19,873 research outputs found

    Real-time disk scheduling in a mixed-media file system

    Get PDF
    This paper presents our real-time disk scheduler called the Delta L scheduler, which optimizes unscheduled best-effort disk requests by giving priority to best-effort disk requests while meeting real-time request deadlines. Our scheduler tries to execute real-time disk requests as much as possible in the background. Only when real-time request deadlines are endangered, our scheduler gives priority to real-time disk requests. The Delta L disk scheduler is part of our mixed-media file system called Clockwise. An essential part of our work is extensive and detailed raw disk performance measurements. The Delta L disk scheduler for its real-time schedulability analysis and to decide whether scheduling a best-effort request before a real-time request violates real-time constraints uses these raw performance measurements. Further, a Clockwise off-line simulator uses the raw performance measurements where a number of different disk schedulers are compared. We compare the Delta L scheduler with a prioritizing Latest Start Time (LST) scheduler and non-prioritizing EDF scheduler. The Delta L scheduler is comparable to LST in achieving low latencies for best-effort requests under light to moderate real-time loads and better in achieving low latencies for best-effort requests for extreme real-time loads. The simulator is calibrated to an actual Clockwise. Clockwise runs on a 200MHz Pentium-Pro based PC with PCI bus, multiple SCSI controllers and disks on Linux 2.2.x and the Nemesis kernel. Clockwise performance is dictated by the hardware: all available bandwidth can be committed to real-time streams, provided hardware overloads do not occur

    Preemptive Software Transactional Memory

    Get PDF
    In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    The design and implementation of a multimedia storage server tosupport video-on-demand applications

    Get PDF
    In this paper we present the design and implementation of a client/server based multimedia architecture for supporting video-on-demand applications. We describe in detail the software architecture of the implementation along with the adopted buffering mechanism. The proposed multithreaded architecture obtains, on one hand, a high degree of parallelism at the server side, allowing both the disk controller and the network card controller work in parallel. On the other hand; at the client side, it achieves the synchronized playback of the video stream at its precise rate, decoupling this process from the reception of data through the network. Additionally, we have derived, under an engineering perspective, some services that a real-time operating system should offer to satisfy the requirements found in video-on-demand applications.This research has been supported by the Regional Research Plan of the Autonomus Community of Madrid under an F.P.I. research grant.Publicad

    Conflicts and Compatibilities in the Priorities Axes in the Architecture of the Production Systems

    Get PDF
    In an economic environment where more and more emphasis is being placed on increasing company’s performance and on the continuous improvement of business processes, companies face new challenges. On one hand they must address the existing market demand strictly observing the requirements of customers and the conditions imposed by competitors, on the other hand they should use the resources available in an effective manner in terms of lowest incurred costs and highest efficiency level. From this perspective, the article outlines the need to introduce systems of priority management in order to ensure the balance between the decisions in company's internal environment and the external environment’s restrictions. The approach of priorities by companies’ management has an overwhelming role in the process of correlating the available resources and capacity with the set objectives. Considering these aspects, the present article aims at defining a coordinate system as a reference point for identifying and managing companies’ priorities.priority management; priority axes and rules; long-term thinking; the goal of the business.

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas
    • 

    corecore