213 research outputs found

    Online condition monitoring of MV cable feeders using Rogowski coil sensors for PD measurements

    Get PDF
    Condition monitoring is a highly effective prognostic tool for incipient insulation degradation to avoid sudden failures of electrical components and to keep the power network in operation. Improved operational performance of the sensors and effective measurement techniques could enable the development of a robust monitoring system. This paper addresses two main aspects of condition monitoring: an enhanced design of an induction sensor that has the capability of measuring partial discharge (PD) signals emerging simultaneously from medium voltage cables and transformers, and an integrated monitoring system that enables the monitoring of a wider part of the cable feeder. Having described the conventional practices along with the authors’ own experiences and research on non-intrusive solutions, this paper proposes an optimum design of a Rogowski coil that can measure the PD signals from medium voltage cables, its accessories, and the distribution transformers. The proposed PD monitoring scheme is implemented using the directional sensitivity capability of Rogowski coils and a suitable sensor installation scheme that leads to the development of an integrated monitoring model for the components of a MV cable feeder. Furthermore, the paper presents forethought regarding huge amount of PD data from various sensors using a simplified and practical approach. In the perspective of today’s changing grid, the presented idea of integrated monitoring practices provide a concept towards automated condition monitoring.fi=vertaisarvioitu|en=peerReviewed

    Online condition monitoring of MV cable feeders using Rogowski coil sensors for PD measurements

    Get PDF
    Condition monitoring is a highly effective prognostic tool for incipient insulation degradation to avoid sudden failures of electrical components and to keep the power network in operation. Improved operational performance of the sensors and effective measurement techniques could enable the development of a robust monitoring system. This paper addresses two main aspects of condition monitoring: an enhanced design of an induction sensor that has the capability of measuring partial discharge (PD) signals emerging simultaneously from medium voltage cables and transformers, and an integrated monitoring system that enables the monitoring of a wider part of the cable feeder. Having described the conventional practices along with the authors' own experiences and research on non-intrusive solutions, this paper proposes an optimum design of a Rogowski coil that can measure the PD signals from medium voltage cables, its accessories, and the distribution transformers. The proposed PD monitoring scheme is implemented using the directional sensitivity capability of Rogowski coils and a suitable sensor installation scheme that leads to the development of an integrated monitoring model for the components of a MV cable feeder. Furthermore, the paper presents forethought regarding huge amount of PD data from various sensors using a simplified and practical approach. In the perspective of today's changing grid, the presented idea of integrated monitoring practices provide a concept towards automated condition monitoring.This work is done under the project Smart Condition Monitoring of Power Grid that is funded by the Academy of Finland (Grant No. 309412)

    A Review of Traditional Helical to Recent Miniaturized Printed-Circuit-Board Rogowski Coils for Power Electronic Applications

