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ABSTRACT 

THE SNS LOGISTICS NETWORK DESIGN: LOCATION 

AND VEHICLE ROUTING 

Yepeng Sun 

April 26, 2012 

Large-scale emergencies caused by earthquake, tornado, pandemic flu, terrorism attacks 

and so on can wreak havoc to communities. In order to mitigate the impact of the events, 

emergency stockpiles of food, water, medicine and other materials have been set up 

around the US to be delivered to the affected areas during relief operations. One type of 

stockpile is called the Strategic National Stockpile (SNS). The SNS logistics network is 

designed to have multiple stages of facilities, each of which is managed by different 

levels of governmental authorities - federal, state and local authorities. The design of a 

logistics network for delivery of the SNS materials within a state are explored in this 

dissertation. There are three major areas of focus in this dissertation: (1) the SNS facility 

location model, which is used to determine sites for locating Receiving, Staging and 

Storage (RSS) and Regional Distribution Nodes (RDNs) to form a logistics network to 
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deliver relief material to Points of Demand (PODs), where the materials are directly 

delivered to the affected population; (2) the SNS Vehicle Routing Problem (VRP), which 

is used to assist the SNS staff in determining the numbers of various types of trucks, and 

the routing schedules of each truck to develop an operational plan for delivering the 

required relief materials to the assigned PODs within the required duration; (3) the 

location-routing analysis of emergency scenarios, in which the facility location model 

and the VRP solution are integrated through the use of a computer program to run on 

several assumed emergency scenarios. 

Using real data from the department of public health in the Commonwealth of Kentucky, 

a transshipment and location model is formulated to determine the facility locations and 

the transshipment quantities of materials; a multiple-vehicle routing model allowing split 

deliveries and multiple routes per vehicle that must be completed within a required 

duration is formulated to determine the routing and scheduling of trucks. The facility 

location model is implemented using Microsoft Solver Foundation and C#. An algorithm 

combining the Clark and Wright saving algorithm and Simulated Annealing is designed 

and implemented in C# to solve the VRP. The algorithm can determine whether there is 

shortage of transportation capacity, and if so, how many of various types of trucks should 

be added for optimal performance. All the solution algorithms are integrated into a web­

based SNS planning tool. 

In the location-routing analysis of emergency scenarios, a binary location model and an 

algorithm for solving VRP solution are integrated as a computer program to forecast the 

feasibility of distribution plans and the numbers of required trucks of various types. The 
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model also compares the costs and benefits of direct and indirect shipment. A large-scale 

emergency scenario in which a specific type of vaccine is required to be delivered to the 

entire state of Kentucky is considered. The experiments are designed based on the real 

data provided by the Kentucky state government. Thus the experimental results provide 

valuable suggestions for future SNS preparedness planning. 
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CHAPTER 1 INTRODUCTION 

In this dissertation, two issues relevant to state-level SNS logistics network design 

including the location and assignment problem and the vehicle routing problem are 

investigated. The corresponding models and solution algorithms are developed. And 

these are implemented in an online, real-time decision support system using realistic 

input data provided by the Kentucky's Department of Public Health. The results can be 

analyzed to give practical advice to SNS logistics network design and deployment in the 

real world applications. 

The SNS logistics network is designed to efficiently and effectively distribute relief 

materials during large-scale emergencies. Large-scale emergencies include events such as 

earthquakes, tornadoes, pandemic outbreaks and bio-terrorism. These emergencies 

impact the population seriously in unpredictable ways, and often require a quick dispatch 

of a large amount of relief materials including medicine, food and other items such as 

power equipment, portable telecommunication equipment and mobile hospitals. The 

relief operations require an efficient utilization of the available resources such as 

warehouses and trucks. A decision support system that can assist decision makers to 

make resource allocation decisions in real-time during a large-scale emergency is needed. 
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In addition, the relief operations for large-scale emergencies require scientific 

preparedness plans to procure and pre-position sufficient resources before the occurrence 

of large-scale emergencies with respect to different scenarios. 

This dissertation focuses mainly on facility location problems and vehicle routing 

problems for large-scale emergency response. In Chapter 1, the motivation, background 

and the research problem are introduced. In Chapter 2, the relevant literature is reviewed. 

The SNS facility location model is presented in Chapter 3 and the SNS Vehicle Routing 

Model and the corresponding solution algorithm in Chapter 4. In Chapter 5, a binary 

location model and the SNS vehicle routing solution algorithm are integrated to analyze 

an assumed emergency scenarios and evaluate alternative operational plans. 

1.1 Background on Strategic National Stockpile 

Because the focus of our work is associated with the SNS, this section will introduce 

some background knowledge on SNS including its goals, organizational structure 

between federal, state and local levels and the relevant operations. The Centers for 

Disease Control and Prevention's (CDC) Strategic National Stockpile is one of the 

preparedness plans for dealing with large-scale emergencies. The SNS was established by 

the Department of Health and Human Services (HHS) and CDC in 1999. The CDC 

website states that "the SNS is a national repository of antibiotics, chemical antidotes, 

antitoxins, life-support medications, IV administration, airway maintenance supplies, and 

medical/surgical items. The SNS is designed to supplement and re-supply state and local 
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public health agencies in the event of a national emergency anywhere and at any time 

within the U.S. or its territories." [1] 

For fast and flexible response, SNS prepares two types of federal stockpiles [1]: 

• 12-hour Push Packages 

The 12-hour push packages are prepared stockpiles including pharmaceuticals, 

antidotes, and medical supplies, which are the first batch materials ready at 

any time to be delivered to the affected areas quickly to relieve the situation in 

a timely manner, as soon as the corresponding incident is identified by the 

relevant authorities. The push packages are stored in secure warehouses, 

whose locations are strategically determined for immediate deployment. The 

required time window for delivering the push packages from the federal level 

managed warehouse to the state level managed warehouses (i.e., RSSs) is 12 

hours. 

• Vendor Managed Inventory 

If the incident requires additional medical supplies, the vendor managed 

inventory (VMI) supplies will be delivered to the affected areas within 24 to 

36 hours. If the situation of the incident can be analyzed, the relief actions can 

be identified clearly, the items of the VMI can be configured to fit the specific 

needs of the incident. In this case, the VMI can be used as the first batch of 

materials delivered to the affected area instead of the 12-hour push package. 

3 



SNS units at the federal, state and local levels collaborate with each other to ensure that 

the supplies can be delivered to the area affected by a disaster or emergency to protect the 

public, as shown in Figure 1. The local health department is usually at the frontline and 

can recognize events, which could cause large-scale emergency situations leading to a 

quick exhaustion of local medical supplies. When this occurs, they will report the event 

and the corresponding need to the state level officers, and the officers from both local and 

state levels will assess the trend and determine if they should send a request to the CDC 

for obtaining SNS supplies. Once the CDC receives a request from the state authorities, 

the officials in the CDC will hold an electronic conference with the relevant state and 

local officials to assess the situation and determine if the SNS supplies should be 

delivered to the affected area. After the SNS stockpiles are delivered to the designated 

RSS sites at the state level, the authority to manage the SNS materiel will be transferred 

to the state and local authorities. State and local authorities will then begin to break down 

the supply packages, repackage them and distribute them to PODs or the affected areas. 

During the deployment of SNS stockpiles, the CDC will dispatch a Technical Advisory 

Response Unit (TARU) team to assist the state to receive the 12-hour push package or 

manage the RSS sites. 

Each state will develop its own plans or operating guidelines for dispensing the SNS 

medical supplies due to the transfer of authority of managing the SNS material. For 

example, the state of Rhode Island designs its own medical emergency distribution 

system to receive, store and dispense SNS packages as well as the state or private 

resources [2]. CDC issues a preparedness guideline [3] and an operational guideline [4] to 
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direct the state officials to develop a preparedness plan and execute the receiving, storing 

and distributing the SNS material. 

The research presented in this dissertation will be inspired mainly by the SNS logistics 

network design for Kentucky, but it can be extended to a general logistics network design 

for large-scale emergency response, and the knowledge accumulated from the project can 

be applied to similar projects of other states. 

StrategiC National S~OCkPile 
-:'\ 

I ~POD 

Feder,1 CDC , 
\ 
\ 
\ , 

\ 

State SNS,Authority 

\ , 
----

, 
/ 

, 

, 

, 

Local Health Department 

; 

:'I POD , 

- - - - Communication Channel 

~ •• - • . - •. - • ) Management Channel 

----+; Material Flow 

Figure 1. The operational structure of SNS. 
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1.2 A Real Time Decision Support System for Health Care and 

Public Health Sector Protection Project 

The research in this dissertation is funded and inspired by the Real Time Decision 

Support System for Health Care and Public Health Sector Protection Project [5] in the 

Real-time Decision Support System Lab at the Department of Industrial Engineering, 

University of Louisville. This lab is dedicated to "developing a real-time, decision­

support system (RTDSS) to help personnel in the healthcare and public health (HPH) as 

well as emergency services sectors (ESS) make real-time decisions relative to allocation 

and re-allocation of scarce resources in the aftermath of a pandemic influenza or other 

viral attack" [5]. Dr. Heragu, the Project Director, says "some studies indicate that up to 

40 percent of the population could be stricken and hospitals could be operating at 50% of 

their capacity during a pandemic attack. During a time of medical surge when we really 

need HPH as well as ESS personnel and equipment to be operating at full capacity, the 

challenge for planners is to allocate the few resources at their disposal in the most 

efficient manner in response to fast changing conditions on the ground so that a large 

number of people can be served in as short a time as possible. [5]" 

This research is a sub-project at this lab. Based on this research, we develop a two-stage 

decision support system as shown in Figure 2. In the first stage, the user provides the 

information of PODs, RDNs and RSSs, the location algorithm then determines open 

RDNs and RSSs as well as the assignment relationship between RSSs, RDNs and PODs 

to forms a logistics network. In the second stage, taking the result of the first stage as 
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input, the user provides the information of trucks, the routing algorithm then determines 

the routing of each truck at each open RSS or RDN. 

As another application of the research, we integrate the location and vehicle routing 

algorithms, and design various scenarios of large-scale emergencies with various delivery 

duration requirements and the demand using data provided by Kentucky' s Department of 

Public Health. Then we input those scenarios into the integrated algorithm, and analyze 

the cost and benefits of alternative operational plans. The results provide practical advice 

on the long-term SNS preparedness planning. 

Routing Algorithm 

Routing 
Construction 

Routing 
Improvement 

Figure 2. SNS decision support system for location and vehicle routing. 
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1.3 Problems 

In this dissertation, we are concerned with three problems including SNS facility location 

problem, SNS vehicle routing problem and the location-routing analysis for alternative 

large-scale emergency scenarios. 

Figure 3. The SNS decision process. 

Figure 3 shows the decision process associated with the state-level SNS operations. In the 

first phase of the process, once a large-scale emergency occurs in an area, the SNS 

authorities will analyze the potential effects or situation, and decide if the SNS packages 

should be delivered to the affected area. In the second phase, the SNS authoritie 

determine the PODs that must be open and the corresponding demand at those PODs 

according to the situational analysis performed in the first phase. In the third phase, the 

SNS authorities determine the open RSSs and RDNs and the assignment relationship 

between RSSs, RDNs and PODs by using the SNS facility location module of the SNS 

decision support system developed based on our model. In the fourth phase, based on the 
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results obtained from the previous phases, the SNS authorities schedule the routing of the 

trucks prepared for the relief operations by using the vehicle routing module of the SNS 

decision support system. The facility location decision making and the vehicle routing 

decision making could be an iterative process: sometimes the SNS authorities could 

change the location decisions and resolve the vehicle routing repeatedly, until they obtain 

satisfying solutions. 

In the SNS facility location problem, given the candidate locations of RSSs and RDNs, 

the open PODs and their demands, and the transportation cost between locations, we will 

answer the following questions in order to form a logistics network with minimum cost: 

(1) Which set of RSSs should be opened? 

(2) Which set of RDNs should be opened? 

(3) Which RDNs or RSS should each open POD be assigned to? Which RSS should 

an RDN be assigned to? If a POD is assigned to an RDN or RSS, then a truck 

starting off from that RDN or RSS will deliver a specific load of materials to that 

POD. The assignment of RDNs to RSSs has a similar meaning. 

(4) What quantity of materials should be transported from one site to another? The 

material is transported from RSSs to PODs either via the intermediate level RDNs 

or directly. 

In the SNS vehicle routing problem, given the locations of the depot and the served nodes, 

the delivery quantity of materials required by the served nodes, the data of trucks and the 

9 



required maximum delivery duration, we will answer the following questions to form 

routing schedules for trucks with the minimum delivery cost: 

(1) What is the visitation sequence of nodes for each truck? 

(2) How much material will be unloaded at each node from a truck in a route? 

(3) If the capacity of trucks cannot satisfy the delivery requirements (i.e., there is 

shortage of trucks), how many of various types of trucks must be procured in 

order to obtain the best performance? 

In the location-routing analysis of large-scale emergency scenarios, we will integrate a 

binary SNS facility location model and the SNS VRP solution algorithm as a software 

module, design different emergency scenarios in terms of the affected area, the required 

maximum delivery duration and the material demand as the inputs, and determine the 

best policies to select trucks and operate under various scenarios. The following 

questions should be answered: 

(1) How many trucks of various types are required for responding to a specific large­

scale emergency scenario? What types of trucks are preferred in terms of the size 

of trucks with respect to the specific scenarios? 

(2) There are two shipment modes including direct shipment and indirect shipment 

via RDNs for transporting materials from RSSs to PODs. Which shipment mode 

provides the best performance in terms of the responsiveness and the utilized 

resources? 
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Mathematical modeling techniques such as linear programming, mixed-integer 

programming or other more complex mathematical programming methodologies, will be 

applied to formulate and solve the above problems. Heuristic algorithms will be 

developed to provide fast solutions for the models. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter includes three sections. In Section 2.1, various types of facility location 

problems and associated models are reviewed. In Section 2.2, the vehicle routing 

problems relevant to this dissertation are reviewed. Various types of location-routing 

problems are reviewed in Section 2.3 in order to inspire the integration of facility location 

models and vehicle routing models. 

2.1 Literature Review on Facility Location Problem 

Facility location decisions are critical strategic elements in a logistics network. The high 

cost of location or relocation of facility sites requires logistics planners to make location 

decisions based on long-term considerations. Once the facilities are sited on some 

locations, the logistics planners expect the facilities to operate continuously for a long­

term period. Therefore, it is necessary to develop intelligent and effective approaches for 

solving facility location problems. In this section, a thorough literature review of facility 

location issues is done to evaluate the historical research work initiated by many 

researchers, in order to inspire our research work. First we summarize several review 

papers, and discuss the classification schemes; second we review the relevant papers 

grouped by: 

• Typical facility location problems; 
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• facility location problems for regular healthcare service or regular emergency 

response; 

• facility location problems for large-scale emergency response individually. 

Location problems are classified into three categories in [6]: static and deterministic 

location problems, dynamic location problems, and stochastic location problems. For 

static and deterministic location problems, three basic patterns of the problems including 

the P-median problem, the covering problem, the P-center problems, and their variants, 

are presented. For dynamic location problems, the relevant research considering frequent 

facility relocation and facility expansion over time, are reviewed. For stochastic location 

problems, the models considering travel time, supply and demand pattern and vehicles 

availability with stochastic characteristics are presented; the use of queuing theory to 

analyze location problems is also surveyed. Finally, several scenario planning models and 

the related regret-based model are introduced. 

A representative survey of major location problems is presented in [7]. This study briefly 

describes different types of location models that have been developed and indicates how 

they relate to each other. This paper develops a classification system of location problems 

in terms of their objectives, decision variables and system parameters. It also divides the 

solution techniques for location problems into exact solution approaches and heuristic 

solution approaches. 

A formal classification scheme for location models is introduced in [8]. This 

classification scheme is written as "Pos IlPos2/Pos31P0s41P0s5": Pos 1 represents the 
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information about the number and type of new facilities; Pos2 represents the type of the 

location model with respect to the decision space; Pos3 represents a description of 

particulars of the specific location model, such as information about the feasible solutions 

and capacity restrictions; Pos4 represents the relation between new and existing facilities; 

and Pos5 represents the description of the objective function. 

Some of the research which has contributed to the current state-of-the-art is reviewed in 

[9]. Location problems are categorized into three types: continuous location models, 

network location models and mixed-integer programming models. The latter two types of 

models actually are discrete optimization models. Discrete facility location models can be 

classified as: (1) single- vs. multi-stage models, (2) uncapacitated vs. capacitated models, 

(3) single- vs. multi-product models, (4) static vs. dynamic models, (5) deterministic vs. 

stochastic models, (6) models with and without routing options included, and (6) single­

vs. multi-objective models. 

Optimization approaches to deal with facility location problems under uncertainty are 

reviewed in [10]. Facility location problems under uncertainty are divided into two 

categories: stochastic facility location problems, in which the probability distribution of 

the uncertain inputs are known, and the common goal is to optimize the expected value of 

some objective function with a recourse; robust facility location problems, in which the 

probability distribution of uncertain inputs are unknown, and the objective is to optimize 

the performance of the facilities in the worst case. 
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Many location problems with inherently multi-objective natures are reviewed in [11]. But 

this paper does not review preference-based techniques such as those involving multi­

criteria utility analysis, analytical hierarchy process and so on. 

Because the purpose of this dissertation is to explore facility location planning problem 

for large-scale emergency response, the literature review will be classified into three 

groups: typical facility location problems, in which the general knowledge of facility 

location planning will be surveyed; the facility location problems for regular healthcare 

service or regular emergency response, in which the special considerations of facility 

location planning for regular healthcare service and emergency response will be 

investigated; and the facility location problems for large-scale emergency response, 

which is a target of this dissertation. 

2.1.1 Typical Facility Location Problems 

In this subsection, typical location problems will be reviewed to solidify our 

understanding of the knowledge in this field, and help us identify the characteristics of 

our problem. Instead of giving a restricted defined classification scheme, this subsection 

classifies the reviewed papers in terms of the issues that are concerned in the facility 

location problems, and it can help us answer the following questions: (1) Is the space in 

our problem continuous or discrete? (2) What kinds of objectives will our models seek? 

(3) What constraints must be considered in our model? (4) How many stages are there in 

the SNS logistics network? (5) How can the time-dynamic properties of our problem be 

incorporated? (6) What stochastic factors should be considered in our models? (7) How 
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do the facility location decisions, vehicle routing decisions and inventory control 

decisions affect each other? 

(1) Topology of Location Problems 

Facility location models are identified with different topological structures including 

continuous location models, hub connection models, discrete network models and so on, 

with respect to the corresponding topological characteristics of the facility and demand 

sites. 

Continuous location models are identified with two attributes in [9]: (1) The solution 

space is continuous, and any point on this space can be used to site facilities; (2) Distance 

is measured with a suitable metric such as Euclidean metric, lp-distance metric and so on. 

One of the simplest continuous location models is to determine the coordinates (x, y) of a 

newly added single facility to serve a set of known demand points on a plane. The model 

can be expressed as: 

where (ak, bk ) is the coordinate of demand point k, and Wk is the weight of the distance 

between the new facility and demand point k. 
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In [12] a continuous location model is introduced to solve the problem of selecting a 

location on a plane for a new facility which competes with other facilities so that it can 

maximize the market share. 

A hub is a special facility that serves as a central platform for switching, transshipping 

and sorting the materials between many facilities around it. Hub connection models are 

used to solve the problems concerned with locating hub facilities and allocating demand 

nodes to hubs in order to route the transportation between the nodes around hubs. A 

typical network hub location problem is that, given a network with n nodes in which the 

set of origins, destinations and potential hub locations are identified, given the amounts 

of material flow between origin-destination pairs, the cost measurement of flows on links 

in the network (cost, time, distance), and the hub-to-hub transportation discount factor a, 

the objective is to minimize the total cost, by determining the optimal locations of hubs 

and the transportation routes. A survey of hub connection models is provided in [13]. 

In discrete network models, the underlying network structure as well as the locations of 

the demand points to be served and the potential locations of service facilities are given. 

The problem is then to locate the facilities to optimize some objective, which is usually a 

function of distance (e.g., travel time or cost). In the corresponding mathematical models, 

two sets of binary variables are defined: one is to decide which facility is to be opened; 

the other is to define the assignment policies, answering which facility serves which 

demand point. A hub connection model is a specific case of a discrete network model. 

Many discrete network location models are reviewed in [14]. 
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The problem addressed in this dissertation is a discrete network location problem, in 

which a specific set of locations are selected from a set of identified candidate sites for 

locating RSSs or RDNs so as to satisfy the demand at PODs and improve the operational 

performance. 

(2) Objective of Facility Location Models 

Based on the objective functions, facility location models are categorized as three types: 

the p-median model, the covering model and the p-center model. There are two others as 

well: p-dispersion problem and the maxi sum location problem. 

The p-median model is introduced in [15] to find the location of p facilities and minimize 

the weighted total distance between demand points and the assigned facilities. Its 

objective function is usually expressed as minLi Lj hidijYij, where hi is the demand at 

point i, dij is the distance between demand point i and facility j, and Yij is a binary 

variable indicating whether facility j serves point i or not. In [16], a variant of p-median 

model is introduced to minimize the total fixed cost of open facilities and the 

transportation costs. Many metaheuristic approaches for solving p-median problems are 

surveyed in [17]. 

The Maximal Covering Location Models (MCLP) are examined with several applications 

in [18]. The MCLP [19]is developed to determine locations for siting facilities that would 

maximize the total demand population served by the facilities within a pre-specified 

maximal service distance or a required time window in [19]. The corresponding objective 
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function is usually expressed as maxLi aiYi, where aiis the demand of point i, and Yi is 

a binary variable indicating whether the facility is open or not . As the predecessor of 

M.C.L.P, the location set-covering problem [20] seeks to find the minimum number of 

facilities and their locations such that each demand point can be served within some pre­

specified maximal service distance or the required time window by a facility. 

The p-center model determines the locations of p facilities and minimizes the maximum 

distance between the demand points and their closest facilities [15]. Its objective function 

is expressed as min W, where W 2:: LjE] hidijYij for each i E I, hi is the demand at point 

i, dij is the distance between facility j and point i, and Yij indicates whether or not 

facility j is assigned to point i. In [21], a p-center problem in the continuous plane is 

introduced to determine the optimal locations of one or more additional facilities in a 

region with given demand points and one or more pre-existing facilities. 

