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Abstract 
 

The on-line condition monitoring of rotating machines is given paramount importance, 

particularly in Oils and Gas industries where the financial implications of machine shut-

down is very high. This project work was directed towards the on-line condition 

monitoring of high voltage rotating machines by detection of partial discharges (PD) 

which are indicative of stator insulation degradation.  

 

Partial discharge manifests itself in various forms which can be detected using various 

electrical and non-electrical techniques. The electrical method of detecting small 

current pulses generated by PD using a Rogowski coil as a sensor has been 

investigated in this work.  Dowding & Mills, who are commercially involved in the 

condition monitoring of rotating machines, currently use a system called 

StatorMonotor® for PD detection.  The research is intended to develop a new partial 

discharge detection system that will replace the existing system which is getting 

obsolete. 

 

A three phase partial discharge detection unit was specified, designed and developed 

that is capable of filtering, amplifying and digitising the discharge signals. The 

associated data acquisition software was developed using LabVIEW software that was 

capable of acquiring, displaying and storing the discharge signals. Additional software 

programs were devised to investigate the removal of external noise. A data 

compression algorithm was developed to store the discharge data in an efficient 

manner; also ensuring the backward compatibility to the existing analysis software. 

Tests were performed in laboratory and on machines on-site and the results are 

presented. Finally, the data acquisition (DAQ) cards that used the PCMCIA bus was 

replaced with new USB based DAQ cards with the software modified accordingly. 

  

The three phase data acquisition unit developed as a result of this project has 

produced encouraging results and will be implemented in an industrial environment to 

evaluate and benchmark its performance with the existing system. Most importantly, a 

hardware data acquisition platform for the detection of PD pulses has been established 

within the company which is easily maintainable and expandable to suit any future 

requirements.  
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 CHAPTER 1: INTRODUCTION 
 

1.1    Significance of Rotating Machines 
 
The importance of rotating machines cannot be overemphasised as it is most widely 

used in modern industry. They are available in various sizes with powers ranging from 

a fraction of a watt to hundreds of mega-watts. The applications are numerous, limited 

only by the capacity of imagination. They are used as motors for driving pumps in 

water-supply plants, traction motors for electrical trains, generators in power plants, 

etc. In industry, the motors are used for driving compressors, fans and pumps, machine 

tools, robots, transport equipment and a multitude of other applications. 

 

With the advancement in material science the modern machines are now designed to 

tighter margins as economics, and subsequently profit, take on a greater precedence in 

a very competitive marketplace. In addition to this there is a strong economic incentive 

to continue running older machines up to and beyond their original design lifetime. 

Therefore, in a climate of such harsh economic reality, modern industry experiences a 

small but significant number of faults in their rotating plant, which may eventually lead 

to failure and subsequent loss of availability. The financial costs of such losses 

represent a significant percentage of the capital cost of the machine. This is especially 

applicable to high-cost operational environments, such as offshore oil and gas 

production, where an entire platform may have to shut down if a particularly crucial 

machine fails. Hence, the efficient maintenance of such electrical assets has become 

crucial. 

 

1.2    Maintenance strategies 
 
Productivity is a key factor for all manufacturing industries to stay competitive in the 

ever-growing global market. Increased productivity can be achieved through increased 

availability and minimal downtime. This has a direct focus on the different maintenance 

types and maintenance strategies used. Thus the maintenance organisation in the 

company probably has one of the most important functions, namely looking after the 

assets and keeping track of equipment in order to secure productivity. 

 

The maintenance costs form a major part of the total operating costs of a 

manufacturing plant. Depending on the type of industry the maintenance cost can 

represent between 15 and 60 percent of the cost of goods produced (1). This has put 
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the maintenance department in all industries under continual pressure to reduce the 

maintenance costs. With a poor maintenance organisation a company will loose a 

significant amount due to lost production capacity, cost of keeping spare parts, quality 

deficiencies, etc. Hence an effective maintenance strategy is a crucial component in 

any organisation’s operations. 

 

Over the past few years the maintenance strategies have undergone remarkable 

changes. The science of maintenance has evolved from simply reacting to machinery 

breakdowns (breakdown maintenance), to performing time-based preventive 

maintenance, to today’s emphasis on the ability to detect early forms of degradation in 

predictive maintenance (condition based maintenance). Many industries now use the 

relatively modern condition based maintenance strategies in parallel with conventional 

maintenance schemes. This has reduced unexpected failures; increase the time 

between planned shutdowns for standard maintenance and reduced operational costs. 

An overview of different maintenance strategies is shown in figure 1.1 
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Figure 1.1 Overview of different maintenance types (8) 
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1.2.1   Breakdown maintenance 
 
The breakdown maintenance strategy allows the equipment to run until a breakdown 

occurs and is the simplest approach to maintenance. It is a reactive form of 

maintenance technique that waits for the machine or equipment to fail before any 

maintenance action is taken. For some equipment the maintenance action must be 

performed immediately, for others the maintenance action can be deferred in time, all 

depending on the equipment’s function. A plant using a breakdown maintenance 

strategy does not invest any money in maintenance until a machine or system fails to 

operate. Often referred to as ‘corrective maintenance’, it is the most expensive form of 

maintenance strategy. The major expenses associated with this form of strategy are 

the high spare parts inventory cost, high overtime-labour costs, high machine downtime 

and low machine availability. 

 

Because no attempt is made to anticipate the maintenance requirements, a plant 

implementing breakdown maintenance must be able react to all possible failures within 

the plant. This forces the maintenance department to maintain extensive spare parts 

inventories, particularly for all the critical equipment in the plant. An alternative is to rely 

on equipment vendors who can provide immediate delivery for all required spare parts. 

Even if the latter was possible, premiums for the expedited delivery substantially 

increase the cost of repair parts and the downtime required to correct machine failure.  

Such a scenario is of particular relevance to process industries, like the oil and gas 

industry, where unexplained or unplanned shutdowns can have serious financial 

consequences in terms of lost production.  However, this may be an appropriate 

strategy in some cases such as, when a failure has no serious cost or safety 

consequence or is low on the priority list or when implementing a predictive 

maintenance strategy is not practical. Breakdown maintenance can also be considered 

as the default maintenance action since the possibility of an unexpected breakdown will 

always exist. 

 

1.2.2   Preventive maintenance  
 
Preventive maintenance can be defined as a series of predefined and scheduled 

maintenance activities that are designed to reduce equipment breakdowns, increase 

equipment reliability and improve productivity (2). 

 

Contrary to breakdown maintenance, preventive maintenance takes steps to prevent 

and fix problems before a failure occurs. All the preventive maintenance strategies are 
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time-driven programs and mainly use off-line monitoring techniques. The maintenance 

is performed on a scheduled basis with scheduled intervals often based on 

manufacturer’s recommendations and past experience with the equipment. The 

maintenance includes activities like keeping an accurate history of equipment 

performance and repairs, routine inspections, performing necessary upkeep and 

servicing, cleaning, lubrication, etc. The main advantage of preventive maintenance is 

that outages and shutdowns can be planned in advance and the resources can be 

allocated accordingly, preventing any undue burden on the production activity. 

 

However, there are also disadvantages to this strategy. At times, equipment that is in 

good condition will be removed from service (off-line) when not necessary, causing loss 

of production and incurring unnecessary labour and outage costs. In addition, the 

machine is exposed to the risk of inadvertent damage or incorrect assembly. Failure 

can still occur between inspections causing unscheduled breakdown. 

 

1.2.3   Predictive maintenance / Condition Based Ma intenance 
 
Predictive maintenance can be defined as a “maintenance technique that applies 

various technologies and analytical tools to measure and monitor various system and 

component operating characteristics and to compare these data with established and 

known standards and specifications in order to predict (forecast) system or component 

failures” (2).  Another definition describes the strategy as “the process of identifying 

production equipment needing maintenance, before its performance gets to a point that 

quality is reduced or an unplanned shutdown occurs” (3). 

 

Whereas the breakdown maintenance is applied after the failure and preventive 

maintenance uses precautionary measures to avert possible problems, predictive 

maintenance actually evaluates the existing equipment condition based on the 

recording of measurements to predict the condition of equipment. Hence it is often 

referred as condition based maintenance (CBM). CBM relies on condition monitoring 

techniques such as oil analysis, vibration analysis, thermography, phase current 

analysis, partial discharge analysis and other diagnostic techniques for making 

maintenance decisions. Most of these techniques are non-invasive on-line monitoring 

techniques and do not interfere with the normal operation of the equipment. This saves 

the precious production time and enables the testing to be carried out under stress 

conditions that are present during normal operation. CBM technique can provide 

several advantages over other maintenance strategies: 
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• Improved availability of the equipment 

• Improved production quality, reliability and safety 

• Improved planning and scheduling of repairs 

• Reduced cost of spares and materials 

 

Because of these reasons on-line condition monitoring has gained considerable 

importance and has become well established in the industry. However there are some 

disadvantages associated with this strategy.  Effective condition monitoring requires 

the appropriate testing equipment and properly trained staff. Hence the investment cost 

tends to be high with specialist skills required for assessing the condition of the 

equipment. There may be a temptation to introduce condition monitoring to areas 

where the benefits are marginal, such as non-critical equipment. The strengths and 

weaknesses of different maintenance strategies are shown in figure 1.2. 

 

1.2.4   Factors for the implementation of condition  monitoring 
 
The implementation of an effective condition monitoring system depends on the 

following factors: 

 

• A clear relationship must exist between the measurements being taken and the 

condition of the equipment. 

• The monitoring system must be reliable and should be able to respond quickly to 

provide enough warning of deterioration in the condition of the machine for 

appropriate action to be taken. For example, if a monitoring scheme could only 

detect a fault one second before the machine fails, then this scheme would not be 

beneficial for maintenance. If the scheme, however, could progressively monitor the 

development of a fault over a number of weeks or months, it would be of 

considerable value for maintenance. 

• The benefits of performing condition monitoring to predict equipment condition must 

outweigh the implementation and running costs. 

• The machine should be able to be taken out of service and repaired at a cost 

substantially less than the likely cost of repairs following failure. 

• The result of monitoring produces significantly less production loss due to 

maintenance scheduling, as opposed to unexpected failures. 
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Breakdown maintenance 
 
- High risk of secondary 

failure 
- High production 

downtime 
- High cost of spare parts 
- Overtime labour 
- Safety hazardous 
 
+ Machines are not “over 

maintained” 
+ No condition monitoring 

related costs 

Planned maintenance 
Historical maintenance 
Calendar based 
maintenance 
 
- Machines are repaired 

when there are no faults 
- Repair often causes more 

harm than good 
- There are still 

“unscheduled” breakdowns 
 
+ Maintenance is performed 

in a controlled manner 
+ Fewer catastrophic failures 
+ Greater control over stored 

parts and costs 
+ Unexpected machinery 

failure should be reduced 

Condition based 
maintenance 
 
- High investment costs 
- Additional skills required 
 
+ Unexpected breakdown 

is reduced 
+ Parts are ordered when 

needed 
+ Maintenance is 

performed when 
convenient 

+ Equipment life is 
extended 

Corrective Maintenance  
“Run-to-failure 
maintenance” 

Predetermined Maintenance  
“Fix it before it breaks” 

Predictive Maintenance  
“If it ain’t broke, don’t fix it” 

CHANGE IN 
MAINTENANCE 
PHILOSOPHY 

FAILURE RATE 

Figure 1.2 Strengths and Weaknesses of different ma intenance strategies (8) 
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1.3   Faults in high voltage induction motors 
 
The induction motor is the most prevalent machine found in the industry today and is 

known for its simple construction and ruggedness. Large induction motors are often 

used in hostile environments such as mines, offshore oil exploration and production 

platforms. In such environments the machines are exposed to a diverse amount of 

contamination and operated rigorously which can lead to various faults. For example, 

direct on-line starting is still prevalent whereby the machine is started at full load 

causing high mechanical and thermal stresses. 

 

The manifestations of faults can be either mechanical, electrical or a combination of 

both. Some of the major faults are bearing failure, rotor bar breakages, eccentricity 

problems and stator winding failure. A survey of failures in high voltage induction 

motors in the petrochemical industry has been presented Thorsen et al. (4).  Table 1.1 

shows the details of the failed components along with the number of failures and its 

percentage. 

 

Table 1.1 Distribution of failures on failed motor component (4) 

 

Failed component Number of failures Percent 

Bearing 129 51.6 

Stator Windings 62 24.8 

Rotor-bars / rings 15 6 

Shaft or coupling 8 3.2 

External device 34 13.6 

Not specified 2 0.8 

Total 250 100 

  

 

The main fault contributors of motor faults are described below: 

1.3.1   Bearing faults 
 
There are many reasons attributable for bearing faults. Rotor malfunctions and 

dynamic failures produce a great deal of energy that is dissipated from the system 

through bearings and their support. Some of the main reasons for failure are improper 

or insufficient lubrication, heavy radial and axial stresses due to shaft deflection, worn 

teeth in gearboxes, coupling misalignment and inadequate mounting. This list is not 
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exhaustive, but is examples of major stresses that may lead to increased vibrations 

and thereby, increased wear and tear of the motor bearings. 

 

1.3.2   Rotor faults 
 
Rotor faults are mainly caused by breaks in the joints between bars and end rings. This 

can happen for a number of reasons, such as casting problems during the 

manufacturing process, excessive vibrations caused by pulsating load or stresses due 

to direct on-line start-ups.  When a bar cracks it produces a high resistance joint on the 

end ring, causing overheating which may eventually lead to bar completely breaking. A 

broken bar increases the current flowing through the remaining bars, resulting in torque 

fluctuations which may cause further mechanical damage. 

 

Air-gap eccentricity is another rotor related fault that can lead to severe mechanical 

problems. Air-gap eccentricity is said to exist when a non-uniform air-gap between the 

rotor and the stator occurs. There are two types of air-gap eccentricity, namely static 

and dynamic. In the case of static eccentricity the minimum air-gap between the stator 

and rotor is fixed in space. This may be caused by the stator core ovality or due to the 

incorrect positioning of the rotor or stator. In the case of dynamic eccentricity, the 

minimum air-gap rotates with the rotor. Dynamic eccentricity may be caused due to 

several factors such as bent rotor shaft, bearing wear or misalignment, etc. Figure 1.3 

below shows the air-gap eccentricity. 
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Figure 1.3 Air gap eccentricity 
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In reality, an inherent level of static and dynamic eccentricity tends to exist even in 

newly manufactured machines. However, an increase in the air gap eccentricity leads 

to non-uniformity of the magnetic flux causing abnormal mechanical stresses and 

vibrations. This can have an adverse effect on the bearings which in turn will lead to 

higher levels of eccentricity. In severe cases a catastrophic failure can occur if the air 

gap eccentricity increases to such a level that the resultant unbalanced magnetic pull 

causes a rotor to stator rub.  

 

1.3.3   Stator faults 
 
Table 1.1 shows that around 25% of all large induction motor failures are attributable to 

stator faults with the main reason being the breakdown of high voltage (HV) stator 

insulation (4). The HV insulation breakdown may be result of many factors such as 

deposits of contamination on insulation, conductor vibration, thermal cycling, repetitive 

voltage surges and transients, chemical attack or insulation degradation due to internal 

discharges (5, 6).  

 

For example, winding insulation can become contaminated with oil, carbon dust, 

cement dust, insects, etc. This contamination mixes with moisture or oil to form a 

partially conductive coating on the stator winding. This results in electrical tracking 

affecting the health of the insulation (6). Vibration is probably one of the major causes of 

premature degradation of HV stator windings. The high electromagnetic forces 

between the rotor and stator act directly on the coils in the slots. If there is any 

loosening of the coil in the slot the vibrations will lead to mechanical abrasion of the coil 

sides in the slot, eroding the insulation. If the insulation breaks down completely, then a 

short circuit can occur locally between the coils, causing severe damage to the HV 

stator windings. Severe insulation degradation, if undetected, can propagate through 

the stator in a very short time.  

 

Whenever degradation occurs in a HV stator insulation system, be it due to electrical, 

mechanical or environmental conditions, it is generally accompanied by the generation 

of partial discharges (7) which further aids the degradation process.  Partial discharges 

are discussed in detail in the chapter 3.  However, it is noteworthy that the HV stator 

insulation degradation process is usually not a sudden death event. It is a slow process 

and is more likely to be the end result of progressive degradation over a period of time 

which can be as short as a few months or as long as tens of years. 
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1.4   Condition monitoring methods 
 
An arsenal of methods, electrical or otherwise, is used for the condition monitoring of 

rotating machines (5, 14, 15). Condition monitoring is applied as a diagnostic tool, both for 

fault detection and as a basis for maintenance planning. Various monitoring techniques 

use different machine variables like magnetic flux, vibration, acoustic noise, 

temperature, air-gap torque, power, phase current, partial discharge, etc. as monitoring 

parameters. Some of the most popular methods applied for condition monitoring of 

rotating machines are as follows: 

 

1.4.1   Vibration monitoring 
 
Rotating machines are complex mechanical structures with articulate elements. Each 

machine will have at least two sets of its own bearings, a possible gear reducer with 

several bearings and gear sets, a coupling arrangement, etc. These parts, when 

excited, could oscillate, where joints to other coupled elements transmit such 

oscillations. The result is a complex frequency spectrum that is characteristic to that 

equipment and is made up of a combination of all parts of the equipment. Each time 

the behaviour of the component changes (due to wear or crack), a frequency 

component of the system will be affected thus changing the vibration patterns (9). Gaps, 

failures or misalignment of bearings of rotating machines, shaft or coupling 

misalignment reflect on the change of frequencies or the appearance of new ones. 

 

Vibration monitoring uses vibration transducers, such as accelerometers of 

piezoresistive types with linear frequency response. The measured parameters are 

displacement, velocity and acceleration. The transducers are fixed around the bearings 

of the motor to monitor the varying patterns of vibration. In general the orientation of 

the sensors follows the three main axis of the machine, i.e. vertical, horizontal and 

axial. 

 

The acquired signals are normally processed and stored using various analysis 

methods like spectrum analysis or cepstrum analysis. Vibration monitoring and analysis 

methods have been discussed in detail in (10, 11, 12). If the condition of the machine 

deteriorates, the vibration associated with it will generally alter in a predictable way. By 

measuring and analysing the vibration of a machine, it may be possible to determine 

the nature and extent of deterioration and predict the machine behaviour in future. The 

components that are typically monitored using this technique include couplings, 

bearings, rotors / shafts, and gears. This technique can distinguish several failures 
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such as imbalance, looseness, misalignment, wear and poor lubrication. Vibration 

monitoring has been largely adopted by a number of industries, but has the inherent 

disadvantage of having to affix transducers to the machines being monitored, often in 

quite inaccessible places. 

 

1.4.2   Phase current monitoring 
 
Monitoring machine current can provide an indication to various faults developing 

within rotating machines (16, 17, 21). One of the most popular applications of current 

monitoring is the detection of rotor faults like broken rotor bars or high resistance joints 

within the rotor cage (5, 18, 19, 20, 22). Specific spectral components in the current indicate 

the presence of defects in the rotor. This technique is popularly known in the industry 

as Motor Current Signature Analysis (MCSA) or Phase Current Signature Analysis 

(PCSA).   

 

The current drawn by an ideal motor should have a single component at the supply 

frequency. However, in practice the current flowing in the stator winding doesn’t just 

depend on the power supply and impedance of the windings, but also includes current 

induced in the stator winding generated by the magnetic field of the rotor. If an 

asymmetry is created in rotor currents (due to faults like broken rotor bars or broken 

short-circuit ring), this will be reflected in the stator current. Thus the stator windings act 

as a probe or transducer for problems occurring in the rotor. The key issue of MCSA is 

separating the currents that flow through the stator to drive the motor from the currents 

that the rotor induces back into the stator if there is a problem. This separation is 

achieved by measuring current component frequencies other than power frequencies. 

 

A suitable current transformer is clamped around one of the phase cables carrying the 

load current and the data is recorded over a short period of time. The data gathered is 

then analysed with a spectrum analyser or a customised data signal processing unit. A 

schematic representation of a typical test set-up is shown in figure 1.4. This technique 

has the advantage that no direct access to the motor is required as the phase current 

can be monitored by a simple clip-on type current transformer placed directly around 

any phase cable feeding motor.  
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If a bar gets broken in the rotor, the two adjacent bars carry the additional current that 

no longer flows in the broken bar causing a rotor current asymmetry. This asymmetry 

manifests itself in the form of sidebands around the fundamental frequency and can be 

viewed when the stator current signal (of any one phase) is viewed in the frequency 

domain. The detection of these sidebands forms the basis of rotor fault monitoring 

strategy. The frequency at which the rotor fault sidebands are generated can be 

calculated by the following formula (22). 

 

fsb  = f1 (1 ± 2s) Hz…………………………………..(1.1) 

 

where, fsb  = sideband frequency Hz 

  f1 = supply frequency Hz 

 s = per unit slip 

 

These sidebands (as shown in figure 1.5) are called twice slip frequency sidebands, 

and the relative height of these sidebands with respect to the mains frequency 

component determines the severity of rotor fault.  

Figure 1.4 Typical test set-up for MCSA 

MCSA 
Instrument 
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Typically, the sidebands are approximately 1 Hz or so away from the very large main 

frequency component and the amplitudes are typically 100-1000 times smaller than the 

main frequency current (18). If there are no broken bars, there will be no or very low 

level sidebands. The current imbalance caused by a single broken bar may not affect 

the machine’s performance significantly, but leads to excess heat generation and 

higher stress in the adjacent bars and consequently may result in several bars 

breaking. As the fault develops and the rotor damage increases, the relative height of 

the sidebands with respect to the main peak increases. This technique has been widely 

accepted by the industry for the effective diagnosis of broken bars in three phase 

induction motors with many industrial case studies being published (5, 22). However, the 

tests cannot be performed at low load, as there is insufficient current in the rotor to 

highlight the faults. The testing is best performed at full load. The minimum load to 

make a reliable interpretation is typically about 50%. 

 

Yet another important application of MCSA is to detect abnormal air-gap eccentricity in 

three phase induction motors. It has been shown that both static and dynamic 

eccentricity give rise to abnormal harmonic frequencies in stator current (22). Similar to 

the detection of broken bars, the relative height of these frequency components 

determine the degree of abnormal air-gap eccentricity. However the disadvantage of 

detecting air-gap eccentricity by phase current analysis is that it requires intimate 

knowledge of the machine construction like the rotor slot numbers (16). 

Lower 
sideband 

Upper 
sideband 

-2Sf1 +2Sf1 

f1 = Supply frequency  

Hz (f) 

dB 

Figure 1.5 Sidebands generated due to rotor faults  
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1.4.3  Partial discharge monitoring 
 
The high voltage stator winding insulation is monitored using various techniques. 

Partial Discharge monitoring is the most popular technique used for the detection of 

stator winding insulation faults.  As this technique is of particular importance to this 

project, it will be dealt with in more detail in later chapters. 

 

1.5    Objectives of the project 
 
This project was undertaken as a part of Knowledge Transfer Partnership (KTP) 

programme. KTP is a UK-wide programme helping businesses to improve their 

competitiveness and productivity through collaborative projects between business and 

knowledge base. The source of knowledge base is usually a higher education 

institution (e.g. university), college or research organisation.  Under this programme, 

The Robert Gordon University (RGU) assumed the role of the knowledge base partner 

in collaboration with Dowding & Mills (D&M) acting as the company base partner.  

 

 The School of Engineering at RGU has a well-established expertise in the field of 

condition monitoring of electrical machines. D&M is one of the few companies, who are 

commercially involved in the condition monitoring of electrical machines using partial 

discharge detection technique. The company manufactures its own partial discharge 

detection equipment, that was developed in-house (in 1980s) with the association of 

the expertise available then at RGU.  However, in the last few decades, a considerable 

amount of progress has been made in the field of partial discharge detection and the 

associated data acquisition hardware. These developments can be adopted to develop 

a new partial discharge detection system with an improved performance. This 

development is deemed necessary by the company in order to maintain its position as 

a market leader and to keep in pace with the modern technology. 

 

Though much is already known about the nature, causes and effects of partial 

discharges, this knowledge is far from complete and a great deal of work remains to be 

done before a truly meaningful interpretation of measurements can be made. This is 

due to the dependency of partial discharge measurements on various factors posing a 

challenge for analysis. Some of the factors described by Zhu et al. (143) are partial 

discharge calibration problems, location of partial discharge in machine windings, 

differences between machines and measurement conditions, effect of different types of 

discharges on the winding insulation, etc. Due to these factors, a significant amount of 

experience and expertise is involved partial discharge analysis. 
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Therefore, this research is intended to be a part of a long-term study to build a 

comprehensive knowledge base from which more accurate diagnosis of motor 

insulation condition may be derived.  

 

The main objectives of the project within the scope of KTP programme are: 

  

• Carry out a literature search into the following subject areas: 

o Causes of partial discharges and its effect on the machine insulation. 

o Partial discharge detection methods. 

o Modern signal processing techniques used for partial discharge 

analysis. 

 

• Conduct a detailed study of the workings of the existing system used by the 

company and identify areas of improvement. 

 

• Design and develop a computer based on-line data acquisition system capable 

of detecting and acquiring partial discharge signals, utilising Rogowski coils as 

detection sensors. This will include the design of signal conditioning hardware 

unit along with a suitable interface to a data acquisition card.    

 

• Develop a platform to enable the application of modern digital signal processing 

techniques for the analysis of partial discharge data acquired from rotating 

machines.  

 
 

The existing partial discharge detection system used by D&M called the 

‘StatorMONITOR’ has been successfully deployed in the north-sea oil and gas sector 

for more than 2 decades. However, certain drawbacks that have now become apparent 

will need some consideration for improvement as a part of this project: 

 

• The design is based on the hardware components that were available 20 years 

ago. Although, some design modifications have been carried out since then, it 

has now come to a stage where many of the design components have become 

obsolete making it difficult to manufacture more units. A new design with 

modern components is essential for sustaining the business demands of the 

company. 
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• The existing system is quite bulky as a portable unit, weighing around 12 Kilos 

including the protective casing. There is a potential for a new modern design to 

be lighter making it easy to use and transport. 

 

• The signal conditioning hardware (essentially a filtering and amplification unit) is 

capable of providing a limited number of gain steps (6 different gain settings). 

Although the minimum and maximum gain settings are sufficient to 

accommodate the high and low level discharge pulses, addition of intermediate 

gain steps will provide better visualisation of discharge pulses. This will 

ultimately aid in making a better analysis. 

 
• The existing acquisition and analysis software was developed using Visual 

Basic and C++.  The use of more modern software like LabVIEW which 

specifically designed for data acquisition and analysis will provide a platform for 

sustained development due to its modular approach. Various data compression 

techniques can be used for storing the raw partial discharge data in an efficient 

manner. 

 
• At a later stage, the possibility of remote monitoring can be explored which is 

fast becoming the basis for the maintenance industry, although it will not be a 

part of this project. 
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CHAPTER 2: AGEING OF INSULATION SYSTEMS 
 

2.1    Introduction 
 
In any electrical system, the insulation is considered as the passive component as it 

does not carry any electrical current and does not directly contribute towards the 

functioning of the electrical system. In other words ‘insulation’ is an overhead in the 

system that adds to the cost and increases the conductor size. However, the role of 

electrical insulation cannot be underestimated. Electrical insulation has combined 

functions in providing electrical isolation, mechanical support, heat dissipation, energy 

storage and personal safety. Hence, electrical insulation in any system is of paramount 

importance. 

 

It is of utmost interest to the manufacturers and the users to know the operating life of 

any electrical system. From the manufacturer’s point of view it is mainly to establish 

that the product will exceed its guaranteed lifespan. Another equally important reason 

is to be able to determine the change in lifetime if any alterations are made in the 

manufacturing process or material used. From a user point of view it is necessary to 

asses the operating life of the machine for a given load or duty cycle. This is of 

particular importance to users like electric utilities where the user has to have 

confidence that a particular machine will remain in an operative condition until the next 

planned shutdown. 

 

The safety margins in traditional winding designs were very liberal. Precautions like 

thicker ground-wall insulation for extra insulation, greater cross section of copper to 

reduce the operating temperature, etc. were used to increase the expected life of the 

rotating machine. This resulted in insulating systems that outperformed the expected 

life. However, providing such liberal safety margins meant a significant increase in the 

manufacturing cost of the machine. The manufacturers are now under constant 

pressure to reduce the machine cost by reducing design margins and developing better 

(and thinner) insulating systems with increased stress withstanding capability.    

 

2.2    Ageing and Stress Mechanisms 
 
The process of ageing can be described as ‘The occurrence of irreversible deleterious 

changes that affect the performance and shorten useful life’ (53). The ageing of 

insulation is dependent on various factors like: 
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• Physical and chemical properties of the material. 

• Nature and duration of applied or induced stress mechanisms. 

• Material processing and treatment during manufacturing. 

• Subsequent use in equipment. 

 

 

Of the above stated factors, the presence of degrading stresses is the primary reason 

for the ageing of insulation systems. The insulation system of rotating machines 

windings are subject to a wide variety of severe stresses with varying intensities 

depending upon specific application. Figure 2.1 shows the typical operational 

conditions of insulation systems in rotating electrical machines. The various stresses 

that affect the integrity of the stator winding insulation system can be classified into 

thermal stress, mechanical stress, electrical stress and environmental stress. 

 

In any rotating machine, the stated stresses can be present constantly or for a brief 

period (transients). The constant stresses include the operating temperature (thermal 

stress), the supply frequency voltage (electrical stress) and the magnetically induced 

mechanical stresses. The ageing caused due to constant stresses is often referred to 

as ‘intransitive ageing’ and is usually a slow degradation process proportional to the 

number of operating hours of the machine.  Transient stresses include direct-on-line 

starting of motor, out-of-phase synchronisation of generators, lightning strikes, 

Fig 2.1 Typical operational conditions of insulatio n systems in rotating 
machines (circle diameter corresponds to mechanical  stress) (60) 
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electrical surge caused due to faults, etc. Ageing caused due to such stresses is 

referred to as ‘transitive ageing’ and usually causes rapid degradation of insulation, 

depending on the number of transients the machine experiences (31).   