    Get PDF

    Design and operation of a harmonic gyrotron based on a cusp electron gun

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13121This thesis presents the results of successful operation of a 2nd harmonic gyrotron based on a cusp electron gun. The numerical and experimental results agreed well with the gyrotron design parameters. Two gyrotrons based on a cusp electron gun were designed: the first gyrotron operated at the 2nd harmonic and the second gyrotron was studied to look at the scaling of this concept for operation at the 7th harmonic at a frequency of 390 GHz. The cusp electron gun was used to produce the electron beam in the gyrotron which was annular in shape. The electron beam had a voltage of 40 kV, a current of 1.5A and a velocity ratio (perpendicular component to horizontal component) of 1.5. The experimental results from the first cusp electron gun and measurements of the high quality electron beam with ~8% velocity spread and ~10% alpha spread are presented. Analytical, numerical and experimental results of a DC harmonic gyrotron are presented. The 3D PIC code MAGIC was used to simulate the interaction of the harmonic gyrotron such as the TE71 mode at the 7th cyclotron harmonic with the large orbit electron beam with the beam thickness and beam spread introduced into the simulation. The interaction cavity of both gyrotrons was in the form of a smooth cylindrical waveguide. The relationship between the cavity dimensions and cavity Q values has been studied for optimized output at the design mode with the aim of suppressing other competing modes. A linear output taper was designed with low mode conversion at the gyrotron output. A Vector Network Analyzer with high frequency millmetre wave heads was used to measure the millimeter wave properties of the gyrotron cavity. Experiments were conducted using the electron gun for the harmonic gyrotron. The gyrotron and electron gun were built as well as the interlock and safety system, pulsed power supply and magnet, the cooling and vacuum system. Millimetre wave radiation was measured for the 2.6 mm diameter cavity gyrotron operating at the 2nd harmonic at a magnetic field of 2.08 T. Experiments demonstrated that the harmonic gyrotron was sensitive to the magnetic field and electron beam parameters. Millimetre wave radiation from 108GHz to 110GHz was measured with the use of a W-band rectifying crystal detector and high pass cut off filters. The frequency of the measured millimeter wave radiation agreed very well with the design and predictions of theory.This thesis presents the results of successful operation of a 2nd harmonic gyrotron based on a cusp electron gun. The numerical and experimental results agreed well with the gyrotron design parameters. Two gyrotrons based on a cusp electron gun were designed: the first gyrotron operated at the 2nd harmonic and the second gyrotron was studied to look at the scaling of this concept for operation at the 7th harmonic at a frequency of 390 GHz. The cusp electron gun was used to produce the electron beam in the gyrotron which was annular in shape. The electron beam had a voltage of 40 kV, a current of 1.5A and a velocity ratio (perpendicular component to horizontal component) of 1.5. The experimental results from the first cusp electron gun and measurements of the high quality electron beam with ~8% velocity spread and ~10% alpha spread are presented. Analytical, numerical and experimental results of a DC harmonic gyrotron are presented. The 3D PIC code MAGIC was used to simulate the interaction of the harmonic gyrotron such as the TE71 mode at the 7th cyclotron harmonic with the large orbit electron beam with the beam thickness and beam spread introduced into the simulation. The interaction cavity of both gyrotrons was in the form of a smooth cylindrical waveguide. The relationship between the cavity dimensions and cavity Q values has been studied for optimized output at the design mode with the aim of suppressing other competing modes. A linear output taper was designed with low mode conversion at the gyrotron output. A Vector Network Analyzer with high frequency millmetre wave heads was used to measure the millimeter wave properties of the gyrotron cavity. Experiments were conducted using the electron gun for the harmonic gyrotron. The gyrotron and electron gun were built as well as the interlock and safety system, pulsed power supply and magnet, the cooling and vacuum system. Millimetre wave radiation was measured for the 2.6 mm diameter cavity gyrotron operating at the 2nd harmonic at a magnetic field of 2.08 T. Experiments demonstrated that the harmonic gyrotron was sensitive to the magnetic field and electron beam parameters. Millimetre wave radiation from 108GHz to 110GHz was measured with the use of a W-band rectifying crystal detector and high pass cut off filters. The frequency of the measured millimeter wave radiation agreed very well with the design and predictions of theory

    Virtual Prototyping Methodology for Power Automation Cyber-Physical-Systems

    Get PDF
    In this thesis, the author proposes a circular system development model which considers all the stages in a typical development process for industrial systems. In particular, the present work shows that the use of virtual prototyping at early stages of the system development may reduce the overall design and verification effort by allowing the exploration of the complete system architecture, and uncovering integration issues early on. The modeling techniques of this research are based on VHDL-AMS, yet supporting other modeling languages such as C/C++, SPICE, and Verilog-AMS, together with integrated simulation tools. Contrasting with conventional approaches, it is shown that the proposed methodology is adapted for small-scale Cyber-Physical Systems (CPS) design and verification thanks to the modularity and scalability of the modeling approach. The proposed modeling techniques enable seamlessly the CPS design together with the implementation of their subsystems. In particular, the contribution of this work improves the virtual prototyping approach that has been successfully used during the development of smart electrical sensors and monitoring equipment for high and medium voltage applications. The design of the measurement and self-calibration circuits of a medium voltage current sensor based on the Rogowski coil transducer is presented as an example. The proposed small-scale CPS design methodology based on virtual prototyping, namely VP-based design methodology, uses important theoretical concepts from layered design, component-based design, and platform-based design. These foundations are the basis to build a modeling methodology that provides a vehicle that can be used to improve system verification towards correct-by-design systems. The main contributions of this research are: the re-definition of the system development lifecycle by using a virtual prototyping methodology; the design and implementation of a model library that maximizes the reuse of computational models and their related IP; and a set of VHDL-AMS modeling guidelines established with the purpose of improving the modularity and scalability of virtual prototypes. These elements are key for supporting the introduction of virtual prototyping into industrial companies that can thoroughly profit from this approach, but cannot commit a specific team to the creation, support, and maintenance of computational models and its dedicated infrastructure. Thanks to the progressive nature of the proposed methodology, virtual prototypes can indeed be introduced with relatively low initial effort and enhanced over time. The presented methodology and its infrastructure may grow into a bidirectional communication medium between non-expert system designers (i.e. system architects and virtual integrators) and domain specialists such as mechanical designers, power electrical designers, embedded-electronics designers, and software designers. The proposed design methodology advocates the reduction of the CPS design complexity by the implementation of a meet-in-the-middle approach for system-level modeling. In this direction, the modeling techniques introduced in this work facilitate the architectural design space exploration, critical cross-domain variable analysis (especially important in the component interfaces), and system-level optimization and verification

