27,125 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications

    CGAMES'2009

    Get PDF

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    Genisa: A web-based interactive learning environment for teaching simulation modelling

    Get PDF
    Intelligent Tutoring Systems (ITS) provide students with adaptive instruction and can facilitate the acquisition of problem solving skills in an interactive environment. This paper discusses the role of pedagogical strategies that have been implemented to facilitate the development of simulation modelling knowledge. The learning environment integrates case-based reasoning with interactive tools to guide tutorial remediation. The evaluation of the system shows that the model for pedagogical activities is a useful method for providing efficient simulation modelling instruction
    • 

    corecore