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Abstract

The intermodal transport chain can become more efficient by means of a good organization of
drayage movements. Drayage in intermodal container terminals involves the pick up and de-
livery of containers at customer locations, and the main objective is normally the assignment
of transportation tasks to the different vehicles, often with the presence of time windows. This
scheduling has traditionally been done once a day and, under these conditions, any unexpected
event could cause timetable delays. We propose to use the real-time knowledge about vehicle
position to solve this problem, which permanently allows the planner to reassign tasks in case
the problem conditions change. This exact knowledge of the position of the vehicles is possible
using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show
that this additional data can be used to dynamically improve the solution.
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1. INTRODUCTION

Road transport has always been prevalent in the movement of freight. However, the increas-
ing road congestion and the necessity to find more sustainable means of transport have encour-
aged different governments to promote intermodality as an alternative. This combines the cost
effectiveness of rail or ship with the flexibility of trucks. Even so, intermodal transport has sev-
eral difficulties to overcome in order to become viable. One of them is a high fixed cost, which is
why intermodality is unsuitable for trips shorter than a threshold distance (about 700 km) [34].

In an intermodal transport chain, the initial and final trips, also called drayage operations,
represent 40% of total transport cost. Drayage operations move loaded or empty containers
between terminals, shippers and consignees. According to several researches [34, 33, 39], a
proper planning of drayage operations has the potential to reduce the threshold distance, thus
raising the viability of intermodal transport.

The daily drayage problem involves the routing of vehicles to complete a set of drayage tasks.
Its objective is to minimize the total cost of all the operations carried out by a company in the
hinterland of a terminal. When there are time window restrictions, the problem is called daily
drayage problem with time windows (DDPTW).

The DDPTW could be considered a specific case of the vehicle routing problem with time
windows, VRPTW, [2, 38, 13, 14], where the status of the truck would be a binary variable: the
truck can be loaded, with a container, or bobtail, without any container. Then, one may think that
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the different approaches used to solve the VRPTW would be directly applied to the DDPTW.
However, experimental results prove that good VRPTW algorithms might not be the optimal
method to solve particular cases [15].

So, the DDPTW has been formulated as an asymmetric multi-traveling salesman problem
with time windows, am-TSPTW, [12, 3, 26, 37, 19, 44] or as a full-load pickup and delivery
problem with time windows, FLPDPTW, [22, 9, 10, 25, 7]. In the am-TSPTW every task is
represented by a node, while in the FLPDPTW the tasks are represented by an arc. The different
techniques used to solve both the FLPDPTW and the am-TSPTW could also be applied to solve
the DDPTW. Jula et al. [26] shows how a FLPDPTW could be transformed into a am-TSPTW.

In the last years, a series of studies have focused on the DDPTW, but most of them consider
the problem only from a static and deterministic perspective. Gronalt et al. [22] develop four
heuristics based on cost saving to solve the FLPDPTW. This same problem is solved through
Lagrangian relaxation by Imai et al. [25] in the hinterland of a terminal. Caris and Janssens [7]
propose a two-phase insertion heuristic to build an initial solution that is then improved by a local
search heuristic. In a posterior work [6] a deterministic annealing algorithm is also included. Jula
et al. [26] models the problem with time windows in origin and destination as an am-TSPTW,
and suggest three solution approaches: (a) an exact method based on dynamic programming, (b)
a hybrid methodology consisting of dynamic programming for generating feasible solutions in
conjunction with genetic algorithms and (c) a heuristic insertion method. Namboothiri and Erera
[35] develop an understanding of the potential productivity impacts of appointment-based access
control systems on drayage firms

Special attention has been paid to integrate the allocation of empty containers and routing in
drayage operations. Smilowitz [37] models the problem as an am-TSPTW with flexible tasks,
which are used to model potential empty trailer movements. The number of possible executions
of flexible tasks is limited by the distance between nodes, upon which a region of geographic
feasibility is defined. The solution approach developed to solve this problem includes column
generation embedded in a branch-and-bound process. This work is improved by Francis et al.
[19], which introduces a variable radius method of defining possible executions of flexible tasks.
Ileri et al. [24] use column generation, too. Different kind of drivers and complex drayage tasks
are studied. A improvement of the approach suggested by Caris and Janssens [6] is proposed
by Braekers et al.[4], which consider empty container movements. Two solution approaches are
proposed: a sequential and an integrated approach.

Zhang et al. [44] formulate the problem as an am-TSPTW with multiple depots and a single
terminal, and use a reactive tabu search to solve it. This problem is expanded in Zhang et al.
[43], which uses a windows-partition based method inspired by Wang and Regan [41]. Zhang et
al. [45] limit the number of empty containers in the depot and even although this problem only
considers a depot and a terminal, it is computationally more complex.