In contrast to the p-center problem, the p-dispersion problem involves the maximization 

of the minimum distance between any pair of facilities [22], and this type of model can 

be applied when the facilities must be distributed widely. For example, the facilities must 

be sited to be far away from each other so that they can survive military attacks or 

earthquakes. 

In contrast to the p-median problem, the maxisum location problem involves the location 

of p facilities and maximizes the total weighted distance between the demand points and 

their corresponding assigned facilities [23]. This model can be applied to locate facilities 

such as prisons, power plants, waste repositories and so on. 
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The problem addressed in this dissertation is concerned with multiple objectives. The 

first concern is the coverage which is similar to MCLP. The identification of PODs has 

already considered the coverage of the population, and our model must consider the 

coverage of RSSs or RDNs on the selected PODs. The second concern is the time 

constraint which is similar to the p -center model: the logistics network design must 

guarantee that the medical supplies can be delivered from RSSs to each POD directly or 

via the corresponding RDNs within the required time window. The third concern is the 

total cost which usually consists of two parts including the total fixed cost of operating 

facilities at selected sites and the transportation costs corresponding to the assignment 

policies, and the corresponding mathematical models are usually similar to p-median 

models. The first two objectives might be re-formulated as constraints in our model, and 

the third objective would be formulated as the objective function. 

(3) Capacitated Models 

In most of the above models, there is a basic underlying assumption that the facilities 

being sited are uncapacitated. However, this assumption is not always realistic. Often 

there are some capacity limitations associated with the facilities such as production 

capacity, warehouse capacity, or availability of transportation vehicles. 

The capacitated form of the maximal covering location problem is examined in [24]. In 

the mathematical model, the capacity constraint is expressed as LiEf aiXij :::; Kj Vj E j, 

where I,j are the index sets of all demand points and potential facility sites respectively, 
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ai represents the demand at point i, Xij is a binary variable indicating whether or not 

facility j serves demand point i, and Kj represents the upper limit of capacity of facility j. 

Three types of capacity constraints might be considered in our problem: 

(1 ) Warehouse capacity 

The CDC requires an RSS warehouse to be approximately 12,000 square feet 

for receiving, storing, and repackaging a 12-hour Push Package or VMI 

materials [25]. An RDN warehouse might also have to satisfy some space 

requirements depending on the size of the service area to which it is assigned. 

However, if all the identified candidate sites have already satisfied the 

capacity requirements, we need not include capacity constraints into our 

mathematical models. 

(2) Transportation capacity 

A lesson learned from Rhode Island's drill exercise is that the transportation 

system might be a distribution bottleneck during a large-scale emergency due 

to the limited number of vehicles [2]. This study suggests that each site needs 

a dedicated vehicle fleet. If the transportation vehicles are scarce resources in 

the SNS distribution system, we do need to consider the capacity constraints 

of transportation and develop intelligent utilization policies of vehicles. 

Otherwise, we do not need consider it in our mathematical models. 

(3) Staffing 

The staffing level is another factor we may consider in our model, especially 

because during a pandemic outbreak the staffing level itself can be disrupted 
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due to the infection of staff. The staff includes medical workers at PODs, 

warehouse workers at RSSs and RDNs, the drivers of vehicles and other SNS 

on-site staff. 

(4) Multi-stage Models 

If the facilities are to distribute the items directly to the demand points, then the single­

stage model should be applied. If the facilities are to distribute the items to the demand 

points via several intermediate facilities, then a multi-stage model should be applied. 

A multi-stage logistics network consisting of multiple plants and multiple distribution 

centers is studied in [26]. In the logistics network, the items produced in plants are 

delivered to customers via intermediate distribution centers (DCs). The problem is to 

determine the subset of plants and DCs to form a logistics network that can satisfy all the 

capacity requirements and demands required by the customers with minimum cost. In the 

mathematical model, two sets of decision variables are defined: One set of variables are 

binary, defining the logistics network structure, indicating which facilities are open and 

specifying the assignment; the other set of variables are continuous, determining the 

quantity of items produced in plants, or shipped between facilities. Obviously the 

Kentucky SNS logistics network fits a multi-stage model. We must consider the stages 

from RSSs to RDNs and from RDNs to PODs in our mathematical models. 

(5) Dynamic Models 
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In static facility location models, it is assumed that once the facilities are sited, they will 

operate over a predetermined length of time. However, during this time, many of the 

model parameters, such as demands and operation costs, are likely to change. Therefore, 

dynamic facility location models are introduced, in which the sites of facilities change 

over time according to the changes of one or more of the input parameters. 

A simple dynamic location problem on a plane is introduced in [27], in which the 

location of a facility changes over several time periods, and the objective is to minimize 

the total cost including the transportation cost and the relocation cost. A dynamic 

programming algorithm is developed to solve the problem. 

A dynamic uncapacitated facility location problem is presented in [28], in which the 

opening of new facilities and the closing of existing facilities are executed over time, and 

its objective is to minimize the total costs including the cost of closing and opening 

facilities, operation costs, distribution costs so as to meet demands specified in different 

time periods at various customer locations. In [29], a similar problem is solved with a 

two-stage heuristic approach including a drop phase and a local search phase. 

(6) The Stochastic Model 

Dynamic models attempt to optimize facility location decisions over a specified time 

horizon. These dynamic models assume all the input parameters are static and 

deterministic; however, many parameters such as available resources, travel time, facility 
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costs, demand pattern and so on, are uncertain and dynamic. The stochastic models deal 

with uncertainties in the problems. 

A probabilistic facility location model for standard response coverage of fire protection is 

studied in [30]. The model accounts for the possibility that a vehicle may be busy serving 

a call when a new call arrives. The model assures a pre-specified level of reliability for 

the availability of services through a chance constraint instead of adding a penalty cost of 

failure to serve calls within the desired time in the objective function. 

A facility location problem with stochastic customer demand and immobile servers is 

studied in [31]. The approach represents service facilities as a set of simple MIMI 1 

queuing systems. In the model, the constraint that the customers travel to the closest open 

facility is enforced. Moreover, a constraint is placed on the maximum expected waiting 

time at each open facility. The problem is to select sites from a set of candidate facility 

locations to minimize customers' total traveling cost and waiting cost, while satisfying 

the above constraints. A greedy-dropping heuristic algorithm is used to give an initial 

solution. Then a Tabu search algorithm based on "facility swap" is used to refine the 

initial solution. 

According to [32], the problems with uncertainty are divided into 2 categories: problems 

with uncertainty which can be described by a probability distribution, and problems with 

uncertainty without a probability distribution. The former can be tackled by stochastic 

programming, whose common goal is to optimize the expected value of some objective 
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functions; the latter can be tackled by robust optimization, which attempts to optimize the 

performance of the system under the worst -case. 

Applying a stochastic programming technique requires a large amount of accurate data 

which can derive the probability distribution of the input parameters. It might be 

infeasible to collect the required data due to the unpredictable properties of large-scale 

emergencies. Thus we would adopt robust optimization to deal with uncertainties in our 

problem. Another way to deal with uncertainties is by using discrete event simulation, 

which is a convenient way to capture the stochastic properties in the real system. 

(7) The Integrated Models 

Logistic,s network design includes three sub-problems: location-allocation problems, 

vehicle routing problems, and inventory control problems. In reality, there exist high 

dependencies between these sub-problems. High-quality facility location decisions can 

facilitate efficient vehicle routing. On the other hand, an intelligent vehicle routing can 

reduce the actual transportation cost usually considered as an objective function in 

facility location models. Inventory control policies decide the frequency of transportation 

between facilities, and thus affect the actual transportation cost and operation cost. Thus, 

the integrated models place facility location problems into the context of a holistic 

logistics design combining these three sub-problems. 

A model to simultaneously optimize location, allocation, capacity, inventory, and routing 

decisions in a stochastic logistics system is presented in [33]. The problem is formulated 
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as a mixed integer convex program, and its objective is to minimize the total cost 

consisting of the fixed cost of operating the distribution centers, the holding costs of the 

expected working inventory and safety stock, and the annual distribution cost from the 

distribution centers to the customers. Four sets of decision variables are defined including 

a set of binary variables indicating the route visitation sequence for each vehicle, a set of 

binary variables indicating whether or not the distribution center is open, a set of binary 

variables indicating the assignment policies and a set of continuous variables indicating 

the order size at distribution centers. 

A model combining location and transportation problems and considering multiple 

transportation options, multiple demand periods and stochastic demand, is studied in [34]. 

The problem is solved at two levels: at the design level, the location and allocation 

decisions are determined; at the operational level, the transportation decisions are 

determined. 

There are two ways to deal with the integration of location-allocation problem, inventory 

control problem and vehicle routing problem. One is to tackle them with mathematical 

models individually with well-defined interfaces between these models, and then 

integrate them with simulation models or heuristic approaches. The other is to construct a 

model integrating those problems together from the start. In the latter case the model 

would become so complicated that the model can only be solved with heuristic 

approaches. 
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The SNS logistics networks are multi-stage, and a single level of authority (federal, state 

or local) is in charge at each stage. The federal authority is responsible for shipping the 

SNS packages from national repositories to state-managed RSSs. The state authorities 

take the responsibility to manage the received SNS packages. Finally the local authorities 

are responsible for delivering the items to the affected populations. Due to the divided 

responsibilities among the multiple levels of authorities, the first way to deal with the 

integration is preferred. The "divide and conquer" approach can allow the mathematical 

models to become tractable. 

2.1.2 Facility Location Problem for Regular Healthcare Service or Regular 

Emergency Response 

A selected set of papers on facility location problems related to emergency service siting 

models is reviewed in [35]. These location models are divided into three categories: (1) 

basic deterministic covering models, which are usually introduced in most review papers 

on facility location models. (2) deterministic models considering backup coverage; in 

these models a demand point is covered by one server and at least another backup server. 

(3) probabilistic models which allow randomness in server availability, and these models 

include reliability constraints in terms of the availability of the servers. 

Another reView paper [36] noted that the location-oriented literature to solve the 

problems in the context of planning emergency systems can be divided into two 

categories. The first category is concerned mainly with spatial considerations, just as 

shown in most continuous or discrete optimization models. The second category is 
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concerned with the event-service sequence requirements, by capturing random properties 

of the events and applying queuing theory. 

As an early work on location of emergency service facilities, [37] is concerned with a 

facility-location problem requiring the maximum time or distance between a user and his 

or her closest service provider to be within a predetermined range. An upper limit is 

placed on the response time or distance from the facilities to any point of demand. The 

objective is to determine the minimum-cost spatial arrangement of service facilities that 

can adequately cover the service area. 

A hierarchical structure of social, economIC and political criterions for health care 

facilities location planning is introduced in [38]. The hierarchical structure consists of 

user sector criteria, operator sector criteria, and community sector criteria in terms of 

three different stakeholders. The user sector contains the criteria that include degree and 

nature of illness or ailment, travel time, convenience, service cost, comfort and travel cost 

for patients. The operator sector contains the criteria that include the operation cost, 

travel time and travel cost for staff, accessibility to supporting institutions, and level of 

service offered. The community sector contains the criteria that include economic impact 

on community, environmental effects, community attitude and so on. A framework of 

optimization models which matches groups of people to their required service according 

to the capabilities of healthcare facilities handling illness is developed. The objective 

function maximizes the utility in terms of single-attribute or multi-attribute. 
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In [39], the problem of locating emergency serVIce facilities IS studied under the 

assumption that the incidents occur randomly over a gIven regIOn with uniform 

distribution. Thus, the distance from the location of the emergency service unit to the 

location of the incident is also random, hence the response time is stochastic. In the 

mathematical model, a chance constraint is introduced to guarantee the service reliability 

within a specific probabilistic level, and the objective function involves the minimization 

of the total expected response time. 

In [40], the extension of a single-objective static maximal covering location problem to a 

multi-objective dynamic covering location problem is presented. In this mathematical 

model, the objective is to maximize the demand coverage in each period. The decision 

variables specify the opening or closing of facilities and the allocation of the facilities to 

the demand points in each period. An illustration of a municipal ambulance location 

siting problem is used to demonstrate the application of this model. A utility function is 

constructed to solve the multi-objective aspects of the problem. Fuzzy goal programming 

is introduced to deal with multi-objective covering-based vehicle location models for 

emergency service in [41]. 

In [42], a hierarchical programmmg model is introduced to achieve two objectives 

simultaneously. The primary objective is to minimize the number of ambulances needed 

to satisfy emergency calls. The secondary objective is to maximize the extent of multiple 

coverage of zones. 

29 



The number of vehicles within a specific service area is a critical factor to determine the 

response time for an emergency call emanating from that area, thus assigning the limited 

number of vehicles to EMS stations according to the stochastic demand and the traveling 

time needs an intelligent approach. In [43], a maximal expected coverage location model 

considering stochastic traveling time and stochastic demand is developed and integrated 

into a decision support system (actually an EMS simulation model) to assist EMS 

planners to allocate vehicles to their services areas. 

The performance of an emergency medical service system can be affected by the number 

of vehicles deployed and their locations. Most studies of EMS systems address the 

vehicle location problem in a deterministic manner without realizing that some vehicles 

might be busy and cannot respond to a call. In [44], a deterministic maximal covering 

location model is extended to address this defect, by considering the numbers of vehicle 

at different locations and the probabilities of each vehicle being busy. In another similar 

study [45], a model is presented to determine the location of a fixed number of stations 

and ambulances on a network so that the population covered by the standard service is 

maximized. 

The concepts and applications of backup coverage in facility location problems are 

surveyed in [46]. Most facility location models assume the facilities can always provide 

serVIces so that each demand point is only covered by one facility. In case of an 

emergency, this could be fatal if one facility fails to work. Backup coverage (the 

alternative coverage for a demand point) is suggested as a decision criterion in modeling 

the location of emergency services on a network. In this paper, two sets of formulations 
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are introduced: one is to enforce mandatory first coverage with the least number of open 

facilities while maximizing the secondary coverage; the other is to maximize the demand 

covered by the first coverage and the second coverage with a tradeoff policy. Hierarchical 

programming is applied to deal with the multi-objective properties in this problem. In 

another similar study presented in [47], workload capacities and backup service are 

considered to site emergency service facilities. 

An application of maximal set covering location models for determining emergency 

medical service vehicle deployment in Austin, Texas in 1978, is presented in [48]. The 

application consists of three modules: (1) a data analysis package used to analyze the 

pattern of demand in terms of population and zones; (2) computer mapping programs 

used to divide the city into "analysis zones" and display the results; (3) a location model 

used to take the inputs from (1) and (2), and determine the vehicle deployment and 

covering policies. In another similar application presented in [49] for determining 

ambulance deployment in Santo Domingo, Dominican Republic, the objective function is 

to maximize the multiple coverage of demand within a user-specified critical response 

time, with the minimum number of facilities. The multiple coverage is considered due to 

the unreliability of the transportation system in developing countries. 

In [50], the emergency vehicle bases are modeled as a set of spatially distributed queuing 

systems, in which the vehicles are represented as servers. The problem is to maximize the 

expected number of calls which can be reached within the required time window, by 

assigning emergency vehicles to these queuing systems intelligently. 
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In [51], a model is built for locating emergency service stations and determining the 

number of vehicles to be placed in each station with the required reliability constraints. In 

the model, a system failure is defined as the inability of a vehicle to respond to a demand 

Gall within an acceptable amount of time. Based on the assumption that the arrival 

process of calls follows a Poisson distribution, a formula is built to calculate the 

probability that a call cannot obtain an available vehicle service from its covering stations. 

The model includes a chance constraint to enforce the system reliability. Similar to [51], 

[52] represents the recent progress on this research, and involves the construction of a 

reliability constraint with queuing theory from server perspective. 

Inspired by the above literature review mentioned in this section, the following issues 

relevant to our problem are discussed: 

(1) The upper limit of response time or distance is always a critical factor to consider 

while designing a logistics network for emergency service. Emergency service 

requires fast response in order to reduce the mortality or morbidity, and relieve 

the seriousness of the situation. If the relief resources are close to the location of 

incidents, the emergency relief actions can be conducted immediately. However, 

the occurrences of incidents over time and locations are stochastic, but our 

resources are limited, thus the locations of resources must satisfy the requirement 

that the resources can be delivered to the location of each possible incident within 

the required time window. 

(2) The stochastic factors in designing emergency logistics networks to be considered 

include changing demand over time or locations (i.e., the occurrence of incidents 
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over time and locations), the availability of resources such as vehicles, staff and 

transportation time. 

(3) Reliability versus Backup Coverage: Whether we need to apply a reliability 

model or backup coverage to our problem depends on the requirement. In our 

problem, the logistics network is required to deliver SNS supplies to the demand 

points within a required time window during a large-scale emergency, and the 

emergent demand must be satisfied rather than be assured with a specific level of 

reliability allowing some failures. Therefore, we would consider backup coverage 

rather than reliability constraints in our mathematical model. 

(4) Queuing theory: When the focus is to reduce the waiting time caused by the 

bottleneck processes due to the limited resources, it is better to apply queuing 

theory to our models. However, our problem focuses on reducing the 

transportation cost caused by the traveling distance and the operation cost of 

operating facilities, hence queuing theory is not needed. 

2.1.3 Facility Location Problem for Large-Scale Emergency Service 

In [53], Eva K. Lee et al introduced the decision support system RealOpt [54], which 

focuses on mass dispensing of medical supplies for protecting the general population 

under scarce staffing resources and within a very tight time window. RealOpt can be used 

to investigate the following problems: (1) determine the locations for POD facility setup; 

(2) design an efficient floor layout for PODs via an automatic graph-drawing tool; (3) 

determine required staffing levels and provide efficient staff allocation plans at each POD; 

and (4) perform disease spread analysis, understand and analyze the infection within 
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PODs. The approach of combining simulation and optimization is applied to solve the 

problem. The simulation model captures the realistic operational details, inputs the 

solution from the optimization model, and outputs average waiting time, average queue 

length, average utilization rate, average cycle time and throughput in PODs as the 

feedback to the optimization model. The optimization model applies adaptive heuristic 

algorithms to speed up the convergence toward the desired solution that produces the 

satisfying system performance. 

In the POD-Location model of [53], the regional population is divided into sub-regions 

called grids. Each grid is associated with its population. Each grid has a set of candidate 

POD locations. The problem is to select locations for the POD from these candidate 

locations and determine the corresponding covering policies between PODs and grids. 

This problem is solved via a two-stage approach. In the first stage, the minimum number 

of PODs is determined in order to reduce the operation cost of PODs. In the second stage, 

the minimum travel distance and time is found for the population to reach its assigned 

POD. 

Facility location models for large-scale emergency services are studied in [55]. There are 

two differences between large-scale emergencies and other emergencies which are 

specified. Compared to other emergencies, large-scale emergencies bring sudden and 

tremendous demands to the EMS which overwhelm first responders. Another significant 

difference is the low frequency of large-scale emergencies. These differences require 

redundant and dispersed siting of EMS facilities for responding large-scale emergencies, 

so that more medical supplies can be mobilized within the tight time window to reduce 

34 



mortality and morbidity, and a large number of facilities can also survive from disasters 

and remain operable. The facility location models for large-scale emergencies must also 

consider the relevant attributes of each area and the likelihood for a particular emergency 

to occur in each area. The impacts of emergencies on the demand and the capability of 

resources are also taken into account in the models. In its illustrative examples, three 

scenarios including a dirty bomb attack, an anthrax attack and a smallpox attack by 

terrorists are analyzed, the models are applied to these three scenarios and give different 

results compared to the traditional facility location models. A two-stage heuristic 

algorithm combining Tabu Search (TS) and Simulated Annealing (SA) is developed to 

solve the problem. 

A facility location problem for setting up a global humanitarian relief chain in response to 

a quick-onset disaster is studied in [56]. A model is developed to determine the number 

and locations of distribution centers in the relief network and the amount of relief 

supplies to be stocked at each distribution center to meet the needs of the population 

affected by the disasters. This model is a variant of the maximal covering location model, 

integrating the location-assignment problem and inventory control problem, considering 

multiple types of items, and enforcing budgetary constraints and capacity restrictions. 

Similar to [55], the model also identifies a set of scenarios and the probability of 

occurrence of each scenario. The objective function is the maximization of the expected 

total coverage on the demands under different scenarios. 

Similar to [56], a model is formulated to determine facility location and allocation, the 

required stocking levels for emergency supplies, and distribution proportion of those 
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supplies to demand points after a disaster in [57], It also considers the disruption of the 

disaster on the pre-positioned stocks and the transportations. The model is formulated as 

a two-stage stochastic mixed integer program. In the first stage, decision variables specify 

the locations and sizes of facilities, as well as the stocking levels of various types of 

supplies. In the second stage, decision variables specify the distribution proportion of 

available supplies to demand points corresponding to specific scenario events and 

transportation network conditions. In [58], a similar two-stage stochastic model is 

developed to solve similar problems. 

A large spectrum of published disaster response models addressing public health or 

health care delivery are reviewed in [59]. These papers are classified respectively in 

terms of the type of disaster and response decisions considered, targeted decision makers, 

choice of outcomes, modeling methodology, and reporting format. Inspired by these 

reviewed models, six recommendations for model development on this topic are provided: 

• The health sector disaster response models should address real-world problems; 

• The models should be designed for maximum ability by response planners; 

• The models should strike the appropriate balance between simplicity and 

complexity; 

• The models should include appropriate outcomes that extend beyond those 

considered in traditional cost-effectiveness analyses; 

• And the models should be designed to evaluate many uncertainties inherent in 

disaster response. 
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Based on the above literature reVIew, the difference between our research and the 

research presented in the above literature is discussed below: 

( 1) The logistics network structure and aim of our work is different from that of Lee 

et aI's work [53]. Their work focuses on locating PODs considering the affected 

population as the major factor, and their models are not built based on a multi­

stage logistics network structure. Our work focuses on developing a multi-stage 

SNS logistics network with quick and flexible response by intelligently deciding 

the sites of facilities. 

