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Abstract

Existing Java verifiers perform an iterative data-flow analysis to discover the unambiguous
type of values stored on the stack or in registers. Our novel verification algorithm uses ab-
stract interpretation to obtain definition/use information for each register and stack location
in the program, which in turn is used to transform the program into Static Single Assign-
ment form. In SSA, verification is reduced to simple type compatibility checking between
the definition type of each SSA variable and the type of each of its uses. Inter-adjacent
transitions of a value through stack and registers are no longer verified explicitly. This in-
tegrated approach is more efficient than traditional bytecode verification but still as safe as
strict verification, as overall program correctness can be induced once the data flow from
each definition to all associated uses is known to be type-safe.
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1 Introduction

Mobile programs can be malicious. A host that receives such mobile programs from
an untrusted party or via an untrusted network connection will want a guarantee that
the mobile code is not about to cause any damage. To this end, the Java Virtual Ma-
chine (JVM) pioneered the concept ofcode verification, by which a receiving host
examines each arriving mobile program to rule out potentially malicious behav-
ior even before starting execution. This analysis is necessary since the locations of
temporary variables in the JVM are not statically typed. If verification is successful,
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then theoriginal bytecode is forwarded to the JVM’s execution component, which
may be an interpreter or a just-in-time compiler. Specifically, beyond the result de-
noting whether or not verification was successful, all other information computed
by the verifier is discarded and is not passed onwards. In many cases, this results in
a duplication of work when a just-in-time compiler subsequently performs a very
similar data-flow analysis all over again.

In this paper, we give a brief overview of an alternative verification mechanism
that avoids such duplication of work. Instead of verifying Java Virtual Machine
Language (JVML) bytecode directly, we annotate it in such a way that the flow of
values between instructions becomes explicit rather than going through the operand
stack and then transform the annotated bytecode into Static Single Assignment
(SSA) form [3].

Verifying programs in SSA significantly reduces the number of points in the
program that have to be type-checked, because only producers and consumers of
values are verified. Inter-adjacent transitions of a value through stack and registers
are no longer verified explicitly. This integrated approach is more efficient than
traditional bytecode verification but still as safe as strict verification, as overall
program correctness can be induced once the data flow from each definition to all
associated uses is known to be type-safe.

Our benchmarks indicate that the aggregate time required for transforming
JVML into SSA and verifying the program in this representation is still less than the
time needed for performing the standard verification algorithm directly on JVML.
Our approach imposes no overhead for methods that will be interpreted without
JIT compilation, because SSA-based verification is still overall faster than the tra-
ditional verifier.

The remainder of this paper is organized as follows: Section2 gives a brief
overview of the traditional Java bytecode verifier and introduces SSA-based verifi-
cation. Section3 compares the performance of our method to that of Sun’s standard
verifier. Section4 discusses related work and Section5 contains our conclusion and
points to future work.

2 Verification in Static Single Assignment Form

This section introduces a subset of JVML, briefly describes traditional Java byte-
code verification, and discusses the abstraction used in our approach as well as our
novel verification method.

2.1 JVMLS

Figure1 shows the grammar for JVMLS , a subset of JVML which we use here for
illustration purposes. We split the instruction set incore instructions anddata-flow
instructions. Core instructions operate on values stored on the operand stack, while
data-flow instructions only facilitate the flow of values between core instructions by
manipulating the state of the operand stack and exchanging values between operand
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instruction::= core|dataflow

core::= iconst n | lconst l | iadd | ladd | ifeq L | return

dataflow::= pop |dup |dup 2 | istore x | iload x | lstore x | lload x

Fig. 1. Instructions in JVMLS . The argumentsn, l, x, andL must fulfill the conditions
−1 ≤ n ≤ 5, l ∈ {0, 1}, x, L ∈ N.

stack and variables.
Values are produced by core instructions and can be consumed by other core

instructions. During the lifetime of a value it can reside on the operand stack or in
variables and in multiple locations at the same time. Data-flow instructions neither
produce nor consume values, they merely transport values between stack locations
and variables.2

2.2 Java Bytecode Verification

JVML instructions can read and store intermediate values in two locations: the
operand stack and local variables. These locations are ad-hoc polymorphic in that
the same stack location or local variable can hold values of different types during
program execution. Verification ensures that these locations are used consistently
and intermediate values are always read back with the same types that they were
originally written as.

