2,234 research outputs found

    Integrated Java Bytecode Verification

    Get PDF
    AbstractExisting Java verifiers perform an iterative data-flow analysis to discover the unambiguous type of values stored on the stack or in registers. Our novel verification algorithm uses abstract interpretation to obtain definition/use information for each register and stack location in the program, which in turn is used to transform the program into Static Single Assignment form. In SSA, verification is reduced to simple type compatibility checking between the definition type of each SSA variable and the type of each of its uses. Inter-adjacent transitions of a value through stack and registers are no longer verified explicitly. This integrated approach is more efficient than traditional bytecode verification but still as safe as strict verification, as overall program correctness can be induced once the data flow from each definition to all associated uses is known to be type-safe

    Verification of Java Bytecode using Analysis and Transformation of Logic Programs

    Full text link
    State of the art analyzers in the Logic Programming (LP) paradigm are nowadays mature and sophisticated. They allow inferring a wide variety of global properties including termination, bounds on resource consumption, etc. The aim of this work is to automatically transfer the power of such analysis tools for LP to the analysis and verification of Java bytecode (JVML). In order to achieve our goal, we rely on well-known techniques for meta-programming and program specialization. More precisely, we propose to partially evaluate a JVML interpreter implemented in LP together with (an LP representation of) a JVML program and then analyze the residual program. Interestingly, at least for the examples we have studied, our approach produces very simple LP representations of the original JVML programs. This can be seen as a decompilation from JVML to high-level LP source. By reasoning about such residual programs, we can automatically prove in the CiaoPP system some non-trivial properties of JVML programs such as termination, run-time error freeness and infer bounds on its resource consumption. We are not aware of any other system which is able to verify such advanced properties of Java bytecode

    Sawja: Static Analysis Workshop for Java

    Get PDF
    Static analysis is a powerful technique for automatic verification of programs but raises major engineering challenges when developing a full-fledged analyzer for a realistic language such as Java. This paper describes the Sawja library: a static analysis framework fully compliant with Java 6 which provides OCaml modules for efficiently manipulating Java bytecode programs. We present the main features of the library, including (i) efficient functional data-structures for representing program with implicit sharing and lazy parsing, (ii) an intermediate stack-less representation, and (iii) fast computation and manipulation of complete programs

    A Model-Derivation Framework for Software Analysis

    Full text link
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    A Model-Derivation Framework for Software Analysis

    Get PDF
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Jumble Java Byte Code to Measure the Effectiveness of Unit Tests

    Get PDF
    Jumble is a byte code level mutation testing tool for Java which inter-operates with JUnit. It has been designed to operate in an industrial setting with large projects. Heuristics have been included to speed the checking of mutations, for example, noting which test fails for each mutation and running this first in subsequent mutation checks. Significant effort has been put into ensuring that it can test code which uses custom class loading and reflection. This requires careful attention to class path handling and coexistence with foreign class-loaders. Jumble is currently used on a continuous basis within an agile programming environment with approximately 370,000 lines of Java code under source control. This checks out project code every fifteen minutes and runs an incremental set of unit tests and mutation tests for modified classes. Jumble is being made available as open source

    Enforcing Secure Object Initialization in Java

    Get PDF
    Sun and the CERT recommend for secure Java development to not allow partially initialized objects to be accessed. The CERT considers the severity of the risks taken by not following this recommendation as high. The solution currently used to enforce object initialization is to implement a coding pattern proposed by Sun, which is not formally checked. We propose a modular type system to formally specify the initialization policy of libraries or programs and a type checker to statically check at load time that all loaded classes respect the policy. This allows to prove the absence of bugs which have allowed some famous privilege escalations in Java. Our experimental results show that our safe default policy allows to prove 91% of classes of java.lang, java.security and javax.security safe without any annotation and by adding 57 simple annotations we proved all classes but four safe. The type system and its soundness theorem have been formalized and machine checked using Coq

    Test Case Generation for Object-Oriented Imperative Languages in CLP

    Full text link
    Testing is a vital part of the software development process. Test Case Generation (TCG) is the process of automatically generating a collection of test cases which are applied to a system under test. White-box TCG is usually performed by means of symbolic execution, i.e., instead of executing the program on normal values (e.g., numbers), the program is executed on symbolic values representing arbitrary values. When dealing with an object-oriented (OO) imperative language, symbolic execution becomes challenging as, among other things, it must be able to backtrack, complex heap-allocated data structures should be created during the TCG process and features like inheritance, virtual invocations and exceptions have to be taken into account. Due to its inherent symbolic execution mechanism, we pursue in this paper that Constraint Logic Programming (CLP) has a promising unexploited application field in TCG. We will support our claim by developing a fully CLP-based framework to TCG of an OO imperative language, and by assessing it on a corresponding implementation on a set of challenging Java programs. A unique characteristic of our approach is that it handles all language features using only CLP and without the need of developing specific constraint operators (e.g., to model the heap)

    Inferring Energy Bounds via Static Program Analysis and Evolutionary Modeling of Basic Blocks

    Full text link
    The ever increasing number and complexity of energy-bound devices (such as the ones used in Internet of Things applications, smart phones, and mission critical systems) pose an important challenge on techniques to optimize their energy consumption and to verify that they will perform their function within the available energy budget. In this work we address this challenge from the software point of view and propose a novel parametric approach to estimating tight bounds on the energy consumed by program executions that are practical for their application to energy verification and optimization. Our approach divides a program into basic (branchless) blocks and estimates the maximal and minimal energy consumption for each block using an evolutionary algorithm. Then it combines the obtained values according to the program control flow, using static analysis, to infer functions that give both upper and lower bounds on the energy consumption of the whole program and its procedures as functions on input data sizes. We have tested our approach on (C-like) embedded programs running on the XMOS hardware platform. However, our method is general enough to be applied to other microprocessor architectures and programming languages. The bounds obtained by our prototype implementation can be tight while remaining on the safe side of budgets in practice, as shown by our experimental evaluation.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854). Improved version of the one presented at the HIP3ES 2016 workshop (v1): more experimental results (added benchmark to Table 1, added figure for new benchmark, added Table 3), improved Fig. 1, added Fig.
    • 

    corecore