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Abstract

In this dissertation, the variants of vehicle routing problems (VRPs) are specifically considered
in two applications: disaster relief routing and ride-sharing. In disaster relief operations,
VRPs are important, especially in the immediate response phase, as vehicles are an essential
part of the supply chain for delivering critical supplies. This dissertation addresses the
capacitated vehicle routing problem (CVRP) and the split delivery vehicle routing problem
(SDVRP) with uncertain travel times and demands when planning vehicle routes for delivering
critical supplies to the affected population in need after a disaster. A robust optimization
approach is used for the CVRP and the SDVRP considering the five objective functions:
minimization of the total number of vehicles deployed (minV), the total travel time/travel
cost (minT), the summation of arrival times (minS), the summation of demand-weighted
arrival times (minD), and the latest arrival time (minL), out of which we claim that minS,
minD, and minL are critical for deliveries to be fast and fair for relief efforts, while minV
and minT are common cost-based objective functions in the traditional VRP. In ride-sharing
problem, the participants’ information is provided in a short notice, for which driver-rider
matching and associated routes need to be decided quickly. The uncertain travel time is
considered explicitly when matching and route decisions are made, and a robust optimization
approach is proposed to handle it properly. To achieve computational tractability, a new
two-stage heuristic method that combines the extended insertion algorithm and tabu search
(TS) is proposed to solve the models for large-scale problems. In addition, a new hybrid
algorithm named scoring tabu search with variable neighborhood (STSVN) is proposed
to solve the models and compared with TS. The solutions of the CVRP and the SDVRP
are compared for different examples using five different metrics in which the results show
that the latter is not only capable of accommodating the demand greater than the vehicle
capacity but also is quite effective to mitigate demand and travel time uncertainty, thereby
outperforms CVRP in the disaster relief routing perspective. The results of ride-sharing
problem show the influence of parameters and uncertain travel time on the solutions. The
performance of TS and STSVN are compared in terms of solving the models for disaster
relief routing and ride-sharing problems and the results show that STSVN outperforms TS
in searching the near-optimal/optimal solutions within the same CPU time.
Keywords: Robust Optimization, Vehicle Routing Problems, Tabu Search, Insertion
Algorithm, Scoring Tabu Search with Variable Neighborhood
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Chapter 1

Introduction

Vehicle routing problems (VRP) are a type of problems aim to design optimal delivery

or collection routes from one or several depots to a number of geographically scattered

customers, subject to some constraints (Laporte, 1992). Based on problem characteristics,

there are different variants of VRPs (Eksioglu et al., 2009; Toth and Vigo, 2002b). In the

capacitated vehicle routing problem (CVRP), the demands are not split, which means that

each customer (node) is visited only once (Lysgaard et al., 2004; Toth and Vigo, 2002a).

Different from CVRP, split delivery vehicle routing problem (SDVRP) allows split delivery

and each customer (node) can be visited more than one vehicle (Ho and Haugland, 2004;

Archetti et al., 2006). For the vehicle routing problem with uncertain demands and/or

uncertain travel time, the demands and/or travel time are not deterministic, which means

that the information is not fixed and may vary within the range (Gendreau et al., 1996;

Allahviranloo et al., 2014; Braaten et al., 2017). The vehicle routing problem with time

window can be considered as the extended CVRP with time window constraints, which

means that each customer (node) is visited only once by exactly one vehicle within a given

time interval (Potvin and Bengio, 1996; Taillard et al., 1997; Bräysy and Gendreau, 2002;

Cordeau et al., 2001). Based on the number of deports, there are single-depot vehicle

routing problem (Barbarosoglu and Ozgur, 1999) and multi-depot vehicle routing problem

(Polacek et al., 2004; Kuo and Wang, 2012; Paraskevopoulos et al., 2008). When there

are more than one type of vehicles, the problem can be considered as heterogeneous fleet

vehicle routing problem (Gendreau et al., 1999; Wassan and Osman, 2002; Brandão, 2011).

When the vehicles do not return to the depots after serving the last customer (node), the
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problem is called open vehicle routing problem (Brandão, 2004; Fleszar et al., 2009). For

more details of VRPs and its variants, see Eksioglu et al. (2009).

In this dissertation, variants of VRP are specifically considered in two applications:

disaster relief routing and ride-sharing. Based on the setting of each application, the models

consist of different features from the variants of VRP. In the disaster relief routing, CVRP

and SDVRP are considered and compared. The deterministic models of CVRP and SDVRP

are used as the base models and the robust counter-parts are proposed to consider the

uncertainty. In the ride-sharing model, each customer (node) is visited at most once by

exactly one vehicle within a given time interval (CVRP with time windows) and vehicles

may depart from different origins and arrive at different destinations (open vehicle routing

problem with multiple depots). In addition, the capacity of the vehicles in ride-sharing

model may vary (heterogeneous fleet). The robust counter-part is proposed to consider

the uncertainty in the ride-sharing model. The key features of the models in disaster relief

routing and ride-sharing are summarized in Table 1.1 and the details are described in

Chapters 1 – 3.

Table 1.1: Key Features of Problems

Feature Disaster relief routing Ride-sharing

VRP CVRP, SDVRP CVRP
Depot Single Multiple
Time window No Yes
Heterogeneous fleet No Yes
Uncertain travel time Yes Yes
Uncertain demand Yes No

In disaster relief operations, vehicle routing problems (VRPs) are important, especially

in the immediate response phase, as vehicles are an essential part of the supply chain

for delivering critical supplies. In disaster relief operations, vehicle routing problems are

involved in detailed information collection, medical aid delivery, medical supply delivery,

food supply delivery, etc (Luis et al., 2012). After a disaster occurs, the travel time and

demand are uncertain and can be only estimated within a range. If the uncertainty is

not presumed in planning a vehicle route, the actual travel time of the route may be very

different from the expected travel time after the route is applied in the chaotic situation
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of disaster. The optimal deterministic routes could be infeasible due to a perturbation

in parameters caused by uncertainties. Therefore, it is essential to mitigate the impact

of uncertainty in planning a vehicle route and before applying it. This research aims to

enhance disaster relief operations by considering uncertainties explicitly before applying

the routing decisions.

Ride-sharing is a transportation mode where travelers having similar itineraries share

a vehicle to, in general, reduce costs. Ride-sharing has attracted researchers’ attention not

only because of its economical benefits, but also thanks to its positive environmental and

societal impacts such as reducing air pollution, traffic congestions, etc (Ferguson, 1997;

Kelly, 2007; Morency, 2007; Chan and Shaheen, 2012; Agatz et al., 2012; Furuhata et al.,

2013; Pelzer et al., 2015; Nourinejad and Roorda, 2016; Stiglic et al., 2016; Alonso-Mora

et al., 2017). Herein, a dynamic ride-sharing problem is considered, in which volunteer

drivers (servers) and riders (clients) may have different origins and destinations. Here,

the “dynamic” means that drivers and riders are not fixed among different ride-sharing

arrangements: some drivers can be riders in the next ride-sharing arrangement and vice

versa; and they may even opt out of ride-sharing temporarily and rejoin whenever they

want. The origin and destination of a rider can be various among different ride-sharing

arrangements. We assume that such information is updated continuously via electronic

bulletin in social media or smart phone applications. Therefore, the information in each

ride-sharing arrangement is deterministic but the information among different ride-sharing

arrangements is dynamic. The riders’ requests and the available drivers’ information are

collected and stored in a centralized system. We consider not only the one-to-one match

between a driver and a single rider but also the one-to-multiple match in which a single driver

may serve multiple riders during his/her trip. Given all the drivers’ and riders’ information

in the same pool (e.g., same service area), multiple matches (each match consisting of one

driver and one or more riders) are made at the same time in such a way that the overall

travel cost of all trips can be minimized while the matching rate is maximized. In this

setting, the goal is to increase the matching rate between drivers and riders and to provide

a robust route quickly for each volunteer driver based on continuously updated information

under travel time uncertainty between locations. In this research, vehicle routing problems
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are used as a basis for finding routes for drivers.

The common characteristics of these two applications are: (1) The information of travel

time and demand are provided in a short notice. In disaster relief routing, the travel time

and demand are uncertain and can be only estimated within a range based on limited

information. In ride-sharing, the demand (number of people at each location) are known

and certain, but the travel time are uncertain due to traffic congestion. (2) The events

are non-recurring. In disaster relief routing, every disaster may occur in different areas,

so the locations of shelters are different and the information of travel time and demands

are various. Therefore, most solutions of routing decisions are one-time use because of the

change of information in the next event. Similarly, the information among different ride-

sharing arrangements varies, so the solution for matching and routing should be provided

for each ride-sharing arrangement and may not be re-usable for next arrangement. (3) The

routing decisions should be made quickly. In disaster relief routing, the decisions should be

made within several hours since the critical supplies should be delivered to the people as soon

as possible. In ride-sharing, the decisions should be made before the earliest departure time

of the participants, which is generally several minutes to several hours after they post the

information of requests. While these two applications share several common characteristics,

there are specific settings in each application. In the disaster relief routing, the decisions

focus on routing, while the decisions in ride-sharing are for both matching and routing.

Based on the settings of each application, the VRP based models are modified specifically.

The remainder of this dissertation is organized as follows. The detailed introduction

of each problem is described in Section 1.1 and Section 1.2. In Chapter 2, the literature

review is provided. In Chapter 3, the deterministic CVRP and SDVRP, and their robust

counterparts are introduced for disaster relief routing. The deterministic model and its

robust counterpart are introduced for ride-sharing. The brief introduction of proposed

algorithms is shown in Section 1.3 and the details are described in Chapter 4. The results

are shown in Chapter 5. Conclusion and future work follow in Chapter 6.
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1.1 Disaster Relief Routing

There are significant devastating effects of natural and man-made disasters. For example,

the Hurricane Katrina in August 2005, a well-known disaster, resulted in damage estimates

exceeding 200 billion U.S. dollars (Burby, 2006). More recently, two severe earthquakes

occurred in Nepal on April 25th and May 12th of 2015, which caused at least 8,000 deaths,

25,000 injuries, and approximately two million homeless people (Binns and Low, 2015). As

of August 31, 2017, at least 39 casualties have been reported in Texas due to Hurricane

Harvey, and the resulting, catastrophic floods inundated hundreds of thousands of homes,

affecting more than 30,000 people. Therefore, the importance of effective management of

disasters cannot be overemphasized as it is directly relevant to human life, health, and

welfare.

Disaster management is typically divided into three phases: preparation, immediate

response, and reconstruction (Kovács and Spens, 2007) or four phases: mitigation added

after preparation (Pearce, 2003). This dissertation focuses on the immediate response phase

in the context of disaster relief operations and humanitarian logistics, which takes part in

the aftermath of disasters. Specifically, the relief routing problem is tackled to effectively

and equitably deliver critical supplies to the affected population.

In the disaster relief, it may not be practical to assume that the vehicle capacity is always

sufficient to meet all the demand from a customer location and, therefore, the location may

need to be visited multiple times (Yi and Kumar, 2007), which implies split delivery. Wang

et al. (2014) also state that an affected area can be served more than one time when the

demand of the disaster area is greater than the capacity of the vehicle. Therefore, the split

delivery vehicle routing problem (SDVRP) should play an important role in disaster relief

operations to handle large demand.

The SDVRP, which was introduced in Dror and Trudeau (1989), is relatively new com-

pared with the capacitated vehicle routing problem (CVRP). As aforementioned, the SD-

VRP allows a demand node to be visited by more than one vehicle while the CVRP requires

that a demand node be visited exactly once. The SDVRP has attracted researchers’ interest

because of the potential cost savings (Dror and Trudeau, 1989; Archetti et al., 2006), and
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the variants of the SDVRP and algorithms to solve them have been extensively studied in

recent years. However, very few papers have tackled the SDVRP with uncertain travel time

and/or demand. Dealing with uncertain demands in the SDVRP may be quite challenging.

In this dissertation, the SDVRP with uncertain travel times and demands is addressed in

the context of disaster relief operations, and is compared with the CVRP counterpart.

Uncertainty in travel time and demand is a critical factor in planning a vehicle route

after a disaster because the optimal deterministic routes could be even infeasible due to a

perturbation in parameters caused by uncertainties. Therefore, it is essential to mitigate

the impact of uncertainty in planning a vehicle route and we aim to enhance disaster relief

operations by considering uncertainties explicitly. To do so, robust counterparts of the

CVRP and SDVRP models are proposed to consider different objectives in disaster relief

operations and eventually contribute to the goals of the humanitarian logistics. In the

humanitarian logistics literature, very few research addresses the robustness in the SDVRP

and discuss its impact on the relief operations.

Stochastic programming and robust optimization are two major modeling approaches

that address uncertainty in operations research (Bertsimas et al., 2011a; Sim, 2004). Stochas-

tic programming has shortcomings to be used for the VRP for disaster relief operations

because it requires known probability distribution functions for uncertain parameters and

generally needs heavy computations (Bertsimas et al., 2011a; Sim, 2004). It is hard to

know the exact information or even the probability distributions of uncertain travel times

and demands due to the chaotic situation in the aftermath of disasters. In light of the

above, robust optimization can be an appropriate alternative in context of disaster relief

operations since it only requires the ranges of uncertain parameters instead of the exact

functions, which are much more tractable.

Minimization of the total number of vehicles deployed (minV) and the total travel

time/travel cost (minT) are common cost-based objective functions in the traditional VRP.

Contrary to the conventional VRP objectives, the objectives of disaster relief vehicle routing

should be different. Minimization of the summation of arrival times (minS), the summation

of demand-weighted arrival times (minD), and the latest arrival time (minL) are critical for

deliveries to be fast and fair for relief efforts. The optimal solutions of minS and minL can
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provide earlier service times to customers than the ones of minV and minT (Campbell et al.,

2008a). In humanitarian relief operations, routing and relief supplies allocation decisions

should be quick and sufficient with a focus on equitable service to all aid recipients (Huang

et al., 2012). Therefore, it is important to consider minS, minL, and minD in disaster relief

routing. In this dissertation, five objectives are considered and compared: minimization

of the total number of vehicles deployed (minV), the total travel time/travel cost (minT),

the summation of arrival times (minS), the summation of demand-weighted arrival times

(minD), and the latest arrival time (minL).

1.2 Ride-sharing

Ride-sharing has attracted researchers’ attention because of its economic benefits, positive

environmental and societal impacts. Despite such various beneficial impacts, the wide-

spread adoption of ride-sharing has been limited due to its disorganized coordination, safety

concerns, and lack of effective methods to encourage participation (Furuhata et al., 2013).

The coordination for dynamic ride-sharing is particularly difficult because the participants’

schedules vary on a daily basis and the relevant information is usually provided in a very

short notice (Agatz et al., 2012).

Ride-sharing is not a new idea but it has gained a resurgence of interest over the last

decade along with the recent development of information technology that may help the

coordination of dynamic ride-sharing in a variety of ways including smart phone apps and

social media services (Agatz et al., 2012). However, there is still a barrier for dynamic ride-

sharing to overcome for its wide-adoption: the lack of computationally efficient algorithms

that can provide a real-time match for drivers (servers) and riders (clients) (Agatz et al.,

2012). Consequently, there has been a growing need to address the computation issues,

especially for dynamic ride-sharing that requires immediate matching upon request. Un-

fortunately, however, the number of specific contributions has been limited perhaps due to

its complex nature of mixed integer programming formulation. Therefore, the development

of computationally tractable algorithms for large-scale ride-sharing problems is one of key

topics in current research.

It may not be reasonable to consider fixed value of travel time due to the traffic con-
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gestion. Basically, the travel time is assumed to be known within a range instead of the

fixed value. In the dynamic ride-sharing problem considered in this research, one assump-

tion is that a driver may visit several different locations to pick up riders on the way to a

final destination and, therefore, the probability that the driver will be subject to uncertain

travel time gets higher. The consideration of uncertain travel time plays a very impor-

tant role in coordinating dynamic ride-sharing, since in most cases participants have time

constraints. In particular, travel time uncertainty is greatly related to the effectiveness of

driver-rider matching. According to the recent study about the role of participants’ flexi-

bility to matching (Stiglic et al., 2016), the willingness of participants to depart from the

origin and arrive at the destination a little earlier or later, respectively (the flexibility of

time window), is the main factor influencing the success rate of matching. In addition, the

willingness of drivers and/or riders to detour to pick up additional riders (flexible maximum

driving/riding time) also influence the rate of matches. Therefore, the explicit consideration

of travel time uncertainty is important since it may significantly impact the time window

and detour constraints, which are related to matching and the cost for ride-sharing.

Turing our attention to the implementation of dynamic ride-sharing, there are already

commercial firms that provide dynamic ride-sharing service in the market via various means

such as mobile phone applications. For example, Flinc and Carma are the dynamic ride-

sharing providers that offer centralized matching service. Using mobile phones and/or

desktop applications, users can enter a ride offer or ride search with desired start loca-

tion, destination, and time. The system will automatically find someone nearby with

a similar destination and the users will receive the ride-sharing information from mobile

phone/desktop applications if someone wants to share a ride as well as providing estimated

cost. However, most services are somehow limited (e.g., no national coverage in the U.S., or

limited number of participants) mainly due to the well-known “critical mass” issue (Stiglic

et al., 2016), which we attempt to solve by means of our proposed robust optimization

and heuristic algorithms that may increase the matching success rate: the robust optimiza-

tion is capable of providing the near-optimal feasible solutions despite unexpected traffic

congestion and the heuristic algorithms help to achieve computational tractability.

In ride-sharing problems, there are several constraints that must be considered. First,
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drivers may have their own preferred time to depart from their origins. If they are flexible

and willing to pick up riders, it is reasonable to assume that there exists an upper limit on

the travel time that drivers are willing to spend. Likewise, riders may have their preferred

departure time from their origins as well. Additionally, drivers and riders need to arrive at

the destinations before their respective deadlines. Furthermore, vehicles have limited ca-

pacity (in general 4 to 5 people including the driver). Therefore, the drivers’ routes need to

be determined based on those constraints and some riders cannot be picked up considering

the number of drivers available and the constraints mentioned above. Travel time uncer-

tainty may have a significant impact on ride-sharing, as most constraints mentioned above

involve time as a primary factor. In some unfortunate cases, a feasible route satisfying all

the constraints may become infeasible if the time between pick-up locations deviates from

its nominal value. To overcome such an issue, a robust optimization (RO) approach is pro-

posed. The robust optimization has gained a surge of interest over the last twenty years and

it has been used in a variety of application areas including transportation/logistics, supply

chains management, finance, etc. For a survey of robust optimization, see, e.g., Ben-Tal

and Nemirovski (2002a); Beyer and Sendhoff (2007); Bertsimas et al. (2011b).

In this dissertation, vehicle routing problems are used as a basis for finding routes for

drivers, which is known to be an NP-hard problem. It is impractical to find an exact optimal

route for the ride-sharing problem especially when the size of the problem is large. Indeed,

computational tractability is of particular interest because we wish to provide a robust route

as quickly as possible using continuously updated information. The ride-sharing platform

we propose will not be viable if it takes more than a few hours to find routes for drivers. To

achieve computational tractability, heuristic algorithms are proposed to solve the problems.

1.3 Algorithms

Small problems in this dissertation can be solved by using the commercial packages such as

Gurobi and CPLEX. However, for large-scale problems, it is by no means practical to utilize

the solvers as the VRPs are NP-hard. Considering the settings of disaster relief routing and

dynamic ride-sharing, the routing decisions need to be made quickly, it is desirable to obtain

the near-optimal solutions in a relatively short period of time. In light of this, heuristic
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approaches are proposed to solve the models.

The first approach is a two-stage heuristic algorithm for which the well-known insertion

algorithm is extended and used in conjunction with a tabu search method. The overall

heuristic scheme is as follows: the maximum CPU time allowed is set; the extended insertion

algorithm is used to find a good feasible solution for a tabu search method; a tabu search

is implemented repeatedly; and provide the best-so-far solution at the end of the given

CPU time. In particular, we extend the insertion algorithm in Campbell and Savelsbergh

(2004) to consider the capacity constraints of the CVRP and the SDVRP with different

objective functions. For the SDVRP, we further extend the insertion algorithm to consider

the split delivery. For the ride-sharing model, we extend (Campbell and Savelsbergh, 2004)

to consider the capacity constraints (3.96), the maximum requests constraints (3.97), the

maximum time constraints (3.104), and the riders that are left unserved. The details of the

extended insertion algorithms are shown in Section 4.1. Tabu search (TS) is used to search

for optimal or near-optimal solutions. In TS, the initial solution is found by implementing

the proposed insertion algorithms. To solve different models, the move operators are specific

and adjusted for each model. For the CVRP, five types of move operators, which do not

consider split delivery, are used to find the neighbor solutions. These move operators can

be used in SDVRP to find neighbor solutions without the consideration of split delivery. In

addition to these move operators, four types of move operators that are specific for searching

the neighbor solutions with the consideration of split delivery are used to solve the SDVRP.

For ride-sharing model, four types of move operators are used to search neighbor solutions in

TS. The details of TS is shown in Section 4.2. To solve the robust counterparts in the robust

models, two algorithms are proposed to consider the increased demand and travel time due

to change in the robust parameters that control the budget of uncertainty in CVRP and

SDVRP. In addition, an algorithms is proposed to consider the increased travel time due

to change in the robust parameters that control the budget of uncertainty in ride-sharing.

The details of these algorithms are shown in Section 4.3.

In addition, a new hybrid algorithm named scoring tabu search with variable neigh-

borhood (STSVN) is proposed to solve the models and compared with TS. In STSVN, a

new scoring strategy and the features extracted from TS and variable neighborhood search
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(VNS) are integrated to enable the adaptiveness of this hybrid algorithm as well as the

ability to escape from local optima. The initial solution used in STSVN is constructed by

the insertion algorithm. The algorithms in Section 4.3 are used to solve the robust counter-

parts in the robust models. The performance of STSVN and TS are compared by testing

the same examples for different models.
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Chapter 2

Literature Review

As mentioned in Chapter 1, VRP is a very broad area and there are many variants of VRP

such as capacitated vehicle routing problem (Lysgaard et al., 2004), split delivery vehicle

routing problem (Ho and Haugland, 2004; Archetti et al., 2006), vehicle routing problem

with uncertain demands and/or uncertain travel time (Gendreau et al., 1996), vehicle rout-

ing problem with time window (Potvin and Bengio, 1996; Taillard et al., 1997; Bräysy and

Gendreau, 2002; Cordeau et al., 2001), vehicle routing problem with backhauls (Osman and

Wassan, 2002; Wassan, 2007; Duhamel et al., 1997), single-depot vehicle routing problem

(Barbarosoglu and Ozgur, 1999), multi-depot vehicle routing problem (Polacek et al., 2004;

Kuo and Wang, 2012; Paraskevopoulos et al., 2008), heterogeneous fleet vehicle routing

problem (Gendreau et al., 1999; Wassan and Osman, 2002; Brandão, 2011), capacitated

arc routing problem (Hertz et al., 2000; Polacek et al., 2008), open vehicle routing prob-

lem (Brandão, 2004; Fleszar et al., 2009), the vehicle routing problem with simultaneous

pick-up and delivery service (Montané and Galvao, 2006; Polat et al., 2015), vehicle routing

problem with two-dimensional loading constraints (Gendreau et al., 2008; Wei et al., 2015),

stochastic and dynamic vehicle routing problem (Sarasola et al., 2016). For more details of

VRPs and its variants, see Eksioglu et al. (2009).

In Chapter 2, the focus is to review the papers that are related to VRP with uncertain

demands and/or uncertain travel time, especially related to the disaster relief routing and

ride-sharing. The papers related to the robust optimization and stochastic programming

in VRP are discussed in Section 2.1. The papers related to disaster relief routing and ride-

sharing are summarized in Sections 2.2 and 2.3. Through the discussion in Sections 2.1 – 2.3,
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the contributions of this dissertation are: (1) The robust models of SDVRP are proposed to

consider travel time and demand uncertainty. (2) A robust model of ride-sharing is proposed

to consider uncertain travel time. (3) The managerial insights are explored and provided

for decision making when considering CVRP, SDVRP, different objectives, and uncertainty

in disaster relief routing. In Section 2.4, the papers related to the algorithms to solve

VRP, especially tabu search (TS) and variable neighborhood search (VNS), are reviewed.

The differences between the algorithms in literature and the new hybrid algorithm STSVN

proposed in this dissertation are discussed. To the best of my knowledge, this dissertation

is the first paper to propose a hybrid algorithm combining TS and VNS to solve the models

in disaster relief routing that consider uncertainty and the models of ride-sharing.

2.1 Vehicle Routing Problem with Uncertain Travel Time
and Demand

Uncertain demands and travel times are important and frequently lead to issues in the VRP

(Allahviranloo et al., 2014; Braaten et al., 2017). There have been a variety of methods

proposed to properly handle and mitigate the impact of uncertainty in the literature. For

example, two-stage stochastic programming has been used to model the uncertainty of the

damage caused by disasters and its effect on supply or demand (Barbarosolu and Arda, 2004;

Mete and Zabinsky, 2010; Zhu et al., 2008; Salmerón and Apte, 2010; Shen et al., 2009;

Rawls and Turnquist, 2010; Van Hentenryck et al., 2010). In addition, several two-stage

stochastic programming approaches have been proposed to model the uncertainty in travel

time (Shen et al., 2009; Mete and Zabinsky, 2010; Rawls and Turnquist, 2010; Salmerón

and Apte, 2010; Van Hentenryck et al., 2010), where travel times are scenario-dependent.

However, stochastic programming has some disadvantages in VRP. It requires the known

probability distribution function, and generally needs heavy computations (Bertsimas et al.,

2011a; Sim, 2004). However, we may not know the exact information or even the probability

distribution of the uncertainty of travel time in disaster relief routing and ride-sharing.

When we only know the range of uncertainty, we still need to find relatively efficient and

effective solution to VRP for immediate response. In that case, stochastic programming

may not perform well. To address this issue, robust optimization is a good alternative to
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solve the VRP with uncertainty in context of disaster relief routing and ride-sharing.