 

2.2.1   Thermal Stress 
 
Thermal stress is one of the most distinguished causes of the gradual degradation of 

insulating materials and is often a reason for the failure of stator windings, particularly 

in air cooled machines. The thermal stress can be described as the ageing process 

due to a high temperature environment, leading to resistive losses or chemical 

instability of the insulation. Thermal stress is caused due to a number of reasons like 

overloading, voltage variations, blocked ventilation ducts, voltage imbalance and 

ambient temperature (23). The effect of thermal stress on insulation can be described in 

two forms: 

 

a) Iso-thermal stress – the dielectric ages in a relatively well established way 

described by the ‘Arrhenius law’. 

b) Thermal cycling – occurs due to sudden load changes or frequent switching 

operations. 

 

2.2.1.1 Iso-thermal stress 
 
In the case of iso-thermal stress the insulation deteriorates gradually over a prolonged 

time period which is accompanied by the decline in the dielectric strength of insulation. 

The deterioration is caused as a result of heat generated in the copper conductors, 

primarily due to I2R losses. This heat generated has to be dissipated through the main 

ground insulation to the iron in the stator core and the air in the end-windings. 

Additional heat is generated due to core losses, windage and stray load losses adding 

to the operating temperature of the windings. When the winding insulation is subject to 

high temperatures above a certain threshold, it results in a chemical reaction (oxidation 

in case of air-cooled machines) leading to depolymerisation of the binding resin (24). 

This process makes the insulation brittle resulting in localised cracking and can cause 

delamination in form wound coil groundwalls.      

 

2.2.1.2  Thermal Cycling 
 
The thermal cycling of insulation occurs when a motor in normal service is subjected to 

a rapid change in loads or frequent starts and stops within a short period of time. 

During start-up, the motor draws around five to seven times the normal current required 
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to run under full-load conditions. This problem is of particular relevance to large hydro 

generators subject to peak duty, large gas turbine generators and pump storage 

machines. The random-wound stators are unlikely to experience this problem.   

 

A changing load will cause a change in the stator winding temperature. If the 

temperature changes quickly (due to sudden load changes) the copper conductors will 

expand axially. However, the stator insulation materials have a lower coefficient of 

thermal expansion compared to copper. The difference between the thermal expansion 

coefficients of copper conductors and ground insulation causes the copper to grow 

more rapidly than the groundwall insulation resulting in relative axial movement 

between the copper and insulation. These movements from thermal expansion and 

contraction (after many load cycles) exert a mechanical stress on the insulation. This 

may eventually result in breaking the bond between the copper and insulation. It has 

been demonstrated that a duty of arduous nature can result in serious delamination 

taking place, either within the dielectric structure or between the mainwall insulation 

and the conductor stack, if the insulation is not properly designed and manufactured (25, 

26). The thermoplastic insulation system composed of mica splitting bonded with asphalt 

or varnish are more prone to thermal cycling failure. Modern insulation systems 

composed of epoxy resin/mica paper are less prone to thermal cycling as they have a 

similar thermal expansion coefficient to copper and thus tend to move axially with 

copper conductors. 

 

The work carried out by Montsinger (27) laid the foundation for the empirical relation 

known as the 10°C rule of ageing which states that for every 10°C increase in 

temperature the life of insulation would be halved, and conversely, a decrease of 10°C 

would double the life. Montsinger also stated that the deterioration of insulation was 

due to the loss of mechanical properties and emphasised that the electrical strength 

increased with thermal ageing until the material cracked open. However, Montsinger’s 

10°C rule did not always provide valid results due the fact that the materials age at 

different rates. This was asserted in an EPRI study (28) where the insulation halving 

intervals varied from 8°C to 14°C for motors rangin g from 0.7 kW to 350 kW. 

 

Dakin (29) stated that the physical changes during thermal ageing are the result of 

internal chemical changes in organic material, the theory of chemical reaction rates 

(governed by Arrhenius rate law) can be applied to study insulation ageing.  Dakin 

proposed that the life of insulation is related to temperature by the following relationship 
(29): 
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( )TBAeL /
= ………………………………………….(2.1) 

 

where, ‘L’ is the life of the insulation,  A & B are constants determined by the reaction 

rate of particular degradation, and T is the temperature in Kelvin. However, the above 

relation is only valid for high operating temperatures. Every insulation material has a 

threshold, below which no thermal ageing will occur. As the degradation process is an 

oxidation chemical reaction, the higher the temperature, the faster the chemical 

reaction, and the shorter the time to degrade the insulation. 

 

High temperatures do not always have adverse effects in the form of thermal stress. In 

certain cases, the stator windings at high temperature can be beneficial. High 

temperatures will prevent moisture from settling on windings, thus reducing the risk of 

electrical tracking failures. Additionally at high operating temperatures the insulation 

may swell, reducing the size of any air pockets within the insulation and decreasing the 

partial discharge activity (30).  

                                                                                                                                                                                          

2.2.2      Mechanical Stress 
 
The stator windings of a rotating machine are subjected to a large amount of 

electromagnetic forces. These forces are generated by the interaction of current carried 

by the stator windings and the magnetic field in which the conductors are located. The 

resultant electromagnetic forces generated vary sinusoidally at twice the supply 

frequency. These cyclic forces cause the copper conductors as well as the entire coil to 

vibrate at twice the supply frequency, primarily up and down in the slot. There is also a 

force in the circumferential direction caused by the rotor’s magnetic field interacting 

with the current in the stator bar. Figure 2.2 shows the relative movement of a stator 

bar in relation to the laminated core. 

 

These electromagnetic forces cause mechanical vibrations and is regarded as one of 

the major causes of premature degradation of stator winding insulation. Maughan et al. 
(32) showed the vibration can cause fretting of insulation which can eventually lead to 

mechanical failure of the stator winding. If there is any loosening of bars in the stator 

slots, then the vibration forces will cause a mechanical abrasion of the coil sides and 

the groundwall insulation. Such friction can cause damage to both the protective 

corona shield on the coil surface and the groundwall insulation. This may result in an 

increased partial discharge activity and accelerate the process of insulation 

degradation. Edwards (31) detected the insulation abrasion in the slot region by on-line 

partial discharge measurements and reported that such abrasion will lead to a 
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Figure 2.2 Movement of stator bar in relation to co re 

progressive loss of the corona screen and subsequently the main groundwall 

insulation. Kai Wu et al. (33) studied the effect of mechanical vibrations on the partial 

discharge behaviour and demonstrated the amplitude and frequency of vibrations 

cause a significant variation in the partial discharge pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar magnetic force occurs in the end-windings region. The movement in the end-

winding is more pronounced due to the fact that they are fixed in the slot end and are 

allowed a number of degrees of freedom. The endwindings in two-pole and four-pole 

machines are usually longer hence are more prone to the effects of vibration. As shown 

in figure 2.2 the movement from vibration can be in radial and axial directions. The end-

winding bracing is designed to prevent excessive movement in the presence of 

electromagnetic forces.  However, the mechanical stress in the end-windings from 

vibrations is significant during the start-up of the machine. It is a known fact that during 

the start-up a machine draws up to 7 times the normal running current resulting in 

electromagnetic forces that can be 49 times (F ∝ I2) the magnitude experienced during 

normal service. After a large number of starts or frequent transients the endwindings 

may gradually loosen over time allowing movements between the endwinding 

components. Such vibrations can also cause fatigue cracking of copper connections. 

 

Other external vibration caused due to mechanical problems such as bearing failure, 

shaft or coupling deflection and rotor-to-stator misalignment can cause mechanical 
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damage to the endwinding insulation (23).  In an extreme case the rotor can strike the 

stator and the rotor force can cause the stator laminations to puncture the coil 

insulation, resulting in a grounded coil. 

 

In order to minimise vibration the bar is supported continuously along the length of the 

slot by wedges to prevent the radial motion of the bar in the slots. A packing material is 

used to prevent motion between the insulation and core surfaces. This is necessary in 

the case of hard thermosetting insulated bars as they do not provide a uniform fit within 

the core slot. In the case of thermoplastic insulated coils, they are made to conform to 

the contour of the slot and provide a wedge tight fit as the insulation expands at service 

temperatures (34). The organic materials in insulation tend to shrink as they thermally 

age and this may lead to loosening of the stator bars. In order to deal with the problem 

of insulation shrinkage, many machine manufacturers use ripple springs (warped 

epoxy-glass composites) under the wedges as side packing material. The springs 

expand and occupy the space created by shrinkage of other slot components and hold 

the bars firmly in place (28). 

 

2.2.3   Electrical Stress 
 
If alternating voltage applied to the insulator exceeds a certain threshold value, it 

causes electrical stress and can lead to the ageing of the insulating material. This type 

of ageing process is known as electrical fatigue. In low voltage machines (< 1000 

Volts) the thickness of the insulation in the stator windings is mainly determined by the 

mechanical demands of the machine. At such low voltages the electric stress on the 

insulation is relatively low, but the insulation still has to be thick enough to withstand 

the harsh mechanical forces applied on the stator windings during normal operation. 

However, at higher voltages the thickness of the winding insulation is primarily 

dependent on the applied electric stress i.e. power frequency voltage. It is quite 

common today to find machines with normal operating electrical stress levels of 2500-

3000 V/mm (43). 

 

The power frequency voltage can contribute significantly to the ageing of high voltage 

insulation, particularly in the presence of partial discharges. In the electrically 

overstressed regions like voids and cavities within the insulating material, internal 

partial discharges can occur. The high voltage insulation is usually made of organic 

materials containing polyesters, asphalts, epoxies, etc. The sparks caused by partial 

discharges contain electrons and ions which react with the chemical bonds of the 

organic material, thus accelerating the chemical and thermal ageing process. It can be 
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said that electrical stress plays a paramount role in the process of insulation 

degradation, while the other stress mechanisms such as thermal, mechanical and 

environmental stresses are mostly the inception factors for the formation of defects in 

the insulation system. It has been shown that the electrical stress can cause partial 

discharges in defects, which erode the insulating materials and can lead to electrical 

treeing, often referred to as the most important degradation mechanism in solid 

insulation (44).     

 

The ability of the insulation to withstand partial discharges over a prolonged period of 

time is of course essential. Some insulating materials can better withstand partial 

discharges when compared to others.   Partial discharge can be described as small 

electrical sparks that occur within the air pockets of the insulation or on the surface of 

an insulating system. It can occur at various locations in the stator windings along the 

slot region and in the endwindings. The partial discharges are classified into three 

basic types in machine:   

 

1. Internal discharges occurring in the cavities of dielectric material 

2. Surface discharges occurring on the surface of the coils 

3. Point discharges occurring in strong electrical fields around sharp points or 

edges. 

 

The above different types of discharges are discussed in detail in chapter 3. 

 

A significant number of motors are often exposed to transient voltage conditions, which 

can result in reduced winding life or premature failures (either in form of turn-to-turn or 

turn to ground). The transient voltages can be caused due to various reasons like line-

to-line or line-to-ground faults, opening and closing of circuit breakers, capacitor 

switching, rapid bus transfers and lightning (23).  

 

Repetitive voltage surges are caused by inverter fed drives that incorporate switching 

devices. These switches are driven by various pulse width modulation (PWM) 

techniques that can create a high number of fast rise-time surges per second. Although 

the rate of rise of the voltage surges is not generally fast enough to cause an uneven 

voltage distribution throughout the turns of the coil, it is the very high repetition rate and 

the magnitude of the spikes that affect the life of the insulation system. The effect of 

these voltage surges is more relevant to the insulation of low voltage motors as they 

have a relatively weaker insulation. Persson (45) carried out a study of PWM inverters 

on low voltage induction motors and reported that a short rise-time can be potentially 
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hazardous for motor insulation and it is recommended to have a minimum rise-time of 

approximately 5 µs.  

 

Gupta et al. (46) published some data on the effect of repetitive surges on epoxy-

impregnated turn insulation in large motor coils which had been operational in normal 

service.  At surge voltages close to the single surge breakdown voltage, results 

indicated an ageing effect; however no surge ageing was observed at lower voltages. 

There was some uncertainty in the data as there was a high variability from specimen 

to specimen, and only a limited number of coils were tested.  

 

The work carried out by Bartnikas et al. (47) showed that epoxy insulation can gradually 

age under the action of repetitive voltage surges of either polarity, even in the absence 

of partial discharge.  Even well made epoxy turn insulation in motor windings may be 

aged by the repetitive surges created by vacuum switchgear and electronic type power 

supplies. The insulation that is most likely to age is the turn insulation in the stator 

winding coils connected to the phase terminals. Although the electric stress across the 

turn insulation is dependent on the design of the coil and rise-time of the surge, it can 

be generalised that the faster the rise-time, the greater is the stress across the turn 

insulation. Due to the fact that electrical stress is one of the primary factors causing the 

deterioration of electrical insulation, there are methods to determine the ability of 

insulation to withstand voltage. The industry has adopted accelerated ageing test 

methods that result in a time-to-failure of days or weeks, rather than years or decades 

that the insulation is expected to last at normal voltages. The most commonly used test 

methods are:   

 

• Short-term breakdown strength 

In this method the voltage is rapidly increased across an insulating material up 

to a point when there will be sufficient voltage to puncture the insulation. 

 

• Voltage endurance test  

In this method a voltage is applied to an insulation system that is higher than 

expected during normal operation and the time to failure is measured. The 

voltage endurance tests are typically performed at four times service voltage 

levels and the method has been detailed by Ward et al. (48) and Stone et al. (26). 

 

The above methods were developed as a result of numerous studies carried out by 

various researchers who developed empirical models relating the test stress with time 

to failure. Cygan and Laghiri (49) studied various models developed by several 
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researchers, providing a critical analysis of each method. However, the most commonly 

used models for ageing studies under electrical stress only are the ‘inverse power law’ 

and the ‘exponential law’.   

 

• Inverse Power Law: 

The inverse power model is one of the most frequently used in the ageing 

studies under electrical stress only. As summarised in (48) is described by the 

following relationship:  

 

L = k.V-n………….………………………….(2.2) 

 

where L is the appropriate unit of time (in hours or years), V is the applied 

voltage or electrical stress, and k and n are constants to be determined based 

on the characteristics of a given material and the operation conditions of voltage 

and temperature. If various data points of the above equation are plotted on a 

log-log paper, it will result in a straight line (49). 

 

• The Exponential law:  

Next to the inverse power model, the exponential representation is the most 

commonly used. The basic form of exponential law as reported in (49) is given by 

the following relation: 

 

L = c exp (-kV)………………………….….(2.3) 

 

where, L is the appropriate unit of time (in hours or years),  V is the applied 

voltage, and c and k are constants to be determined based on experimental 

data. Various data points of the above equation, if plotted on a semi-log paper 

will result in a straight line.  

 

The industry has developed over the years, various empirical relations for the 

prediction of insulation life of electrical systems and most relationships are variations of 

the above two models. Brancato published a paper (50) summarising the various voltage 

endurance relations and stated the belief of many researchers that there is no 

deterioration of insulation below discharge inception voltage, thus increasing the 

insulation life significantly. Modified versions of the above equations have been 

developed (51, 52) that provide a better approximation of insulation life.  
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2.2.4   Environmental Stress 
 
There are many environmental factors that can influence the insulation ageing of stator 

windings. Some of the factors are moisture condensed on windings, oil from bearings, 

high humidity, aggressive chemicals leading to reaction, abrasive particles, dirt and 

debris such as coal dust, cement, sand etc. and radiation if the machine is used in the 

space environment or nuclear reactor. Of all the above factors the contamination and 

pollution of insulation surfaces is the most common cause of degradation. 

 

Surface contamination, usually associated with deposits of grime, salt or dampness on 

the insulation surface can lead to intense surface discharge and tracking. As explained 

by Dymond et al. (35) the process of tracking is accelerated in humid conditions. A 

moisture film on the polluted surface will permit a localised flow of leakage current. The 

nature and extent of pollution determines the magnitude of the leakage current. The 

flow of leakage current causes the conductive film to heat non-uniformly. The heating 

causes uneven evaporation and distorts the voltage distribution over the surface. The 

resultant dry-bands create regions of very high resistivity between the edges of the 

remaining wet film. Almost the entire surface voltage will appear across this dry band 

and can cause a flashover of the gap. Such localised high energy surface discharge 

has sufficient energy to decompose and carbonise the underlying insulation. This 

process continues in a relatively random manner, growing in a tree-like pattern. 

Eventually, a continuous conducting path may be formed between two live parts 

resulting in a failure. Practical on-field investigation (36) has shown that the presence of 

contamination (oil and pollution) in the endwindings led to intensive endwinding partial 

discharge activity affecting the insulation integrity. 

 

Conductive surface contamination may also effectively act as an extension to the earth 

structure resulting in an increase in the electric field intensity. A clean insulating surface 

has high resistivity and the discharges therefore have low energy and are incapable of 

causing rapid erosion of the insulating surface. However, if the surface resistivity at the 

point of discharge has been compromised due to the deposition of contamination, then 

the effective surface area feeding current to the discharge and the discharge energy 

are correspondingly increased (37).  

 

Humidity is another important factor that can influence the insulation ageing process. If 

the endwindings are clean and dry with no surface contamination and there is sufficient 

spacing between the coils/bars, there will be no partial discharges. Under such 

circumstances humidity will have a minimal effect on the insulation. However if the coils 

are contaminated and are suffering from surface tracking or insufficient spacing, partial 
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discharges will occur and can be strongly affected by humidity. Stone & Frenger (38) 

showed the significant influence of humidity on partial discharge activity in high voltage 

stator windings suffering from surface insulation degradation and emphasised the 

practical importance of humidity measurement along with partial discharge 

measurement as a trending parameter. Naprasert et al. and Binder et al. (39, 40) have 

shown that the lower the relative humidity, the higher the partial discharge activity and 

conversely the discharge activity diminishes or are even extinct at higher humidity. 

Nawawi et al. (41) explained the phenomenon stating at humid conditions, the partial 

discharge inception voltage decreases and the partial discharge extinction voltage 

increases, leading to a decrease in discharge magnitude. The study conducted by 

Slotani et al. (42) showed that humidity can have different effects on different types of 

partial discharges. For coils with insulation containing asphalt (more hygroscopic 

material), humidity amplified the internal discharges. In the case of an epoxy insulation 

bar, which had more surface discharges, the application of humidity caused a 

noticeable decrease in surface discharge. 

  

In certain cases the above stated environmental factors in themselves do not cause 

deterioration, but when combined with other stress mechanism can lead to 

degradation. For example, the oil, moisture and dirt combination can get collected in 

the stator ventilation passages and in the endwindings to block the cooling airflow, thus 

increasing the risk of thermal deterioration. The presence of oil can act as lubrication 

and facilitate increased movement of the stator bars within the slot leading to insulation 

abrasion. Chemicals such as acids, paints and solvents can decompose the insulation 

and reduce its mechanical strength. 

 

2.2.5   Multifactor Stress   
 
The stress mechanisms described above will be present in any harsh operating 

environment and may operate singularly or in combination to deteriorate the insulation 

system. For example, the operating voltage of a rotating machine not only causes 

electrical stress but the winding insulation is also subject to thermal stress as a result of 

conductor heating due to current flowing through it. Thus the insulation system 

undergoes ageing due to a combination of electrical stress and its associated thermal 

effects. In addition, mechanical stress may be present due to induced vibration or the 

difference in expansion coefficients. The simultaneous presence of various stress 

mechanisms subjects the machine insulating material to ‘multifactor stressing’. The 

whole insulation degradation process is made more complex as the interaction 

between ageing factors is not simply additive but synergistic in nature (53). This means 
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the interaction of various ageing factors produce an effect that is different from the sum 

of ageing effects produced by each factor individually.  

 

The simultaneous presence of electrical and thermal stresses has been investigated 

extensively. The presence of these two stresses is almost unavoidable in most 

applications and various ageing models have been proposed (49, 54). Mazzanti et al. (55) 

made an attempt to quantify the synergistic effect of electrical and thermal stresses on 

insulation life. They proposed a synergism factor, a ratio between multi-stress ageing 

rate and the sum of single-stress ageing rates. The tests carried out on polypropylene 

capacitors and ethylene propylene rubber (EPR) insulated cable models suggested 

that the synergism between electrical and thermal stress is negligible only if one stress 

is very low. However, when the action of both the stresses is comparable, the 

synergism increases and the factor can reach high values. 

 

Several papers have reported multi-stress models combining the electrical, thermal & 

mechanical stresses for the life prediction of insulation materials. A simple multi-stress 

ageing model can be developed assuming that the combined-stress ageing rate is the 

product of the single stress ageing rates.  But this leads to an overestimation of 

synergism between stresses as observed for combined electro-thermal life (54). This 

results in an underestimation of insulation life, particularly when the stresses are high. 

The electro-thermo-mechanical life model suggested by Simoni et al. (56) was also 

derived from a suitable combination of the three individual single stress models, but 

they introduced a correction factor in order to achieve a better fit of the experimental 

life data. Bartnikas and Morin (57) demonstrated the ageing behaviour of stator bars 

subjected simultaneously to electrical, thermal and mechanical stresses and reported 

the effect on the ageing rate by increasing each of the three ageing stress factors 

above the normal operating conditions. They also reported the intricate behaviour of 

partial discharge process as a function of temperature and electromagnetically induced 

mechanical forces over a thermal load cycle and stated that the presence of partial 

discharge is an indication of progressive ageing, the intensity level at any given specific 

time cannot be used to predict failure. 

 

Paloniemi (58) critically assessed the various methods for endurance testing and stated 

that an exact reproduction of the ageing process in an accelerated ageing test is 

probably not possible due to the numerous possible paths of degradation reactions. He 

proposed the theory of ‘equalised ageing process’ in which all the relevant stresses are 

accelerated to such an extent that the ageing rate due to each stress is about the 

same, thus moving a step closer to the reproduction of the true ageing process. 
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Various stresses interact with each other in a cyclic fashion and this is illustrated in 

figure 2.3. It must be noted that thermal stress cannot lead to any electrical stress. The 

electrical, thermal and mechanical stresses represent one side each, whereas the 

combination of radiation and environmental stresses represent the fourth side. The 

majority of equipment and systems undergo electrical, mechanical and thermal 

stresses in practical applications but are not always subjected to radiation or 

environmental stress. Ageing due to radiation is considered to be critical in space-

based systems and nuclear systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3    Conclusion 
 
Although the individual stress models provide a good understanding of the effect of 

stress on insulating material, the multi-stress model approach provides a better 

approximation of real life insulation degradation process. The multi-stress ageing 

models take into account the synergistic interaction between various stress 

mechanisms and are based on the cumulative damage caused by all acting stresses; 

hence it offers a better approximation of insulation ageing under real conditions. 

Figure 2.3 Multistress Ageing (53) 
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However, the subject of multi-stress ageing is considered complicated and difficult. The 

laboratory simulation of various operating conditions may come close to real life 

conditions, but insulation life predictions based on those data analyses are 

questionable. With every additional stress the complexity of conducting studies and 

deriving appropriate ageing models increases.   Kimura (59) acknowledges the fact 

stated by Simoni that the ageing curves change complicatedly according to the 

amplitude of multiple stresses and will require numerous samples to be tested with 

various combinations of stress amplitudes and application modes. This is one of the 

reasons why the multifactor ageing models lack sufficient real life experimental 

evidence. 
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CHAPTER 3: PARTIAL DISCHARGE THEORY 
 

3.1    Introduction 
  
IEC 60270 (PD measurements) defines partial discharge as ‘a localised electrical 

discharge that only partially bridges the insulation between conductors and which may 

or may not occur adjacent to a conductor’. If the insulation is completely bridged then 

the insulation breaks down. Figure 3.1 shows a simplified representation of a discharge 

occurring within an insulating material. These discharges can occur internally or 

externally to the insulation. 

 

 

 

 

3.2    Types of partial discharge 
 
Based on the location and nature of partial discharges, they can be classified into the 

following four categories (61):  

 

1. Internal discharges - usually occurs within gas filled cavities called voids in 

liquid and solid insulating materials. 

2. Surface discharges – occurs on the surface of an insulating material or at the 

interface of different insulating materials. 

3. Corona discharges – tends to occur on sharp edges or thin conductors that are 

connected to high or ground potential. 

4. Electric treeing 

 

Figure 3.2 shows the different types of discharges along with their locations. 

 
  Cavity Vs 

Vs = Applied Voltage 

Insulating Material 

Local breakdown that 
short circuits part of 

the insulation 
 

Figure 3.1 Simplified representation of partial dis charge 
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3.2.1   Internal Discharges 
 
Internal discharges take place in inclusions or cavities (voids) within the insulation. It is 

not practically possible to completely eliminate the occurrence of small faults like voids 

in an insulating material. A practical insulation structure of a high voltage stator will 

invariably contain small voids or cavities, often due to inhomogeneities in the insulating 

material used for the manufacturing. Natural resin based coils and synthetic resin 

based coils contain gaseous inclusions and are formed due to small quantities of air 

that become trapped in the insulation during the curing and pressing stages.  

 

These cavities filled with air usually have a lower permittivity and a lower breakdown 

strength compared to the insulating material. This causes the field intensity to be higher 

within the cavity than in the dielectric material and may cause a breakdown even under 

normal working stress affecting the long term integrity of the insulating material.  

 

3.2.1.1 Analogue discharge circuit 
 
The behaviour of internal partial discharges under a.c. voltage stress can be described 

conveniently with an equivalent analogue circuit representation, often referred to as the 

‘abc’ circuit (61). Figure 3.3 shows a simplified diagram of a cavity within a section of 

solid insulating material along with its ‘abc’ equivalent circuit. 

 

Discharges in 
electrical trees 

Discharges in 
internal voids 

Surface  
Discharges 

Corona 
Discharges 

Figure 3.2 Different Types of Discharges (61) 
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In figure 3.3 the capacitor Cc represents the capacitance of the cavity; Cb represents the 

capacitance of the dielectric material in series with the cavity and Ca represents the 

capacitance of the rest of the dielectric material. ‘S’ represents the spark gap which 

breaks down when the voltage across it reaches the void breakdown level. 

 

The table 3.1 shows relative permittivity and breakdown strengths of some typical high 

voltage insulating materials.  

 

Table 3.1 Relative permittivity and breakdown stren gth of HV insulating materials 
 

Material Relative permittivity Breakdown strength kV/mm 

Air (atmospheric pressure) 1.006 2 
Transformer Oil 2.2 28 
Polyethylene 2.3 24 
Polyurethane 4.0 10 
Paper 3.0 9 
Mica 6.0 42 
Epoxy 4.7 12 
 
The relative permittivity of air ‘εo’ is equal to unity, whereas the permittivity of solid 

dielectric (e.g. insulated epoxy mica) given by ‘εr’ varies between 4 and 6. When the 

given solid dielectric is subjected to high voltage (ES), the electric stress developed 

across the cavity (EC) is given by: 

 

                                                 EC = (εr / εo ).ES ……………………………...……………..............................(3.1) 

 

where, εr = relative permittivity of air 

    εo = relative permittivity of solid dielectric 

Figure 3.3 Simple model of a cavity in dielectric (61) 
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Therefore, from equation 3.1 and table 3.1 it is clear that the electric stress across the 

cavity is substantially increased. The extent of stress concentration within the cavity will 

depend on various other factors like the shape and size of the cavity. Kang et al. (62) 

showed that the discharge parameters like magnitude, repetition rate, average 

discharge power and average discharge current in specimens with larger size voids 

were greater than in others. As the breakdown strength of air at atmospheric pressure 

is about 3KV/mm, it can be seen that discharges are likely to occur at normal high 

voltage operating stress.  

 

 
Referring to figure 3.4, the high voltage across the dielectric is represented by Va and 

the voltage across the cavity is represented by Vc. When voltage Vc exceeds the 

positive breakdown voltage U+ (inception voltage) of the cavity a discharge occurs. 

The breakdown voltage U+ is determined by the Paschen curve that relates the 

breakdown voltage of air to the product of pressure and electrode spacing (61). When 

the discharge occurs, the voltage across the cavity drops to V+ volts (extinction 

voltage) and the discharge extinguishes. This typically happens in a time less than 

V+ 

V- 

U- 

U+ 

Va 

Vc 

i 

t 
Discharge Pulses 

Figure 3.4 Sequence of internal discharges under a. c. voltage (61) 
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0.1µS. The voltage does not reduce to zero because a residual voltage remains across 

the cavity.    

 

After the extinction of discharges, the voltage across the cavity increases again along 

with the applied voltage Va. Another discharge occurs when the voltage across the 

cavity reaches U-. This sequence of discharges repeats several times until the applied 

voltage Va begins to decrease and the discharges cease. Thus a number of discharges 

are produced during the rising portion of the positive half cycle. A similar process takes 

place in the negative half cycle in which the discharges occur when the voltage across 

the cavity exceeds U-. In this way groups of regularly occurring positive and negative 

discharges will be produced. Each discharge will cause a current pulse as shown in 

figure 3.4, and these can be detected by electrical means. The electrical detection of 

discharges is discussed later. 

 

3.2.1.2 Discharge sites 
 
When a breakdown occurs, there is a net charge transfer from one cavity surface to the 

opposite one. However, due to the high surface resistivity of the cavity, not all the 

charge on the surface will be discharged. The remnant charge acts as a localised 

protective zone and alters the electric field in the cavity. The next discharge therefore is 

most likely to occur farthest from the previous discharge site. Thus, multiple discharges 

per cavity are possible. Mason (63) clearly showed the development of multiple 

discharge sites along with the photographs of the void surface taken at different 

intervals after the start of experiment. 