(2) All studies presented in [55], [56], [57] and [58] apply stochastic programming to 

the facility location problem for large-scale emergency relief logistics networks. 

The occurrence of alternate scenarios and the impact of the emergencies on the 

demand or the capabilities of the resources are considered. However, in order to 

do this, it is necessary to know or estimate accurately the probabilities of 

occurrence of alternate scenarios and the impact of disasters on the demand and 

the resources, but we usually lack sufficient data to estimate this information. In 

our work, it is assumed that the status of the situation including the demand and 

the availability of facilities can be assessed in real-time due to the advancement of 

communication technologies. Thus the location decisions can be made in real­

time based on the real-time assessment. Instead of applying stochastic 

programming, mixed-integer programming model and heuristic solution will be 

applied in our work. 
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2.1.4 Literature Review on Simulation Models in Healthcare and Emergency 

Response 

A simulation model of POD operation is developed in [60]. An optimization model for 

staff assignment and facility layout is combined with this simulation model. A 

comparison between the results from the simulation and the actual observation of an 

anthrax -drill exercise is made. The comparison validates the model and approach, even if 

the model is applied with little historical data. 

Similar to [60], another discrete event simulation model used to determine staffing levels 

for each process in a hypothetical antibiotic distribution center operated in low, medium, 

and high disease prevalence scenarios caused by bioterrorism attack is presented in [61]. 

The simulation software package Arena and the embedded optimization engine OptQuest 

are used [62]. 

An SNS drill exercise held by the District of Columbia department of health is 

demonstrated in [63]. This drill exercise is designed to test its plan for operating mass 

dispensing centers (i.e., PODs) during a bioterrorist attack or other emergencies. The 

main goals of the exercise were to maximize the throughput of the PODs and quantify the 

resources (e.g., numbers and types of staff) necessary to respond to various types and 

sizes of events. Based on the exercise, a computer simulation model is developed and 

driven by the data collected from the exercise. From the comparison between the exercise 

and the simulation, they found that the dispensing center could achieve a throughput of 
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2.5 persons per minute. The model predicts that if additional staffs can be deployed, the 

throughput can be improved to 4 to 5 persons per minute. 

The work performed in the Center for Emergency Response Analytics (CERA) is 

described in [64]. Discrete-event simulation is used to help Bay Island develop its plan 

for responding to an anthrax attack. Specifically the simulation model is also a POD 

simulation similar to that presented in [60], [61] and [63], which can be used to evaluate 

candidate PODs, alternative dispensing processes, staffing plans, and traffic-management 

strategies. 

In [65], a discrete event simulation model is used to estimate the throughput of the 

vaccination clinic. In the model, if the number of clients (arrival intensity) increases, the 

staff members can be reassigned to different workstations. The model is used to validate 

whether or not a mass influenza/pneumococcal vaccination clinic could vaccinate 15,000 

clients in 17 hrs, optimize personnel configuration to maximize the number of clients 

vaccinated, and estimate the costs and revenue. 

All the papers described above are associated with simulations of POD operations under 

large-scale medical emergency response. None of them does matter with facility location 

for large-scale emergency response logistics networks. 

In [66], a discrete event simulation model is used to tackle a facility location problem, 

although it is not relevant to large-scale emergency response. This paper addresses the 

integrated design of production-distribution networks including both the supply chain 
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configuration (facility location and assignment) and related operational decisions such as 

order splitting, transportation allocation and inventory control. A decision support system 

combining a genetic algorithm based optimization and a discrete event simulation model 

is developed to optimize the logistics network design by considering facility location 

decisions and inventory control decisions simultaneously. 

In [67], a real-world large-scale uncapacitated warehouse facility location problem is 

simulated on a digital map in order to generate approximate solutions. A Geographic 

Information System (GIS) is used to extract the transportation cost, the warehouse 

candidate sites, the fixed cost of warehouses. Heuristic Greedy-Interchange and Balloon 

Search is used to optimize the selection of warehouse location. 

An agent-based framework for modeling and solving location problems is proposed in 

[68]. The demand points are represented as a set of passive immobile agents, whereas the 

facilities to be located are represented as a set of active agents. The interaction between 

these agents is modeled as gravity forces or anti-gravity forces in physics. Each active 

agent is attracted by the gravity forces from the passive agents, and pushed away by the 

anti-gravity forces from other active agents. Each active agent moves on the continuous 

space, until all the agents find satisfying locations on the space, which leads to 

appropriate locations covering all the demand points. 
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2.2 Literature Review on the Vehicle Routing Problem (VRP) 

There exists a large amount of literature on the VRP. In this dissertation only a subset of 

the papers relevant to our specific problems and solutions are reviewed. All major types 

of vehicle routing problems and the relevant solutions and applications are presented in 

[69]. An overview of exact and approximate solution algorithms for vehicle routing 

problems is presented in [70]. A complete classification scheme for vehicle routing 

problems is given in [71]. 

Our vehicle routing problem allows split deliveries (i.e., a node can be served by two 

routes). In [72], a vehicle routing model with split deliveries is formulated, and a solution 

based on a constraint relaxation branch and bound algorithm is developed. In [73], a Tabu 

heuristic algorithm for solving a vehicle routing problem with time windows and split 

deliveries is introduced. In [74], an optimization solution is based on statistical summary 

of the solution set obtained from a Tabu heuristic. In [75], the initial solution for a split 

deliveries VRP is constructed by the Clarke and Wright saving algorithm, then a mixed­

integer program model is formulated to determine the exchange of nodes between 

different routes. 

There are several papers focusing on the VRP for relief operations during large-scale 

emergencies. The real-time vehicle routing problems are reviewed in [76]. The vehicle 

routes are determined in real-time dynamically based on the current status of vehicle 

locations, travel times and customer requests. An event such as a new user request, the 

arrival of a vehicle at a destination or the update of travel times could cause re-
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optimization, thus the corresponding solutions must be efficient enough to provide a new 

solution quickly. The objectives are usually multiple and are concerned with cost, service 

response time, throughput and so on. 

In [77], a planning model combining a multi-commodity network flow problem and a 

vehicle routing problem is integrated into a natural disaster logistics decision support 

system. The model addresses the dynamic time-dependent transportation problem that 

needs to be solved repetitively for each specified time interval during an ongoing disaster. 

The model generates plans dynamically for delivering relief supplies according to the 

changing condition during each planning time interval. The plans include the optimal 

mixed pick-up and delivery schedules for vehicles within the considered planning time 

interval as well as the optimal quantities and types of materials picked up and delivered 

on the routes. A similar model is developed in [78], in which a two-phase solution is 

adopted. In the first phase, a stochastic VRP is solved using the ant colony optimization. 

In the second phase, the dispatch of commodities is formulated as an integer multi­

commodity flow problem based on the routings constructed in the first phase. 

In [79], a companson between the pharmaceutical supply chain and the emergency 

supply chain is made. Various governmental programs relevant to large-scale emergency 

relief are investigated, and the gaps between the status quo and a desired system are 

identified. The value and complexity of optimal vehicle routing in large-scale emergency 

relief operations is highlighted. 
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In [80] and [81], two similar models are formulated to route vehicles and minimize the 

unmet demand and time delay. The first adopts a global search algorithm, and the second 

adopts a hybrid heuristic algorithm combining Clarke and Wright saving algorithm with 

Tabu search. In [82], the TSP and VRP models and solutions for minimizing the 

maximum arrival time and minimizing the average arrival time are developed to deal 

with routing for relief efforts. 

In [83], a two-stage vehicle routing model for minimizing unmet demand and time delay 

is formulated. In the planning stage, the problem is modeled as a stochastic VRP, in 

which the demand at nodes and the travel times are uncertain. In the operational stage, 

the problem is a knapsack problem which assigns the realized demands to the routes 

constructed in the planning stage. 

In our solution algorithm, the Clarke and Wright saving algorithm is used to construct an 

initial solution, and s~mulated annealing is used to improve the solution. The Clarke and 

Wright saving algorithm is based on the merging of routes to reduce the total travel 

distance [84]. In [85-87], the theory, method and application of simulated annealing is 

introduced. In [88], a comparative study between a Genetic Algorithm, a Simulated 

Annealing and a Tabu Search is made. In [89], a simulated annealing heuristic algorithm 

is developed for solving a vehicle routing problem with time windows. 

2.3 Literature Review on Location-Routing Problems (LRPs) 
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In location-routing problems, the facility location decisions and the vehicle routing 

decisions are correlated and placed into one model, thus seeking for optimal location and 

routing solutions simultaneously. There are two review papers on LRPs. In [90], a 

hierarchical taxonomy and classification scheme is developed to categorize the LRP 

studies in terms of the problem perspective and the solution method. In terms of the 

problem perspective, one major scheme is to categorize LRP into single-stage LRP and 

two-stage LRP. The former is primarily concerned with both the location of a set of 

facilities serving customers and the routing schedules of vehicles departing from facilities 

and visiting customers. The latter expands its context to a two-layer production­

distribution network involving two-stage transportation including from plants to 

warehouses and from warehouses to customers. In terms of the solution method, LRP 

solutions are categorized into exact algorithms and heuristics. Due to the NP-hard 

characteristics of LRP, heuristics are introduced. 

The recent advancements of LRP studies are surveyed in [91]. The heuristic algorithms 

for solving deterministic LRPs include sequential methods, clustering-based methods, 

iterative methods and hierarchical methods. In clustering-based methods, the customers 

are partitioned into clusters first, then a depot is assigned to each cluster and a TSP is 

solved for each cluster. In iterative methods, the routing stage and the location stage are 

executed iteratively, and each of them provides feedback to the next execution of the 

other stage for improvement. In hierarchical methods, the routing is nested within the 

location solution, in which each neighborhood solution search of location decisions could 

trigger an evaluation or resolving of routing decisions. Several new LRPs with stochastic, 

dynamic, or non-standard hierarchical structure are also reviewed in [91]. 
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In [92], using standard test data and three LRP solutions, it is found that the best solution 

for the location decisions without consideration of routing costs does not necessarily 

generate the lowest cost for the later routing decisions. In [93], four simulation-based 

algorithms are used to show that the combined LRP algorithms can provide better quality 

solutions than sequential algorithms. In [94], a comparative study of effects of different 

cluster methods on LRP solutions are made. 

The routing distance estimation formula is studied in LRP studies. In [95], it is found that 

the expected routing distance between a depot and a customer is determined by the radial 

distance between them and the average value of the maximum number of customers that 

can be served by one route in a single-depot and multiple-customer location problem in a 

continuous plane. In [92], it is recognized that an optimal solution obtained from a typical 

location-allocation model in terms of radial distance does not necessarily generate the 

lowest cost solution for routing models in terms of the routing distance. In [96], two 

routing length estimators are used to determine a location/allocation scheme in a location­

allocation-first, routing heuristics-second algorithm. 

The Traveling Salesman Location Problem (TSLP) determines the location of a central 

facility where a tour starts from and visits all customers. In [97], the problem is 

introduced to determine the minimum cost location of a central facility in continuous 

space, when a traveling salesman visits some or all of m existing facilities randomly. 

In [98], an exact algorithm is used to determine a depot location among a set of candidate 

points in order to minimize the total depot operating and routing costs in a TSP with 

45 



multiple salesmen. The algorithm is implemented by relaxing the sub-tour elimination 

constraints and binary constraints and introducing them only when they are violated. 

In [99], an exact algorithm using a constraint relaxation technique is presented to solve a 

multi-depot vehicle-capacitated LRP. The problem is to select depot sites from up to 

twenty sites within a reasonable number of iterations, determine how many vehicles are 

to be based at each selected depot and construct vehicle routes. A similar problem is 

solved by using an graph representation, transforming it into an equivalent constrained 

assignment problem, and applying a branch and bound algorithm to seek the optimal 

solution in [100]. In [10 1], a two-stage location-routing problem is solved as a 

generalized assignment problem based on Benders decomposition. 

In [102], a heuristic algorithm based on location-allocation-first, route-second for an 

initial solution construction and an improvement algorithm is developed to determine the 

allocation of hospitals to blood banks and the routing of periodic blood supply deliveries. 

In [103], a three-phase sequential method for solving a practical LRP is introduced. The 

customers are clustered according to their geographical proximity and vehicle capacity. 

The assignment of customer clusters to suppliers or consolidation terminals is determined 

by a mathematical model. Finally the routes associated with each cluster are determined 

using a TSP algorithm. 

In [104], a location-allocation-first, route-second LRP algorithm is used to determine the 

optimal locations of the home bases and the secondary training sites for the mobile 
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trainers. The mobile trainers travel from the home bases and visit all the secondary 

training sites assigned to the home bases. 

In [105], a heuristic algorithm consisting of two simulated annealing algorithms for 

solving a LRP sequentially is used to solve a multi-depot LRP. In [106], a sequential 

simulated annealing algorithm for solving a location-routing-Ioading problem for bill 

delivery services is developed. 

In [107] and [108], a two-level LRP for a newspaper distribution network is presented. 

The newspaper distribution network consists of three levels of facilities including a 

printing office (PO), a set of transfer points (TPs) and sales points (SPs). The problem is 

to determine the locations of the PO, TPs, the routing from PO to TPs or SPs and the 

routing from TPs to SPs with the minimization of operational costs. Three heuristic 

algorithms are proposed. The first converts the problem to a spanning tree satisfying the 

constraints with the returning arc deleted. The second adopts a "location-allocation-first, 

routing-second" approach. The third adopts a "routing-first, location-allocation-second" 

approach. 

In [109], a LRP mathematical model of a distribution network consisting of four levels 

of facilities is developed and later extended to a dynamic version. A similar multi-level 

supply chain network design with routing is introduced in [110], and a heuristic algorithm 

based on LP relaxation and Tabu search is developed for solving it. 
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In [111], a LRP is formulated as a Hamiltonian problem, in which the optimal depot 

locations together with the optimal routes of salesmen must be determined. Several 

mathematical formulations for the following types of problems are presented: (1) There 

are neither fixed costs for the depots, nor restriction on the number of depots; (2) There 

are fixed costs for the depots, but no restriction on the number of depots; (3) There are no 

fixed costs for the depots, but there is an upper bound on the number of depots; (4) There 

is more than one salesman based at each depot; (5) Demand points can be visited multiple 

times by different salesmen. An exact algorithm is developed based on a relaxation of 

sub-tour elimination constraints. In [112], several heuristic algorithms are introduced for 

solving the Hamiltonian p-median problem. 

In [113], a three-phase heuristic algorithm is used to solve a warehouse LRP. In the first 

phase, the algorithm determines a rough routing plan. In the second phase, the locations 

of distribution centers are selected, and the routes are allocated to the selected distribution 

centers according to their distance. In the third phase, the solution is improved by 

reallocating customers to routes. In [114], a mathematical model for an LRP with 

consideration of inventory control is presented, and a two-phase heuristic algorithm 

consisting of a route-first, location-second initial solution and an improvement algorithm 

is developed to solve the problem. 

In [115], a two-phase tabu search is applied to solve a LRP. In the first phase, a specified 

number of non-tabu swap or add operations on depot locations selection are executed. In 

the second phase, the routing configuration is updated by a specified number of non-tabu 

insert or swap operations. 
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In [116], an integrated multi-depot hub-location VRP for network planning of parcel 

delivery service is solved by a heuristic algorithm with multiple iterations between 

location, allocation and routing decisions. A heuristic algorithm combining variable 

neighborhood search and tabu search is developed to solve a LRP with non-linear cost 

function in [117]. In [118], a linear solution of a LRP is used as the initial solution for a 

tabu search heuristic and provides a lower bound for the heuristic solution. In [119], a 

continuous LRP model is solved via an iterative heuristic algorithm based on the 

Weiszfeld procedure. 

In [120], three heuristic algorithms are proposed to solve a LRP. Two of those are 

hierarchical algorithms, every time the location decisions are adjusted by "Add" or "Drop" 

operations, the affected customers are re-assigned to new routes, until an acceptable 

solution is obtained. 

A nested heuristic for solving LRPs is developed based on tabu search in [121]. A 

method to approximately estimate the effects of depot location changes on the routing 

cost is developed. 

In [122], a class of two-stage stochastic location-routing models is developed with 

chance constraints on the probability of route failures or constraints on the expected 

penalty caused by route failures. The first stage determines the depot locations and 

vehicle routes. The second stage deals with the failures that occurs as the vehicle capacity 

is exceeded during pickup at some point, and the vehicle has to return the depot, empty 

its load and resume the collection at the point where its capacity was exceeded. In [123], 

49 



a two-stage stochastic LRP is presented, in which the demand is uncertain and a penalty 

is incurred when some nodes are not served due to the vehicle capacity constraints. 

50 



CHAPTER 3 SNS FACILITY LOCATION PROBLEM 

In this chapter, the SNS facility location problem is introduced, a corresponding facility 

location model is developed, and the effectiveness of the model is discussed. 

3.1 Introduction 

A multi-stage logistics network consisting of strategic national stockpiles at the federal 

level, Receiving, Staging and Storage (RSS) and Regional Distribution Nodes (RDNs) at 

the state level, and Points of Dispense (PODs) at the local level, is formed as shown in 

Figure 4. There are 12 federal level SNS warehouses strategically located across the 

United States. Once a state is affected by a large-scale emergency requires the SNS 

supplies, the stocks will be delivered to the affected state as soon as possible. Each state 

is required to develop its own plan to receive the materials and distribute them to the 

affected population. To dispense the materials to the public with a state during a large­

scale emergency, the state-level SNS authority identified a large number of POD 

locations to cover the population across the state and dispense the materials to the 

affected population directly. RSSs are responsible for receiving SNS 12-hour push 

packages or VMI packages from federal strategic national stockpiles, storing the medical 

supplies, repacking them and distributing them to the assigned RDNs or PODs. There 

could be a limited number of RSSs allowed to be open during an emergency. For 

example, only one RSS is allowed to be open in Kentucky for any emergency event. 
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RDNs work as intermediate level warehouses, which receive and store the supplies 

transported by trucks from RSSs, and can cover their neighboring PODs and refill the 

inventory at PODs quickly and flexibly with available on-site transportation resources. 

PODs are responsible for receiving the supplies from RDNs or RSSs (it can receive 

shipment from RSSs directly), and dispensing the supplies to the public directly . 

. . . . . . . 
Federal • 
Level 

Strategic National Stockpile 

, ............ _-_ ...................... . 

State 
Level 

Receiving , Staging, and Storage 

Regional Distribution Node 

Figure 4. SNS logistics networks. 

The state-level SNS authorities identify a large number of candidate RSS and RDN sites. 

Once a large-scale emergency occurs, they can identify the open PODs according to the 

scale of the emergency. Then they are required to select and open a set of RSSs and 

RDNs and determine the assignment among RSSs, RDNs and PODs to form a logistics 

network. 

The selection of locations for RSSs and RDNs affects the speed of delivery of the SNS 

supplies. If the selected RDNs sites are close to their assigned PODs, the inventory of 

PODs can be refilled quickly with flexible transportation even in case of surge demand. If 
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the selection of locations for RSSs is properly planned, the transportation from RSSs to 

RDNs can be accomplished within the required duration with fewer trucks. 

Moreover, since the selection of facility location is a strategic decision, an optimized 

selection of locations for RSSs and RDNs can reduce the operation costs with long-term 

benefits. There is a perception that there are more RDNs than required, and the number of 

required RDNs can be reduced while still satisfying the demand at PODs within the 

required duration. The problem is to use mathematical models to determine the location 

of RSSs and RDNs from the candidate sites. The problem can be stated as below: 

Given a set of PODs and their corresponding locations and demands, a set of 

candidate sites for siting RSSs and RDNs, determine the required number of RSSs 

and RDNs, their corresponding locations, and determine the corresponding 

assignment of PODs to RSSs or RDNs and RDNs to RSSs to form a logistics 

network, so that it can satisfy the demand at the PODs with the minimal cost. 

3.1 Initial Mathematical Models and Experimental Analysis 

Two initial models are developed, an illustrative example is constructed and the results 

are discussed to develop some insights for further research. 

In the first model, the underlying assumption is that the SNS supplies can only be 

delivered from an RSS to PODs via an RON, i.e., there is no direct transportation from 

the RSS to PODs. The inputs include the origin-destination (0-0) distance matrix 

between RSSs and RDNs, the O-D distance matrix between RDNs and PODs, the fixed 
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cost of operating each RSS and RDN, the transportation cost per unit distance, the 

velocity of vehicles in each stage of transportation, and the required delivery duration. 

The decision variables include the RSS and RDNs that will be open as well as the paths 

from the RSS to PODs via RDNs (i.e., the assignment configuration between the RSS 

and RDNs, and between RDNs and PODs.). 

Parameters: 

i: index of RSSs i = 1,···, l; 

j: index of RDNs j = 1,2, ... , m; 

k: index of PODs k = 1,2, ... , n; 

Dij: routing distance from RSS i to RDN j; 

Ejk : routing distance from RDN j to POD k; 

TC: the required delivery duration; 

Fi : the fixed cost of operating RSS i; 

Cj : the fixed cost of operating RDN j; 

H: the transportation cost per unit of distance; 

V1 : the velocity of vehicles during the transportation stage from RSSs to RDNs; 

V2 : the velocity of vehicles during the transportation stage from RDNs to PODs; 

Decision Variables: 

Ri = 1, if RSS i is open; 0, otherwise; 

OJ = 1, if RDN j is open; 0, otherwise; 

Pijk = 1, if RSS i serves POD k via RDN j; 0, otherwise; 
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The objective function (1) minimizes the fixed cost of operating the open RSS and RDNs 

I m I m n 

min L Fi * Ri + L Cj * OJ + L L L Pijk * H * (Dij + Ejk ) 

i=l j=l i=l j=l k=l 

Subject to 

I m 

'" '" P" k > 1 for k = 1 ... n· LL IJ - , , , 

i=l j=l 

D·· E'k 
2 + -.!:.L * P" k + _J_ * P" k < TC for i = 1 ... [.J' = 1 ... m· k = 1 ... n· V

1 
IJ V

Z 
IJ - , " ", ", 

I 

LRi=1 
i=l 

P" k < R· ~or l· = 1 ... [.J. = 1 ... m· k = 1 ... n· 
l} - l " , ", ", 

P" k < O· for l' = 1 ... [.J" = 1 ... m· k = 1 ... n· lJ - } I' , , J' , I , 

Ri = 0 or 1 for i = 1, ... , [; 

OJ = 0 or 1 for j = 1, ... , m; 

P" k = 0 or 1 ~or l· = 1 ... [.J. = 1 ... m· k = 1 ... n· 
lJ ' " I" ", 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

as well as the cost of transporting material from the RSS to PODs via RDNs. Constraint 

(2) guarantees that each POD is covered by the SNS delivery system. Constraint (3) 

assures the SNS can arrive at PODs from the RSS within the required delivery duration. 