Robust optimization (RO) is a modeling methodology in which part of (or all) data are

uncertain and only known to belong to some uncertainty sets (Ben-Tal and Nemirovski,

2002b). Without the probability distribution information regarding such uncertain data,

a solution constructed by robust optimization can be feasible for any realization of the

uncertainty in a given set (Bertsimas et al., 2011a). Because of its advantages, robust

optimization has been applied in a variety of areas such as emergency logistics planning

(Ben-Tal et al., 2011; Najafi et al., 2013) and value-based performance and risk management

in supply chains (Hahn and Kuhn, 2012). In particular, robust optimization is used to

address the demand uncertainty in the CVRP (Sungur et al., 2008; Erera et al., 2010; Ben-

Tal et al., 2011; Gounaris et al., 2013; Allahviranloo et al., 2014). Regarding the uncertain

travel times in the CVRP, Braaten et al. (2017) and Solano-Charris et al. (2014) consider

a robust version of the CVRP with time windows. In addition, Han et al. (2013) address

the CVRP with uncertain travel times in which a penalty is incurred for each vehicle that

exceeds a given time limit while Agra et al. (2013) tackle the CVRP with time windows and

travel times that belong to an uncertainty polytope. Furthermore, Chen et al. (2016) apply

robust optimization for the road network daily maintenance routing problem with uncertain

service times. Note that Lee et al. (2012) consider uncertain travel times and demands at

the same time in the CVRP, while most other papers focus on only one of the two. We also

note that most papers mentioned above consider the objective of minimizing the total travel

time (or travel cost), which may not be relevant to the humanitarian logistics. Applying

RO in the objectives such as minimizing the summation of arrival times and summation of

demand-weighted arrival times can be challenging.

In the literature, only limited number of papers, e.g., Bouzaiene-Ayari et al. (1992),

Yu et al. (2012), and Lei et al. (2012), that focus on the SDVRP with stochastic demands

are found. Bouzaiene-Ayari et al. (1992) propose a heuristic algorithm for the SDVRP

with stochastic demands. Yu et al. (2012) address the large scale stochastic inventory

routing problem with split delivery and service level constraints. Lei et al. (2012) present

a paired vehicle recourse policy for the SDVRP with stochastic demands. An adaptive

large neighborhood search heuristic is applied for solving this problem. To the best of
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our knowledge, there are no robust models of the SDVRP with uncertain travel times and

demands for different objective functions in the literature.

In this dissertation, travel time and demand uncertainty are considered explicitly in

CVRP and SDVRP, and I explore several objectives that may better suit the purpose of

humanitarian logistics such as minimizing the summation of arrival times and the latest

arrival time. In terms of ride-sharing, there are no robust models of ride-sharing problem

with uncertain travel times (The detailed review of ride-sharing is shown in Section 2.3.).

In terms of VRP with uncertainty, the contributions in this research are (1) the proposed

robust models of the SDVRP with uncertain travel times and demands for different objective

functions and (2) the proposed robust model of the ride-sharing problem with uncertain

travel times.

2.2 Disaster Relief Routing Problem

One of the most important questions in disaster relief is how to respond to these emergencies

in an efficient manner to minimize the loss of life and maximize the efficiency of the rescue

operations (Haghani and Oh, 1996). Disaster management is typically divided into three

phases: preparation, immediate response, and reconstruction (Kovács and Spens, 2007)

or four phases: mitigation added after preparation (Pearce, 2003). For more details for

humanitarian logistics in disaster relief operations, see Kovács and Spens (2007).

For most disasters, an immediate response is necessary. Supply chains are desirable

to be designed and deployed immediately even though the information of the situation is

limited (Beamon and Kotleba, 2006; Long and Wood, 1995; Tomasini and Van Wassenhove,

2004). For the immediate response, the research can be classified into several groups. (1)

Facility location problem: For example, Widener and Horner (2011) propose a hierarchi-

cal approach to decide the efficient placements of facilities for distributing relief services.

Horner and Downs (2010) propose a capacitated warehouse location model for managing

the flow of goods shipments to people in need. (2) Resources allocation problem: In this

type of problems, the main focus is to determine the amount of resource distributed to

different locations. For example, Gong and Batta (2007) propose the ambulance allocation

and reallocation models for a post-disaster relief operation. Sheu (2007) propose a hybrid
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fuzzy clustering-optimization approach to determine resource distribution for the urgent re-

lief demands. (3) Network design problem: Bozorgi-Amiri et al. (2012) study a relief chain

design problem and formulate this problem as a mixed-integer nonlinear programming to

minimize the summation of the expected cost. (4) Vehicle routing problem (VRP): The

VRP in the immediate response phase is called disaster relief routing (Luis et al., 2012).

Vehicles are an essential part of the supply chain for delivering critical supplies. In disaster

relief operations, vehicle routing problems are involved in detailed information collection,

medical aid delivery, medical supply delivery, food supply delivery, etc (Luis et al., 2012).

For example, Balcik et al. (2008) consider the VRP in deliver relief supplies from distri-

bution center to different locations. Afshar and Haghani (2012) propose a mathematical

model that controls the flow of several relief commodities from the sources to the recipients

through the supply chain. Huang et al. (2013) focus on the assessment routing problem for

assessing damage and relief needs after a disaster. Ozdamar and Yi (2008); Özdamar and

Demir (2012) consider the VRP in evacuation and logistics support. Wang et al. (2014)

propose a nonlinear integer open location-routing model for relief distribution problem.

This dissertation focuses on the disaster relief routing (Luis et al., 2012) to effectively and

equitably deliver critical supplies to the affected population.

In disaster relief routing, the routing decisions should be quick and sufficient with a

focus on equitable service to all aid recipients (Huang et al., 2012). Campbell et al. (2008a)

explore the objectives to minimize the summation of arrival times (minS) and the latest

arrival time (minL) for CVRP, as the optimal solutions of minS and minL can provide

earlier service times to customers than the ones of objective to minimize the total number

of vehicles deployed (minV) and the total travel cost/time (minT). Huang et al. (2012)

consider the objectives to minimize minT, minS, and the summation of demand-weighted

arrival times (minD) for SDVRP and explore which solutions can be quick, sufficient, and

equitable for all aid recipients (Huang et al., 2012). Therefore, it is important to consider

minS, minL, and minD in disaster relief routing. In my research, minV, minT, minS, minD,

and minL are considered and compared in both deterministic models and robust models for

CVRP and SDVRP.

In terms of split delivery in disaster relief, limited number of papers are found (Özdamar
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et al., 2004; Yi and Özdamar, 2007; Yi and Kumar, 2007; Afshar and Haghani, 2012; Lin

et al., 2011; Wang et al., 2014). The works in Özdamar et al. (2004); Yi and Özdamar

(2007); Yi and Kumar (2007); Afshar and Haghani (2012) are common in several points:

they consider multi-commodity network flow problem in disaster relief. In these models,

vehicles are regarded as commodity flows, so that split delivery is allowed. The objectives

are to minimize the sum of unsatisfied demand of all commodities. They do not consider

the uncertainty of travel time and demand. Lin et al. (2011); Wang et al. (2014) focus

on multi-objective models that allowed split delivery. However, they also do not consider

the uncertainty of travel time and demand. As discussed in Section 2.1, SDVRP has been

studied by several researchers (Frizzell and Giffin, 1995; Belenguer et al., 2000; Ho and

Haugland, 2004; Archetti et al., 2006; Boudia et al., 2007; Chen et al., 2007; Jin et al., 2007;

Mitra, 2008; Archetti et al., 2008; Jin et al., 2008; Archetti et al., 2011; Belenguer et al.,

2010; Desaulniers, 2010; Moreno et al., 2010; Berbotto et al., 2011; Salani and Vacca, 2011;

Berbotto et al., 2014; Huang et al., 2012; Gulczynski et al., 2008), but no robust model of

SDVRP has been proposed yet.

The disaster relief routing problems are different from general business routing prob-

lems, as the demand information may be unpredictable using historical data (Sheu, 2007).

The varying travel times due to road disruptions and chaotic situations are also critical in

planning a vehicle route after a disaster. Therefore, it is essential to mitigate the impact

of uncertainty in planning a vehicle route for disaster relief. Bozorgi-Amiri et al. (2013)

develop a stochastic programming approach to consider the uncertain demands, supplies,

the cost of procurement, and transportation. In Barbarosolu and Arda (2004); Mete and

Zabinsky (2010); Zhu et al. (2008); Salmerón and Apte (2010); Shen et al. (2009); Rawls and

Turnquist (2010); Van Hentenryck et al. (2010), two-stage stochastic programming has been

used to model the uncertainty of the damage caused by disasters and its effect on supply or

demand. In addition, several two-stage stochastic programming approaches have been pro-

posed to model the uncertainty in travel time (Shen et al., 2009; Mete and Zabinsky, 2010;

Rawls and Turnquist, 2010; Salmerón and Apte, 2010; Van Hentenryck et al., 2010), where

travel times are scenario-dependent. However, stochastic programming requires probabil-

ity distributions of uncertain factors, which is not practical in disaster relief routing, since
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the information and impact of each disaster is different from historical data. In addition,

stochastic programming requires heavy computation (Bertsimas et al., 2011a; Sim, 2004).

As discussed in Section 2.1, robust optimization is a good alternative to solve the VRP with

uncertainty in context of disaster relief routing. In the general settings, robust optimization

has been used to address the demand uncertainty in the CVRP (Sungur et al., 2008; Erera

et al., 2010; Ben-Tal et al., 2011; Gounaris et al., 2013; Allahviranloo et al., 2014) and the

uncertain travel times in the CVRP (Braaten et al., 2017; Solano-Charris et al., 2014; Han

et al., 2013; Agra et al., 2013). However, only Ben-Tal et al. (2011) consider the application

in disaster relief routing. In addition, these papers only consider CVRP with the objective

of minimizing the total travel time (or travel cost), which may not be relevant to the hu-

manitarian logistics. Applying RO in the objectives such as minimizing the summation of

arrival times and summation of demand-weighted arrival times can provide some insights for

disaster relief routing. Moreover, to the best of our knowledge, there are no robust models

of the SDVRP with uncertain travel times and demands for different objective functions in

the literature.

In this dissertation, travel time and demand uncertainty are considered explicitly in

CVRP and SDVRP, and explore several objectives that may better suit the purpose of

humanitarian logistics such as minimizing the summation of arrival times and the latest

arrival time. In terms of disaster relief routing, the contributions of this dissertation are as

follows. (1) The robust models of SDVRP are proposed to consider travel time and demand

uncertainty. (2) The robust models of CVRP with different objectives are proposed in the

context of disaster relief. (3) The managerial insights are explored and provided for decision

making when considering CVRP, SDVRP, different objectives, and uncertainty in disaster

relief routing.

2.3 Ride-sharing Problem

Ride-sharing problems have attracted scholars in the field of transportation and operations

research. For the review of ride-sharing problems, see Agatz et al. (2012); Chan and Shaheen

(2012); Furuhata et al. (2013). Among others, a dynamic ride-sharing problem finds riders

with similar itineraries and time schedules on a short notice and aims to provide a best route
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for a driver who is willing to pick-up the riders (Agatz et al., 2012). Features of such dynamic

ride-sharing problem include dynamic drivers’ and riders’ information, non-recurring trips,

and prearranged routes. That is, the ride-sharing should be established (prearranged) on

a short notice that can range from a few minutes to a few hours before departure time

(dynamic driver and rider information), which will be a single (non-recurring) trip. This

distinguishes it from traditional carpooling or vanpooling, both of which require a long-term

commitment among two or more people to travel together on recurring trips for a particular

purpose.

A significant number of studies have been conducted for various aspects of ride-sharing

including matching between drivers and riders, routing for the drivers, and pricing. Some

studies put the emphasis on the matching. Pelzer et al. (2015) propose a partition-based

matching algorithm for dynamic ride-sharing. Nourinejad and Roorda (2016) formulate the

centralized matching model for one-to-one match of driver to passenger and decentralized

matching model based on agent based simulation. Stiglic et al. (2016) show the impact of

different types of participants’ flexibility on the performance of a single-driver, single-rider

ride-sharing system based on quantitative results. Their results indicate that small increases

in flexibility can significantly increase the expected matching rate. Recently, Wang et al.

(2017) present several mathematical programming methods to establish stable or nearly-

stable matches.

In terms of the routing, Fanelli and Greco (2015) consider the ride-sharing with a vehicle

of unlimited capacity. However, the assumption of unlimited capacity is not realistic. As

one vehicle is considered, the matching between drivers and riders is not considered in

Fanelli and Greco (2015). Using taxi data in New York City, Alonso-Mora et al. (2017)

consider the real-time high-capacity ride-sharing that scales to large numbers of passengers

and trips and dynamically generates optimal routes with respect to online demand and

vehicle locations. The algorithm starts from a greedy assignment and improves it through

a constrained optimization, quickly returning solutions of good quality and converging to

the optimal assignment over time.

As ride-sharing involves dynamic demand and price, Zhang et al. (2016) propose a

discounted trade reduction mechanism for dynamic ride-sharing pricing. In addition, Shen
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et al. (2016) propose a posted-price, integrated online ride-sharing mechanism in autonomous

mobility-on-demand systems. Cangialosi et al. (2016) propose a generalized ride sharing

system that allow users to schedule multi-modal trips in a single task.

Researchers have proposed various modeling and solution methodologies for ride-sharing

and its variants. In terms of exact methods, Baldacci et al. (2004) propose an exact method

for the carpooling problem based on Lagrangian column generation. Deleplanque et al.

(2014) propose a branch-and-price method for a reliability oriented dial-a-ride model. Hosni

et al. (2014) formulate shared-taxi problem as a mixed integer program and present a

Lagrangian decomposition approach to solve the model. Huang et al. (2014) compare three

methods to solve the ride-sharing problem: branch-and-bound, integer programming, and

kinetic tree. Their results indicate that kinetic tree algorithm is better than the other two

methods in their example. Armant and Brown (2014) propose a mixed integer programming

model for ride-sharing to minimize the total travel time. Linearization and symmetry

breaking are used to solve the model. Bistaffa et al. (2014) propose a coalition formulation

algorithm for ride-sharing and use a bounding technique to obtain approximate solutions.

Cangialosi et al. (2014) propose a mathematical model to minimize the summation of the

difference between the desired departure and arrival times with respect to the computed

ones. Yousaf et al. (2014) formulate the ride-sharing problem as a multi-source-destination

path planning problem. They propose a ride matching algorithm to calculate the matching

score using all parameters such as detour distance, range factor, similarity of interests and

personalized preference between drivers and riders. The path optimization is implemented

by the Bellman-Ford algorithm.

In terms of heuristic methods, Manna and Prestwich (2014) use greedy algorithm and

local search to solve the problem of online stochastic ride-sharing and taxi sharing. Santos

and Xavier (2015) formulate a dynamic ride-sharing problem with the objective to maximize

the number of served requests and minimize the total cost. The model is solved by a greedy

randomized adaptive search procedure. Pinson et al. (2016) apply a generalized dial-a-ride

problem to ride sharing case. A mathematical model is formulated to minimize the total

difference between departure time from origin and arrival time at the destination of the

driver and riders. Variable neighborhood descent is used to search good solutions.
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As ride-sharing and carpooling require efficient information processing and communi-

cation support systems, Calvo et al. (2004) propose a distributed geographic information

system (GIS) using several information and communication technologies. Winter and Nittel

(2006) use mobile geosensor networks for ride-sharing. Fu et al. (2008) use traffic informa-

tion grid to provide information for dynamic ride-sharing community service. Lin and Shen

(2016) use hierarchical cloud architecture to develop a wireless social network aided vehicle

sharing system called VShare. When a user send a travel request to VShare, it will identify

the carpooler in nearby locations. If no carpool is found within nearby locations, the travel

requests will be matched by the hierarchical cloud server architecture.

Some case studies of ride-sharing have been implemented. Heinrich (2010) implements

real-time ride-sharing in the San Francisco Bay Area. Amey (2011) proposes a methodol-

ogy for estimating ride-sharing viability within an organization and applies it to the MIT

Community. Ghoseiri et al. (2011) present a dynamic ride-sharing matching optimization

model that aims at identifying suitable matches between passengers requesting ride-sharing

services with appropriate ride-sharing drivers available to carpool for credits and HOV lane

privileges. Kleiner et al. (2011) propose a mechanism for dynamic ride-sharing based on

parallel auctions.

However, there has been no paper addressing the uncertainty in travel times in dynamic

ride-sharing problems and computational tractability for solving the problems with uncer-

tainty. In this dissertation, a robust optimization based model is proposed to generate the

optimal solution to handle the uncertain travel time.

2.4 Tabu Search and Variable Neighborhood Search in VRP

Vehicle Routing Problem (VRP) is the problem of designing optimal routes from one or sev-

eral depots to a number of locations, subject to several constraints (Laporte, 1992). VRP

plays an important role in logistics, therefore, a wide variety of VRPs are studied in liter-

ature. Based on different various VRPs, several heuristic algorithms and exact algorithms

are proposed in literature. The exact algorithms used in VRPs are branch-and-bound (Fis-

chetti et al., 1994), k-trees (Fisher, 1994), dynamic programming (Mahmoudi and Zhou,

2016), branch-and-cut-and-price (Lysgaard and Wøhlk, 2014), set partitioning and column

21



generation (Gendreau et al., 1994). Due to the limited success of exact methods in handling

large size problems, most research on VRPs use heuristic approaches (Sze et al., 2016), such

as tabu search (Potvin and Bengio, 1996; Taillard et al., 1997; Bräysy and Gendreau, 2002;

Cordeau et al., 2001), variable neighborhood search (Crispim and Brandão, 2005; Belhaiza

et al., 2014; Paraskevopoulos et al., 2008; Escobar et al., 2014), simulated annealing (BañOs

et al., 2013), and genetic algorithm (Karakatič and Podgorelec, 2015). For more details of

algorithms used in VRPs, please review Toth and Vigo (2014).

As mentioned previously, the common characteristics of disaster relief routing and ride-

sharing in this dissertation are: (1) The information of travel time and demand are provided

in a short notice. (2) The routing decisions should be made quickly. (3) The trips are non-

recurring, which means most solutions are one-time use. Small problems can be solved

by using the commercial packages such as Gurobi and CPLEX. However, for large-scale

problems, it is desirable to obtain the near-optimal solutions in a relatively short period of

time using heuristic algorithms.

Tabu search (TS) is one of the most widely used heuristic algorithms to solve VRPs.

TS is a single solution based, deterministic method to search for an optimal solution. For

tutorials, we refer readers to (Glover, 1990). The general framework of TS is as follows.

In TS, the initial solution is assumed to be given by some construction algorithms. The

tabu list is used to record all the previous moves during the searching procedure. The

best-so-far solution is updated during TS. The set of neighbor solutions are found by the

defined move operators. In each iteration, the best neighbor solution that is not in the

tabu list is used as the current solution in the next iteration (Potvin and Bengio, 1996;

Taillard et al., 1997; Bräysy and Gendreau, 2002; Cordeau et al., 2001). TS and its variants

have been applied in different types of VRPs, such as capacitated vehicle routing problem

(Gendreau et al., 1994), split delivery vehicle routing problem (Ho and Haugland, 2004;

Archetti et al., 2006), vehicle routing problem with uncertain demands and/or uncertain

travel time (Gendreau et al., 1996), vehicle routing problem with time window (Potvin and

Bengio, 1996; Taillard et al., 1997; Bräysy and Gendreau, 2002; Cordeau et al., 2001), vehicle

routing problem with backhauls (Osman and Wassan, 2002; Wassan, 2007; Duhamel et al.,

1997), single-depot vehicle routing problem (Barbarosoglu and Ozgur, 1999), multi-depot
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vehicle routing problem (Paraskevopoulos et al., 2008), heterogeneous fleet vehicle routing

problem (Gendreau et al., 1999; Wassan and Osman, 2002; Brandão, 2011), capacitated

arc routing problem (Hertz et al., 2000), open vehicle routing problem (Brandão, 2004),

the vehicle routing problem with simultaneous pick-up and delivery service (Montané and

Galvao, 2006; Polat et al., 2015), vehicle routing problem with two-dimensional loading

constraints (Gendreau et al., 2008; Wei et al., 2015).

One advantage of TS is exploring the search space by moving from a solution to its best

neighbor solution that is not in the tabu list, which can escape from local optima (Renaud

et al., 1996). To enhance the performance to solve the problems, various strategies have

been proposed to be embedded in TS in literature (Osman, 1993; Gendreau et al., 1996;

Potvin and Bengio, 1996; Duhamel et al., 1997; Taillard et al., 1997; Gendreau et al., 1999;

Laporte et al., 2000; Ghiani et al., 2003; Tang and Miller-Hooks, 2005; Wassan, 2007). There

are two common strategies to select the next move in TS (Osman, 1993): First strategy

selects the best neighbor solution, which is not in tabu list, from all neighbor solutions.

The first strategy is very popular in most TS in VRP problems (Gendreau et al., 1996;

Potvin and Bengio, 1996; Duhamel et al., 1997). The second strategy is a greedy approach.

It selects the first neighbor solution that provides an improvement in the objective value

and is not in tabu list. If all neighbor solutions are not better than the current solution,

the best neighbor solution, which is not in tabu list, is selected from all neighbor solutions

(Osman, 1993). In most TS, all the move operators are applied in the current solution

to search all corresponding neighbor solutions. In Duhamel et al. (1997), TS randomly

chooses a move operator in each iteration. In most TS, the tabu list is used to record all

the previous moves. In Gendreau et al. (1994), random tabu tags are used instead of tabu

list. In Taillard et al. (1997), decomposition is used to divide a whole solution into several

parts. For each part, TS is used to search the corresponding improved part. One of the

interesting features added into TS is adaptive memory (Gendreau et al., 1999; Laporte et al.,

2000; Ghiani et al., 2003; Tang and Miller-Hooks, 2005; Wassan, 2007). In Gendreau et al.

(1999), different initial solutions are constructed by a stochastic insertion method. For each

initial solution, TS is applied to search for better solutions. TS for all initial solutions are

parallel implementations. During each TS, the routes of the best solutions visited during the
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search are stored in an adaptive memory. Combining routes taken from different solutions

in this memory, new solutions can be created and used as new initial solutions for each TS.

However, as these routes are generated from different initial solutions, the selection of these

routes should avoid including the same customer (node) twice in a solution (Laporte et al.,

2000). In addition, the specific constraints of the VRPs also limit the success of combining

different routes from the memory. Due to these restrictions, the selection process often

terminates with a partial solution that have to be completed using a construction heuristic

(Laporte et al., 2000). Reactive TS (RTS) is another interesting variant of TS (Nanry

and Barnes, 2000; Osman and Wassan, 2002; Wassan, 2007; Paraskevopoulos et al., 2008).

Based on the previously visited solutions and the quality of exploration, RTS adjusts its

parameters. When a solution is revisited within a specified number of iterations, RTS will

increase the length of the tabu list. If no solutions are repeated during a specified number

of iterations, RTS will decrease the length of tabu list.

While heuristic algorithms can provide satisfactory results within a reasonable time,

researchers aim to enhance the algorithms by including more attracting features from other

algorithms (Sze et al., 2016). Developing hybrid approaches that include the advantages of

two or more heuristic algorithms may provide better performance than a single approach.

In this dissertation, TS is first modified to solve the corresponding deterministic and robust

models in disaster relief routing and ride-sharing. In addition, a new hybrid algorithm

based on TS, named scoring tabu search with variable neighborhood (STSVN), is proposed

to solve the models and compared with the first approach (TS). In STSVN, a new scoring

strategy, a new selection strategy, and the features extracted from variable neighborhood

search (VNS) are integrated in TS to enhance the adaptiveness of STSVN as well as its

ability to escape from local optima.

Before the discussion of STSVN, a brief introduction of VNS is as follows. VNS is

another heuristic algorithm for solving different variants of the VRPs (Mladenović and

Hansen, 1997; Polacek et al., 2004; Kuo and Wang, 2012; Sze et al., 2016, 2017), such as

VRP with time windows (Polacek et al., 2004; Kuo and Wang, 2012), VRP with simulta-

neous pickup and delivery (Polat et al., 2015), open VRP (Fleszar et al., 2009), VRP with

two-dimensional loading constraints (Wei et al., 2015), dynamic VRP (Sarasola et al., 2016),
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capacitated arc routing problem (Hertz et al., 2000; Polacek et al., 2008), VRP with objec-

tive to minimize the sum of arrival times at nodes (Sze et al., 2017). The basic idea of VNS

is to systematically change the neighborhood structure with local search (Mladenović and

Hansen, 1997; Polacek et al., 2004; Kuo and Wang, 2012). Therefore, several neighborhood

structures are used instead of a single one, as VNS contains local search implementations

within each neighborhood structure. Here, neighborhood structure is defined by a move

operator. For example, a move operator will find a neighbor solution by exchanging the

positions of two nodes in the current solution. The set of all neighbor solutions found by this

move operator is considered as a neighborhood structure. In VNS, the systematic change

of neighborhood is applied during both a descent phase and an exploration phase to escape

from the local optima (Polacek et al., 2004; Kuo and Wang, 2012). The basic VNS is as

follows. Select the set of neighborhood structures (move operators) used in VNS. Generate

an initial solution x and choose a stopping condition. Repeat the following Step (1) and (2)

until the stopping condition is met. Step (1) set k = 1. Step (2) repeat Step (a) to Step (c)

until k = the total number of neighborhood structures (move operators). Step (a) shaking.

Generate solution x′ randomly from the neighborhood k. Step (b) local search. Use x′ as

initial solution in local search and find the best neighbor solution x′′, which is considered

as a local optima in the neighborhood k based on x′. Step (c) If x′′ is better than x, then

x ← x′′ and k = 1; otherwise, k = k + 1 (Mladenović and Hansen, 1997; Polacek et al.,

2004; Kuo and Wang, 2012). The readers can review Hansen et al. (2010) for more details

of VNS. The main purpose of the shaking phase in VNS is to provide a good initial solution

for the local search. The initial solution is generated randomly from the neighborhood of

the current solution. However, there is no strategy in the local search of VNS to avoid

re-visiting the same solutions (Paraskevopoulos et al., 2008; Escobar et al., 2014).

As TS and VNS are two popular heuristic algorithms used in VRP and they use different

strategies to escape from local optima, several papers propose the hybrid algorithms to

include the advantages of TS and VNS in order to obtain better performance (Crispim and

Brandão, 2005; Belhaiza et al., 2014; Paraskevopoulos et al., 2008; Escobar et al., 2014).

Crispim and Brandão (2005); Belhaiza et al. (2014); Escobar et al. (2014) propose to add a

tabu list into variable neighborhood search to avoid revisiting the same solutions. During
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searching, the current solution is updated using a neighbor solution, which is not in tabu

list, from one of the neighborhood structures. The neighborhood structure is changed in a

consecutive way until the stop condition is met. Paraskevopoulos et al. (2008) mainly use

the VNS structure and only use TS in local search phase of VNS. In Paraskevopoulos et al.

(2008), the current solution may deteriorate from one iteration to another. However, the

disadvantage of this process is that the search can be stuck in a bad neighborhood structure

and a lot of time is spent to evaluate the worse solutions within a neighborhood structure,

leading to less time to reach better solutions in other neighborhood structures. In addition,

Paraskevopoulos et al. (2008) use TS in local search in each neighborhood structure, but

do not use tabu list between neighborhood structures.