         

It is important to emphasise that the analogue ‘abc’ circuit and the resulting sequence 

of discharges is a simplified model of the actual process within a cavity. In practical 

conditions a discharge cavity can contain multiple discharge sites, and these sites may 

be considered as many discharging capacitances, each having its own discharge 

sequence. This causes a tangential stress along the surface of the cavity and is 

probable that a discharge site can get partly recharged by a neighbouring discharge 

site. This transverse leakage affects the discharge sequence (61). The discharge activity 

is also affected by the surface conductivity of a cavity. The bi-products generated 

during discharge like the ozone ‘O3’ or nitric oxide ‘NO’ can attack the surface of the 

cavity (64).  

 

All these factors can affect the discharge rate and it is most likely that in the presence 

of any of the above stated mechanisms the discharge rate will be higher than that 

predicted by the ‘abc’ circuit. However, the net effect of all these degrading 
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mechanisms is a slow erosion of cavity surfaces present within the insulating material, 

thus reducing the overall dielectric strength of the insulation. 

3.2.2   Surface Discharges 
 
Surface discharges may occur when there is a stress component parallel to a dielectric 

surface as shown in figure 3.5. Once the discharge has been initiated, it affects the 

electric field in such a way that the discharge extends beyond the region where there 

was originally sufficient electric stress to cause the discharge. They are commonly 

found in bushings, ends of cables and overhang of machine windings. Surface 

discharges depend on several factors (65): 

 

• Physical properties of the environment in which discharge takes place (gas, 

liquid). 

• Physical properties of solid dielectrics (permittivity, surface resistance, 

conductivity). 

• Distribution of electric field in the site between electrodes. 

• Type of voltage and time of operation. 

• State of surface of solid dielectrics (polluted, sodden). 

 
Pollution is one of the main causes of surface discharges and tends to occur between 

the particles of a contaminant. Salt deposits or dampness can form semiconducting 

layer and can permit the flow of current. Very often moisture combines with nitrous 

gases to form Nitric acid and can seriously affect the insulation surface. Insulation 

surfaces affected by such an acid attack are an ideal surface for tracking to occur (66). 

Tracking is the result of carbonisation of the surface of the insulation and the carbon 

tracks tend to electrically short the insulation causing the process to accelerate to an 

eventual failure. 

 

Solid dielectric 

Surface discharge 

Figure 3.5 Surface Discharges 
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3.2.3   Corona Discharges 
 
Corona discharges are electrical discharges caused by the ionisation of the medium 

surrounding the conductor. They tend to occur around sharp points or edges at high 

voltage because of a high concentration of charge on a small surface area. The 

inception voltage of corona discharges is difficult to state as it is dependent on various 

factors like surface smoothness and environmental conditions which affect the space 

charge near the conductor. They appear sooner at negative than at positive voltage; 

with a.c. voltage they occur often during the negative half-cycle only (61). 

 

In rotating machines, the end-windings are more susceptible to corona type discharges 

as the electric stress is intensified in the overhang portion due to its characteristic 

shape. The gas adjacent to the insulation in the immediate vicinity of the slot exit 

breaks down and can lead to the development and propagation of discharges over 

end-windings (67, 68). Hence, the application of stress grading systems along the end-

windings is considered essential for high voltage machines. The end-winding discharge 

is described later in section 3.3.4.     

 

3.3    Partial discharge theory applied to stator w indings 
 
A stator comprises of three main components i.e. copper conductors, the stator core 

and the insulation. The copper acts as the medium to carry the stator winding current 

and should have a large enough cross section to carry the rated current without 

overheating. The stator core is made from thin sheets of laminated magnetic steel. It 

provides a low impedance path for the magnetic fields (from the stator to rotor in the 

case of the motor and from the rotor to stator in the case of a generator) and prevents 

the magnetic field from escaping outside the stator core. 

 

The last major component of a stator winding is the electrical insulation. It is considered 

to be a passive component of the system as it does not produce any magnetic field or 

guide its path. It does not help to produce any torque or current. It increases the 

machine size and cost and reduces efficiency; thus acting as an overhead in the 

system. However, the insulation plays an important role of preventing short circuits 

between conductors or to ground. In the case of indirectly cooled machines, it also acts 

as a thermal conductor preventing the overheating of copper windings. It also helps in 

holding the copper conductors tightly within the stator slots to prevent any movement. 

  



39 
 

As discussed in chapter 2, the stator winding insulation system contains organic 

materials as a main constituent. Organic materials soften at a much lower temperature 

and have a lower mechanical strength compared to copper windings or the steel core. 

Thus, the electrical insulation is the weakest component in the stator and the life of 

stator windings is limited by the life of the electrical insulation rather than the copper 

conductors or the steel core. 

 

3.3.1   Insulation breakdown mechanisms in stator w indings 
 
Regardless of the cause of failure, it is possible to identify five modes of failures in a 

three phase stator winding as shown in figure 3.6. Each of these faults will result in a 

flow of short circuit current in the machine winding from a breakdown in the turn or 

ground insulation. 

 

 

L3 

Turn to Turn 

Phase to Phase 

Coil to Coil 

Coil to Ground 

Broken Conductor 

L1 

L2 

Figure 3.6 Failure modes in 3 phase stator windings  (69) 
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For example, a random wound motor started frequently can result in a minor turn-to-

turn short within a coil. This short will lead to localised excessive heating resulting in 

insulation degradation. As this condition progresses more heat is generated in the 

damaged area until the phase or ground insulation is destroyed. At this point, either a 

phase-to-phase fault can occur or a phase-to-ground fault can occur eventually leading 

to a machine failure. 

 

3.3.2   Defect locations 
 
The above stated insulation breakdown mechanisms can occur at different locations in 

a stator winding; hence it is necessary to look at the stator winding construction. The 

construction of stator winding structures varies depending on the operating voltages 

and rated power of the machine. The two main types of stator winding structures are 

random wound stators and form wound stators. Random wound stators are typically 

used for low power machines (few hundred KW) that usually operate at voltages less 

than 1000 volts. Such machines are not prone to partial discharge activity due to the 

low voltage.  

 

Form wound stators are available in two forms i.e. coil type and roebel bar type. The 

roebel bar type stator has limited applications and is only used for very large 

generators (typically in the range of 50 MW or above) where inserting a coil type stator 

in a slot posses a significant risk of mechanical damage. The most commonly used 

stator structure in high voltage machines (>1000V) is the form wound coil type stator 

windings. Figure 3.7 shows the typical structure of a single form wound coil.  

 

 

Stator Coil 

Rigid  
Slot Section 

Slot exit 
End-windings 

Figure 3.7 Form-wound stator coil 
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The coils are pre-formed, hot pressed to the correct profile and inserted into the stator 

slots. The part of the coil that is firmly supported by the stator core is called the slot 

section; whereas the overhang part of the coil (after slot exit) forms the end-windings. 

The slot section is usually wrapped with mica paper tapes bonded together with epoxy 

forming the ‘ground-wall’ insulation (70). The ground-wall insulation separates the 

copper conductors from the grounded stator core. A semiconductive coating (carbon 

loaded tape or paint) is applied over the ground-wall insulation in the slot region. This 

coating, often referred to as the corona screen, prevents partial discharge that could 

occur in any air gap between the surface of ground-wall insulation and the side of the 

stator slot. A stress grading tape (silicon carbide powder) is applied at the slot exit 

overlapping the slot conductive coating and extending 10-15 cm into the end-winding 

region. The stress grading tape is designed to reduce the risk of partial discharge by 

reducing the electric stress along the surface of the coil from the line voltage in the 

end-winding region to nearly ground potential, where it joins the slot semi-conductive 

coating. After inserting all the coils in the stator, the stator slots are wedged to prevent 

any coil movement. Similarly the end-windings outside the stator slot are supported by 

a bracing ring, usually made of steel and insulated epoxy. Finally the stator windings 

are impregnated with resin and cured using a technique called ‘Global VPI’ (71). This 

process helps in eliminating voids (except very small) in the insulation and to bond the 

main-wall and conductor together.  

 
Depending on the various types of stress operating within a rotating machine and the 

condition of various insulation structures of the stator coils, the defect can either be 

located in the slot section or the end-winding region and are called  ‘slot discharges’ 

and ‘end-winding discharges’ respectively.   

 

3.3.3   Slot Discharges 
 
The slot section of a stator winding coil is usually covered with some form of conductive 

coating (corona screen) in order to prevent discharge between the insulation surface 

and stator slot walls. If the resin impregnation of the coil is complete and the corona 

screen is intact and adequately connected to the stator core, then there should be no 

discharge activity. In practice, most high voltage motors operating in the range of 6 KV 

and above have some degree of slot discharges like internal discharges due to small 

residual voids embedded within the insulation.  

 

Surface discharge in the slot region is not normally possible unless the corona screen 

has sustained physical damage of some kind with the most likely cause being abrasion 
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against the slot wall either during manufacture or during service. When a machine is in 

service, the abrasion can occur if the coil sides have some freedom of movement. As 

stated in section 2.2.2, there are significant amount of electromagnetic forces exerted 

on the stator windings which can cause a loose coil to rub against the slot walls. Similar 

friction can take place if the slot wedges are loose and this can lead to the removal of 

small areas of semiconductive corona screen and possibly the main-wall insulation. 

This process may well be progressive and can result in a weak bonding between 

substantial areas of the corona screen and earth. This increases the surface resistivity 

resulting in a high surface potential that may eventually cause a discharge. Discharge 

to the slot walls will occur when the electric field in the gap is higher than the 

breakdown strength of the gas. This is dependant on the nature and the pressure of the 

gas and also on the width of the gap. However, it is known that the regions where the 

semiconducting surface coating becomes isolated from the earth (connected via stator 

walls), the discharge magnitudes will increase substantially. This is due to the high 

energy content caused by the relatively large effective value of capacitance involved.  

 

The investigation undertaken by Jackson and Wilson (72) identified different forms of slot 

discharges in high voltage motors and generators and highlighted various factors that 

affect the slot discharge activity. The study reported that if there is a large air-gap 

between the insulation surface and slot wall (>0.2mm), discharge from the bare 

insulation to the earthed coating will erode the coating and extend the damaged area. 

The removal of the surface coating allows discharge between the insulation surface 

and the slot wall, reducing the service life of insulation.  

 

Figure 3.8 shows the typical defects than can occur with the slot section of a rotating 

machine. The de-lamination of conductor insulation can cause an inter-turn fault. 

Internal voids are invariably present within the insulating material due to manufacturing 

tolerances. Such defects can cause internal type discharges. The thermal cycling can 

cause the de-lamination of insulation layers and promote discharge activity. The slot 

discharge activity caused due to the erosion of the corona screen can be accelerated 

due to coil vibrations. If progressive in nature, then this type of discharge can 

eventually cause the copper conductors to short with the stator slot resulting in an earth 

fault.  
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3.3.4   End-winding discharges 
 
Rotating machines are often subjected to harsh environmental conditions where the 

stator windings can be exposed to contaminants like oil, grease, dust, dirt, salt, sand 

and moisture (73). The source of contamination can be located inside the machine (oil 

and grease released from motor bearings) or outside (sand, dirt, insects, pollen etc.).  

Machines that operate in high humidity environments (hydro-generators) are also prone 

to attack from moisture that can enter a motor enclosure and condense onto the 

winding surfaces. 

 

The effect of such contamination on the integrity of winding insulation depends on the 

type and level of contamination present in the environment in which it is located. 

Edwards (31) states that if the accumulation of contamination on high voltage stator 

endwinding reaches levels sufficient to significantly reduce the insulation surface 

resistivity, then at least three different degradation mechanisms are possible: 

 

a) Endwinding Internal discharge 

b) Phase-phase discharge  

c) Surface tracking 

 

 

Figure 3.8 Typical defects in slot section 
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3.3.4.1 Endwinding Internal Discharge 
 
Most voids except very small ones are eliminated from the slot section of the stator coil 

as they are pre-formed and hot pressed to the correct profile creating robust and 

consolidated ground-wall insulation. However, that is not the case with the curved 

endwinding sections. This part of the stator coil needs to retain a degree of flexibility to 

allow the build of the stator winding. During the process of insertion of coils the 

endwinding sections are twisted and this leads to the displacement of ground-wall 

insulation immediately adjacent to the conductor insulation. This action tends to create 

voids between the ground-wall insulation and the insulated conductors. These voids in 

the endwinding region are not a cause of concern as long as the endwindings remain 

clean and free of debris. But the deposition of surface contamination, if conductive, can 

act as an extension of the earth structure of stator frame resulting in an increase of 

electric field intensity within the endwindings. This can initiate discharge activity and 

subsequent discharge erosion can lead to inter-turn insulation failure. Walker and 

Champion (74) have presented a practical investigation of inter-turn insulation failure 

caused by the contamination of voids between the conductors and ground-wall 

insulation in the endwinding region.  

 

3.3.4.2 Phase-to-phase discharge 
 
Phase-phase discharges can occur if the stator coils of different phase groups have 

insufficient spacing between them. However, the spacing of the coils in the endwinding 

region is normally designed in such a way that during normal operation the discharges 

are unlikely to occur between coils of two different phase groups. But, it is difficult to 

ascertain that this will not happen as phase-phase discharges are found to occur from 

time-to-time, particularly on machines with high voltage ratings (31). Again, this type of 

discharge activity is not a problem as long as the coil surfaces are clean and dry. This 

is because a clean insulating surface is a poor conductor of current and the discharges 

have relatively low energy and cannot cause a rapid erosion of insulation. However, the 

deposition of conductive surface contamination significantly reduces the surface 

resistivity and increases the effective surface area feeding current to the discharge, 

correspondingly increasing the discharge energy. It is commonly found that the solid 

contaminants have a tendency to be deposited on surfaces between phase groups due 

to electrostatic attraction to the high field region, instigating the occurrence of 

discharges between different phases.  
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3.3.4.3 Surface tracking 
 
Acute surface contamination caused due to deposition of moisture / water on the 

insulation surface can cause a substantial amount of electric current to flow in the 

surface film. The current flow pattern is extremely complex. Local concentrations of 

high current density can lead to high energy surface discharge causing the 

carbonisation of the underlying insulation surface. The area of carbonisation continues 

to grow in a complex tree-like pattern and burns deeper into the surface. This can 

eventually lead to phase-phase failure or phase-ground failure. 

 

Figure 3.9 shows the typical defects that can occur in the endwinding section of 

rotating machines. 

 

 
 Another significant cause of discharges in the stator endwindings is the endwinding 

movement or vibration. The endwindings do not have the firm support of the stator core 

and are vulnerable to vibration. The endwindings are supported with an endwinding 

bracing that is designed to prevent excessive movement in the presence of 

electromagnetic forces. However, if the motor is subjected to a frequent starting duty 

then there is a tendency for some limited freedom of movement to develop. The 

resultant flexing of the coils can lead to fatigue failure of the insulation structure. The 

vibration can also have an effect of reduced spacing between coils and if coils from 

Slot section 

Surface tracking 

Insufficient spacing  
between different phases 

Grading tape 
at slot exit 

Delamination at the 
bent weak areas 

(Internal discharge) 

Discharge between two 
coils of different phases 
(Phase-phase discharge) 

Figure 3.9 Typical defects in endwinding section 
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different phase groups are involved then it can lead to phase-phase discharges. It can 

also cause abrasion of the anti-corona coating resulting in surface discharge. 

  

3.4    Summary 
 
Partial discharges can be classified into three basic types i.e. internal discharge, 

surface discharge and corona discharge. In relation to stator windings, discharges can 

be classified based on their location i.e. slot discharges and endwinding discharges. 

Although extensive measures are taken during the manufacturing process of high 

voltage stator windings, a small magnitude of discharges will occur due to 

manufacturing tolerances. In-service degradation of stator winding insulation is 

accelerated by various factors like winding movement (vibration) and deposition of 

contamination on winding surface. 

 

When a partial discharge occurs, irrespective of its type, a current pulse is generated 

and this pulse can be used for discharge detection. Having studied the different types 

of discharge mechanisms and the associated failure modes in stator windings, the next 

chapter details various techniques used for the detection of partial discharge.  
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CHAPTER 4: PARTIAL DISCHARGE DETECTION 
 

4.1    Introduction 
 
Partial discharges (PD) were first observed in the gaseous inclusion of solids in 1878. 

A considerable amount of research has been undertaken since then to detect and 

measure very small discharges. A vast range of techniques are now available with 

each measuring certain specific quantities. Experience indicates that no one method 

can be applied to measure all quantities related to discharge. The relative use of each 

technique is largely dependant on the nature and type of equipment to be monitored 

due to vast differences in the actual physical structure. 

 

When PDs occur, they are accompanied by various physical manifestations like light, 

heat, noise, chemical transformations, gas pressure, electromagnetic radiation, 

dielectric losses and electrical impulses. Hence, PDs can be detected and quantified by 

measuring any of these physical quantities using various methods. The PD detection 

can be grouped into two main categories: 

 

1. Non-electrical detection techniques 

2. Electrical detection techniques 

 

The detection of electrical quantities like dielectric losses and electrical impulses are 

very popular techniques and are extensively used for the detection of PDs in rotating 

machines. The detection of electromagnetic radiation is most often used for detecting 

PDs occurring within high voltage switchgear and transformers. The non-electric 

detection methods are less popular as they tend to be less sensitive in many cases.  

 

4.2    Non-Electrical detection techniques 
 
The most common non-electrical PD detection techniques can be classified into three 

categories: 

 

a) Chemical detection 

b) Acoustic detection 

c) Optical detection 
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4.2.1   Chemical detection 
 
PDs can be detected chemically because the current streamer across the void can 

breakdown the surrounding materials into different chemical components. Pressurised 

SF6 gas is used as high voltage insulation in gas insulated switchgear (GIS)and GIS 

substations. Although SF6 is non toxic and chemically very un-reactive, the 

decomposition of gas can take place under the presence of partial discharge 

generating bi-products like SOF2, SO2F2, SO2, SOF4, S2F2, S2F10 
(75, 76, 77). As the 

concentration of these bi-products increase they can be detected by various gas 

detectors with sensitivities to a few ppm (parts per million). However, in GIS these 

gases may be greatly diluted due to the large volume of SF6 and may take a longer 

time to be detected making this method less sensitive to detect gases in smaller 

concentrations. 

 

In the case of power transformers, the PD activity generates gaseous compounds like 

hydrogen, methane, ethane, ethylene, acetylene and carbon monoxide in transformer 

oil and these gases can be detected by performing a chemical analysis (78). Dissolved 

Gas Analysis (DGA) is the most popular technique used for on-line testing of power 

transformers to detect arcing and PD (78, 79, 80). It is a simple on-line procedure causing 

minimal disruption and involves collecting an oil sample and performing a chemical 

analysis in a laboratory to detect the dissolved gases in oil. An assessment is made 

based on the gases present and their respective concentrations. The Duval triangle (151) 

is one such diagnostic method used for oil insulated high voltage equipment. 

 

High Performance Liquid Chromatography (HPLC) is another technique that is used for 

detection of bi-products generated by degradation of paper insulation. The insulating 

paper used for the windings of power transformers contains cellulose as its main 

constituent. Cellulose is a natural polymer of glucose. Cellulose can degrade under the 

presence of heat, moisture and oxygen. Cellulose degradation reduces the degree of 

polymerisation, destroys interfibre bonding and causes loss of mechanical strength, 

leading to tearing and defibrillation (81). Furans are major degradation products of 

cellulose insulation paper. The HPLC technique can be effectively used to monitor the 

formation of furan components during the ageing of the cellulose insulation paper as 

demonstrated by Unsworth and Mitchell (82). However, chemical testing has limitations. 

It only provides an integrated measure of PD activity. It provides very little information 

about the nature, intensity, extent or location of PD (83, 84). 
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4.2.2   Acoustic detection 
 
The principle of acoustic PD detection is the detection and recording of the pressure 

waves generated by discharge within the insulation. A discharge results in the 

instantaneous release of energy resulting in the vaporising of material around the hot 

streamer. This vaporisation causes a small explosion, which excites a mechanical 

wave that propagates through the insulation (85). The intensity of the emitted wave is 

proportional to the energy released in the discharge. 

 

As the PD impulses are of short duration, the resulting wave signal has frequencies in 

the ultrasonic region that can range between 20 KHz and 300KHz (83). Piezo ceramic 

transducers such as acoustic emission sensors and accelerometers are widely used for 

the detection of ultrasonic waves in an enclosure and provide the best sensitivity (86). As 

the PD signals are not in the audible range, the airborne ultrasound instruments like 

‘ultrasound translators’ use an electronic process called ‘heterodyning’ to accurately 

convert the ultrasound waves into an audible range. This enables the user to hear and 

recognise PD through an isolating headphone and can be effectively used to detect PD 

caused by corona, tracking and arcing (87). 

 

The advantage of using acoustic detection over chemical detection is that the location 

of discharge sources is possible using sensors at multiple locations. Another 

advantage of acoustic detection is that it is immune to electromagnetic interference 

(EMI). The immunity to EMI makes acoustic detection ideal for online PD detection 

because a better signal to noise ratio (SNR) will be obtained for the acoustic signal (88). 

Acoustic detection is generally used for power transformers and switchgear due to the 

existence of excessive electrical noise at the measurement site.  

 

Acoustic detection also has some disadvantages. The primary problem is the complex 

nature of acoustic wave propagation. The acoustic impedances between the PD source 

and detector can be extremely complex. The acoustic wave is distorted by a variety of 

factors like geometrical spreading of waves, frequency dependant velocity effects, 

transmission losses, reflections and absorption in materials. Due to these attenuation 

mechanisms the received acoustic signals have very low intensity. Hence, the sensor 

has to be very sensitive to detect small changes in signal amplitude in order to detect 

PD (84). Secondly, it is very complex to quantify the relationship between the intensity of 

acoustic noise and the nature of the fault producing it (89). Hence, acoustic detection is 

not generally used as the primary form of PD detection, but is rather used as a 

complementary technique in conjunction with other techniques (e.g. electrical methods) 

where PD location is essential.      
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4.2.3   Optical detection 
 
The optical partial discharge detection is based on the detection of light produced as a 

result of various ionisation, excitation and recombination process during a discharge. 

Although all discharges emit radiation, the optical spectrum of different discharges is 

not the same. The amount of light emitted and its wavelength is dependant on the 

surrounding insulating medium (gaseous, liquid or solid) and different factors like 

temperature and pressure. The optical spectrum ranges from the visible ultraviolet 

range to the invisible infrared range (90). For example faint corona in air emits radiation 

in 280nm – 410nm spectral range (~95% in UV region) making it invisible to the human 

eye. The wavelength of a strong flash discharge is between 400nm – 700nm. The 

spectrum of surface discharge along with solid dielectric is very complex and is 

dependant on various factors like type of electrode material, surface condition, etc. (91). 

In gases with low pressure, energy in the range of 1% is emitted as discharge; this 

figure is even lower for liquids and solids (90).  

 

Two different measuring techniques are used for optical detection. The first technique 

comprises of using a UV corona imaging camera for the detection of discharges on the 

surface of electrical equipment. This technique is used for high voltage transmission 

lines and in power stations. The second technique involves the detection of an optical 

signal inside the equipment by using fibre optic cables as sensors and as transport 

medium for optical signal. This technique is suitable if the high voltage equipment is 

enclosed and light tight like transformers and GIS. An optical fibre samples light 

produced by PD inside the equipment and transmits the signal outside the equipment 

to a detection unit that converts light into electrical signal (photomultiplier). Detailed 

investigations of these techniques have been carried out by Cosgrave et al. (92) and 

Blackburn et al. (93).  

 

The optical detection method is immune to electromagnetic interference. However, this 

technique is not widely used in industry due to the cost of the equipment and invasive 

nature of the technology (84). As air and SF6 are 100% transparent, light can be 

detected from a large distance. However, in the case of liquid and solid insulation a 

section of emitted light will be absorbed and the detection may become difficult. Also, a 

relationship between the discharge magnitude and intensity of light is difficult to 

establish making it difficult to calibrate (90).  
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4.3      Electrical detection techniques 
 
A vast range of electrical techniques have been developed over a period of years for 

the measurement of partial discharges. The main advantage of electrical detection is 

that they are perhaps more sensitive compared to other methods and hence are more 

popular and more frequently used. The currently used electrical detection technique 

lays emphasis on capturing the current pulse created by the electrical streamer within 

the void or the current due to surface discharge. A small amount of current flows every 

time a PD occurs creating a voltage pulse across the impedance of the insulation 

system. Measuring this pulse forms the primary means of detecting PD. A typical stator 

coil / bar may have numerous discharging sites and there may be hundreds of PD 

pulses generated each second. With the advancements in technology it is now possible 

to acquire an enormous amount of PD data on a pulse-by-pulse basis and analyse 

them using various signal processing techniques. 

 

There are two basic approaches for electrical PD detection:  

 

1. Power loss detection. 

2. Detection of current pulses. 

 

4.3.1   Power loss detection methods 
 
A PD event is accompanied by emission of energy in various forms (i.e. acoustic, heat, 

light, RF, etc.). This implies that each PD event must absorb a certain amount of 

energy from the power frequency voltage to source the energy dissipated in a PD 

pulse. The measurement of this lost energy (expressed as loss tangent, tan δ) provides 

an overall indication of dielectric losses and the general condition of the insulation (94, 95, 

96). This is a constant value for low voltages (below PD inception voltage), but will begin 

to rise at higher voltages (beyond PD inception voltage) resulting in higher dielectric 

losses as indicated in figure 4.1. A sudden increase of loss-tangent is attributed to 

internal discharges. Generally, many discharges are required to obtain an observable 

increase in tan δ. 
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The dissipation factor tan δ is measured with a balanced bridge-type instrument like 

Schering bridge (or a derivative). Figure 4.2 shows a typical Schering bridge (97) used 

for measuring discharges. The impulse caused by a discharge is detected across 

resistor ‘R4’ in one arm of the bridge. When the bridge is balanced the value of tan δ 

can be found using the following equation: 

 

                                         tan δ = ω R4 C4 ……………………..……………..(4.1) 

 

where R4 and C4 are the resistance and capacitance required to balance the bridge as 

shown in figure 4.2. 

u 

Figure 4.1 Dielectric loss as function of voltage 

Ui ta
n 
δ 

Ui is the inception voltage 
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Another bridge-type instrument used for this application is the Transformer ratio arm 

bridge (98). This bridge circuit operates by balancing the winding of a transformer by 

adjusting the number of turns to give a small response on the detector connected 

across the third winding of the transformer. The transformer bridge offers low 

impedance in balanced condition and has other advantages like higher sensitivity, 

stability of ratio accuracy and ease of matching null detector to bridge by simply varying 

the number of turns of the detector winding (99). 

 

Both of these bridge methods have some limitations. The Schering bridge is 

susceptible to the effects of stray capacitance and the transformer ratio-arm bridge 

may be affected by the strong magnetic field. Another method to overcome these 

problems is the Dielectric Loss Analyser (DLA). This is also a bridge method but uses 

an oscilloscope to balance the bridge. The bridge is balanced at low voltage (when no 

discharges are occurring) generating a horizontal line on the oscilloscope. As the 

voltage is increased, discharges can occur causing a vertical deflection of the trace on 

the screen. The combinations of horizontal and vertical deflections produce a 

parallelogram pattern (loop) on the screen and the area covered by the parallelogram 

R4 R3 C4 

CN Cs 

Detector 

V 

CN = Standard Capacitance  

CS = Specimen Capacitance  

Figure 4.2 The Schering Bridge Circuit (97) 
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is directly proportional to the discharge energy (100). Figure 4.3 shows the basic circuit 

of a DLA. 

 

 
  

Although these techniques have been successfully applied in industry (101), there are 

certain limitations. The major disadvantage is that they provide an integrated measure 

of PD activity making it difficult to detect the nature of PD activity. They cannot 

distinguish between the presence of a few large discharge sites (detrimental to 

insulation) and several small discharge sites (relatively innocuous). They are generally 

not very sensitive and can only be applied off-line. Hence they are often considered 

unsuitable as the primary means of insulation assessment. 

 

4.3.2   Detection of current pulses 
 
The current detection circuits operate by responding to the current pulses produced by 

discharges (section 3.2.1.1). The small amplitude current pulses are transformed into 

voltage pulses, which are amplified and then displayed on a suitable screen. These 

current detection circuits are classified in two different categories i.e. ‘straight detection’ 

and ‘balanced detection’ circuits. 

 

 

Figure 4.3 – Basic circuit of Dielectric Loss Analy ser (100) 
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4.3.2.1  Straight detection method 
 
A variety of circuits are used to detect the current pulses, but all these circuits will 

contain the following elements (102): 

 

a) A discharge free high voltage source. 

b) A test sample ‘CX’ that is affected by discharges. 

c) A high voltage coupling (blocking) capacitor ‘CB’ connected across the test 

voltage source to facilitate the passage of current impulses.  

d) A detection impedance ‘Z’ across which the voltage impulses are induced 

caused by discharge current pulses in the sample. 

e) An amplifier ‘A’ to amplify these pulses. 

f) A display unit ‘O’ – usually a CRO for display. 

 

Figure 4.4 shows the basic circuit for the straight detection method. The measuring 

impedance Z is either connected in series with CB or CX, depending on the value of CX. 

If the value of CX is large then the Z is placed in series with CB so that the large 

charging current of CX does not pass through the impedance Z. 

 

 
4.3.2.2  Balanced detection method 
 
The discharges that take place external to the sample (e.g. discharges in the high 

voltage source, the leads, bushings, terminals, etc.) cannot be easily distinguished 

from the discharges in the sample in the straight detection method. The balanced 

detection method essentially contains all the elements described in the straight 

detection method, but additional measures are taken to reject disturbances caused by 

discharges external to the sample. Figure 4.5 shows the basic circuit for balanced 

detection.  

Z A 

CX CB 

C.R.O. 