This constraint incorporates 30 minutes loading/unloading time at the RSS, RDNs as well 

as PODs. Constraint (4) allows only one RSS to be opened. Constraint (5) assures that the 

selected path can only start from an open RSS. Constraint (6) assures that the selected 

paths can only go via the open RDNs. Constraints (7), (8) and (9) limit the decision 
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variables to be binary variables. Table 1 shows the number of decision variables and 

constraints of this model for two specific scenarios. 

Table 1 Numbers of Decision Variables and Constraints of Modell 

No. No. No. No. of Decision No. of Constraints 
of of of Variables 
RS RD PO 
Ss Ns Ds 

Ri OJ Pijk Total (2) (3) (4) (5) (6) (7) (8) (9) total 

l m n l m lmn l n lmn 1 lmn lmn l m lmn 4lmn 
+m +m 
+ lmn +n 

+l 
+1 

2 10 20 2 1 400 412 20 40 1 40 40 2 10 400 1641 
0 0 0 0 

2 50 250 2 5 250 2505 25 25 1 25 25 2 50 250 1003 
0 00 2 0 00 00 00 00 03 

0 0 0 

In the second model, we assume that the direct shipments between RSSs and PODs are 

allowed. Thus, a new set of parameters Bik and a new set of decision variables Lik are 

added. 

Parameters: 

i: index of RSSs i = 1,"', l; 

j: index of RDNs j = 1,2, "', m; 

k: index of PODs k = 1,2,"" n; 

Bik : routing distance from RSS i to POD k; 

56 



Dij: routing distance from RSS i to RDN j; 

Ejk : routing distance from RDN j to POD k; 

TC: the required delivery duration; 

Fi : the fixed cost of operating RSS i; 

C/ the fixed cost of operating RDN j; 

H: the transportation cost per unit of distance; 

Vi: the velocity of vehicles during the transportation stage from RSSs to RDNs; 

Vz: the velocity of vehicles during the transportation stage from RDNs to PODs; 

Decision Variables: 

Ri = 1, if RSS i is open; 0, otherwise; 

OJ = 1, if RDN j is open; 0, otherwise; 

Pijk = 1, if RSS i serves POD k via RDN j; 0, otherwise; 

Lik = 1, if RSS i serves POD k directly; 0, otherwise; 

I m I m n 

min L Fi * Ri + L Cj * OJ + L L L Pijk * H * (Dij + Ejk ) 

i=i j=i i=i j=l k=l 

Subject to 

I m I 

I n 

+ L L Lik * H * Bik 

i=l k=l 

L L Pijk + L Lik ~ 1 for k = 1, ... , n; 
i=l j=l i=l 
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D·· E'k 
2 + ~: * Pijk + ~2 * Pijk ~ TC for i = 1, .,' , i; j = 1, .. , , m; k = 1, .. , , n; (12) 

B'k 1 +-l-*L'k < TCfori = 1 .. , i'k = 1 .. , n' V3 l - J J J ", 
(13) 

(14) 

P"k < R· for i = 1 .. , i'J' = 1 .. , m' k = 1 .. , n' 
l} - l " J ", '" 

(15) 

Lik ~ Ri for i = 1, .. , , i; k = 1, .. , , k; (16) 

P"k < O· for i = 1 .. , i'J' = 1 .. , m' k = 1 .. , n' l} - } ' J I ", '" 
(17) 

Ri = 0 or 1 for i = 1,,,,, i; (18) 

OJ = 0 or 1 for j = 1, .. , , m; (19) 

P"k = 0 or 1 for i = 1 .. , i'J' = 1 .. , m' k = 1 .. , n' lJ ' " '" ", (20) 

Lik = 0 or 1 for i = 1,,,,, i; k = 1, .. , , n; (21) 

The objective function (10) includes the cost of transporting material from RSSs to PODs 

directly, In constraint (11), each POD must be served by one RDN or one RSS, 

Constraint (13) guarantees the direct shipment from RSSs to PODs within the required 

delivery duration, Constraint (16) ensures that a direct shipment from RSSs to PODs can 

only occur at an open RSS, The other constraints have similar meaning as in Modell. 

An Illustrative Example: 

In order to show the effectiveness of the above two models, we use the following 

example, We assume that the velocity of vehicles in both stages is 45 mph, the 
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transportation cost per unit distance is $4 per mile, and the required delivery duration is 5 

hours. The two candidate RSS sites are selected randomly. Ten candidate RDN sites and 

twenty candidate POD sites are randomly selected around the triangle area between 

Louisville, Lexington and Cincinnati. Figure 5 shows these sites using Google Earth 

Maps, on which the boxes indicate RSS sites, the balloons denoted by N indicate RDN 

sites, and the balloons denoted by P indicate POD sites. We also assumed the data for the 

fixed operation cost of opening these RSSs and RDNs as shown in Table 2. 

Table 2 Candidate RDN and RSS Sites 

RDN Fixed Cost 

1 100,000 

2 95,000 

3 100,000 

4 100,000 

5 10,000 

6 100,000 

7 100,000 

8 100,000 

9 100,000 

10 100,000 

RSS Fixed Cost 

1 1,000,000 

2 1,200,000 
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Figure 5. Candidate sites for RSSs, RDNs and PODs. 

Using the above inputs, a Lingo file developed based on the first model is shown in 

Appendix A. In the solution, RSS 2 is selected to be open along with RDN I and RDN 8, 

as shown in Figure 6. RSS 2 and RDN 8 are very close to each other. If we permit direct 

shipments from RSS to PODs, RSS 2 could replace RDN 8 to serve the neighboring areas. 

A sensitivity analysis in terms of the required delivery duration is conducted as shown in 

Table 3. When the required time window is 4 hours (TC=4 "hI' " ), there is no feasible 

solution. As it is increased to 5 hours, the optimal solution is to open RSS 2, RDN 1 and 

RDN 8. When the required delivery duration is 6 hours or more, the solution is to open 

60 



RSS 1 and RDN 5. The illustrating example shows that our model is effective in assuring 

the SNS deliveries within the required delivery duration. 

Figure 6. the elected RSSs and RDNs. 

The Lingo file developed based on the second model is shown in Appendix B. Taking the 

~ame inputs as Model 1, this model gives the output shown as in Table 4. When 

TC = 3 hrs , there is no feasible solution ; when TC = 4 hrs or over 4 hrs , the direct 

shipments from RSS 1 to all PODs are the best solutions. 
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Table 3 Sensitivity Analysis of the Model 

The Required 
Time 4 5 6 7 
Window(hrs) 

Solution Infeasible 
RSS 2, RONI and 

RSS 1, RON 5 RSS 1, RON 5 
RON 8 

Table 4 The Output of Model 2 

The Required 
Time 3 4 5 6 

Window(hrs) 

Solution Infeasible RSSI RSSI RSSI 

Analysis of Modell and Model 2: 

Based on the output of Modell and Model 2, we can have the following analysis: 

(1) Reducing the number of RDNs can satisfy the delivery duration requirement. In 

the illustrative example of Modell, the number of required RDN s is reduced 

from 10 to 2 or even 1. 

(2) The direct shipments from RSSs to PODs are recommended. From the 

comparison of the solutions between Model 1 and Model 2, it can be concluded 
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that removing the intermediate level RDNs and shipping the supplies from RSSs 

to RDNs directly can shorten the delivery time and reduce the total cost. 

(3) The resources for transporting materials from RSSs to PODs directly or via RDNs 

should be considered in further research. With the assumption of unlimited 

transportation resources in the underlying, the above two models give the results 

as indicated in (1) and (2). It is necessary to re-evaluate (1) and (2) under a more 

realistic assumption of limited transportation resources. 

3.3 Transshipment and Location Model 

Given the open PODs and their demands, the candidate sites for RSSs and RDNs and the 

corresponding fixed cost of opening them, and the transshipment cost per pallet between 

sites, the transshipment and location model is formulated to determine the RSSs and 

RDNs to open, the quantity of materials shipped from open RSSs to RDNs, from open 

RDNs to PODs and from open RSSs to PODs, to minimize the total cost including the 

transshipment cost and the total fixed cost of opening facilities. 

Sets: 

I: set of available RSSs; 

J: set of available RDNs; 

K: set of open PODs; 

Parameters: 

ai/ transportation cost per pallet from RSS ito RDN j, i E I,j E J; 
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bjk : transportation cost per pallet from RDN j to POD k,j E I, k E K; 

Cik: transportation cost per pallet from RSS i to POD k, i E I, k E K; 

Fi : fixed cost of opening or operating RSS i, i E I; 

Gj : fixed cost of opening or operating RDN j, j E I; 

Dk:number of pallets demanded at POD k, k E K; 

N: maximum number of allowed open RSSs; 

Cj :maximum number of pallets that can be handled at RDN j, j E I; 

Decision Variables: 

Xi{ number of pallets shipped from RSS ito RDN j, i E I,j E I; 

Yjk: number of pallets shipped from RDN j to POD k,j E I, k E K; 

Zik: number of pallets shpped from RSS i to POD k, i E I, k E K; 

{
1 RSS i is open, i 61; 

Ui = 0 otherwise; 

{
1 RDN j is open,j6J; 

~J' = 0 otherwise; 

min L L aij * xij + L L bjk * Yjk + L L Cik * zik + L Fi * Ui + L Gj * \'l (22) 
iEI jEJ jEJ kEK iEI kEK iEI jEJ 

subject to: 
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I Yjk + I Zik ~ Dk 'Vk E K; 
jE} iEI 

I Xij :::; Cj~ 'Vj EI; 
iEI 

I Xij = I Yjk 'Vj EI; 
iEI kEK 

I Xij + I Zik :::; M * Ui 'Vi E I; 
jE} kEK 

Xij ~ O'Yjk ~ O,zik ~ 0, 'Vi E I,j EI,k E K; 

Ui = lor 0, ~ = 1 or ° 'Vi E I,j E I, k E K 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

The objective function (22) minimizes the total cost including the transshipment cost 

from RSSs to RDNs, from RDNs to PODs and from RSSs to PODs. The maximum 

number of open RSSs is specified in (23). Constrains (24) assure that the demand at each 

POD must be satisfied. The throughput capacity constraints at each RDN are specified in 

(25). Constraints (26) enforces the flow balance at RDNs. Constraints (27) assure that 

only open RSSs can supply pallets, M is a very large positive number in these constraints. 

Constraints (28) and (29) are data type constraints for decision variables. 
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In the above model, aij. bjk • Cik are transportation rates between RSSs and RDNs, 

between RDNs and PODs and between RSSs and PODs, which are measured by dollars 

per pallet from an origin site to a destination site. We can only calculate them 

approximately before the vehicle routes are determined exactly. Suppose the routing 

distance between site i and site j is dij , the average cost for each truck per mile is $2, and 

the average capacity of trucks measured by pallets can be calculated, then the 

. ( d b $/ ·1) b .. d . .. dij*($2/mile) transportatIon rate measure y m! e etween sIte l an sIte] IS . f 
average capacity 0 trucks 

The transportation rates between two sites are proportional to the routing distance 

between them, and adjusted by the dollars per mile and the average capacity of the trucks. 

3.4 Experiments and Result Analysis 

The exact solution of the transshipment and location model in Section 3.3 is implemented 

in the SNS planning tool kits due to its effectiveness and quick response. The solution is 

implemented with Microsoft Solver Foundation, which is a .Net runtime software 

package for mathematical programming, modeling and optimization [124]. Table 5 lists 

the execution results of 32 test cases. The first column labeled by "Test Case" lists the 

IDs of the test cases; the second column labeled by "# of RSSs" lists the number of 

candidate RSSs in each test case; the third column labeled by "# of RDNs" lists the 

number of candidate RDNs in each test case; the fourth column labeled by "# of PODs" 

lists the number of candidate PODs in each test case; the fifth column labeled by "Max # 

of open RSSs" lists the maximum number of allowable open RSSs, which is denoted as 

N in the model; the sixth column labeled by "# of DVs" lists the number of decision 
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variables in the model ; the seventh column labeled by "# of Constraints" lists the number 

of constraints except the data type constraints on decision variables; the eighth column 

labeled by "# of open RSSs" lists the number of open RSSs in the solution; the ninth 

column labeled by "# of open RDNs" lists the number of open RDNs in the solution; the 

tenth column labeled by "Execution Time" lists the time to run the program on each test 

case, measured in seconds. These tests are run on a computer with 3.40 GHz Intel 

Pentium 4 CPU, 3.39 GHz 2G RAM, and Microsoft windows XP Profession 2002. 

Table 5 The Execution Results of Transshipment & Location Model 

Test # of 
Case RSSs 

2 

6 

2 
2 

10 2 

11 2 

12 2 

14 2 

2 

16 2 

2 

65 
65 
65 

65 

65 

65 

65 

10 
20 

50 1 
70 1 
90 
110 
130 1 

150 1 

170 1 

1 

210 1 

230 1 

250 1 

260 1 

# f # of # of # of Execution 
D~S Constraint open open Time 

s RSSs RDNs (seconds) 

138 1 
867 143 1 2.3 
1537 153 1 5.69 
2207 163 1 11 
3547 183 1 6.17 
3547 183 1 28 10.78 
4887 203 1 35 12.92 

1 40 17.33 
1 42 11.25 

263 1 

283 1 35.94 

1158 
303 1 19.45 

7 
1292 

323 34.34 
7 

1426 
343 52 27.34 

363 52 31.4 

1694 
383 59 30.78 

7 

393 50 35.13 
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18.36 

1 21 6.09 

19 3 65 90 1 6383 224 1 41 24.53 

284 1 44 64.42 

21 3 65 210 1 
1454 

344 1 51 75.95 
3 

394 1 56 63.25 

46.848 

1 23 23.8 

24 4 65 90 1 1 40 62.06 

1 43 

26 4 65 210 1 345 55 

395 51 

Average Execution Time otTest Cases 23-27 
1481 

345 2 356.77 
9 

29 4 65 260 2 
1826 

395 2 191.23 
9 

260 3 
1826 

3 57 452.76 
9 

31 5 0 1500 5 7505 1506 5 0 57.75 
1501 

1511 10 0 585.85 
0 

These test cases are created randomly with different problem sizes in terms of the number 

of RSSs, RDNs and PODs. From all the results, it can be ob erved that our solution can 

reduce the total cost by reducing the number of open RDNs. Another criterion to evaluate 

the solution is the execution time of the program. The web-based SNS planning tool kit 

requires that a decision request had better to be responded to within 2 minutes due to the 

session timeout setting in web-based systems. The test cases (1-17) are relatively 

smaller size of problems, in which there are only two candidate RSSs, only one RSS can 

be open, there are about 65 candidate RDNs, and there are about 260 PODs to be 

selected to be open. From the results of test cases (1-17), it can be observed that the 
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execution time is very short, since the average execution time is 18.36 seconds and the 

maximum execution time is 35.13 seconds. Thus the solution performs well for problems 

in small states. In test cases (18-27), the problems are extended to have three or four 

RSSs, the execution time is prolonged but still can be accepted by the requirements of the 

web-based SNS planning tool kit. Test cases (28-30) allow more than one RSSs to be 

open, and the execution time becomes too long for a web-based system. Test cases 31 

and 32 try to solve the SNS facility location problem in Texas, in which there is no 

intermediate RDNs, the relief materials are delivered from RSSs to PODs directly and 

there could be more candidate RSSs and PODs in the problem. It can be observed that 

our solution cannot work well on this type of problems in terms of the execution time. 

Therefore, it is necessary to develop heuristics algorithms for solving the types of 

problems in test cases (28-32) in the future. 
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CHAPTER 4 SNS VEHICLE ROUTING PROBLEM 

In this chapter, the SNS VRP is described, the model for the VRP is formulated and the 

corresponding solution algorithm is developed. A comparison is made between our 

solution algorithm and the current best practices. 

4.1 Introduction 

The SNS facility location model and the corresponding solution determine the open set of 

RSSs and RDNs and the corresponding assignment to form a logistics network for 

responding to a large-scale emergency. In the logistics network, each open RSS or RDN 

is taken as a depot, and the PODs or RDNs assigned to the depot are the nodes served by 

the depot. Once a depot receives relief materials, a specified set of trucks deliver the 

materials to the served nodes from the depot. Each truck loads a specified quantity of 

materials required by the nodes in a route served by the truck at the depot. Each truck 

visits each served node along the route and unloads the required materials and returns to 

the depot. Therefore, a VRP model should be formulated to determine the routes for each 

truck in the context of SNS distribution operations. 

The SNS VRP model must assure that all the delivery tasks should be accomplished 

within a specified duration. It is required to provide a plan for quick dispatch of the relief 
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materials to the area affected by a large-scale emergency. The more quickly the materials 

are delivered to the affected population, the more effectively the damage caused by the 

emergency can be mitigated. Therefore, a maximum delivery duration constraint is 

required in the formulation of our VRP model. 

The SNS VRP model allows more than one route per truck. In a typical VRP model, it is 

assumed that a truck can only serve one route. However, considering the heavy demand 

and scarcity of truck resources during a large-scale emergency, a truck is allowed to serve 

multiple routes. After a truck completes one route and returns to the depot, it takes a 

break for maintenance, refueling and so on, then goes to serve another route, as long as 

the maximum delivery duration constraint is not violated. 

The SNS VRP model allows split deliveries, i.e., a node can be served by more than one 

route. If the demand at a node is too large to be carried by even the largest truck in one 

trip, the demand at the node should be met by multiple deliveries. The deliveries for such 

a node are assigned to different routes served by either the same truck or different trucks 

respectively. 

A general multiple-vehicle VRP model allowing split deliveries and multiple routes per 

truck with a total delivery duration constraint, is formulated in this chapter. 
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4.2 Model and Solution 

4.2.1 Mathematical Model 

The notations and conventions are defined as below. 

Notations 

L: set of trucks; 

V L: set of virtual trucks; 

TL: set of truck types; 

K/: the capacity of truck I, virtual truck I or truck type l, I E L u VL u TL; 

0: the depot ; 

No: the set of nodes visited by trucks starting from depot 0; 

N: the set of nodes, N = {oJ UNo; 

RDs: quantity of materials to be shipped from depot 0 to node s, S E No; 

d ij : distance from node i to node j, i,j E N; 

LT: the average loading time at depot 0; 

UT: the average unloading time at each visited node; 

BT: the break duration between two consecutive trips for a truck; 

V: the average speed of trucks; 
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DT: the maximum allowed duration for delivery of all pallets to the targeted PODs; 

MTl: maximum number of trips for truck i, MTl = LSEN RDs (the definition of MTl 
a Kl 

assumes an extreme case that all the delivery tasks are accomplished by just truck i); 

Conventions: 

( ): a tuple, consisting of a set of variables, sets or ordered lists; 

( ): an ordered list, consisting of a sequence of nodes along a route; 

{ }: a set, which is used to represent a set of elements; 

Decision Variables: 

Ruvrl = 1 if node u immediately precedes node v in the rth route of truck i, u, v E N, i E 

L, r = 1"", MTl ; 0 otherwise; 

Surl: quantity of materials shipped to node U on the rth route of truck i, U E No, i E L, r = 

Objective and Constraints: 

MTI 

min III I duv*Ruvrl 
lEL r=l uEN VEN,u:t:v 

Subject to: 

I Rovrl :::;; 1 'Vi E L,r = 1,"',MTl 
VENa 

(30) 

(31 ) 
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I Rsurl = I Rudrl Vl E L,u E N,r = 1,···,MTl 
sEN dEN 

MT[ 

I I Surl = RDu Vu E No 
lEL r=l 

I Surl 
Rsurl ~ -- Vu E No,l E L,r = 1,···,MTl RDu 

sEN 

I Surl :::; Kl Vl E L, r = 1, ... , MTl 
UENo 

I (LT * I Rodrl + I I UT * Ruvrl + I I d~v * Ruvrl) 
r=l dENo uEN VENo,u:t:v uEN vEN,u:t:v 

+ ~ (BT * d~O ROd,.)" DT VI E L 

I I Ruvrl :::; lSI - 1 VS c No and lSI ~ 2, l E L, r = 1, ... , MTl 
uES vES 

Ruvrl = 1 or 0 Vu, v E N, l E L, r = 1,···, MTl 

Surl ~ 0 Vu E N, l E L, r = 1,··· , MTl 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

The objective (30) minimizes the total distance traveled by the trucks. It is assumed that 

the total operational cost is proportional to the total traveled distance in our model. 

Constraints (31) enforce that each truck only leaves a depot at most once for each route it 

serves. Constraints (32) enforce that each node must be entered and exited by the same 
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truck in one route. Constraints (33) assure that the demand at each node must be satisfied 

by one or more routes. Constraints (34) formulate the relationship between two sets of 

decision variables. If no materials are delivered to a node in a route, then any truck 

serving this route does not stop at this node. Constraints (35) enforce truck capacity 

constraints. The quantity of materials measured in pallets delivered on a route cannot 

exceed the capacity of the serving truck. Constraints (36) guarantee that all the delivery 

tasks are completed within the required maximum duration, and includes load, unload, 

travel and break times between two consecutive trips for a truck. Instead of minimizing 

the delay time in their objective functions as done in other research (see [80], [81], [82] 

and [83] ), we use these constraints to assure quick response. Constraints (37) are sub-

tour elimination constraints. Constraints (38) and (39) are data type constraints for 

decision variables. 

Summing up constraints (34) over the routes of all trucks yields the following constraints: 

MTZ MTz 

III Rsurl ~ R~ * II Surl ~ 1 'tIu E No, 
lEL r=l sEN u lEL r=l 

(40) 

which implies that each node must receive at least one visit. Thus there is no need to add 

constraints (40) into our model. 