The different versions of the deterministic and static problems are defined in Erera et al. [16],
which gives a general revision of scientific contributions to the deterministic drayage problem.
However, there are not many examples in the literature of stochastic versions of the DDPTW.
Cheung and Hang [8] do consider the dynamic and stochastic characteristics of the drayage
problem and solve it with a rolling window heuristic, but this randomness only affects the dura-
tion of the task, and not the displacement time between different tasks. Mahr et al. [30] develop a
comparison between an on-line method and a agent-based method. Uncertainty on both service
time and arrived time are considered. Zhang et al. [42] introduce a dynamical approach in a
problem where the tasks are not known a priori. It is uncommon to find randomness in trip times
[27], which is particularly appropriate when the intermodal terminal requiring drayage opera-
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tions is close to a large urban centre. This approach is followed by Escudero et Al. [17], who
deal with transit time uncertainty through a dynamical re-optimization. The real-time knowledge
of the position of the vehicle is assumed, and the problem is solved using a dynamical two-phases
heuristic.

Our work considers the real-time knowledge about the position of the vehicles, which per-
manently allows the planner to dynamically reassign tasks, as described in Escudero et al. [17].
This exact knowledge of the position of vehicles is possible thanks to the use of a geographic
positioning system by satellite (GPS, Galileo, Glonass), which can provide real-time data for
dynamic recalculations. We propose an approach based on re-optimization is proposed, taking a
snapshot of the state of each task and the position of each vehicle before recalculating. We then
solve a DDPTW with stochastic transit times by means of an iterative optimization algorithm,
modifying if necessary the scheduling of the drayage fleet. We calculate estimations of transit
times in every re-optimization. To do it, we have implemented two algorithms: (a) an improved
two-phases heuristic as shown in Escudero et al. [17] and (b) a genetic algorithm. Two are the
main differences between Escudero et al. [17] and the improved two-phases heuristic developed
in this paper: the priority tasks, which are the first ones to be inserted in the routes, and the
improvement factor. If a vehicle is on its way to the origin of a given tasks and a re-optimization
occurs, the driver will only change this destination (origin of the task) if the improvement factor
is higher than a certain threshold level. Also, we propose series of benchmark tests based on
Solomon’s VRPTW instances.

The paper is structured as follows. Section 2 presents the problem definition and its formu-
lation. A description of the dynamic optimization procedure is given in Section 3. Section 4
explains the algorithms used in each iteration. Test problems and results are shown in Section 5.
Finally, the paper is concluded in Section 6.

2. PROBLEM FORMULATION

The DDPTW seeks to find the best assignment of tasks to vehicles and the order in which they
will be carried out to minimize the total cost of completing all the tasks. These tasks involve the
movement of containers from an intermodal terminal to a specific customer or vice versa, fulfill-
ing some temporal requirements. The operative costs include the number of vehicle, the travelled
distance and a series of penalty costs in case temporal requirements are not accomplished.

In our problem there is uncertainty with respect to the transit times, so it is impossible to
foresee the exact duration of the trips and the arrival time of the vehicles to every destination.
Due to the high computational costs involved, it is unfeasible to work with stochastic times [27],
which led us to develop an interactive re-optimization approach. The formulation is focused on
solving snapshots of this problem.

A snapshot of the DDPTW, at a given instant, can be formulated as an asymmetric multi-
traveling salesman problem with time windows (m-ATSPTW). This is defined as a graph that
symbolizes the state of vehicles and tasks, G, = (T, A), where T represents the set of tasks and
A is the set of links between tasks.

All the tasks can be classified into two groups: real and pseudo tasks. The set of real tasks, T,
includes all the unfinished tasks, while pseudo tasks, T, are created to store vehicle information
at the re-optimization instants: position, tasks in process, destination, etc.

T=T,UT,
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Figure 1: Soft Time Windows
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Each task is represented by an origin, a destination, service times in the origin and destination,
the distance and expected transit time between origin and destination, the time windows at the
origin and destination, and the penalty cost in case the time window is missed. All these data are
aggregated into a single node that represents the entire movement with all the characteristics of
the task.

Atask, i € T!, with origin in the terminal is called an importation task, whereas an exportation
task, j € Tf , has the origin at a customer and the destination in the terminal. The time window is
always associated to the terminal, so importation tasks have the time window in their origin and
exportation tasks have it in their destination. Both time windows are soft (Fig. 1), which means
that tasks can be completed with a delay, but a penalty cost will be charged. If the consequence
of the delay is that the container need to spend time waiting at the terminal, then the penalty cost
must be proportional to this time. However, if due to the delay, the container misses its train or
vessel, the penalty cost will be higher and fixed.

The vehicle fleet is known and is assumed to be homogeneous. Due to re-optimization pro-
cess, in a snapshot the vehicle could be anywhere; to overcome this difficulty, the vehicle state
is represented by pseudo tasks, T;)"i, which contain all the vehicle information. A pseudo task
could include information about tasks IN PROCESS, too. If the vehicle is FREE or ASSIGNED,
the origin and destination of its pseudo tasks is its current position in the instant time, and the
services times are 0. However, if the vehicle is BUSY, since it must finish its task IN PROCESS,
the pseudo task must contain information about the remainder of that tasks. In that case, the
origin will be the current position while the destination will be the destination of the task IN
PROCESS.To force the system to go on with the tasks without interruption, the origin time win-
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Figure 2: Vehicle states and pseudo tasks

dows in pseudo tasks are identified with the current time instant. An exemplary case is shown in
Fig 2 where shady ovals represent the pseudo tasks.