Display Unit 
Amplifier 

HV 

Figure 4.4 Basic circuit for straight detection met hod (102) 
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As shown in figure 4.5, in addition to the series connection of test sample CX and 

measuring impedance Z1, a parallel branch of capacitor CB (similar capacity as CX) and 

a series connected measuring impedance Z2 is inserted in the circuit. The differential 

amplifier A is connected between the two measuring impedances. If the two measuring 

impedances are adjusted in a way, that the voltage drops caused by external 

disturbances are equal for both measuring impedances Z1 and Z2, then these 

disturbances coming from outside the two parallel branches are eliminated. 

 

4.3.3   On-line electrical detection systems 
 
On-line electrical detection systems are usually designed for either narrow band or 

wide band operation and are capable of providing data on each individual discharge 

event. PD pulses have rise times in the range of 10 to 100 ns. This corresponds to a 

frequency spectrum extending in the region of 100 MHz. Therefore, there is wide band 

of frequencies to be selected for detection. In practice there is a limit on the lower end 

of the frequency range so that the main frequency voltage and its harmonics are below 

the noise level of the detector, discouraging the operation below 10 KHz or so. The 

upper frequency is restricted due to the attenuation effects of the high frequency signal 

while propagating through the stator windings. Wilson et al. (112) showed that the 

detection of signals with bandwidth in excess of 1 MHz may produce up to 50 fold 

attenuation when travelling from remote sites to the terminals of stator windings. They 

stated that a frequency range of 20 – 300 KHz is most suitable for rotating machines as 

the attenuation errors are restricted to within a factor of two to three. In general, 

therefore most narrow and wideband detectors select their pass-bands between 20 

KHz and 300 KHz. In fact harmful discharges tend to have longer decay times (tails), 

thus containing a lower range of frequencies. 

Z1 A 

CX CB 

C.R.O. 

Display Unit 
Amplifier 

HV 

Figure 4.5 Basic balanced detection method (102) 
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It is well established that the individual discharge magnitudes can be indicative of the 

relative size of the individual degradation site and the magnitude-phase relationship (in 

relation to mains frequency) can provide information regarding the nature and form of 

discharges (103 – 105). The two most popular PD pulse measuring techniques are use 

capacitive sensors for measuring the voltage or use inductive sensor for measuring 

current. Both these methods require a time domain recording device to capture the PD 

signal. The capacitive technique, often referred to as ‘direct probing’ technique, is not 

completely non-invasive as it requires connecting capacitive sensors like capacitive 

couplers to high voltage phase terminals. However, the development of permanently 

installed couplers connected to the machine terminals has proven to be a well-known 

approach for discharge detection in rotating machines (106-108). Sedding et al. (111) 

developed a PD coupler called a ‘Stator Slot Coupler’ that can be used with an ultra 

wideband system for reliable discrimination of PD signals from noise in turbine 

generators. 

 

The inductive techniques are typically of narrow-band types and use inductive sensors 

like radio frequency current transformers or Rogowski coils. They are clipped round the 

line-end of the winding at the terminal box of the motor and are electrically isolated 

making it a completely non-invasive technique. However, the ringing output can 

severely limit the pulse resolution. Kouadria & Watt (109, 110) have described the 

application of a PD detection system that uses Rogowski coils as sensors for detection 

of discharge activity in rotating machines and presented various case studies. 

  

The RF emission from PD activity can be detected by aerial techniques (113). Stone and 

Sedding (114) have reported the use of a TVA (Tennessee Valley Authority) probe to 

locate discharge sites in rotating machines by detecting RF energy. Although 

measurements made by the TVA probe is an effective means to get a detailed 

evaluation of the condition of a winding, it is an off-line technique that requires long 

measurement and disassembly time (115). 

 

Electrical detection also has limitations. The primary limitation of electrical testing is its 

susceptibility to extraneous interference when compared to other techniques. The PD 

signals that are acquired on-site can contain significant amounts of interference arising 

from various sources making the measurement process more intricate. In some cases 

it becomes extremely difficult or even impossible to distinguish between noise and PD 

because of short PD pulse width. This problem may lead to false detection of partial 

discharges. Another problem with electrical detection is that the received pulse 

characteristics are highly dependant on the geometry of the HV machine. Different 
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components in the machine can distort the pulse shape needed to characterise the PD 

fault and can lead to erroneous detection (112, 116). In order to overcome all these 

limitations, intensive signal processing techniques are deployed on the acquired PD 

signal to separate the PD signals from noise and extract maximum information from it. 

Despite these limitations, electrical detection techniques are by far the most popular 

and extensively used around the world. 

 

4.4    Sensors used for electrical PD detection 
 
Various types of sensors are used to detect PD on different types of high voltage 

equipment. The choice of sensor is influenced by factors like suitability of the sensor for 

detection, the costs involved and the type of application. A suitable PD sensor should 

cover the following characteristics (117):  

 

a) Should not influence the service condition of the equipment 

b) Should have at least the same life performance as the equipment on which it is 

installed 

c) Easy installation of sensors 

d) Inherent against ambient on-site conditions 

 

4.4.1   Classification of sensors 
 
The sensors used for electrical PD detection can be classified into two different types: 

 

a) Inductive type sensors (magnetic field sensors) 

b) Capacitive type sensors (electric field sensors) 

 

4.4.1.1  Inductive type sensors 
 
The inductive type sensors are designed to detect the magnetic field of the transient 

PD current. The inductive field coupling is usually done with a magnetic field antenna, a 

Rogowski coil or an RF current transformer. Some of the characteristics of inductive 

type sensors are as follows: 

• Well suited for on-line measurements with compact portable equipment 

• Provide galvanic isolation 

• Can be installed around cables easily due to simple construction 

• Installation does not require machine to be shutdown 

• Sensitivity is reduced compared to the capacitive probes 
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4.4.1.2  Capacitive type sensors 
 
The capacitive type sensor is designed to detect the electric field energy of PD pulses 

with a metallic electrode structure or additional metallic foil layers placed into the 

electric field. Some of the characteristics of capacitive type sensors are as follows: 

 

• Well suited for on-line measurements with compact portable equipment 

• Don’t provide galvanic isolation and the sensor is subject to HV 

• Pre-installation is recommended  

• Machine needs to be shutdown for installation (if machine is on-line) 

• Sensitivity is better than the inductive type sensors 

 

Some of the most popularly used inductive and capacitive type sensors used for PD 

detection in rotating machines are described in the following section. 

 

4.4.2   Rogowski Coil 
 
Invented in 1912 by Walter Rogowski, the Rogowski coil is essentially an air-cored 

current transformer and is very well suited for measuring PD like transients. It is 

designed to detect the magnetic field caused by flow of current without the requirement 

to make an electrical contact with the conductor. It operates on a simple principle and 

can be considered as a flux to voltage transducer. A non-ferrous core or an ‘air cored’ 

coil is placed round the conductor in a toroidal manner such that the alternating 

magnetic field produced by the current induces a voltage in the coil. The voltage output 

is proportional to the rate of change of current. If this output voltage is integrated, then 

an output proportional to current can be obtained.   

 

The voltage induced in the coil wound around the torroid is proportional to the time 

derivative of the current flowing through the conductor passing through the torroid. The 

relationship is given by the following equation (118): 

 

dt

di
Anvcoil 0µ=  ………………………………………….(4.2) 

where, 

‘µ0’ = permeability of air 

‘A’ = turn area  

‘n’ =  number of turns per unit length 

The product of ‘µ0 *A*n’ is called the mutual inductance ‘M’ of the coil. 
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Hence, in order to obtain a voltage signal that is proportional to the current waveform it 

is necessary to integrate the coil output ‘vcoil’. Electronic integrators consisting of 

passive integration networks are used for this purpose. It is also possible to design a 

‘self-integrating’ Rogowski coil by using a low resistance as terminating impedance (118). 

 

There are two popular forms of Rogowski coil designs. One is a coil wound on a rigid 

toroidal core intended for permanent installation and high precision measurements. A 

clip-on version of the rigid toroid is also available and can facilitate ease of installation. 

The second design is the coil wound on a flexible core. They are compact in design 

and versatile. However, the rigid core coil provides better accuracy as the flexible coil is 

prone to change in characteristics due to turn displacement (119). The geometry of the 

coil plays an important role in the electrical performance. The sensitivity of the 

Rogowski coil can be increased by having multi-layered coils. But this increases the 

inductance, which has a detrimental effect on the bandwidth (118). 

 

The application of Rogowski coils for detecting PD is popular in the UK North Sea oil & 

gas industry (109, 110). A general arrangement of a Rogowski coil PD detection circuit for 

rotating machines is shown in figure 4.6. Figure 4.7 shows a photograph of typical 

installation of Rogowski coils within a motor terminal box.   
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Figure 4.6 Rogowski coil PD measurement circuit for  rotating machines 
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Given below are some advantages and disadvantages of using Rogowski coils for PD 

detection: 

 

Advantages: 

• It does not need a magnetic core, so the output signal is not affected by saturation 

effects. Hence it is highly linear even when subjected to large primary currents. 

• It has a low inductance and hence can respond to fast changing currents enabling 

a high bandwidth measurement. 

• It can be made open-ended and flexible, allowing it to be wrapped around a live 

conductor without disturbing it making it completely non-intrusive. 

• A correctly formed coil, with equally spaced windings, is largely immune to 

electromagnetic interference. 

• Reduced size compared to an equivalent current transformer 

 

Disadvantages: 

• The sensitivity of the Rogowski coils is lower when compared to the radio frequency 

CT and the capacitive coupler (120). 

• If not designed properly, it is susceptible to external magnetic interference. 

 

Figure 4.7 Photograph of Rogowski coil installation  inside a motor 

terminal box (Courtesy Dowding & Mills) 
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4.4.3   Radio frequency current transformer 
 
The Radio Frequency Current Transformers (RFCT) has been used for on-line PD 

monitoring of machines (121). The Rogowski coil and the RFCT are both inductive type 

sensors and are closely related to each other, but there exists a functional difference. 

The RFCT produces an output current that is proportional to the primary current 

whereas a Rogowski coil produces an output voltage that is proportional to the rate of 

change of primary current. 

 

The relationship between the induced secondary current and the primary current is 

given by the following equation: 

 

p
s

p
s I

n

n
I .= ….………………….………………… (4.3) 

 

where  

np = number of turns in primary winding 

ns = number of turns in secondary winding 

 

The high frequency signal generated by PD propagates through the stator winding and 

supply cables and is detected by the RFCT as high frequency transients. The output 

from the RFCT can be connected to a CRO or any commercially available equipment. 

 

By construction the RFCT is again very similar to the Rogowski coil, apart from the fact 

that the RFCT has a core that is made of magnetic material like ferrite. The RFCT can 

be designed to work with a frequency of about 100 KHz up to 100MHz. The core 

material determines the low frequency operating limit whereas the upper frequency is 

limited by the inductance of the circuit. Although the magnetic material in the core 

increases the sensitivity of the output, it adversely affects the operating bandwidth. It 

also reduces the dynamic range and linearity. The magnetic materials tend to saturate 

at high flux densities. So the RFCT tends to saturate when used with high current 

machines. The linearity also deteriorates as the flux densities approaches the 

saturation points. Hence it is not suitable for use with machines having a high current 

rating. Physically, the RFCT tends to be more bulky when compared with an equivalent 

Rogowski coil. 

 

The RFCT is also available in two forms i.e. the solid core RFCT and the split core 

RFCT. The solid core RFCTs are available in a range of sizes and sensitivities. The 
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split core RFCTs are more expensive and are better for general-purpose use than the 

solid type as they can be applied without interrupting the circuit. Traditionally, the RFCT 

was placed around the neutral-to-earth connection as it has a lower level of power 

frequency avoiding the saturation problem. More recently attempts have been made to 

connect the RFCT around screened supply cables. However, the success has been 

limited due to power frequency saturation problem, particularly with high power 

machines with currents above 250 Amperes (122). 

 

4.4.4   Capacitive coupler 
 
The transients generated by PD travel through the stator windings towards the machine 

terminals. If a sensing circuit is coupled in this path, then some part of the transient 

would flow through this circuit. A high voltage capacitor can be used as a sensor to 

detect these partial discharge transients. The detection unit consists of the coupling 

capacitor and the measuring impedance. The circuit is characterised by a high-pass 

filter performance and is designed to block the mains frequency. A typical arrangement 

of a capacitive coupler detection circuit is shown in figure 4.8. The termination circuit 

converts the PD current pulses to voltage pulses which can be recorded by a PD 

measuring instrument for a detailed analysis. 

 

There are two types of capacitive couplers available and the choice of each depends 

on the type of application. 

 

a) Cable type 

b) Epoxy mica encapsulated type 

HV Bus 

Capacitive 
Coupler Coaxial Cable 

Shield Grounding 
Assembly 

90V Arrester 680 ohm Resistor  

Terminal box 
C/W over voltage protection 

Figure 4.8 Capacitive coupler detection circuit (123) 
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The cable type couplers are the most commonly used as they have a higher voltage 

rating compared to the epoxy mica type. But they are also comparatively larger in size 

and have a lower temperature rating. The epoxy mica type has a lower voltage rating 

but benefits from a high temperature rating. It is also comparatively smaller in size. The 

cable type couplers are available in a standard 80 pF value and are generally 

terminated with a 50 Ohm resistor as measuring impedance. The epoxy mica types are 

also available in a standard value of 80 pF, but more recently they have been 

manufactured with higher values of 500 pF and 1000 pF leading to wideband PD 

detection with better sensitivity (124). Zhu & Halliburton (123) carried out laboratory tests 

and field testing of 80 pF and 500 pF coupling capacitors and concluded that the 500 

pF couplers have better detection sensitivity than the 80 pF couplers and were still 

capable of avoiding noise. 

 

A minimum of one coupling capacitor per phase (i.e. three per machine) is installed at 

the machine terminals. In the case of large motors and turbo generators two capacitive 

couplers per phase (i.e. six per machine) are installed. Using two couplers help to 

reject external PD like noise pulses. Both couplers are placed at least 2 meters apart 

and a ‘time of flight’ technique is adopted to distinguish between external PD like 

pulses and PD pulses from the machine. However, only one coupler per phase is 

sufficient for most motors. This is because most motors have long connecting power 

cables (usually >100 metres) and this heavily attenuates and filters out any high 

frequency PD like disturbances and effectively blocks it from entering into the 

measuring circuitry (107). 

 

As the capacitive couplers are connected in the motor terminal box and connected to 

the main terminals of the machine the installation usually requires a short outage. Care 

should be taken during installation to maintain the creepage distances depending on 

the operating voltage. One of the main advantages of capacitive coupler is that it has 

higher sensitivity compared to the Rogowski coil and the RFCT. However, it is not 

completely non-intrusive as the capacitor is directly connected to the HV terminals of 

the stator windings and the electrical integrity of the capacitor is crucial. Also, the 

capacitive coupler itself should be discharge free (122).    

 

4.4.5   Stator slot coupler 
 
Stator slot coupler (SSC) developed by Sedding et al. (125) is a relatively new type of PD 

detection sensor and is mostly used in large turbine generators. A SSC is an ultra 

wideband directional electromagnetic coupler. It cannot be classed as a purely 



65 
 

capacitive or inductive coupler. It is rather a stripline antenna built on a ground plane 

having coaxial outputs at each end. It is installed on top of the stator winding bars, 

under the wedges, at the ends of the core slots. This position provides the optimum 

location for reliable detection of PD in the machine since the detector is as close as 

practically possible to the PD sources of interest. A minimum of six SSCs are fitted to 

cover the entire stator windings. It detects any electrical signal in the frequency range 

of 10 MHz to 1000 MHz and is highly sensitive to PD signals originating from sources 

close to the SSC. The dual output of the SSC helps in distinguishing PD from the slot 

and PD from the adjacent endwinding by calculating the pulse arrival times at both 

ends (125).  

 
One of the main advantages of SSC is that it has a wide bandwidth and is located 

close to the discharge source making it easy to eliminate external sources of 

interference. Furthermore, these couplers are directional and help in locating the 

source of discharge. The disadvantage of using SSC is that they have to be fitted 

during the manufacturing stage or a major outage is required for the installation. Also, 

the SSC must be sufficiently robust to endure the demanding conditions imposed 

during the installation of the device. It also demands specialised materials for its 

construction, as it has to withstand the thermal and mechanical stresses in the rotating 

machine (125). Although this technique has good potential to eliminate electrical 

interference, its application has been restricted to a few large machines like turbine 

generators or critical motors, possibly due to the intrusive installation procedure. 

 
Rogowski coil, RFCT and capacitive coupler remain the most widely used electrical PD 

detection sensors. The Rogowski coil is extensively used in the UK North Sea Oil 

Industry and is used in a number of mainland applications. The capacitive coupler 

technique was developed by Ontario Hydro (Canada) and has found widespread use in 

North America. Many installations also exist in UK and the rest of the world. Each of 

these sensors has some advantages over the others. A comparison of these sensors is 

shown in Table 4.1.   
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Parameter Capacitive Coupler RFCT Rogowski Coil 

Types 1) Cable type                              
2) Epoxy Mica insulated type           

1) Solid core ferrite                                    
2) Split core ferrite type                                     

1) Solid core                                        
2) Split core type 

Sensitivity Has the best sensitivity Better than Rogowski coil Has the least sensitivity 

Performance 
Sensitivity depends on the value of the 
capacitance and has a directly proportional 
relationship 

Sensitivity depends on the type and grade of the 
ferrite material used. 

Sensitivity depends on the number of windings 
and has a directly proportional relationship. 

Installation 
Requires direct connection to the HV 
terminals. Shut down required for 
installation. 

Installed around the cables and require no direct 
connection to the HV terminals. No shut down 
required for installation. 

Installed around the cables and require no direct 
connection to the HV terminals. No shut down 
required for installation. 

Size Smallest compared to the other two types 
Comparatively bigger for the similar specification 
of Rogowski coil 

Comparatively small for a similar specification of 
RFCT 

Linearity N/A Less linear compared to Rogowski coils Output is very much linear 

Saturation 
Limits N/A 

Saturates at high currents; thus not suitable for 
machines with high current rating. 

Being air-cored, it does not saturate at high 
currents making it suitable for machines with 
high current rating. 

System 
Capacitance 

The larger the system and plant 
capacitance's, relative to the coupler 
capacitance, the lower the sensitivity of the 
coupler technique. 

The higher the system capacitance, the higher the 
sensitivity. Same as RFCT 

Application They are best suited for plants that are 
connected to system by bus bars. 

Best on system that uses cables as the means of 
connection. 

Same as RFCT 

 

Table 4.1 Comparison of various electrical PD detec tion Sensors 
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4.5          Review of commercial available PD dete ctors 
 
As a part of new product development, it was thought necessary to study the existing 

market available products used for PD detection and analysis. A detailed comparative 

study of these products in terms of its features and capabilities would help in knowing 

the latest trends in the technology and would provide some inputs for the new design, 

thus helping in the development of a competitive product. Research was carried out 

through different means, mainly through the internet, to identify the various companies 

that manufactured PD detectors. Given below is the list of manufacturers of PD 

detection equipment: 

 

1. IRIS Power Engineering (North America) 

2. ADWEL International Limited (Canada) 

3. PD Diagnostix Systems (Germany) 

4. M&B Systems Power Test Equipment (UK) 

5. TECHIMP (Italy) 

6. Tettex Instruments (Switzerland) 

7. HIPOTRONICS (USA) 

8. ROBINSON Instruments (UK) 

 

The above list is not exhaustive but covers some of the leading manufacturers across 

the globe. A variety of products exists in the market and choice of equipment can be 

influenced by many factors depending on the type of application and monitoring 

requirements. Some of the main factors are: 

 

• Periodic or continuous monitoring 

• Permanent installation or portable system 

• Type of sensor interface (capacitive coupler / HFCT / Rogowski coil) 

• Type of electrical machine (motor / generator / cable / switchgear) 

• Monitoring only function or Monitoring & analysis 

• Connectivity options (for alarm systems and remote monitoring) 

 

A detailed study of various market available PD monitoring products was carried out 

but the data on individual products is not presented here as it is beyond the scope of 

this thesis. The comparative study has been included in Appendix A-1. However, a 

general discussion regarding various features and its significance to new system 

design is presented here. 
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• It was generally observed that most PD detector systems were designed to be a 

multi-function system capable of detecting PD from various electrical equipment 

(rotating machines / cables / switchgear). This will have an impinging effect on the 

cost and complexity of the system. The aim of the new system design is not to build 

a general purpose PD detector, but is specifically meant for PD monitoring in 

rotating machines only. 

 

• The system design varies depending on the type of PD sensor being used as 

different sensors tend to have different characteristics (bandwidth, sensitivity, etc.). 

Making the system suitable for all types of sensors would unnecessarily raise the 

cost of the system development and that of the system. The project requirement 

dictates that the new system should be suitable for PD monitoring with Rogowski 

coils (PDC-85 Model, manufactured by Dowding & Mills).  

 

• Many PD detectors have analogue input functions accepting inputs from 

temperature sensor and humidity sensor. As discussed in chapter 2, temperature 

and humidity influences PD activity, but the effect of this change in PD activity on 

the actual insulation degradation is a relatively slow process. While this feature can 

prove useful in continuous PD monitoring systems, it is not of any relevance for a 

periodic monitoring PD detector system as the data is acquired over a very short 

period of time (few minutes) and the monitoring intervals are fairly large (few 

months). The new system falls under the ‘periodic monitoring’ category. 

 

• It was observed that a variation of bandwidths exist for different systems ranging 

from a few KHz to a few GHz range depending on the application of the system. 

This parameter is important because the higher the bandwidth, the higher would be 

the burden on the data acquisition hardware. This directly influences the hardware 

cost of the equipment. Bandwidth requirement is dictated by the characteristics of 

the detecting sensor (Rogowski coil in this case) and the equipment to be 

monitored (rotating machines in this case). Considering both these factors, the 

bandwidth requirement of the new system is chosen to be less than 500 KHz. 

 

•  Some systems provide alarm features and connectivity options for incorporating 

the system within the plant SCADA (Supervisory Control and Data Acquisition). The 

system can send an alarm to the control room if the PD activity exceeds a user set 

threshold. Although this feature looks very attractive, it has experienced very limited 

success in the industry due to spurious alarms caused by external interference. 
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Also, such an alarm feature is applicable only for a continuous monitoring system 

and is not considered relevant for the new design. 

 

• Relatively new systems have now started to offer connectivity options like USB and 

Ethernet that could be used for remote monitoring. This feature definitely has its 

advantages and can lead to efficient maintenance. Although this is a useful feature 

it will not be included in the new design at this stage. This is due to the practical 

difficulties of implementing such a system. Remote monitoring demands either 

individual data acquisition (DAQ) equipment per machine (very expensive option) or 

a centralised DAQ unit with multiplexed inputs from various machines. A centralised 

DAQ unit with multiplexed input means longer cable runs (Ethernet or fibre optic) 

which can affect data quality. Also, remote monitoring requires secured intranet 

access to a client’s server and this could pose certain issues for implementation. 

 

4.6    Summary 
 
A variety of techniques exist for the detection of PD. Electrical detection techniques are 

most popularly used for rotating machines. On-line techniques are preferred over off-

line techniques for reasons well established. Different sensors are available for 

electrical detection of PD (i.e. Rogowski coil, RFCT, capacitive coupler, stator slot 

coupler); each having some advantages over the other. The study of various 

commercially available PD detectors was essential and proved useful to get 

familiarised with the latest trends in PD detection techniques and provided inputs for 

new system design. The next chapter details the hardware development of the new 

system.   
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CHAPTER 5: SINGLE PHASE DISCHARGE 
MONITORING HARDWARE 

 

5.1   Introduction 
 
The concept of computer based PD measurement has been in existence since the 

1970s; however the performance of the system was limited by the available 

technology. Over a period of years the advancement and application of digital 

technology and electronics has significantly improved the process of acquiring, storing 

and processing vast amounts of PD data. Austin & James (126) presented a paper in 

1976 describing the use of a mini-computer for detecting PD. Several authors since 

then have developed a variety of systems in an attempt to provide more power and 

data processing capacity for digital analysis of PD. A brief historical perspective of this 

development was published by James & Phung (127). 

 

One of the major advantages of computer-based measurement is that the PD data can 

be acquired and stored on a pulse-by-pulse basis making it possible to post-process 

the data and calculate various statistical moments that can provide information for the 

characterisation of PD data. Figure 5.1 shows a basic representation of a computer 

based PD detection system. 

  

 

 
 
 
 
 
 
 
 
 
 
There are three main components of the measurement system. The sensor detects the 

analogue PD signals. The interfacing circuit provides any signal conditioning 

requirements and converts the information to digital format using an A/D converter. The 

raw digital data is then transferred to a computer which displays the PD data in 

desirable formats and allows post-processing and storage of PD signals.  
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Figure 5.1 General block diagram for computer based  PD detection 

system (127)  
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5.2    Hardware Specifications 
 
Prior to the design process it is necessary to establish the hardware specifications of 

the data acquisition system.  Table 5.1 details the hardware specifications of the signal 

conditioning unit along with the specifications of the digitiser, determined as  discussed 

below. 

 

Table 5.1 Data acquisition hardware specifications 
 

Signal conditioning hardware specifications  

Filter lower cut-off frequency 30 KHz 

Filter upper cut-off frequency 300 KHz 

Filter stop-band attenuation 48 dB (min) 

Amplifier bandwidth 300 KHz 

Minimum amplifier gain x40 

Maximum amplifier gain x2700 

Gain steps x40, x90, x120, x180, x300,  x450, x600, 
x900, x1200, x1800, x2700 

Digitiser unit specifications (Data acquisition car d) 

No. of data acquisition channels 4 channels (with simultaneous sampling) 

DAQ resolution 8 bits (min) 

Minimum sampling frequency 3Ms/S 

 
 

The gain steps highlighted in blue are currently available in the existing 

StatorMONITOR unit. However, these settings are too far apart to efficiently 

accommodate discharge signals of various amplitudes. Based on the past experience 

of Dowding & Mills in measuring PD from rotating machines, it was decided to have 

some intermediate gain steps as shown in Table 5.1. The initial implementation of the 

project will be done using a DAQ card with a resolution of 8 bits with a possibility of 

expanding to 12 bits in future. A resolution of 12 bits will place more stringent 

requirements on the filtering stage. An 8-bit DAQ card will need a stop band 

attenuation of 48 dB, whereas a 12-bit DAQ card will demand a stop band attenuation 

of 72 dB. Hence, the hardware will be designed to accommodate a 12-bit system. 

 

With the establishment of the hardware specifications, the next section deals with the 

system block diagram and the actual design aspects of individual sections of the signal 

conditioning unit. 
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5.3    System Hardware Overview 
 
The final objective of this project was to develop a hardware system that was capable 

of acquiring PD data from all three phases of the machine in a simultaneous fashion. 

However it was first thought to design a single phase prototype system and evaluate its 

performance and feasibility. If the performance is found to be satisfactory, then the 

design can be adapted for a complete three phase system. The block diagram of the 

initial partial discharge monitoring system can be seen in Figure 5.2. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The brief description of this system is as follows: 
 
 
The Rogowski coil acts as the PD detection sensor and is clamped around one of the 

phases of the mains supply cable connected to a rotating machine. The Rogowski coil 

is designed to pick up the high frequency current pulses caused by PD that propagate 

through the stator windings towards the supply terminals. The signals then pass 

through the signal conditioning unit which is essentially a band-pass filter and a high 

gain (variable) amplifier. The lower cut-off frequency of the band-pass filter is selected 

such that the unwanted high amplitude mains frequency signal is blocked and does not 

interfere with the measurement circuitry. The upper cut-off frequency of the filter is 

dictated by the anti-aliasing requirements that are necessary to prevent any sampling 

errors. The high gain amplifier is necessary to measure the inherently low amplitude 

PD signals. However, the gain needs to be variable in order to accommodate small as 

well as large amplitudes of PD. 

 

After filtering and amplification, the signal is then digitised using an A/D converter. The 

A/D converter was implemented by using a readily available data acquisition card that 

Rogowski 
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A/D 

Converter 

 
Host 

Computer 

 

Signal 
conditioning 

unit 
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signal 

generator 

Figure 5.2 – Basic Block diagram of single phase mo nitoring system 
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supports high a sampling rate sufficient for acquiring the high frequency PD signals. A 

reference signal is generated using one of the phases from the three phase mains 

supply by means of a step down transformer. The reference signal is necessary to 

trigger the acquisition and also provides phase related information regarding 

discharges. The reference signal is also digitised simultaneously along with the signal 

from the Rogowski coil. The digitised data is then displayed and stored within the host 

computer.   

 

An attempt was made at all stages of development for the design to be as flexible as 

possible in order to facilitate any design changes or further expansion.  

 

The following section provides a detailed description of individual components of the 

system. 

 

5.4    The Rogowski Coil 
 
The operating principle and the advantages of using a Rogowski coil as a PD sensor 

has already been discussed in chapter 4. The design of the coil has a significant effect 

on its performance, particularly in relation to its bandwidth and sensitivity. Usually a 

trade-off is made between bandwidth and sensitivity to achieve an optimal 

performance. This directly has an influence on the design of the measurement system. 

 

It was not within the scope of this project to design a new Rogowski coil. The new 

system design was specifically targeted for use with PDC-85 Rogowski coils designed 

by Dowding & Mills that have been already installed on a substantial number of 

machines in the North Sea Oil Industry. The upper frequency limit of this coil is 

approximately 300 KHz. The sensitivity of the coil to the mains frequency current is 

0.1mV/A.  A brief description of the PDC-85 coil is provided here. The PDC-85 coils are 

BAS00ATEX2051 certified (EX II 2 G EExe II T6 @ 1000Amps, Ambient temperature 

from -20 to 60 degrees) to satisfy the safety regulation. This allows the transducers to 

be fitted as close to the winding as possible (machine terminals) even on machines 

located in hazardous environments. In order to simplify the installation, the coils have 

been designed to be split into two halves, eliminating the need to disconnect the supply 

cables from the machine terminals. A standard PDC-85 coil is shown in figure 5.3 (a)  

   

The inner diameter of the coil is 85 mm and is best suited for installation on the 

standard Elastimold connecters. However it can also be installed on various sizes of 

HV cables with diameter of less than 85 mm or on HV bus bars with less than 85 mm 
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width. Figure 5.3 (b) & (c) show the installation of PDC-85 coil on cable and bus-bar.  

