps) and overlapping these

randomized regions with GWAS SNPs to assess significance of

overlapping regions.

Transgenic enhancer assays
Mouse enhancer assays were carried out in transient transgenic

mouse embryos generated by pronuclear injections of enhancer

assay constructs into FVB embryos (Cyagen Biosciences). Human

and chimpanzee DNA sequences were inserted upstream of a

minimal promoter Hsp68 and a LacZ reporter gene. The human

sequence was amplified using primers 59-TGTAT-

GAAACCTGTTCACTCTCC-39 and 59-GCTTAAAACAAC-

TACTAGAATCAGGC-39 from the bacterial artificial chromo-

some (BAC) RP11-107E5 (from the BacPac resource at CHORI).

The chimpanzee sequence was amplified using primers 59-

TGTATGAAACCTGTTCACTCTCC-39 and 59-GCTTAAAA-

CAACTACTAGAATCAGGC-39 from BAC CH251-677E03a

(CHORI). The embryos were collected and stained for LacZ

expression at E11.5.

Following the annotation policies of the VISTA Enhancer

Browser, we required that consistent spatial expression patterns be

present in three or more embryos with staining in order for the

region to be considered an enhancer.

Zebrafish enhancer assays were performed in transient trans-

genic zebrafish embryos. We tested candidate enhancer regions

that ranged in length from 987 bp to 3,633 bp (see Table S6 for

hg19 genomic coordinates), which we manually demarcated from

within larger predicted enhancer regions based on signatures of

likely enhancer function (including DnaseI hypersensitivity sites,

transcription factor binding sites, histone modifications, and

conservation).

We performed PCR to obtain the candidate enhancer sequence

using human genomic DNA (Roche). These were cloned into the

E1b-GFP-Tol2 enhancer assay vector containing an E1b minimal

promoter followed by GFP [104], and the construct was verified

by sequencing. Each construct was injected with Tol2 mRNA into

at least 100 single-cell fertilized zebrafish embryos. We annotated

GFP expression at approximately 24 and 48 hours post fertiliza-

tion (hpf), and considered an enhancer to be positive if we

observed consistent expression in at least 15% of all fish alive at

either 24 or 48 hpf [105], and suggestive of enhancer activity if we

observed consistent expression in at least 10% of all fish alive at 24

or 48 hpf, after subtracting out percentages of tissue expression in

fish injected with the empty enhancer vector. For each construct,

at least 50 fish were analyzed for GFP expression at 48 hpf.

Supporting Information

Figure S1 Precision-Recall curves corresponding to all
ROC curves presented in the main text. (A) Figure 2A (B)

Figure 3A (C) Figure 3B (D) Figure 4. A PR curve could not be

created for Figure 2C, because we could not obtain the raw scores

for regions from the CLARE web server.

(PDF)

Figure S2 VISTA enhancers overlap many common
marks of enhancers, but no common mark is universal
to all VISTA enhancers. We computed the overlap between

711 VISTA enhancers and three common functional genomic

marks of enhancers and found that 450 enhancers overlap

H3K27ac (in any of 16 datasets from ENCODE), 563 overlap

H3K4me1 (in any of 15 datasets from ENCODE), and 404

overlap p300/CBP (in any of 35 datasets from ENCODE and

human tissues). Fewer than half of the enhancers (306) overlap all

three common marks of enhancers, and 93 do not overlap any of

those three functional genomics marks. All but five of the VISTA

enhancers overlap a conservation peak (phastCons 46-way

placental mammal). Four of these non-conserved enhancers

overlap all three functional genomics marks, and one non-

conserved enhancer overlaps just H3K27ac and H3K4me1.

(PDF)

Figure S3 The 4-spectrum kernel performs competi-
tively with other k-spectrum kernels and the combina-
tion of k-spectrum kernels. We analyzed the ability of

spectrum kernels based on k-mer lengths between 2 and 8 to

distinguish enhancers from the genomic background (Step 1). K-

mers between 4 and 7 had the best performance. We also

evaluated an MKL algorithm that combined each k-spectrum

kernel, and it did not provide significant improvement over the

best individual kernels.