Other pseudo tasks are also defined to determine the depot time window of every truck, T,‘;”d.
Their origin and destination correspond to the depot position, their service times are 0, and their
time windows match the depot time window. If the driver arrives late to the depot, a given amount
will have to be paid for this time, ¢4y, per hours.

To formulate the problem we use the following notation:

T set of tasks.

T, set of real tasks.

T, set of pseudo tasks.

T! set of importation tasks

TE set of exportation tasks.

T3 set of origin pseudo tasks.

T]‘j”d set of destination pseudo tasks.

¢, : fixed cost per vehicle.

Crm: cost per unit of distance travelled.

Cmiss: high fixed penalty cost if the delay results in the miss of the train or ship.
Cyair: COSt per time unit due to waiting situations.

5



Cdepor: cOSt per time unit due to delays in the return to the depot.
El.O: earliest start time of task i.
LY latest start time of task i.
EP: earliest finish time of task i.
: latest finish time of task i.
service time at the origin of task i.
service time at the destination of task i.
;. distance of task i.
t;: expected transit time of task i.
d;;: distance on arc connecting task i with task j.
1;;: expected transit time on arc connecting task i with task j.

uv;: 1 if vehicle i was used previously. 0 in any other case.

TR

oJ

ISW

The decision variables are defined as:

x;;: 1if task i and task j are served consecutively, 0 in any other case.

nv;: 1 if vehicle i is used for the first time, O in any other case.

lf): 1 if origin time window of task i is served late, 0 in any other case.

l’I? : 1 if destination time window of task j is served late, O in any other case.
l?ep “': 1 if vehicle i arrives late to depot, 0 in any other case.
st;: time that task i begins.

ft;: time that task i finishes.

The following lines explain the formulation of the problem described above. The objective
function minimizes total costs of serving all tasks: distance, new vehicle used and penalty costs
(See equation (1)). Constraints (2) and (3) ensure that each customer is visited exactly once. Con-
straints (4) enforce flow conservation. Limitation in the time windows is forced by constraints
(5) and (6). The consistency of time variables st; and f7; is enforced by (7) and (8). Expression
(9) indicates which vehicles are used for the first time. Expressions (10), (11), and (12) point out
which tasks are served with delays, where M is a sufficiently large number. Finally, (13)-(19)
define the domain of the decision variables.

. . 0] . D . depot
OF : min Z Z dijxij + ¢, Z nv; + Cyair Z(sti_ng)li + Cpiss Z i+ Caepor Z (S[I-_L’())li

i€TiUT, jeT,uTgd ieTj ieT? jerpP ieTg
ey

subject to:
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ft,' > St + SI-O + t_l Yie Ts (7)
X (fti+ 5P + 15— s51) <0 vi,jeT, ®)
[Z x,-j] —uv; < ny; Vi e TZ”, ()

JeTr

st; — LY < M1 VieT!, (10)
ftj= LY <mi? VjeT?, (11)
sti— L < MIEP” Vie T, (12)
st; 20 VieT, (13)
fti20 VieT, (14)
x;€0,1 VieT"uTr,jeTP uT™, (15)
nv; €0, 1 VieT)" (16)
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3. DYNAMIC OPTIMIZATION PROCEDURE

We run the optimization algorithm at the beginning of the day (See Section 4), thus calcu-
lating the expected values of the transit times and obtaining an initial solution. However, since
transit times are stochastic it is impossible to know the exact time required to complete a task
beforehand, and any unexpected event (congestion, accidents, etc.) could cause delays on the
timetable. To overcome this situation, a dynamic procedure like the one shown in Escudero et
al [17] is used to improve the solution. This procedure tries to adapt the solution to the circum-
stances at all times, improving the solution iteratively. Hence, every fixed time or every time a
task is accomplished, the algorithm is run again considering the updated data only for the pending
tasks. Besides, a re-optimization process is run if the system detects the CRITICAL INSTANT
of a task. This is the precise moment in which a vehicle need to leave the depot to perform the
corresponding task on time. It only is taken into account if there are not any vehicles assigned to
that task.

When a re-optimization is run, a snapshot is taken. Information about both the current posi-
tion of the vehicles and the degree of completion of the tasks is verified. This information lets
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the system know if a vehicle is FREE, BUSY or ASSIGNED. A truck is busy if it is performing a
task at that moment; it is assigned if it is going to the origin of a task; and it is free if it is already
in the depot or going there.

Since the cost structure in DDPTW depends on the number of vehicles used, it is important to
know which vehicles have already been used and which have not, USEDVEH and NONUSED-
VEH. Information about vehicles in the depot is known as well.