The datasheet of PDC-85 is provided in Appendix A-2. 

 

 

5.4.1   Impulse response of Rogowski Coil 
 

It is important that the PDC-85 Rogowski coils are sensitive enough and able to pick up 

high frequency current signals and output them in a measurable range. A discharge 

pulse is made of two components. These are: 

 

1. Rise time known as the front of the pulse 

2. Fall time, tail of the pulse 

 

In order to generate the pulses, first a signal generator is used to produce a square 

wave. An RC circuit allows the generation of pulses. The frequency of the pulse can be 

controlled with the values of R and C, while their magnitude can be controlled with the 

signal generator, thus allowing pulses to be in desired range. The RC circuit used for 

generating pulses is shown in figure 5.4. 

 

  

 

 

 

 

 

 

 

 

Figure 5.3 Rogowski Coil & Installation (Courtesy D owding & Mills)  

Figure 5.3 (a) Standard 

PDC-85 coil 

Figure 5.3 (b) PDC-85 

installed on HV cable 

Figure 5.3 (c) PDC-85 

installed on bus bar 

Figure 5.4 RC circuit for generating pulses  
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The circuit shown in figure 5.4 is made of a 10nF capacitor in series with 100 Ohm and 

500 Ohm variable resistor. These values of components give a practical pulse with 

frequencies in the range of 40-200 KHz (i.e.25µS to 5µS). 

 

A test set-up was made to measure the response of the PDC-85 Rogowski coil. The 

set-up was in accordance to the procedure stated by Dowding & Mills (manufacturer) 

and the block diagram of the test set-up is shown in figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

The response of the Rogowski coil (yellow graph) to a 1V, 200 KHz pulse is shown in 

figure 5.6 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Pulse response of PDC -85 Rogowski coil  

Figure 5.5 Set-up for testing the response of PDC -85 Rogowski coil   
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It can be seen from figure 5.6 the width of the pulse is about 5µS (i.e. 200 KHz). The 

pulse voltage is measured across resistor R2 (100 Ohms) shown in figure 5.4. The 

measured pulse voltage is 1V implying a pulse current of 0.1A. The response of the 

Rogowski coil is a damped oscillatory signal with a peak value of 10.2 mV. It is 

important that the ripples in the damping signal are attenuated to an acceptable level 

within a set time. As per the manufacturer’s specifications a 60% attenuation in 20µS is 

considered satisfactory for this test. As seen in figure 5.6, the amplitude of the damping 

signal has reduced from 10.2mV to 4mV in 20 µS (60.8%). 

 

5.5    Signal conditioning unit 
 
The signal conditioning unit has two main functions: 

 

a) Filter out signals that are not within the band of interest  

b) Amplify the small amplitude PD signals to a sufficient level to make it suitable for 

the digitisation process.  

 

Prior to the actual design process it is first necessary to establish the signal 

conditioning requirements of the system. 

 

5.5.1   Signal conditioning requirements  
 
Filtering and amplification are an integral process of any Data Acquisition (DAQ) 

system. Generally, in relation to DAQ systems, filtering is mainly used to prevent the 

aliasing of signals that are out of band of interest. It is a common practice to have an 

anti-aliasing filter (AAF) prior to the A/D conversion to remove the frequency 

components that are beyond the ADC’s range. The AAF is actually a low-pass filter that 

is designed to provide a cut-off frequency to remove the unwanted signal from the ADC 

input or at least attenuate them to a point where they will not adversely affect the 

sampled performance. 

 

A measured signal can contain noise from various sources i.e. electronic current and 

voltage noise, radio interference noise, mains coupling or aliasing. Filtering the noise 

from the signal of interest is a critical to signal measurement. Generally speaking, 

signal filtering function can be provided in analogue domain and/or digital domain. 

Analogue filters are typically implemented prior to analogue-to-digital conversion. In 

contrast digital filtering is implemented after analogue-to-digital conversion. Each type 

of filtering has its own applications. Digital filtering can minimise noise injected during 
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the conversion process (128). Analogue filtering is not capable of doing this. However, if 

the measured signal is coupled with any external high frequency signals then they have 

to be filtered prior to analogue-to-digital conversion in order to prevent aliasing. An 

analogue filter can be used for this purpose. Hence it was decided to implement an 

analogue AAF filter as a part of signal conditioning unit. 

  

The system also needs a low noise, high gain amplifier with a wide range of variable 

gains. The combined process of filtering and amplification can be realised with different 

configurations as shown in figure 5.7 (a), (b) & (c). 

 

In figure 5.7 (a) (configuration 1); the filtering process is performed before amplification. 

This configuration may not be very suitable as the incoming signals have extremely 

small amplitude and cannot be directly subjected to filtering without any amplification. It 

would also affect the signal-to-noise (SNR) adversely as all the electronic noise 

introduced in the filter stages would be amplified to a greater extent in the gain stages.  

It would be suitable to amplify the signals first and then perform any filtering on them. 

This is implemented in figure 5.7 (b) (configuration 2). The incoming signals are 

amplified first to a suitable value and then subjected to filtering. This may be a suitable 

solution, but the drawback is that it could lead to saturation problems if the mains 

frequency component is present in the signal. The amplitude of the mains frequency 

signals is comparatively higher than the PD signals. Amplifying the entire signal 

spectrum in one stage may lead to saturation problems (due to the high amplitude of 

mains frequency). 

 
Another possible way of performing the process is by splitting the amplification stage in 

two stages. The signals from the coils can be amplified to a certain extent and then 

passed through high-pass filter to remove the mains frequency content. The signals 

can then be subject to low-pass filtering to filter the high frequency content. Further 

amplification can be provided after filtering. Hence it would be desirable to have some 

initial amplification followed by band-pass filtering and then provide further 

amplification. Such an arrangement is shown in figure 5.7 (c) (configuration 3). 
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Figure 5. 7 Different configurations of DAQ system  
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Figure 5.7 (a) – DAQ configuration 1 
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Figure 5.7 (b) – DAQ configuration 2 
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Figure 5.7 (c) – DAQ configuration 3 
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With the establishment of the signal conditioning requirements the next section deals 

with   the design aspects of individual sections of the signal conditioning unit. 

 

5.5.2   The Anti-Aliasing Filter (AAF) 
 
The A/D converters are usually operated with a constant sampling frequency when 

digitising the analogue signals. The sampling frequency is governed by the Nyquist 

criteria, which states that the sampling frequency fs should be at least twice the 

maximum input frequency. In other words only the input signals with a frequency below 

fs/2 are reliably digitised. If the input signal contains frequencies greater than fs/2, then 

a portion of the signal can ‘fold back’ and get mixed with the signals present within the 

frequency range of interest. This makes it impossible to distinguish between signals 

below fs/2 and signals above fs/2 causing an error in measurement. This error is called 

‘aliasing’. The process of aliasing can be eliminated by using a suitable analogue low 

pass filter prior to the digitisation process. 

 

The anti-alias filters can be implemented either using a passive filter network or by an 

active filter network. The passive filter network is realised by using passive devices 

such as resistors and capacitors. The output impedance of a passive filter is relatively 

high when compared to an active filter. Since the resistor value is typically large to 

keep the capacitors at a reasonable value, the next stage device can see significant 

load impedance. For example, a 1 KHz low pass filter which uses a 0.1µF capacitor 

would need a 1.59 KΩ resistor for implementation as shown in figure 5.8. This value of 

resistor could create an undesirable voltage drop or make impedance matching 

difficult. This will be particularly important where the passive filter contains multiple 

stages and the loss of signal can become quite severe. This is called insertion loss. 

Consequently, passive filters are typically used to implement a single pole filter. This 

application however will need a higher order filter thus calling for an active filter design.  

        

 

Vin Vout

n R 

C 0.1µF 

1.59KΩ 

Figure 5.8 Passive single pole low-pass filter (fc = 1 KHz) 
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The active filter is implemented using op-amps, resistors and capacitors. One of the 

main advantages of using an op-amp is that it has high input impedance and low output 

impedance reducing the insertion loss. In fact, active filters can also be designed to 

provide some gain. Depending on the response required, many stages of op-amps can 

be cascaded together to achieve a sharp ‘knee’ and steep roll-off characteristics. 

However, the disadvantage of cascaded filters is that they can limit the available 

bandwidth and may be affected by drift. 

 

The active filters can be classed into different families i.e. Butterworth, Chebyshev 

Bessel and Elliptic. Each of these families has some advantages and disadvantages 

over others. The Butterworth filters have the flattest pass-band region i.e. least 

attenuation over the desired frequency range. However, the phase change with 

frequency is not very linear and the stop-band roll-off rate is not the best amongst all 

families. The Chebyshev filter has one of the best stop-band roll-off rates making it 

possible to use less number of sections for a given design. However, this type of filter 

contains a ripple in the pass-band region (i.e. gain is not constant gain in pass-band) 

and is not desirable. Also, it has the poorest phase linearity in all three families. The 

Bessel filter has linear phase characteristics, but the stop-band roll-off rate is worse 

than the Butterworth family. Compared to Butterworth and Chebyshev, elliptic filters 

have the most rapid transition band. However, the elliptic filters have ripple, both in 

pass-band and in stop-band. Due to maximal flat-band response the Butterworth and 

Bessel types are considered most suitable for AAF. 

 

One of the important design factors to be considered while building an AAF is that the 

minimum gain of the filter in stop-band should be less than the Signal-to-Noise Ratio 

(SNR) of the sampling system. This is illustrated in figure 5.9.  

 

The fs/2 is the ‘fold-over’ frequency; fa is the frequency at which the magnitude goes 

below the resolution of the converter. Any signal up to frequency fa (e.g. at X) would not 

produce an image frequency in the required band, but if there was a component (Y) 

outside fa then that would give an alias component. Now the frequency fa is the stop-

band frequency that is governed by the SNR of the sampling system. 

 

For instance, if a 12-bit A/D converter is used, the ideal SNR is ~72 dB. The filter 

should be designed so that its gain in stop-band is at least 72dB less than the pass 

band gain. An increase in the A/D converter’s resolution by 1 bit would lead to an 

improvement of SNR by approximately 6dB. Similarly an 8-bit system would have an 

SNR of ~ 48 dB.  
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The stop band frequency fa can be calculated with the following relationship: 

 

fa = fs - fc….……………………………………… (5.1) 

where, 

fs = sampling frequency 

fc = cut-off frequency 

 

The required AAF will be designed based on the specifications given below: 

 

• The maximum frequency of interest fmax is 300 KHz. In order to achieve a 

completely flat response in the desired frequency range; a higher cut-off frequency 

fc of 500 KHz is selected. 

 

• The minimum sampling frequency fs is 3MHz. Hence, the calculated stop band 

frequency fa is 2.5 MHz (as per equation 5.1). A higher sampling frequency (>3 

MHz) will only better the attenuation at the stop-frequency.  

 

• Though the initial experimentation would be carried out using 8-bit DAQ cards, the 

hardware will be designed to accommodate a 12-bit system which has more 

Figure 5.9 Anti-aliasing filter characteristics 
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stringent demands on the filter. Hence, the attenuation of stop-band frequencies 

should be at least 72 dB. 

 

Based on these given specifications, the desired frequency response from the AAF is 

shown in figure 5.10. 

 
The design of higher order cascaded filters are usually implemented using pre-

determined active filter polynomials for design. The Butterworth polynomials have good 

amplitude characteristics whereas the Bessel polynomials are optimised by linear 

phase characteristics.  But the Bessel filters do not have adequate roll-off 

characteristics and are considered unsuitable for this application. Amongst the 

Butterworth and Chebyshev filters, Butterworth has a flat amplitude response in the 

pass-band and has a better phase linearity. Hence it was decided to implement a 

Butterworth filter design with a standard Sallen-Key configuration.    

 

It is first necessary to establish the order of filter required to achieve the required 

attenuation. The next stage would be to calculate the resistor and capacitor values to 

the desired cut-off frequency. If required, gain can be added in each stage. The gain 

varies the ‘Q’ of the filter and has an effect on the sharpness of the ‘knee’ of the filter. 

Figure 5.11 shows a standard second order Sallen-Key low pass filter design. 

 

-72 dB 

Figure 5.10 Desired response of AAF filter 
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5.5.2.1  Filter Calculations 
 
The Butterworth response is given by the following formula: 

 

2/12

1

1
)(











+

=
n

c

jH

ω

ω

ω ……………………………………………………...…. (5.2) 





 


+×=∴

n

dB
2

5.0

5.2
1log20

2

1
25.72  

 

( )[ ]ndB 251log1025.72 +=∴  

 

1.5=∴n  

 

6=∴n  (nearest practical value) 

 

where H(jω) = filter gain; ω = frequency; ωc = cut-off frequency; n = order of filter 

R 
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C 
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Rb 
 

Ra 
 

+ 

- 

Vin 
 

Vout 
 

Figure 5. 11 Sallen -Key second order low -pass filter circuit  
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The calculated order of filter required is 5.1. The nearest practicable value would be a 

6th order filter. The cut-off frequency of the filter can be calculated using the following 

formula: 

 

CR
f c

×××
=

π2

1
............................................................................................(5.3) 

 

where R = value of resistance; C = value of capacitance. 

  

The value of fc is 500 KHz. The filter will be implemented using standard values of 

capacitor and resistor. A standard value capacitor C = 470 pF is chosen and the 

resistor value is calculated. 

 

pFR
KHz

4702

1
500

×××
=

π
 

 

Ω=∴ 6.677R  

 

Ω≈∴ 680R  (nearest practical value) 

     

Substituting the values for R and C in equation 5.3 gives a cut-off frequency value of 

498.23 KHz which is acceptable for the application. 

 

Referring to figure 5.11, the gain A of the filters is dependent on resistors Ra and Rb 

and is given by the following formula: 

 





+=

a

b

R

R
AGain 1)( ………………………………………………………………..(5.4) 

 

Similarly, the relationship between ‘Q’ of the circuit and gain A is given by:  
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Q

A
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1 ......…………………………………………………………………….(5.5) 
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The gain for each stage is calculated based on the optimal ‘Q’ values stated in the 

Butterworth filter table (129). The ‘Q’ values for a 6th order Butterworth filter are given 

below: 

 

1st section (Q1) = 0.518 

2nd section (Q2) = 0.717 

3rd section (Q3) = 1.932 

 

The above ‘Q’ values can be substituted into equation 5.5 to calculate the gain for each 

stage. The gain value can then be used to calculate the resistor values Ra and Rb.  

 

1st Section: 

07.1
518.0

1
31 =


−=A  

Assuming ‘Ra1’ = 12KΩ; 

Ω
+=

K

Rb

12
107.1 1  

Ω≈Ω=∴ 8208401bR (nearest preferred value) 

Worst case gain values for A1 (assuming a tolerance value of 1% for resistors) 

067.1
12.12

8.811
11 =

Ω
Ω+=

K
A L  (Lowest value) 

07.1
88.11

2.828
11 =

Ω
Ω+=

K
A H  (Highest value) 

 

2nd Section: 

586.1
707.0

1
32 =


−=A  

Assuming ‘Ra2’ = 1KΩ; 

Ω
+=

K

Rb

1
1586.1 2  

Ω≈Ω=∴ 5605862bR (nearest preferred value) 

Worst case gain values for A2 (assuming a tolerance value of 1% for resistors) 

549.1
1010

4.554
12 =

Ω
Ω+=

K
A L  (Lowest value) 

571.1
99.0

6.565
12 =

Ω
Ω+=

K
A H  (Highest value) 
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3rd Section: 

482.2
932.1

1
33 =


−=A  

Assuming ‘Ra3’ = 680Ω; 

Ω
+=

680
1482.2 3bR

 

Ω≈Ω=∴ KKRb 1008.13 (nearest preferred value) 

Worst case gain values for A3 (assuming a tolerance value of 1% for resistors) 

442.2
8.686

990
13 =

Ω
Ω+=LA  (Lowest value) 

5.2
2.673

1010
13 =

Ω
Ω+=HA  (Highest value) 

 

The total calculated theoretical gain (A) of the 6th order AAF filter would be 

321 AAAA ××=  

471.256.1068.1 ××=∴ A  

12.4=∴ A  

dBA 29.12=∴  

Lowest worst case gain value (AL): 

442.2549.1067.1 ××=∴ LA  

036.4=∴ LA  

dBAL 12.12=∴  

Highest worst case gain value (AH): 

5.2571.107.1 ××=∴ HA  

202.4=∴ HA  

dBAH 47.12=∴  

 
The prototype circuit was built to evaluate its performance. The complete circuit 

diagram is given in Appendix A-3.2. The frequency response of the filter is shown in 

figure 5.12. It can be seen from figure 5.12 that the actual cut-off frequency (-3dB point) 

occurs at approx. 450KHz. These errors could be attributed to Vero-board prototyping 

and component tolerances. The filter however has a flat-band characteristic in the 

desired frequency range. The pass-band gain is about 12.26dB which is fairly close to 

the calculated value. The attenuation should be about 72 dB at 2.5MHz; however this 

could not be tested due to limitations on the frequency generator. The filter is initially 
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intended to be used for an 8-bit DAQ. Hence the above filter is considered sufficient for 

the application. 

 

5.5.3   The High pass filter 
 
The Rogowski coils are designed for high frequency and are relatively insensitive to the 

mains frequency. But the amplitude of the mains frequency signal is very high 

compared to the partial discharge signal. The presence of even a fraction of the mains 

frequency signal could lead to inefficient utilisation of the dynamic range of the A/D 

converter. The main intention is to dedicate the entire dynamic range of the A/D 

converter only for digitising PD signals. This will help in better discrimination of PD 

pulses. A high pass filter with a cut-off frequency of 10KHz was designed to eliminate 

any 50Hz signal along with its harmonics. Similar to the AAF design, a Sallen-key 

Butterworth filter configuration was adopted to obtain a flat frequency response in the 

pass band. A lower cut-off frequency of 10KHz was chosen instead of 30KHz to ensure 

a flat frequency response in the desired range.  A 4th order filter was constructed which 

had a gain of ‘8.13 dB’. When cascaded with the AAF, the resultant band-pass filter 

gave a theoretical combined gain of 20.6 dB in the passband. The complete circuit 
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Figure 5.12 Practical frequency response of the AAF   
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diagram for the high pass filter is given in Appendix A-3.1. The frequency response of 

the combined band-pass filter is shown in figure 5.13. 

 
 

5.5.4   High-Gain Amplifier 
 
A high gain-bandwidth product (bandwidth of 300KHz and gain of 2700) requirement as 

stated in table 5.1 impose a significant demand on the amplifier. Also, due to the noise 

sensitive application, the susceptibility of the amplifier to small noise and pick-ups is of 

paramount importance. It is an acknowledged fact that the amplifiers themselves can 

be a source of noise, and a poor design can compound this problem to a greater 

extent. 

 

Some of the factors, which would play a major role in the design of the amplifier, are as 

follows: 

 

• Gain Bandwidth Product 

• Slew-rate 

• Input / Output impedance 

• Frequency / Phase response 

• Noise susceptibility 

• PCB layout 

 

Figure 5.13 Frequency response of the combined band -pass filter 
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Simulation of amplifier circuits is a good starting point, but it is more practical to build a 

prototype amplifier and carry out a detailed performance testing of the same. Areas 

such as stability and phase response need careful consideration. The current 

bandwidth requirement of the amplifier is 300 KHz. However, the amplifier will be 

designed with a bandwidth of 1MHz, bearing in mind the options for any future 

development. The total amplification required would be in the range of 2500 to 3000. 

The active low-pass filter and the high-pass filter provide a combined passband gain of 

‘10’. The amplifier still shares the burden of providing a gain in the range of 250-300 

with a bandwidth of 1MHz.  As discussed in section 5.5.1, the gain will be split in two 

stages i.e. first stage prior to filtering and the second post-filtering.  The splitting of the 

gains in various stages should be such that the gain values stated in table 5.2 are 

achievable. The initial amplifier stage connected to the coils would play a major role in 

the noise performance of the complete amplification process. 

 

It is necessary to make the amplifier gains variable in order to accommodate PD 

signals with a wide range of amplitudes. The variable gain values were carefully 

planned to provide a wide range of gains with desired gain intervals. The first stage 

amplifier was designed to provide a variable gain of 2, 3, 6, 15 and 20. The second 

stage amplifier was designed to provide a variable gain 2, 3, 6, 12 and 18. A 

combination of these values will effectively provide a wide range of gain values 

including the gain steps stated in table 5.1. There was a reason for splitting the gain 

values in such a manner. The system currently being used by Dowding & Mills have 

certain defined gain values. This system, known as StatorMonitor®, has been 

successfully used in the industry, but is now becoming outdated. Implementing the gain 

values similar to the StatorMonitor system will provide an opportunity to benchmark the 

performance of the new system against a proven system. 

 

Building the amplifier on the prototyping boards (bread-boards) is not considered 

suitable as the signal frequency is relatively high. At these frequencies, the 

capacitances of the prototyping board are prominent and may become coupled with the 

circuitry to add undesirable effects. For example, it could add a positive feedback path 

through its capacitance making it unstable at high frequencies. A printed circuit board, 

if designed properly (layout design affects performance) would avoid such effects. 

However, the initial single-channel prototype was built on a Vero board. 

 

Both amplifiers were implemented using op-amp MAX437 in a non-inverting 

configuration. The op-amp has a gain-bandwidth product of 60 MHz with a low input 

noise of 4.5nV/√Hz. The gain of the amplifier is varied by switching the feed-back 
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resistors using a rotary switch. The circuit diagram for both the amplifiers is given in 

Appendix A-3.1 and A-3.3. 

During testing, it was observed that the amplifier had a tendency to become unstable 

causing oscillations and jittery waveforms. Initial thoughts hinted towards a noise pick-

up from some source. On investigation, it was found that the source of noise was the 

rotary switch. In fact the noise was being picked-up by the wires connecting the rotary 

switch and the feed-back resistors of the amplifier. All the wires connecting the rotary 

switch to the amplifier were covered in a metallic braid and the braid was connected to 

ground. The metallic braid provided good shielding to connecting wires and effectively 

helped in minimising the noise pick-up.  The frequency response of the amplifier was 

tested for different gains. The results for the input variable gain amplifier are shown in 

figure 5.14. 

 

The frequency response of the amplifier is linear in the lower gain ranges. At higher 

gains (i.e. 15 & 20), it was observed that the gain does drop slightly as frequency 

increases. This is due to the gain-bandwidth limitation of the op-amp. Even with the 

deteriorated performance, the frequency response is still considered sufficient for the 

current bandwidth (i.e. 300 KHz). The output amplifier was also constructed and tested 

Figure 5.14 Frequency response of input variable ga in amplifier 
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in a similar fashion and was found to have a similar performance. The frequency 

response is not shown here for brevity. The circuit diagram is given in Appendix A-3.3. 

 
The variety of gains achievable using the combination of both amplifiers is shown in the 

gain matrix in table 5.2. The gain values given in the gain matrix are a product of input 

and output amplifier gains multiplied with a factor of 10 (gain added by the band-pass 

filter) to give the effective gain of the system. The values stated in brackets 

(highlighted) are the gain values of the existing StatorMonitor system. In the complete 

scheme of cascading various stages, the input amplifiers was cascaded to the band-

pass filtering circuit and then followed by the output amplifier as shown in figure 5.7 (c) 

 

  First Amplifier 

S
ec

on
d 

am
pl

ifi
er

 

Gain 2 3 6 15 20 

2 40         
(37) 60 120     

(128) 
300     

(270) 400 

3 60 90 180 450 600     
(641) 

6 120     
(128) 180 360 900 1200 

(1280) 

12 240 360 720 1800 2400 

18 360 540 1080 2700 
(2706) 3600 

 
 
 
 

5.5.5   Isolation transformer 
 
The output of Rogowski coils are connected to the signal conditioning unit through BNC 

cables. One end of the Rogowski coil is connected to the machine ground. This can 

introduce ground-loop circulating currents in the measuring circuit and can have an 

undesirable effect. In order to break the ground-loop and prevent the flow of circulating 

currents it was decided to isolate the incoming signals from the Rogowski coils by 

means of an isolation transformer. 

 

The isolation transformer should be suitable for high frequency signals. Several 

attempts were made with varying configurations to wind a suitable 1:1 high frequency 

transformer. The number of turns was varied (35:35, 70:70, 100:100) to alter the 

Table 5.2 Numerical Gain Matrix for combination of input and output amp lifier  
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bandwidth performance. However, the capacitive coupling between the primary and 

secondary windings posed a problem at high frequencies. In order to overcome the 

capacitive coupling problem, the following methods were adopted: 

• Primary winding on bottom half and secondary winding on the top half of the 

bobbin (and vice versa). 

• Metal plate shielding connected to ground separating the primary and secondary 

windings.  

• A tertiary winding connected to ground between the primary and secondary 

windings. 

 

The metal plate shielding and the tertiary winding method did show an improvement in 

the bandwidth performance, but it was still not considered to be satisfactory. After 

several attempts a 1:10 ratio (instead of 1:1) transformer was wound with 18 turns in 

the primary and 180 turns in the secondary. The primary winding was on the bottom 

half followed by the secondary winding on top. The transformer was completed using 

an ‘RM-8’ core and provided a bandwidth of about 300 KHz. The improvement in the 

bandwidth can be attributed to better construction and the core material used.   

 

However, a bandwidth of 300 KHz will not be sufficient due to the effect of cascading 

multiple stages resulting in a reduction of the overall bandwidth. This will have to be 

addressed when designing the three phase system.  

  

Using this isolation transformer provided an additional gain of ‘10’ which was not 

considered suitable for the prototype already built. Hence an attenuator had to be 

inserted in the circuit to compensate for the additional gain. It would not be practical to 

have an attenuator prior to the isolation transformer. Hence it was decided to have an 

attenuation of ‘10’ after the first input amplifier. This was implemented by using a 

voltage divider circuit at the output of the amplifier (4.2KΩ & 470Ω). When cascaded 

with the filtering circuit, attenuation in the output of filter was observed. Probing the 

individual sections of the circuit (without cascading) seemed to be working as 

designed. On investigation the problem was found to be the voltage divider circuit used 

for attenuation. The resistance values used were quite high compared to the output 

impedance of the amplifier. The values of the resistors in the divider circuit were 

reduced by a decade and this resolved the problem. 

  

5.5.6   Reference signal generator 
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A reference signal (50 or 60 Hz sine wave) is used to trigger the acquisition of PD 

signals. This signal is generated by connecting the supply voltage to a simple step 

down transformer i.e. 230 volts primary to 9 volt secondary. The actual transformer 

used had a 9 volt centre tapped secondary.  One of the outputs of the transformer is 

connected to a passive network of resistor and capacitor that act as a low pass filter 

with a cut off frequency of 160 Hz. This is followed by a potential divider circuit with a 

potentiometer to adjust the amplitude of the reference signal. The second output of the 

transformer (out of phase by 180°) was also connect ed to an identical filter network and 

potential divider circuit. A switch was provided to select between the two taps. Although 

two taps are not necessary, it was wired just to provide some added redundancy.  

 

The circuits are powered using a standard, market available power supply with an 

output of +/- 5 V (100mA). The main circuit ground is connected to the chassis. The 

chassis is grounded via a switch that can connect the chassis either to the mains 

supply ground or to an external earth point (machine earth). When testing on-site, it 

was found that the main power-supply ground can be noisy and this can get coupled in 

the measurement. Under such circumstances it becomes necessary to provide a clean 

earth connection (shortest ground path) to make any measurement. Hence, an option 

was provided by means of a switch to connect the circuit ground (chassis) to the main 

power supply ground or an external clean ground point as shown in Appendix A-3.3. 

Figure 5.15 (a) and (b) shows the front panel and the internal assembly of the unit. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 5 (a) Front panel of single channel hardware system  
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5.6   Analogue to digital converter 
 
The A/D converter is one of the most significant components of the system as the 

digitizing speed has a direct influence on the amplifier and filter design. It can be the 

most expensive component and is instrumental in determining the overall performance 

of the prototype system. Instead of designing the A/D converter circuit discretely, it was 

decided to use a market available data DAQ card that would be suitable for the 

application. For the development of a single channel system, it was sufficient to use a 

two channel DAQ card i.e. 1 channel for the reference signal and 1 channel for the 

phase signal. The sampling speed should be a minimum of 3Ms/s and the card should 

be capable of simultaneous sampling. Eventually a complete three phase unit will 

require 4 input channels i.e. 1 channel for the reference and 3 channels for the phase 

signals. Hence, the choice of DAQ card must allow such expansion. 

 

The sampled data is initially stored in the on-board memory available on the DAQ card 

before it is transferred onto the host computer. It goes without saying that a higher 

sampling rate will require a greater amount of memory to store the sampled data. The 

memory requirement also depends on the resolution of the sampled data. For example, 

if a signal is sampled at 1KHz with an 8-bit resolution, 1KB of memory is required to 

Figure 5.15  (b) Internal  assembly of single  hardware  channel syste m 
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store the data captured in 1 second. But if the resolution was 12-bit and the data was 

sampled at the same rate for the same amount of time, the required memory would be 

2KB (1K word). Thus the sampling frequency and the resolution are the key factors 

dominating the memory requirements. 