Comparing the proposed scoring tabu search with variable neighborhood (STSVN) in

this dissertation with Crispim and Brandão (2005); Belhaiza et al. (2014); Paraskevopoulos

et al. (2008); Escobar et al. (2014), STSVN not only combines the advantage of TS and

VNS, but includes two new strategies to enhance the efficiency converging to local optima

and the adaptiveness to determine diversification. The proposed new selection strategy in

STSVN determines the next move. To enable this effectiveness of this selection strategy,

a list of marks are generated in each iteration to record the routes that can be modified

for current solution for improvement. This selection strategy is similar to the concept of

adaptive memory (Gendreau et al., 1999; Laporte et al., 2000; Ghiani et al., 2003; Tang and

Miller-Hooks, 2005; Wassan, 2007), but it addresses the limitation of adaptive memory. In

adaptive memory of TS, solutions are generated from different initial solutions and the good

solutions are kept in a pool. Then several routes are combined together. However, the new

solution generated is generally incomplete based on the constraints (Gendreau et al., 1999;

Laporte et al., 2000; Ghiani et al., 2003; Tang and Miller-Hooks, 2005; Wassan, 2007). In a

new selection strategy proposed in this dissertation, the selection and combination processes

of the neighbor solutions are based on the current solution. Only the neighbor solutions that

are feasible and better than the current solution will be used to replace the routes of current

solution. The marks generated in each selection will ensure the new combined solution is

feasible and the improvement of objective function value is cumulated. In addition, this

selection strategy is integrated with the tabu list. If a new combined solution is already
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in the tabu list, the last neighbor solution that was used for the combined solution is

removed from the candidate list. Then the selection strategy is implemented again until a

new combined solution is found that is not in the tabu list. The selection strategy is also

connected to the process of changing the move operator to ensure there are new neighbor

solutions in the candidate list if the candidate list becomes empty. This is a new feature

compared with Crispim and Brandão (2005); Belhaiza et al. (2014); Paraskevopoulos et al.

(2008); Escobar et al. (2014).

The new scoring strategy feature allows the algorithm to adapt to the status of searching.

The new scoring mechanism records the number of changes of each route during the search.

The scores are considered as the memory of the algorithm and dynamically updated. The

scores follow this rule: recent memory takes larger weights and previous memory takes less

weights. When a local optima is reached after trying all move operators, the route with

the least score is used for the diversification process to escape from the local optima. The

advantage of the new scoring strategy is that the algorithm will automatically decide on the

route for diversification based on the scores. This is another new feature compared with

Crispim and Brandão (2005); Belhaiza et al. (2014); Paraskevopoulos et al. (2008); Escobar

et al. (2014). The details of the algorithm is shown in Chapter 4.

In addition, the proposed hybrid algorithms combining TS and VNS in literature are

used for VRP with backhauls (Crispim and Brandão, 2005), VRP with time windows (Bel-

haiza et al., 2014; Paraskevopoulos et al., 2008), heterogeneous fleet VRP (Paraskevopoulos

et al., 2008), capacitated location-routing problem Escobar et al. (2014). To the best of my

knowledge, this dissertation is the first paper to propose a hybrid algorithm combining TS

and VNS to solve the models in disaster relief routing that consider uncertainty and the

models of ride-sharing.
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Chapter 3

Models

3.1 Models in Disaster Relief Routing

In this section, the deterministic models for CVRP and SDVRP with different objectives

are presented as the bases for the robust counterparts. The robust counterparts of CVRP

and SDVRP are then proposed. The notation used in Section 3.1 is summarized in Table

3.1.

3.1.1 Deterministic CVRP

The notation used in this section is as follows. In the deterministic CVRP, let the depot,

the distribution center for critical supplies near a disaster area, be located at node 0 and

the set of nodes except the depot be denoted by N = {1, ..., n}. Here, we consider a node

as the geographical locus where a distribution center or shelter can be located. The set of

all nodes is then N0 = {0} ∪ {1, ..., n}. The set of all arcs is denoted by A, where an arc is

a road segment connecting nodes, such that G = (N0, A) represents the road network. The

travel time between nodes i and j in N0 is denoted by tij ,∀(i, j) ∈ A. In our assumption,

the travel cost between nodes i and j is proportional to its travel time. The demand, the

amount of critical supply needed, from node i is denoted by qi, which needs to be served

as soon as possible. We let k be the index of a vehicle and K be the set of vehicles,

i.e., k ∈ K = {1, ..., |K|}. All vehicles are assumed to be homogeneous and C denotes

the capacity of a vehicle. The decision variables xij , ∀(i, j) ∈ A are binary variables that

indicate whether a vehicle travels from i to j.

Similar to the well-known Miller-Tucker-Zelmin (MTZ) formulation of the VRP (Miller
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Table 3.1: Notation for Disaster Relief Routing

Symbols Description

ai Arrival time of a vehicle at node i
aik Arrival time of vehicle k at node i
A Set of arcs in the network
ci Flow in the vehicle when it leaves the node i
C Capacity of a vehicle
(i, j) Arc between the nodes i and j
K Set of vehicles, k ∈ K
Kmin Minimum number of vehicles needed for the SDVRP
N Set of nodes except the depot
N0 Set of all nodes including depot
qi Demand from node i
q Vector q = (qi : i ∈ N)
q̄i Nominal demand of node i
q̂i Increased demand of node i
q̄ Vector for nominal demand vector
q̂ Vector for increased demand
tij Travel time between nodes i and j
t Vector t = (tij : (i, j) ∈ A)
t̄ij Nominal travel time of arc (i, j)

t̂ij Maximum travel delay of arc (i, j)
t̄ Vector for nominal travel time vector

t̂ Vector for the maximum travel delay

t̂ei ith greatest t̂ij , (i, j) ∈ A and xei corresponds t̂ei
T Upper bound on the total travel time for each vehicle
xij Binary variable that is equal to 1 only if arc (i, j) is traversed by a vehicle
xijk Binary variable that is equal to 1 only if arc (i, j) is traversed by vehicle k

x′ij
Variable to indicate whether the uncertain travel time of arc (i, j) is
considered

U Uncertainty set
UT Uncertainty set of travel time, UT =

{
t | t̄ ≤ t ≤ t̄+ t̂

}
UQ Uncertainty set of demand, UQ = {q | q̄ ≤ q ≤ q̄ + q̂}
yik Amount of demand served by vehicle k to node i
ΓT Parameter to control budget of travel time uncertainty
ΓQ Parameter to control budget of demand uncertainty

et al., 1960), a continuous variable ci,∀i ∈ N is used, denoting the flow in the vehicle when

it leaves the node i, to construct constraints that prevent subtours. A continuous variable

ai,∀i ∈ N denotes the arrival time of a vehicle at node i, and an upper bound on the total

travel time for each vehicle is denoted by T , which can be relaxed if needed in the problem

context by assigning a sufficiently large number to it. We do not consider a time window
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for delivering critical supplies, as the objectives in the context of humanitarian logistics

are prompt deliveries and we assume that all the demand nodes can accept deliveries any

time (e.g., shelters open 24 hours/day). However, time window constraints can be easily

added when necessary. The deterministic model that minimizes the total number of vehicles

deployed (minV) is formulated as follows:

(CVRP-minV) min

n∑
i=1

x0i (3.1)

s.t.
∑
j∈N0

xij = 1 ∀i ∈ N (3.2)

∑
j∈N0

xij −
∑
j∈N0

xji = 0 ∀i ∈ N0 (3.3)

tij ≤ aj − ai + T (1− xij) ∀i, j ∈ N (3.4)

t0ix0i ≤ ai ∀i ∈ N (3.5)

qj ≤ cj − ci + C(1− xij) ∀i, j ∈ N (3.6)

qi ≤ ci ≤ C ∀i ∈ N (3.7)

xij ∈ {0, 1} ∀(i, j) ∈ A (3.8)

The objective (3.1) is to minimize the number of vehicles deployed, constraints (3.2) re-

quire that each node be visited once by exactly one vehicle, and equations (3.3) are flow

conservation constraints. The variables xij are associated with arrival times in inequalities

(3.4), which also prevent subtours not including the depot. The appropriate minimum ar-

rival time for each node is guaranteed in inequalities (3.5), and constraints (3.6) work in a

similar fashion as constraints (3.4) and the capacity constraints are imposed in (3.7). To

solve the CVRP-minV efficiently, an additional constraint,
∑n

i=1 x0i ≥
∑n

i=1 qi/C may be

added to the model, which provides a larger lower bound in the objective function value.

The model to minimize the total travel time/cost (minT) is exactly the same as the

CVRP-minV except the objective function. That is,

(CVRP-minT) min
∑

(i,j)∈A

tijxij (3.9)

s.t. (3.2)–(3.8)
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To minimize the summation of arrival times (minS), one more constraint to specify the

given number of vehicles available, |K|, needs to be added; otherwise the optimal solution

will be trivial, deploying vehicles as many as the number of nodes. The CVRP-minS can

be formulated as:

(CVRP-minS) min
∑
i∈N

ai (3.10)

s.t. (3.2)–(3.8)∑
i∈N

x0i = |K| (3.11)

To minimize the summation of demand-weighted arrival times (minD), only the objective

function needs to be changed as follows:

(CVRP-minD) min
∑
i∈N

qiai (3.12)

s.t. (3.2)–(3.8), (3.11)

where qi is the amount of demand from node i.

At last, the model to minimize the latest arrival time (minL) is formulated as:

(CVRP-minL) min al (3.13)

s.t. (3.2)–(3.8), (3.11)

ai ≤ al ∀i ∈ N (3.14)

where ai and al are the arrival time at node i and the latest arrival time, respectively.

3.1.2 Deterministic SDVRP

We once again note that the split delivery VRP (SDVRP) can be particularly useful when

it comes to the disaster relief routing, as the amount of demand from a single node may

exceed the vehicle capacity. The two-index formulation, e.g., xij , is used in the CVRP

formulation and now we introduce the three-index formulation for the SDVRP while the

notation for parameters remains the same to be consistent. The new decision variables

xijk,∀(i, j) ∈ A, k ∈ K are binary, indicating whether vehicle k travels from i to j (xijk = 1)

or not (xijk = 0). The amount of demand served by vehicle k to node i is denoted by
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yik, ∀i ∈ N, k ∈ K and a continuous variable aik,∀i ∈ N, k ∈ K denotes the arrival time of

vehicle k at node i. The minimum number of vehicles needed, Kmin, for the SDVRP can

be calculated by solving Kmin = d
∑n

i=1 qi/C e.

In order to obtain a feasible solution, the number of available vehicles, |K|, must be

at least Kmin, i.e., |K| ≥ Kmin. We extend the deterministic SDVRP in Berbotto et al.

(2014) to include the vehicle specific arrival time variable, aik in the subtour elimination

constraints. The model to minimize the total travel time of the SDVRP (SDVRP-minT) is

formulated as follows.

(SDVRP-minT) min
∑

(i,j)∈A

∑
k∈K

tijxijk (3.15)

s.t.
∑
j∈N0

∑
k∈K

xijk ≥ 1 ∀i ∈ N (3.16)

∑
j∈N0

∑
k∈K

x0jk ≤ |K| (3.17)

∑
j∈N0

∑
k∈K

x0jk ≥ Kmin (3.18)

∑
j∈N0

xijk −
∑
j∈N0

xjik = 0 ∀i ∈ N0, k ∈ K (3.19)

tij ≤ ajk − aik + T (1− xijk) ∀i, j ∈ N, k ∈ K (3.20)

t0ix0ik ≤ aik ∀i ∈ N, k ∈ K (3.21)

yik ≤ qi
∑
j∈N0

xijk ∀i ∈ N, k ∈ K (3.22)

∑
i∈N

yik ≤ C k ∈ K (3.23)

∑
k∈K

yik = qi ∀i ∈ N (3.24)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3.25)

yik ≥ 0 ∀i ∈ N, k ∈ K (3.26)

The constraints (3.16) require that each node should be visited by at least one vehicle.

The inequality (3.17) ensures that at most |K| vehicles depart from the depot while the

inequality (3.18) ensures that at least Kmin vehicles depart from the depot. The equations

(3.19) are flow conservation constraints. The variables xijk are associated with arrival times
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in inequalities (3.20), which also prevent subtours not including the depot. The appropriate

minimum arrival times for each node are guaranteed in inequalities (3.21). The inequalities

(3.22) ensure that the node can only be served if the vehicle visits it. The inequalities (3.23)

ensure that the maximum load of each vehicle does not exceed capacity C. The equations

(3.24) require that the entire demand of each node is satisfied.

To minimize the summation of arrival times, the SDVRP-minS can be formulated as:

(SDVRP-minS) min
∑
i∈N

∑
k∈K

aik (3.27)

s.t. (3.16)–(3.26)

To minimize the summation of demand-weighted arrival times, the SDVRP-minD can

be formulated as:

(SDVRP-minD) min
∑
i∈N

∑
k∈K

yikaik (3.28)

s.t. (3.16)–(3.26)

Note that the SDVRP-minD is a mixed integer nonlinear programming (MINLP) model,

as yik and aik are variables.

The objective to minimize the latest arrival time, al, is formulated as:

(SDVRP-minL) min al (3.29)

s.t. (3.16)–(3.26)

aik ≤ al ∀i ∈ N, k ∈ K (3.30)

3.1.3 Robust Counterparts of the CVRP

In robust optimization (RO), there are a variety of ways to model uncertainty depending

on how to define the sets to which the uncertain parameters belong. In this paper, we

assume that uncertainty sets, which may be obtained by analyzing the historical data, are

convex, closed, and bounded. Let us denote an uncertainty set by U and the travel times
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and demands be subject to uncertainty. That is, (t, q) ∈ U where t and q are the vectors

such that t = (tij : (i, j) ∈ A) and q = (qi : i ∈ N). Taking into account the uncertainty

and considering that RO aims to find the best worst-case solutions, the robust CVRP-minV

(RCVRP-minV) can be formulated as:

(RCVRP-minV) min

n∑
i=1

x0i (3.31)

s.t. (3.2)–(3.3), (3.8)

max
(t,q)∈U

tij ≤ aj − ai + T (1− xij) ∀i, j ∈ N (3.32)

max
(t,q)∈U

t0ix0i ≤ ai ∀i ∈ N (3.33)

max
(t,q)∈U

qj ≤ cj − ci + C(1− xij) ∀i, j ∈ N (3.34)

max
(t,q)∈U

qi ≤ ci ≤ C ∀i ∈ N (3.35)

Likewise, the robust CVRP-minT (RCVRP-minT) can be formulated as:

(RCVRP-minT) min
x

max
(t,q)∈U

∑
(i,j)∈A

tijxij (3.36)

s.t. (3.2)–(3.3), (3.8), (3.32)–(3.35)

The robust counterparts for the CVRP-minS, CVRP-minD, and CVRP-minL can be for-

mulated in a similar fashion as follows:

(RCVRP-minS) min
∑
i∈N

ai (3.37)

s.t. (3.2)–(3.3), (3.8), (3.11), (3.32)–(3.35)

(RCVRP-minD) min
x

max
(t,q)∈U

∑
i∈N

qiai (3.38)

s.t. (3.2)–(3.3), (3.8), (3.11), (3.32)–(3.35)

(RCVRP-minL) min al (3.39)

s.t. (3.2)–(3.3), (3.8), (3.11), (3.14), (3.32)–(3.35)
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Note that the objective functions of the RCVRP-minT and the RCVRP-minD are subject

to uncertainty while the ones of other models are not.

Let us assume that there is no correlation between t and q, then U = UT × UQ where

t ∈ UT and q ∈ UQ. Indeed, this assumption can be made without loss of generality in

our robust formulations because inequalities (3.32)–(3.35), and functions (3.36) and (3.38)

consider only one type of uncertainty.

In RO, all uncertainty sets are assumed to be bounded. Accordingly, let UT =
{
t | t̄ ≤ t ≤ t̄+ t̂

}
and UQ = {q | q̄ ≤ q ≤ q̄ + q̂} where t̄ and q̄ are the nominal travel time and demand vectors,

respectively, and t̂ and q̂ are vectors for the maximum travel delay and increased demand

caused by the destabilized infrastructure after a disaster. Such uncertainty sets employed

in this paper are called box sets and we refer readers interested in a more general notion of

uncertainty sets, e.g., ellipsoidal set and convex hull, to Ordóñez (2010) and Ben-Tal and

Nemirovski (2002b). Because there is only one uncertain factor per constraint, inequalities

(3.32)–(3.35) can be rewritten as follows:

t̄ij + t̂ijxij ≤ aj − ai + T (1− xij) ∀i, j ∈ N (3.40)

t̄0i + t̂0ix0i ≤ ai ∀i ∈ N (3.41)

q̄j + q̂jxij ≤ cj − ci + C(1− xij) ∀i, j ∈ N (3.42)

q̄i + q̂ix0i ≤ ci ≤ C ∀i ∈ N (3.43)

These new constraints are deterministic with given t̄ij , t̂ij , q̄i, and q̂i.

For the objective function of RCVRP-minT (3.36), it has uncertain travel times up

to the number of arcs in the road network. By employing the concept of the budget of

uncertainty (Bertsimas and Sim, 2004), its uncertainty set can be reformulated as:

UT =

t | t̄ij ≤ tij ≤ t̄ij + t̂ijx
′
ij , (i, j) ∈ A,

∑
(i,j)∈A

x′ij ≤ ΓT , x
′
ij ∈ {0, 1}

 (3.44)

where the parameter ΓT is called the budget of uncertainty and it controls the degree of

conservatism or robustness of the solution. x′ij is the variable to indicate whether the

uncertain travel time of arc (i, j) is considered.
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The objective function of RCVRP-minT is then:

(RCVRP-minT) min
x∈X

∑
(i,j)∈A

t̄ijxij + max
t∈UT

∑
(i,j)∈A

t̂ijx
′
ij (3.45)

where X is the feasible set for x. We may relabel t̂ij , (i, j) ∈ A in a decreasing order, i.e.,

t̂e1 ≥ t̂e2 ≥ · · · ≥ t̂em ≥ t̂em+1
(= 0). Therefore, t̂ei is the ith greatest t̂ij , (i, j) ∈ A. For

the sake of notational convenience, we also employ xei that corresponds t̂ei . The following

Theorem 1 shows that the solution of RCVRP-minT can be found by solving multiple

deterministic CVRP-minT problems.

Theorem 1. The solution of RCVRP-minT (3.45) can be computed as the minimum of

|A|+ 1 deterministic VRP problems, for l = 1, 2, ..., |A|+ 1:

Z l = ΓT t̂el + min
x∈X

 ∑
(i,j)∈A

t̄ijxij +

l∑
k=1

(
t̂ek − t̂el

)
xek


where |A| is the number of arcs in the road network. Let l∗ = arg minl Z

l, then Z∗ = Z l
∗

and x∗ = xl
∗

where xl is the optimal solution of Z l.

Proof. See Bertsimas and Sim (2003).

The objective function of RCVRP-minD (3.38) can have uncertain demand nodes up to

the number of nodes in the road network. A set SQ ⊆ UQ, |SQ| = ΓQ is introduced, where ΓQ

is the budget of uncertainty, to the degree which the system is protected deterministically.

Then the objective function of RCVRP-minD can be written as follows:

(RCVRP-minD) min

∑
i∈N

q̄iai + max
{SQ|SQ⊆UQ,|SQ|≤ΓQ}

∑
i∈SQ

q̂iai

 (3.46)

This objective function is protected by:

β(a,ΓQ) = max
{SQ|SQ⊆UQ,|SQ|≤ΓQ}

∑
i∈SQ

q̂iai (3.47)

where a is vector of ai, ∀i ∈ N .

Proposition 1. Equation (3.47) is equivalent to the following linear optimization problem:

β(a,ΓQ) = max
∑
i∈N

q̂iaiz
′
i (3.48)
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s.t.
∑
i∈N

z′i ≤ ΓQ (3.49)

0 ≤ z′i ≤ 1 ∀i ∈ N (3.50)

Proof. It is clear that the optimal solution value of function (3.48) consists of bΓQc

variables z′i at 1. This is equivalent to the selection of subset {SQ | SQ ⊆ UQ, | SQ |≤ ΓQ}

with corresponding function
∑

i∈SQ
q̂iai.

Theorem 2. The RCVRP-minD has the equivalent formulation as follows.

(RCVRP-minD) min
∑
i∈N

q̄iai + ΓQg
′ +
∑
i∈N

p′i (3.51)

s.t. (3.2)–(3.3), (3.8), (3.11), (3.40)–(3.43)

g′ + p′i ≥ q̂iai ∀i ∈ N (3.52)

p′i ≥ 0 ∀i ∈ N (3.53)

g′ ≥ 0 (3.54)

Proof. Consider the dual of function (3.48):

min ΓQg
′ +
∑
i∈N

p′i (3.55)

s.t. g′ + p′i ≥ q̂iai ∀i ∈ N (3.56)

p′i ≥ 0 ∀i ∈ N (3.57)

g′ ≥ 0 (3.58)

By strong duality, since function (3.48) is feasible and bounded for ΓQ ∈ [0, |SQ|], then

the dual problem (3.55) is also feasible and bounded and their objective values coincide.

Using Proposition 1, we have that function (3.47) is equal to the objective function value

of function (3.55). Substituting (3.55)–(3.58), we obtain that function (3.46) is equivalent

to function (3.51).

3.1.4 Robust Counterparts of the SDVRP

The robust models of the SDVRP use the same fashion of the robust models of the CVRP.
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(RSDVRP-minT) min
x

max
(t,d)∈U

∑
(i,j)∈A

∑
k∈K

tijxijk (3.59)

s.t.
∑
j∈N0

∑
k∈K

xijk ≥ 1 ∀i ∈ N (3.60)

∑
j∈N0

∑
k∈K

x0jk ≤ |K| (3.61)

∑
j∈N0

xijk −
∑
j∈N0

xjik = 0 ∀i ∈ N0, k ∈ K (3.62)

max
(t,d)∈U

tij ≤ ajk − aik + T (1− xijk) ∀i, j ∈ N, k ∈ K (3.63)

max
(t,d)∈U

t0ix0ik ≤ aik ∀i ∈ N, k ∈ K (3.64)

yik − max
(t,d)∈U

qi
∑
j∈N0

xijk ≤ 0 ∀i ∈ N, k ∈ K (3.65)

∑
i∈N

yik ≤ C k ∈ K (3.66)

∑
k∈K

yik − max
(t,d)∈U

qi = 0 ∀i ∈ N (3.67)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3.68)

yik ≥ 0 ∀i ∈ N, k ∈ K (3.69)

The robust model to minimize the summation of arrival times can be formulated as:

(RSDVRP-minS) min
∑
i∈N

∑
k∈K

aik (3.70)

s.t.(3.60)–(3.69)

The robust model to minimize the summation of demand weighted arrival times can be

formulated as:

(RSDVRP-minD) min
∑
i∈N

∑
k∈K

yikaik (3.71)

s.t.(3.60)–(3.69)
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The robust model to minimize the latest arrival time is formulated as:

(RSDVRP-minL) min al (3.72)

s.t.(3.60)–(3.69), (3.30)

Inequalities (3.63) – (3.65), (3.67) can be written as:

t̄ij + t̂ijxijk ≤ ajk − aik + T (1− xijk) ∀i, j ∈ N, k ∈ K (3.73)(
t̄0i + t̂0i

)
x0ik ≤ aik ∀i ∈ N, k ∈ K (3.74)

yik − (q̄i + q̂i)
∑
j∈N0

xijk ≤ 0 ∀i ∈ N, k ∈ K (3.75)

∑
k∈K

yik − (q̄i + q̂i) = 0 ∀i ∈ N (3.76)

The main difference between the CVRP models and the SDVRP models is whether an

arc (i, j) can be used by multiple vehicles or not. In the CVRP, an arc (i, j) can be used

at most once, therefore, each tij is related to one variable xij . In contrast, an arc (i, j)

in the SDVRP can be used by multiple vehicles. Therefore, tij is related to xijk, k ∈ K.

A set S ⊆ UT , |S| = ΓT is introduced, where ΓT is the budget of uncertainty. Then the

RSDVRP-minT can be written as follows:

(RSDVRP-minT) min

 ∑
(i,j)∈A

∑
k∈K

t̄ijxijk + max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

∑
k∈K

t̂ijxijk

 (3.77)

The objective function is protected by:

β(x,ΓT ) = max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

∑
k∈K

t̂ijxijk (3.78)

where x is vector of decision variables.

Proposition 2. Equation (3.78) can be written as

β(x,ΓT ) = max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

t̂ij
∑
k∈K

xijk (3.79)
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A new type of variable wij is introduced, which denotes the number of vehicles using

arc (i, j). Therefore,

β(x,ΓT ) = max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

t̂ijwij (3.80)

s.t. wij =
∑
k∈K

xijk ∀(i, j) ∈ A (3.81)

Equations (3.80) and (3.81) are equivalent to the following linear optimization problem:

β(x,ΓT ) = max
∑

(i,j)∈A

t̂ijwijzij (3.82)

s.t. (3.81)∑
(i,j)∈A

zij ≤ ΓT (3.83)

0 ≤ zij ≤ 1 ∀(i, j) ∈ A (3.84)

Proof. Clearly the optimal solution value of function (3.82) consists of bΓT c variables zij

at 1. This is equivalent to the selection of subset {S | S ⊆ UT , |S| ≤ ΓT } with corresponding

function
∑

(i,j)∈S t̂ijwij .

Theorem 3. The RSDVRP-minT has the equivalent formulation as follows.

(RSDVRP-minT) min
∑

(i,j)∈A

∑
k∈K

t̄ijxijk + ΓT g +
∑

(i,j)∈A

pij (3.85)

s.t. (3.60)–(3.62), (3.66)–(3.69), (3.73)–(3.76), (3.81)

g + pij ≥ t̂ijwij ∀(i, j) ∈ A (3.86)

pij ≥ 0 ∀(i, j) ∈ A (3.87)

g ≥ 0 (3.88)

0 ≤ wij ≤ |K| ∀(i, j) ∈ A (3.89)

Proof. Consider the dual of Problem (3.82):

min ΓT g +
∑

(i,j)∈A

pij (3.90)
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s.t. g + pij ≥ t̂ijwij ∀(i, j) ∈ A (3.91)

pij ≥ 0 ∀(i, j) ∈ A (3.92)

g ≥ 0 (3.93)

By strong duality, since function (3.82) is feasible and bounded for ΓT ∈ [0, |S|], then

the dual function (3.90) is also feasible and bounded and their objective values coincide.

Using Proposition 2, we have that function (3.78) is equal to the objective function value

of function (3.90). Substituting (3.90)–(3.93), we obtain that function (3.77) is equivalent

to function (3.85).