Besides the vehicle state, the degree of completion of the task must also be updated in each
recalculation. There are tree possible values: PENDING, IN PROCESS and FINISHED. A
pending task is defined as the task which has not yet begun to be performed; when a truck is
carrying out a task, this is considered a task in process; and finally, finished tasks are those which
have already been completed.

In a re-optimization process, every BUSY vehicle must finish the corresponding task IN
PROCESS which it is engaged in. Vehicle assigned to PENDING tasks may be re-routed, and if
it is necessary, new vehicles from the depot could entry on the new routes.

Due to the transit times being stochastic, some tasks may only be performed by a specific
vehicle. These tasks are called PRIORITY TASKS and the re-optimization will insert them first
to avoid the impossibility of carrying them out.

The pseudocode of all this dynamic methodology can be written as shown in Algorithm 1.
This improves the dynamic methodology described in Escudero et al. [17] due to the analysis of
both CRITICAL INSTANTS and PRIORITY TASKS.

Algorithm 1 Dynamic Methodology
1: if Re-Optimization Event happens (fixed time, accomplished task and critical instants) then
2. Check the vehicle state (FREE, BUSY, and ASSIGNED).
3:  Check the task state (PENDING, IN PROCESS and FINISHED).
4:  Check PRIORITY TASKS
5:  RE-OPTIMIZATION taking into account the new information
6:  Update all the variables about the vehicle state (FREE, BUSY, ASSIGNED, USEDVEH,
NONUSEDVEH, and DEPOTVEH).
7: end if

4. DYNAMIC ALGORITHM

The above problem requires a fast solution algorithm. The planner has to provide real-time
information, so algorithms with a high computational costs would be unfeasible. In fact, only
heuristics and meta-heuristic methods can fulfill the time requirements.

We analyzed different heuristics [38, 9, 22, 7], and chose the two-phase insertion heuristic
(2PIH) shown in Caris and Janssen [7] due to its balance between high quality solutions and
acceptable computational time. This heuristic was adapted to the daily drayage problem with
travel time uncertainty (D-2PIH) as show in [17], but it is improved by preventing the existence
of tasks that cannot be carried out on time by any vehicle

At the beginning of the day, we run the two-phase insertion heuristic (2PIH). Every time that
an event takes place, two options appear:

- Run the real-time two-phase insertion heuristics, D-2PIH.
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- Run a genetic algorithm to improve the last solution found, GA.

The real-time insertion heuristic and the genetic algorithm are explained below. Since the
vehicle could be anywhere when the re-optimization process starts, we defined the corresponding
pseudo tasks.

4.1. Dynamic two phase insertion heuristic

The D-2PIH is an adaptation of the 2PIH described by Caris and Janssens [7]. It follows the
principles used in Escudero et al. [17] but is improved to prevent that some task could no be
carried out on time by any vehicle. The improved algorithm is shown in Algorithm 2. The real-
time insertion heuristic is divided into two phases. In the first one, all the possible combinations
of the tasks (including pseudo tasks) are analyzed. In the second phase, the combined tasks are
inserted into routes, attending firstly to the priority tasks, and selecting the best pairs later.

Algorithm 2 Dynamic Insertion Heuristic
1: Check possible merged tasks.
2: Evaluation individual and merged tasks.
3: ListPairingTasks «—Generate list of possible pairing
4: while ListPairingTasks is not empty do
Check PRIORITY TASK
if There are PRIORITY TASKSs then
Choose the correct pairing tasks to perform in time this task.
Deleted from ListPairingT asks the other pairing that contain this PRIORITY TASK
end if
10:  Selection of best pairing from ListPairingT asks
11:  Insertion in the routes
12: end while

R A A

The heuristic procedure is based on the savings obtained through the merging of single im-
portation and exportation tasks. When tasks are completed individually, a 50% of the journey is
wasted in empty trips, as shown in Fig. 3a. Meanwhile, the combination of tasks may lead to a
significant reduction in the total distance travelled, as represented in Fig. 3b. pseudo tasks may
also be included in the pairs. A vehicle that is BUSY and performing an importation tasks, could
save costs if it is merged with an exportation tasks, as is shown in Fig. 3c.

Not any of tasks can be combined into a feasible merged task mainly due to the temporal
requirements of the different tasks. Every task must be completed inside the corresponding time
windows, keeping in mind that when two task are merged, the second task of the pair must be
reached after the completion of the first task. Also, the waiting time between merged tasks has
been limited to a maximun amount, MAXWAIT .