 

The signal bandwidth of the required system is about 300KHz and the minimum 

sampling frequency is 3Ms/s. The signal is to be continuously and simultaneously 

sampled on all channels for a minimum period of 20ms (1 cycle of 50 Hz signal). With 

these given conditions, the memory requirements for 8-bit DAQ card can be calculated 

as follows: 

 

Memory Requirements: 

� Sampling Frequency                                          = 3Ms/S 

� Number of samples captured in 20 ms           = 60,000 

� Total number of samples for 2 channels in 20 ms     = 1,20,000 

� Total number of samples for 4 channel in 20 ms      = 2,40,000 

� Minimum Memory required for 2 channels (8-bit system)  = 120 KB   

� Minimum Memory required for 4 channels (8-bit system)  = 240 KB   

 

Hence the minimum memory requirement for a 2 channel DAQ would be 128KB 

(standard value) or 256 KB for a 4 channel DAQ. The DAQ card chosen was NI-5102 

manufactured by National Instruments. The DAQ card has a resolution of 8 bits with 2 

simultaneously sampled input channels. It has a total onboard memory of 663,000 

samples which exceeds the requirement for this application and is capable of sampling 

speeds of 20Ms/s in real time mode. Additionally there is a provision to synchronise 

two DAQ cards which can later be used for the complete 3 phase system. Also, the 

DAQ card is provided with NI-LabVIEW software drivers making it easier to develop the 

DAQ software. The card interfaces the computer through a PCMCIA interface. This 

interface was specifically chosen to enable a laptop computer interface. This is 

because the end product needs to be a portable system making other interfaces like 

PCI not suitable for this application. A PXI system is a possibility, but the current cost of 

a PXI system is considered prohibitive due to the budgetary constraints of the project. 

 

All the individual sections of the signal condition hardware were developed and tested. 

The detailed block diagram of the complete single channel system is given in figure 

5.16. 
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Signal Conditioning Unit 

Figure 5.1 6 Complete block diagram of a single phase system  
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5.7    Summary 
 
Investigations were carried out into various signal conditioning aspects of the PD 

signals. Filtering and amplification forms the heart of signal conditioning and the choice 

of A/D converter has a dominant influence in designing these circuits. Prototype 

hardware of a single channel data acquisition unit encompassing a band-pass filter 

(10KHz-500KHz) and a high gain amplifier was developed and tested under laboratory 

conditions. The test results are presented and performance of the hardware is deemed 

to be satisfactory. 

 

The next stage of prototype design would be the development of DAQ software that is 

capable of acquiring and storing the discharge data in desired format.  
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CHAPTER 6: SINGLE PHASE DATA ACQUISITION 
SOFTWARE 

 

6.1    Introduction 
 
Any PD instrumentation system must have a facility to view the live PD data and record 

the raw PD data in order to allow post-processing of signals. Permanently stored PD 

data can be used for comparison and trending of PD activity when subsequent 

measurements are made over a period of time. The main objective of the data 

acquisition software was to provide a user friendly interface that can be used to acquire 

the raw PD data from Rogowski coils and store them in an appropriate format. The 

main functions of the software are summarised below: 

 

a) Hardware Control 
 

The DAQ card NI-5102 is interfaced to the host computer via a PCMCIA interface. The 

software must be capable of configuring the DAQ card with appropriate acquisition 

setting and initiate the acquisition process when prompted. 

 

b) Acquiring and displaying PD data 
 

The software should be capable of acquiring and displaying live PD data in a 

continuous manner. This allows the user to observe the PD signals on the computer 

screen (like an oscilloscope) and make the appropriate changes to the gain settings. 

Optimum gain setting is necessary to accommodate large as well as small PD signals 

without compromising the dynamic range of the A/D converter.  

 

c) Storage of PD data 
 

The software must have a facility to allow the user to permanently store the acquired 

raw PD data on a computer hard drive or any form of permanent memory storage. This 

enables the user to undertake the post-processing of signals and carry out a detailed 

analysis.   

  

d) Retrieval of PD data  
 

In order to get the maximum information from the PD data, it is a normal practice to 

acquire data over a large number of cycles. The provision of retrieval of PD data allows 

the user to check if the entire data set was acquired correctly. It can also be used to 
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make comparisons of the acquired data sets over a period of time enabling a PD trend 

analysis, which is considered a vital tool in insulation diagnosis.    

 

6.2    Software specifications 
 

Based on the description above, the software specifications for a single channel 

system were established as shown in Table 6.1. 

 

Table 6.1 Software specifications for single channe l PD system 
 

Purpose 
Software to acquire, display and store PD data acquired 

from a single phase of rotating machine. 

Programming 

Software LabVIEW (Version 8.2)  

Hardware control 
requirements 

Configure and control NI-5102 data acquisition card via 

PCMCIA interface. 

Acquisition 
Requirements 

• Data to be acquired from 2 channels (Ch0 = reference 

signal; Ch1: PD data).  

• Sampling Frequency = 5 Ms/s 

• Voltage Range = +/-2V 

• Acquisition period = 20ms (one cycle) 

User Interface   
(Front Panel) 

• 4 push buttons for ‘Acquire’, ‘Write’, ‘Read’ and ‘Stop’ 

functions. 

• 2 display graphs i.e. one for displaying the acquired data 

and the other for displaying the retrieved data from disk.   

Storage 
requirements 

• Storage format: NI-HWS 

• Reference signal & PD data to be stored in 2 individual 

files. 

• Data retrieval using ‘Read’ function – data to be displayed 

on graph. 
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6.3    Introduction to LabVIEW software 
 
The LabVIEW software by National Instruments is a powerful graphical programming 

environment that is well known in the field of virtual instrumentation. The programming 

is carried out in the form of a block diagram using intuitive drag-and-drop type graphical 

icons and wires that resemble a flowchart. The software is provided with built-in 

libraries for data acquisition, visualisation and analysis helping to reduce the 

development time.  The software provides various execution loops such as ‘IF’ loop, 

‘WHILE’ loop or ‘FOR’ loop and is similar in many aspects to text based programming 

languages like ‘C’. In text based languages the program flow is determined by the 

sequence of lines of code, whereas the data flow in LabVIEW is determined by wiring 

of data elements. This brief introduction is provided here for ease of understanding. 

More details about programming in LabVIEW can be found in the user manual (130) 

provided by National Instruments. 

 

A program written using LabVIEW (version 8.2) is called a Virtual Instrument (VI). Each 

program essentially has two parts – a front panel and a connector pane (block 

diagram). The front panel provides an interactive user interface with all the required 

controls whereas the block diagram is the back-end that actually contains the program 

code. The programmes generated using LabVIEW have file names with extension ‘*.vi’   

 

6.4    Data Acquisition Software 
 
Figure 6.1 shows the front panel of a single channel data acquisition system for this 

work. Various controls are provided to the user for controlling the acquisition process. 
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Figure 6.1 Front Panel of Single Phase acquisition program 
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The two graphs on the front panel show the acquired data and retrieved data. The 

program is capable of acquiring 2 signals simultaneously i.e. 50 Hz sine wave used as 

a reference signal and PD data from one phase.  The ‘Acquire’ function configures the 

DAQ card with appropriate settings and acquires data over a 20 ms period with a 

sampling frequency of 5Ms/s. The minimum sampling requirement for the application 

was 3Ms/s. However, acquiring data at a higher sampling frequency will reduce the 

burden on AAF filter. The memory requirement for acquiring data with 5Ms/s will be 

200,000 samples/cycle for two channels. The NI-5102 DAQ card has an onboard 

memory of 663,000 samples which is more than sufficient for the application. This data 

is displayed in the top graph. If the acquired data is too small or too big, then the gain 

settings on the signal conditioning unit can be altered and another data set can be 

obtained. 

 

The ‘Write’ function stores the acquired data in a file at a desired location set by the 

user. The data is split and stored in 2 separate files – one file stores the reference 

signal and the other stores the PD data. The ‘Read’ function is used to retrieve the data 

from a stored file and display the data on the bottom graph. The program prompts the 

user to select the path of the desired file. Finally, the ‘Stop’ function allows the user to 

exit from the program. The LabVIEW code for this program is given Appendix A-5.1. 

 

The software was interfaced with the hardware and tested under laboratory conditions 

with simulated signals. The performance was found to be satisfactory. The next stage 

was to carry out testing with real PD signals in an industrial environment. 

 

6.5    On-site testing of the single channel system  
 
It was necessary to study the behaviour of the system in an industrial environment with 

real PD signals. Unfortunately, high voltage test facilities were not available within 

Dowding & Mills (Aberdeen) or at Robert Gordon University. Hence it was difficult to 

get access to real PD data. 

 

However, with the co-operation of Dowding & Mills a field-trip was arranged to a 

petroleum refinery plant in the UK. This provided an opportunity to test an 11KV 

machine on-site. The main purpose of this field-trip was to gather some real PD data 

and save it. 
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6.5.1   The test set-up 
 
The 11KV machine was already installed with permanently fitted Rogowski coils 

manufactured by Dowding & Mills. The coils were located very close to the machine 

terminals in the high voltage terminal box. Due to the presence of high voltage in the 

machine terminal box, it was necessary to terminate the output connections of the coil 

externally (out-with the main HV terminal box). This eliminates the need of HV access 

during every test and makes the testing process safer. The output from the three coils 

(one per phase) was terminated in a local terminal box with screw terminals. The 

complete test set-up is shown in figure 6.2. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Test set -up for single phase data acquisition  
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6.5.2   The waveform display 
 
The testing was carried out using various gain settings and the data was acquired with 

a sampling rate of 5 Ms/s. In this case the most suitable gain settings were found to be 

‘600’ and ‘1200’. Figure 6.3 shows the graphs for a single phase data along with the 

reference signal (green) for both the gain settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from the graph above that some pulses are clipped with a gain 

setting of ‘1200’ where as all the data acquired with a gain setting of ‘600’ is within 

range. Another data set was acquired with the maximum sampling rate possible with 

the DAQ card i.e. 10 Ms/s per channel. However the file size with the higher sampling 

rate was considered too large. Only after further signal processing can it be 

commented if sampling with such high frequency will provide any substantial benefits. 

Theoretically a sampling rate of 5Ms/s is more than 15 times the maximum frequency 

of interest (i.e. 300KHz) and should be sufficient. 

 

 

Figure 6. 3 PD data acquired with different gain settings  

A
m

pl
itu

de
 (

V
) 

A
m

pl
itu

de
 (

V
) 

Time (s) 

Time (s) 



105 
 

6.5.3   Data Analysis 
 
It can be seen from figure 6.3, that the acquired PD data did not resemble a typical PD 

pattern. A typical PD pattern commonly found in most machines occurs in well defined 

bands in the first and third quadrant of the sine wave. This is shown in figure 6.4 (data 

provided by Dowding & Mills from their PD database). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing the acquired PD data to typical PD pattern indicates that the acquired data 

is not of a very good quality and has some form of external interference. There is a 

strong possibility that external interference has a similar frequency spectrum to that of 

PD data. This is because any external interference beyond the bandwidth of 30-

300KHz will be filtered by the signal conditioning unit.  

 

A Fast Fourier Transform (FFT) analysis on the acquired signal can highlight the 

frequency components present in the signal spectrum and may help to identify the 

source of noise. The results of the FFT analysis are shown in figure 6.5. It can be seen 

from the FFT spectrum graph that the main fundamental noise frequency is present at 

40KHz. This noise also appears at the harmonic frequencies of the fundamental (i.e. 

80KHz, 120KHz, 160KHz and so on). It is inferred from the FFT spectrum that the 

noise is possibly being caused due to multi-speed motor drives or some form of 

switching device connected on the same power line. The multi-speed drives use a high 

frequency carrier signal for achieving speed control and this carrier frequency may be 

the source. 

 

 

Figure 6. 4 Typical banded discharge activity  
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Attempts were made to filter out the interference present within the frequency band of 

interest using two different techniques and are presented below. 

 

6.5.3.1  Filtering Noise – Method 1 
 
The acquired data was first subjected to an ‘Amplitude’ base filtering technique. 

Minimum and maximum threshold limits were set and the waveform was analysed on a 

sample by sample basis. Any waveform value beyond the set threshold value is 

assumed to be noise and the value is set to zero.  

 

In this case, a threshold limit of +/- 0.25 volts was set at the output of the acquired 

signal and the results were evaluated. The threshold value was chosen by comparing 

the acquired signal to the typical PD cycle shown in figure 6.4. It was assumed that the 

pulses out with the typical PD occurring region are possibly caused due to noise and 

the amplitude of these pulses was taken into consideration for deciding the threshold 

value. The program description and LabVIEW code for this filtering method is given in 

Appendix A-5.2. Figure 6.6 shows the original PD waveform along with the filtered one 

(in time domain) for comparison. Visual observation of the graphs indicates that the 

noise level has reduced, but not eliminated completely. As the data on the graph is 

very dense (100K points plotted per 20ms), not much can be commented on the 

effectiveness of filtering by visual observation. Performing an FFT analysis on the 

filtered signal may provide better insights. The FFT graphs are shown in figure 6.7. 

 

Figure 6.5 FFT spectrum of the acquired PD signal 

(Hz) 

(V
) 



107 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FFT waveforms in figure 6.7 indicate that the 40KHz noise and its harmonic 

frequencies have a reduction in amplitude due to the filtering process, but have not 

been completely eliminated. The fallacy lies with the method of filtering adopted. For 

example, if a noise pulse has a frequency of 40KHz (or its harmonic frequency) and an 

amplitude of less than +/- 0.25V then it will still be retained in the original waveform. 

Hence there is only a reduction in the overall amplitude of noise pulses. 

 

There is another disadvantage associated with this method of filtering. For, example, if 

a PD pulse has amplitude greater than the set threshold, it will be set to zero value and 

the pulse would be lost. The PD pulses with higher amplitudes are of paramount 

importance as they contain higher energy to cause insulation damage and should not 

go undetected. Additionally, a skilled user would be required to set the appropriate 

threshold limits. Even then this might seem an impossible task where the amplitude of 

PD pulses and noise pulses are in a similar range. Hence, ‘amplitude based filtering’ 

method is not considered to be a preferred method for filtering noise. 

 
 
 

Figure 6.7 Amplitude based filtering – time domain waveforms  

Figure 6. 6 Amplitude based filtering – time domain waveforms  
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6.5.3.2  Filtering Noise – Method 2 
 
The system has been designed to acquire and analyse signals only in a frequency 

range of 30-300 KHz. Any frequencies acquired beyond these values will not have true 

amplitude as they would be attenuated in varying proportions by the hardware filters 

present in the external signal conditioning unit. But, the external filters do not have a 

brick-wall response. The frequencies present in the transition band (due to the finite 

roll-off of filters) will still be present in the acquired spectrum. There is also a possibility 

of certain frequencies being present (within the frequency band of interest) due to 

electromagnetic pick-up.  

 

This can be verified by observing the complete frequency spectrum of the signal as 

shown in figure 6.8. It is evident that the frequencies beyond 300KHz are still present in 

the signal spectrum. These unwanted frequencies would affect the quality of the 

acquired signal. Hence it was decided to implement a software band-pass filter to 

eliminate the unwanted frequencies. 
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Figure 6. 7 Amplitude based filtering – frequency  domain waveforms  
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A software band-pass filter (6th order Butterworth IIR Filter) with a lower cut-off 

frequency of 30KHz and upper cut-off frequency of 300KHz was implemented. The 

lower cut-off frequency was changed from 10KHz to 30KHz and the upper cut-off was 

changed from 500KHz to 300KHz in order to eliminate all frequencies beyond range of 

interest i.e. 30KHz – 300KHz (During the hardware design stage the cut-off frequencies 

were altered to 10KHz and 500KHz only to achieve a complete flat response in the 

desired frequency range).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. 9 Band -pass filtering – time domain signal  
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Figure 6. 8 Complete frequency spe ctrum of the acquired signal  
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After filtering the signal in the time domain appears to have improved, as the high 

frequency noise was suppressed. This can be seen in figure 6.9. The FFT waveform of 

the band-pass filtered signal is shown in figure 6.10. The highlighted area shows that 

high frequency signals beyond 300 KHz have been effectively suppressed. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Though all the frequencies beyond 300KHz and below 30KHz have been filtered, it is 

still necessary to filter the 40KHz switching noise and its harmonic elements. One way 

of doing it would be to have band-reject filters with their cut-offs set to the harmonic 

frequencies. This was implemented using software filters. 6th order band-reject 

Butterworth IIR filter with lower cut-off frequency of 39KHz and upper cut-off frequency 

of 41KHz was implemented to eliminate the 40KHz switching noise. Similar filters (with 

2KHz band-reject window) were configured to eliminate up to 7th harmonic of 40KHz 

i.e. 280KHz.  The results can be seen in figure 6.11 and figure 6.12. The LabVIEW 

code can be found in Appendix A-5.3. The time domain waveform in figure 6.11 visually 

indicates that the filtered waveform appears to have reduced noise level when 

compared to the raw data. The results of the effectiveness of filtering are better viewed 

in the frequency domain waveforms shown in figure 6.12. It can be seen from the FFT 

waveforms that the 40KHz noise and its harmonics have been successfully filtered out 

from the signal spectrum.  
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Figure 6.1 0 Band -pass filtering – frequency domain signal  
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Figure 6.11  Band -reject filtering – time domain signa l 
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Figure 6.12 Band -reject filtering – frequency  domain signal  
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The disadvantage of this method of filtering is that a certain amount of partial discharge 

data may be lost in the filtering process. This can happen if PD pulses are present in 

the frequency bands that are set to be rejected by the band-reject filters. Also, this 

filtering technique is only suitable to filter out the switching noise generated by devices 

like variable speed drives. Other forms of noise may be present in the PD spectrum. 

Further investigation is required to detect and filter these other forms of noise.  

 

During the course of this project emphasis was laid on developing a data acquisition 

system for the detection of PD signals. Noise filtering techniques and PD data analysis 

will be a part of a future project and beyond the scope of this thesis.   

 

6.6    Summary 
 
DAQ software was developed to acquire PD signals from a single phase of a rotating 

machine. The software is capable of acquiring, displaying, storing and retrieving PD 

data. On-site testing was carried out on an 11KV machine to acquire some real PD 

data and assess the system performance. The acquired PD data had external 

interference signals present in its spectrum. Two different noise-filtering techniques 

were evaluated for filtering the noise and the results for each of the techniques have 

been presented. 

 

The next section describes the design and development of a complete three channel 

PD detection system. 
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CHAPTER 7: THREE PHASE PARTIAL DISCHARGE 
MONITORING HARDWARE 

 

7.1    Introduction 
 
Having tested the single channel prototype system on an industrial site, the next step 

forward was to design a complete 3-channel system that was capable of acquiring data 

from all three phases of the machine in a simultaneous manner. Detecting discharges 

from all three phases simultaneously has advantages over the single-channel 

approach. For example, a phase-phase discharge can be effectively detected by a 

three channel system as the discharge pulse occurs simultaneously in the phases 

involved. A single phase system will not be capable of making such measurements. It 

also provides greater possibilities for signal processing associated with noise rejection 

and data analysis. 

 

7.2    Some design considerations 
 
The design of the new 3-channel system hardware is similar to its single-phase 

counterpart in most aspects. However, certain design modifications were made that 

emerged during the testing of the single-channel prototype system.  Some of the major 

highlights are mentioned below: 

 

• The PD detector unit is mainly intended to be used on the offshore platforms in the 

North Sea with limited mainland application. Most offshore sites have a mains 

supply voltage of 110 volts, whereas on-shore sites have a supply voltage of 220 

volts. Hence, the power supply for the signal conditioning needs to be a universal 

input type (i.e. 110V & 220V). The standard available switch-mode universal power 

supplies were not used to avoid any interference caused by the switching elements 

within the power supply itself. Instead, a linear power supply has been used with an 

option of supply voltage selection (i.e.110V or 220V). 

 

• The single channel prototype had two rotary switches for the individual control of 

the input and output amplifier.  However it was found to be inconvenient to change 

the individual gain setting during the actual testing. The new design implements a 

common shaft arrangement to change the gain of both the amplifiers using a single 

knob. The number of available gain settings has also been modified to amplify 

partial discharge signals of various amplitudes. 
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• The single channel prototype was built on a strip-board commonly used for 

prototyping electronic circuits. However, this is not ideal for high frequency 

applications. The parasitic capacitance of the board can have an undesirable effect 

and deteriorate the performance. Hence the new hardware was designed and built 

on Printed Circuit Boards (PCB). Efforts were taken to reduce noise during the PCB 

design by providing a sufficient area of ground plane. 

 
• The signal input / output BNC connectors and the gain selecting switches located 

on the front panel have been mounted directly onto the PCB to avoid additional 

wires and connections; thus helping to reduce unwanted noise pick-up.  

 

7.3    System block diagram 
 
Figure 7.1 shows the complete detailed block diagram of the three phase PD detection 

unit. The block diagram is very similar to the single phase system. Any minor 

modifications in the individual blocks have been described in the next section.  
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Figure 7.1 Complete Block diagram of three phase PD  detection system 
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The description of the individual blocks of the three phase system is given below.  

 

7.4    The Rogowski coil 
 
No changes were made to the design of the Rogowski coil due to the associated 

commercial implication of changing the existing Rogowski coils already installed on a 

world-wide basis.  

 

7.5    Signal conditioning unit 
 

7.5.1   Isolation transformer 
 

The single channel system used a hand-wound transformer with a turns ratio of 1:10 

(i.e. 18 turns primary and 180 turns secondary) build on a RM-8 core. The frequency 

response of this transformer was fairly linear in the desired frequency range of 30KHz 

to 300KHz. However, there was a small voltage drop in gain at frequencies higher than 

250KHz. This will affect the accuracy of the system in its higher frequency range. A 

standard market available 1:1 isolation transformer with a frequency bandwidth of 

1MHz was identified and used in the new design. This transformer has a linear 

frequency response in the desired range. The additional gain of 10 provided by the 

previous transformer design has been compensated for in the amplifier stage. 

 

7.5.2   Input variable gain amplifier 
 

The design and configuration of the input variable gain amplifier was similar to that 

used in the single channel system. (The op-amp MAX-437 used in the single channel 

prototype was an obsolete component and not recommended for new designs.) Hence, 

another op-amp AD8055A was selected for the new design. AD-8055A has a gain 

bandwidth product of 300MHz with a input noise of 6nv/√Hz. The amplifier is 

implemented in a non-inverting configuration and the gain of the amplifier is varied by 

switching the feedback resistors using a rotary switch. Based on the testing of a single 

channel system, minor changes were made in the feedback resistor values to achieve 

more accurate gains. In the single channel system a voltage divider circuit was 

connected at the output of this amplifier to reduce the signal by a ratio of 10. This was 

done to compensate for the additional gain provided by the isolation transformer. In the 

new design the isolation transformer has a ratio of 1:1; hence the voltage divider circuit 

was eliminated. This amplifier provides a variable gain of 2, 3, 6, 15 & 20. Figure 7.2 
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shows the performance of the amplifier with different gain settings. The amplifier has 

an improved frequency response compared to the single phase system. The circuit 

diagram is provided in Appendix A-4.1. 

 

7.5.3   High pass filter 
 

The design of the high pass filter has essentially remained unaltered. The filter was 

implemented using the op-amp AD8055A instead of MAX-437 for reasons already 

stated. Polypropylene film capacitors were used as they have close tolerances and low 

losses and are specifically used in filter networks. The filter has a cut-off frequency of 

10KHz and provides a fixed gain of ‘2.55’ (8.13dB).  

 

7.5.4   Low-pass (AAF) filter 
 

This 6th order Sallen-key Butterworth low-pass (AAF) filter was also built using AD8055 

op-amps. The design and the configuration remain the same as the single channel 

system. The filter has a cut-off frequency of 500KHz and provides a fixed gain of ‘4.12’ 

(12.3dB). This filter is cascaded with the high-pass filter to provide a bandwidth of 10-

500KHz and a signal gain of ‘10’ (20dB). The frequency response of the combined 

band-pass filter is shown in figure 7.3.  

Figure 7.2 Frequency response of input amplifier  (3-phase system)  
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7.5.5   Output variable gain amplifier 
 
The design and construction of the output variable gain amplifier is almost identical to 

the input amplifier, apart from a few gain settings. The gain settings for the output 

amplifier are 2, 3, 6, 12 and 18.  The circuit diagram is provided in Appendix A-4.4. As 

stated earlier, a common shaft connects the gain switching mechanism of both the 

amplifiers. Each rotary switch wafer has a single pole 12-way switch mechanism. Thus 

a maximum of 12 different gain combinations can be obtained.  

 

The complete details of the gain settings along with the overall system gain are given in 

table 7.1. The designed gain settings were practically verified in the laboratory. All gain 

settings were tested with a 100KHz sine wave signal with varying amplitudes to prevent 

gain saturation. 

 

 

 

 

 

 

 

 

Figure 7.3 Frequency response of band -pass filter (3 -phase system)  
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It can be seen from the table 7.1 that the gain error in most settings is less than 2.5%. 

Only the high gain settings (1750 & 2600) have a slightly higher gain error (5-6%). 

There is a possibility that this error may have occurred due to component tolerances 

and/or due to the limitation of the signal generator. The minimum voltage that could be 

generated by the signal generator was 1mV. Even a very small error in the amplitude of 

the generated signal may have a significant impact on the gain calculation due to the 

high gains involved. However, a gain error of 6% at the highest gain setting is still 

acceptable and considered satisfactory for this application. This is because the highest 

gain setting will only be used when the amplitude of PD signal is very low. The low 

amplitude PD signals are not considered critical as they do not affect the winding 

insulation significantly. Thus, a small measurement error at high gain setting will not 

have any substantial influence on the overall analysis.  

 

The design of the reference signal generator was not changed. Some changes had to 

be made in the power-supply design. The minimum power requirements were first 

established by connecting all the electronic circuitry to a +/- 5V DC power source. The 

total current drawn was measured to be approximately 175mA in each rail. A market 

available power supply was selected that could supply +/- 5V DC with 250 mA current 

in each rail. The power supply also had a provision of 110V or 220V input which was a 

mandatory requirement of the project. A toggle switch was provided to the user for 

selecting the mains supply voltage. Figure 7.4 (a) and (b) shows the front panel and the 

internal assembly of the complete three phase unit. 

 

 Theoretical   

Switch 
Position 

Input 
Amplifier  

Gain 

Band - 
Pass 
Filter 
Gain 

Output 
Amplifier   

Gain 

Overall Gain 
(Theoretical)  

Overall 
Gain 

(Practical) 

Gain 
Error   
(%) 

1 2 10.25 2 41 40 2.4 
2 3 10.25 3 92 90 2.2 
3 6 10.25 2 123 122 0.8 
4 6 10.25 3 185 180 2.7 
5 15 10.25 2 308 310 -0.6 
6 6 10.25 6 369 360 2.4 
7 15 10.25 3 461 450 2.4 
8 20 10.25 3 615 600 2.4 
9 15 10.25 6 923 900 2.5 

10 20 10.25 6 1230 1200 2.4 
11 15 10.25 12 1845 1750 5.1 
12 15 10.25 18 2768 2600 6.1 

Table 7.1 Gain setting details of 3 -phase system  
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Like the single-channel system, the provision of connecting the main circuit ground to 

supply earth point or to an external earth point was also provided in the system.  

 

7.6    Analogue to digital converter 
 
The NI-5102 DAQ card that was used for the single channel system has two 

simultaneously sampled input channels. However, for implementing a 3-phase system, 

four simultaneously sampled channels are required (1 reference signal and 3 phase 

signals), necessitating the use of two DAQ cards. The NI-5102 DAQ cards have a 

provision to synchronise more than one DAQ card through the synchronising input 

Figure 7.4 (a) Front panel of the 3 -channel  hardware system  

Figure 7.4 (b) Internal assembly of 3 -channel  hardware  system  
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called ‘PFI0’. This makes it possible to initiate an acquisition simultaneously on both 

cards. A connector-box was made that was suitable for BNC inputs from the signal 

conditioning unit and interfaced the DAQ cards to the laptop through PCMCIA interface 

as shown in figure 7.5. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

7.7    Summary 
 
 A three channel prototype hardware for detecting PD has been developed on the basis 

of a single channel system.  Some of the issues that were highlighted during the testing 

of the single channel system have been taken into consideration while designing the 

new system. The hardware was developed on printed circuit boards and measures 

were taken to minimise the system noise.  The completed apparatus was tested in 

laboratory conditions with the results indicating an improvement in the performance, 

particularly the frequency response of the amplifiers under high gain conditions. 

 

The next chapter deals with the designing of DAQ software for the three phase system. 

It also details the testing of the system in an industrial environment. 

 

 

 

 

 

 

 

 

Figure 7.5 DAQ card interface box  
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CHAPTER 8: THREE PHASE DATA ACQUISITION 
SOFTWARE 

 

8.1    Introduction 
 
The three phase data acquisition software was based on a similar architecture to that 

of the single phase system, but was different in certain aspects. Firstly, the amount of 

data handled by the software was significantly larger compared to the previous 

application. A high sampling rate of 5 Ms/S would generate 400,000 samples (4x10000 

samples) for each cycle of data (20ms). This has an implication on designing the 

software and recording the signals into a file and the associated file sizes. Secondly, 

the user interface had to be modified to accommodate the display of all three channels. 

Also, the acquisition on all 4 channels had to be initiated simultaneously with the live 

PD data displayed in the screen.  

 

The software was developed on a modular basis from the early stages of the project 

development making it easier for any continual development or expansion. The basic 

architecture of the software remained fairly similar.        

 

8.2    Data acquisition software 
 
Figure 8.1 shows the front panel of the three phase DAQ system. The display section 

has been modified to a greater extent. There are three graphs on the front-panel.  The 

top graph displays the reference sine wave signal along with the red phase PD data. 

The middle and bottom graphs display the yellow and blue phase PD data respectively.  