3.2 Models in Ride-sharing

In this section, a dynamic ride-sharing model is proposed to find the optimal matches

between riders and drivers and at the same time calculate the optimal routes for drivers

in which multiple drivers and multiple riders are considered. The notation of ride-sharing

models in Section 3.2 is summarized in Table 3.2.

3.2.1 Deterministic Model for Dynamic Ride-sharing

The dynamic ride-sharing problem considered in this paper contains several common as-

sumptions (Agatz et al., 2012): (1) The ride-sharing is arranged on short-notice (a few

minutes or within one hour before the earliest departure time of participants); (2) The ride-

sharing is for non-recurring trips, which means that drivers and riders are different in each

single arrangement; (3) The ride-sharing is pre-arranged based on participants’ constraints,

and only the trips that satisfy the drivers’ and riders’ constraints are conducted; and (4)

There must be at least one driver and one rider. Let K be the set of drivers and R be the

set of riders. In each arrangement of ride-sharing, |K| ≥ 1 and |R| ≥ 1. The origin and

destination of the drivers can be different from the ones of riders.

The notation used in the mathematical model is as follows. The origin and destination

of driver k ∈ K are denoted by bk ∈ Vs and wk ∈ V ′s where Vs and V ′s represent the set of the

drivers’ origins and destinations, respectively. The origin-destination (o-d) pair of driver k

is then denoted by (bk, wk) and the set of the drivers’ origin-destination pairs is denoted by
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Ps. Similarly, the origin, destination, and pair of them of rider r are denoted by br ∈ Vc,

wr ∈ V ′c , and (br, wr) ∈ Pc where Vc, V
′
c , and Pc represent the set of the riders’ origins,

destinations, and o-d pairs, respectively. Let skr denote the decision variable to determine

whether driver k will serve rider r. Driver k will transport the rider r from the origin of rider

r to the destination of rider r when skr = 1, otherwise, skr = 0. Let V = Vs ∪ V ′s ∪ Vc ∪ V ′c

and i ∈ V be a location that is defined as either an origin or a destination for drivers

and/or riders. Let Vr = V ′c ∪ Vc \ {br} denote the set of the riders’ origins and destinations

excluding br and V ′r = Vc ∪ V ′c \ {wr} denote the set of the riders’ origins and destinations

excluding wr. The transportation network considered in this problem is a complete network

and (i, j), i, j ∈ V denotes an arc in the transportation network representing the shortest

feasible path between the nodes i and j. Let A represent the set of arcs in the complete

network such that (i, j) ∈ A. In addition, let tij be the travel time between locations i and

j, and xijk, (i, j) ∈ A, k ∈ K be a binary variable that is equal to 1 only if arc (i, j) is

traversed by driver k. Here, the assumption is that the travel cost is proportional to the

travel time, and the coefficient to convert travel time into travel cost is denoted by f ′. In

addition, let yr, r ∈ R, be a binary variable that is equal to 1 if the rider r is not served by

any drivers and dr is the associated penalty if the pick-up request of rider r is not served by

any driver. Moreover, ai is a nonnegative variable representing the arrival time at node i.

Let ebk and lbk denote the earliest time and the latest time that driver k is willing to depart

from his origin bk, respectively. Likewise, let ewk
and lwk

denote the earliest time and latest

time that driver k is willing to arrive at his destination. For rider r ∈ R, we can define

ebr , lbr , ewr
, and lwr

in the same fashion. Let Ck denote the number of seats available for

driver k, mk denote the maximum requests that driver k is willing to serve, and tk denote

the maximum driving time driver k is willing to spend, and qr be the amount of demand

(the number of people to be picked up) in the pick-up request of rider location r as there

may be more than one rider in the same location (e.g., family, friends, etc). Let T denote

a large number that is used in the constraints to eliminate the sub-tours, T ≥ tk, ∀k ∈ K.

The notation is summarized in Table 3.2.

The dynamic ride-sharing model can be formulated as a mixed-integer program as fol-
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lows:

min
∑
k∈K

∑
(i,j)∈A

f ′tijxijk +
∑
r∈R

dryr (3.94)

s.t.
∑
k∈K

skr + yr = 1 ∀r ∈ R (3.95)

∑
r∈R

drskr ≤ Ck ∀k ∈ K (3.96)

∑
r∈R

skr ≤ mk ∀k ∈ K (3.97)

∑
j∈{bk}∪Vr\{wr}

xjbrk − skr = 0 ∀k ∈ K,∀r ∈ R (3.98)

∑
j∈Vr

xbrjk − skr = 0 ∀k ∈ K,∀r ∈ R (3.99)

∑
j∈V ′r

xjwrk − skr = 0 ∀k ∈ K,∀r ∈ R (3.100)

∑
j∈{wk}∪V ′r\{br}

xwrjk − skr = 0 ∀k ∈ K,∀r ∈ R (3.101)

∑
j∈{wk}∪Vc

xbkjk = 1 ∀k ∈ K (3.102)

∑
j∈{bk}∪V ′c

xjwkk = 1 ∀k ∈ K (3.103)

∑
(i,j)∈A

tijxijk ≤ tk ∀k ∈ K (3.104)

aj − ai ≥ tij −M

(
1−

∑
k∈K

xijk

)
∀ (i, j) ∈ A (3.105)

tbkixbkik − ai ≤ 0 ∀k ∈ K,∀i ∈ Vc ∪ {wk} (3.106)

abr − ebr(1− yr) ≥ 0 ∀r ∈ R (3.107)

abr − lbr(1− yr) ≤ 0 ∀r ∈ R (3.108)

awr
− ewr

(1− yr) ≥ 0 ∀r ∈ R (3.109)

awr
− lwr

(1− yr) ≤ 0 ∀r ∈ R (3.110)

ebk ≤ abk ≤ lbk ∀k ∈ K (3.111)

ewk
≤ awk

≤ lwk
∀k ∈ K (3.112)

awk
≥ awr

+ twr,wk
− T (1− skr) ∀r ∈ R,∀k ∈ K (3.113)
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xijk ∈ {0, 1} ∀ (i, j) ∈ A, ∀k ∈ K (3.114)

skr ∈ {0, 1} ∀k ∈ K,∀r ∈ R (3.115)

yr ∈ {0, 1} ∀r ∈ R (3.116)

abr , awr
, abk , awk

≥ 0 ∀r ∈ R,∀k ∈ K (3.117)

The objective (3.94) is to minimize the total cost of the participants utilizing the ride-

sharing, including the total travel cost of the drivers and the cost due to the penalties of

unserved riders. Constraints (3.95) ensure that rider r is served by at most one driver and

the penalty will occur if rider r is not served by any drivers. Constraints (3.96) ensure that

the capacity constraints of the vehicles are satisfied during the ride-sharing. Constraints

(3.97) ensure that the number of requests assigned to driver k does not exceed the maximum

requests that driver k is willing to serve. Constraints (3.98) and (3.99) ensure that driver k

needs to visit the origin of rider r if rider r is assigned to driver k. Constraints (3.100) and

(3.101) ensure that driver k needs to visit the destination of rider r if rider r is assigned

to driver k. Constraints (3.102) and (3.103) ensure that driver k leaves from his origin

and arrives at his destination. Constraints (3.104) are the maximum time constraints.

Constraints (3.105) and (3.106) ensure the sub-tours are eliminated and the arrival times

are presented correctly. Constraints (3.107) and (3.108) ensure that rider r will be picked

up at his origin within his given time window if rider r is matched with a driver. Constraints

(3.109) and (3.110) ensure that rider r will arrive at his destination within his given time

window if rider r is matched with a driver. Constraints (3.111) ensure that driver k will

depart from his origin within his given time window. Constraints (3.112) ensure that driver

k will arrive at his destination within his given time window. Constraints (3.113) ensure that

driver k will send his assigned riders to their destinations before arriving at his destination.

In Stiglic et al. (2016), the matching flexibility is related to the willingness of participants

to depart the origin and arrive at the destination earlier or later. When the ranges for

departure time and arrival time increase, the matching flexibility increases. If a participant

does not have specific earliest departure time or earliest arrival time, the earliest departure

time or earliest arrival time for this participant can be set as the time when he posts his

ride-sharing request. If a participant does not have specific latest departure time or latest
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arrival time, the latest departure time or latest arrival time for this participant can be set

as infinite. One assumption of this model is that the rider r is ready to depart his origin

within his given time window. It means that the driver k does not need to wait for rider r as

long as he arrives at the origin of rider r within the time window given by rider r. If waiting

time δi at node i is considered in the model, then constraints (3.105) can be modified as

aj − ai ≥ tij + δi − T

(
1−

∑
k∈K

xijk

)
∀ (i, j) ∈ A (3.118)

Note that the above ride-sharing problem is in the formalism of mixed integer program-

ming, which can be solved using off-the-shelf software such as CPLEX and Gurobi if the size

of the problem is small enough. However, the ride-sharing problem is NP-hard, therefore,

heuristics is required if the problem is not small. We present the insertion algorithm and

tabu search method accordingly.

3.2.2 Robust Counterpart

Travel time uncertainty can play a critical role in our dynamic ride-sharing problem, as the

optimal solution could be even infeasible if uncertain time is realized. In this section, let us

consider how to find robust solution against the travel time uncertainty.

We assume the actual travel time tij , (i, j) ∈ A is in the range
[
t̄ij , t̄ij + t̂ij

]
, where t̄ij

is the nominal value of travel time and t̂ij is the maximum delay. Let Jk be the set of arcs

subject to travel time uncertainty for driver k and let Γk be the parameter to control the

budget of uncertainty for driver k (Ordóñez, 2010). Also, let Sk be the subset of Jk and its

size is controlled by Γk. Now, we are ready to state the robust counterpart of the dynamic

ride-sharing problem:

min f ′
∑
k∈K

 ∑
(i,j)∈A

t̄ijxijk + max
{Sk|Sk⊆Jk,|Sk|≤Γk}

∑
(i,j)∈Sk

t̂ijxijk

+
∑
r∈R

dryr (3.119)

s.t. (3.95)− (3.103) , (3.105) , (3.107)− (3.117)

∑
(i,j)∈A

t̄ijxijk + max
{Sk|Sk⊆Jk,|Sk|≤Γk}

∑
(i,j)∈Sk

t̂ijxijk ≤ tk ∀k ∈ K (3.120)
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aj − ai ≥
(
t̄ij + t̂ij

)∑
k∈K

xijk − T

(
1−

∑
k∈K

xijk

)
∀ (i, j) ∈ A (3.121)

(
t̄bki + t̂bki

)
xkbki − ai ≤ 0 ∀k ∈ K, i ∈ Vc ∪ {wk} (3.122)

Note that unlike the Soyster’s robust model (Soyster, 1973), our formulation allows control-

ling the degree of conservatism by varying the parameter Γk. Note in particular that the

constraints (3.120) are protected by:

β(xijk,Γk) = max
{Sk|Sk⊆Jk,|Sk|≤Γk}

∑
(i,j)∈Sk

t̂ijxijk (3.123)

Proposition 3. Given a set of xijk values, the function (3.123) is equivalent to the following

optimization problem:

max
∑

(i,j)∈A

t̂ijxijkzijk (3.124)

s.t.
∑

(i,j)∈A

zijk ≤ Γk (3.125)

0 ≤ zijk ≤ 1 ∀(i, j) ∈ A (3.126)

Proof. Clearly the optimal solution value of function (3.124) consists of bΓkc variables

zijk at 1. This is equivalent to the selection of subset {Sk | Sk ⊆ Jk, |Sk| ≤ Γk} with

corresponding function
∑

(i,j)∈Sk
t̂ijxijk.

Theorem 4. The robust counterpart has the equivalent formulation as follows:

min f ′
∑
k∈K

 ∑
(i,j)∈A

t̄ijxijk + Γkgk +
∑

(i,j)∈Ak

pijk

+
∑
r∈R

dryr (3.127)

s.t. (3.95)− (3.103) , (3.105) , (3.107)− (3.117) , (3.121) , (3.122)∑
(i,j)∈A

t̄ijxijk + Γkgk +
∑

(i,j)∈Ak

pijk ≤ tk ∀k ∈ K

(3.128)

gk + pijk ≥ t̂ijxijk ∀(i, j) ∈ A, k ∈ K

(3.129)

pijk ≥ 0 ∀(i, j) ∈ A, k ∈ K

(3.130)
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gk ≥ 0 ∀k ∈ K

(3.131)

where gk and pijk are dual variables.

Proof. The dual of problem (3.124) – (3.126) can be written as:

min Γkgk +
∑

(i,j)∈A

pijk (3.132)

s.t. gk + pijk ≥ t̂ijxijk ∀(i, j) ∈ A (3.133)

pijk ≥ 0 ∀(i, j) ∈ A (3.134)

gk ≥ 0 ∀k ∈ K (3.135)

It is clear that the problem (3.124) – (3.126) and its dual (3.132) – (3.135) are both fea-

sible and bounded. Then by the strong duality, their objective values must coincide. In

addition, the function (3.123) is equivalent to the objective function (3.132) by Proposition

1. Therefore by substituting (3.132) – (3.135) into problem (3.119) – (3.122), we obtain

(3.127) – (3.131).
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Table 3.2: Notation for Ride-sharing Models

Symbols Description

ai Arrival time of a vehicle at node i
A Set of arcs in the network
bk Origin of driver k
(bk, wk) Origin-destination (o-d) pair of driver k
br Origin of rider r
(br, wr) Origin-destination (o-d) pair of rider r
Ck Number of seats available for driver k
dr Associated penalty if the pick-up request of rider r is not served by any driver
ebk Earliest time that driver k is willing to depart from his origin bk
ewk

Earliest time that driver k is willing to arrive at his destination wk
ebr Earliest time that rider r is willing to depart from his origin br
ewr Earliest time that rider r is willing to arrive at his destination wr

i, j
Location that is defined as either an origin or a destination for drivers
and/or riders

(i, j) Arc between the nodes i and j
Jk Set of arcs subject to travel time uncertainty
K Set of drivers, k ∈ K
lbk Latest time that driver k is willing to depart from his origin bk
lwk

Latest time that driver k is willing to arrive at his destination wk
lbr Latest time that rider r is willing to depart from his origin br
lwr Latest time that rider r is willing to arrive at his destination wr
mk Maximum requests that driver k is willing to serve
Pc Set of the riders’ origin-destination pairs
Ps Set of the drivers’ origin-destination pairs
qr Demand of rider request r
R Set of riders, r ∈ R
skr Decision variable to determine whether driver k will serve rider r
Sk Subset of Jk and its size is controlled by Γk
tij Travel time between nodes i and j
tk Maximum driving time driver k is willing to spend
t̄ij Nominal travel time of arc (i, j)

t̂ij Maximum travel delay of arc (i, j)
T Upper bound on the total travel time for each vehicle
xij Binary variable that is equal to 1 only if arc (i, j) is traversed by a vehicle
Vc Set of the riders’ origins
V ′c Set of the riders’ destinations
Vr Vr = V ′c ∪ Vc \ {br}, set of the riders’ origins and destinations excluding br
V ′r V ′r = Vc ∪ V ′c \ {wr}, set of the riders’ origins and destinations excluding wr
Vs Set of the drivers’ origins
V ′s Set of the drivers’ destinations
wk Destination of driver k
wr Destination of rider r
Γk Parameter to control budget of travel time uncertainty in the route k

48



Chapter 4

Algorithms

In this section, heuristic algorithms used in this dissertation are described. Small problems

in disaster relief routing and ride-sharing models can be solved by using the commercial

packages such as Gurobi and CPLEX. However, for large-scale problems, it is not practical

to utilize the solvers as the VRPs are NP-hard. Considering the settings of disaster relief

routing and dynamic ride-sharing, the routing decisions need to be made quickly, it is

desirable to obtain the near-optimal solutions in a relatively short period of time. In light

of this, two heuristic approaches are proposed to solve the models.

The first approach is a two-stage heuristic algorithm for which the well-known insertion

algorithm is extended and used in conjunction with a tabu search method. The overall

heuristic scheme is as follows: the maximum CPU time allowed is set; the extended insertion

algorithm is used to find a good feasible solution for a tabu search method; a tabu search is

implemented repeatedly; and provide the best-so-far solution at the end of the given CPU

time. In particular, the insertion algorithm in Campbell and Savelsbergh (2004) are modified

to consider the capacity constraints of the CVRP and the SDVRP with different objective

functions. For the SDVRP, the insertion algorithm is further extended to consider the

split delivery. For the ride-sharing model, the insertion algorithm is extended to consider

the capacity constraints (3.96), the maximum requests constraints (3.97), the maximum

time constraints (3.104), and the riders that are left unserved. The details of the extended

insertion algorithms are shown in Section 4.1. Tabu search (TS) is used to search for the

optimal or near-optimal solutions. In TS, the initial solution is found by implementing the

proposed insertion algorithms. To solve different models, the move operators are specific
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and adjusted for each model. For the CVRP, five types of move operators, which do not

consider split delivery, are used to find the neighbor solutions. These move operators can

be used in SDVRP to find neighbor solutions without the consideration of split delivery.

In addition to these move operators, four types of move operators that are specific for

searching the neighbor solutions with the consideration of split delivery are used to solve

the SDVRP. For ride-sharing model, six types of move operators are used to search neighbor

solutions in TS. The details of TS are shown in Section 4.2. To solve the robust counterparts

in the robust models, two algorithms are proposed to consider the increased demand and

travel time due to the change in robust parameters, ΓQ and ΓT , in CVRP and SDVRP. In

addition, an algorithms is proposed to consider the increased travel time due to change in

robust parameters, Γk, in ride-sharing. The details of these algorithms are shown in Section

4.3.

In this dissertation, a new hybrid algorithm is proposed as scoring tabu search with vari-

able neighborhood (STSVN). In STSVN, a new scoring strategy and the features extracted

from tabu search and variable neighborhood search are integrated to enable the adaptive-

ness of this hybrid algorithm as well as the ability to escape from local optima. The initial

solution used in STSVN is constructed by the insertion algorithm. The algorithms in Sec-

tion 4.3 are used to solve the robust counterparts in the robust models. The performance

of STSVN is compared with TS by testing the same examples for different models.

4.1 Insertion Algorithms

4.1.1 Insertion Algorithms for Disaster Relief Routing

In this dissertation, the insertion algorithm is employed to find a good initial solution and

it has been used for various vehicle routing problems, see, e.g., Campbell and Savelsbergh

(2004); Campbell et al. (2008b). It starts with an easy, partial solution and creates a rea-

sonably good feasible solution by inserting an unrouted customer node repeatedly. The

constructed solution from the insertion algorithm is not guaranteed to be an optimal so-

lution or a near-optimal solution, and it is used as an initial solution for a tabu search

method. In this dissertation, the insertion algorithm in Campbell and Savelsbergh (2004)

is modified to consider the capacity constraints of the CVRP by including them in the

50



algorithm (Algorithms 1 and 2) and the insertion algorithm is extended to further consider

the split delivery by including the modified capacity constraint (Algorithm 3).

The similar terminology and notation of insertion algorithm used in Campbell and

Savelsbergh (2004) is employed in this dissertation. Let us define a route as a set of customer

nodes, i.e., route k = (0, 1, 2, 3, ... , i, ..., n + 1) where i represents the ith position and

n is the number of nodes in the route and we let n + 1 = 0 (depot). A route that only

contains the depot is defined as an empty route in this dissertation, i.e., an empty route

k = (0, 1). Let k ∈ K ′ where K ′ is the set of routes and |K ′| is the number of routes. The

set of unassigned nodes is denoted by N ′ and we introduce a new variable, the delivery

volume currently assigned to route k, which is denoted by ck. A variable E is used to keep

track of the number of routes that cannot accommodate the additional demand qj at node

j due to the capacity limit, i.e., C < ck + qj , if an unrouted node j is inserted into the route

k ∈ K ′. The current objective function value for K ′ is denoted by f(K ′). Let K ′i,j,k denote

the set of routes with inserting node j between position i − 1 and position i in route k.

The objective function value of K ′i,j,k is denoted by f(K ′i,j,k). Let δ = f(K ′i,j,k)− f(K ′), so

that δ represents the difference between f(K ′i,j,k) and f(K ′). Since a node can be visited by

multiple vehicles (routes) in split delivery, let the delivery volume served at node j in route

k be denoted by yjk, so that 0 ≤ yjk ≤ qj . The remaining demand at node j is denoted by

q′j .

The extended insertion algorithm for the CVRP-minV (minimizing the total number

of vehicles or routes) is shown in Algorithm 1, which initially checks whether the demand

of a node is greater than the capacity of a vehicle. If such a case exists, then Algorithm

1 will report no feasible solution for CVRP-minV; otherwise it continues to the following

steps. Unlike Campbell and Savelsbergh (2004) where the insertation algorithm starts with

all empty routes, Algorithm 1 starts with one empty route and keeps inserting nodes into

the route. If a node cannot be inserted to any k ∈ K ′ due to the capacity limit, then

a new empty route is added to K ′. Algorithm 1 stops when all nodes are inserted into

routes. When the solution of CVRP-minV is found, it means that the minimum number of

vehicles Kmin needed to meet all the demand is decided. We propose Algorithm 2 to solve

CVRP-minT, CVRP-minS, CVRP-minD, and CVRP-minL, as the insertion algorithms for
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those problems share the same structure, in which we let |K| ≥ Kmin as a given number of

available vehicles. In Algorithm 2, K ′ starts with |K| empty routes, instead of one empty

route as in Algorithm 1, and the constraint ck+qj ≤ C is checked for all j and k. Therefore,

the algorithm can guarantee K ′ is feasible for the capacity constraint.

The insertion algorithms for the SDVRP-minT, SDVRP-minS, SDVRP-minD, and SDVRP-

minL share the same structures, as shown in Algorithm 3. In Algorithm 3, split delivery is

allowed. The capacity constraint is replaced by C− ck ≥ 0 in Algorithm 3 because a vehicle

can serve partial demand of a node. Once node j is inserted between position i − 1 and

position i of route k, yjk, q
′
j , and ck are updated based on the condition (C − ck) < q′j . If

the full demand of a node has been served by the routes, then this node is removed from

N ′.

Extended Insertion Algorithm for CVRP-minV
Initialize feasibility = 1;
for j ∈ N ′ do

if qj > C then
feasibility = 0

end

end
if feasibility = 0 then

Report no feasible solution for CVRP-minV
else

K′ is initialized to contain one empty route;
while N ′ 6= ∅ do

for j ∈ N ′ do
E = 0 ;
for k ∈ K′ do

if C − ck ≥ qj then
k? = k

else
E = E + 1

end

end
if E = |K′| then

add a new empty route k′ in K′;
insert j between position 0 and position 1 of k′ ;

ck
′

= qj ;

else
insert j between position 0 and position 1 of k? ;

ck
?

= ck
?

+ qj
end
N ′ = N ′ \ j;

end

end
return K′, |K′|

end

Algorithm 1: Insertion Algorithm for CVRP-minV
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Extended Insertion Algorithm for CVRP-minT, -minS, -minD, and -minL
K′ is initialized to contain |K| empty routes, f(K′) = 0;

ck = 0,∀k ∈ K′;
while N ′ 6= ∅ do

δ? =∞;
for j ∈ N ′ do

for k ∈ K′ do
if C − ck ≥ qj then

for i ∈ route k do
K′

i,j,k = K′, insert j between position i− 1 and position i of route k for K′
i,j,k;

δ = f(K′
i,j,k)− f(K′);

if δ < δ? then
δ? = δ, j? = j, i? = i, k? = k

end

end

end

end

end
insert j? between position i? − 1 and position i? of route k? for K′;

f(K′) = f(K′) + δ?, ck
?

= ck
?

+ qj? , N ′ = N ′ \ j?;

end
return K′, f(K′)

Algorithm 2: Insertion Algorithm for CVRP-minT, -minS, -minD, and -minL

Extended Insertion Algorithm for the SDVRP
K′ is initialized to contain |K| empty routes, f(K′) = 0, q′j = qj ,∀j ∈ N ′;

yjk = 0, ∀j ∈ N ′,∀k ∈ K′;

ck = 0,∀k ∈ K′;
while N ′ 6= ∅ do

δ? =∞;
for j ∈ N ′ do

for k ∈ K′ do
if C − ck ≥ 0 then

for i ∈ route k do
K′

i,j,k = K′, insert j between position i− 1 and position i of route k for K′
i,j,k;

δ = f(K′
i,j,k)− f(K′);

if δ < δ? then
δ? = δ, j? = j, i? = i, k? = k

end

end

end

end

end
insert j? between position i? − 1 and position i? of route k? for K′;
f(K′) = f(K′) + δ?;

if (C − ck) < q′j? then

yj?k? = yj?k? + (C − ck?
), q′j? = q′j? − (C − ck?

), ck
?

= C

else

yj?k? = yj?k? + q′j? , q′j? = 0, ck
?

= ck
?

+ q′j?

end
if q′j? = 0 then

N ′ = N ′ \ j?
end

end

Algorithm 3: Insertion Algorithm for SDVRP
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4.1.2 Insertion Algorithm for Ride-sharing

The insertion algorithm in this section is used to find the initial feasible solution for the ride-

sharing problem. The insertion algorithm in Campbell and Savelsbergh (2004) is extended

to consider the capacity constraints (3.96), the maximum requests constraints (3.97), the

maximum time constraints (3.104), and the riders that are left unserved. The details of

the revised insertion algorithm is shown in Algorithm 4. The notation is the same as the

one in the ride-sharing model. A route is defined as a set of locations. The route k for

driver k starts with driver’ origin bk and ends with his/her destination wk. The number

of riders’ origins and destinations between bk and wk is denoted by nk, 0 ≤ nk ≤ mk, i.e.,

route k = (bk,..., br, wr,..., wk). To refer to the position of the location in route k, i is used

to represent the ith position in route k. In the insertion algorithm, route k is for driver k,

therefore, |K| is the number of routes. Note that br and wr should be in the same route

and the position of br is prior to the position of wr, ∀r ∈ R. The set of routes is denoted by

K ′. The seats have not been taken in the vehicle of driver k is denoted by ck. A variable

E is used to keep track of the number of routes that cannot accommodate the demand qr

of rider r due to the capacity constraints (3.96), the maximum requests constraints (3.97),

or the maximum time constraints (3.104). The current objective function value for K ′ is

denoted by f(K ′). Let K ′i,r,k denote the set of routes with inserting origin and destination

of rider r between position i− 1 and position i in route k. The objective function value of

K ′i,r,k is denoted by f(K ′i,r,k). Let δ′ = f(K ′i,r,k)−f(K ′), so that δ′ represents the difference

between f(K ′i,r,k) and f(K ′).