(PDF)

Figure S4 Considering known TFBS motifs does not
improve the 4-spectrum kernel. Considering the number of

occurrences of known TFBS motifs as features has recently been

used in a linear SVM framework to predict enhancers [52]. To

evaluate the utility of this approach, instead of and in addition to

considering all k-mers, we created a linear SVM that used the

number of hits to 1022 TF binding site matrices from

TRANSFAC and JASPAR as computed by FIMO as features.

That is the feature vector for each region consisted of 1022

elements, each of which was the number of significant hits for a

different TF motif. This TFBS linear SVM (AUC = 0.81) did not
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perform as well as the 4-spectrum kernel (AUC = 0.88). We also

evaluated an MKL algorithm that combined the 4-spectrum and

TFBS kernels. This combined kernel did not perform any better

than the 4-spectrum kernel suggesting that, at least under this

encoding, TFBS motifs do not provide significant additional

benefit in distinguishing enhancers from the genomic back-

ground.

(PDF)

Figure S5 Combining functional genomics data with an
SVM outperforms simply considering regions overlap-
ping these data. The four solid lines shown are the same as in

Figure 3B; they summarize the performance of these methods at

distinguishing VISTA enhancers from the genomic background

(Step 1). The X’s give the performance of approaches that consider

all regions overlapping a given feature as positives and all others as

negatives. The + and * indicate the performance obtained by

considering the union and intersection of H3K4me1, p300, and

H3K27ac, respectively. For each feature, the linear SVM achieves

better performance than simply considering all overlapping

regions as positives.

(PDF)

Figure S6 EnhancerFinder feature weights highlight the
contribution of different functional genomics data types
to enhancer predictions. Each ‘‘+’’ represents the contribution

made by a single data feature, e.g. H3K4me1 peaks from

embryonic stem cells, to the classification in EnhancerFinder Step

1 (developmental enhancers versus genomic background). Positive

weights (red) indicate an association with enhancer activity in our

analysis and negative weights (blue) suggest a lack of enhancer

activity. The features plotted here come from a range of likely

relevant contexts (Relevant Functional Genomics classifier;

Table S1), and the number of data sets present for each feature

type is given in parentheses. The black bar gives the average

weight over all features of each type. In general, the features with

high average weights, such as H3K3me1, p300, and H3K4me2,

are known to be associated with enhancers, while those with large

negative weights are associated with other types of genomic

regions. However, no data type has uniformly positive or negative

weights in all contexts.

(PDF)

Figure S7 Heart enhancers are less conserved and
closer to the nearest transcription start site (TSS) than
limb and brain enhancers. Considering only limb and brain

enhancers that are less evolutionarily conserved and close to a TSS

improved our ability to identify them, but they are still more

difficult to identify than heart enhancers. In addition to these

features, heart enhancers have uniquely high GC content

compared to other enhancers and the genomic background

(Figure S7).

(PDF)

Figure S8 The uniquely high GC content of heart
enhancers in VISTA enables accurate classification.
The VISTA heart enhancers have higher GC content (49%) than

other types of enhancers and the genomic background (,40%).

(A) The classification score from a spectrum kernel classifier

trained to distinguish heart enhancers within VISTA (Step 2) is

strongly correlated (Pearson rho = 0.95) with the GC content of

the input region. (B) A classification algorithm based solely on GC

content (black) performs competitively with the spectrum kernel

(AUC of 0.80 vs. 0.82), and nearly as well as EnhancerFinder

(0.85; Figure 4).

(PDF)

Figure S9 Enhancers active in multiple tissues are
easier to identify than those active in a single tissue.
There are 399 enhancers active in a single tissue at E11.5 in the

VISTA database and 312 active in multiple tissues. EnhancerFin-

der is better able to distinguish the enhancers active in multiple

tissues from the VISTA negatives (AUC = 0.75) than it is to

distinguish single tissue enhancers from the negatives

(AUC = 0.67). This trend also holds across each tissue individually.