 

The various controls provided to the user for controlling the acquisition process 

remains the same as the single channel system with some minor behavioural changes. 

The ‘Acquire’ function initiates the data acquisition process and acquires data over a 

period of 20ms and displays it on the screen.  
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Figure 8.1 Front panel of three phase data acquisit ion program 
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However, there is a modification in the behaviour of the ‘Write’ and ‘Read’ function. The 

‘Write’ function is used to permanently record the data onto a disk. The data is stored in 

4 separate files – one stores the reference signal and the remaining 3 store the 

respective PD data. Hence when the ‘Write’ function is initiated, the user is prompted 

for a file name 4 times in a consecutive manner. The data is stored in different files in 

order to study the PD signals on an individual basis. The software will eventually be 

modified to store all the data in one single file. Similarly, when the ‘Read’ function is 

initiated, the program prompts the user to select the path of 4 different files in a 

consecutive manner.  

 

Another difference in this program is that the data retrieved is displayed on the same 

graphs as the data acquired. This is because a large amount of data is viewed on a 

small laptop screen. The user, at no point of time would need to use the ‘Acquire’ and 

‘Read’ function simultaneously. Hence the provision of individual graphs provides no 

real advantage. A separate display was used in the single channel system only to verify 

if the data was being written and read in a correct format and is no longer needed. 

 

It was necessary for the application to start the data acquisition process on all 4 

channels at the same time.  It was initially thought to provide a ‘trigger’ signal from the 

software to the ‘PFI0’ line on the DAQ cards to synchronise the acquisition. However, a 

simple hardware solution worked effectively. The NI-5102 DAQ card have an analogue 

trigger input called TRIG. The incoming reference signal (50 Hz sine wave) was 

connected to the TRIG input of both DAQ cards. The trigger source for both DAQ cards 

was set to TRIG input and the triggering was configured to ‘high-hysteresis’ triggering 

mode. In this mode a trigger is generated when a signal is greater than a set ‘high 

value’ with the hysteresis specified by a set ‘low value’. The high value was set to 0 

volts and the low value was set to -0.5 volts. Thus a trigger is generated, initiating the 

data acquisition every time the reference sine wave made a positive going zero cross. 

On completing the data acquisition of one complete cycle (20mS) it is transferred from 

the DAQ board memory to the host computer and displayed on the screen. The user 

can then review the data and store it.  

 

The data is stored in the NI-HWS (Hardware Waveform Storage) format. It is a flexible 

file format that offers data compression, making it suitable to store large amounts of 

scientific data. Hence it is the recommended file format by National Instruments for 

storing multiple channels of waveform data.  
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8.3    On-site testing of 3-channel system 
 
Due to the lack of high voltage facilities, most of the hardware testing was heavily 

dependent on testing the machines available at industrial sites. This had an adverse 

effect on the time required for prototype testing.  It was operationally difficult and time 

consuming to acquire suitable permission for testing the high voltage machines on 

industrial sites. Again, with the co-operation of Dowding & Mills, a site-visit was 

arranged to another petroleum refinery plant in UK. The main purpose of this site-visit 

was to acquire data and test the performance of the three channel system. In the 

absence of high voltage test facilities it was thought that the best way of testing the 

new system would be to benchmark its performance against the existing proven 

StatorMonitor system. Hence the testing was carried out with both the systems. The 

data collected from both systems was stored and compared at a later stage. The 

complete test set-up for the three phase system is shown below in figure 8.2. 

 

 

 
 

Figure 8.2 Test set -up for three  phase data acquisition  
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8.3.1   Comparison of system performance 
 
The site-visit provided an opportunity to acquire PD data from 3 different machines. A 

snapshot of three phases PD data acquired from one of the machines is shown in 

shown in figure 8.1. In order to facilitate a comparison of the existing StatorMonitor 

system with the new three phase system data was acquired using both systems with 

the new software. Various sets of data were acquired with different gain settings and 

the acquisition was carried out simultaneously on all three phases with a sampling 

frequency of 5 Ms/S. Comparisons were made with data acquired from all three 

phases. However, for the sake of discussion only a single phase data has been 

presented here. The data on the remaining two phases show a similar performance.   

 

Figure 8.3 (a) shows the data acquired from an 11KV generator unit ‘M1’ . The top 

graph shows the data acquired with the new three phase system with a gain setting of 

‘1200’. The second graph shows the data acquired with the existing StatorMonitor 

system with the same gain setting for comparison. Although the signal in itself has 

some noise present in it, visual examination of the waveforms indicates that both 

signals look similar and have similar amplitudes. The gain settings were varied and 

various data sets were acquired. Figure 8.3 (b) shows the data gathered from the same 

machine with a gain setting of ‘2700’. Again, the data acquired from both systems show 

a good correlation. 

 

Data was also acquired from another machine ‘M2’  which was an 11KV pump motor. 

Figure 8.4 (a) shows the data acquired with a gain setting of ‘310’ and figure 8.4 (b) 

shows the data acquired with gain setting of ‘600’. The PD data acquired from this 

machine had a significant resemblance to the typical discharge pattern found in most 

rotating machines. 

 

There are minor differences in waveforms acquired from both machines.  The primary 

reason for this difference is that both hardware signal conditioning units have different 

amplifier and filter designs, hence the performance may differ slightly. Secondly, the 

data shown in the graphs belong to different cycles. During the process of data 

acquisition, data was first acquired using the new system followed by the StatorMonitor 

system.   



127 
 

 

 

Figure 8.3  (a) PD data for machine M1 with gain of 1200  

Figure 8.3 (b)  PD data for machine M1 with gain of 27 00 
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Figure 8.4 (a) PD data for machine M2 with gain of 310 

Figure 8.4 ( b) PD data for machine M2 with gain of 600 
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Another method of comparing the performance was to analyse the data through the 

StatorMonitor analysis software. The analysis software was designed and developed 

by Dowding & Mills and is specifically intended for use with PD analysis of rotating 

machines. However, in order to analyse the data through this software, the raw PD 

data had to be provided in a certain format. The data acquired was stored in NI-HWS 

format and was not compatible with the existing software. 

 

8.3.2   Continuous data acquisition 
 
The three-phase DAQ software described in the previous section was capable of 

acquiring three phase PD data only for 1 single cycle at a time. A single cycle of PD 

data does provide a brief snapshot of the PD activity, but it is not considered sufficient 

to carry out a detailed analysis. This is because PD is inherently random in nature. A 

PD pulse that appears in one cycle may not appear in another. Hence, in order to 

provide statistical robustness, the PD data is always acquired over a larger number of 

cycles. It also helps in the implementation of various noise-detection and elimination 

algorithms for a reliable analysis of PD. 

 

The software was further modified to be able to acquire data from all three phases of 

the machine over a period of 50 cycles. The LabVIEW code for this program is given in 

Appendix A-5.4. The behaviour of ‘Acquire’ function remains the same as in previous 

program. Modifications were made to the ‘Write’ and ‘Read’ functions. On initiating the 

‘Write’ function, the user is prompted to enter a file name 4 times in a consecutive 

manner i.e. first file prompt for reference signal followed by 3 prompts to store the PD 

data of each phase. The program then acquires and stores the PD data for 50 cycles 

(not necessarily consecutive) in an automatic manner, appending the data to the 

respective files every cycle.  Similar changes were made to the ‘Read’ function to read 

the data for complete 50 cycles in a continuous manner. The number of cycles to 

‘Write’ and ‘Read’ could be changed to ‘100’ cycles or even more; but this will have a 

severe implication on the file size and will need to be addressed carefully.  

 

Another site-visit was arranged to a steel manufacturing plant in the UK providing 

another opportunity to test the system. The modified software for continuous 

acquisition of 50 cycles was tested there on 2 different generators. A one cycle 

snapshot of three phase PD data acquired from one of the generators tested is shown 

in figure 8.5. The data was acquired with a gain setting of ‘600’ with a sampling 

frequency of 5Ms/s. 
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Figure 8.5 Single cycle PD data from a generator (G ain = 600) 
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8.3.3   PD and noise 
 
The data acquired from the generator shown in figure 8.5 has a significant amount of 

noise superimposed over it. Such a classic pattern of noise is usually generated by 

some form of converter equipment. A converter contains switching elements like 

thyristors that switch on and off at regular intervals. This switching process generates 

high frequency pulses that propagate through the supply lines in the power system and 

can cause interference. The amplitude of such interference pulses is relatively higher 

compared to PD and tends to mask all PD data, making the PD detection process more 

intricate. 

 

The interference pulses generated by converters are periodic in nature and usually 

occur in numbers like 12, 18, or 24 pulses per cycle. These pulses being high 

frequency in nature do not usually cause any interference in most of the equipment 

connected to the supply. But it can interfere to a great extent when measuring PD as 

shown in figure 8.5. The high frequency noise generated by convertor equipment has a 

similar frequency bandwidth to that of PD pulses. Hence these noise pulses cannot be 

eliminated by external hardware filters. 

 

If these noise pulses are not detected and eliminated, then it can have a profound 

effect on the data analysis and a healthy machine could be misdiagnosed as a faulty 

one. Hence, PD analysis software should be able to overcome this problem by 

identifying the periodic noise pulses and omit them from analysis. The very fact that 

these noise pulses occur at regular intervals opens up many avenues for detecting and 

eliminating them.  Statistical techniques can be used to locate these pulses in the 

acquired data. These pulses can then be ‘windowed’ out by deciding an appropriate 

width for the window. It is obvious that any PD data present within that window will be 

lost. However, this is not a cause of concern as the PD data located within that window 

was already masked due to high noise pulse. Such techniques for noise elimination 

and data analysis will be investigated at a later stage of this project and will not be 

presented here. 
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8.3.4   Data Compression 
 
Acquiring and storing raw PD data requires a significant amount of memory. The file 

sizes of PD data acquired using the single channel system and the three- channel 

monitoring system were studied to check the memory requirements for file storage.  

The single channel system stores the reference signal and one phase data for one 

cycle in two individual files in the NI-HWS file format. The data sampling rate was 5 

Ms/s. The combined memory required to store both these files was approximately ‘1.6 

MB’ which is considered large enough for just one cycle of PD data. 

 

The three-channel monitoring system acquires the data with the same sampling 

frequency of 5 Ms/s, but the data was acquired on 4 channels (i.e. 1 reference + 3 PD 

phase data) over a period of 50 cycles. The data acquired from each channel for 50 

cycles was stored in individual files and each of these files required a memory of 

approximately ‘20MB’. This means a combined memory of approximately ‘80 MB’ will 

be required to store the raw PD data for just 1 test on 1 machine. This memory 

requirement is considered too large for a practical PD measuring system. A lot of PD 

analysis is dependant on the trending of PD activity requiring storing historical PD data 

for over a period of a few years impinging an enormous demand on memory required 

to store this data. Hence, there is a need for some method of data compression for 

storing PD data. 

 

Another factor to be considered for data compression was to store the PD data in a 

format that could be used with the existing StatorMonitor analysis software. This would 

be useful to benchmark the system performance. The existing data storage format 

used by the analysis software had to be studied in order to establish the compression 

requirements and data formatting.  

 

The existing analysis software reads the data that is stored in a binary format. One of 

the most common methods of data storage in LabVIEW is the .lvm format. The .lvm file 

format is a tab separated text file format which stores the ASCII values. This makes it 

easy to parse, and easy to read in a spreadsheet program like Microsoft Excel or a text 

editor like Notepad. However, the file format is not designed for high performance or 

very large data sets. A binary file format such as HDF5 is used for very large data sets 

as their disc footprint is smaller compared to ASCII format. The NI-HWS file format is 

based on HDF5 file format and specifically designed for use with modular instruments 

developed by National Instruments. Hence the NI-HWS format was used to store the 

site testing data. But, the NI-HWS file format was also considered incompatible as the 

existing software reads the data in a particular order in binary format. 
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The analysis software reads data values from a 2D array and the stored data has to be 

in a binary format. The array format is shown in table 8.1. The resolution of data is 

‘1024’ points per cycle and 100 cycles of data are required to run the analysis routine. 

 

As the software reads ‘1024’ points per cycle, the existing data resolution of 100,000 

points per cycle will have to be reduced to 1024 points by means of a data 

compression technique without losing any important information. This meant a 

reduction of data resolution by a factor of 98. An algorithm was developed for 

performing the data compression. The raw PD data was divided into small windows of 

98 elements and the highest value in the data set preserved. The LabVIEW code from 

this program is given in Appendix A-5.5.  

 

 

 

 
Reference     
(sine wave) 

PD Data         
(Red phase) 

PD Data   
(Yellow 
phase) 

PD Data        
(Blue phase)  

Cycle 
1 

1 1 1 1 
2 2 2 2 
| | | | 

| | | | 

| | | | 

1024 1024 1024 1024 

Cycle 
2 

1 1 1 1 
2 2 2 2 
| | | | 

| | | | 

| | | | 

1024 1024 1024 1024 
| | | | | 

| | | | | 

| | | | | 

Cycle 
100 

1 1 1 1 
2 2 2 2 
| | | | 

| | | | 

| | | | 

1024 1024 1024 1024 
 

 

The effect of data compression is shown in figure 8.6.  The top graph shows the data 

with full resolution and the bottom graph shows the reduced resolution graph.  The 

Table 8.1 Data storage format for StatorMonitor PD analysis software  
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reduction in resolution of course meant significant loss of PD data. However, the 

highest peaks are the most important and have been preserved. Although, a frequency 

domain analysis would be impossible after such a compression, it can be seen that the 

overall discharge envelope has been reasonably preserved. There was a significant 

reduction in the file size requirements. The overall file size was reduced from ‘80 MB’ to 

‘0.8 MB for 50 cycles of PD data. This means the file size for 100 cycles would be 

around ‘1.6 MB’ and is considered to be reasonably practicable. 

 

         

8.4      USB data acquisition system 
 
The use of 2 DAQ cards with a PCMCIA bus interface was not considered to be the 

best option for future development as the PCMCIA format is becoming outdated. The 

availability of laptop computers with 2 PCMCIA slots is sparse. Hence, various market 

available DAQ cards were researched with alternative interface options. A USB 

interface was thought to be the most suitable option as laptops with three to four USB 

ports are readily available in the market.   

 

Figure 8.6 Effect of data compression of raw PD dat a 
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‘Handyscope-HS4’ by Tie-pie’ engineering is a four channel simultaneous sampling 

USB DAQ card with a maximum sampling frequency up to 5 Ms/S and has an on-board 

memory of 512 MB. It is relatively inexpensive compared to some of the competitor’s 

products and was thought to be a viable option. The device was equipped with suitable 

drivers for LabVIEW software interface. An attempt was made to develop another DAQ 

program using the new USB DAQ card. However, the development proved to be time 

consuming due to certain issues with the way the device drivers interfaced with 

LabVIEW software. The device drivers also did not provide sufficient options and 

control for triggering signals. Hence, the Handyscope-HS4 was not considered to be 

the preferred option. 

 

It was best considered to avoid 3rd party drivers for LabVIEW interface. It was decided 

to choose a DAQ card provided by National Instruments for its excellent device driver 

interface and ease of programming. The ‘NI –USB 5132’ DAQ was chosen for the 

application. The DAQ card has 2 simultaneously sampled channels with a resolution of 

8-bits and is capable of sampling speeds up to 50 Ms/S. This means two DAQ cards 

will have to be used for the complete three channel system and will need 2 USB ports 

on the laptop computer. This is not considered as an issue as most laptops have three 

four USB ports. The DAQ cards also provide an option for synchronisation through the 

‘PFI1’ connection.        

 

The three phase DAQ software was modified for using the USB DAQ devices. Due to 

the types of synchronisation options available with this DAQ card, a software based 

synchronising technique was adopted. Data compression was also incorporated in the 

program and changes were made to the data storage format. This change was 

necessary in order to use the StatorMonitor software for analysis and will help to 

assess the performance of the system. The front panel of the new USB DAQ software 

is shown in figure 8.7.  The program description and LabVIEW code is given in 

Appendix A-5.6. 

 

The three channel hardware along with the newly developed USB DAQ software is now 

awaiting field trials for performance assessment. 
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Figure 8.7 Front panel of three phase USB DAQ syste m 
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8.5    Summary 
 
DAQ software developed for a three channel prototype system was capable of 

simultaneous acquisition of three phase PD data. The software along with the 

associated hardware was tested in an industrial environment. Modifications were made 

to accommodate continuous acquisition of PD data over a period of 50 cycles. The 

performance of the system was compared with the existing StatorMonitor system with 

various gain setting and was found to be satisfactory. The PCMCIA interface for DAQ 

systems is rapidly becoming obsolete. Hence a new DAQ system with a USB interface 

was developed. The program was also modified to maintain its compatibility with the 

StatorMonitor software.  

 

The new system will need to be tested on actual machines to assess the performance.       
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CHAPTER 9: DISCUSSION 
 

The data acquisition hardware for acquiring and storing PD pulses form an important 

part of any PD instrumentation system. Equally important is software that is capable of 

filtering noise, provides tools to view the PD data in different forms and allows 

statistical signal processing to aid the analysis process. Another important feature of 

PD analysis software is the capability to display and analyse historical PD data which 

helps in trending the PD activity over time. Some of these features that are desired 

from PD instrumentation software are discussed here.  These features will be 

considered in future during software development. 

 

9.1    Software Development 
  
The software developed during the course of this project is capable of acquiring real 

PD data and storing it onto disk with limited options for displaying data. However, this 

area of software development will need a significant amount of work and research to be 

carried out for developing a complete PD detection and analysis system. The work 

needs to be considered with three different areas: 

 

a) Noise detection and filtering 

b) PD Data display methods  

c) PD Analysis techniques 

 

9.1.1   Noise detection and filtering 
 
The PD data is often blurred with noise and external interference making it difficult to 

discriminate between noise pulses and the PD pulses. Measures can be taken reduce 

the voltage and current noise by selecting low-noise op-amps and by hardware design.  

However, in some cases where the external noise level is high compared to the PD, 

the entire PD signal can be lost. This is because the A/D converter has a fixed 

resolution and the extremely small PD pulses may be quantised into the lowest level. 

The noise could be arising from two sources i.e. thermal or external. The thermal noise 

that arises due to the amplifiers and the detection impedances are relatively 

insignificant compared to the noise from external sources (132). 
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The external noise characteristics can be categorised into three types (133): 

  

• Continuous noise signals caused by communication  networks 

• Pulse-shaped signals occurring at a nearly constant phase angle caused by 

phase angle controls (thyristor switching) 

• Non-continuous pulse shaped signals caused by corona or switching in the high 

voltage system. 

 

The repetitive type pulses that occur due to thyristor switching are relatively easier to 

be detected and filtered. A rudimentary scheme was described in section 8.3.3. A noise 

gating technique can be used for detecting such repetitive pulses. However the other 

types of interference can be difficult to identify. The application of adaptive digital signal 

filtering (134) and neural networks (133, 135) is becoming increasingly popular in this area. 

Kopf and Feser (136) have proposed some digital methods for off-line and on-line 

filtering of noise from PD. Various authors have also proposed the use of ‘Wavelet 

Analysis’ for de-noising of PD signals (137, 138) and have shown promising results. These 

various digital techniques can be evaluated and a suitable technique can be developed 

for eliminating / reducing noise from the PD signal.  

 

9.1.2   PD data display methods 
 
The visualisation of PD data is one of the important aspects of the PD analysis process 

as it can help to detect noise and to estimate the severity of the discharges.  The fact 

that the data has been recorded in the digital domain provides the opportunity to 

process the data and display it using various methods that can provide more 

information and aid the analysis process. Several graphical representations of PD have 

been established within the industry. 

 

A ‘pulse height distribution’ display can be used to determine the repetition rates of 

various discharge amplitudes as shown in figure 9.1. The ‘x’ axis of the graph shown in 

figure 9.1 represents the increasing amplitude of PD pulses. The ‘y’ axis represents the 

number of pulses occurring in a specified time or data set (e.g. 100 cycles).  This graph 

is useful to visualise the repetition rates of various discharge amplitudes. It goes 

without saying that the high amplitude discharges with high repetition rates will be 

detrimental to the insulation. However, one of the major disadvantages of this 

technique is that the phase information of discharge pulses is completely lost. 
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Another popular method to display PD is the phase resolved PD pattern. Such a phase 

resolved PD pattern (also called ‘φ-q-n’ pattern) is shown in figure 9.2. 

 

 

Figure 9.1  Pulse height distribution graph  
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Figure 9.2  ‘φ-q-n’ pattern display of PD data  
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The phase voltage is divided into a small number of windows. Discharge parameters 

like the apparent discharge magnitude ‘q’ and the phase angle ‘φ’ of individual pulses 

within that window can be calculated and stored using a software program. The 

computation can be performed on the complete data (e.g. 100 cycles) and the 

corresponding repetition rate ‘n’ for each phase window can be calculated and stored 
(139). Now these three parameters can be viewed on a 3-D plot and is often referred as 

the ‘φ-q-n’ pattern. Alternatively, it can also be plotted on a 2-D with colour-coding of 

PD pulses as the 3rd axis.  

 

Referring figure 9.2, each individual PD pulse is represented by a dot at its 

corresponding amplitude on ‘y’ axis and its corresponding phase position on ‘x’ axis. 

The repetition rate ‘n’ of pulse is coded with different colours with red being a high 

repetition rate and grey being a low repetition rate. The ‘φ-q-n’ pattern indicates the 

predominance of PD pulses in ‘+ve’ and ‘-ve’ cycle and this can be used for detecting 

various sources of discharge activity (139). Statistical parameters like ‘Skewness’ and 

‘Kurtosis’ can be calculated which is useful for determining the characteristics of PD 

activity (140).   Hence, as this type of PD display gives vast amounts of information for 

analysis it is popularly used for PD analysis of rotating machines (141, 142). The 

development of a software program capable of displaying phase resolved PD patterns 

will prove useful for data analysis.   

 

9.1.3   PD Analysis techniques 
 
Visual analysis of PD data still remains the most widely used method in the field of PD 

monitoring. Unfortunately, it needs a considerable amount of experience and expertise 

in order to draw a meaningful interpretation from the PD signals. It is also well known 

that the absolute analysis of PD cannot be considered as a reliable indicator of 

insulation condition due to the following factors (143):  

 

• PD calibration problems 
 

The conventional PD calibration technique is not applicable to rotating machines as the 

PD is not measured at the actual PD site, but at the terminals of the winding. The stator 

winding of every machine is different and can have a different effect on PD pulse as 

they travel through the winding. Hence every machine will need individual calibration 

where a pulse of known amplitude is injected and the response is measured. This is 

impracticable in most conditions where on-line measurement is a requirement. 
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• PD location 
 

The location of PD has a direct effect on the magnitude detected at the machine 

terminals. It is known that the PD pulse attenuates as it travels through the stator 

winding. Hence it is possible that a smaller amplitude PD may be actually arising from 

a larger PD located further away from the terminals and vice versa. 

 

• PD detector 
 
Depending on the bandwidth of the PD detector, a different response may be produced 

for the same PD event. During PD measurement the frequency spectrum of the stator 

winding and the frequency spectrum of the PD detector are combined together and the 

resultant PD spectrum can affect the magnitude of PD pulse. 

 

• PD types 
 

Different types of discharges occur at different locations in a machine. The potential for 

each type of discharge to cause harm to the insulation is different. For example a same 

magnitude PD occurring in slot region and end-winding region can affect the insulation 

differently. Hence it is important to consider the type of discharge mechanism along 

with its magnitude rather than analysing PD solely on the basis of detected magnitude.   

 

• Differences among machines and measurement conditions 
 

Machines from various manufacturers differ significantly in terms of construction, 

design, insulation systems, etc. Even if the machines have the same manufacturer, 

there will be differences in installation, operation and maintenance and this may result 

in a different degree of insulation degradation for the same machine. Additionally, other 

factors like temperature, pressure, humidity, etc can have an effect on PD 

measurement. 

  

Industrial experience indicates that some machines have high PD magnitudes that do 

not change over a significant period of time and can sustain them for years without 

causing any further damage to the insulation. Some machines can have low 

magnitudes of PD that increases over a period of time indicating the presence of a 

failure mechanism affecting the insulation.  

 

All the above factors can affect the magnitude of PD measured.  Hence the analysis 

which is based only on PD magnitude cannot be considered reliable. 
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In order to make a more robust analysis, the PD activity can be trended over a period 

of time to asses if any insulation degradation mechanisms are causing sustained 

damage to the insulation (143,152). This involves repeated data collection with a 

reasonable time gap between each measurement.  The process of insulation 

degradation is a slow process; hence the time gap between each measurement should 

be sufficiently high for the degrading mechanism to cause a detectable increase in the 

PD activity which is usually in the range of few months. A typical process cycle used for 

PD data analysis is shown in figure 9.3.  
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Figure 9.3 Typical process diagram for PD data anal ysis  
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The application of neural network for the PD pattern recognition and analysis has been 

demonstrated by many researchers (147, 148, 149) and forms the basis of an expert PD 

system. 

 

Neural network acts as a classifier for the data fed to it. The capability of a neural 

network for classifying this data is heavily dependent on the PD test data that was 

initially used to train the network. Hence, in order to train a neural network it is first 

necessary to develop a ‘defect database’. The defect database will contain a library of 

defects, failure mechanisms and the corresponding signal patterns. Post training, the 

neural network will be capable of co-relating a PD pattern to corresponding defect. This 

forms the basis of an expert PD system. If the system comes across a PD signature 

which is entirely new, then it can be added to the database for future reference 

effectively making the system self-learning.  A block level representation of such a 

system is given in figure 9.4. 

 

This of course is a very simplistic view of an expert system and the development of a 

practical system on similar lines will need a significant amount of research and 

experimentation.   
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Figure 9.4  Block diagram of an  expert PD system  
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9.2    Remote Monitoring System 
 
Most often PD is monitored on a periodic basis as the insulation degradation is a slow 

process. Continuous monitoring systems are available on the market, but have not 

been popular, particularly in the North Sea Oil Industry, due to the occurrence of false 

alarms. False alarms usually occur when a random noise pulse crosses the threshold 

set by the user for detecting PD. More recently there has been a demand for systems 

capable of monitoring PD remotely. Remote monitoring of PD has several advantages: 

 

• The problem caused due to a false alarm can be effectively eliminated. If any of the 

detected pulses exceeds the set threshold, the remote monitoring system can send 

an alert message to a local host computer or to any computer connected via internet 

/ intranet. An expert can then log on to the remote monitoring unit through the same 

channel and view the PD data remotely and make an informed decision. 

 

• It can have a significant impact on the cost of maintenance. Presently, a trained 

personnel travels to the site along with a PD monitoring unit on a periodic basis. 

This involves substantial costs in travel for personnel, transport of equipment and 

the man-hours required to test every machine. These problems are particularly 

acute for the offshore industry where personnel travel costs are significant. If a 

remote monitoring system is available then the data collection and analysis can be 

done remotely on an onshore site; eliminating the need for the personnel to travel. 

 
• When the insulation degradation process starts to accelerate, it is required to reduce 

the monitoring intervals in order to establish the rate of degradation so that a 

corrective action can be planned. Remote monitoring can lead to efficient 

maintenance as the machine can be monitored as often as required without 

significant costs. 

 
Remote monitoring systems are now commercially available from a few manufacturers. 

The ICM® monitor by Power Diagnostix Systems GmbH and PD Check/Scope from 

Techimp systems are some examples of remote monitoring systems. A generalised 

scheme of a remote PD monitoring system is shown in figure 9.5. 

 

The PD data from each machine is recorded by individual data collectors at desired 

frequency intervals. The data collectors usually have basic signal processing and 

analysis capabilities. The data collectors are connected to a local server through a fibre 

optic TCP/IP plant intranet (LAN) system. The local server will have some form of PD 

management software that stores PD data from all machines and handle alarm flags if 
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any. A PD expert located anywhere in the world can connect through any remote 

computer to this local server via internet and access the PD data for detailed analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

9.3    Summary 
 
Any PD monitoring system should have software that is capable of providing options for 

noise filtering and displaying PD data in different forms that can aid in PD analysis. 

Some of the standard techniques used for PD data analysis like the ‘pulse height 

analysis’ and ‘phase resolved PD analysis’ have been discussed. An absolute 

measurement of PD is often considered unreliable due to various factors. The trending 

of PD data over a period of time provides a more robust analysis. Hence the software 

should be capable of storing historical PD in a systematic manner. 

 

Neural networks can be used for developing an expert PD system. Remote monitoring 

system provides several advantages over the conventional PD monitoring systems and 

these factors will have to be considered for future development. 
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Figure 9.5  Generalised scheme of a remote monitoring sy stem  
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CHAPTER 10: CONCLUSIONS AND FUTURE WORK 
 

10.1    Conclusions 
 
The research project described in this thesis is the result of work undertaken through 

the ‘Knowledge Transfer Program’ (KTP) scheme in association with ‘The Robert 

Gordon University’ as the academic partner and ‘Dowding & Mills’ as the company 

based partner. 

 

The on-line condition monitoring of rotating machines is given paramount importance, 

particularly in industries such as Oil and Gas where the financial implications of 

machine shut-down is very high. The project work was directed towards the on-line 

condition monitoring of high voltage rotating machines by detection of partial 

discharges. Monitoring of partial discharge activity in high voltage rotating machines is 

considered to be an important tool for maintaining the insulation health of the motor. 

 

The degradation of HV stator insulation occurs due to operating stresses that can be 

classified into mechanical, thermal, electrical and environmental. Chapter 2 outlines the 

cause and effect of each of these stresses and can lead to the generation of PDs. In a 

rotating machine different types of discharges can occur either in the slot region or in 

the endwinding region and each have their own characteristics. When a PD event 

occurs, it manifests itself in different forms i.e. heat, light, noise, electromagnetic pulse, 

current pulse, etc. Accordingly they can be detected using an appropriate PD sensor. 