Algorithm 4 starts with |K| routes and route k contains bk and wk. Algorithm 4 stops

when all nodes are inserted into routes or added into unserved list U ′. The capacity con-

straints (3.96), the maximum requests constraints (3.97), and the maximum time constraints

(3.104) are checked during the insertion algorithm. The time window constraints (3.107) –

(3.113) are checked after insertion algorithm ends. If the time window constraints are not

satisfied, the objective function value for K ′ is f(K ′) + p′λ where λ represents the num-

ber of routes that do not satisfy the time window constraints. Therefore, the solution K ′

constructed by Algorithm 2 satisfies the capacity constraints (3.96), the maximum requests
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constraints (3.97), and the maximum time constraints (3.104), but may violate the time

window constraints. As p′ is a very large number, p′λ is considered as the penalty due to

the violation of the time window constraints.

Extended Insertion Algorithm for Ride-sharing
K′ is initialized to contain |K| routes, route k = (bk, wk), U ′ = ∅, f(K′) = 0 ;
while R 6= ∅ do

δ? =∞;
for r ∈ R do

E = 0 ;
for k ∈ K′ do

if ck ≥ qr and nk < mk then
for i ∈ route k do

K′
i,r,k = K′, insert br and wr between position i− 1 and position i of route k for

K′
i,r,k;

δ′ = f(K′
i,r,k)− f(K′);

if K′
i,r,k satisfies the maximum time constraints (3.104) then

if δ′ < δ? then
δ? = δ′, r? = r, i? = i, k? = k

end

else
E = E + 1

end

end

else
E = E + 1

end

end
if E = |K′| then

U ′ = U ′ ∪ {r}, R = R \ r
end

end
insert br? and wr? between position i? − 1 and position i? of route k? for K′;

f(K′) = f(K′) + δ?, ck
?

= ck
? − qr? , R = R \ r?;

end
return K′, U ′, f(K′)

Algorithm 4: Extended Insertion Algorithm for Ride-sharing

4.2 Tabu Search

The tabu search (TS) approach, one of the most widely used heuristics in operations re-

search, is a single solution based, deterministic method to search for an optimal solution.

One advantage of TS is exploring the search space by moving from a solution to its best

neighbor solution that is not in the tabu list, which can escape from local optima (Renaud

et al., 1996). The tabu list can record the solutions that have been visited and avoid mov-

ing to the same solution again. For tutorials, we refer readers to Glover (1990). The tabu

search algorithm used in this dissertation to solve the different models with specific move

operators.
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4.2.1 Tabu Search for Disaster Relief Routing

In TS, the initial solution is assumed to be given, which can be found by implementing

the proposed insertion algorithms. The current solution is denoted by K ′ and the tabu

list is denoted by σ. The best-so-far solution while TS is being implemented is denoted by

Kbest, and the objective function value of Kbest is denoted by f(Kbest). In addition, the

neighbor solution of K ′ is denoted by K ′h, and f(K ′h) is the objective function value of K ′h.

The set of K ′h that satisfies all constraints is denoted by M , and K ′h are sorted from the

one with the smallest f(K ′h) to the one with largest f(K ′h). The maximum CPU time that

allows the program to run is denoted by Bmax and the elapsed CPU time is denoted by B.

While B < Bmax, TS is implemented iteratively. At each iteration, all K ′h of K ′ are found

according to the move operators. In the move operators, the nodes are denoted by i and i′

and the routes are denoted by k and k′.

For the CVRP, five types of move operators, which do not consider split delivery, are

used to find the neighbor solutions. These move operators can be used in SDVRP to find

neighbor solutions without the consideration of split delivery. In addition to these move

operators, four types of move operators that are specific for searching the neighbor solutions

with the consideration of split delivery are used to solve the SDVRP.

Five types of move operators that do not consider split delivery are as follows. (1)

Exchange-node move operator: Choose two different nodes i and i′ in the routes k and k′

(k and k′ can be same route or different routes) and switch the positions of nodes i and i′ in

routes k and k′. (2) Relocate-node move operator: Remove node i from route k and relocate

i in front of node i′ of route k′. (3) Two-insertion move operator (Sze et al., 2016): Take two

consecutive nodes out of route k and insert them into route k′, as shown in Algorithm 6.

(4) Reverse-sequence move operator: Choose a segment of route k and reverse the sequence

of visited nodes in this segment, as shown in Algorithm 7. (5) Exchange-segments move

operator: Exchange the segments of routes k and k′, as shown in Algorithm 8. These move

operators are applied for ∀i ∈ k, ∀i′ ∈ k′, ∀k, k′ ∈ K ′, i 6= i′.

Four types of move operators that are specific to consider split delivery (Berbotto et al.,

2014) are as follows. (1) Add-split-node move operator: Add node i of route k into route
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k′ if i /∈ k′, i 6= i′, k 6= k′. The demand of node i is split and served by route k and route

k′, as shown in Algorithm 9. In Algorithms 9 – 12, β represents a set of nodes that are

served by more than one vehicle. (2) Delete-split-node move operator: Choose a node that

is served by more than one route, and the node from one of the routes is removed, as shown

in Algorithm 10. (3) Delete-and-relocate move operator: Choose a node i that is served by

more than one route. Then delete node i in k, remove i′ from route k′ and insert i′ into

route k, as shown in Algorithm 11. (4) Delete-and-split move operator: Choose a node i

that is served by routes k and k′, and a node i′ that is served by only one route. Then

delete i in route k, and add i′ into route k, as shown in Algorithm 12.

In the tabu search for CVRP and SDVRP, the infeasible neighbor solutions are not kept.

Only the feasible neighbor solutions are evaluated and ranked according to their objective

function values. The best neighbor solution that is not in the tabu list is used as current

solution for the next iteration, and added in the tabu list. The best-so-far solution is saved

during the whole procedure.

Tabu Search Algorithm for CVRP and SDVRP
K′ = set of routes (current solution), Kbest = K′, σ = ∅ ;
while B < Bmax do

M = ∅;
find all K′

h of K′ according to the move operators, and add them into M ;
for K′

h ∈M do
evaluate f(K′

h) of K′
h;

end
rank K′

h ∈M from the smallest f(K′
h) to the largest f(K′

h);
for K′

h ∈M do
if K′

h /∈ σ then
K′ = K′

h;
add K′

h to σ;

if f(K′
h) < f(Kbest) then

Kbest = K′
h;

f(Kbest) = f(K′
h);

end

else
if f(K′

h) < f(Kbest) then
K′ = K′

h;
add K′

h to σ;

Kbest = K′
h;

f(Kbest) = f(K′
h);

end

end
break the for-loop when K′ is updated;

end
update σ based on frequency

end

return Kbest and f(Kbest)

Algorithm 5: Tabu Search Algorithm for CVRP and SDVRP
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Two-insertion Move Operator
if i 6= i′ and there is at least one customer node in front of i then

K′
h = K′;

take i and the node in front of i out of route k for K′
h, insert them in front of i′ in route r′ for K′

h

end

Algorithm 6: Two-insertion Move Operator

Reverse-sequence Move Operator
nk = the number of customer nodes in route k
if nk ≤ 2 then

l = position index of a node in route k
for l < nk do

for m ≤ (nk − l) do
K′

h = K′;
reverse the segment that starts from the node at position l and end at the position l +m in
route k for K′

h

end

end

end

Algorithm 7: Reverse-sequence Move Operator

Exchange-segments Move Operator
if k 6= k′ then

nk = the number of customer nodes in route k
nk′ = the number of customer nodes in route k′

if nk ≤ 2 and nk′ ≤ 2 then
l = position index of a node in route k
l′ = position index of a node in route k′

for l < nk do
for m ≤ (nk − l) do

for l′ < nk′ do
for m′ ≤ (nk′ − l′) do

K′
h = K′;

exchange the segment that starts from the node at position l and end at the
position l+m in route k with the segment that starts from the node at position l′

and end at the position l′ +m′ in route k′ for K′
h

end

end

end

end

end

end

Algorithm 8: Exchange-segments Move Operator

Add-split-node Move Operator
for i /∈ β do

given route k containing i
for k′ ∈ K′ do

if k 6= k′ then
for i′ ∈ k′ do

K′
h = K′

add i before i′ in route k′ for K′
h, modify yik and yik′ accordingly

end

end

end

end

Algorithm 9: Add-split-node Move Operator
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Delete-split-node Move Operator
for i ∈ β do

given route k and route k′ containing i, k 6= k′

K′
h = K′

remove i from route k, modify yik and yik′ accordingly
end

Algorithm 10: Delete-split-node Move Operator

Delete-and-relocate Move Operator
for i ∈ β do

given route k and route k′ contain i, k 6= k′

for i′ ∈ route k′ do
if i 6= i′ then

K′
h = K′;

delete i in route k, remove i′ from route k′ and insert i′ into route k;
modify yik, yi′k and yi′k′ accordingly

end

end

end

Algorithm 11: Delete-and-relocate Move Operator

Delete-and-split Move Operator
for i ∈ β do

given route k and route k′ contain i, k 6= k′

for i′ ∈ route k′ do
if i′ /∈ β then

K′
h = K′;

delete i in route k, and add i′ into route k;
modify yik and yi′k accordingly

end

end

end

Algorithm 12: Delete-and-split Move Operator
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4.2.2 Tabu Search for Ride-sharing

For the ride-sharing problem, the initial solution can be found by implementing Algorithm

4. In the TS to solve the ride-sharing problem, the notation corresponds to the ride-sharing

model. Six types of move operators are used to search neighbor solutions in the TS for ride-

sharing. (1) Exchange-within-route: Choose node i and node i′ in route k and switch the

positions of node i and node i′ in route k. This move operator is used ∀i, i′ ∈ route k, i 6= i′,

∀k ∈ K ′. (2) Exchange-between-routes: If br and wr are in route k and b′r and w′r are in

route k′, switch the positions of br and b′r, and switch the positions of wr and w′r, ∀r, r′ ∈ R,

∀k, k′ ∈ K ′. (3) Relocate-between-routes: Remove br and wr in route k, insert br between

position i− 1 and position i in route k′, insert wr between position i′ − 1 and position i′ in

route k′. This move operator is applied when i < i′,∀i ≤ nk+1, ∀i ≤ nk+2,∀r ∈ R,∀k ∈ K ′.

(4) Exchange-unserved-customer: If br and wr are in route k and r′ is in unserved list U ′,

replace br with b′r and replace wr with w′r, remove r′ from U ′ and add r to U ′. This move

operator is applied ∀r ∈ R,∀k ∈ K ′,∀r′ ∈ U ′. (5) Insert-unserved-customer-to-route: If

r is in unserved list U ′, insert br between position i − 1 and position i in route k, insert

wr between position i′ − 1 and position i′ in route k. This move operator is applied when

i < i′, ∀i ≤ nk + 1,∀i ≤ nk + 2,∀r ∈ R,∀k ∈ K ′. (6) Add-customer-to-unserved-list: If br

and wr are in route k, remove br and wr from route k, add r into unserved list U ′. This

move operator is applied ∀r ∈ R,∀k ∈ K ′.

After a solution (K ′, U ′) is found, the capacity constraints (3.96), the maximum re-

quests constraints (3.97), the maximum time constraints (3.104) are checked. If the so-

lution (K ′, U ′) does not satisfy these constraints, the solution is not considered. If the

solution does not satisfy time window constraints, the objective function value for (K ′, U ′)

is f(K ′, U ′) + p′λ, where λ represents the number of routes that do not satisfy the time

window constraints and p′ represents the penalty of violation. Here, p′ is a large number

to ensure that the feasible solutions have more priority to be selected in each iteration of

the heuristic algorithm. If p′ is not large enough, the heuristic algorithm may use too much

time to explore the region of infeasible solutions (Smith et al., 1997). In the setting of

ride-sharing, the CPU time used to search feasible good solutions is limited because the
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feasible good solutions should be provided in a short time. Therefore, feasible solutions are

more important and desired. The penalty method used for ride-sharing is the static penalty

function, which is simple and suitable to be used when large priority is given to feasible

solutions. In literature, there are other types of penalty functions such as dynamic penalty

functions and adaptive penalty functions (Smith et al., 1997; Mezura-Montes and Coello,

2011; Coit et al., 1996). These penalty functions may allow exploring the good feasible

solutions near the boundary of infeasible solutions. However, dynamic penalty functions

typically require problem specific tuning (Smith et al., 1997). Adaptive penalty functions

involve more parameters to control the change of penalty values (Smith et al., 1997). Be-

cause the penalty functions are not the main focus in this dissertation, the comparison of

different penalty functions can be the future work in this dissertation. For more details of

different penalty functions, see Smith et al. (1997); Mezura-Montes and Coello (2011); Coit

et al. (1996).

In Algorithm 13, the current solution is denoted by (K ′, U ′) and the tabu list is denoted

by σ. The best-so-far solution during TS implementation is denoted by (K ′, U ′)best, and the

objective function value of (K ′, U ′)best is denoted by f((K ′, U ′)best). In addition, the neigh-

bor solution of (K ′, U ′) is denoted by (K ′, U ′)h, and f((K ′, U ′)h) is the objective function

value of (K ′, U ′)h. The set of (K ′, U ′)h is denoted by M , and (K ′, U ′)h are rearranged from

the one with the smallest f((K ′, U ′)h) to the one with largest f(K ′h). The maximum CPU

time that allows program to run is denoted by Bmax and the elapsed CPU time is denoted

by B. While B < Bmax, TS is implemented iteratively.

4.3 Algorithms for Solving Robust Counterparts

To solve the robust counterparts of CVRP and SDVRP with different objectives to consider

uncertain travel times and demands with the heuristic algorithms, Algorithms 14 and 15 are

proposed to consider the total amount of increased demand and travel time in the solution

based on parameters ΓQ and ΓT for robust models in disaster relief routing. Depending on

the degree of robustness (that can be decided by ΓQ and ΓT values), a certain uncertain

parameter, e.g., t̂ij for some (i, j) in A, may or may not be included in the solution. The

algorithms presented in this section deal with such cases. To solve the robust counterparts
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Tabu Search Algorithm for Ride-sharing
(K′, U ′) = current solution, (K,U)best = (K′, U ′), σ = ∅ ;
while B < Bmax do

M = ∅;
find all (K′, U ′)h of (K′, U ′) according to the move operators;
add the (K′, U ′)h that satisfy constraints (3.96), (3.97), and (3.104) into M ;
for (K′, U ′)h ∈M do

evaluate f((K′, U ′)h) of (K′, U ′)h;
end
rank (K′, U ′)h ∈M from the smallest f((K′, U ′)h) to the largest f((K′, U ′)h);
for (K′, U ′)h ∈M do

if (K′, U ′)h /∈ σ then
(K′, U ′) = (K′, U ′)h;
add (K′, U ′)h to σ;

if f((K′, U ′)h) < f((K′, U ′)best) then
(K′, U ′)best = (K′, U ′)h;

f((K′, U ′)best) = f((K′, U ′)h);

end

else
if f((K′, U ′)h) < f((K′, U ′)best) then

(K′, U ′) = (K′, U ′)h;
add (K′, U ′)h to σ;

(K′, U ′)best = (K′, U ′)h;

f((K′, U ′)best) = f((K′, U ′)h);

end

end
break the for-loop when (K′, U ′) is updated;

end
update σ based on frequency

end

return (K′, U ′)best and f((K′, U ′)best)

Algorithm 13: Tabu Search Algorithm for Ride-sharing
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of the ride-sharing model to consider uncertain travel times with the heuristic algorithms,

Algorithm 16 is proposed to consider the total amount of increased travel time in the

solution based on parameters Γk,∀k ∈ K. Depending on the degree of robustness (that can

be decided by values of Γk, ∀k ∈ K), t̂ij for some (i, j) in A, may or may not be included

in the solution.

Update Demand Based on ΓQ

Given ΓQ, q̄i, i ∈ N , q̂i, i ∈ N ;
sort q̂i, i ∈ N in decreasing order;
l = the position index of q̂i in sorted order, l = 1, 2, ..., |N |;
S′
Q = the set of nodes of which the q̂i are considered in the solution based on ΓQ;

S′
Q = ∅

for l ≤ ΓQ do
add node index i of q̂i at position l into S′

Q

end
for i ∈ N do

if i ∈ S′
Q then

qi = q̄i + q̂i
else

qi = q̄i
end

end
return qi, i ∈ N

Algorithm 14: Uncertain Demand Selection Algorithm Based on ΓQ

Update Travel Time Based on ΓT

Given ΓT , t̄ij , (i, j) ∈ A, t̂ij , (i, j) ∈ A, and a solution K′;
compute wij , (i, j) ∈ A;

vij = wij t̂ij , (i, j) ∈ A;
sort vij , (i, j) ∈ A in decreasing order;
l = the position index of vij in sorted order, l = 1, 2, ..., |A|;
S′
T = the set of arcs of which the vij are considered in the solution based on ΓT . S′

T = ∅;
for l ≤ ΓT do

add arc (i, j) of vij at position l into S′
T

end
for (i, j) ∈ A do

if (i, j) ∈ S′
T then

t′ij = t̄ij + t̂ij

else
t′ij = t̄ij

end

end
return t′ij , (i, j) ∈ A

Algorithm 15: Uncertain Travel Time Selection Algorithm Based on ΓT

Algorithm 14 is to select the maximum potential increased amount of demand based on

ΓQ, which is implemented before the heuristic algorithms are used. As each node is visited

at least once, qi becomes fixed for each solution after determination of set of q̂i.

Different from evaluating the uncertainty set of demands, the set of selected t̂ij for each

solution varies even for the same ΓT value (same degree of robustness) because there is one
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more parameter to be considered, wij , the number of vehicles using an arc (i, j). For an arc

(i, j) where t̂ij is large and wij = 0 (implying that this arc is not used in the solution), this

t̂ij is not to be selected in the uncertainty set of travel times when evaluating the maximum

potential increased travel time due to uncertainty. For an arc (i, j) where t̂ij not large

but wij is large, this t̂ij may be selected in the uncertainty set because this arc is used for

multiple vehicles. Algorithm 15 considers the effect of t̂ij and wij together on the maximum

potential increased travel time of a solution. Algorithm 15 is implemented for each new

constructed solution in the insertion algorithm and tabu search. The objective function

value and metrics of the new solution is computed using t′ij .

Compute Total Increased Travel Time Based on Γk

Given Γk, ∀k ∈ K, t̄ij , (i, j) ∈ A, t̂ij , (i, j) ∈ A, and a solution K′;
for k ∈ K do

sort all t̂ij in route k in decreasing order;

l = the position index of t̂ij in sorted order ;

Sk = the set of arcs of which the t̂ij are considered in route k based on Γk. Sk = ∅;
for l ≤ Γk do

add arc (i, j) of t̂ij at position l into Sk

end

total increased travel time in route k =
∑

(i,j)∈Sk t̂ij ;

end

total increased travel time in K′ =
∑

k∈K

∑
(i,j)∈Sk t̂ij

Algorithm 16: Compute Total Increased Travel Time Based on Γk

4.4 Scoring Tabu Search with Variable Neighborhood

As mentioned previously, because of the settings of disaster relief routing and dynamic

ride-sharing, the routing decisions need to be made quickly. It is desirable to obtain the

near-optimal solutions in a short period of time. Besides TS in Section 4.2, a new hybrid

algorithm based on TS, named scoring tabu search with variable neighborhood (STSVN),

is proposed to solve the models and compared with TS.

The STSVN consists of two stages: Stage 1 aims to intensionally search better solutions

and reach the local optima quickly, while Stage 2 aims to escape from a local optima by a

diversification approach. The STSVN is based on TS. Similar to TS, a tabu list is used to

record the previous visited solutions within the search space to prevent cycling. Different

from TS, STSVN does not yield to the worse solutions during searching within a given

neighborhood structure. It means when better solutions are not found in the neighborhood
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structure h, then search neighborhood structure h + 1 instead of staying in neighborhood

structure h. Systematically searching the neighbor solutions based on the change of the

neighborhood generated by various move operators is the feature from variable neighborhood

search (VNS). In addition, a proposed new selection strategy in STSVN determines the next

move. To enable the effectiveness of this selection strategy, a list of marks are generated

in each iteration to record the routes that can be modified for the current solution for

improvement. In Stage 1, tabu search with change of neighborhood and selection strategy

enhances the ability to descent to local optima. In STSVN, the new scoring mechanism

records the number of changes of each route during search. The scores are considered as

the memory of the algorithm and dynamically updated. The scores follow this rule: Recent

memory takes larger weights and previous memory takes less weights. When reaching a

local optima after trying all move operators, the route with the least score is used for Stage

2 for diversification to escape from the local optima. In Stage 2, all nodes from the route

with the least score are removed from this route and re-inserted into any routes based on the

least cost. The new scoring strategy allows STSVN to adapt to the status of searching and

explore the searching space that has not been explored previously. The detailed explanation

of STSVN is shown in Section 4.4.1 and the summary of STSVN is shown in Algorithm 17.

4.4.1 Main Steps of STSVN

Step 0: Initialization. Obtain an initial solution K ′ from insertion algorithm. Evaluate

the objective function value f (K ′). Let Kbest record the best-so-far solution during whole

searching and f(Kbest) be the objective function value of Kbest. At the beginning of STSVN,

Kbest = K ′ and f(Kbest) = f(K ′). Initialize tabu list σ = ∅, add K ′ into σ. Set the

maximum CPU time Bmax allowed. Define a set of move operators H. Let scorek to record

the number of changes of route k during search. Initialize scorek = 0,∀k ∈ K ′. Go to Stage

1.

In Stage 1. The main purpose is to converge to a local optima quickly. Stage 1 consists

of Step 1 – Step 11, as follows.

Step 1: If the CPU time B ≥ Bmax, then STSVN stops and reports Kbest and f(Kbest).

Otherwise, h = 1, M = ∅, and go to Step 2. In Step 1, the first move operator is chosen
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and M is used to store some feasible neighbor solutions of current solution K ′. In STSVN,

the move operators used to solve CVRP and SDVRP models are the same as the ones used

in TS described in Section 4.2.1, and the move operators used to solve ride-sharing models

are the same as the ones used in TS described in Section 4.2.2. In Step 1, M is initialized

as an empty set.

Step 2. If the CPU time B < Bmax and h ≤ |H|, go to Step 3. If the CPU time

B > Bmax, then STSVN stops and reports Kbest and f(Kbest). If h > |H|, go to Stage 2.

Step 3: Find all feasible neighbor solutions based on move operator h. Let K ′h,k,k′,i,i′

denote a feasible neighbor solution of current solution K ′ by applying move operator h on

route k, route k′, node i, and node i′. f(K ′h,k,k′,i,i′) represents the objective function value of

K ′h,k,k′,i,i′ . If f(K ′h,k,k′,i,i′) is less than f (K ′), then add K ′h,k,k′,i,i′ into M . After evaluation

of all K ′h,k,k′,i,i′ , go to Step 4.

Step 4: If M = ∅, h = h+ 1 and go to Step 2. If M 6= ∅, go to Step 5.

Step 5: Sort all solutions K ′h,k,k′,i,i′ in M from the smallest f(K ′h,k,k′,i,i′) to the largest

f(K ′h,k,k′,i,i′). If f(K ′h,k,k′,i,i′) < f(Kbest), Kbest = K ′h,k,k′,i,i′ and f(Kbest) = f(K ′h,k,k′,i,i′).

Go to Step 6.

Step 6: If the CPU time B ≥ Bmax, then STSVN stops and reports Kbest and f(Kbest).

Otherwise, go to Step 7.

Step 7: Create a copy of K ′ as K ′′. Initialize markk = 0,∀k ∈ K ′′. markk is used to

record whether route k can be replaced in K ′′. If markk = 0, then route k can be replaced

in K ′′. If markk = 1, then route k cannot be replaced in K ′′. Initialize candidate list = ∅.

Go to Step 8.

Step 8: For each K ′h,k,k′,i,i′ in M , do: If markk = 0 and markk′ = 0, add K ′h,k,k′,i,i′

into candidate list, let route k in K ′′ become the route k in K ′h,k,k′,i,i′ , and route k′ in K ′′

become the route k′ in K ′h,k,k′,i,i′ , markk = 1 and markk′ = 1. Go to Step 9. In Step

8, using the new selection strategy in STSVN, the new constructed solution K ′′ is always

better or equal to the first best neighbor solution. In addition, the marks can ensure the

feasibility of K ′′.

Step 9: Evaluate objective function value f(K ′′) of K ′′. If f(K ′′) < f(Kbest), then

Kbest = K ′′, f(Kbest) = f(K ′′). Go to Step 10.
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Step 10: If K ′′ /∈ σ, then K ′ = K ′′, f(K ′) = f(K ′′), add K ′′ to σ, scorek = scorek +

markk,∀k ∈ K ′, h = 1, and go to Step 2. If K ′′ ∈ σ, find the last K ′h,r,r′,i,i′ in candidate

list, remove it from M , and go to Step 11.

Step 11: If M = ∅, h = h+ 1 and go to Step 2. Otherwise, go to Step 6.

In Stage 2, the main purpose is to escape from the local optima by using the diversifi-

cation strategy. The Stage 2 consists of Step 12 – Step 15.

Step 12: Find the minimum scorek,∀k ∈ K ′ and record the corresponding route as kmin.

Remove all nodes (except depot) from route kmin. Re-insert these nodes into any routes in

K ′ based on the least cost. Evaluate the modified K ′. Update scorek, ∀k ∈ K ′ based on

Equation 4.1, then update scorekmin
of route kmin using Equation 4.2, and go to Step 13.

These scores are considered as the memory of the algorithm and dynamically updated. The

scores follow this rule: recent memory takes larger weights and previous memory takes less

weights.

scorek =
scorek
|K ′|

(4.1)

scorekmin
= scorekmin

+ |K ′| (4.2)

Step 13: Evaluate objective function value f(K ′) of K ′. If f(K ′) < f(Kbest), then

Kbest = K ′, f(Kbest) = f(K ′). Go to Step 14.

Step 14: If K ′ /∈ σ, add K ′ to σ, and go to Step 1 of Stage 1. Otherwise, go to Step 15.

Step 15: Find the maximum scorek,∀k ∈ K ′ and record the corresponding route as

kmax. Reverse the sequence of all nodes from route kmax. Evaluate the modified K ′. Go to

Step 12.

4.4.2 STSVN in Ride-sharing

The STSVN used in ride-sharing shares the same structure as described in Section 4.4.1.

