9 research outputs found

    An agent-based simulation and logistics optimization model for managing uncertain demand in forest supply chains

    Get PDF
    This paper aims to model and minimize transportation costs in collecting tree logs from several regions and delivering them to the nearest collection point. This paper presents agent-based modeling (ABM) that comprehensively encompasses the key elements of the pickup and delivery supply chain model and presents the units as autonomous agents communicating. The modeling combines components such as geographic information systems (GIS) routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. ABM models the entire pickup and delivery operation, and modeling outcomes are presented by time series charts such as the number of trucks in use, facilities inventory, and travel distance. In addition, various simulation scenarios are used to investigate potential facility locations and truck numbers and determine the optimal facility location and fleet size.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Hybrid Algorithms for the Vehicle Routing Problem with Pickup and Delivery and Two-dimensional Loading Constraints

    Get PDF
    We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional loading problem, called PDP with two-dimensional loading constraints (2L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and without moving items of other requests. Furthermore, each item must not be moved after loading and before unloading. The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the demand of each customer is to be transported from the depot to the customer’s unloading site.This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark instances with up to 150 requests

    Development of transportation and supply chain problems with the combination of agent-based simulation and network optimization

    Get PDF
    Demand drives a different range of supply chain and logistics location decisions, and agent-based modeling (ABM) introduces innovative solutions to address supply chain and logistics problems. This dissertation focuses on an agent-based and network optimization approach to resolve those problems and features three research projects that cover prevalent supply chain management and logistics problems. The first case study evaluates demographic densities in Norway, Finland, and Sweden, and covers how distribution center (DC) locations can be established using a minimizing trip distance approach. Furthermore, traveling time maps are developed for each scenario. In addition, the Nordic area consisting of those three countries is analyzed and five DC location optimization results are presented. The second case study introduces transportation cost modelling in the process of collecting tree logs from several districts and transporting them to the nearest collection point. This research project presents agent-based modelling (ABM) that incorporates comprehensively the key elements of the pick-up and delivery supply chain model and designs the components as autonomous agents communicating with each other. The modelling merges various components such as GIS routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. The entire pick-up and delivery operation are modeled by ABM and modeling outcomes are provided by time series charts such as the number of trucks in use, facilities inventory and travel distance. In addition, various scenarios of simulation based on potential facility locations and truck numbers are evaluated and the optimal facility location and fleet size are identified. In the third case study, an agent-based modeling strategy is used to address the problem of vehicle scheduling and fleet optimization. The solution method is employed to data from a real-world organization, and a set of key performance indicators are created to assess the resolution's effectiveness. The ABM method, contrary to other modeling approaches, is a fully customized method that can incorporate extensively various processes and elements. ABM applying the autonomous agent concept can integrate various components that exist in the complex supply chain and create a similar system to assess the supply chain efficiency.Tuotteiden kysyntä ohjaa erilaisia toimitusketju- ja logistiikkasijaintipäätöksiä, ja agenttipohjainen mallinnusmenetelmä (ABM) tuo innovatiivisia ratkaisuja toimitusketjun ja logistiikan ongelmien ratkaisemiseen. Tämä väitöskirja keskittyy agenttipohjaiseen mallinnusmenetelmään ja verkon optimointiin tällaisten ongelmien ratkaisemiseksi, ja sisältää kolme tapaustutkimusta, jotka voidaan luokitella kuuluvan yleisiin toimitusketjun hallinta- ja logistiikkaongelmiin. Ensimmäinen tapaustutkimus esittelee kuinka käyttämällä väestötiheyksiä Norjassa, Suomessa ja Ruotsissa voidaan määrittää strategioita jakelukeskusten (DC) sijaintiin käyttämällä matkan etäisyyden minimoimista. Kullekin skenaariolle kehitetään matka-aikakartat. Lisäksi analysoidaan näistä kolmesta maasta koostuvaa pohjoismaista aluetta ja esitetään viisi mahdollista sijaintia optimointituloksena. Toinen tapaustutkimus esittelee kuljetuskustannusmallintamisen prosessissa, jossa puutavaraa kerätään useilta alueilta ja kuljetetaan lähimpään keräyspisteeseen. Tämä tutkimusprojekti esittelee agenttipohjaista mallinnusta (ABM), joka yhdistää kattavasti noudon ja toimituksen toimitusketjumallin keskeiset elementit ja suunnittelee komponentit keskenään kommunikoiviksi autonomisiksi agenteiksi. Mallinnuksessa yhdistetään erilaisia komponentteja, kuten GIS-reititys, mahdolliset tilojen sijainnit, satunnaiset puunhakupaikat, kaluston mitoitus, matkan pituus sekä monimuotokuljetukset. ABM:n avulla mallinnetaan noutojen ja toimituksien koko ketju ja tuloksena saadaan aikasarjoja kuvaamaan käytössä olevat kuorma-autot, sekä varastomäärät ja ajetut matkat. Lisäksi arvioidaan erilaisia simuloinnin skenaarioita mahdollisten laitosten sijainnista ja kuorma-autojen lukumäärästä sekä tunnistetaan optimaalinen toimipisteen sijainti ja tarvittava autojen määrä. Kolmannessa tapaustutkimuksessa agenttipohjaista mallinnusstrategiaa käytetään ratkaisemaan ajoneuvojen aikataulujen ja kaluston optimoinnin ongelma. Ratkaisumenetelmää käytetään dataan, joka on peräisin todellisesta organisaatiosta, ja ratkaisun tehokkuuden arvioimiseksi luodaan lukuisia keskeisiä suorituskykyindikaattoreita. ABM-menetelmä, toisin kuin monet muut mallintamismenetelmät, on täysin räätälöitävissä oleva menetelmä, joka voi sisältää laajasti erilaisia prosesseja ja elementtejä. Autonomisia agentteja soveltava ABM voi integroida erilaisia komponentteja, jotka ovat olemassa monimutkaisessa toimitusketjussa ja luoda vastaavan järjestelmän toimitusketjun tehokkuuden arvioimiseksi yksityiskohtaisesti.fi=vertaisarvioitu|en=peerReviewed