4.2.2 Solution Algorithm 

A heuristic algorithm is developed to solve the above VRP model. This algorithm is 

required to give quick response to decision requests, because a web-based decision 
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support system is developed based on this algorithm. A heuristic algorithm can give 

solution much faster than an exact solution, since VRPs are NP-hard. 

4.2.2.1 Solution Definition 

The data structure of a SNS VRP solution is defined first. A solution, denoted as S, is a 

set of routes served by a specific set of trucks without violating the maximum delivery 

duration constraints and truck capacity constraints. S = {Rl> R2,"', Ri,·", Rp}, P is the 

number of routes. Ri represents a valid route III solution S 

Ri = (ii, ai, hi, ti' Wi, (0, nil> ni2,"', niq' 0)), where li represents a truck or a virtual truck 

assigned to this route, li E L U VL; ai, hi E {OJ U R+, ai is the time of truck li leaving 

depot 0, and hi is the time of truck li returning to depot 0; ti is the duration that truck li 

travels along the route, and ti = hi - ai; Wi is the quantity of materials measured in 

pallets loaded on route Ri; (0, nil> ni2,"', niq' 0) is the visitation sequence of nodes on 

route Ri> which indicates a tour traveled by truck li starting from depot 0, visiting nodes 

nil> ni2,"', niq sequentially, and finally returning to depot o. According to the SNS VRP 

model, a valid route must satisfy the following two constraints: 

• hi::; Dr, i.e., all the delivery tasks must be completed within the required 

delivery duration; 

• Wi = l.}=l RDnij ::; Kli' i.e., the total load on a route cannot exceed the capacity 

of the assigned truck; 
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The objective function of solution S, denoted as reS), is the total travel distance of all 

routes in solution S. reS) = Lf=l C(Ra, where C(Ri ) is the total distance of route Rio 

Because a truck can serve more than one route in our model, the schedule of a truck or a 

virtual truck l, denoted as STI, can be calculated from solution S. Suppose that STI = 

the ith route served by truck l, ai is the time of truck l departing from depot 0 during the 

service for Rli , bi is the time of truck l returning to depot 0 during the service for Rli . 

Finish _ Time(l) is the time of truck l completing its deliveries. This function is defined as 

follows: 

F
· . h T· (l) {O, if truck l has no routes scheduled; 
InIS ime = b ·f k l h h did - n' 1 truc as n routes sc e u e ; 

According to the SNS VRP model, a valid schedule of a truck STI should satisfy the 

following constraints: 

• ai+l = bi + BT for i = 1,··· , n - 1, i.e., the time sequence of all trips taken by 

the truck; 

• Finish_Time(l):::; DT, I.e., all delivery tasks must be completed within the 

required delivery duration; 

4.2.2.2 Initial Solution Algorithm 

The algorithm used to construct an initial solution for our SNS VRP model is developed 

based on the Clarke and Wright saving algorithm with additional considerations of 
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duration constraints, truck capacity constraints, split deliveries and multiple routes per 

truck. 

Figure 7 demonstrates the structure of the initial solution algorithm. In "Initialization", 

the saving value matrix is built, and the Initial Route List (lRL) is formed. Each data 

element in the saving value matrix corresponds to a distance saving. For example, when 

two routes (0, "', i, 0) and (o,j,"', 0) can feasibly be merged as a single route 

(0,'" ,i,j,'" 0), sij = dio + d oj - dij is the saved distance corresponding to the data 

element at (i,j) of the saving value matrix. In IRL, the algorithm creates a route for each 

single served node, and no truck is assigned to those routes. After the initialization, the 

algorithm begins to merge or split the routes in I RL, then assigns available fitting trucks 

to them and put the routes with assigned trucks to the Finished Route List(FRL), until 

I RL is empty. F RL is the result of the initial solution. 

For each route R chosen from I R L, the algorithm examines the available largest truck 

with capacity Kmax , whose current schedule allows it to serve route R while not violating 

the required delivery duration constraint. If the current pallets w loaded in route R is less 

than Kmax (i.e., w < Kmax ), the algorithm searches routes from I RL which can be 

merged into route R and merges them into route R by following the typical Clark and 

Wright saving algorithm, until no feasible merge can be found in I RL. 

If w > Kmax , (i.e., even the largest truck cannot deliver the demanded materials to the 

served node with one visit,) the node has to be served by more than one route. In order to 

simplify the split deliveries policy and make their management easy, Kmax pallets of 

materials will be delivered to the node by the available largest truck with one dedicated 
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trip. The remaining w - Kmax pallets materials demanded at the node will be delivered 

by other routes. Correspondingly, route R is split into two routes. One loads Kmax pallets 

of materials, the largest truck is assigned to this route, the truck only visits the node and 

then return to the depot, and this route is put into F RL. The other loads the remaining 

w - Kmax pallets materials, and the route is put back into I RL for further processing. 

Once a route is completed with merge or split, it will be assigned to a truck. As pseudo­

code Assign_TruckC ) shows, the algorithm first searches for an available truck from 

the available truck list L, whose schedule allows it to serve the current route without 

violation of the required delivery duration constraint, and whose capacity fits the load on 

that route. If no truck is available, the algorithm searches for a fitting virtual truck from 

the Virtual Truck List (V L) with respect to the same constraints. If even a fitting virtual 

truck cannot be found, then the algorithm finds an appropriate truck type from the truck 

type list T L, creates a virtual truck based on it, assigns this virtual truck to the route and 

inserts this virtual truck into V L for potential future use. A virtual truck is not a physical 

truck, and represents a truck shortage. The virtual truck list V L is used to report truck 

shortages to the decision makers, and suggest the decision makers to add more trucks into 

the planning and re-solve the VRP. 
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Pick a route R 
with load w from 

IRL 

Check maximum available 
truck capacity Kmax and the 

corresponding available 
scheduling time ST 

w<Kmax 

Yes 

oes there exist a route R' can 
be merged into R without 
violating Kmax and sn 

Yes 

Merge R' into R 

No 

Split route R into two routes, one is route 
R with load Kmax, the other is route R' 
with load w · Kmax, and put route R' 

back into IRL 

NO--------~============--~--------------~ 

Assign a truck to 
route R, put R into 

FRL 

IRL is empty? 

Yes 

Figure 7. The initial solution algorithm. 
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The below is the pseudo-code of the initial solution algorithm: 

Algorithm InitiaLSolution(o, No, L, TL, d, LT, UT, BT, DT, V) 

/* d: the distance matrix between nodes, dij is the distance between node i and 
node j, i,j E {oJ U No */ 

/* the other parameters are interpreted in Section 4.2.1 */ 

Begin 

Step 1, Initialization: 

(1) Compute the distance saving matrix: suv = duo + dov - duv for each u, v E No, 
and u '* v; 

(2) Create a route Ru = (0,0,0, tw RDUJ (0, u, 0)) for each u E No, where tu = 
LT + UT + dou+d

uo ,and form an initial route list denoted as IRL = {Rulu E No}; v 
(3) Order suv in a non-increasing fashion, and form a sequenced list; 

Step 2, Split or merge routes, and assign a truck to routes or report a truck shortage by 
creating a virtual truck for a route: 

Construct a finished route list denoted as FRL = 0; 

While (lRL is not empty) Do 

Pick a route R = (0,0,0, t, w, (0, i, ... ,j, 0)) from IRL; 

(Kmax, ST) = Max_Available_TruckCapacity(R, L, VL, TL, DT, BT); I*Serachfor the 
largest truck. The found truck has capacity of Kmax pallets, and its corresponding 
available scheduling time is ST *1 

If (w > K ) Do I*Splz't */ max 

End If. 

If (w = Kmax) Do 

End If. 

(1) SplitR as two routes Rl = (0,0,0,t,Kmax,(0,i, .. ·,j,0)) and 
Rz = (0,0,0, t, w - Kmax, (0, i, .. · ,j, 0)); 

(2) Assign_ Truck(Rv L, V L, T L, BT, DT); I*Assign a truck for route 
Rl *1 

(3) Put Rl into FRL; 
(4) Put Rz back into IRL; 

1* Just assign a truck*1 

(1) Assign_Truck(R,L, VL, TL,BT,DT); I*Assign a truckfor route 
R*I 

(2) Put R into FRL; 

If (w < K ) I*Merge */ max 
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( 1) Search for the first saving value sui or Sjv in the saving list such 
that there exists route Ri = ((2), (2), (2), tv Wv (0, "', U, 0)) in 
IRL which ends with (u, 0) and satisfies t + ti - Sui - LT :::; ST 

v 
and W + Wi :::; Kmax , or there exists route 
R2 = ((2), (2), (2), t2, W2, (0, v,"', 0)) in IRL which starts with (0, v) 

and satisfies t + t2 - s~v - LT :::; ST and W + W2 :::; Kmax; 

(2) In the former case, merge Ri into R, update R = ((2), (2), (2), t + ti -

S~i _ LT, W + Wv (0,"', u, i,'" ,j, 0)), and remove Ri from IRL; in 

the latter case, merge R2 into R, update R = ((2), (2), (2), t + t2 -

s~v _ LT, W + W2, (0, i,'" ,j, v,"', 0)), and remove R2 from IRL; 

(3) Implement operations (1) and (2) to the current route R until no 
feasible merge exists; 

(4) Assign_Truck(R, L, VL, TL, BT, DT); 
(5) Put R into FRL; 

End If. 

End While. 

Return FRL; 

End. 

Procedure Max_Available_TruckCapacity(R, L, VL, TL, DT, BT) 

/* R: the current route to be processed */ 

/* suppose R = ((2), (2), (2), t, w, (0,"',0)) */ 

Begin Procedure 

Step 1, find a truck with maximum loading capacity from truck list L: 

(1) Solve the following problem: 
maxKI 
IEL 

Subject to 

Finish_ Time(l) + BT + t :::; DT for l E 

L and if truck l has already been assigned to at least one route; 

(2) If there is feasible solution l, do the following: 
If truck l has not been assigned to any route yet, Kmax = Kl , ST = DT; 

82 



If truck l has already been assigned to at least one route, Kmax = Kl , 
ST = DT - (Finish_Time(l) + BT) ; Return (Kmax,ST); 

(3) If there is no feasible solution, go to Step 2; 
Step 2, find a virtual truck with maximum loading capacity from virtual truck list VL: 

(1) Solve the following problem: 
maxK1 
lEVL 

Subject to 

Finish_Time(l) + BT + t ~ DT for l E 

V L and if truck l has already been assigned to at least one route; 

(2) If there is a feasible solution l, do the following: 
If virtual truck l has not been assigned to any route yet, Kmax = Kl , 
ST = DT; 
If virtual truck has already been assigned to at least one route, Kmax = 
Kl ,ST = DT - (Finish_Time(l) + BT) ; 
Return (Kmax,ST); 

(3) If there is no feasible solution, go to Step 3; 
Step 3, find a truck type with maximum loading capacity from truck type list T L: 

Find the truck type l with maximum loading capacity in TL, Kmax = Kl , 
ST = DT, then Return (Kmax,ST). 

End Procedure 

Procedure Assign_ Truck(R, L, V L, T L, BT, DT) 

/* R: the current route to be processed */ 

/* suppose R = (0,0,0, t, w, (0,"',0») */ 

Begin Procedure 

Step 1, find a truck from truck list L: 

(1) Solve the following problem: 
minlEL Kl - W /* use the trucks in a saving way by selecting the capable 
truck with the smallest available capacity */ 
Subject to 
K1-w;::: 0; 
Finish_Time(l) + BT + t ~ DT for l E 

L and if truck l has already been assigned to at least one route; 

(2) If there is a feasible solution l, assign truck l to route R: 
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If truck 1 has not been assigned to any route yet, update 
R = (l,O,t,t,w,(o,''',o)); 
If truck 1 has already been assigned to at least one route, update R = 
(l, Finish_Time(l) + BT, Finish_Time(l) + BT + t, t, w, (0, "',0)); 
Return; 

(3) If there is no feasible solution, go to Step 2; 
Step 2, find a virtual truck from virtual truck list VL: 

(1) Solve the following problem: 
minZEVL Kz - W /* use the virtual trucks in a saving way by selecting the 
capable truck with the smallest available capacity */ 

Subject to 
Kz - W ~ 0; 
Finish_Time(l) + BT + t ::; DT for 1 E 

V L and if truck 1 has already been assigned to at least one route; 

(2) If there is a feasible solution l, assign virtual truck 1 to route R: 
If virtual truck 1 has not been assigned to any route yet, update R = 
(l, 0, t, t, w, (0, "',0)); 
If truck has already been assigned to at least one route, update 
R = (l, Finish_Time(l) + BT, Finish_Time(l) + BT + t, t, w, (0, "',0) ); 
Return; 

(3) If there is no feasible solution, go to Step 3; 
Step 3, create a new virtual truck for reporting a truck shortage: 

(1) Solve the following problem: 
minKz - W 
ZETL 
Subject to 
Kz - W ~ ° for lET L; 

(2) With the solution 1 obtained above, create a new virtual truck vl belonging to 
truck type l, assign virtual truck vl to route R, update R = (vl, 0, t, t, w, (0, "',0)) 
, and insert vl into V L. 

End Procedure 

4.2.2.3 Improvement Algorithm 

A Simulated Annealing (SA) algorithm is developed to improve the initial solution. 

Neighborhood of a Solution 
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There are two types of operations to alter a solution 5 to a neighboring solution 5' in our 

SA algorithm design: Shift and Exchange. Randomly select two routes Rl and Rz from 

solution 5, first try to apply Shift operation on these two routes ; if there is no feasible 

Shift operation, then apply Exchange operation on these two routes. In the following, the 

two types of operations are explained: 

1. Shift: A shift operation shifts one node from one route to another route. As shown 

in Figure 8, node i is removed from the route it belongs to, and is inserted before 

node} in another route. 

Figure 8. Shift operation. 

Suppose Rl = (ll1al1bl1tl1wl1(o,···,i -1,i,i + 1,···,0)) 

Rz = (lz, a2, bz, t2, wz, (0, ... ,) - 1,}, ···,0)) , and suppose node i is removed from Rl 

and inserted before node} in R2 , thus solution 5 is transformed into solution 5'. The 

change of travel distance of Rl is ~1 = d i- U +1 - (d i- U + d U+1)' the change of travel 
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distance of R2 is ~2 = dj_l,i + di,j - d j - 1,j, therefore the change of the total distance 

caused by this shift operation is ~ = [(5') - [(5) = ~1 + ~2' Now the problem is to 

determine node i and node j to minimize ~ in order to obtain a neighboring solution 5' 

with a lower total distance subjecting to the following two constraints: (1) the shift 

operation does not violate the capacity constraint of truck 12 , i.e., W2 + DQi :5 K1z , where 

DQi is the quantity of materials delivered to node i originally in route R1 ; (2) the shift 

operation does not violate the duration constraint of truck 12, i.e., Finish_ Time(l2) + ; + 

UT :5 DT. Because the number of nodes in the two routes is limited, the problem can be 

solved by enumeration. The selection of nodes i and j determines a node shift operation 

from Rl to R2. In the same way, a possible node shift operation from R2 to Rl can also be 

found. Finally, the shift operation which results in the least total travel distance is chosen 

to be applied to transform the current solution 5 to a neighboring solution 5' by doing the 

following operations (in case that the shift operation from Rl to R2 is applied): 

(1) Remove node i, insert it before node j, update R 1 = (Iv av hi + Llv
l 

-

UT t + Lll - UT Wi - DQ· (0 ... i - 1 i + 1 ... 0») 
J 1 V ' P J J J I I 

and 

(2) Adjust the schedule of truck Ii by shifting its route schedules from the 

completion time of serving Rl with a period of Lll - UT; v 

(3) Adjust the schedules of truck 12 by shifting its route schedules from the 

completion time of serving R2 with a period of LIz + UT. v 
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2. Exchange: For two selected routes, an exchange operation moves a node from 

each route to the other route. As shown in Figure 9, node i is moved from the left 

route to the right route, and node j is moved from the right route to the left route. 

Figure 9. Exchange operation. 

Suppose Ri = (lvavbvtvwv(o,···,i -l,i,i + l,···,n-l,n,···,o») R2 = 

(l2,a2,b2,t2,w2,(o,···,m-l,m,···,j-l,j,j+l,···,o») , suppose that node i is 

removed from Ri and inserted before node min R2, and node j is removed from R2 and 

inserted before node n in Ri , thus solution S is transformed into solution So. The change 

of travel distance of Ri is ~i = di- i ,i+i - di- i ,i - d i,i+i + dn - i ,j + djn - dn - i ,n , the 

change of travel distance of R2 is ~2 = dj - i ,j+i - dj - i ,j - dj ,j+i + dm- i ,i + dim -

dm - i ,m , therefore the change of the total travel distance caused by the exchange 

operation is ~ = [(5') - [(5) = ~i + ~2. The problem is to determine node i , j , m and 

n to minimize ~ in order to obtain a neighboring solution 5' with a lower total travel 
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distance by applying an exchange operation. The selection of node i, j, m and n must 

satisfy the following constraints: (1) The exchange operation cannot violate the capacity 

(2) The exchange operation cannot violate the duration constraints of truck II and 12 , i.e., 

Finish _ Time(ll) + ~1 ~ DT and Finish_ Time(l2) + ~z ~ DT. Once the nodes i, j, m and 

n are determined by enumeration, the exchange operation is determined to transit solution 

5 to 5' by executing the following operations: 

(1) Remove node i from R1 , and insert it before node m in R2 ; 

(2) Remove node j from R2 , and insert it before node n in R1 ; 

(3) Update 

1 ... n - 1 J' n .. , 0»)' 
" J J J , , 

(4) Update 

1, i, m,· .. ,j - 1,j + 1, ... ,0»); 

(5) Adjust the schedule of truck II by shifting its route schedules from the 

completion time of serving Rl with a period of ~1; 

(6) Adjust the schedules of truck 12 by shifting its route schedules from the 

completion time of serving R2 with a period of LIz. 
v 

The pseudo-code for determining a neighbor solution of solution 5 is provided below: 

Procedure Neighbor _ Solution(5) 
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1* S is the current solution * I 

Begin Procedure 

Step 1, randomly select two different routes Rl and R2 from solution S; 

Step 2, shift operation: 

(1) Find a shift operation which can be applied on the two routes feasibly; 
(2) If a feasible shift operation can be found, transit solution S to a neighboring 

solution S' by applying the shift operation, then return S'; otherwise, go to step 3; 
Step 3, exchange operation: 

(1) Find an exchange operation which can be applied on the two routes feasibly; 
(2) If a feasible exchange operation can be found, transit solution S to a neighboring 

solution S' by applying the exchange operation, then return S'; otherwise, go to 
step 1; 

End Procedure 

The Simulated Annealing Algorithm and the Cooling Schedule 

The effectiveness of a SA algorithm is affected by its cooling schedule. In our algorithm, 

the cooling schedule is determined by five parameters: the initial temperature To, the 

cooling ratio of temperature a, the declining ratio of epoch length f3, the initial epoch 

length and the maximum number of epochs Nmax . According to [87], the initial 

temperature To should be sufficiently large. In our algorithm, the maximum difference in 

cost between any two neighboring solutions is chosen as its value. In our design, To is set 

as the objective value of the initial solution So. a can be a value between 0.8 and 0.99. f3 

can be a value between 0.8 and 1. Nmax is set as 200. In addition, the initial epoch length 

is the number of possible neighborhood solutions that can be transited from the initial 

solution, which is Mso x (Mso - 1) according to our neighborhood solution algorithm, 

where Mso is the number of routes in the initial solution. The pseudo-code of the 

simulated annealing algorithm is shown below: 
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Algorithm SimulatedAnnealing(So, To, a, p, Nmax) 

I*So: the initial solution obtained from the Initial_Solution algorithm;*1 

I*To: the initial temperature;*1 

I*a: the cooling ratio of temperature; *1 

I*P: the declining ratio of epoch length;*1 

I*Nmax : the maximum number of epochs;*1 

Begin 

currS = So; 1* currS is the current solution*1 

currCost = [(So); 1* currCost is the objective value of the current solution*1 

bestS = currS; 1* bestS is the best solution seen so far*1 

bestCost = currCost; 1* bestCost is the objective value of the best solution *1 

count = 0; 

epochLen = Mso x (Mso - 1); 1* epochLen is the epoch length, Mso is the number of 

routes in solution So *1 

While (count::; NmaJ Do 

For (int i = 0; i < epochLen; i + + ) Do 

newS = Neighbor_Solution(currS); 

new Cost = [(newS); 

I'1Cost = newCost - currCost; 

If (I'1Cost ::; 0) Do 

currS = newS; 

currCost = newCost; 

If (currCost < bestCost) Do 

bestS = currS; 

bestCost = currCost; 
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End If. 

Else Do 

( 
_t1Costj ) If Random( ) < e T Do 1* Random( ) returns a 

random value between 0 and 1 *1 

currS = newS; 

currCost = newCost; 

End If. 

End If. 

End For. 

count + +; 

T = T x a; 

epochLen = epochLen x f3; 

End While. 

Return bestS; 

End. 

4.3 Experiments and Result Analysis 

The SNS VRP solution is implemented in Microsoft C#. The implementation is 

compared to the best known algorithms. Because our SNS VRP solution is the only 

solution for solving single-depot multiple-vehicle VRP allowing split deliveries and more 

than one trip per vehicle with duration constraints, there is no test instance specifically 

for its benchmarking. Therefore, the SNS VRP has to be altered to a capacity constrained 

VRP by disallowing split deliveries and more than one trip per vehicle and relaxing the 

duration constraints. Table 9 in Appendix C shows the results of running our solution on 
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a set of instances for testing capacity constrained VRP solutions [125]. Table 6 

summarizes the information of Table 9. The average distance reduction shows how much 

our solution outperforms (specified by the positive percentage) or underperforms 

(specified by the negative percentage) the best practice solution in terms of the total 

traveling distance. 

