761 research outputs found

    Telerehabilitation Technologies: Accessibility and Usability

    Get PDF
    In the fields of telehealth and telemedicine, phone and/or video technologies are key to the successful provision of services such as remote monitoring and visits. How do these technologies affect service accessibility, effectiveness, quality, and usefulness when applied to rehabilitation services in the field of telerehabilitation? To answer this question, we provide a overview of the complex network of available technologies and discuss how they link to rehabilitation applications, services, and practices as well as to the telerehabilitation end-user.This white paper will first present the numerous professional considerations that shape the use of technology in rehabilitation service and set it somewhat apart from telemedicine. It will then provide an overview of concepts essential to usability analysis; present a summary of various telerehabilitation technologies and their strengths and limitations, and consider how the technologies interface with end users’ clinical needs for service accessibility, effectiveness, quality, and usefulness. The paper will highlight a conceptual framework (including task analyses and usability issues) that underlies a functional match between telerehabilitation technologies, clinical applications, and end-usercapabilities for telerehabilitation purposes. Finally, we will discuss pragmatic issues related to user integration of telerehabilitation technology versus traditional face-to-face approaches.Key Words: Remote, Technology, Usability, Accessibility, Decision Factors, Decision Support

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    The Role of Haptics in Games

    Get PDF

    Telerehabilitation Technologies: Accessibility and Usability

    Get PDF
    In the fields of telehealth and telemedicine, phone and/or video technologies are key to the successful provision of services such as remote monitoring and visits. How do these technologies affect service accessibility, effectiveness, quality, and usefulness when applied to rehabilitation services in the field of telerehabilitation? To answer this question, we provide a overview of the complex network of available technologies and discuss how they link to rehabilitation applications, services, and practices as well as to the telerehabilitation end-user. This white paper will first present the numerous professional considerations that shape the use of technology in telerehabilitation service and set it somewhat apart from telemedicine. It will then provide an overview of concepts essential to usability analysis; present a summary of various telerehabilitation technologies and their strengths and limitations, and consider how the technologies interface with end users’ clinical needs for service accessibility, effectiveness, quality, and usefulness. The paper will highlight a conceptual framework (including task analyses and usability issues) that underlies a functional match between telerehabilitation technologies, clinical applications, and end-user capabilities for telerehabilitation purposes. Finally, we will discuss pragmatic issues related to user integration of telerehabilitation technology versus traditional face-to-face approaches. Key Words: Remote, Technology, Usability, Accessibility, Decision Factors, Decision Suppor

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Telerehabilitation: State-of-the-Art from an Informatics Perspective

    Get PDF
    Abstract to follow --please check bac

    Telerehabilitation: State-of-the-Art from an Informatics Perspective

    Get PDF
    Rehabilitation service providers in rural or underserved areas are often challenged in meeting the needs of their complex patients due to limited resources in their geographical area. Recruitment and retention of the rural clinical workforce are beset by the ongoing problems associated with limited continuing education opportunities, professional isolation, and the challenges inherent to coordinating rural community healthcare. People with disabilities who live in rural communities also face challenges accessing healthcare. Traveling long distances to a specialty clinic for necessary expertise is troublesome due to inadequate or unavailable transportation, disability specific limitations, and financial limitations. Distance and lack of access are just two threats to quality of care that now being addressed by the use of videoconferencing, information exchange, and other telecommunication technologies that facilitate telerehabilitation. This white paper illustrates and summarizes clinical and vocational applications of telerehabilitation. We provide definitions related to the fields of telemedicine, telehealth, and telerehabilitation, and consider the impetus for telerehabilitation. We review the telerehabilitation literature for assistive technology applications, pressure ulcer prevention, virtual reality applications, speech-language pathology applications, seating and wheeled mobility applications, vocational rehabilitation applications, and cost-effectiveness. We then discuss external telerehabilitation influencers, such as the positions of professional organizations. Finally, we summarize clinical and policy issues in a limited context appropriate to the scope of this paper. Keywords: Telerehabilitation, Telehealth,Telemedicine, Telepractic

    Relaying the High-Frequency Contents of Tactile Feedback to Robotic Prosthesis Users: Design, Filtering, Implementation, and Validation

    Get PDF
    It is known that high-frequency tactile information conveys useful cues to discriminate important contact properties for manipulation, such as first contact and roughness. Despite this, no practical system, implementing a modality matching paradigm, has been developed so far to convey this information to users of upper-limb prostheses. The main obstacle to this implementation is the presence of unwanted vibrations generated by the artificial limb mechanics, which are not related to any haptic exploration task. In this letter, we describe the design of a digital system that can record accelerations from the fingers of an artificial hand and reproduce them on the user's skin through voice-coil actuators. Particular attention has been devoted to the design of the filter, needed to cancel all those vibrations measured by the sensors that do not convey information on meaningful contact events. The performance of the newly designed filter is also compared with the state of the art. Exploratory experiments with prosthesis users have identified some applications where this kind of feedback could lead to sensory-motor performance enhancement. Results show that the proposed system improves the perception of object-salient features such as first-contact events, roughness, and shape
    • …
    corecore