    Advances in Sensors and Sensing for Technical Condition Assessment and NDT

    Get PDF
    The adequate assessment of key apparatus conditions is a hot topic in all branches of industry. Various online and offline diagnostic methods are widely applied to provide early detections of any abnormality in exploitation. Furthermore, different sensors may also be applied to capture selected physical quantities that may be used to indicate the type of potential fault. The essential steps of the signal analysis regarding the technical condition assessment process may be listed as: signal measurement (using relevant sensors), processing, modelling, and classification. In the Special Issue entitled “Advances in Sensors and Sensing for Technical Condition Assessment and NDT”, we present the latest research in various areas of technology

    Development and operational experience of magnetic horn system for T2K experiment

    Get PDF
    A magnetic horn system to be operated at a pulsed current of 320 kA and to survive high-power proton beam operation at 750 kW was developed for the T2K experiment. The first set of T2K magnetic horns was operated for over 12 million pulses during the four years of operation from 2010 to 2013, under a maximum beam power of 230 kW, and 6.63×10206.63\times10^{20} protons were exposed to the production target. No significant damage was observed throughout this period. This successful operation of the T2K magnetic horns led to the discovery of the ΜΌ→Μe\nu_{\mu}\rightarrow\nu_e oscillation phenomenon in 2013 by the T2K experiment. In this paper, details of the design, construction, and operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and Methods in Physics Research,

    On-line measurement of partial discharges in high voltage rotating machines.

    Get PDF
    The on-line condition monitoring of rotating machines is given paramount importance, particularly in Oils and Gas industries where the financial implications of machine shutdown is very high. This project work was directed towards the on-line condition monitoring of high voltage rotating machines by detection of partial discharges (PD) which are indicative of stator insulation degradation. Partial discharge manifests itself in various forms which can be detected using various electrical and non-electrical techniques. The electrical method of detecting small current pulses generated by PD using a Rogowski coil as a sensor has been investigated in this work. Dowding & Mills, who are commercially involved in the condition monitoring of rotating machines, currently use a system called StatorMonotor¼ for PD detection. The research is intended to develop a new partial discharge detection system that will replace the existing system which is getting obsolete. A three phase partial discharge detection unit was specified, designed and developed that is capable of filtering, amplifying and digitising the discharge signals. The associated data acquisition software was developed using LabVIEW software that was capable of acquiring, displaying and storing the discharge signals. Additional software programs were devised to investigate the removal of external noise. A data compression algorithm was developed to store the discharge data in an efficient manner; also ensuring the backward compatibility to the existing analysis software. Tests were performed in laboratory and on machines on-site and the results are presented. Finally, the data acquisition (DAQ) cards that used the PCMCIA bus was replaced with new USB based DAQ cards with the software modified accordingly. The three phase data acquisition unit developed as a result of this project has produced encouraging results and will be implemented in an industrial environment to evaluate and benchmark its performance with the existing system. Most importantly, a hardware data acquisition platform for the detection of PD pulses has been established within the company which is easily maintainable and expandable to suit any future requirements

    Direct current hybrid breakers : a design and its realization

    Get PDF
    The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called ‘hybrid breakers’, would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That countercurrent opposed the main current in the breaker by superposition in order to create a forced currentzero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase 10kV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault-recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the currentzero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300:s to separate the main breaker contacts. Furthermore, a maximum peak current injection of kA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of 5kA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically
    • 

    corecore