Table 6 Summary of Capacity Constrained VRP Test Instances 

Test Instance Group Average Execution Time (seconds) 
Average Distance 

I Reduction 

Augerat, et al. Set A 2.41 12.19% 

Augerat, et al. Set B 3.80 1.40% 

Augerat et al. Set P 6.62 -5.90% 

Christofides and Eilon 10.32 -5.87% 

Fisher 12.43 -9.28% 
Gillet and Johnson 72.00 39.21% 

Christofides, Mingozzi, and Toth 61.51 -12.75% 

Tables 10, 11 and 12 show the results of running our solution on Solomon test instances 

for testing capacity constrained VRPs with time windows respectively as there are 25, 50 

and 100 visited nodes [126] . Table 7 summarizes the results of Tables 10, 11 and 12. The 

time window constraints in these test cases are specified as the required delivery duration 

constraints in our model. Therefore, the comparison between our solution and the best 

practice solution in terms of the total travel distance gives us some hints on how to 

improve our solution for further research. 

Table 7 Summary of Solomon Test Instances 
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Solomon_25_C1 

Solomon 25_R1 
Solomon_25_RC 
1 
Solomon_25_C2 

Solomon_25_R2 
Solomon_25_RC 
2 

Solomon_50_RC 
1 
Solomon 50_C2 

Solomon_50_R2 
Solomon_50_RC 
2 
Solomon_100_C 
1 

Solomon_100_R 
C1 

Solomon_100_R 
2 
Solomon_l00_R 
C2 

Best Practice 
Solution 

Avel'8l Averace 
e#of Distanc 
Trucks e 

3 190.6 

5 463.4 

3.3 358.2 

214.45 

2.7 382.1 

4.9 361.8 

8.4 778.24 

7 750.6 

2.8 357.91 

4.2 624.2 

4.4 585.4 

10 828.38 

11.9 1209.9 

11.5 1384.16 

3 589.86 

2.7 951.91 

3.3 1119.35 

Our Solution 

Averag Avel'8l 

e#of 
e Average Execution 

Distanc Time (seconds) 
Trucks 

e 
3 193.42 0.87 

4.1 386.95 1.04 

3.1 316.48 2.97 

1 215.91 0.04 

1 358.2 0.05 

0.03 

5 369.94 5.75 

6.9 618.25 12.46 

7.3 739.53 17.15 

2 370.84 3.19 

2 532.08 0.85 

1.3 425.55 0.17 

10 978.13 36.03 

10.8 977.1 66.9 

11 1143.92 64.85 

3.4 697.56 28.18 

2 746.56 20.74 

2 785.19 20.90 

From the results, the following points can be summarized: 

-1.49% 

15.05% 

10.68% 

28.21% 

-2 .25% 

18.91% 

-1.25% 

-3.62% 

13.03% 

26.46% 

-18.08% 

17.12% 

15.54% 

-18.26% 

19.90% 

27.08% 

(1) The execution time of our solution satisfies the requirement of web-based 

decision support system in terms of response time. 
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(2) From Table 6, it can be seen that our solution outperforms or underperforms 

around 10% compared to the best practice solution for the chosen problems, thus 

the solution can be considered acceptable. 

(3) From Table 7, our solution is relatively weak to deal with the test instances in 

which the visited nodes are clustered compactly within several sparse 

geographical areas. Although the nodes are distributed relatively evenly over a 

geographical area in our problems, this weakness needs further investigation and 

should be improved. 
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CHAPTER 5 LOCATION-ROUTING ANALYSIS OF 

EMERGENCY SCENARIO 

5.1 Introduction 

Usually the effectiveness of a relief operations plan is evaluated by drills or computer 

simulations. However, it is very difficult to apply the same evaluation approaches to the 

relief operations plans for responding to large-scale emergencies. For example, it is very 

costly to perform a drill exercise, because a large number of resources including staff, 

trucks and other necessary resources are required to perform a drill. Due to the lack of 

historical data, it is very difficult to simulate and analyze the relief operations plans for 

responding to large-scale emergencies with computer simulation. Large-scale 

emergencies are unpredictable low-frequency events, thus little data has been collected 

for computer simulations. Moreover, the data set for simulating large-scale emergencies 

could be very large and hard to be created accurately by mathematical models. 

In this chapter, a binary facility location model and the SNS VRP solution algorithm are 

integrated and used to evaluate the effectiveness of alternate operational plans relevant to 

location decisions and transportation decisions of the trucks under an assumed large-scale 

emergency scenario, as shown in Figure 10. The location solution algorithm and the 
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outing solution algorithm are integrated as one module. The information associated with 

RSSs, RDNs and PODs including their locations, capacity and demand, and the list of 

optional truck types are inputs to the module. The output of the module includes the open 

RSSs, RDNs and the corresponding assignment between these sites, the number of trucks 

of various types to be selected for the best performance, and the corresponding routing 

schedule of each truck. 

RSSs, RDNs, PODs, Truck 
Types 

location 
Algorithm 

Routing 
Algorithm 

Open RSSs, RDNs, Number of 
Different Types of Trucks, 
Routing 

Figure 10. The location-routing analysis of large-scale emergency scenarios . 

• RSS 

, RDN 

• POD 

Figure 11. The relationship between location-assignment solution and VRPs. 

The location solution is taken as the input to the routing algorithm. Based on the obtained 

location solution, a set of similar VRPs are created. Figure 11 shows a simple example. In 

the left, a location solution is shown: PODs 1, 2 and 3 are assigned to RDN a; PODs 4 
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and 5 are assigned to RDN b; POD 6 and RDNs a, b are assigned to the only open RSS. 

In the right, three VRPs are created: the first one has RDN a as the depot, and PODs 1, 2 

and 3 as the served nodes; the second one has RDN b as the depot, and POD 4 and 5 as 

the served nodes; the third one has the RSS as the depot, RDN a, b and POD 6 as the 

served nodes. The routing solution algorithm solves them individually, and summarizes 

all the solutions of location and routing as the output of location-routing analysis. 

5.2 Models and Solution Algorithm 

A 0-1 integer mathematical model is formulated to determine open RSSs, open RDNs 

and assignment between RSSs, RDNs and PODs. In this model, instead of minimizing 

the total operational cost, the objective is to minimize the total linked distance from each 

open RSS or RDN to its assigned nodes. In addition, we use parameters 51 and 52 to limit 

the distance between each RSS and its assigned RDNs, between each RSS or RDN and 

its assigned PODs. The solution of this model will be fed into the SNS VRP solution 

algorithm presented in Chapter 4. The parameters 51 and 52 could be used to control the 

closeness between each depot and its served nodes, thus allowing the VRP solution to 

give feedback control to the location solution. 

Sets: 

I: set of available RSSs; 

J: set of available RDNs; 

K: set of open PODs; 

Parameter: 

Dk : number of pallets demanded at POD k, k E K; 
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Sl: maximum allowable distance between RSSs and the assigned RDNs; 

S2: maximum allowable distance between RDNs and the assigned PODs, or RSSs and 

the assigned PODs; 

C{ maximum number of pallets that can be handled at RDN j,j E J; 

p: the required number of open RSSs; 

aij: distance from RSS ito RDN j; 

bjk : distance from RDN j to POD k; 

Cik: distance from RSS i to POD k; 

Decision Variables: 

1}k = {~ 

Models: 

if RSS i is open; 
otherwise; 

if RDN j is open; 
otherwise; 

if RDN j is assigned to RSS i; 
otherwise; 

if POD k is assigned to RDN j; 
otherwise; 

if POD k is assigned to RSS i; 
otherwise; 

min L L aij * Xij + L L bjk * Yjk + L L Cik * Zik 

iEl jE] jE] kEK iEl kEK 

Subject to: 

L Xij = \tj 'if j E ] 

iEl 
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I Zik + I 1jk = 1 'V k E K 
iEI jE} 

IUi=p 
iEI 

aij *Xij:::; S1 'Vi E I,j EJ 

bjk * 1jk :::; S2 'V j E J, k E K 

Cik * Zik :::; S2 'Vi E I, k E K 

I 1jk * Dk :::; Cj 'Vj EJ 
kEK 

x., < U, 'V i E I,)' EJ !] - ! 

x., < V. 'Vi E I,)' EJ !] - ] 

1jk:::; 1'i 'V k E K,j EJ 

Zik :::; Ui 'V k E K, i E I 

Xij = lor 0 'Vi E I,j EJ 

1jk = 1 or 0 'Vj E J, k E K 

Zik = 1 or 0 'Vi E I, k E K 

Ui = 1 or 0 'Vi E I 

1'i = 1 or 0 'Vj EJ 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

The objective (40) minimizes the total linked distance of the SNS logistics network. 

Constraints (41) assure that each open RDN must be served by exactly one RSS. 

Constraints (42) assure that each open POD must be served by exactly one RDN or one 

RSS. Constraints (43) enforce that only a required number of RSSs can be open. 

Constraints (44), (45) and (46) enforce that only the nodes within a specified distance 

away from a RSS or RDN can be assigned to it. Constraints (47) are throughput capacity 

constraint at RDNs. Constraints (48), (49), (50) and (51) enforce that the served nodes 
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can only be assigned to open RSSs or RDNs. Constraints (52), (53), (54), (55) and (56) 

are binary variable constraints. 

Given a specific problem, the location solution is fed into the SNS VRP solution 

algorithm. For each open RSS or RDN, a VRP is formed. Each open RSS or RDN is 

considered as the depot, and the nodes assigned to it are the served nodes to be visited by 

the trucks departing from the depot. The demand at each RDN is the sum of the demands 

at the PODs assigned to it. The control parameters of VRPs including the required 

maximum delivery duration, break time, load time and unload time could be different 

depending on the requirements at each depot. Instead of a list of physical trucks, a list of 

optional truck types is input, since this module is used to investigate the best 

preparedness planning policies for trucks. Besides the number of various types of trucks, 

the output also includes the routing schedules of each truck, the number of late deliveries 

and the average lateness. 

5.3 Scenario Analysis 

Our models and solutions are applied to an assumed large-scale emergency scenario. A 

number of people infected by a virulent strand of a pandemic influenza virus are detected 

across Kentucky, which could cause a state-wide outbreak within a short duration. After 

Kentucky state authorities and the federal authorities evaluate the situation together, the 

federal authorities decide to deliver vaccines to the entire state within a specified time 

period. 

100 



Kentucky state authorities must make plans to receive the vaccine packages and distribute 

them to the affected population across the entire state. Table 13 displays the population of 

all counties in Kentucky obtained from 2010 census [62] and the corresponding vaccine 

demands. Two demand modes are estimated: the light demand mode assumes that every 

5,000 persons need one pallet of vaccine; whereas the heavy demand mode assumes that 

every 1000 persons need one pallet of vaccine. The allocation of vaccine to a county is 

proportional to the population of that county with respect to one of the above two demand 

modes. 

The locations of candidate RSS sites, candidate RDN sites and POD sites are provided by 

Kentucky state government. Under this scenario, all the PODs across the entire state are 

supposed to be open. The vaccine allocated to a county is evenly allocated to the open 

PODs within that county. The routing distance between any two locations is calculated by 

a program using Microsoft Bing Map APIs to form a distance matrix. 

The optional trucks include 13 different types of trucks with 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20,22,24 and 26 pallets loading capacities respectively. In the entire logistics system, the 

transportation consists of two stages. In the first stage, the trucks begin from RSSs and 

deliver the vaccine from RSSs to their assigned RDNs or PODs. In the second stage, the 

trucks begin from RDNs and deliver the vaccine from RDNs to their assigned PODs. 

Sufficient number of trucks must be prepared and pre-positioned at each open RSS or 

RON before the transportation. The required maximum delivery duration for the first 

stage is denoted as DT1, whereas the required maximum delivery duration for the second 

stage is denoted as DT2. The break time in both stages BT is set as 1 hour by default. 
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Given different DTl and DT2, performance measures such as number of late trips, 

average lateness, trucks resource requirements, total travel distance and total load 

capacity can be used to evaluate alternate solutions. 

Based on the experiments with different DTl and DT2 under this scenario, the following 

issues will be discussed: (1) The Feasible DTl and DT2; (2) Trucks Resource Planning 

Policies; (3) Indirect Shipment vs Direct Shipment. 

5.3.1 The Feasible DTl and DT2 

With respect to the requirement that the vaccine must be delivered to all the PODs across 

the entire state of Kentucky within the required duration, what would be the feasible DTl 

and DT2 in terms of the acceptable number of late trips and the acceptable average 

lateness? Figures 12-19 displays the number of late trips and the average lateness of 

each transportation stage under both demand modes. 

Figures 12 and 13 indicate that there is no late trips in the first stage transportation under 

the heavy demand mode if the delivery duration constraint is 18 hours. Actually 

depending on the extent of relaxation of the duration requirements, any duration 

constraint from 14 hours to 18 hours could be acceptable. From Figures 14 and 15, 

similar results can be obtained under the light demand mode. Therefore, it can be 

concluded that given sufficient number of trucks, the effect of duration constraint on the 

number of late trips and the average lateness are not affected by the demand mode in the 

first stage transportation. 
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Figure 16 and 17 indicate that a transportation plan with a duration constraint from 6 

hours to 10 hours can be acceptable for the second stage transportation under the heavy 

demand mode in terms of the number of late trips and the average lateness. Figure 18 and 

19 shows the same results under the light demand. Therefore, it can be concluded that the 

effect of duration constraint on the number of late trips and the average lateness does not 

matter with the demand mode in the second stage transportation, given enough trucks. 

Generally, based on the above observations, the following pattern relevant to feasibility 

of SNS operations within a specific area can be concluded: 

Given sufficient number of trucks, how soon to complete the deliveries is 

determined not by the demand at nodes, but by the locations of sites and the 

corresponding geographic structure. 
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Figure 12. The number of late trips of 1 SI stage transportation under heavy demand. 
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Figure 13. The average lateness of 1 SI stage transportation under heavy demand. 
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Figure 14. The number of late trips of 151 stage transportation under light demand. 
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Figure 16. The number of late trips of 2nd stage transportation under heavy demand. 
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Figure 18. The number of late trips of 2nd stage transportation under light demand. 
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Figure 19. The average lateness of 2nd stage transportation under light demand. 
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5.3.2 Truck Resource Planning Policies 

Adopting the feasible operations plans in terms of DTl and DT2 obtained in Section 

5.3 .1, Figures 20-23 display a set of optimal truck resource preparedness plans for each 

stage of transportation under the heavy demand mode and the light demand mode. The x-

axis lists the truck types in terms of their loading capacity measured in pallets; the y-axis 

displays the corresponding number of each type of trucks to be selected in the optimal 

plan. Figure 20, 21 and 22 indicates that big trucks are preferred for the first stage 

feasible transportation plans under each demand mode and the second stage 

transportation plans under the heavy demand mode. Figure 23 indicates that the feasible 

operation plans for the second stage transportation under the light demand mode requires 

more smal l trucks for short distance deliveries compared to the previous cases, especially 

if the duration constraint is short. 
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Figure 20. The number of different trucks of 1st stage transportation when DTl=18 hrs 
under heavy demand. 
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5.3.3 Indirect Shipment vs Direct Shipment 

In our solutions, there are two ways to transport the relief materials from RSSs to PODs. 

One is two-stage indirect shipment, by which the materials are shipped from RSSs to 

PODs via RDNs. The other is single-stage direct shipment, by which the materials are 

shipped from RSS to PODs directly. Using our software module, we can compare the 

performance of these two ways . Table 8 lists eight candidate solutions. Solution A, B, C 

and C are indirect shipment plans following the feasible duration constraints DTl and 

DT2 obtained from the previous experiments, but the number of open RDNs is reduced 

stepwise by 5 from solution A to D. Solution E, F, G and H are direct shipment plans, in 

which there is no RDNs to be open. The required maximum delivery duration indicated 

by DTl is reduced stepwise by 2 from solution E to H. The performance of the above 
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solutions is compared in terms of the total travel distance, the total load capacity, the 

number of late trips and the average lateness under both demand modes in Figures 24-

31. The total load capacity is calculated by Lk Ck Nk, where k denotes the type of trucks, 

Ck denotes the loading capacity of truck type k, and Nk denotes the number of trucks of 

type k in the corresponding solution. 

Table 8 The Candidate Shipment Solutions 

# of open RDNs 

20 
15 
10 

6 5 

0 0 

F 22 0 0 

G 20 0 0 

H 18 0 0 

Under the heavy demand mode, Figure 24 shows that direct shipment solution E, F and G 

outperform all the indirect solutions in terms of the total travel distance. Solution F and G 

also outperform all the indirect shipment solutions in terms of responsiveness (i.e. shorter 

delivery duration) . Figure 25 shows that all the direct shipment solutions require less total 

load capacity than all the indirect solutions, thus the direct shipment solutions use fewer 

trucks than the indirect shipment solutions to accomplish all the delivery tasks. Figures 

26 and 27 shows that direct shipment solutions E and F have no late trips, and direct 

shipment solution G i acceptable in terms of lateness. 
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Figures 28-31 show that the results under the light demand mode have the similar 

pattern as under the heavy demand mode. 
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Figure 24. Comparison of total travel distance among the candidate solutions under heavy 
demand. 
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Figure 25. Comparison of total load capacity among the candidate solutions under heavy 
demand. 
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Figure 27. Comparison of average lateness among the candidate solutions under heavy 
demand. 
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Figure 28. Comparison of total travel distance among the candidate solutions under light 
demand. 
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Figure 29. Comparison of total load capacity among the candidate solutions under light 
demand. 

114 



35 

30 

25 

20 · 

15 

10 

5 

0 
A 

Number of Late Trips under Light 

Demand 

• Number of Late Trips 

B C 0 E F G H 

Figure 30. Compari on of number of late trips among the candidate solutions under light 
demand. 

1.2 

1 

0.8 

0.6 l- t--

0.4 l- t---

0.2 l- t---

o I-

A B 

Average Lateness under Light 

Demand 

r-

- r-

- r-
• Average Lateness (hrs) 

~ - - r-

f-- - - t-

c o E F G H 

Figure 31. Comparison of average lateness among the candidate solutions under light 
demand. 

In general, the direct shipment solutions outperform the indirect shipment solutions. 

Therefore, we suggest that removing the middle level warehouse RDNs and adopting 

direct shipment from RSSs to PODs could improve the total performances as well as 
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reduce the total cost. However, the following issues relevant to the above suggestions 

have to be discussed: 

( 1) There is an assumption behind the above suggestions, that our model and the 

corresponding solution algorithm always can provide optimal or near-optimal 

solutions. However, there could be alternative models or solution algorithms 

which could provide better solutions than that proposed in this dissertation. 

Moreover, the effectiveness of our solutions must be demonstrated via practical 

drills, simulation or other analytical approaches. 

(2) In a direct shipment plan, a truck has to be driven continuously for longer time 

than in an indirect shipment plan. However, a driver is only allowed to drive for a 

specified period in one day. According to the law, legal driving time is 11 hours 

of driving with 10 hours of break thereafter [127]. Therefore, an optimal practical 

shipment solution should be constrained by the drivers' legal driving time. 

Moreover, a driver scheduling algorithm should be developed, or the middle level 

warehouse RDNs should be changed as a set of relay points for drivers switching 

in the direct shipment solutions. 
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CHAPTER 6 CONCLUSION 

In this chapter, the contributions of this research are outlined, and several potential ideas 

for future research are discussed. 

6.1 Contributions 

This research gives the following two contributions: 

(1) It provides a practical solution for the SNS distribution planning within a state. In 

this research, a transshipment and location model is formulated to determine the 

open facilities and the transshipment quantity of materials between facilities. A 

model for VRP and a corresponding solution algorithm is developed to determine 

the routing of trucks for deliveries. We believe that it is the first multiple-vehicle 

routing model with duration constraint and capacity constraint and allowing split 

deliveries as well as multiple trips per vehicle. Based on the two models and 

solutions, a web-based SNS planning tool is developed to assist SNS staff to 

make decisions. 

(2) A binary location model is formulated to determine the open facilities and their 

assignment relationship in Chapter 5, and the corresponding solution algorithm is 

integrated with the previous solution algorithm for the SNS VRP as a large-scale 

emergency scenario analysis module. Given the real data of Kentucky fed into 
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the analysis module, three issues are discussed for better logistics planning: the 

feasible operation plans in terms of duration constraint, the truck resource 

preparedness planning in terms of truck capacities, and the comparison between 

direct shipment and indirect shipment. 

6.2 Further Work 

Based on the current research, we can extend this work in three specific directions, and 

we can also solve the similar problems with a more creative approach. 

6.2.1 The Practical Extensions of the Current Work 

(1) Develop a fast solution algorithm for solving the SNS transshipment and location 

model presented in Section 3.3 

Currently the solution of the SNS transshipment and location model is exact, thus 

as the size of the problem becomes larger (i.e., the number of RSSs, RDNs and 

PODs is increased), the execution of the solution could become much slower. 

Therefore, it is very necessary to develop a fast solution for solving the model. 

The fast solution could be implemented by a bender decomposition algorithm or a 

heuristic algorithm. 

(2) Develop a "routing-first, location-second" heuristic algorithm for solving two­

level SNS location problem 

Some states adopt a three-level of logistics network design presented in this 

dissertation as in Kentucky, whereas other states adopt a two-level SNS logistics 
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network design as in Texas. In the latter, the logistics network only consists of 

RSSs and PODs, more than one RSSs could be open, and the relief materials are 

shipped from RSSs to PODs directly. This simpler structure allows a "routing­

first, location-second" approach to combine location and routing decisions. With 

this approach, more effective operations plans can be made to distribute the relief 

materials faster. First all the open PODs are divided into a set of clusters based on 

their geographic closeness, a route is formed for each cluster. Second each route 

is assigned to its closest available RSS. 

(3) Develop location model and vehicle routing model of SNS logistics network for 

vendor managed inventory 

Federal SNS authorities prepare two types of stockpiles. One is a 12-hour push 

package, which is shipped from federal warehouse to the affected state directly as 

the first batch relief materials within 12 hours. The other is vendor managed 

inventory, which is shipped from the vendors to the affected area as more specific 

additional materials are required. Evidently the models and solutions in this 

dissertation focus on solving the problems relevant to the former case. However, 

in the latter case, more issues such as vendor selection, the transportation from 

vendors to the affected area and so on need to be considered, thus a set of new 

models and solutions need to be developed. 
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6.2.2 Intelligent Agent-based Transportation Planning and Directing System 

for Large-scale Emergency Relief Operations 

Our current models and solutions assume that all the demand information is revealed and 

all the resources are ready before the operations begin, there is no change during the 

operations and thus the decisions in the beginning are committed until the end of 

operations. However, that usually is not the real case. During a large-scale emergency, 

the situation is full of uncertainties, especially as the emergency can destroy or disturb 

the resources such as trucks, highway, truck drivers and so on. Moreover, most probably 

the demand information could be revealed incrementally over time. Thus, it is necessary 

to develop a flexible decision support system which can capture the real-time information 

of changing situation including demands and available resources, and dynamically assign 

and deliver those resources to the demanding sites. 