However, both sets are easy to distinguish from the genomic

background (AUC = 0.96 for both, not shown).

(PDF)

Figure S10 Three novel developmental enhancers near
FOXC1. This UCSC Genome Browser screenshot shows six

candidate enhancer regions tested in transgenic zebrafish. Three

of the regions showed positive or suggestive expression at 24 or

48 hpf. F1EC-1 drives expression at 48 hpf; the arrows highlight

reproducible midbrain, spinal cord, and epidermis expression.

F1EC-3 shows suggestive expression at 24 hpf in somitic muscles

and the epidermis (arrows). F1EC-6 drives expression at 48 hpf in

the pericardium and heart (suggestive). The other three tested

candidate enhancers without corresponding zebrafish images were

negative in the enhancer assay. See Table S6 for full list of

expressed tissues seen in each candidate enhancer.

(PDF)

Figure S11 Transient transgenic mouse embryos sup-
port a novel cranial nerve enhancer near ZEB2. Seven

transient transgenic mouse embryos showed LacZ expression at

embryonic day 11.5. Constructs containing a 999 bp region

(hg19.chr2:145,234,541–145,235,539) including 2xHAR.240

near ZEB2, a minimal promoter, and LacZ were used for

human. The orthologous region was used in the chimp construct

(panTro2.chr2b:148,811,929–148,812,929). Three embryos

with constructs containing the human version of the region of

interest and four embryos containing the chimp sequence had

staining. In all embryos, there was consistent expression in the

cranial nerve. There does not appear to be a significant

difference in the activity driven by the human and chimp

sequences at this time point.

(PDF)

Table S1 Functional genomics features used in our
analysis. This Excel spreadsheet lists the files used from

ENCODE (http://genome.ucsc.edu/ENCODE/) or GEO

(http://www.ncbi.nlm.nih.gov/geo/). There is a sheet for each

of the classifiers based on functional genomics data that lists all

data files used. ENCODE data set names are UCSC track names.

GEO data set names are GEO identifiers.

(XLS)

Table S2 Genes near brain enhancers have significant-
ly higher gene expression in brain and neural tissues
than genes near heart enhancers. Brain- or heart-related

tissues with significantly higher mean expression in genes

associated with predicted brain enhancers compared to predicted

heart enhancers.

(DOC)

Table S3 Genes near heart enhancers have significant-
ly higher gene expression in cardiac-related tissues
than genes near brain enhancers. Brain- or heart-related

tissues with significantly higher mean expression in genes

associated with predicted heart enhancers compared to predicted

brain enhancers.

(DOC)
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Table S4 The top 25 transcription factors for which
binding sites were most prevalent in brain, heart, and
limb enhancers.
(DOC)

Table S5 676 GWAS SNPs are found in predicted
enhancers. This Excel spreadsheet lists all GWAS SNPs from the

NHGRI database that fall within one of our predicted enhancers.

(XLSX)

Table S6 Candidate enhancer regions tested in zebra-
fish. We tested 10 candidate enhancer regions in a transgenic

zebrafish assay. This table lists the genomic coordinates (hg19) and

expression patterns observed for each construct at 24 and 48 hpf. A

representative fish is shown for each positive enhancer in (Figures 7

and S9). Candidate enhancers on chromosome 6 are near FOXC1,

and those on chromosome 16 are near FOXC2. N is the

number of zebrafish alive at the specified time point, and *

indicates expression patterns that are ‘‘suggestive,’’ but below

the 15% threshold we used for confirmed enhancers.

(DOC)

Data File S1 This ZIP archive contains BED files
(hg19 coordinates) with EnhancerFinder’s genome-wide

enhancer predictions, along with the MKL scores, for
general developmental enhancer activity, brain, heart,
and limb enhancers. The general prediction file also lists the

H3K27ac and H3K4me1 marks from the feature data overlapping

each predicted enhancer.

(ZIP)

Text S1 Text describing additional analyses in support
of the manuscript.

(DOC)
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