Several steps are slightly different. Note that the notation used in STSVN is the same as

the models of ride sharing in Section 3.2. First, the move operators used in STSVN to solve

the ride-sharing models are the same as the ones in Section 4.2.2. Second, a solution in ride-

sharing include the set of routes K ′ and the list of unserved customers U ′, and the objective

function value f(K ′, U ′) is total cost including routing cost and the penalty of unserved

customers. Third, after a neighbor solution is found, the capacity constraints (3.96), the
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STSVN for Disaster Relief Routing
K′ = set of routes (current solution), f(K′) = objective function value of K′, Kbest = K′, f(Kbest) =
objective function value of Kbest, tabu list σ = ∅, add K′ into σ, scorek = 0, ∀k ∈ K′;
while B < Bmax do

Start Stage 1;
h = 1, M = ∅;
while B < Bmax and h ≤ |H| do

for k ∈ K′ do
for k′ ∈ K′ do

for i ∈ k do
for i′ ∈ k′ do

use move operator h to find neighbor solution K′
h,k,k′,i,i′ ;

if K′
h,k,k′,i,i′ is feasible then

evaluate objective function value f(K′
h,k,k′,i,i′ ) of K′

h,k,k′,i,i′ ;

if f(K′
h,k,k′,i,i′ ) < f(K′) then

add K′
h,k,k′,i,i′ into M

end

end

end

end

end

end
if M = ∅ then

h = h+ 1
else

sort K′
h,k,k′,i,i′ ∈M from the smallest f(K′

h,k,k′,i,i′ ) to the largest f(K′
h,k,k′,i,i′ );

if f(K′
h,k,k′,i,i′ ) < f(Kbest) then

Kbest = K′
h,k,k′,i,i′ and f(Kbest) = f(K′

h,k,k′,i,i′ )

end
findCombination = yes;
while findCombination = yes and B < Bmax do

K′′ = K′ (Create a copy of K′), markk = 0,∀k ∈ K′′;
candidate list = ∅;
for K′

h,k,k′,i,i′ ∈M do

if markk = 0 and markk′ = 0 then
add K′

h,k,k′,i,i′ into candidate list, replace route k in K′′ with the route k in

K′
h,k,k′,i,i′ , and replace route k′ in K′′ with the route k′ in K′

h,k,k′,i,i′ ,

markk = 1, and markk′ = 1;

end

end
evaluate objective function value f(K′′) of K′′;

if f(K′′) < f(Kbest) then
Kbest = K′′, f(Kbest) = f(K′′)

end
if K′′ /∈ σ then

K′ = K′′;
add K′′ to σ;
findCombination = no;
for k ∈ K′ do

scorek = scorek +markk
end

else
find the last K′

h,k,k′,i,i′ in candidate list, and remove it from M ;

if M = ∅ then
findCombination = no, h = h+ 1

end

end

end

end

end
Go to Stage 2 (See Algorithm 18)

end

Return Kbest, f(Kbest)

Algorithm 17: STSVN for Disaster Relief Routing
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Stage 2 of STSVN for Disaster Relief Routing
diversification = yes;
while diversification = yes do

find the minimum scorek, ∀k ∈ K′ and record the corresponding route as kmin;
remove all nodes (except depot) from route kmin;
re-insert these nodes into any routes in K′ based on the least cost;
evaluate the modified K′;
update scorek,∀k ∈ K′ based on Equation 4.1, then update scorekmin

of route kmin using Equation 4.2;
evaluate objective function value f(K′) of K′;

if f(K′) < f(Kbest) then
Kbest = K′, f(Kbest) = f(K′)

end
if K′ /∈ σ then

add K′ to σ, diversification = no
else

find the maximum scorek, ∀k ∈ K′ and record the corresponding route as kmax;
reverse the sequence of all nodes from route kmax;
evaluate the modified K′

end

end
Go to Stage 1

Algorithm 18: Stage 2 of STSVN for Disaster Relief Routing

maximum requests constraints (3.97), the maximum time constraints (3.104) are checked.

If the solution does not satisfy these constraints, the solution is not added into M in Step

3 as shown in Algorithm 19. If the solution does not satisfy time window constraints, the

objective function value is added with additional penalty p′λ, where p′ represents a large

value of penalty and λ represents the number of time window constraints that are violated.

In Stage 2, the diversification strategy used for ride-sharing is different from the one

for CVRP and SDVRP models. The diversification strategy used for ride-sharing is as

follows: Find the minimum scorek, k = 1, ..., |K| and record the corresponding route as

kmin. Remove all nodes (except driver’s origin and destination) from route kmin. Find the

customers’ origins based on the sequence of these nodes, and find the customers’ destinations

based on the sequence of these nodes. Find the last customer’s origin b′r based on the

sequence and find this customer’s destination w′r. Re-insert b′r and w′r into route kmin,

then add all the remaining origins after w′r, and add all the remaining destinations after all

the origins based on the sequence. Evaluate the modified (K ′, U ′). Update scorek, ∀k =

1, ..., |K ′| + 1 based on Equation 4.1, then update scorekmin
of route kmin using Equation

4.2. Evaluate objective function value f(K ′, U ′) of (K ′, U ′). To illustrate this strategy, a

simple example is shown here: Let route kmin = [1, 2, 3, 4, 5, 6, 7, 8], where 1 is the driver’s

origin, 8 is the driver’s destination, 2, 3, 4 are customers’ origins, and 5, 6, 7 are customers’

destinations, respectively. After remove all nodes (except driver’s origin and destination)
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from route kmin, route kmin = [1, 8]. In this example, the last customer’s origin b′r based on

the sequence and this customer’s destination w′r are 4 and 7, respectively. After re-insert

b′r and w′r into route kmin, the route kmin = [1, 4, 7, 8]. After add all the remaining origins

after w′r, the route kmin = [1, 4, 7, 2, 3, 8]. After add all the remaining destinations after

all the origins based on the sequence, the route kmin = [1, 4, 7, 2, 3, 5, 6, 8].
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STSVN for Ride-sharing
K′ = set of routes, U ′ = unserved list, f(K′, U ′) = objective function value of (K′, U ′),
(K′, U ′)best = (K′, U ′), f((K′, U ′)best) = objective function value of (K′, U ′)best, tabu list σ = ∅, add
(K′, U ′) into σ, scorek = 0, ∀k ∈ K′, score|K′|+1 = 0 for U ′;

while B < Bmax do
Start Stage 1;
h = 1, M = ∅;
while B < Bmax and h ≤ |H| do

use move operator h to find all neighbor solutions;
for neighbor solution (K′, U ′)l ∈M do

if (K′, U ′)l satisfies constraints (3.96), (3.97), and (3.104) then
evaluate f(K′, U ′)l of (K′, U ′)l

end
if (K′, U ′)l does not satisfy time window constraints then

f(K′, U ′)l = f(K′, U ′)l + p′λ
end
if f(K′, U ′)l < f(K′, U ′) then

add f(K′, U ′)l into M
end

end
if M = ∅ then

h = h+ 1
else

sort (K′, U ′)l ∈M from the smallest f(K′, U ′)l to the largest f(K′, U ′)l;

if f(K′, U ′)l < f((K′, U ′)best) then
(K′, U ′)best = (K′, U ′)l and f(K′, U ′)l = f((K′, U ′)best)

end
findCombination = yes;
while findCombination = yes and B < Bmax do

(K′′, U ′′) = (K′, U ′), markk = 0, ∀k = 1, ..., |K′′|+ 1;
candidate list = ∅;
for (K′, U ′)l ∈M do

if markk = 0 and markk′ = 0 then
add (K′, U ′)l into candidate list, replace route k in (K′′, U ′′) with the route k in
(K′, U ′)l, and replace route k′ in (K′′, U ′′) with the route k′ in (K′, U ′)l,
markk = 1, and markk′ = 1;

end

end
evaluate objective function value f(K′′, U ′′) of (K′′, U ′′);

if f(K′′, U ′′) < f((K′, U ′)best) then
(K′, U ′)best = (K′′, U ′′), f((K′, U ′)best) = f(K′′, U ′′)

end
if (K′′, U ′′) /∈ σ then

(K′, U ′) = (K′′, U ′′);
add (K′′, U ′′) to σ;
findCombination = no;
for ∀k = 1, ..., |K′′|+ 1 do

scorek = scorek +markk
end

else
find the last (K′, U ′)l in candidate list, and remove it from M ;
if M = ∅ then

findCombination = no, h = h+ 1
end

end

end

end

end
Go to Stage 2 (See Algorithm 20)

end

Return (K′, U ′)best, f((K′, U ′)best)

Algorithm 19: STSVN for Ride-sharing
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Stage 2 of STSVN for Ride-sharing
diversification = yes;
while diversification = yes and B < Bmax do

find the minimum scorek, k = 1, ..., |K| and record the corresponding route as kmin;
remove all nodes (except driver’s origin and destination) from route kmin;
find the customers’ origins based on the sequence of these nodes, and find the customers’ destinations
based on the sequence of these nodes;
find the last customer’s origin b′r based on the sequence and find this customer’s destination w′

r;
re-insert b′r and w′

r into route kmin, then add all the remaining origins after w′
r, and add all the

remaining destinations after all the origins based on the sequence;
evaluate the modified (K′, U ′);
update scorek,∀k = 1, ..., |K′|+ 1 based on Equation 4.1, then update scorekmin

of route kmin using
Equation 4.2;
evaluate objective function value f(K′, U ′) of (K′, U ′);

if f(K′, U ′) < f((K′, U ′)best) then
(K′, U ′)best = (K′, U ′), f((K′, U ′)best) = f(K′, U ′)

end
if (K′, U ′) /∈ σ then

add (K′, U ′) to σ, diversification = no
end

end
Go to Stage 1

Algorithm 20: Stage 2 of STSVN for Ride-sharing

72



Chapter 5

Results

In this chapter, there are three main sections. In Section 5.1, numerical results from several

examples are presented, out of which we try to derive insights for disaster relief routing.

In Section 5.2, numerical results for ride-sharing are presented while the comparison of two

algorithms (TS and STSVN) is shown in Section 5.3.

5.1 Results for Disaster Relief Routing

In this section, numerical results from several examples are shown to derive insights for

disaster relief routing in terms of models, objective functions, and uncertainty. First, two

simple examples adopted from Campbell et al. (2008a) are used to illustrate how different

objective functions can influence the solutions for both base models and robust counterparts,

and another example adopted from Huang et al. (2012) to show the difference between the

CVRP and the SDVRP, especially from the relief routing perspective. For the large-scale

examples, the CVRP instances from Augerat et al. (1998) and Christofides and Eilon (1969),

and SDVRP instance from Chen et al. (2007, 2016) are used. The results of these examples

confirm that the SDVRP models can provide more flexible solutions for relief routing when

the demands from nodes are relatively large.

5.1.1 Simple Examples

Three small examples are used in this section, which are shown in Figure 5.1. In these

examples, the capacity of a vehicle is set to six. For the robust counterparts, we use the

symmetric parameters, i.e., t̂ij = t̂ji (t̂01 = 100, t̂02 = 3, t̂03 = 5, t̂12 = 4, t̂13 = 11, and
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t̂23 = 8). In addition, q̂i = 1, ∀i ∈ N . The commercial solver, Gurobi, is used to solve the

problems.

The results are shown in Table 5.1–5.2. Here, the performance of an optimal solution

compared to the other objectives are addressed, for which the abbreviations are used for the

total number of vehicles needed (TV), total travel time (TT), summation of arrival times

(SA), latest arrival time (LA), and summation of demand-weighted arrival times (DA). For

example, the optimal solution of CVRP-minV (minimizing the number of vehicles deployed)

in Example 1 is one vehicle deployed with the route (0,3,1,2,0), and this solution is evaluated

with the other objectives (22 for TT, 22 for SA, 14 for LA, and 52 for DA) as shown in

Table 5.1. In Example 1 and Example 2, the minV optimal solution is one vehicle deployed

for both CVRP and SDVRP and we fix this (|K| = 1) when we solve the models with other

objective functions such as minT, minS, minL, and minD. We note based on results that

minS and minL objectives ensure quick deliveries at the potential expense of total travel

time, which is usually desirable in disaster management. The minD considers the summation

of demand-weighted arrival times, the optimal solutions of which do not necessarily provide

good SA (summation of arrival times) and LA (latest arrival time) outcomes. Likewise, the

minS and minL optimal solutions do not necessarily provide good solutions for each other.

In terms of the robust counterparts, t̂01 = t̂10 = 100 are relatively very large, which

implies that arc (0, 1) may no longer functions properly in the aftermath of a disaster.

From Table 5.1, the results show that edges (0, 1) and (1, 0) are not selected in the solutions

of the RCVRP and the RSDVRP for minT. For minS, minL, and minD, edge (0, 1) is still

excluded in the solutions, but edge (1, 0) can be selected because it does not influence the

arrival time at the nodes (except the depot).

Example 3 results are shown in Table 5.2, from which we point out several observations.

In this example, the CVRP requires at least three vehicles to provide a feasible solution,

while the SDVRP requires as small as two vehicles (i.e., for given |K| = 2, a feasible

solution can be obtained.) because a node is allowed to be served by more than one vehicle.

Therefore, vehicles can cooperate with each other to meet the demand. If three vehicles are

available in the SDVRP, i.e., |K| = 3, the optimal number of vehicles deployed depends on

the objectives: two vehicles are deployed in SDVRP-minT while three vehicles are deployed
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Figure 5.1: Simple Examples

Table 5.1: Results of Example 1 and Example 2

Base Model

Example 1 Example 2

Model Route TT SA LA DA Route TT SA LA DA

CVRP-minV 0,3,1,2,0 22 22 14 52 0,2,3,1,0 20 31 16 51
CVRP-minT 0,1,2,3,0 20 30 18 68 0,1,2,3,0 13 19 10 39
CVRP-minS 0,1,3,2,0 22 22 14 56 0,1,2,3,0 13 19 10 39
CVRP-minL 0,1,3,2,0 22 22 14 56 0,3,2,1,0 13 20 9 39
CVRP-minD 0,3,2,1,0 20 30 18 52 0,3,2,1,0 13 20 9 39

SDVRP-minT 0,1,2,3,0 20 30 18 68 0,3,2,1,0 13 20 9 39
SDVRP-minS 0,1,3,2,0 22 22 14 56 0,1,2,3,0 13 19 10 39
SDVRP-minL 0,3,1,2,0 22 22 14 52 0,3,2,1,0 13 20 9 39
SDVRP-minD 0,3,2,1,0 20 30 18 52 0,3,2,1,0 13 20 9 39

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

Example 1 Example 2

Model Route TT SA LA DA Route TT SA LA DA

RCVRP-minV 0,2,1,3,0 45 72 38 204 0,2,1,3,0 38 51 30 148
RCVRP-minT 0,3,1,2,0 45 63 34 201 0,2,1,3,0 38 51 30 148
RCVRP-minS 0,3,1,2,0 45 63 34 201 0,2,1,3,0 38 51 30 148
RCVRP-minL 0,3,1,2,0 45 63 34 201 0,3,2,1,0 130 55 26 160
RCVRP-minD 0,3,2,1,0 137 65 35 183 0,2,1,3,0 38 51 30 148

RSDVRP-minT 0,2,1,3,0 45 72 38 204 0,3,1,2,0 38 63 30 194
RSDVRP-minS 0,3,1,2,0 45 63 34 201 0,2,1,3,0 38 51 30 148
RSDVRP-minL 0,3,1,2,0 45 63 34 201 0,3,2,1,0 130 55 26 160
RSDVRP-minD 0,3,2,1,0 137 65 35 183 0,2,1,3,0 38 51 30 148

in minS, minL, and minD.

The second group in the bottom of Table 5.2 shows the robust counterpart results of

Example 3 where we set t̂ij and q̂i at their maximum values. Unlike the SDVRP, RSDVRP

now requires at least three vehicles due to the increased demand from realized uncertainty.
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Table 5.2: Results of Example 3

Base Model

Model Routes TV TT SA LA DA

|K| = 3 CVRP-minV [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minT [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minS [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minL [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minD [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56

|K| = 2 SDVRP-minT [0,2,1,0], [0,2,3,0] 2 27 25 11 84
SDVRP-minS [0,3,2,0], [0,2,1,0] 2 27 25 11 80
SDVRP-minL [0,2,1,0], [0,3,1,0] 2 34 30 11 76
SDVRP-minD [0,2,1,0], [0,3,1,0] 2 34 30 11 76

|K| = 3 SDVRP-minT [0,2,1,0], [0,2,3,0] 2 27 25 11 84
SDVRP-minS [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
SDVRP-minL [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
SDVRP-minD [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

Model Routes TV TT SA LA DA

|K| = 3 RCVRP-minV [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minT [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minS [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minL [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minD [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610

|K| = 3 RSDVRP-minT [0,2,0], [0,2,1,3,0], [0,3,1,2,0] 3 104 142 38 237
RSDVRP-minS [0,3,0], [0,2,0], [0,2,1,0] 3 156 41 18 170
RSDVRP-minL [0,2,1,0], [0,2,3,0], [0,2,0] 3 164 56 18 210
RSDVRP-minD [0,3,0], [0,2,0], [0,2,1,0] 3 156 41 18 170

It is clear from Table 5.2 that the optimal solutions of RSDVRP models can avoid using

edge (0, 1) having t̂01 = 100 by visiting nodes 2 and 3 more than once, while RCVRP has no

such capability (the CVRP and RCVRP optimal routes are the same) resulting in the great

increase in the objective function values. This is an exemplary case showing the SDVRP

and its robust counterpart can be much more effective and useful in disaster relief routing

by providing more flexibility.

5.1.2 Large Examples

While using small and simple examples to illustrate the difference across CVRP, SDVRP,

and their robust counterparts especially from the disaster relief routing perspective, larger

CVRP examples are taken from Augerat et al. (1998) and Christofides and Eilon (1969), and

SDVRP example from Chen et al. (2007, 2016) in this section to derive further managerial
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insights. In particular, examples named A− n32− k5 (Augerat et al., 1998), A− n38− k5

(Augerat et al., 1998), A−n44−k6 (Augerat et al., 1998), A−n55−k9 (Augerat et al., 1998),

A−n69−k9 (Augerat et al., 1998), E−n76−k14 (Christofides and Eilon, 1969), A−n80−k10

(Augerat et al., 1998), E − n101 − k8 (Christofides and Eilon, 1969), E − n101 − k14

(Christofides and Eilon, 1969), and SD2 (Chen et al., 2007, 2016) are used. The number of

nodes in these examples are 32, 38, 44, 55, 69, 76, 80, 101, 101, and 17, respectively.

Table 5.3: CVRP and SDVRP Results: A− n32− k5

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 5 865 3228 228 44154 5 784 3257 231 39164
CVRP-minS 5 976 2213 126 28775 5 975 2192 126 28451
CVRP-minL 5 1032 2555 134 32147 5 964 2571 131 35862
CVRP-minD 5 957 2382 157 28567 5 975 2306 164 28109

SDVRP-minT 5 796 2799 200 36272 5 796 2807 174 34516
SDVRP-minS 5 923 2226 134 28489 5 975 2192 126 28451
SDVRP-minL 5 1011 2635 138 33896 5 988 2584 130 34465
SDVRP-minD 5 938 2233 135 27921 5 938 2233 135 27921

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 5 1070 3530 226 47546 5 1058 3802 255 53259
RCVRP-minS 5 1178 2994 188 41322 5 1206 2943 186 40495
RCVRP-minL 5 1317 3798 215 54047 5 1304 3316 173 46389
RCVRP-minD 5 1184 3144 200 40563 5 1182 3130 206 39745

RSDVRP-minT 5 1032 3738 250 48645 5 1051 3469 244 47172
RSDVRP-minS 5 1189 2999 174 41048 5 1162 2950 196 41631
RSDVRP-minL 5 1257 3220 169 43929 5 1185 3192 164 43909
RSDVRP-minD 5 1240 3148 205 40192 5 1189 3117 206 39230

For these examples, heuristic algorithms, TS and STSVN presented in Chapter 4, are

used to obtain near-optimal solutions within the given time limit, respectively. The capacity

of each vehicle for A− n32− k5, A− n38− k5, A− n44− k6, A− n55− k9, A− n69− k9,

E−n76−k14, and A−n80−k10 is set to 100 while the one for E−n101−k8 is set to 200

and the one for E − n101 − k14 is set to 112. For each example, the deterministic models

and robust models of CVRP-minT, CVRP-minS, CVRP-L, CVRP-minD, SDVRP-minT,

SDVRP-minS, SDVRP-minL, and SDVRP-minD are solved. Note that CVRP-minV and

SDVRP-minV are not discussed for these examples because many solutions are the optimal
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Table 5.4: CVRP and SDVRP Results: A− n38− k5

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 5 733 2798 155 35153 5 735 2664 157 31980
CVRP-minS 5 856 2138 152 27363 5 825 2084 152 26867
CVRP-minL 5 1000 3479 172 43657 5 806 2506 116 33302
CVRP-minD 5 876 2488 164 29925 5 856 2244 158 25978
SDVRP-minT 5 745 2846 162 35410 5 734 2651 192 30843
SDVRP-minS 5 884 2259 156 30493 5 850 2192 132 29028
SDVRP-minL 5 909 2764 129 35571 5 893 2664 123 34512
SDVRP-minD 5 832 2382 141 27837 5 872 2262 153 26609

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 6 1088 3623 221 49686 6 1066 3538 221 46459
RCVRP-minS 6 1222 3005 166 40731 6 1220 2921 155 40953
RCVRP-minL 6 1547 4749 230 66234 6 1344 3538 162 48933
RCVRP-minD 6 1242 3217 187 39911 6 1274 3116 169 38874
RSDVRP-minT 6 1108 3653 223 45675 6 1104 3745 196 46295
RSDVRP-minS 6 1225 2934 161 40416 6 1241 2943 159 39620
RSDVRP-minL 6 1253 3228 147 43612 6 1253 3208 143 42603
RSDVRP-minD 6 1293 3236 174 40110 6 1247 3147 166 38080

(a) A− n32− k5 (b) A− n44− k6

Figure 5.2: Robust Model Results of minT with ΓT

solutions for these two objective functions in large examples and these solutions can be easily

obtained from insertion algorithms. For the examples with number of nodes less than 100,

we set the CPU time limit = 3000 seconds for solving each model with an objective. For the

examples with number of nodes more than 100, we set CPU time limit = 6000 seconds for

solving each model with an objective. For the robust counterpart parameters, we randomly
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Table 5.5: CVRP and SDVRP Results: A− n44− k6

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 6 993 3508 189 43566 6 937 3322 164 45299
CVRP-minS 6 1166 2741 159 36311 6 1097 2579 158 33117
CVRP-minL 6 1178 3911 194 54150 6 1196 3412 140 44700
CVRP-minD 6 1251 2841 182 34595 6 1121 2687 145 33083
SDVRP-minT 6 959 3316 197 41292 6 937 3896 227 48273
SDVRP-minS 6 1102 2723 146 35355 6 1051 2578 122 32504
SDVRP-minL 6 1201 3496 140 45812 6 1099 2877 118 38112
SDVRP-minD 6 1136 2806 161 34116 6 1148 2940 137 33183

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 7 1354 4588 221 63910 7 1308 3937 203 53028
RCVRP-minS 7 1514 3414 154 47851 7 1454 3406 151 48160
RCVRP-minL 7 1606 5079 299 69953 7 1608 3963 160 55412
RCVRP-minD 7 1524 3535 161 47331 7 1499 3553 161 46734
RSDVRP-minT 7 1315 4507 257 58171 7 1310 4511 221 58275
RSDVRP-minS 7 1590 3500 166 50124 7 1500 3418 165 47431
RSDVRP-minL 7 1619 3875 160 54103 7 1573 3810 149 52556
RSDVRP-minD 7 1560 3547 165 48105 7 1494 3553 161 46738

(a) A− n32− k5, |K| = 5 (b) A− n44− k6, |K| = 7

Figure 5.3: Robust Model Results of minD with ΓQ

generate t̂ij following U (0, 20) where U represents the uniform distribution, and set q̂i = 1.

The results of these examples are summarized in Tables 5.3 – 5.11. As the solutions are

obtained by heuristic algorithms TS and STSVN within limited time, the solutions are

not always optimal solutions. In this section, the analyses of results focus on the insights

for disaster relief routing in terms of models, objective functions, and uncertainty. The
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Table 5.6: CVRP and SDVRP Results: A− n55− k9

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 9 1112 3877 193 55748 9 1074 3453 120 53545
CVRP-minS 9 1237 2743 105 42322 9 1241 2639 149 43040
CVRP-minL 9 1363 3780 133 60968 9 1367 3095 102 49670
CVRP-minD 9 1286 2767 129 41685 9 1220 2662 98 41278
SDVRP-minT 9 1103 3580 144 52587 9 1073 3451 118 51112
SDVRP-minS 9 1193 2647 92 42859 9 1194 2619 94 42042
SDVRP-minL 9 1270 3087 101 48473 9 1264 3255 97 47120
SDVRP-minD 9 1308 2833 112 40963 9 1295 2833 121 41838

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 10 1591 4613 182 72182 10 1562 4597 209 74335
RCVRP-minS 10 1783 3915 151 67387 10 1836 3856 146 65647
RCVRP-minL 10 2053 5796 240 93173 10 2014 4941 152 77687
RCVRP-minD 10 1888 4140 143 64352 10 1886 4013 150 60937
RSDVRP-minT 10 1588 4606 227 73412 10 1542 4479 189 73755
RSDVRP-minS 10 1856 3882 143 64911 10 1720 3790 135 63788
RSDVRP-minL 10 1795 4197 132 71536 10 1829 4342 130 77650
RSDVRP-minD 10 1823 4150 147 61546 10 1743 4064 145 61743

performance of heuristic algorithms TS and STSVN are compared in the third section in

this chapter.

The impacts of CVRP and SDVRP models with the same objective function are evalu-

ated and summarized in Table 5.12. For the sake of convenience, the objective function value

of a solution from CVRP with objective function b is denoted by b(CV RP ) and the objective

function value of a solution from SDVRP with objective function b is denoted by b(SDV RP ).

For the same example, the difference between b(CV RP ) and b(SDV RP ) is computed as

b(CV RP )− b(SDV RP ), which is represented by Diff in Table 5.12. The percentage of the

difference between b(CV RP ) and b(SDV RP ) is computed as b(CV RP )−b(SDV RP )
b(CV RP ) , which

is represented by % in Table 5.12. Based on the results summarized in Table 5.12, the

SDVRP results are on average better than the ones of CVRP with respect to objective

function values. The solutions obtained from TS show larger difference between CVRP and

SDVRP models, while the solutions obtained from STSVN show smaller difference between

CVRP and SDVRP models. These results arise from the limitation of heuristics and the
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Table 5.7: CVRP and SDVRP Results: A− n69− k9

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 9 1168 4879 176 58623 9 1169 4846 189 57087
CVRP-minS 9 1286 3663 106 43773 9 1288 3732 118 46977
CVRP-minL 9 1621 5346 154 66643 9 1701 5865 150 71341
CVRP-minD 9 1329 3822 133 44372 9 1291 3817 116 42226
SDVRP-minT 9 1174 4562 156 57358 9 1199 4749 172 60032
SDVRP-minS 9 1293 3668 114 46930 9 1297 3708 134 45882
SDVRP-minL 9 1567 5400 136 62234 9 1567 5430 134 59100
SDVRP-minD 9 1380 4033 131 44550 9 1305 3938 124 43411

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 10 1820 6913 206 89400 10 1779 6381 188 86597
RCVRP-minS 10 2044 5793 181 78672 10 2022 5681 199 77425
RCVRP-minL 10 2316 8300 293 107556 10 2351 7778 189 105796
RCVRP-minD 10 2105 6240 207 71211 10 2122 6282 182 71759
RSDVRP-minT 10 1824 7296 231 91244 10 1786 7038 209 89559
RSDVRP-minS 10 2071 5891 174 76173 10 2045 5707 171 76698
RSDVRP-minL 10 2183 7683 191 95166 10 2245 7873 185 96868
RSDVRP-minD 10 2224 6628 224 72124 10 2048 5933 176 70197

characteristics of the example (not intended to compare the SDVRP vs CVRP).