Inspired by the agent-based scheduling system for real-time transportation problems 

introduced in [128], we can develop a vehicle-based distribution planning system 

deployed for a large-scale emergency. One of the aims of this research is to use agent­

based simulation to explore the essential techniques for developing such a system in 

practice, and investigate the feasibility or effectiveness of developing or deploying such 

systems. 

In this system, a control center, warehouses, PODs, trucks and drivers are regarded as 

agents. All of them are connected with some wireless communication technologies, thus 

they can send data message to each other. All of them are equipped with a computer with 
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specific computation capabilities, thus the data can be processed. Once a POD sends out a 

demand request to the control center, the control center broadcasts this request to all the 

warehouses and trucks in the system. Then warehouses and trucks bind each other by 

negotiation, form bids, and send the bids to the control center. Each bid represents an 

operation plan corresponding to the demand request. The control center selects the best 

bid to execute in terms of the performance requirements of different agents and the entire 

system. This system is agent-based multiple-goal decision support system based on 

auction mechanism. The research will focus on exploring the best rules or protocols to 

implement the system by simulation. 
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APPENDIX A THE LINGO FILE OF MATHEMATICAL 

model : 
sets : 

MODELl 

RSSs/RSSl, RSS2/: rssOpened, rssFixedCost; 
RDNs/RDNl .. RDNIO/: opened, RDNFixedCost; 
PODs/PODl .. POD20/; 

LnkRSSRDN(RSSs, RDNs): timeRSSRDN, distanceRSSRDN; 
LnkRDNPOD(RDNs, PODs): timeRDNPOD, distanceRDNPOD; 

Lnk3(RSSs, RDNs, PODs): path; 
LnkRSSPOD(RSSs, PODs); 

endsets 

data : 
RDNFixedCost = @OLE ('cover3.xlsx', 'FixedCost'); 
timeRSSRDN = @OLE ('cover3.xlsx', 'timeRSSRDN'); 
timeRDNPOD = @OLE ('cover3.xlsx', 'timeRDNPOD'); 

distanceRSSRDN = @OLE ( , cover3 . xlsx', 'distanceRSSRDN'); 
distanceRDNPOD = @OLE ('cover3.xlsx', 

'distanceRDNPOD' ); 
rssFixedCost = @OLE ('cover3.xlsx', 'RSSFixedCost'); 

@OLE ('cover3.xlsx', 'opened') = opened; 
@OLE ('cover3.xlsx', 'RSSOpened') = rssOpened; 

enddata 

min = @Sum (RSSs(i) :rssFixedCost(i)*rssOpened(i)) + 
@Sum (RDNs(j): RDNFixedCost(j)*opened(j)) + 
@Sum (Lnk3(i,j,k) : 
2*2*path(i,j,k)*(distanceRSSRDN(i,j)+distanceRDNPOD(j,k)) 

) ; 

@For (RDNs(j): @bin (opened(j))); 

@For (Lnk3(i,j,k): @bin (path(i,j,k))); 
!@For(RDNs(j): @Sum(LnkRSSPOD(i,k) :path(i,j,k)) <= 

999*opened(j)) ; 
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@For (PODs(k): @Sum (LnkRSSRDN(i,j) :path(i,j,k)) >= 1); 

@For (Lnk3(i,j,k): 2+ timeRSSRDN(i,j)*path(i,j,k) + 
timeRDNPOD(j,k)*path(i,j,k) <= 6); 

@For (RSSs(i): @bin (rssOpened(i))); 

@Sum (RSSs(i): rssOpened(i))=l; 

@For (Lnk3(i,j,k) :path(i,j,k) <= rssOpened(i)); 
!@For(RSSs(i) : @Sum(LnkRDNPOD(j,k) :path(i,j,k)) <= 
200*rssOpened(i) ); 

@For (Lnk3(i,j,k): path(i,j,k)<= opened(j) ); 

!@For(RSSs(j): @Sum(LnkRSSPOD(i,k) :path(i,j,k) ) <= 
40*opened(j) ) ; 

End 
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APPENDIX B THE LINGO FILE OF MATHEMATICAL 

MODEL 2 

model : 
sets : 

RSSs/RSS1, RSS2/: rssOpened, rssFixedCost; 
RDNs/RDN1 .. RDNIO/: opened, RDNFixedCost; 
PODs/POD1 .. POD20/; 

LnkRSSRDN(RSSs, RDNs): timeRSSRDN, distanceRSSRDN; 
LnkRDNPOD(RDNs, PODs): timeRDNPOD, distanceRDNPOD; 

Lnk3(RSSs, RDNs, PODs): path; 
LnkRSSPOD(RSSs, PODs): timeRSSPOD, distanceRSSPOD, 

directPath; 
endsets 

data : 
RDNFixedCost = @OLE ('cover3.xlsx', 'FixedCost'); 
timeRSSRDN = @OLE ('cover3.xlsx', 'timeRSSRDN'); 
timeRDNPOD = @OLE ('cover3.xlsx', 'timeRDNPOD'); 

distanceRSSRDN = @OLE ( , cover3 . xlsx', 'distanceRSSRDN'); 
distanceRDNPOD = @OLE ('cover3.xlsx', 

'distanceRDNPOD' ); 
timeRSSPOD = @OLE ('cover3.xlsx', 'timeMatrixRSSPOD'); 
distanceRSSPOD = @OLE ('cover3.xlsx', 

'distMatrixRSSPOD') ; 
rssFixedCost = @OLE ('cover3.xlsx', 'RSSFixedCost'); 

@OLE ('cover3.xlsx' , 
@OLE ('cover3.xlsx' , 

enddata 

'opened') = opened; 
'RSSOpened') = rssOpened; 

min = @Sum (RSSs(i) :rssFixedCost(i)*rssOpened(i)) + 
@Sum (RDNs(j): RDNFixedCost(j)*opened(j)) 

+ @Sum (Lnk3(i,j,k): 
2*2*path(i,j,k)*(distanceRSSRDN(i,j)+distanceRDNPOD(j,k)) 

+ @Sum (LnkRSSPOD(i,k) : 
4*directPath(i,k)*distanceRSSPOD(i,k)) ; 
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@For (RDNs(j): @bin (opened(j))); 

@For (Lnk3(i,j,k): @bin (path(i,j,k))); 

@For (LnkRSSPOD(i,k): @bin (directPath(i,k))); 

!@For(RDNs(j): @Surn(LnkRSSPOD(i,k) :path(i,j,k)) <= 
999*opened(j)) ; 

@For (PODs(k): @Surn (RSSs(i): directPath(i,k)) + 
@Surn (LnkRSSRDN(i,j) :path(i,j,k)) >= 1); 

TC = 6; 

@For (Lnk3(i,j,k): 2+ tirneRSSRDN(i,j)*path(i,j,k) + 
tirneRDNPOD(j,k)*path(i,j,k) <= TC); 

@For (LnkRSSPOD(i,k): 1 + tirneRSSPOD(i,k)*directPath(i,k) <= 
TC ); 

@For (RSSs(i): @bin (rssOpened(i))); 

@Surn (RSSs(i): rssOpened(i))=l; 

@For (Lnk3(i,j,k) :path(i,j,k) <= rssOpened(i)); 
!@For(RSSs(i) : @Surn(LnkRDNPOD(j,k) :path(i,j,k)) <= 
200*rssOpened(i) ); 
@For (LnkRSSPOD(i,k): directPath(i,k) <= rssOpened(i) ); 

@For (Lnk3(i,j,k): path(i,j,k)<= opened(j) ); 
!@For(RSSs(j): @Surn(LnkRSSPOD(i,k) :path(i,j,k) ) <= 
40*opened(j) ); 

End 
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APPENDIX C BENCHMARKING SNS VRP SOLUTION 

In the following tables, "# of Trucks" is the number of trucks used in the solution; 

"Distance" is the total traveling distance in the solution; "Initial Distance" is the total 

traveling distance in the initial solution constructed by the variant of Clark and Wright 

saving algorithm; "Improved Distance" is the total traveling distance in the final solution 

after improvement by SA; "Improvement Rate" is the percentage of traveling distance 

reduced by the SA improvement algorithm compared to the initial solution; "Execution 

Time" is the time of running our solution on a test instance; "Comparison" is the 

percentage of our solution outperforms (displayed by positive percentage) or 

underperforms (displayed by negative percentage) the best practice solution in terms of 

the total traveling distance. In Table 11, "Authors" refer to the publication where the best 

practice solution is introduced. 
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Table 9 Results of Capacity Constrained Test Instances 

Best Practice 
Our Solution 

Solution 
Instan #of #of Initial Execution 

Comp 

Truck 
Dist 

Truck Distanc 
Improved Improve 

Time(seconds 
arison 

ce 
Distance mentRate ance 

) s s e 
Augerat, et al. Set A : 

A- 30.36 
n32- 5 784 5 635.37 545.98 14.07% 0.69 

% 
k5 
A- 34.35 

n33- 5 661 5 585.36 433.94 25.87% 0.64 
% 

k5 
A-

27.05 
n33- 6 742 6 703.53 541.27 23.06% 0.58 
k6 

% 

A-
29.03 

n34- 5 778 5 644.56 552.12 14.34% 0.55 
k5 

% 

A- 28.40 
n36- 5 799 5 644.78 572.06 11.28% 0.72 

% 
k5 
A-

22.68 
n37- 5 669 5 641.54 517.27 19.37% 0.95 
k5 

% 

A-
17.67 

n37- 6 949 6 929.32 781.31 15.93% 0.61 
k6 

% 

A- 19.85 
n38- 5 730 5 766.51 585.06 23.67% 0.59 
k5 

% 

A-
10.89 

n39- 5 822 5 782.32 732.48 6.37% 0.66 
k5 

% 

A-
31.46 

n39- 6 831 6 758.34 569.6 24.89% 1.12 
% 

k6 
A-

14.45 
n44- 6 937 6 850.65 801.63 5.76% 1.05 
k6 

% 

A-
12.64 

n45- 6 944 6 859.97 824.67 4.10% 1.19 
k6 

% 

A-
35.07 

n45- 7 1146 7 877.02 744.11 15.15% l.l4 
% 

k7 
A-

7 914 7 970.95 849.17 12.54% 1.37 7.09% 
n46-
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k7 

A- 23.31 
n48- 7 1073 7 913.16 822.91 9.88% 1.47 

% 
k7 
A-

n53- 7 1010 7 1124.26 940.69 16.33% 1.37 6.86% 
k7 
A- 21.80 

n54- 7 1167 7 944.99 912.6 3.43% 1.33 
% 

k7 
A- -

n55- 9 1073 9 1206.57 1158.8 3.96% 2.34 
k9 

8.00% 

A-
n60- 9 1354 9 1468.2 1266.95 13.71 % 2.16 6.43% 
k9 
A- -

n61- 9 1034 9 1377.55 1252.01 9.11% 5.17 21.08 
k9 % 
A- -

n62- 8 1288 8 1491.71 1334.02 10.57% 2.41 
k8 

3.57% 

A-
n63- 9 1616 9 1666.14 1606.6 3.57% 2.03 0.58% 
k9 
A- -

n63- 10 1314 10 1593.03 1343.86 15.64% 5.76 
kl0 

2.27% 

A- -n64- 9 1401 9 1665.76 1466.55 11.96% 5.97 
k9 

4.68% 

A- -
n65- 9 1174 9 1477.74 1265.67 14.35% 6.11 
k9 

7.81% 

A- -
n69- 9 1159 9 1485.97 1268.08 14.66% 6.53 
k9 

9.41% 

A-
n80- 10 1763 10 1945.87 1659.7 14.71% 10.69 5.86% 
klO 

Average 13.27% 2.41 
12.19 

% 
Augerat, et al. Set B : 

B-
40.58 

n31- 5 672 5 448.13 399.27 10.90% 0.61 
% 

k5 
B-

13.47 
n34- 5 788 5 763.4 681.87 10.68% 0.61 
k5 

% 
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B-
26.64 n35- 5 955 5 873.61 700.56 19.81% 0.72 

% k5 
B-

20.88 n38- 6 805 6 697.55 636.91 8.69% 0.91 
% k6 

B-
n39- 5 549 5 821.06 575.4 29.92% 0.94 

-

k5 
4.81% 

B-
n41- 6 829 6 865.73 771.07 10.93% 1.23 6.99% 
k6 
B-

-
n43- 6 742 6 811.94 759.5 6.46% 1.2 
k6 2.36% 

B-
n44- 7 909 7 945.28 862.68 8.74% 1.08 5.10% 
k7 
B-

n45- 4 751 5 848.56 725.21 14.54% 0.67 3.43% 
k5 
B- -

n45- 6 678 6 954.44 761.74 20.19% 2.7 12.35 
k6 % 
B-

n50- 7 741 7 1013.97 777.56 23.32% 1.8 
-

k7 4.93% 

B-
n50- 8 1312 8 1420.73 1225.96 13.71 % 1.39 6.56% 
k8 
B-

n51- 7 1032 7 1079.21 979.48 9.24% 4.7 5.09% 
k7 
B-

n52- 7 747 7 981.63 795.4 18.97% 4.61 
-

k7 6.48% 

B- -
n56- 7 707 7 955.04 869.13 9.00% 5.44 22.93 
k7 % 
B-

n57- 7 1153 8 1184.92 1043.33 11.95% 5.28 9.51% 
k7 
B-

20.18 n57- 9 1598 9 1409.89 1275.52 9.53% 5.67 
% k9 

B-
n63- 10 1496 10 1666.68 1420.49 14.77% 6.97 5.05% 
klO 
B-

9 861 9 1293.96 1135.23 12.27% 6.12 
-

n64- 31.85 
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k9 % 

B-
n66- 9 1316 9 1537.06 1279.18 16.78% 6.56 2.80% 
k9 
B- -

n67- 10 1032 10 1417.25 1251.46 11.70% 8.47 21.27 
k10 % 
B- -

n68- 9 1272 9 1619.12 1450.14 10.44% 7.44 14.00 
k9 % 
B- -

n78- 10 1221 10 1604.11 1381.35 13.89% 12.3 13.l3 
k10 % 

Average 13.76% 3.80 1.40% 

Augerat, et al. Set P : 
P-n 16-

8 450 8 478.67 451.34 5.71% 0.47 
-

k8 0.30% 
-

P-nI9-
k2 

2 212 2 270.14 240.l9 11.09% 0.11 13.30 
% 
-P-n20-

2 216 2 266.38 250.68 5.89% 0.13 16.06 
k2 

% 
P-n21-

2 211 2 237.09 225.75 4.78% 0.27 
-

k2 6.99% 
P-n22-

2 216 2 240.51 230.42 4.20% 0.16 
-

k2 6.68% 
P-n22-

8 603 9 724.87 634.51 12.47% 0.39 
-

k8 5.23% 
P-n23-

8 529 9 589.06 559.17 5.07% 0.45 
-

k8 5.70% 
P-n40-

5 458 5 544.69 462.93 15.01 % 2.73 
-

k5 1.08% 
P-n45-

5 510 5 606.61 526.63 13.18% 3.47 
-

k5 3.26% 
P-n50-

7 554 7 710.92 566.24 20.35% 5.l9 
-

k7 2.21% 
P-n50-

8 631 9 739.57 653.43 11.65% 6.06 
-

k8 3.55% 
P-n50-

10 696 10 823.58 732.56 11.05% 6.44 
-

k10 5.25% 
P-n51-

10 741 10 921.13 796.72 13.51% 5.87 
-

k10 7.52% 
P-n55-

7 568 7 743.98 589.56 20.76% 6.86 
-

k7 3.80% 
P-n55-

8 588 7 740.74 595.27 19.64% 6.98 
-

k8 1.24% 
P-n55-

10 694 10 864.6 720.55 16.66% 7.37 
-

k10 3.83% 
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P-n55-
15 989 16 1150.59 1023.56 11.04% 8.42 

-

k15 3.49% 
P-n60-

10 744 10 876.1 788.49 10.00% 9.44 
-

klO 5.98% 
P-n60-

15 968 15 1166.58 1046.04 10.33% 9.36 
-

k15 8.06% 
P-n65-

10 792 10 930.39 843.46 9.34% 11.7 
-

klO 6.50% 
P-n70-

10 827 10 983.23 902.7 8.19% 14.14 
-

klO 9.15% 
P-n76-

4 593 4 756.07 637.12 15.73% 9.11 
-

k4 7.44% 
P-n76-

5 627 5 864.78 667.39 22.83% 10.8 
-

k5 6.44% 
P- -n101- 4 681 4 892.71 739.22 17.19% 32.86 
k4 

8.55% 

-
Average 12.32% 6.62 

5.90% 
Christofldes and Eilon : 

E- -
n22- 4 375 4 517.75 392.9 24.11% 0.23 
k4 

4.77% 

E-
n23- 3 569 3 723.71 568.56 21.44% 0.39 0.08% 
k3 
E- -

n30- 3 534 3 623.66 539.84 13.44% 0.52 
k3 

1.09% 

E-
-

n33- 4 835 4 993.02 874.32 11.95% 0.56 
k4 

4.71% 

E-
-

n51- 5 521 5 622.81 549 11.85% 4.12 
k5 

5.37% 

E- -
n76- 7 682 7 892.27 708.91 20.55% 15.77 
k7 

3.95% 

E- -
n76- 8 735 8 921.24 765.63 16.89% 12.55 
k8 

4.17% 

E- -
n76- 10 830 10 1050.02 919.36 12.44% 13.58 10.77 
klO % 
E- -

n76- 14 1021 15 1213.08 1151.31 5.09% 15.11 12.76 
k14 % 
E- -

n101- 8 815 8 1039.21 845.85 18.61 % 29.53 
k8 

3.79% 

151 



E- -
n101- 14 1071 14 1383.29 1213.57 12.27% 2l.2 13.31 
k14 % 

-
Average 15.33% 10.32 

5.87% 

Fisher: 
F-n45-

4 724 4 1133.09 763.69 32.60% 3.86 
-

k4 5.48% 
-

F-n72-
4 237 4 405.65 289.11 28.73% 12.62 2l.99 

k4 
% 

F- -
n135- 7 1162 5 1304.27 1166.37 10.57% 20.8 

k7 
0.38% 

-
Average 23.97% 12.43 

9.28% 

Gillet and Johnson: 
G-

39.21 
n262- 25 6119 25 3719.88 3719.88 0.00% 72 
k25 

% 

Christofides, Mingozzi, and Toth : 
M-

-
n101- 10 820 10 1032.42 878.27 14.93% 4l.26 
kl0 

7.11 % 

M- -
n 121- 7 1034 7 1535.56 1232.76 19.72% 57.12 19.22 

k7 % 
M- -

n151- 12 1053 12 1388.41 1125.45 18.94% 80.67 
k12 

6.88% 

M- -
n200- 17 1373 17 1617.42 1617.42 0.00% 67 17.80 
k17 % 

-
Average 13.40% 6l.51 12.75 

% 

Table 10 Results of Solomon 25 Test Instances 

Best Practice 
Our Solution 

Solution 
Insta 

# of # of Executio 
Compa 

nee 
Truck 

Dista 
True 

Initial Improved Improveme 
nTime 

rison 
nee 

ks 
Distance Distance nt Rate 

(seconds) s 
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Solomo"_25_Cl: 

C101 3 
191. 

3 214.88 193.77 9.82% 0.97 -1.29% 
3 

C102 3 
190. 

3 217.95 192.98 11.46% 0.92 -1.41% 
3 

C103 3 
190. 

3 217.95 192.98 11.46% 0.78 -1.41% 
3 

C104 3 
186. 

3 217.95 192.98 11.46% 0.81 -3.25% 
9 

Cl05 3 
191. 

3 214.88 193.77 9.82% 0.84 -1.29% 
3 

C106 3 
191. 

3 214.88 193.77 9.82% 0.91 -1.29% 
3 

Cl07 3 
191. 

3 214.88 193.77 9.82% 0.91 -1.29% 
3 

C108 3 
191. 

3 214.88 193.77 9.82% 0.8 -1.29% 
3 

C109 3 
191. 

3 217.95 192.98 11.46% 0.89 -0.88% 
3 

Aver 
3 

190. 
3 216.24 193.42 10.55% 0.87 -1.49% 

age 6 

Solomo"_25 Rl: 

R101 8 
617. 

4 444.65 393.41 11.52% 2 36.25% 
1 

R102 7 
547. 

4 
1 

472.8 385.82 18.40% 0.75 29.48% 

R103 5 
454. 

4 472.8 390.02 17.51% 0.78 14.21% 
6 

R104 4 
416. 

4 434.61 385.82 11.23% 0.73 7.46% 
9 

R105 6 
530. 

5 493.26 385.82 21.78% 2.3 27.27% 
5 

R106 5 
465. 

4 472.8 375.37 20.61% 0.94 19.34% 
4 

R107 4 
424. 

4 472.8 385.82 18.40% 0.78 9.07% 
3 

R108 4 
397. 

4 434.61 385.82 11.23% 0.77 2.89% 
3 

R109 5 
441. 

4 472.8 389.64 17.59% 0.89 11.71% 
3 

R110 4 
444. 

4 434.61 390.02 10.26% 0.73 12.18% 
1 

R111 4 
428. 

4 472.8 385.82 18.40% 0.95 10.02% 
8 

R112 4 393 4 434.61 390.02 10.26% 0.83 0.76% 

Aver 5 463. 4.1 459.43 386.95 15.60% 1.04 15.05% 
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age 4 

Solomo"_25_RC1: 

RC10 
4 

461. 
4 402.3 396.01 1.56% 2.55 14.12% 

1 1 
RC10 

3 
351. 