Then, the first steps of the improved algorithm are similar to Escudero et al. [17] to check
the feasible pairs. Once these are found, they are evaluated and ranked according to the savings
in expected travel time generated, according to the expression #; + ¢; — #;;. [7] uses the savings
in travel time but, since the transit time is uncertain in our case, we chose expected travel time
instead. When a previous pairing involves certain vehicle on its way to the origin of a given
tasks, this pairing is favoured with a improvement factor. So, the driver will only change this
destination (origin of the task) if the improvement is enough high. Single tasks are included in
this “List of possible pairing tasks” although its saving cost will be zero.
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Figure 3: Merging tasks

Once the “list of possible pairing tasks” is defined, the route construction differs from Escud-
ero et al. [17]. Now, the algorithm search first some PRIORITY TASKS, following the stages
shown in Algorithm 3. These are tasks that can only be performed by a specific vehicle. If this
task is not assigned to this specific vehicle, then it would not fulfill time window requirements.

If PRIORITY TASKS are detected, an extra step is added. The pair which contains the
pseudo task of the adequate vehicle and the priority tasks is formed, and all the other rest pairs
that contain either of these tasks are deleted from the list of possible pairing tasks.This guarantees
to execute this pairing which contains the vehicle and the priority tasks.

Algorithm 3 Check PRIORITY TASK
1: Check instants vehicles will be finishing their IN PROCESS tasks.
: Check L? and L? in each PENDING task.
: Analyze how many vehicles could do each PENDING task.
if less than one vehicle could perform the task then
This task is marked like PRIORITY TASK.
end if

A o

Now, the best pairs are selected from the list attending to their savings property. Since there
is only one pair which contains the priority task, it will always be selected. Also, these selected
pairs can not contain repeat tasks.

A route is created for each vehicle, composed of pairs of tasks, where the first pair of every
route is the one containing the initial pseudo task assigned to the corresponding vehicle. The
other pairs are assigned sequentially. First, the priority tasks, which can only be attended by a
specific vehicle, are inserted. After that, the other tasks are inserted into routes in increasing
order of their latest start time.

A pair can be inserted into a route if two conditions are met: the first condition is that the
vehicle must be able to begin to complete the pair before its latest start time, and the second
condition establishes that the vehicle must be able to return to the depot within its depot window.

This algorithm is iterative, so after a pair is inserted in a route, it will check again if there are
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other PRIORITY TASKS.

4.2. Genetic algorithm

The genetic algorithm (GA) is a stochastic metaheuristec based on evolution theory proposed
by [23], who developed the basic concepts. [21] demonstrated the use of the GA to solve complex
optimization problem. GAs have been widely used to solve VRPTW [5], including stochastic
problems [31]

The GA used for solving the problem is as follows:

Algorithm 4 Genetic algorithm
1: population < POPULATION
2: fitness « EVALUATION (population)
3: while stopcondition == False do
parents < SELECTION (population, fitness)
if RAND(O, 1) < Pcross then
of fsprings «<— CROSSOVER (parents)
else
of fsprings < MUTATION (parents)
end if
10:  poputation < population U of f springs
11:  fitness <« EVALUATION (population)
12:  population — REJECT (population, fitness)
13: end while

R P A

GA works with a population of individuals (possible solutions), encoded as chromosomes
(vector of tasks). New individuals (offsprings) are created using CROSSOVER and MUTATION
operators over existing individuals of the population. The use of these operators is managed
according to a preset probability, Pcross. Through an iterative process new individuals are gen-
erated and some individuals (the worse ones) are rejected, until some convergence criteria are
met. By doing this, the individuals in the population will be well adapted to the problem, and
the best chromosome generated is then decoded, providing the corresponding solution to the
problem.

A GA is a very adaptive and flexible optimization procedure, but the effect on its performance
of a correct selection of values for its different parameters is critical. We developed a set of three
experiments to determine these values. Every experiment was tested over the 12 instances of the
R1 class (See Section 5), considering 25 and 50 customers.

The different aspect of the GA are described next:

4.2.1. Population and chromosome

In a genetic algorithm, a solution is represented with a chromosome (see Fig. 4). Each chro-
mosome is composed of a number of genes, with each gene being a task to complete. These
tasks can correspond either to pseudo or real tasks, with every pseudo task being the representa-
tion of a vehicle and its state. Each vehicle carries out its pseudo task and all tasks until the next
pseudo one, using a circular chromosome design. So, the solution shown in Fig. 3 represents the
following routes: A(1 -2 - 4),B3—>7— 8 = 10),C(6 - 9 — 9).
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The population size was set to 60 individuals. The initial population includes 59 randomly
generated chromosomes and 1 elaborated chromosome. This one is created through 2PIH [7]
in the first optimization, and it is the best solution of the previous optimization when any other
re-optimization process is launched.

in any other re-optimization.

4.3. Crossover and mutation operator

These operator try to find individuals better adapted through the combination of two existing
individuals (Crossover) or the modification of one (mutation). Five crossover operators and four
mutation operator were analyzed, and a detail explanation of all these operator is shown in [28]

e Partially mapped crossover (PMX) [20].
e Cycle Crossover (CX) [36].

e Order Crossover (OX1) [11].

e Order-based Crossover (0X2) [40].

e Position-based crossover (POS) [40]

e Displacement mutation (DM) [32]

e Exchange mutation operator (EM) [1]

e Insertion mutation (ISM) [18, 32]

e Scramble mutation (EM) [40]

All the combination of five crossover operators (PMX, CX, OX1, OX2, POS) and four mu-
tation operator (SM, EM, ISM, DM) were tested, setting the probability of crossover, Pcross,
between 1 and 0.75 in steps of 0,5. Every instance was tested 20 times for every possible com-
bination of crossover and mutation operator, and for every possible Pcross, and the best pairs of
operator found was PMX-ISM.