Figure 5.2 shows how the total travel time increases as the degree of robustness, which

can be adjusted by changing ΓT values, increases. As more arcs are subject to uncertain

travel times with larger ΓT , more realized t̂ij ’s are considered, resulting in more robust

solutions with increased travel times. For the solutions obtained using TS, the RSDVRP

results are up to 11% (10% on average) smaller than those of the RCVRP in A−n32− k5,

up to 5% (1% on average) smaller in A−n44−k6. For the solutions obtained using STSVN,

there is no significant difference between the RSDVRP results and the RCVRP results in

A− n32− k5 and A− n44− k6.

Figure 5.3 shows how the summation of demand-weighted arrival times (DA) increases as

the degree of robustness, which can be adjusted by changing ΓQ values, increases. As more

nodes are subject to uncertain demand with larger ΓQ, more realized q̂i’s are considered,

resulting in more robust solutions with increased demands. As shown in Figure 5.3, the

solutions obtained from STSVN are better than the ones from TS in terms of DA. For
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Table 5.8: CVRP and SDVRP Results: E − n76− k14

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 14 1072 2897 79 51903 14 1046 2968 98 53002
CVRP-minS 14 1230 2125 62 37681 14 1194 2041 62 35924
CVRP-minL 14 1292 3230 107 56525 14 1405 3077 82 55770
CVRP-minD 14 1216 2185 66 36762 14 1193 2117 55 35998
SDVRP-minT 14 1057 3187 93 51573 14 1046 2922 103 49462
SDVRP-minS 14 1191 2327 70 41821 14 1193 2353 70 40447
SDVRP-minL 14 1156 3173 81 50320 14 1513 4691 91 64855
SDVRP-minD 14 1205 2453 68 40026 14 1328 2731 91 39670

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 15 1722 4567 130 83115 15 1678 4223 129 78037
RCVRP-minS 15 1862 3609 117 67041 15 1723 3503 100 64980
RCVRP-minL 15 2051 5074 152 96307 15 2056 5372 120 98943
RCVRP-minD 15 1963 3922 121 66665 15 1780 3598 95 62143
RSDVRP-minT 15 1669 4867 179 75618 15 1589 4412 133 76235
RSDVRP-minS 15 1837 3580 110 66570 15 1801 3622 106 67572
RSDVRP-minL 15 1966 4822 121 77023 15 2102 5531 114 85854
RSDVRP-minD 15 1894 3926 110 64322 15 1889 3799 106 64308

example A−n32−k5, the number of vehicles used (TV) is the same as TV from deterministic

model. Using the same TV, DA increases 1.83%, 4.53%, 7.97% when ΓQ = 10, 20, 30 for the

solutions obtained from STSVN. For example A − n44 − k6, the number of vehicles used

(TV) is set as seven in Figure 5.3. Using the same TV, DA increases 1.88%, 4.56%, 6.61%,

and 8.47% when ΓQ = 10, 20, 30, and 40 for the solutions obtained from STSVN. As show

in Table 5.5, more realized q̂i’s are considered in the model, the TV is expected to increase

to ensure the feasibility of the solutions.

To show how the solutions of the SDVRP are influenced by different objective functions

and different values of ΓT and ΓQ, a benchmark instance of the SDVRP called SD2 in Chen

et al. (2007, 2016) is used in this section, where there are 16 customer nodes and 1 depot.

The capacity of each vehicle is set to 100. The demand from each customer is set to 60 for

the nodes having an odd number index and 90 for the ones with an even number index. If

this benchmark instance is considered as CVRP, then there is only one feasible solution:

each customer node is served by one vehicle and the number of vehicles needed is 16 for all
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Table 5.9: CVRP and SDVRP Results: A− n80− k10

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 10 1931 8344 226 94622 10 1791 7318 219 80443
CVRP-minS 10 2249 6509 157 73868 10 2214 6048 135 68488
CVRP-minL 10 2262 8406 181 97686 10 2288 8356 169 96144
CVRP-minD 10 2232 6299 171 68617 10 2148 6211 143 67696
SDVRP-minT 10 1850 8005 199 86300 10 1776 7526 182 91620
SDVRP-minS 10 2116 6672 211 76687 10 2168 6160 141 69221
SDVRP-minL 10 2171 8058 160 85178 10 2232 8327 172 87103
SDVRP-minD 10 2183 6703 175 68801 10 2185 6140 142 67365

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 11 2601 10038 271 131795 11 2569 9823 262 119681
RCVRP-minS 11 2943 8293 190 101292 11 2848 8153 184 99998
RCVRP-minL 11 3236 11177 246 146671 11 3190 10086 215 129589
RCVRP-minD 11 3128 8897 225 102904 11 3001 8428 209 96504
RSDVRP-minT 11 2524 10713 314 123318 11 2593 10784 299 127272
RSDVRP-minS 11 3042 8783 212 108314 11 2991 8298 202 101999
RSDVRP-minL 11 3106 10311 200 116203 11 3141 11325 209 131987
RSDVRP-minD 11 3068 9935 284 103769 11 3027 8604 205 98117

objectives. If this benchmark instance is considered as SDVRP, then the minimum number

of vehicles needed can be reduced to as small as 12, depending on the objectives. As shown

in Table 5.13, the optimal solutions for the different objectives in the SDVRP are better

than or equal to those of corresponding CVRP.

The optimal solution of SDVRP-minV for SD2 is 12 vehicles while the CVRP-minV

optimal solution is 16. That is, it needs at least 12 vehicles to find a feasible solution for

SDVRP and 16 vehicles for CVRP. Accordingly, we consider two scenarios for SDVRP-

minS, -minL, and -minD: scenario 1 with 12 available vehicles and scenario 2 with 16

available vehicles. Other than the number of available vehicles, the two scenarios are the

same. For each scenario, the impacts of different robust parameter values for ΓT and

ΓQ on different objective functions are evaluated and the metrics (TT, SA, LA, DA) are

computed for each obtained solution. For the sake of convenience, an optimal solution

for objective function b, number of available vehicles |K|, and robust parameter ΓT is

denoted by R(b, |K|,ΓT ). In addition, R(b, |K|,ΓT ) evaluated with respect to TT, SA, LA,
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Table 5.10: CVRP and SDVRP Results: E − n101− k8

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 8 939 6329 150 88313 8 823 5223 130 74013
CVRP-minS 8 1061 5091 158 76397 8 1063 4683 110 69136
CVRP-minL 8 1176 6194 123 88814 8 1176 6194 123 88814
CVRP-minD 8 1122 5165 149 75669 8 1101 4916 139 67114
SDVRP-minT 8 884 5057 140 76529 8 848 5250 119 76532
SDVRP-minS 8 1043 4569 135 67462 8 954 4252 115 62619
SDVRP-minL 8 1100 5405 128 79524 8 1060 6133 122 88272
SDVRP-minD 8 984 4682 134 64764 8 1009 4388 111 59304

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 8 1594 10093 244 155502 8 1590 10095 234 152899
RCVRP-minS 8 1732 9367 204 147389 8 1758 8849 203 138941
RCVRP-minL 8 1849 11598 217 180870 8 1849 11598 217 180870
RCVRP-minD 8 2050 10025 295 135054 8 1892 9305 221 123905
RSDVRP-minT 8 1532 8760 230 133472 8 1520 9013 287 139502
RSDVRP-minS 8 1693 7953 206 123040 8 1666 7741 183 120723
RSDVRP-minL 8 1740 9182 206 140480 8 1921 11476 209 180572
RSDVRP-minD 8 1711 8650 222 119206 8 1697 8346 186 113103

and DA are denoted by TT(b, |K|,ΓT ), SA(b, |K|,ΓT ), LA(b, |K|,ΓT ), and DA(b, |K|,ΓT ),

respectively. Using R(b, |K|, 0) as the reference, the percentage of the difference between

R(b, |K|, 0) and R(b, |K|,ΓT ),ΓT > 0 for TT is computed as follows.

p(TT, b, |K|,ΓT ) =
TT(b, |K|,ΓT )− TT(b, |K|, 0)

TT(b, |K|, 0)
× 100 (5.1)

Likewise, we define p(SA, b, |K|,ΓT ), p(LA, b, |K|,ΓT ), and p(DA, b, |K|,ΓT ) in the same

fashion.

The scenario 1 results are shown in Figure 5.4. For the minT objective (shown in the

upper left), TT increases when ΓT increases as expected. The SA, LA, and DA results vary

as they are not directly relevant to minT but LA (latest arrival time) increases abrubtly at

ΓT = 4, implying that the minT objective may not be suitable for relief routing purposes

even for SDVRP if travel time uncertainty is considered. For minS (shown in the upper

right), SA, LA, and DA remain the same values when ΓT = 0, ..., 4. SA increases up to

8.9% as ΓT increases. For minL (shown in the bottom left), LA remains the same value
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Table 5.11: CVRP and SDVRP Results: E − n101− k14

Base Model

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

CVRP-minT 14 1163 4296 90 59881 14 1157 4615 116 64854
CVRP-minS 14 1400 3720 107 57649 14 1296 3055 73 45323
CVRP-minL 14 1500 4852 101 70081 14 1599 5007 99 73076
CVRP-minD 14 1440 3810 102 50224 14 1351 3460 84 45483
SDVRP-minT 14 1165 4272 129 60758 14 1119 4554 99 62353
SDVRP-minS 14 1272 3386 74 49379 14 1264 3128 68 45625
SDVRP-minL 14 1288 4415 108 58601 14 1414 4987 119 65413
SDVRP-minD 14 1348 3786 123 48929 14 1322 3311 82 43726

Robust Counterpart, Worst Case (t̂ij and q̂i at their max values)

TS STSVN

Model TV TT SA LA DA TV TT SA LA DA

RCVRP-minT 15 2207 7419 196 116564 15 1934 6964 172 102808
RCVRP-minS 15 2148 5528 118 82725 15 2016 5332 118 81794
RCVRP-minL 15 2207 7419 196 116564 15 2412 7396 151 113604
RCVRP-minD 15 2315 6120 140 84993 15 2089 5656 123 77374
RSDVRP-minT 15 1880 6178 133 90715 15 1824 5952 137 91902
RSDVRP-minS 15 2046 5373 120 82458 15 2093 5056 125 78960
RSDVRP-minL 15 2206 6786 129 94314 15 2274 6919 143 93269
RSDVRP-minD 15 2161 6034 148 80335 15 2034 5481 112 76513

when ΓT = 0, ..., 8. LA increases 7.5% when ΓT = 10, and then remains the same value

when ΓT = 10, ..., 16. TT, SA, and DA vary as ΓT increases but they all remain within 10%

range, which implies that the minL objective provides overall effective solution for all the

metrics for this particular example. Interestingly, TT and SA at ΓT = 2 are less than the

ones at ΓT = 0, respectively. For minD (shown in the bottom right), SA and LA increase

up to 8%, and decrease significantly at some ΓT values, e.g., at ΓT = 6, 8. In scenario 1

where 12 vehicles are available, all feasible solutions utilize the full capacity of vehicles,

which implies that no feasible solution can be found with ΓQ > 0.

The scenario 2 SDVRP results are shown in Figure 5.5. For minT objective (upper

left), the optimal solutions obtained with various ΓT are the same as the ones in scenario 1,

which implies that the number of available vehicles does not influence the minT objective

in this example. For minS, minL, and minD, the increased number of available vehicles can

be used to reduce the delivery time. For minS (upper right), SA increases up to 5%, and

SA, LA, and DA remain the same when ΓT = 0, ..., 4. However, there is an abrupt increase
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Table 5.12: Comparison of CVRP and SDVRP Models

Base Model Robust Counterpart, Worst Case

TS STSVN TS STSVN

Diff % Diff % Diff % Diff %

A− n32− k5 minT 69 7.98 -12 -1.53 38 3.55 7 0.66
minS -13 -0.59 0 0.00 -5 -0.17 -7 -0.24
minL -4 -2.99 1 0.76 46 21.40 9 5.20
minD 646 2.26 188 0.67 371 0.91 515 1.30

A− n38− k5 minT -12 -1.64 1 0.14 -20 -1.84 -38 -3.56
minS -121 -5.66 -108 -5.18 71 2.36 -22 -0.75
minL 43 25.00 -7 -6.03 83 36.09 19 11.73
minD 2088 6.98 -631 -2.43 -199 -0.50 794 2.04

A− n44− k6 minT 34 3.42 0 0.00 39 2.88 -2 -0.15
minS 18 0.66 1 0.04 -86 -2.52 -12 -0.35
minL 54 27.84 22 15.71 139 46.49 11 6.88
minD 479 1.38 -100 -0.30 -774 -1.64 -4 -0.01

A− n55− k9 minT 9 0.81 1 0.09 3 0.19 20 1.28
minS 96 3.50 20 0.76 33 0.84 66 1.71
minL 32 24.06 5 4.90 108 45.00 22 14.47
minD 722 1.73 -560 -1.36 2806 4.36 -806 -1.32

A− n69− k9 minT -6 -0.51 -30 -2.57 -4 -0.22 -7 -0.39
minS -5 -0.14 24 0.64 -98 -1.69 -26 -0.46
minL 18 11.69 16 10.67 102 34.81 4 2.12
minD -178 -0.40 -1185 -2.81 -913 -1.28 1562 2.18

E − n76− k14 minT 15 1.40 0 0.00 53 3.08 89 5.30
minS -202 -9.51 -312 -15.29 29 0.80 -119 -3.40
minL 26 24.30 -9 -10.98 31 20.39 6 5.00
minD -3264 -8.88 -3672 -10.20 2343 3.51 -2165 -3.48

A− n80− k10 minT 81 4.19 15 0.84 77 2.96 -24 -0.93
minS -163 -2.50 -112 -1.85 -490 -5.91 -145 -1.78
minL 21 11.60 -3 -1.78 46 18.70 6 2.79
minD -184 -0.27 331 0.49 -865 -0.84 -1613 -1.67

E − n101− k8 minT 55 5.86 -25 -3.04 62 3.89 70 4.40
minS 522 10.25 431 9.20 1414 15.10 1108 12.52
minL -5 -4.07 1 0.81 11 5.07 8 3.69
minD 10905 14.41 7810 11.64 15848 11.73 10802 8.72

E − n101− k14 minT -2 -0.17 38 3.28 327 14.82 110 5.69
minS 334 8.98 -73 -2.39 155 2.80 276 5.18
minL -7 -6.93 -20 -20.20 67 34.18 8 5.30
minD 1295 2.58 1757 3.86 4658 5.48 861 1.11

Average 372.11 4.35 105.64 -0.65 708.50 9.02 316.19 2.52

of LA after ΓT = 6. For minL (bottom left), LA does not increase until ΓT = 10, and has

the same increased value of 7.5% for ΓT = 12, ..., 16. SA decreases up to 17% with different

values of ΓT , which indicates that minL objective may not provide good solutions for the
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Table 5.13: Results of SD2 in CVRP and SDVRP

Base Model

Model TV TT SA LA DA

CVRP (all objective functions) 16 800 400 40 30000
SDVRP-minT 12 708.28 788.28 50 35131.2
SDVRP-minS 16 800 400 40 30000
SDVRP-minL 14 920 700 40 30000
SDVRP-minD 14 920 700 40 30000

Figure 5.4: Scenario 1 Results for Various ΓT

SA metric. The minD results (bottom right) show that DA increase very little even for

ΓT = 16, which is consistent with scenario 1 results.

In scenario 2, feasible solutions can be found even when ΓQ > 0 (implying larger realized

demand) due to the increased number of vehicles available. Figure 5.6 summarizes how the

metrics change as ΓQ increases for SDVRP-minT, -minS, -minL, and -minD, which shows

that TT, SA, LA are not sensitive to ΓQ because only travel time is considered in such

metrics. As expected, DA increases (up to 10%) as ΓQ increases for minS, minL, and

min D but, interestingly, not for minT (as shown in the upper left corner of Figure 5.6).
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Figure 5.5: Scenario 2 Results for Various ΓT

This again implies that the traditional minT objective does not provide good solutions for

humanitarian relief related metrics such as SA, LA, and DA.

In summary, SDVRP is a better choice than CVRP in terms of the metrics for hu-

manitarian relief vehicle routing, especially when the demand of a node is relatively large

compared with the vehicle capacity.

5.2 Results for Ride-sharing

In this section, the numerical results of several examples from Augerat et al. (1998) and

Christofides and Eilon (1969) are used to derive insights for ride-sharing in terms of the

influence of different parameters and uncertain travel time on the solution obtained from the

models. First, example E−n22−k4 from Christofides and Eilon (1969) is used to illustrate

how maximum travel time that a driver is willing to spend (tk), maximum customer requests

that a driver is willing to serve (mk), number of available seats in a vehicle (Ck), time window

parameters (ebr , lbr , ewr
, lwr

, ebk , lbk , ewk
, lwk

) influence the matching and routing decisions
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Figure 5.6: Scenario 2 Results for Various ΓQ

for ride-sharing. Then different examples are used to show how the objective value changes

in solutions as the degree of uncertainty, Γk, increases in the robust counterpart. Here

Γk represents, for each driver k, the number of arcs subject to uncertainty. Therefore, if

Γ1 = 3, it implies that driver 1 will face up to 3 arcs that are subject to uncertainty during

his/her course from home to the destination. If Γk = 0,∀k, then the problem will become

deterministic (same as the nominal case). If we allow greater Γk, then there will be more

arcs with a delay. Consequently, the objective function value will increase. For the larger

sizes of examples, heuristic algorithms, TS and STSVN presented in Chapter 4, are used to

obtain near-optimal solutions within the given time limit, respectively. In this section, the

analyses of results focus on the insights for ride-sharing in terms of the influence of different

parameters. The performance of heuristic algorithms TS and STSVN for ride-sharing are

compared in Section 5.3. The benchmark instances used in this section are summarized in

Table 5.14. For each benchmark instance, the coordinates of the nodes are used to calculate

the travel distance between each pair of nodes (in the unit of kilometers), then let the
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nominal travel time, t̄ij , be the same as travel distance by assuming the average vehicle

speed is fixed as 60 km/hour (Then, it takes 1 minute to travel 1 kilometer.) for the sake

of simplicity. The capacity of each vehicle (excluding driver seat) is 4. In each example,

the origins and destinations of drivers and riders are different. The parameters used in this

section are corresponding to the ride-sharing models in Section 3.2.1. For an example with

number of drivers |K| and number of customer requests |R|, the origin of driver k is node k,

the destination of driver k is node k+ |K|, the origin of customer request r is node r+2|K|,

the destination of customer request r is node r + 2|K| + |R|. In this scenario, pr = 1000,

ebr = 0, lbr = 1000, ewr
= 0, lwr

= 1000,∀r ∈ R. qr = 2, when r = 1, 2, 3. qr = 1, when

r = 4, ..., |R|. For drivers, Ck = 4, mk = 4, tk = 1000, ebk = 0, lbk = 1000, ewk
= 0,

lwk
= 1000,∀k ∈ K. The coefficient f to convert travel time into travel cost is assumed to

be 1.

Table 5.14: Number of Drivers and Customer Requests in Examples

Example Number of nodes |K| |R|
E − n22− k4 22 4 7
A− n32− k5 32 5 11
A− n36− k5 36 5 13
A− n44− k6 44 6 16
A− n48− k7 48 6 18
A− n54− k7 54 7 20
A− n60− k9 60 9 21
A− n64− k9 64 9 23
E − n76− k7 76 10 28
A− n80− k10 80 10 30

To illustrate how different maximum travel time that a driver is willing to spend (tk),

maximum customer requests that a driver is willing to serve (mk), number of available seats

in a vehicle (Ck), time window parameters (ebr , lbr , ewr
, lwr

, ebk , lbk , ewk
, lwk

) influence the

matching and routing decisions, example E − n22− k4 is used. In this example, there are

four drivers and seven customer requests. The origins of drivers are 1, 2, 3, 4, respectively.

The destinations of drivers are 5, 6, 7, 8, respectively. The origins of customer requests are 9,

10, 11, 12, 13, 14, 15, respectively. The destinations of customer requests are 16, 17, 18, 19,

20, 21, 22, respectively. For the size of example E−n22−k4, it is better to solve the model

directly using Gurobi because the solution is an optimal solution with a very short CPU
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time. Eleven combinations of parameters values are used to test example E−n22− k4 and

the corresponding optimal solutions are compared to illustrate how parameters influence the

matching and routing decisions, as shown in Table 5.15 and Figure 5.7. Setting 1 provides

the maximum flexibility for matching and routing, as the range of time windows are large,

mk = 4, Ck = 4, tk = 1000. In setting 1, all customer requests can be served by the

drivers and the objective function value is only travel cost. In setting 2, tk = 100, ∀k ∈ K,

which indicate that drivers are not willing to spend too much travel time during their trips.

In setting 2, six customer requests are not served due to limited travel time that drivers

are willing to spend and the objective function value increases for the cost of unserved

customers. In setting 3, when tk = 1000, k = 3, 4, six customer requests can be served by

drivers 3 and 4, and the objective function value decreases. Compared with setting 1, each

driver only want to serve at most two customer requests during his/her trip in setting 4. In

setting 4, travel cost increases compared with the travel cost in setting 1. In setting 5, when

mk = 4, k = 3, 4, the solution is more similar to the solution in setting 1. Similarly, the

objective function value increases in setting 6 and 7 due to the limited number of available

seats. Setting 8 – 11 show that the narrow range of time windows for departure and arrival

will increase the number of unserved customers in different levels.
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Table 5.15: Results for Example E − n22− k4 with Different Settings

Setting ebr lbr lwr ebk lbk lwk Ck mk tk Obj Solution
1 0 1000 1000 0 1000 1000 4 4 1000 428 [1,11,13,15,18,22,20,5],[2,6],

[3,10,17,7],[4,9,12,14,21,19,16,8]
2 0 1000 1000 0 1000 1000 4 4 100 6173 [1,5],[2,6],

[3,7],[4,9,16,8]
3 0 1000 1000 0 1000 1000 4 4 tk = 100, k = 1, 2 1373 [1,5],[2,6],

t3 = 1000 [3,10,13,15,22,20,17,7],
t4 = 1000 [4,9,12,14,21,19,16,8]

4 0 1000 1000 0 1000 1000 4 2 1000 505 [1,13,15,22,20,5],[2,9,16,6],
[3,10,11,18,17,7],[4,12,14,21,19,8]

5 0 1000 1000 0 1000 1000 4 mk = 2, k = 1, 2 1000 435 [1,13,15,22,20,5],[2,6],
m3 = 4 [3,10,11,18,17,7],
m4 = 4 [4,9,12,14,21,19,16,8]

6 0 1000 1000 0 1000 1000 2 4 1000 1473 [1,13,15,22,20,5],[2,9,16,6],
[3,10,17,7],[4,12,14,21,19,8]

7 0 1000 1000 0 1000 1000 Ck = 2, k = 1, 2 4 1000 435 [1,13,15,22,20,5],[2,6],
C3 = 4 [3,10,11,18,17,7],
C4 = 4 [4,9,12,14,21,19,16,8]

8 0 1000 1000 50 70 1000 4 4 1000 1473 [1,13,15,22,20,5],[2,9,16,6],
[3,10,17,7],[4,12,14,21,19,8]

9 50 70 1000 0 1000 1000 4 4 1000 1473 [1,13,15,22,20,5],[2,9,16,6],
[3,10,17,7],[4,12,14,21,19,8]

10 0 1000 1000 0 1000 100 4 4 1000 6173 [1,5],[2,6],
[3,7],[4,9,16,8]

11 0 1000 70 0 1000 1000 4 4 1000 2452 [1,13,15,22,20,5],[2,9,16,6],
[3,10,17,7],[4,11,18,8]
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Figure 5.7: Results for Example E − n22− k4 with Different Settings

For example E−n22− k4, it is better to solve the model directly using Gurobi because

the solution is an optimal solution with a very short CPU time. The result is reasonable
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as the size of this example is small. However, when solving the model with larger example

such as A − n36 − k5, Gurobi fails to provide the solution after 56600 seconds. For the

larger examples, the heuristic algorithms proposed in Chapter 4 are used. The benchmark

instances summarized in Table 5.14 are used to show how the objective value changes in

solutions as the degree of uncertainty, Γk, increases in the robust counterpart. For each

example, the CPU time limit = 3000 seconds for solving each model. For the robust

counterpart parameters, we randomly generate t̂ij following U (0, 20) where U represents

the uniform distribution. The results of these examples are summarized in Tables 5.16 –

5.25. As the solutions are obtained by heuristic algorithms TS and STSVN within limited

time, the solutions are not always optimal solutions. In this section, the analyses of results

focus on how the objective value changes in solutions as the degree of uncertainty, Γk,

increases in the robust counterpart.

For the sake of convenience, the objective function value of a solution with Γk is denoted

by b(Γk). For the same example, the difference between b(Γk) and b(Γ0) is computed as

b(Γk) − b(Γ0), which is represented by Diff in Tables 5.16 – 5.25. The percentage of the

difference between b(Γk) and b(Γ0) is computed as b(Γk)−b(Γ0)
b(Γ0) , which is represented by % in

Tables 5.16 – 5.25. When Γk = 1, the expected travel cost (related to travel time) increases

3.41% – 19.49% in these examples. When Γk = 2, the expected travel cost (related to

travel time) increases 14.9% – 26.39% in these examples. Similarly, when the degree of

uncertainty, Γk, increases in the robust counterpart, the expected travel cost (related to

travel time) increases in these examples.