3 303.23 303.23 0.00% 3.02 13.81% 
2 8 

RClO 
3 

332. 
3 303.23 303.23 0.00% 3.14 8.89% 

3 8 
RClO 

3 
306. 

3 303.23 303.23 0.00% 3.02 1.10% 
4 6 

RClO 
4 

411. 
3 303.23 303.23 0.00% 3.02 26.28% 

5 3 
RClO 

3 
345. 

3 303.23 303.23 0.00% 3.02 12.23% 
6 5 

RClO 
3 

298. 
3 303.23 303.23 0.00% 3.02 -1.65% 

7 3 
Aver 

3.3 
358. 

3.1 317.38 316.48 0.22% 2.97 10.68% 
age 2 

Solomo"_25_C2 : 

C201 2 
214. 

1 215.91 215.91 0.00% 0.03 -0.56% 
7 

C202 2 
214. 

1 215.91 215.91 0.00% 0.05 -0.56% 
7 

C203 2 
214. 

1 215.91 215.91 0.00% 0.03 -0.56% 
7 

C204 1 
213. 

1 215.91 215.91 0.00% 0.05 -1.32% 
1 

C205 2 
214. 

1 215.91 215.91 0.00% 0.05 -0.56% 
7 

C206 2 
214. 

1 215.91 215.91 0.00% 0.03 -0.56% 
7 

C207 2 
214. 

1 215.91 215.91 0.00% 0.03 -0.66% 
5 

C208 2 
214. 

1 215.91 215.91 0.00% 0.05 -0.66% 
5 

Aver 
1.9 

214. 
1 215.91 215.91 0.00% 0.04 -0.68% 

age 45 

Solomo"_25_R2 : 

R201 4 
463. 

1 358.2 358.2 0.00% 0.05 22.69% 
3 

R202 4 
410. 

1 358.2 358.2 0.00% 0.03 12.74% 
5 

R203 3 
391. 

1 358.2 358.2 0.00% 0.05 8.48% 
4 

R204 2 355 1 358.2 358.2 0.00% 0.03 -0.90% 

R205 3 393 1 358.2 358.2 0.00% 0.05 8.85% 
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R206 3 
374. 

1 358.2 358.2 0.00% 0.03 4.33% 
4 

R207 3 
361. 

1 358.2 358.2 0.00% 0.05 0.94% 
6 

R208 1 
328. 

1 358.2 358.2 0.00% 0.03 -9.14% 
2 

R209 2 
370. 

1 358.2 358.2 0.00% 0.08 3.37% 
7 

R210 3 
404. 

1 358.2 358.2 0.00% 0.05 11.47% 
6 

R211 2 
350. 

1 358.2 358.2 0.00% 0.05 -2.08% 
9 

Aver 
2.7 

382. 
1 358.2 358.2 0.00% 0.05 5.52% 

age 1 

Solomon_2S_RC2 : 

RC20 
3 

360. 
1 233.42 233.42 0.00% 0.03 35.20% 

1 2 
RC20 

3 338 1 233.42 233.42 0.00% 0.03 30.94% 
2 

RC20 
3 

326. 
1 233.42 233.42 0.00% 28.60% 

3 9 
0.03 

RC20 
3 

299. 
1 233.42 233.42 0.00% 0.03 22.12% 

4 7 
RC20 

3 338 1 233.42 233.42 0.00% 0.03 30.94% 
5 

RC20 
3 324 1 233.42 233.42 0.00% 0.05 27.96% 

6 
RC20 

3 
298. 

1 233.42 233.42 0.00% 0.03 21.75% 
7 3 

Aver 
3 

326. 
1 233.42 233.42 0.00% 0.03 28.21% 

age 4 

Table 11 Results of Solomon 50 Test Instances 

Best Practice 
Our Solution 

Solution 
Instan 

#of #of Executi Compa 
ce 

Tru 
Dista 

Truck 
Initial Improved Improveme on Time rison 

cks 
nce Distance Distance nt Rate (seconds 

s 
) 

Solomon_SO_Cl : 

C101 5 362.4 5 369.94 369.94 0.00% 5.92 -2.08% 

C102 5 361.4 5 369.94 369.94 0.00% 5.45 -2.36% 
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C103 4 361.4 5 369.94 369.94 0.00% 5.56 -2.36% 

C104 5 359 5 369.94 369.94 0.00% 6.12 -3.05% 

Cl05 5 362.4 5 369.94 369.94 0.00% 5.39 -2.08% 

C106 5 362.4 5 369.94 369.94 0.00% 5.8 -2.08% 

Cl07 5 362.4 5 369.94 369.94 0.00% 5.94 -2.08% 

Cl08 5 362.4 5 369.94 369.94 0.00% 5.62 -2.08% 

C109 5 362.4 5 369.94 369.94 0.00% 5.92 -2.08% 

Averag 
4.9 361.8 5 369.94 369.94 0.00% 5.75 -2.25% 

e 

Solomon_SO_RI : 

R101 13 1047 8 781.94 662.88 15.23% 17.84 36.69% 

R102 12 944.9 7 728.39 606.28 16.76% 15.62 35.84% 

R103 9 772.9 7 769.91 599.97 22.07% 12.5 22.37% 

R104 6 631.2 6 736.94 607.15 17.61% 7.95 3.81% 

R105 10 906.6 7 751.19 662.34 11.83% 11.75 26.94% 

R106 8 793.6 7 728.39 603.33 17.17% 9.3 23.98% 

R107 7 720.4 7 769.91 603.32 21.64% 11.73 16.25% 

R108 6 618.2 6 736.94 600.57 18.50% 10.62 2.85% 

R109 8 803.2 7 734.68 656.08 10.70% 7.52 18.32% 

R110 8 724.9 7 728.39 607.78 16.56% 15.42 16.16% 

R111 8 724.9 7 728.39 603.23 17.18% 14.8 16.78% 

R112 6 651.1 7 728.39 606.07 16.79% 14.47 6.92% 

Averag 
8.4 

778.2 
6.9 743.62 618.25 16.84% 12.46 18.91% 

e 4 

Solomon_SO_RCI : 

RC101 9 957.9 9 961.31 834.62 13.18% 20.03 12.87% 

RCl02 8 844.3 7 723.57 652.17 9.87% 16.64 22.76% 

RC103 6 712.6 7 723.57 652.17 9.87% 16.64 8.48% 

-
RC104 5 546.5 7 723.57 648.33 10.40% 17.12 

18.63% 

RCl05 9 888.9 7 794.11 778.96 1.91% 16.06 12.37% 

RC106 7 791.9 7 794.11 778.96 1.91% 15.97 1.63% 

-
RC107 6 664.5 7 794.11 792.09 0.25% 17.62 

19.20% 
-

RC108 6 598.1 7 794.11 778.96 1.91% 17.09 
30.24% 

Avera 
7 750.6 7.3 788.56 739.53 6.16% 17.15 -1.25% 

ge 

Solomon_SO_C2 : 

C201 3 360.2 2 411.35 378.5 7.99% 3.27 -5.08% 

C202 3 360.2 2 410.6 369.75 9.95% 3.09 -2.65% 

C203 3 359.8 2 410.6 369.75 9.95% 3.09 -2.77% 

C204 2 353.4 2 410.6 369.75 9.95% 3.37 -4.63% 
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C205 3 359.8 2 410.6 369.75 9.95% 3.12 -2.77% 

C206 3 359.8 2 410.6 369.75 9.95% 3.33 -2.77% 

C207 3 359.6 2 410.6 369.75 9.95% 3.11 -2.82% 

C208 2 350.5 2 410.6 369.75 9.95% 3.13 -5.49% 

Avera 
2.8 

357.9 
2 410.69 370.84 9.70% 3.19 -3.62% 

ge 125 

Solomon_50_R2 : 

R201 6 800.7 2 538.31 530.56 1.44% 1.14 33.74% 

R202 5 712.2 2 548.78 532.96 2.88% 0.92 25.17% 

R203 5 606.4 2 548.78 531.39 3.17% 0.67 12.37% 

R204 2 509.5 2 548.78 531.39 3.17% 0.67 -4.30% 

R205 5 703.3 2 548.26 531.97 2.97% 0.98 24.36% 

R206 5 647 2 548.78 532.96 2.88% 0.92 17.63% 

R207 4 584.6 2 548.78 531.39 3.17% 0.67 9.10% 

R208 2 487.7 2 548.78 531.39 3.17% 0.67 -8.96% 

R209 4 600.6 2 548.78 532.96 2.88% 0.91 11.26% 

R210 5 663.4 2 541.24 532.96 1.53% 0.91 19.66% 

R211 3 551.3 2 548.78 532.96 2.88% 0.91 3.33% 

Avera 
4.2 624.2 2 547.10 532.08 2.74% 0.85 13.03% 

ge 

Solomon 50 RC2: 

RC201 5 684.8 2 474.16 474.16 0.00% 0.5 30.76% 

RC202 5 613.6 1 406.11 406.11 0.00% 0.05 33.82% 

RC203 4 555.3 1 406.11 406.11 0.00% 0.05 26.87% 

RC204 3 444.2 1 406.11 406.11 0.00% 0.03 8.57% 

RC205 5 631 1 406.11 406.11 0.00% 0.03 35.64% 

RC206 5 610 2 474.16 474.16 0.00% 0.48 22.27% 

RC207 4 558.6 1 406.11 406.11 0.00% 0.03 27.30% 

Averag 
4.4 585.4 1.3 425.55 425.55 0.00% 0.17 26.46% 

e 

Table 12 Results of Solomon 100 Test Instances 

Best Practice Solution Our Solution 

Insta #of Dist #ot Initial Improve Improve Execution 
Comp 

Auth ariso 
nee True ane Truc Distan d ment Time 

ors (seconds) 
n 

ks e ks ce Distance Rate 

Solomon_l00_Cl : 
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828. -
ClOl 10 

94 
[129] 10 1022.4 983.42 3.81% 37.78 18.64 

% 
-

C102 10 
828. 

[129] 10 1022.4 981.83 3.97% 35.06 18.44 94 
% 

828. 
C103 10 

06 
[129] 10 1022.4 

-
968.04 5.32% 34.15 16.90 

% 

C104 10 
824. 

[129] 10 1022.4 
78 

-

966.75 5.44% 34.56 17.21 
% 

828. 
-

C105 10 
94 

[129] 10 1022.4 972.79 4.85% 37.7 17.35 
% 

828. -
C106 10 

94 
[129] 10 1022.4 990.8 3.09% 36.92 19.53 

% 

828. 
C107 10 [129] 10 1022.4 

94 

-

996.02 2.58% 36.53 20.16 
% 
-

C108 10 
828. 

[129] 10 1022.4 969.63 5.16% 36.81 16.97 94 
% 

C109 10 
828. 

[129] 10 1022.4 
94 

-

973.9 4.74% 34.76 17.49 
% 

828. -Aver 
10 10 1022.4 978.13 4.33% 36.03 18.08 age 38 

% 

SolomoD_lOO_Rl: 

RlOl 19 
164 

[130] 11 
1139.7 

984.13 13.65% 61.94 
40.20 

5.79 4 % 

R102 17 
148 

[129] 11 
1139.7 

945.35 17.06% 75.87 
36.39 

6.12 4 % 

R103 13 
129 

[131 ] 11 1110.4 938.46 15.48% 96.56 
27.40 

2.68 % 

R104 9 
100 

[132] 10 
1114.4 

951.87 14.59% 78.72 
5.50 

7.24 5 % 

R105 14 
137 

[129] 11 
1139.7 

1001.52 12.13% 57.23 
27.27 

7.11 4 % 

R106 12 
125 

[132] 11 
1139.7 

1003.96 11.91% 58.17 
19.81 

1.98 4 % 

R107 10 
110 

[133] 11 1110.4 994.71 10.42% 49.23 
9.95 

4.66 % 
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R108 9 
960. 

[134] 10 
1114.4 

951.9 14.59% 77.43 
0.93 

88 5 % 

R109 11 
119 

[135] 11 
1130.4 

996.14 11.88% 54.78 
16.62 

4.73 7 % 

RIlO 10 
III 

[132] 11 
1130.4 

999.45 11.59% 56.95 
10.65 

8.59 7 % 

RIll 10 
109 

[136] 11 
1130.4 

945.34 16.38% 77.28 
13.80 

6.72 7 % 

982. 
R112 9 [137] 11 

1130.4 
14 7 

-

1012.75 10.41% 58.72 3.12 
% 

Aver 
11.9 

120 
10.8 1127.5 977.1 13.34% 66.9 

17.12 
age 9.9 % 

Solomon_IOO_RCI : 

RCI 
14 

169 
[138] 11 

1271.7 
1143 10.13% 63.34 

32.64 
01 6.94 9 % 

RCI 
12 

155 
[138] 11 

1271.7 
1161.49 8.67% 62.89 

25.29 
02 4.75 9 % 

RCI 
11 

126 
[139] 11 

1313.0 
1151.01 12.34% 56.45 

8.77 
03 1.67 1 % 

RCI 113 
10 [140] 11 

04 5.48 

-
1313.0 

1164.05 
1 

11.34% 58.97 2.52 
% 

RCI 
13 

162 
[134] 11 

1271.7 
1150.08 9.57% 63.79 

29.42 
05 9.44 9 % 

RCI 
11 

142 
[134] 11 

1271.7 
1140.03 10.36% 61.06 

19.98 
06 4.73 9 % 

RCI 
11 

123 
[133] 11 

1271.7 
1146.78 9.83% 62.34 

6.80 
07 0.48 9 % 

RCI 
10 

113 
[138] 11 

1271.7 
1094.9 13.91% 89.93 

3.94 
08 9.82 9 % 

Aver 
11.5 

138 
11 

1282.1 
1143.92 10.77% 64.85 

15.54 
age 4.16 0 % 

Solomon_IOO_C2 : 

591. 
C201 3 

56 
[129] 4 835.62 

-
699.79 16.25% 33.4 18.30 

% 

591. 
-

C202 3 
56 

[129] 4 835.62 703.59 15.80% 3.28 18.94 
% 

591. -
C203 3 

17 
[129] 3 835.62 691.6 17.24% 9.64 16.99 

% 
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-

C204 3 
590. 

[129] 4 835.62 725.06 13.23% 20.01 22.77 6 
% 
-

C205 3 
588. 

[129] 3 835.62 691.17 17.29% 46.08 17.37 
88 

% 
-

C206 3 
588. 

[129] 3 835.62 685.8 17.93% 45.4 16.54 49 
% 
-

C207 3 
588. 

[129] 3 835.62 691.77 17.21% 34.98 17.59 29 
% 

588. -
C208 3 

32 
[129] 3 835.62 691.7 17.22% 32.67 17.57 

% 
-Aver 

3 
589. 

3.4 835.62 697.56 16.52% 28.18 18.26 age 86 
% 

SolomoD_IOO_R2 : 

R201 4 
125 

[135] 2 769.11 747.16 2.85% 20.5 
40.34 

2.37 % 

R202 3 
119 

[136] 2 769.11 747.16 2.85% 20.73 
37.30 

1.7 % 

R203 3 
939. 

[ 132] 2 769.11 746.21 2.98% 20.62 
20.58 

54 % 

R204 2 
825. 

[ 141] 2 769.11 746.21 2.98% 20.95 
9.61 

52 % 

R205 3 
994. 

[ 136] 2 769.11 747.16 2.85% 20.64 
24.86 

42 % 

R206 3 
906. 

[142] 2 769.11 747.16 2.85% 20.69 
17.54 

14 % 

R207 2 
893. 

[141] 2 769.11 746.21 2.98% 20.64 
16.47 

33 % 

726. -
R208 2 

75 
[132] 2 769.11 746.21 2.98% 20.62 2.68 

% 

R209 3 
909. 

[130] 2 769.11 746.21 2.98% 20.67 
17.92 

16 % 

R210 3 
939. 

[132] 2 769.11 746.21 2.98% 21.44 
20.56 

34 % 

R211 2 
892. 

[ 141] 2 769.11 746.21 2.98% 20.67 
16.41 

71 % 
Aver 

2.7 
951. 

2 769.11 746.56 2.93% 20.74 
19.90 

age 91 % 
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SolomoD_IOO_RC2 : 

RC2 
4 

140 
[132] 2 838.58 791.62 5.60% 21.03 

43.73 

01 6.91 % 

RC2 
3 

136 
[143] 2 838.58 791.62 5.60% 21.16 
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02 7.09 % 

RC2 
3 

104 
[143] 2 838.58 765.89 8.67% 20.91 

27.03 

03 9.62 % 

RC2 
3 

798. 
[132] 2 838.58 765.89 8.67% 20.75 

4.07 

04 41 % 

RC2 
4 

129 
[132] 2 838.58 791.62 5.60% 20.98 

38.97 
05 7.19 % 

RC2 
3 

114 
[130] 2 838.58 791.62 5.60% 20.8 

30.94 
06 6.32 % 

RC2 
3 

106 
[141 ] 2 838.58 791.62 5.60% 20.77 

25.40 
07 1.14 % 

RC2 
3 

828. 
[144] 2 838.58 791.62 5.60% 20.78 

4.41 

08 14 % 

Aver 
3.3 

1119 
2 838.58 785.19 6.37% 20.90 

27.08 
age .35 % 
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APPENDIX D THE INPUT DATA OF SCENARIO 

ANALYSIS 

Table 13 Population and Vaccine Demands of Counties in Kentucky 

Populatio Pallets under Light Pallets under Heavy 
County n Demand Demand 
the entire 
Kentucky 4339367 868 4339.367 
Adair County 18656 4 18.656 
Allen County 19956 4 19.956 
Anderson County 21421 5 21.421 

Ballard County 8249 2 8.249 
Barren County 42173 9 42.173 

Bath County 11591 3 11.591 

Bell County 28691 6 28.691 
Boone County 118811 24 118.811 
Bourbon County 19985 4 19.985 
Boyd County 49542 10 49.542 
Boyle County 28432 6 28.432 

Bracken County 8488 2 8.488 
Breathitt County 13878 3 13.878 
Breckinridge 
County 20059 5 20.059 
Bullitt County 74319 15 74.319 

Butler County 12690 3 12.69 
Caldwell County 12984 3 12.984 

Calloway County 37191 8 37.191 
Campbell County 90336 19 90.336 
Carlisle County 5104 2 5.104 
Carroll County 10811 3 10.811 

Carter County 27720 6 27.72 
Casey County 15955 4 15.955 

Christian County 73955 15 73.955 

162 



Clark County 35613 8 35.613 
Clay County 21730 5 21.73 
Clinton County 10272 3 10.272 
Crittenden County 9315 2 9.315 
Cumberland County 6856 2 6.856 
Daviess County 96656 20 96.656 
Edmonson County 12161 3 12.161 
Elliott County 7852 2 7.852 
Estill County 14672 3 14.672 
Fayette County 295803 60 295.803 
Fleming County 14348 3 14.348 
Floyd County 39451 8 39.451 
Franklin County 49285 10 49.285 
Fulton County 6813 2 6.813 
Gallatin County 8589 2 8.589 
Garrard County 16912 4 16.912 
Grant County 24662 5 24.662 
Graves County 37121 8 37.121 
Grayson County 25746 6 25.746 
Green County 11258 3 11.258 
Greenup County 36910 8 36.91 
Hancock County 8565 2 8.565 
Hardin County 105543 22 105.543 
Harlan County 29278 6 29.278 
Harrison County 18846 4 18.846 
Hart County 18199 4 18.199 
Henderson County 46250 10 46.25 
Henry County 15416 4 15.416 
Hickman County 4902 1 4.902 
Hopkins County 46920 10 46.92 
Jackson County 13494 3 13.494 
Jefferson County 741096 149 741.096 
Jessamine County 48586 10 48.586 
Johnson County 23356 5 23.356 
Kenton County 159720 32 159.72 
Knott County 16346 4 16.346 
Knox County 31883 7 31.883 
Larue County 14193 3 14.193 
Laurel County 58849 12 58.849 
Lawrence County 15860 4 15.86 
Lee County 7887 2 7.887 
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Leslie County 11310 3 11.31 
Letcher County 24519 5 24.519 
Lewis County 13870 3 13.87 
Lincoln County 24742 5 24.742 

Livingston County 9519 2 9.519 
Logan County 26835 6 26.835 
Lyon County 8314 2 8.314 
McCracken County 65565 14 65.565 

McCreary County 18306 4 18.306 
McLean County 9531 2 9.531 
Madison County 82916 17 82.916 
Magoffin County 13333 3 13.333 
Marion County 19820 4 19.82 
Marshall County 31448 7 31.448 

Martin County 12929 3 12.929 
Mason County 17490 4 17.49 
Meade County 28602 6 28.602 

Menifee County 6306 2 6.306 
Mercer County 21331 5 21.331 

Metcalfe County 10099 3 10.099 

Monroe County 10963 3 10.963 

Montgomery County 26499 6 26.499 
Morgan County 13923 3 13.923 
Muhlenberg County 31499 7 31.499 
Nelson County 43437 9 43.437 
Nicholas County 7135 2 7.135 

Ohio County 23842 5 23.842 
Oldham County 60316 13 60.316 

Owen County 10841 3 10.841 

Owsley County 4755 1 4.755 
Pendleton County 14877 3 14.877 

Perry County 28712 6 28.712 

Pike County 65024 14 65.024 

Powell County 12613 3 12.613 

Pulaski County 63063 13 63.063 
Robertson County 2282 1 2.282 
Rockcastle County 17056 4 17.056 

Rowan County 23333 5 23.333 

Russell County 17565 4 17.565 

Scott County 47173 10 47.173 

Shelby County 42074 9 42.074 
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Simpson County 17327 4 17.327 
Spencer County 17061 4 17.061 
Taylor County 24512 5 24.512 
Todd County 12460 3 12.46 
Trigg County 14339 3 14.339 
Trimble County 8809 2 8.809 
Union County 15007 4 15.007 
Warren County 113792 23 113.792 
Washington County 11717 3 11.717 
Wayne County 20813 5 20.813 
Webster County 13621 3 13.621 
Whitley County 35637 8 35.637 
Wolfe County 7355 2 7.355 
Woodford County 24939 5 24.939 
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