Once the operators have been chosen, a more specific experiment was done to choose the
best value for Pcross. Using only the PMX-ISM operator, we tested values of Pcross between 1
and 0 in steps of 0.5, running 100 times every problem instance. In view of the results, we chose
Pcross = 0.9.

4.3.1. Selection procedure and repopulation mechanism
In every iteration, the GA selects two individuals. We tested three different selection proce-
dures:

e Roulette wheel with probability of selection of each individual proportional to the objective
function.
12



e Roulette wheel with probability of selection of each individual proportional to its ranking
inside the population.

e Tournament method with two tournaments of three individuals each.

The selected individual are then crossed and mutated to obtain new individuals. One or both
of these new individuals might be an exact match of one of the already existing individuals, in
which case we analyzed four repopulation possibilities:

e Do nothing, and allow the repetition to happen.

o If a new individual is repeated, then it is deleted and a new individual is randomly gener-
ated.

o If the best individual fitness and the average fitness of the population are close enough,
then the best individual is preserved and the rest of the population is reset.

o If the best individual?s fitness is repeated N times, then the best individual is conserved
and the rest of the population is reset.

We tested different combinations of the selection procedures and the reoptimization mecha-
nism. The best combination, which was thus selected for the simulations, was a roulette wheel
where the probability to select an individual is proportional to its fitness, the fitness value being
the equal to the inverse of the cost of the solution. When a new individual that is already in the
population appears (repetition case), it is deleted and a new individual is randomly generated. Fi-
nally, the reject operator consists of two tournaments of three individuals each, thus guaranteeing
the survival of the best solution.

5. TEST PROBLEM AND RESULTS

Heuristics applicable to the standard VRPTW are compared by applying them to the set
of benchmark problems presented in Solomon [38] and to the PDPTW through the set shown
in Li and Lim [29]. However, The DDPTW with transit time uncertainty is different to these
standard benchmark problems because in the drayage problem the vehicle is either empty or
fully loaded, and time windows could be defined in both origin and destination. We thus adapted
the benchmark data in [29] to our case. Three classes of problems were defined (R1, C1 and
RC1). In R1 problems, the geographical data are randomly generated by a random uniform
distribution; in C1 problem the customers are clustered, while in RC1 they are semi-clustered.
The test problems are created generating time windows of various widths (20, 60, and random)
for different percentages of customers with time windows (25, 50, 75 and 100%). A summary of
every tested instance is shown in the Table 1. Problems with 25 and 50 customers were tested, in
each case. The cost per kilometer was 1, the fixed cost per vehicle was 10, the waiting cost was
10 per hours, and the cost of failing to complete a task was 100.

To simulate the stochastic transit time, the overall area was divided into 1x1 squares. Each
square had a speed distribution assigned where the average speed in every square is known, v,
but not the real-time speed, vy,. Since the transit time is stochastic, one hundred different speed
patterns were contemplated in every instance. The expected transit time, 7, of a displacement
is the sum of the expected transit time of every stretch, the same for the real transit time, ¢.
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Table 1: Instances

‘Width of time windows  Percentages of customers
Problem Class T 8

Mean Desviation with time windows

R1 01 20 0 100%
R1 02 20 0 75%
R1 03 20 0 50%
R1 04 20 0 25%
R1 05 60 0 100%
R1 06 60 0 75%
R1 07 60 0 50%
R1 08 60 0 25%
R1 09 120 15 100%
R1 10 170 65 100%
R1 11 180 95 100%
R1 12 230 25 100%
Cl1 01 20 0 100%
Cl1 02 20 0 75%
C1 03 20 0 50%
C1 04 20 0 25%
C1 05 60 0 100%
C1 06 60 0 75%
C1 07 60 0 50%
C1 08 60 0 25%
C1 09 120 15 25%
RC1 01 20 0 100%
RC1 02 20 0 75%
RC1 03 20 0 50%
RC1 04 20 0 25%
RC1 05 60 0 100%
RC1 06 60 0 75%
RCl 07 60 0 50%
RC1 08 60 0 25%

Following the example of the Fig. 5 the expected transit time, 7,5, and the real transit time, #45,
are calculated with the formulates 20 and 21.

i =difvy s= )% (20)
i=1:4

ti =di[ vy tAp = Z t; (21
i=1:4

Under these conditions of stochastic transit times, we compared the classical approach, which
schedules all the tasks at the beginning of the day, and our dynamic approach, which solves the
problem through iterative optimization and the knowledge of the real-time position of the ve-
hicles. We chose the Caris and Janssens [7] procedure as our benchmark reference. We also
selected this benchmark algorithm due to its good properties with respect to computational and
solution quality, considering that the authors compare their algorithm with an exact one, obtain-
ing very satisfactory results.