The electrical detection of PD using Rogowski coils provides a completely non-intrusive 

method and was investigated in this work. 

  

Initially, a single channel prototype hardware was designed along with a basic software 

(using LabVIEW) for detecting and storing PD pulses from a single phase of a 

machine. The field-testing of this unit provided an opportunity to acquire real PD data in 

an industrial environment. PD data is often superimposed with noise from extraneous 

sources making it difficult to analyse the PD pattern. This was practically experienced 

during this visit. Two algorithms for filtering noise were developed as discussed in 

chapter 6. It was found that the ‘amplitude based’ filtering was not really suitable; 

however the frequency based filtering did show some encouraging results. 

 

In the next stage of prototype development a complete three channel data acquisition 

system was developed along with the associated software required to store PD data 

from all three channels. The performance of this system was benchmarked against the 
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existing StatorMonitor® system which is an already proven system in the industry; but 

the design is becoming obsolete. The performance of the new three channel system 

was found to be satisfactory.  

 

The software was further modified for acquiring PD data continuously for 50 cycles. 

This is necessary for the statistical processing of PD signals. As the data was sampled 

with a high sampling rate of 5 Ms/S, the resultant file size for a complete data set for 50 

cycles was very high and impracticable. A data compression technique was developed 

to reduce the file size while preserving the important PD data. 

 

The DAQ card used for the design was interfaced with a laptop computer using the 

PCMCIA bus which is now obsolete. A new DAQ program has been developed for use 

with USB DAQ cards. The program was also modified to make the PD storage format 

compatible to the existing StatorMonitor analysis software which will again help to 

benchmark the performance of the new system.   

 

Although the progress of the project was hampered due to the lack of high voltage test-

facilities, the opportunity for conducting practical site-test was considered 

advantageous. Albeit, arranging for site-tests was tedious and time consuming.   

       

During the course of this project, most efforts were concentrated on acquisition and 

storage of PD data rather than the actual analysis. However it was learnt through 

literature review and practical on-site experience that the interpretation of PD data is 

not a straightforward process. More often, a skilled personnel’s intervention is required 

for the interpretations of PD data. Developing software for PD analysis is considered as 

a challenging task due to the fact that the PD signals are erratic in nature and are 

dependent on multiple factors. A simple rule based analysis is not directly applicable 

for PD interpretation and most times is a call of judgement.  

 

The results obtained from all the experiments undertaken during this project have 

produced encouraging results. Most importantly, a hardware data acquisition platform 

for the detection of PD pulses has been successfully established which can now be 

developed further to improve its performance. Dowding & Mills is now considering 

building a high voltage test facility within its premises and this will provide a great boost 

for the future development of this project. 
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It is finally considered that a great deal of work is still required for the development of a 

commercially viable PD monitoring and detection system, in particular in the areas 

relating to software used for PD data analysis. 

 

10.2   Future Work 
 

The main objective of the work undertaken through this project was to develop a data 

acquisition system for PD detection in high voltage rotating machines and evaluate its 

feasibility. The site testing of the three channel system has demonstrated that the PD 

pulses can be effectively detected by using Rogowski coils and the associated signal 

conditioning circuitry. However, the ultimate objective would be to develop a complete 

system that is not only capable of acquiring PD pulses and displaying them but also 

capable of analysing the PD data and diagnosing the condition of high voltage stator 

insulation. This by no means is an easy task and will require a considerable amount of 

research work. 

 

It is a known fact that a high bandwidth system is not necessarily needed for the 

condition monitoring of rotating machines. As discussed in the section 4.3.3, a 

bandwidth of around 500KHz or less is known to be sufficient.  With a vast array of 

electronic modules readily available in the market, it is practically feasible to build the 

complete digitising electronics using readily available components. One such solution 

is presented in section 9.1.2. However, the signal conditioning unit still may need a 

customised design. 

 

10.2.1    Hardware Development 
 
The existing hardware design of the prototype system was constrained by the budget 

requirements for the project. Most of the electronics was developed using the available 

facilities by designing circuit boards with basic Dual-In-Line packaged (DIP) ICs 

(integrated circuits). Many modern ICs (like monolithic filters, amplifiers) are only 

available in surface mount packages. The use of surface mount devices will help in 

making the design more versatile and compact. In particular, the design of the amplifier 

can be improved by using a Voltage Gain controlled Amplifiers (VGA).      
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Immediate development 
 
The configuration of the existing amplifier design limits the number of gain settings 

achievable to ‘12’. However the use of VGAs will significantly enhance the number of 

possible gain settings providing a greater flexibility. Also if VGAs with digital gain 

control are used then the gain control accuracy may be improved as the gain control 

logic is implemented within the IC. 

   

A new system using VGA (AD600) is currently being developed. The AD600 is a dual 

channel VGA and each independent channel of AD600 provides a gain of 0dB to 

+40dB. The block diagram of this system is shown in figure 10.1. The gain of the VGA 

is varied by controlling the reference voltage and the scaling factor of AD600 is 

internally trimmed to 31.25mV/dB. The reference voltage is varied by means of a digital 

potentiometer (AD7376). The AD7376 is a 128 position digital potentiometer and the 

slider position is controlled by a microcontroller. A 2 volt precision reference is divided 

into 128 steps providing a resolution of 15.625mV/step i.e. 2 steps will change the 

reference voltage by 31.25mV.  Thus each independent channel of AD600 provides a 

gain of 0dB to +40dB in 64 different steps. With two channels cascaded together the 

maximum achievable gain will be +80dB with a variety of gain settings, thus making the 

system more flexible. The same design can be easily translated into a three channel 

system by simply replicating various blocks.  The use of digital potentiometers can be 

avoided if VGAs with digital gain control is used (e.g. LMP8100).  

 

The microcontroller also handles the user input interface. A 12-bit DAQ card can be 

considered for improving the amplitude resolution. 
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Figure 10.1 New design for signal conditioning unit  
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PXI system 
 
The PD detector is intended for use in industrial applications. Hence the design of the 

detector needs to be portable and robust to withstand the rigors of an industrial 

environment. The PXI system by National Instruments is one such possible solution. 

The PXI system is a configurable system available in a robust chassis and comes with 

an industrial computer (embedded controlled). This computer can be interfaced with 

various other DAQ modules through a high speed PXI bus that is capable of speeds up 

to 132 Mega bits per second (Mb/s). The PXI bus connections are located on the back 

plane of the chassis making it easy to slot-in various PXI modules that are readily 

available in the market. Figure 10.2 shows a picture of a basic PXI module with 8 slots 

for expansion.   The current estimated cost of such a system is given in table 10.1. An 

8-bit DAQ card with 4 simultaneous inputs and a sampling frequency of 3Ms/s is not 

available with a PXI interface. A better DAQ card with a resolution of 12-bit and a 

sampling frequency of 10Ms/s has been selected for the design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At a future stage the customised signal conditioning unit can be designed as a plug-in 

module with PXI bus compatibility and the embedded controller can be used to control 

all the gain settings along with other DAQ processes. 

 

Figure 10 .2 Standard 8 slot PXI chassis with controller  (131) 
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No. Model Description  Cost 
1 NI-PXI 8183 Embedded Controller £1,199 
2 N/A 15" Flat panel touch screen £1,149 
3 NI - PXI 6115 4 channel DAQ; 12 bit; 10 Ms/S £3,199 
4 NI- PXI 1031 4U PXI Chassis £779 
5 N/A Accessories £675 

    Total  £7,001 
 

Note: The pricing information shown in table 10.1 was obtained from the 

National instruments website www.ni.com on 15th May2010. 

 

10.2.2   Software Development 
  
The existing system displays the PD pulses in time domain like a traditional 

oscilloscope-type display. This type of display does provide some information regarding 

the phase position of the discharges. But it is difficult to determine the repetition rates 

of the highest discharges. A ‘pulse height distribution’ display (as described in chapter 

8) can be used to determine the repetition rates of various discharge amplitudes. 

 

The phase resolved PD pattern (‘φ-q-n’ pattern) provides vast amount of information 

like the predominance of PD pulses in +ve and –ve cycles, Skewness and Kutosis. The 

development of a software system capable of displaying phase resolved PD pattern will 

prove useful in PD data analysis. 

 

For permitting trend analysis, it is necessary to develop a database to store historical 

PD data of various machines in a systematic manner. A rudimentary database to store 

raw PD is currently under progress. 

 

Statistical analysis techniques still depend on the user’s expertise for PD analysis. But 

researchers have proposed techniques for an automated analysis of PD data (144, 145, 

146). The application of neural networks for pattern recognition is well known. Numerous 

studies have been published demonstrating the potential of neural networks for PD 

pattern recognition and analysis (147, 148, 149).  As demonstrated by Yang et.al. (150) the 

wavelet analysis is another technique that can be used for PD pattern recognition. 

These areas can be investigated further to achieve an automated analysis.  

 

Table 10.1 Estimate costing for PXI DAQ system  
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More recently there has been a demand for systems capable of monitoring PD 

remotely. The advantages of a remote monitoring system over the conventional 

periodic monitoring have been discussed in Chapter 8. However, implementation of a 

remote monitoring system demands a substantial investment in terms of having a fibre 

optic or Ethernet TCP/IP intranet system. Currently there are not many plants that have 

a fibre optic TCP/IP intranet system that is readily available throughout the plant. 

Secondly, each machine will need its own individual PD data collector unit installed. 

Due to these factors the commercial implementation of such a system is currently not a 

financially viable option. However, as time progresses, most industrial plants are bound 

to modernise and the cost of data acquisition systems will reduce, making remote 

monitoring an attractive practical solution. Hence including options for remote 

monitoring in the future PD system design should be strongly considered. 
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Appendix A-1  Comparison of various market availabl e discharge detectors 
 

Model Brand 
Type of monitoring Type of Equipment Sensor Type Connectivity Data Display Other Parameters 

Offline 
On-
line Cont. Periodic Motor Generator GIS Tx Cable SSC CC RC HFCT ACC Serial USB FO GPIB Ethernet Modem Mag. 2D 3D Inputs Alarm 

Analog 
O/P 

Analog 
I/P 

Stand 
Alone 

PC 
Based B/W 

PDA IV IRIS   �   �   �         �       � �     �   � �             �   

TGA-B IRIS   �   � � �         �       � �     �   � �             �   

TGA-S IRIS   �   �   �       �         � �     �   � �             �   

PD Trac IRIS   � �   � � � �     �       �   �   �   � �   3 � � � �     
Hydro 
Trac 

IRIS   � �     �         �       �   �   �   � �   12 � �  �     

Bus Trac IRIS   � �   � �         �       �   �   �   � �   9 � �   �     
Hydro 
Guard IRIS   � �   � �         �         �     �   � � � 24 � � � �     

Bus 
Guard IRIS   � �   � �         �         �     �   � � � 24 � � � �     

Turbo 
Guard 

IRIS   � �   � �       �           �     �   � � � 24 � � � �     

                                                                
PDA 
Premium ADWEL   �   � � �         �   �  � �          � � 6         � 150MHz 

STB ADWEL   � �   � �         �       �       �   � �   3 � � � �     

COPA ADWEL   � �   � �       �       �   �   �     � � 96 � � �   �   

PPM-97 ADWEL �     � � �       Uses ferrite probe                           �   10MHz 

                                                                
ICM 
system PDD   �  � � � � � �   �   �   �   � �   � � � � 8         � 2GHz 

ICM 
compact PDD   �  �     � � �   �   �   �         � � � �       � �   2GHz 

ICM 
monitor 

PDD   � �   � � � � �   �  �       �     � � � � 32 � � � �     

AIA 
monitor PDD   �  �     � � �         � �           � � �         �   2GHz 

TDA 
compact PDD �     �       � � Tan δ Analyser             �             �     

                                                                
HVS 
1000 
PDD/T 

M&B � �   � � � �       � � �               � �         �       

HVS 
2000 
DD/T 

M&B � �   � � � �       � � �   �          � �     �     �     

DDX 
9101 Others   �   �       �                     �   � �   1       �     

DDX 
9121 Others   �  �       �             �       �   � � � 6+         �   

                                                      
PD 
Solver TECHIMP  � �  � � � � �                � �   � �    �        1GHz 

PD Base TECHIMP   �  � � � � � �           �       �   � �    �       � 100MHz 
PD 
Monitor 

TECHIMP   �  � � � � � �           �       � � � �  9 �       �   

  Cont. - Continuous FO - Fiber optic               

  GIS - Gas Insulated Switchgear     Mag. - Magnitude (Qm / NQN / PD value)                

  Tx - Transformer      2D - Pulse height graph / PD against time                

  SSC - Stator slot coupler     3D - Phase resolved graph                  

  CC - Capacitive coupler     B/W - Bandwidth                   

  RC - Rogoeski coil      PDD - PD Diagnostix Systems GmbH                

  HFCT - High Frequency Current Transformer   M&B - M&B Systems Power Test Equipment               

  ACC - Acoustic sensor     Others - Hipotronics / Haefely / Robinson Instruments / Tettex instruments           
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Kirkton Avenue 
Pitmedden Road Ind.  Estate 
Dyce. ABERDEEN 
AB21 0BF 
Tel:  (44) (0)1224 427200 
Fax: (44) (0)1224 723560 
 

Appendix A-2  PDC-85 Rogowski coil datasheet 
 

ABF 

 

  
 
 

          

         
         

         

         

         

         

              

 

Rogowski Coil Data Sheet  

       
Part No. PDC - 85 

Protection Ex II 2 G EExe II T6 

Operating Temperature Range -20 to +60ºC 

Design Approval BAS00ATEX2051 

Standards BSEN(IEC) 60079-0, 7, 14 

Housing Material Aluminium 

Diameter O (outer) 159mm 

Dimension I (window) 85mm 

Dimension W (depth) 40mm 

Dimension L ( Cable Loop) 250mm (Max) 

Weight (inc. Cable) 2.3kg 

Protection Degree IP54 

Earthing 6mm External Connection 

Signal Cable RG59 GSWB/CSP Cover 

Standard Signal Cable Length 3M 

Signal Cable Gland E1XF M16 (Bicc473AA51) 

Maximum Current 1000A Primary 

Maximum Current 53.8ma Secondary 

Open Circuit Voltage 250mV 

Sensitivity 0.1mV/A 

System Operating Voltage > 4000v 

Energy Dissipation (Worst case) 295J (Short Circuit, 1sec) 

Terminating Impedance 50Ω 

CTI 800 
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Appendix A-3  Circuit diagrams for single channel s ystem 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

A-3.1 Input amplifier  
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4th Order High Pass Filter

A-3.2 4 th Order high –pass filter 
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A-3.4 Output amplifier  
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Appendix A-4  Circuit diagrams for three channel sy stem 

 

A-3.5 Reference Signal Circuit  

A-3.6 Ground connections  
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Input Amplifier

A-4.1 Input amplifier  
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Appendix A-5  LabVIEW program details 

 

Output Amplifier

A-4.2 Output  amplifier  
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A-5.1   Single channel DAQ program 
 

This program is used for acquiring PD data from a single channel along with the 

reference sine wave for a period of 1 cycle (i.e. 20 ms). The data is acquired with a 

sampling frequency of 5 Ms/S with a vertical resolution of 8-bits. The Pseudo code for 

the program is given below. 

 

Pseudo code 

 

‘Acquire’ state 

i. Configure the DAQ card with acquisition parameters like sampling frequency, no. 

of samples to be acquired, voltage range, etc. 

ii. Read the voltage input on both channels (i.e. reference channel and PD data 

channel). 

iii. Display the data from both channels on the graph. 

 

‘Write’ state 

i. Prompt user for a file path and name to store ‘reference signal data’. 

ii. Write the reference signal data to the selected location.  

iii. Prompt user input for a file path and name to store ‘PD phase data’. 

iv. Write the PD phase data to the selected location. 

 

‘Read’ state 

i. Prompt user to select a file to read the reference signal data. 

ii. Prompt user to select a file to read the PD phase data. 

iii. Read the data from selected files and display them on the same graph. 

 

‘Stop’ state 

i. Stop waiting for any user input and exit the program. 

 

The LabVIEW block diagram is shown in figure A-1. The program uses an ‘even 

structure’ to detect user input.  
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Figure A -1 LabVIEW block diagram - Single channel DAQ program  

‘Read’ State 

‘Write’ State 

‘Acquire’ State 
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A-5.2   Amplitude based filtering 
 

This program is used to filter-out any pulses whose amplitudes are beyond the user set 

threshold. The effectiveness of filtering process can be seen from the time-domain and 

frequency domain graphs provided. The pseudo code for this program is given below. 

The LabVIEW block diagram is shown in figure A-2. 

 

Pseudo code   

 

i. Prompt user to select a data file to read. 

ii. Read the file and display the original time-domain graph. 

iii. Calculate the Fast Fourier Transform (FFT) of the signal and display the frequency 

spectrum on the graph. 

iv. Strip the waveform array for analysis. 

v. Compare each element of the array with the set ‘+ve’ & ‘-ve’ threshold limits. If 

data is within limits then retain the original value else convert the value to ‘0’. 

vi. Build a new waveform array with the modified values. 

vii. Display the time-domain waveform on the graph. 

viii. Calculate FFT of the new waveform and display the frequency spectrum on graph 

for comparison. 

 

The original and filtered waveforms are plotted on separate graphs for comparison. 
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Figure A-2 LabVIEW block diagram for amplitude base d filtering technique 
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A-5.3   Frequency based filtering 
 

This program calculates the Fast Fourier Transformer of the signal to detect the various 

frequency components. The highest frequency component (and its harmonics) are 

thought to be external interference and are filtered out using a series of band-reject 

filters. The signal also undergoes band-pass filtering (30-300KHz) to eliminate any 

signals beyond the frequency of interest. The LabVIEW block diagram is shown in 

figure A-3. 

 

Pseudo code   

 

i. Prompt user to select a data file to read. 

ii. Read the file and display the original time-domain graph. 

iii. Calculate the Fast Fourier Transform (FFT) of the raw signal and display the 

frequency spectrum on the graph. 

iv. Implement Band-pass filtering (30-300KHz). 

v. Display the band-pass filtered signal in time-domain.  

vi. Calculate FFT of the filtered waveform and display the frequency spectrum on 

graph for comparison. 

vii. Implement a series of band-reject filters with a bandwidth of 2KHz (up to 7th 

harmonic). 

viii. Display the filtered waveform in time-domain.  

ix. Calculate FFT of the filtered waveform and display the frequency spectrum on 

graph for comparison. 

 

The original and filtered waveforms are plotted on separate graphs for comparison. 
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Figure A-3 LabVIEW block diagram for frequency base d filtering technique 
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A-5.4   Three phase DAQ program for continuous acqu isition 
 

This program is used for acquiring PD data from all three phases of a machine along 

with the reference sine wave for a period of 50 cycles (i.e. 1sec). The data is acquired 

with a sampling frequency of 5 Ms/S with a vertical resolution of 8-bits. The Pseudo 

code for the program is given below. 

 

Pseudo code 

 

‘Acquire’ state 

i. Configure both the DAQ cards with acquisition parameters like sampling 

frequency, no. of samples to be acquired, voltage range, etc. 

ii. Read the voltage input from all four channels for a period of 20ms and display the 

waveforms on the graphs. 

iii. Continuously keep acquiring and displaying the data (like an oscilloscope) until 

user presses any other button on the front panel.  

 

‘Write’ state 

i. Acquire data from all four channels for a period of 20 ms. 

ii. Prompt user to provide a file path and name to store reference signal data, 

followed by red, yellow and blue phase data in a chronological order. 

iii. Write data for 1 cycle for all four channels in the selected file. 

iv. Acquire the next set of PD data (for 20ms) on all four channels and append it to 

the respective files. Repeat the process 49 times to complete the data set of 50 

cycles. (The repeated acquisition takes place automatically and does not require 

any user input. The acquired cycles at not necessarily consecutive cycles). 

 

‘Read’ state 

i. Prompt user to select to select files to read in the chronological order of reference 

signal followed by red, yellow and blue phase data. 

ii. Read the data from selected files and display them on the graph. 

 

‘Stop’ state 

ii. Stop waiting for any user input and exit the program. 

 

The LabVIEW block diagram is shown in figure A-4.  
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Figure A-4 LabVIEW block diagram - Three phase cont inuous data acquisition 
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A-5.5   Data compression program 
 

The original raw data is acquired with a sampling resolution of 5 Ms/S resulting in very 

large file size. This program compresses the data by selecting the highest sample 

value in a window of 98 samples. The resultant array is reduced from 100,000 samples 

to 1024 samples for a period of 20 ms. The reduction factor of 98 is chosen in order to 

make the data compatible with the existing StatorMonitor® PD analysis software. The 

LabVIEW block diagram is shown in figure A-5. 

 

Pseudo code   

 

i. Prompt user to select a data file to read the reference signal. 

ii. Read the file and display the original waveform on the graph. 

iii. Convert all values from the waveform array to absolute values. 

iv. Divide the complete array into individual sub-arrays with 98 elements in each sub-

array. Obtain the index value of the highest element in each sub-array. 

v. Adjust the index values to address the highest values in the original array (i.e. add 

98 to second value, 196 to third value and so on). 

vi. Using the index value array, obtain the highest values in every 98 elements of the 

original array (data resolution reduced by 98 times). 

vii. Build a waveform array with the new 1024 elements and plot them on the graph. 

viii. Repeat steps i-vii for red phase, yellow phase and blue phase. 

 

The original and compressed waveforms are plotted on separate graphs for 

comparison. 
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Figure A-5 LabVIEW block diagram – Data compression  program 
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A-5.6   Three phase USB DAQ program 
 

This software is used to acquire PD data from all three phases of the machine using 

the NI-USB 5132 DAQ devices. The data is compressed and stored in a format that is 

compatible with the StatorMonitor PD analysis software. The software consists of a 

main VI program that calls other sub-VI programs during its execution. The hierarchal 

diagram of the main VI and sub-VI programs is shown in Figure A-6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main program (“DAQ_USB_3Ch_SM.vi”)  

 

The main program controls the complete execution of the DAQ process based on the 

user inputs. The program uses the ‘state machine architecture’ and uses the ‘event 

structure’ loop for detecting any user command. The program has four states i.e. 

‘Acquire’, ‘Save’, ‘Read’ and ‘Exit’. The ‘Acquire’ function continuously acquires and 

displays the data like an oscilloscope. The ‘Save’ function acquires and saves the PD 

data for 100 cycles. The ‘Read’ function reads the data from a file for 100 cycles and 

the ‘Exit’ function closes the program. The pseudo code for each of the states is given 

in the following sections.     

 

 

 

 

 

 
 

Main program (VI) 
“DAQ_USB_3Ch_SM.vi” 

Master DAQ 
configuration 

“Master_DAQ_config.vi” 

 

Slave DAQ configuration 
“Slave_DAQ_config.vi” 

 

Data compression 
“Compress.vi” 

 

Build waveform 
“Graph.vi” 

 

START PROGRAM 

 

EXIT PROGRAM 

Figure A -6 Software hierarchy diagram for USB DAQ  
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Pseudo code: 

 

‘Acquire’ state 

i. Configure all the data acquisition channels using ‘Master_DAQ_config.vi’ and 

‘Slave_DAQ_config.vi’. 

ii. Disable all user inputs except ‘Stop’ button. 

iii. Initiate acquisition and read the voltage input from all four channels for a period of 

20ms. 

iv. Convert the waveform array from each channel to numerical scalar array and 

compress the data using ‘Compression.vi’. 

v. Convert the numerical scalar array to waveform array using ‘Graphs.vi’ and display 

the compressed data on the graphs. 

vi. Continuously keep acquiring and displaying the data (like an oscilloscope) by 

repeating steps (iii – v) until user presses the ‘Stop’ button or an error occurs. 

vii. If user presses ‘Stop’ button, stop the acquisition process, enable all the user 

controls and wait for user command. 

 

The LabVIEW block diagram for ‘Acquire’ state is shown in figure A-7. 
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Figure A-7 LabVIEW block diagram – ‘Acquire’ state for three phase USB DAQ program 
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Pseudo code: 

 

‘Save’ state 

i. Reinitialise front panel controls to default values. Configure all the data acquisition 

channels using ‘Master_DAQ_config.vi’ and ‘Slave_DAQ_config.vi’. 

ii. Disable all user controls until 100 cycles of data is recorded into a file.  

iii. Initiate acquisition and read the voltage input from all four channels for a period of 

20ms. 

iv. Convert the waveform array from each channel to numerical scalar array and 

compress the data using ‘Compression.vi’. 

v. Write / append the numerical scalar data from all four channels to a single 2D 

array in a format compatible to StatorMonitor software. 

vi. Convert the numerical scalar array to waveform array using ‘Graphs.vi’ and display 

the compressed data on the graphs. 

vii. Continue the process (steps iii – vi) for 100 cycles; update ‘cycles’ variable for 

every iteration of the loop. 

viii. Prompt user to provide a file path and name to store the data in a file. 

ix. Write the data (100 cycles) from the 2D array to the designated file in a binary 

format (compatible to StatorMonitor system). 

x. On completing file-write, enable all the user controls and wait for user command. 

 

The LabVIEW block diagram for ‘Save’ state is shown in figure A-8. 
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Figure A-8 LabVIEW block diagram – ‘Save’ state for  three phase USB DAQ program 
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Pseudo code: 

 

‘Read’ state 

i. Prompt user to select a binary file to read and load the selected file in the memory. 

ii. Disable all user controls until complete data is read from a file.  

iii. Split the data into four different numerical arrays; each array containing data for 1 

channel for a period of 20ms (1 cycle). 

iv. Convert the numerical scalar array to waveform array using ‘Graphs.vi’ and display 

the data on the graphs. 

v. Continue the process (steps iii – iv) until all the 100 cycles of data are read from 

the file. 

vi. On completing data-read, enable all the user controls and wait for user command. 

 

The LabVIEW block diagram for ‘Read’ state is shown in figure A-9. 

 

 

‘Exit’ state 

i. Stop all process and exit LabVIEW. 

 

The code for this state is relatively simple and not given here for brevity. 
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Figure A-9 LabVIEW block diagram – ‘Read’ state for  three phase USB DAQ program 
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Master DAQ configuration (“Master_DAQ_config.vi”)  

 

The ‘PFI1’ lines on both DAQ are connected together for the purpose of 

synchronisation. The two USB DAQs are configured in a Master-Slave configuration 

and synchronized through PFI lines. Both the USB DAQs don’t start the data 

acquisition simultaneously and there is a small delay between the Master and the 

Slave.  A successful trigger on Channel ‘0’ of Master DAQ card initiates the acquisition 

on both its channels and also sends a trigger signal to the Slave through PFI line. The 

Slave initiates the acquisition on receiving a signal on its PFI line. There is a delay (2 

sample clock cycles) before the Slave starts to acquire the data. However, this delay is 

insignificant for the application.  

 

The LabVIEW block diagram for this program is shown in figure A-10.  The pseudo 

code is given below. 

 

Pseudo code: 

 

i. Create a new DAQ task for both the channels. 

ii. Configure vertical parameters - coupling and voltage range. 

iii. Configure sampling parameters – no. of samples, sampling frequency, etc. 

iv. Configure trigger parameters – trigger source, trigger level, delay, etc. 

v. Configure ‘PFI1’ as output channel to export trigger signal to slave device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slave DAQ configuration (“Slave_DAQ_config.vi”)  

Figure A -10 LabVIEW block diagram for Master_ DAQ_config.vi  
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The slave DAQ card is configured to start the acquisition process on both channels 

when it receives a trigger signal from the master DAQ card on the ‘PFI1’ line. The 

settings for the vertical and horizontal parameters for both the channels are same as 

that of the Master DAQ channels. As stated earlier there is a small delay (2 sample 

clock cycles) between the Master and Slave to start the data acquisition. The data is 

acquired with a sampling rate of 5Ms/s i.e. 100,000 samples/cycle. The data is further 

compressed by a factor of 98 (preserving the highest value in the dataset of 98) to 

convert the 100,000 samples/cycle to 1024 samples/cycle. In a worst case scenario, 

there only will be an error in the first compressed value of the 1024 samples. Again, 

this can only happen if the highest value in the first 98 samples were to occur in the 

first two samples. Hence the jitter is considered insignificant for the application.     

 

The LabVIEW block diagram for this program is shown in figure A-11.  The pseudo 

code is given below. 

 

Pseudo code: 

 

i. Create a new DAQ task for both the channels. 

ii. Configure vertical parameters - coupling and voltage range. 

iii. Configure sampling parameters – no. of samples, sampling frequency, etc. 

iv. Configure trigger parameters – trigger source, trigger level, delay, etc. The trigger 

source is set to ‘PFI1’ channel. 

 

 

Data Compression (“Compress.vi”)  

Figure A -11 LabVIEW block diagram for Slave_DAQ_config.vi  
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The ‘Compress.vi’ program is very similar to the data compression program described 

in Appendix A-5.5; hence is not repeated here. 

 

 

Graph display (“Graphs.vi”)  

 

When a waveform data array is converted to numerical scalar array, the amplitude 

information of the data is preserved but the timing information is lost. In order to display 

the numerical scalar array on a time base graph, it is necessary to have the timing 

information. This program adds the timing information to every sample in the scalar 

numerical array. The LabVIEW block diagram for this program is shown in figure A-12.  

The pseudo code is given below. 

 

Pseudo code: 

 

i. Read the amplitude value (y-axis) from the numerical scalar array. 

ii. Add the timing information (∆t) to each element in the array ( ∆t = 19.6uS in this 

case to display 1024 values over a period of 20 mS. 

iii. Output the waveform array with timing information added to every element. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 

Appendix A-6  Printed Circuit Board Details 

Figure A -12 LabVIEW block diagram – Graph.vi  
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A-6.1   Top Silk Layer of PCB 
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A-6.2   Top Copper Layer (component side) of PCB 
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A-6.3   Bottom Copper Layer (solder side) of PCB 
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