Table 5.16: Results for Example E − n22− k4 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 449 0 0.00 437 0 0.00
1 507 58 12.92 498 61 13.96
2 550 101 22.49 540 103 23.57
3 562 113 25.17 552 115 26.32
4 567 118 26.28 556 119 27.23
5 571 122 27.17 560 123 28.15
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Table 5.17: Results for Example A− n32− k5 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 838 0 0.00 838 0 0.00
1 921 83 9.90 921 83 9.90
2 974 136 16.23 974 136 16.23
3 1017 179 21.36 1014 176 21.00
4 1033 195 23.27 1033 195 23.27
5 1046 208 24.82 1046 208 24.82

Table 5.18: Results for Example A− n36− k5 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 917 0 0.00 933 0 0.00
1 1057 140 15.27 1016 83 8.90
2 1117 200 21.81 1072 139 14.90
3 1163 246 26.83 1114 181 19.40
4 1206 289 31.52 1150 217 23.26
5 1238 321 35.01 1175 242 25.94

Table 5.19: Results for Example A− n44− k6 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1043 0 0.00 939 0 0.00
1 1163 120 11.51 1064 125 13.31
2 1224 181 17.35 1127 188 20.02
3 1283 240 23.01 1193 254 27.05
4 1326 283 27.13 1235 296 31.52
5 1356 313 30.01 1258 319 33.97

Table 5.20: Results for Example A− n48− k7 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1046 0 0.00 1045 0 0.00
1 1158 112 10.71 1145 100 9.57
2 1322 276 26.39 1248 203 19.43
3 1338 292 27.92 1312 267 25.55
4 1438 392 37.48 1339 294 28.13
5 1471 425 40.63 1383 338 32.34

5.3 Results for Comparison of TS and STSVN

In this section, the performance of TS and STSVN are compared in terms of solving CVRP,

SDVRP, and ride-sharing models in this dissertation, respectively. The performance of TS
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Table 5.21: Results for Example A− n54− k7 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1376 0 0.00 1126 0 0.00
1 1501 125 9.08 1317 191 16.96
2 1589 213 15.48 1345 219 19.45
3 1669 293 21.29 1416 290 25.75
4 1735 359 26.09 1479 353 31.35
5 1789 413 30.01 1485 359 31.88

Table 5.22: Results for Example A− n60− k9 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1310 0 0.00 1239 0 0.00
1 1457 147 11.22 1454 215 17.35
2 1545 235 17.94 1467 228 18.40
3 1617 307 23.44 1562 323 26.07
4 1683 373 28.47 1701 462 37.29
5 1705 395 30.15 1672 433 34.95

Table 5.23: Results for Example A− n64− k9 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1334 0 0.00 1169 0 0.00
1 1594 260 19.49 1296 127 10.86
2 1686 352 26.39 1462 293 25.06
3 1763 429 32.16 1468 299 25.58
4 1822 488 36.58 1525 356 30.45
5 1869 535 40.10 1527 358 30.62

Table 5.24: Results for Example E − n76− k7 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1197 0 0.00 1137 0 0.00
1 1340 143 11.95 1263 126 11.08
2 1415 218 18.21 1327 190 16.71
3 1539 342 28.57 1454 317 27.88
4 1596 399 33.33 1447 310 27.26
5 1636 439 36.68 1581 444 39.05

and STSVN are compared based on the objective function values of the obtained best-so-far

solutions within the same given CPU time.

The objective function value of a solution provided by TS is denoted by b(TS) and the
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Table 5.25: Results for Example A− n80− k10 with Different Γk

TS STSVN

Γk Obj Diff % Obj Diff %

0 1725 0 0.00 1762 0 0.00
1 1923 198 11.48 1822 60 3.41
2 2096 371 21.51 2054 292 16.57
3 2119 394 22.84 2129 367 20.83
4 2248 523 30.32 2198 436 24.74
5 2191 466 27.01 2182 420 23.84

objective function value of a solution provided by STSVN is denoted by b(STSV N). For

the same example, the difference between b(TS) and b(STSV N) is computed as b(TS) −

b(STSV N), which is represented by Diff in Tables 5.26 – 5.29. The percentage of the differ-

ence between b(TS) and b(STSV N) is computed as b(TS)−b(STSV N)
b(TS) , which is represented

by % in Tables 5.26 – 5.29. For the examples of CVRP and SDVRP models, the objective

function value of the obtained best-so-far solutions are summarized in Tables 5.26 – 5.29.

As shown in Tables 5.26 – 5.29, the objective function values of the obtained best-so-far

solutions by STSVN are on average 5.02% less than the ones by TS. Let a case represent

solving a model with a specific objective function for an example. In Tables 5.26 – 5.29,

there are total 144 cases. In 121 cases, the objective function values of the obtained best-

so-far solutions by STSVN are up to 46.49% (6.28% on average) less than the ones by TS.

In 4 cases, the objective function values of the obtained best-so-far solutions by STSVN

are the same as the ones by TS. In 19 cases, the objective function values of the obtained

best-so-far solutions by STSVN are 3.3% on average more than the ones by TS.

After the simple comparison, the statistical tests are implemented for CVRP and SD-

VRP results. As shown in Tables 5.26 – 5.29, TS and STSVN provide the results for 144

cases, respectively. First, the normality tests (Massey Jr, 1951) are implemented for the

data of TS and the data of STSVN, respectively. As shown in Figures 5.8 and 5.9, the

data of TS and the data of STSVN do not follow a normal distribution. Therefore, the

Wilcoxon-Mann-Whitney test (Fay and Proschan, 2010) is used to test whether the ob-

jective function value provided by TS is statistically different from the one provided by

STSVN. The Wilcoxon-Mann-Whitney test is suitable for these data because two groups of

data are compared (Fay and Proschan, 2010). These two groups of data are independent
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Table 5.26: Comparison of TS and STSVN for CVRP and SDVRP Models, Part 1

Example Model TS-obj STSVN-obj Diff %

A− n32− k5 CVRP-minT 865 784 81 9.36
CVRP-minS 2213 2192 21 0.95
CVRP-minL 134 131 3 2.24
CVRP-minD 28567 28109 458 1.60
SDVRP-minT 796 796 0 0.00
SDVRP-minS 2226 2192 34 1.53
SDVRP-minL 138 130 8 5.80
SDVRP-minD 27921 27921 0 0.00
RCVRP-minT 1070 1058 12 1.12
RCVRP-minS 2994 2943 51 1.70
RCVRP-minL 215 173 42 19.53
RCVRP-minD 40563 39745 818 2.02
RSDVRP-minT 1032 1051 -19 -1.84
RSDVRP-minS 2999 2950 49 1.63
RSDVRP-minL 169 164 5 2.96
RSDVRP-minD 40192 39230 962 2.39

A− n38− k5 CVRP-minT 733 735 -2 -0.27
CVRP-minS 2138 2084 54 2.53
CVRP-minL 172 116 56 32.56
CVRP-minD 29925 25978 3947 13.19
SDVRP-minT 745 734 11 1.48
SDVRP-minS 2259 2192 67 2.97
SDVRP-minL 129 123 6 4.65
SDVRP-minD 27837 26609 1228 4.41
RCVRP-minT 1088 1066 22 2.02
RCVRP-minS 3005 2921 84 2.80
RCVRP-minL 230 162 68 29.57
RCVRP-minD 39911 38874 1037 2.60
RSDVRP-minT 1108 1104 4 0.36
RSDVRP-minS 2934 2943 -9 -0.31
RSDVRP-minL 147 143 4 2.72
RSDVRP-minD 40110 38080 2030 5.06

A− n44− k6 CVRP-minT 993 937 56 5.64
CVRP-minS 2741 2579 162 5.91
CVRP-minL 194 140 54 27.84
CVRP-minD 34595 33083 1512 4.37
SDVRP-minT 959 937 22 2.29
SDVRP-minS 2723 2578 145 5.33
SDVRP-minL 140 118 22 15.71
SDVRP-minD 34116 33183 933 2.73

and not normally distributed (Fay and Proschan, 2010). For these data, the p-value =

0.69 (> 0.05) in the Wilcoxon-Mann-Whitney test. Since p-value is greater than 0.05, we
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Table 5.27: Comparison of TS and STSVN for CVRP and SDVRP Models, Part 2

Example Model TS-obj STSVN-obj Diff %

A− n44− k6 RCVRP-minT 1354 1308 46 3.40
RCVRP-minS 3414 3406 8 0.23
RCVRP-minL 299 160 139 46.49
RCVRP-minD 47331 46734 597 1.26
RSDVRP-minT 1315 1310 5 0.38
RSDVRP-minS 3500 3418 82 2.34
RSDVRP-minL 160 149 11 6.88
RSDVRP-minD 48105 46738 1367 2.84

A− n55− k9 CVRP-minT 1112 1074 38 3.42
CVRP-minS 2743 2639 104 3.79
CVRP-minL 133 102 31 23.31
CVRP-minD 41685 41278 407 0.98
SDVRP-minT 1103 1073 30 2.72
SDVRP-minS 2647 2619 28 1.06
SDVRP-minL 101 97 4 3.96
SDVRP-minD 40963 41838 -875 -2.14
RCVRP-minT 1591 1562 29 1.82
RCVRP-minS 3915 3856 59 1.51
RCVRP-minL 240 152 88 36.67
RCVRP-minD 64352 60937 3415 5.31
RSDVRP-minT 1588 1542 46 2.90
RSDVRP-minS 3882 3790 92 2.37
RSDVRP-minL 132 130 2 1.52
RSDVRP-minD 61546 61743 -197 -0.32

A− n69− k9 CVRP-minT 1168 1169 -1 -0.09
CVRP-minS 3663 3732 -69 -1.88
CVRP-minL 154 150 4 2.60
CVRP-minD 44372 42226 2146 4.84
SDVRP-minT 1174 1199 -25 -2.13
SDVRP-minS 3668 3708 -40 -1.09
SDVRP-minL 136 134 2 1.47
SDVRP-minD 44550 43411 1139 2.56
RCVRP-minT 1820 1779 41 2.25
RCVRP-minS 5793 5681 112 1.93
RCVRP-minL 293 189 104 35.49
RCVRP-minD 71211 71759 -548 -0.77
RSDVRP-minT 1824 1786 38 2.08
RSDVRP-minS 5891 5707 184 3.12
RSDVRP-minL 191 185 6 3.14
RSDVRP-minD 72124 70197 1927 2.67

conclude that the objective function values between TS and STSVN are not significantly

different.
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Table 5.28: Comparison of TS and STSVN for CVRP and SDVRP Models, Part 3

Example Model TS-obj STSVN-obj Diff %

E − n76− k14 CVRP-minT 1072 1046 26 2.43
CVRP-minS 2125 2041 84 3.95
CVRP-minL 107 82 25 23.36
CVRP-minD 36762 35998 764 2.08
SDVRP-minT 1057 1046 11 1.04
SDVRP-minS 2327 2353 -26 -1.12
SDVRP-minL 81 91 -10 -12.35
SDVRP-minD 40026 39670 356 0.89
RCVRP-minT 1722 1678 44 2.56
RCVRP-minS 3609 3503 106 2.94
RCVRP-minL 152 120 32 21.05
RCVRP-minD 66665 62143 4522 6.78
RSDVRP-minT 1669 1589 80 4.79
RSDVRP-minS 3580 3622 -42 -1.17
RSDVRP-minL 121 114 7 5.79
RSDVRP-minD 64322 64308 14 0.02

A− n80− k10 CVRP-minT 1931 1791 140 7.25
CVRP-minS 6509 6048 461 7.08
CVRP-minL 181 169 12 6.63
CVRP-minD 68617 67696 921 1.34
SDVRP-minT 1850 1776 74 4.00
SDVRP-minS 6672 6160 512 7.67
SDVRP-minL 160 172 -12 -7.50
SDVRP-minD 68801 67365 1436 2.09
RCVRP-minT 2601 2569 32 1.23
RCVRP-minS 8293 8153 140 1.69
RCVRP-minL 246 215 31 12.60
RCVRP-minD 102904 96504 6400 6.22
RSDVRP-minT 2524 2593 -69 -2.73
RSDVRP-minS 8783 8298 485 5.52
RSDVRP-minL 200 209 -9 -4.50
RSDVRP-minD 103769 98117 5652 5.45

Based on these results, the performance of STSVN is on average better than the one

of TS for solving the CVRP and SDVRP models for these examples within the same CPU

time. However, the performance of STSVN is not significantly better than the one of TS

based on the Wilcoxon-Mann-Whitney test.

For the examples of ride-sharing models, the objective function value of the obtained

best-so-far solutions are summarized in Tables 5.30 – 5.39. As shown in Tables 5.30 – 5.39,

the objective function values of the obtained best-so-far solutions by STSVN are on average
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Table 5.29: Comparison of TS and STSVN for CVRP and SDVRP Models, Part 4

Example Model TS-obj STSVN-obj Diff %

E − n101− k8 CVRP-minT 939 823 116 12.35
CVRP-minS 5091 4683 408 8.01
CVRP-minL 123 123 0 0.00
CVRP-minD 75669 67114 8555 11.31
SDVRP-minT 884 848 36 4.07
SDVRP-minS 4569 4252 317 6.94
SDVRP-minL 128 122 6 4.69
SDVRP-minD 64764 59304 5460 8.43
RCVRP-minT 1594 1590 4 0.25
RCVRP-minS 9367 8849 518 5.53
RCVRP-minL 217 217 0 0.00
RCVRP-minD 135054 123905 11149 8.26
RSDVRP-minT 1532 1520 12 0.78
RSDVRP-minS 7953 7741 212 2.67
RSDVRP-minL 206 209 -3 -1.46
RSDVRP-minD 119206 113103 6103 5.12

E − n101− k14 CVRP-minT 1163 1157 6 0.52
CVRP-minS 3720 3055 665 17.88
CVRP-minL 101 99 2 1.98
CVRP-minD 50224 45483 4741 9.44
SDVRP-minT 1165 1119 46 3.95
SDVRP-minS 3386 3128 258 7.62
SDVRP-minL 108 119 -11 -10.19
SDVRP-minD 48929 43726 5203 10.63
RCVRP-minT 2207 1934 273 12.37
RCVRP-minS 5528 5332 196 3.55
RCVRP-minL 196 151 45 22.96
RCVRP-minD 84993 77374 7619 8.96
RSDVRP-minT 1880 1824 56 2.98
RSDVRP-minS 5373 5056 317 5.90
RSDVRP-minL 129 143 -14 -10.85
RSDVRP-minD 80335 76513 3822 4.76

Average 15961.39 15246.60 714.80 5.02

less than the ones by TS. In example E − n22 − k4, the objective function values of the

obtained best-so-far solutions by STSVN are up to 2.67% (1.99% on average) less than the

ones by TS. In example A−n32−k5, the objective function values of the obtained best-so-

far solutions by STSVN are up to 0.29% (0.05% on average) less than the ones by TS. In

example A−n36−k5, the objective function values of the obtained best-so-far solutions by

STSVN are up to 5.09% (3.35% on average) less than the ones by TS. In this example, the
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Figure 5.8: Normal Probability Plots for Disaster Relief Routing Results of TS

Figure 5.9: Normal Probability Plots for Disaster Relief Routing Results of STSVN

performance of TS is better than STSVN only when Γk = 0. For examples A − n44 − k6,

A− n48− k7, A− n54− k7, A− n64− k9, and E − n76− k7, the objective function values

of the obtained best-so-far solutions by STSVN are up to 9.97% (7.92% on average), 6.88%

(3.6% on average), 18.17% (15.45% on average), 18.70% (15.95% on average), 9.34% (5.87%

on average) less than the ones by TS, respectively. In example A− n60− k9, the objective

102



function values of the obtained best-so-far solutions by STSVN are up to 5.42% (2.49% on

average) less than the ones by TS. In this example, the performance of TS is better than

STSVN only when Γk = 4. In example A − n80 − k10, the objective function values of

the obtained best-so-far solutions by STSVN are up to 5.25% (1.21% on average) less than

the ones by TS. In this example, the performance of TS is better than STSVN only when

Γk = 0 and Γk = 3. Based on these results, the performance of STSVN is on average better

than the one of TS for solving the ride-sharing models for these examples within the same

CPU time.

Table 5.30: Comparison of TS and STSVN for Ride-sharing Models, E − n22− k4

Γk TS-obj STSVN-obj Diff %

0 449 437 12 2.67
1 507 498 9 1.78
2 550 540 10 1.82
3 562 552 10 1.78
4 567 556 11 1.94
5 571 560 11 1.93

Average 534 523 11 1.99

Table 5.31: Comparison of TS and STSVN for Ride-sharing Models, A− n32− k5

Γk TS-obj STSVN-obj Diff %

0 838 838 0 0
1 921 921 0 0
2 974 974 0 0
3 1017 1014 3 0.29
4 1033 1033 0 0
5 1046 1046 0 0

Average 972 971 0.5 0.05

Table 5.32: Comparison of TS and STSVN for Ride-sharing Models, A− n36− k5

Γk TS-obj STSVN-obj Diff %

0 917 933 -16 -1.74
1 1057 1016 41 3.88
2 1117 1072 45 4.03
3 1163 1114 49 4.21
4 1206 1150 56 4.64
5 1238 1175 63 5.09

Average 1116 1077 40 3.35

103



Table 5.33: Comparison of TS and STSVN for Ride-sharing Models, A− n44− k6

Γk TS-obj STSVN-obj Diff %

0 1043 939 104 9.97
1 1163 1064 99 8.51
2 1224 1127 97 7.92
3 1283 1193 90 7.01
4 1326 1235 91 6.86
5 1356 1258 98 7.23

Average 1233 1136 97 7.92

Table 5.34: Comparison of TS and STSVN for Ride-sharing Models, A− n48− k7

Γk TS-obj STSVN-obj Diff %

0 1046 1045 1 0.10
1 1158 1145 13 1.12
2 1322 1248 74 5.60
3 1338 1312 26 1.94
4 1438 1339 99 6.88
5 1471 1383 88 5.98

Average 1296 1245 50.2 3.60

Table 5.35: Comparison of TS and STSVN for Ride-sharing Models, A− n54− k7

Γk TS-obj STSVN-obj Diff %

0 1376 1126 250 18.17
1 1501 1317 184 12.26
2 1589 1345 244 15.36
3 1669 1416 253 15.16
4 1735 1479 256 14.76
5 1789 1485 304 16.99

Average 1610 1361 249 15.45

Table 5.36: Comparison of TS and STSVN for Ride-sharing Models, A− n60− k9

Γk TS-obj STSVN-obj Diff %

0 1310 1239 71 5.42
1 1457 1454 3 0.21
2 1545 1467 78 5.05
3 1617 1562 55 3.40
4 1683 1701 -18 -1.07
5 1705 1672 33 1.94

Average 1553 1516 37.0 2.49

After the simple comparison, the statistical tests are implemented for ride-sharing re-

sults. As shown in Tables 5.30 – 5.39, TS and STSVN provide the results for 60 cases,

respectively. First, the normality tests (Massey Jr, 1951) are implemented for the data of
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Table 5.37: Comparison of TS and STSVN for Ride-sharing Models, A− n64− k9

Γk TS-obj STSVN-obj Diff %

0 1334 1169 165 12.37
1 1594 1296 298 18.70
2 1686 1462 224 13.29
3 1763 1468 295 16.73
4 1822 1525 297 16.30
5 1869 1527 342 18.30

Average 1678 1408 270 15.95

Table 5.38: Comparison of TS and STSVN for Ride-sharing Models, E − n76− k7

Γk TS-obj STSVN-obj Diff %

0 1197 1137 60 5.01
1 1340 1263 77 5.75
2 1415 1327 88 6.22
3 1539 1454 85 5.52
4 1596 1447 149 9.34
5 1636 1581 55 3.36

Average 1454 1368 86 5.87

Table 5.39: Comparison of TS and STSVN for Ride-sharing Models, A− n80− k10

Γk TS-obj STSVN-obj Diff %

0 1725 1762 -37 -2.14
1 1923 1822 101 5.25
2 2096 2054 42 2.00
3 2119 2129 -10 -0.47
4 2248 2198 50 2.22
5 2191 2182 9 0.41

Average 2050 2025 26 1.21

TS and the data of STSVN, respectively. As shown in Figures 5.10 and 5.11, the data of

TS and the data of STSVN follow a normal distribution. Therefore, the Two Sample t-test

(Cressie and Whitford, 1986) is used to test whether the objective function value provided

by TS is statistically different from the one provided by STSVN for the ride-sharing results.

The Two Sample t-test is suitable for these data because two groups of data are compared

(Cressie and Whitford, 1986). These two groups of data are independent and approximately

follow a normal distribution (Cressie and Whitford, 1986). For these data, the p-value =

0.25 (> 0.05) in the Two Sample t-test. Since p-value is greater than 0.05, we conclude that

the objective function values between TS and STSVN are not significantly different for the
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ride-sharing results.

Based on these results, the performance of STSVN is on average better than the one

of TS for solving the ride-sharing models for these examples within the same CPU time.

However, the performance of STSVN is not significantly better than the one of TS based

on Two Sample t-test.

Figure 5.10: Normal Probability Plots for Ride-sharing Results of TS

Figure 5.11: Normal Probability Plots for Ride-sharing Results of STSVN
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Chapter 6

Conclusion and Future Work

In this dissertation, VRP and it variants are specifically considered in two applications:

disaster relief routing and ride-sharing. Based on the settings of each application, the VRP

based models are modified specifically.

In disaster relief routing, uncertain travel times and demands are considered when plan-

ning vehicle routes for delivering critical supplies to the affected population in need after a

disaster. In particular, a robust optimization approach is proposed for CVRP and SDVRP

to handle such uncertainty in an effective manner. In addition, CVRP and SDVRP are

examined for disaster relief routing purposes using different objective functions, which was

evaluated by five different metrics. The results of the examples presented that the impact

of uncertainty can be better mitigated in SDVRP than CVRP. The results indicated that

minS, minL, and minD objectives can provide better solutions for the route planning in

humanitarian relief routing, as these objectives can ensure faster deliveries to the people

in need. In addition, minT is more sensitive to the uncertainty of travel times than other

objective functions, while minD is more sensitive to the uncertainty of demands. The re-

sults also indicated that the SDVRP can provide more flexible solutions, especially when

the demands are relatively large: the SDVRP can better utilize the number of vehicles to

meet the demand and realize objectives. For minT, the SDVRP provides the solutions with

less vehicles required and minimizes the total travel time. For minS, minL, and minD, the

SDVRP provides the solutions to utilize all available vehicles to minimize the (summation

of, latest, and demand-weighted) arrival times. In the RCVRP and RSDVRP, more real-

ized increased travel times due to uncertainty are considered with larger ΓT , resulting in
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more robust solutions with increased total travel times. The results show that the increased

metric values can be within a reasonable range even for the most conservative cases (at the

biggest robust parameter values) in the SDVRP. The RSDVRP can avoid the arcs with

large uncertain travel time in the optimal (or near-optimal) solutions by visiting a node

multiple times from different arcs having less increased travel times, while RCVRP has no

such capability. In summary, the examples show that SDVRP outperforms CVRP both for

the base model and robust counterparts with respect to the metrics for humanitarian relief

vehicle routing, implying that SDVRP and RSDVRP can be more effective and useful in

disaster relief routing by providing more flexibility.

For the ride-sharing, a ride-sharing model is proposed to determine the optimal match

between drivers and riders and the optimal routes. A robust model is proposed to address

the travel time uncertainty. Different examples are used to derive insights for ride-sharing

in terms of the influence of different parameters and uncertain travel time on the solution

obtained from the models. The results show that flexibility of customer requests and drivers

will influence the matching and routing decisions. If drivers are not willing to spend too

much travel time during their trips, then less customer requests can be assigned to the

drivers and the cost due to the unserved customers increases. Similarly, if drivers only

want to serve a limited number of customer requests during his/her trip, the less customer

requests can be assigned to the drivers and the cost due to the unserved customers increases.

In addition, the narrow range of time windows for departure and arrival will increase the

number of unserved customers in different levels. The examples show that the expected

travel cost increases as the degree of uncertainty increases in the robust counterpart.

Small problems for these models can be solved by using the commercial packages such

as Gurobi and CPLEX. However, for large-scale problems, it is not practical to utilize the

solvers as the VRPs are NP-hard. Considering the settings of disaster relief routing and

dynamic ride-sharing, the routing decisions need to be made quickly, it is desirable to ob-

tain the near-optimal solutions in a relatively short period of time. Therefore, heuristic

approaches are used to solve the models. Insertion algorithms are specifically modified to

construct the initial solutions of CVRP, SDVRP, and ride-sharing models in this disserta-

tion. To solve the robust counterparts in the robust models, two algorithms are proposed
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to consider the increased demand and travel time due to the changes in robust parameters,

ΓQ and ΓT , in CVRP and SDVRP. In addition, an algorithms is proposed to consider the

increased travel time due to the changes in robust parameter, Γk, in ride-sharing. Tabu

search (TS) is used to search for optimal or near-optimal solutions. In addition, a new hy-

brid algorithm called scoring tabu search with variable neighborhood (STSVN) is proposed

to solve the models and compared with tabu search. The performance of TS and STSVN

are compared based on the objective function values of the obtained best-so-far solutions

within the same given CPU time. Based on the results, the performance of STSVN is on

average better than the one of TS for solving the CVRP, SDVRP, ride-sharing models for

the examples within the same CPU time.

The contribution of this dissertation is as follows. (1) The robust models of SDVRP are

proposed to consider travel time and demand uncertainty. (2) A robust model of ride-sharing

is proposed to consider uncertain travel time. (3) To solve the models, the insertion algo-

rithms are modified for SDVRP and ride-sharing problem. (4) Uncertain Demand Selection

Algorithm and Uncertain Travel Time Selection Algorithm are proposed to be integrated in

heuristic algorithms to solve the robust counterpart. (5) A new hybrid algorithm, STSVN,

is proposed to solve the models in disaster relief routing and ride-sharing problem efficiently

within the given CPU time. (6) The managerial insights are explored and provided for de-

cision making when considering CVRP, SDVRP, different objectives, and uncertainty in

disaster relief routing.

For the future work, the proposed robust models of CVRP and SDVRP can be extended

to include more types of uncertainty that exist in disaster relief routing such as loading

time and unloading time in each node. In this dissertation, the uncertain travel times

and demands are assumed to be independent, the scenario, in which travel time, demand,

loading time, and unloading time are correlated, is worth researching for the future work.

Furthermore, more constraints can be considered in the model, such as the maximum travel

distance/travel time for each vehicle and capacity constraint of heterogeneous vehicles. Since

the results have shown that the different objectives have different implications in disaster

relief routing, the study of multi-objective optimization can be another good research focus.

In terms of robust optimization, a statistical learning approach can be applied to better
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estimate the uncertainty sets, which will impact the quality of solutions. In terms of ride-

sharing, the future work can focus on how to increase the matching rate by increasing

the flexibility. As the performance of STSVN is better than TS in solving the models

in this dissertation, it would be good to apply STSVN in other optimization problems

and compare it with different algorithms. In addition, the comparison of different penalty

functions for infeasible solutions can be explored in the ride-sharing problem, which may

enhance exploring the good feasible solutions near the boundary of infeasible solutions.
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