Table 2 represents the average total cost of each approach and the average improvement of
the dynamic approach with respect to the static one. The dynamic methodologies show im-
provements in all the problem classes and in almost all instances. In general, our methodology
achieves better results when customers are distributed randomly. Both methodologies show sim-
ilar properties respect to the quality of the solution, but depending of the instance one or other
method is better. However, RT-2PIH is better in terms of the running time of the algorithm. A
single run of the RT-2PIH algorithm usually takes a few seconds on an Inter Core Duo 2,4 GHz,
so the computational cost of that heuristic is low enough for the problem. However, the genetic
algorithm takes about 40-50 seconds.
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Table 3 presents an overview of every component of the objective function and Table 4 shows
the average number of times that vehicles arrive late to the origin or destination of a task. Class
R1 has been taken as an example. The problem class and the instance are shown in the first two
columns. Distance, number of vehicles, and penalty costs are shown for every approach: two-
phase insertion heuristic (2PIH), real-time two-phase insertion heuristic (RT-2PIH), and two-
phase insertion heuristic improved in every re-optimization with a genetic algorithm (2PTH-GA).
The results show that the number of occasions in which time windows are broken decrease using
the dynamic methods. The RT-2PIH usually is more effective respect to the number of time
windows broken, but the 2PIH+GA usually uses a smaller number of vehicles.

6. CONCLUSION

In this paper we have shown the importance of obtaining real-time data of vehicle locations in
a drayage fleet through the use of a satellite positioning system. This knowledge, together with an
optimization algorithm based on heuristics and metaheuristics, enables the dynamic management
of the fleet in a changing environment, which reduces average operation costs by as much as 5%,
sometimes achieving 13% improvements. These results are especially valuable for intermodal
operations in congested metropolitan areas, where travel times are stochastic due to congestion.

This dynamic method reduces drastically the number of time windows broken and the penalty
costs due to it. This is very important in the DDPTW, due to the strict timetable in the terminal,
but when the time windows are not very restrictive, the availability of real-time information is
less relevant.

To solve the drayage problem, we developed a real-time optimization model based on either
a genetic algorithm or an adaptation of the heuristic presented in [7]. We operated with cost
estimations, and tested our algorithms with a series of drayage problems generated through an
adaptation of the Li and Lim Benchmark. The best results in terms of speed and flexibility of
adaptation were obtained by the dynamic two-phase insertion heuristic.
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Table 2: Average total costs and improvement in problem instances

