2,786 research outputs found

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    The SNS logistics network design : location and vehicle routing.

    Get PDF
    Large-scale emergencies caused by earthquake, tornado, pandemic flu, terrorism attacks and so on can wreak havoc to communities. In order to mitigate the impact of the events, emergency stockpiles of food, water, medicine and other materials have been set up around the US to be delivered to the affected areas during relief operations. One type of stockpile is called the Strategic National Stockpile (SNS). The SNS logistics network is designed to have multiple stages of facilities, each of which is managed by different levels of governmental authorities - federal, state and local authorities. The design of a logistics network for delivery of the SNS materials within a state are explored in this dissertation. There are three major areas of focus in this dissertation: (1) the SNS facility location model, which is used to determine sites for locating Receiving, Staging and Storage (RSS) and Regional Distribution Nodes (RDNs) to form a logistics network to deliver relief material to Points of Demand (PODs), where the materials are directly delivered to the affected population; (2) the SNS Vehicle Routing Problem (VRP), which is used to assist the SNS staff in determining the numbers of various types of trucks, and the routing schedules of each truck to develop an operational plan for delivering the required relief materials to the assigned PODs within the required duration; (3) the location-routing analysis of emergency scenarios, in which the facility location model and the VRP solution are integrated through the use of a computer program to run on several assumed emergency scenarios. Using real data from the department of public health in the Commonwealth of Kentucky, a transshipment and location model is formulated to determine the facility locations and the transshipment quantities of materials; a multiple-vehicle routing model allowing split deliveries and multiple routes per vehicle that must be completed within a required duration is formulated to determine the routing and scheduling of trucks. The facility location model is implemented using Microsoft Solver Foundation and C#. An algorithm combining the Clark and Wright saving algorithm and Simulated Annealing is designed and implemented in C# to solve the VRP. The algorithm can determine whether there is shortage of transportation capacity, and if so, how many of various types of trucks should be added for optimal performance. All the solution algorithms are integrated into a web-based SNS planning tool. In the location-routing analysis of emergency scenarios, a binary location model and an algorithm for solving VRP solution are integrated as a computer program to forecast the feasibility of distribution plans and the numbers of required trucks of various types. The model also compares the costs and benefits of direct and indirect shipment. A large-scale emergency scenario in which a specific type of vaccine is required to be delivered to the entire state of Kentucky is considered. The experiments are designed based on the real data provided by the Kentucky state government. Thus the experimental results provide valuable suggestions for future SNS preparedness planning

    Waste Collection Vehicle Routing Problem Model with Multiple Trips, Time Windows, Split Delivery, Heterogeneous Fleet and Intermediate Facility

    Get PDF
    Waste Collection Vehicle Routing Problem (WCVRP) is one of the developments of a Vehicle Routing Problem, which can solve the route determination of transporting waste. This study aims to develop a model from WCVRP by adding characteristics such as split delivery, multiple trips, time windows, heterogeneous fleet, and intermediate facilities alongside an objective function to minimize costs and travel distance. Our model determines the route for transporting waste especially in Cakung District, East Jakarta. The additional characteristics are obtained by analyzing the characteristics of waste transportation in the area. The models are tested using dummy data to analyze the required computational time and route suitability. The models contribute to determining the route of transporting waste afterward. The WCVRP model has been successfully developed, conducted the numerical testing, and implemented with the actual characteristics such as split delivery, multiple trips, time windows, heterogeneous fleets, and intermediate facilities. The output has reached the global optimal for both dummy and real data

    Robust vehicle routing in disaster relief and ride-sharing: models and algorithms

    Get PDF
    In this dissertation, the variants of vehicle routing problems (VRPs) are specifically considered in two applications: disaster relief routing and ride-sharing. In disaster relief operations, VRPs are important, especially in the immediate response phase, as vehicles are an essential part of the supply chain for delivering critical supplies. This dissertation addresses the capacitated vehicle routing problem (CVRP) and the split delivery vehicle routing problem (SDVRP) with uncertain travel times and demands when planning vehicle routes for delivering critical supplies to the affected population in need after a disaster. A robust optimization approach is used for the CVRP and the SDVRP considering the five objective functions: minimization of the total number of vehicles deployed (minV), the total travel time/travel cost (minT), the summation of arrival times (minS), the summation of demand-weighted arrival times (minD), and the latest arrival time (minL), out of which we claim that minS, minD, and minL are critical for deliveries to be fast and fair for relief efforts, while minV and minT are common cost-based objective functions in the traditional VRP. In ride-sharing problem, the participants\u27 information is provided in a short notice, for which driver-rider matching and associated routes need to be decided quickly. The uncertain travel time is considered explicitly when matching and route decisions are made, and a robust optimization approach is proposed to handle it properly. To achieve computational tractability, a new two-stage heuristic method that combines the extended insertion algorithm and tabu search (TS) is proposed to solve the models for large-scale problems. In addition, a new hybrid algorithm named scoring tabu search with variable neighborhood (STSVN) is proposed to solve the models and compared with TS. The solutions of the CVRP and the SDVRP are compared for different examples using five different metrics in which the results show that the latter is not only capable of accommodating the demand greater than the vehicle capacity but also is quite effective to mitigate demand and travel time uncertainty, thereby outperforms CVRP in the disaster relief routing perspective. The results of ride-sharing problem show the influence of parameters and uncertain travel time on the solutions. The performance of TS and STSVN are compared in terms of solving the models for disaster relief routing and ride-sharing problems and the results show that STSVN outperforms TS in searching the near-optimal/optimal solutions within the same CPU time

    A review on the charging station planning and fleet operation for electric freight vehicles

    Full text link
    Freight electrification introduces new opportunities and challenges for planning and operation. Although research on charging infrastructure planning and operation is widely available for general electric vehicles, unique physical and operational characteristics of EFVs coupled with specific patterns of logistics require dedicated research. This paper presents a comprehensive literature review to gain a better understanding of the state-of-the-art research efforts related to planning (charging station siting and sizing) and operation (routing, charge scheduling, platoon scheduling, and fleet sizing) for EFVs. We classified the existing literature based on the research topics, innovations, methodologies, and solution approaches, and future research directions are identified. Different types of methodologies, such as heuristic, simulation, and mathematical programming approaches, were applied in the reviewed literature where mathematical models account for the majority. We further narrated the specific modeling considerations for different logistic patterns and research goals with proper reasoning. To solve the proposed models, different solution approaches, including exact algorithms, metaheuristic algorithms, and software simulation, were evaluated in terms of applicability, advantages, and disadvantages. This paper helps to draw more attention to the planning and operation issues and solutions for freight electrification and facilitates future studies on EFV to ensure a smooth transition to a clean freight system.Comment: 43 pages, 4 figures, 2 table

    Tabu search heuristic for inventory routing problem with stochastic demand and time windows

    Get PDF
    This study proposes the hybridization of tabu search (TS) and variable neighbourhood descent (VND) for solving the Inventory Routing Problems with Stochastic Demand and Time Windows (IRPSDTW). Vendor Managed Inventory (VMI) is among the most used approaches for managing supply chains comprising multiple stakeholders, and implementing VMI require addressing the Inventory Routing Problem (IRP). Considering practical constraints related to demand uncertainty and time constraint, the proposed model combines multi-item replenishment schedules with unknown demand to arrange delivery paths, where the actual demand amount is only known upon arrival at a customer location with a time limit. The proposed method starts from the initial solution that considers the time windows and uses the TS method to solve the problem. As an extension, the VND is conducted to jump the solution from its local optimal. The results show that the proposed method can solve the IRPSDTW, especially for uniformly distributed customer locations
    • …
    corecore