    Consolidation of Urban Freight Transport – Models and Algorithms

    Get PDF
    Urban freight transport is an indispensable component of economic and social life in cities. Compared to other types of transport, however, it contributes disproportionately to the negative impacts of traffic. As a result, urban freight transport is closely linked to social, environmental, and economic challenges. Managing urban freight transport and addressing these issues poses challenges not only for local city administrations but also for companies, such as logistics service providers (LSPs). Numerous policy measures and company-driven initiatives exist in the area of urban freight transport to overcome these challenges. One central approach is the consolidation of urban freight transport. This dissertation focuses on urban consolidation centers (UCCs) which are a widely studied and applied measure in urban freight transport. The fundamental idea of UCCs is to consolidate freight transport across companies in logistics facilities close to an urban area in order to increase the efficiency of vehicles delivering goods within the urban area. Although the concept has been researched and tested for several decades and it was shown that it can reduce the negative externalities of freight transport in cities, in practice many UCCs struggle with a lack of business participation and financial difficulties. This dissertation is primarily focused on the costs and savings associated with the use of UCCs from the perspective of LSPs. The cost-effectiveness of UCC use, which is also referred to as cost attractiveness, can be seen as a crucial condition for LSPs to be interested in using UCC systems. The overall objective of this dissertation is two-fold. First, it aims to develop models to provide decision support for evaluating the cost-effectiveness of using UCCs. Second, it aims to analyze the impacts of urban freight transport regulations and operational characteristics on the cost attractiveness of using UCCs from the perspective of LSPs. In this context, a distinction is made between UCCs that are jointly operated by a group of LSPs and UCCs that are operated by third parties who offer their urban transport service for a fee. The main body of this dissertation is based on three research papers. The first paper focuses on jointly-operated UCCs that are operated by a group of cooperating LSPs. It presents a simulation model to analyze the financial impacts on LSPs participating in such a scheme. In doing so, a particular focus is placed on urban freight transport regulations. A case study is used to analyze the operation of a jointly-operated UCC for scenarios involving three freight transport regulations. The second and third papers take on a different perspective on UCCs by focusing on third-party operated UCCs. In contrast to the first paper, the second and third papers present an evaluation approach in which the decision to use UCCs is integrated with the vehicle route planning of LSPs. In addition to addressing the basic version of this integrated routing problem, known as the vehicle routing problem with transshipment facilities (VRPTF), the second paper presents problem extensions that incorporate time windows, fleet size and mix decisions, and refined objective functions. To heuristically solve the basic problem and the new problem variants, an adaptive large neighborhood search (ALNS) heuristic with embedded local search heuristic and set partitioning problem (SPP) is presented. Furthermore, various factors influencing the cost attractiveness of UCCs, including time windows and usage fees, are analyzed using a real-world case study. The third paper extends the work of the second paper and incorporates daily and entrance-based city toll schemes and enables multi-trip routing. A mixed-integer linear programming (MILP) formulation of the resulting problem is proposed, as well as an ALNS solution heuristic. Moreover, a real-world case study with three European cities is used to analyze the impact of the two city toll systems in different operational contexts

    Integrated Vehicle Routing Problems: A Survey

    Get PDF
    The progress in algorithmic design, combined with the technological advances, has encouraged researchers to study integrated problems, that is problems that jointly optimize two or more previously studied sub-problems. The solutions of integrated problems, that are computationally harder to solve, offer substantial advantages with respect to the sequential solutions of the sub-problems. This chapter has the goal to discuss the main classes of integrated problems that include a routing component, namely, the inventory routing problems, the location routing problems, routing problems with loading constraints, and two-echelon routing problems
    corecore