Problem Total Cost Improvement (%)
Instance Customers 2PIH RT-2PIH 2PIH+GA RT-2PIH 2PIH-GA
RI-1 25 1315,1 12349 12194 6,10% 7,28%
R1-2 25 1147,6 1072,3 1086,0 6,56% 5,37%
R1-3 25 954,6 886,9 8975 7,09% 5,99%
R1-4 25 8753 862,1 868,0 1,50% 0,83%
R1-5 25 1246,7 11672 1180,0 6,38% 5,35%
R1-6 25 1175,3 1127,6 1041,6 4,06% 11,37%
R1-7 25 11109 996,8 994.9 10,27% 10,44%
R1-8 25 1064.,4 975.5 10114 8,35% 4,98%
RI1-9 25 1130,4 1043,7 1097,6 7,67% 2,90%
R1-10 25 1029.3 950,7 978.8 7,64% 4,90%
RI-11 25 1173,6 1039,4 1030,1 11,43% 12,23%
R1-12 25 960,8 963,9 951,1 -0,32% 1,01%
Cl-1 25 926,7 888,2 810,1 4,16% 12,58%
Cl1-2 25 831,6 790,2 768,6 4,98% 7,58%
Cl1-3 25 676,6 673,5 673,2 0,47% 0,50%
Cl-4 25 680,6 675.8 673,7 0,70% 1,01%
Cl-5 25 813,7 766,2 743,7 5,83% 8,60%
Cl1-6 25 9423 920,4 821,7 2,32% 12,79%
Cl1-7 25 762,0 7572 721,6 0,64% 531%
C1-8 25 653,0 6624 650,6 -1,44% 0,36%
C1-9 25 702,4 694,9 684,5 1,08% 2,56%
RCI-1 25 17649 1693.4 1690,0 4,05% 4,24%
RC1-2 25 1458,7 13448 1329,9 7,81% 8,83%
RCI1-3 25 1363,2 1294,1 12442 5,06% 8,73%
RC1-4 25 1189,2 1136,3 1165,7 4,45% 1,98%
RCI1-5 25 1683,1 15859 15855 5,78% 5,80%
RC1-6 25 1649,1 1611,7 15749 2,27% 4,50%
RC1-7 25 1371,1 1359,2 1355,7 0,87% 1,13%
RCI1-8 25 14339 1312,7 13745 8,45% 4,14%
RI-1 50 2360,5 2356,5 2299,5 0,17% 2,58%
R1-2 50 20644 2018.5 2014.4 2,22% 2,42%
R1-3 50 1938,7 1891,5 1895,2 2,43% 2,24%
R1-4 50 18175 1773,7 1769,1 2,41% 2,67%
R1-5 50 23273 2322,1 2261,6 0,22% 2,82%
R1-6 50 2089,0 2039,8 2013,0 2,35% 3,64%
R1-7 50 2007,6 1866,2 1880,0 7,04% 6,36%
RI1-8 50 1929,1 17459 1797,7 9,50% 6,81%
R1-9 50 2259,7 21394 21747 5,32% 3,76%
RI1-10 50 2067,0 1994,2 1990,5 3,52% 3,70%
RI-11 50 2103,7 1998,7 1972,5 4,99% 6,24%
R1-12 50 2065,6 1988.5 1865,9 3,73% 9,67%
Cl-1 50 1805,3 1771,7 1699,4 1,86% 5.87%
Cl1-2 50 1729,2 1650,2 16184 4,57% 6,41%
C1-3 50 1587,1 1544,5 1465,0 2,69% 7,70%
Cl-4 50 15253 14740 1473,7 3,36% 3,39%
Cl1-5 50 1614,6 1656,9 15714 -2,62% 2,67%
Cl1-6 50 1793,7 1742,3 1653,1 2,87% 7,84%
Cl1-7 50 1547,7 1530,7 15283 1,10% 1,26%
C1-8 50 1436,1 1408,0 1400,8 1,96% 2,46%
C1-9 50 1570,8 1513,5 1476,9 3,65% 5,98%
RCI-1 50 3680,4 36229 3490,2 1,56% 517%
RCI1-2 50 3015,0 2930,0 2860,4 2,82% 5,13%
RCI1-3 50 2708.5 25849 2610,2 4,56% 3,63%
RC1-4 50 2530,4 2339,0 24143 7,56% 4,59%
RCI1-5 50 3408,3 3283.8 3260,1 3,65% 4,35%
RCI1-6 50 3438,0 33734 3308,2 1,88% 3,78%
RCI1-7 50 2802,2 2637,1 27123 5,89% 3,21%
RCI1-8 50 28715 2667,8 27444 7,09% 4,43%

This work opens the door to future research considering stochastic transit time and dynamic
optimization, and the use of multi-objective functions or rolling windows are also in progress to
be considered in the future.
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Table 3: Average costs in problem instances

Problem Distance Number of Vehicles Penalty Cost
Class Instance 2P TH RT-2P [H 2PIH+GA 2PIH RT-2PIH 2PIH+GA 2PIH RT-2PIH 2PTH+GA
R1 1 978,1 999.5 994.9 11,0 11,7 10,4 227,1 1182 1208
R1 2 961.4 9614 961.4 7.0 75 7.0 116,2 36,4 54,5
RI 3 821,7 8214 820.0 720 65 68 63.0 0.1 9.3
RI 4 8103 810,3 808.9 50 52 50 149 0.0 9.1
R1 5 974,3 967,2 9709 8,0 9.1 82 192,5 109.1 127.3
R1 6 940,6 950,3 9414 7.0 7.7 73 164,7 100,0 275
R1 7 9253 9259 9240 8,0 7.1 7.1 105.6 0.0 0.0
R1 8 898.3 898.3 894.4 7.0 59 6.2 96.1 18.2 552
R1 9 8852 900.1 896.7 6,0 7.1 6,5 1852 72,7 136.4
R1 10 8377 841,6 849.7 7.0 73 7.5 121.6 36.4 54,5
R1 11 892,5 906.7 900,5 7.0 8,7 7.5 2110 45,5 55,0
R1 12 891,1 891,1 889,8 6,0 6.4 6,1 9.7 9,1 0.4

Table 4: Average number of times when time windows are broken.
Problem Late arrive to origin Late arrive to destination
Class Instance 2P IH RT-2P IH 2PIH+GA 2PIH RT-2PIH 2PIH+GA
R1 1 1.4 0,0 0,9 2,1 1,2 1,2
RI 2 09 00 00 10 04 05
RI 3 05 02 02 05 00 0,1
R1 4 0,0 0.0 0,0 0.1 0,0 0,1
R1 5 0,2 0,0 0,0 1.8 1,1 1.3
R1 6 0,1 0,0 0,1 1.5 1.0 0.3
R1 7 0,0 0,0 0,0 1.0 0,0 0.0
R1 8 0,5 0,0 0,5 0.9 02 0,5
R1 9 0,5 0,0 0,1 1.8 0,7 14
R1 10 0,0 0,0 0,0 1.2 04 05
R1 11 0,0 0,0 0,1 2,1 0,5 0.5
RI 12 05 0,1 04 0,1 0,1 00
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