Verification also ensures control-flow safety, but this is a comparatively trivial
task. Conversely, verifying that the data flow iswell-typedis rather complex. The
JVM bytecode verifier [12,25] uses iterative data-flow analysis and an abstract in-
terpreter for JVML instructions. Unlike JVM, the stack cells and local variables of
the abstract interpreter storetypes, rather thanvalues. From the perspective of the
verifier, JVM instructions are operations that execute on types.

JVML verification works at the method level. With a co-inductive argument it
follows that if every method is verifiable, the whole program is verifiable, too. In
the rest of this paper, we use program and method interchangeably.

The central responsibility of the Java bytecode verifier is to check that stack
locations and local variables are used in a type-safe manner. This is the case if the
definitions and uses of values have compatible types. To ensure this, the verifier
algorithm has to determine the types of all stack locations and variables for each
instruction.

2.3 Abstractions

In JVML, there is no obvious link between the definition of a value and its uses.
However, even if definition-use chains were available for each value in a JVML
program, it would still be impossible to verify a Java program in a single pass by

2 Even though it consumes a value, thepop instruction is a data-flow instruction, since it merely
manipulates the stack such that the topmost value can no longer be used.
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comparing the type of each definition with its uses. The reason for this becomes
more obvious if we consider how we categorized the instructions of JVMLS . Only
core instructions define and use values.Data-flowinstructions merely facilitate the
flow of values between core instructions. For Core instructions the expected types
of any consumed operands and the types of any produced values are always known
statically. In contrast, data-flow instructions are polymorphic. In general, it is not
possible to determine the type of the value produced by a data-flow instruction
without knowing the type of its operands. The result type of adup instruction, for
example, depends on the type of the value on top of the stack.

While local variable access instructions such asiload x suggest stronger
static typing, this works for scalar types only. In the JVM, object references are
written and read from local variables usingastore x andaload x, and data-
flow analysis is still necessary to determine the precise type of the variables ac-
cessed.

The rationale of our approach is to replace the stack and local variables by a
register file, and to redefine the dynamic semantics of instructions to actually work
on these registers. This replacement allows us to transform the stack based code
into SSA and to perform type checking only between the definitions of values and
their actual uses. We abstract each instruction in a program to a tuple consisting
of the depth of the stack before that instruction is executed, a mapping from stack
cells and local variables to the instructions that define them, the set of stack cells
and local variables the instruction reads and writes, as well as a map from stack
cells to the values that reside in them. The main contribution of these components
is to allow the dynamic semantics to work on a register file and to enable the trans-
formation of the code into SSAbeforeverification.

2.4 Algorithm

The goal of our approach is to avoid an up-front iterative data-flow analysis to verify
JVML. Instead, the JVML code is annotated so that the flow of values between core
instructions becomes explicit instead of relying on an operand stack. This enables
us to eliminate all data-flow instructions from the code after SSA construction.
These instructions are no longer needed because they only facilitate data flow, but
do not actually compute anything. Once the code consists of core instructions only
and is in SSA form, it is possible to perform type-safety checks by directly relating
the type of each definition with the corresponding uses (definition-use verification).

For a small example program, the result of the annotation step is shown in Fig-
ure2. Each instruction is annotated with the current stack depth before the instruc-
tion is executed. Using these annotations and the dynamic semantics of JVMLS ,
instructions no longer depend on the stack to connect operands to their definitions.
Values on the stack are labeled relative to their distance to the bottom of the stack.
The value produced by aniconst instruction executed on a previously empty
stack, for example, would be labeled with0, because it is currently at the bottom of
the stack. This labeling permits to resolve stack references without actually main-
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taining a stack data structure. Aniconst instruction annotated withsd = 0, for
example, always writes its result to stack cell0. In unannotated JVML the stack
cells receiving the produced value would depend on the state of the dynamic stack
at that point in the program.

Following the JVML machine model we split long integers into two halves.
Thus, instructions operating on long integers push and pop pairs of values onto and
from the operand stack. Correspondingly, for each definition of a long integer two
values are defined, one for the bottom half (typeLONG), and one for the top half
(typeLONG’).

After the annotation phase, our verification algorithm first computes the Itera-
tive Dominance Frontier (IDF) [20] for all definitions of values, that is values writ-
ten into stack cells or local variables. Each reachable instruction in the program is
visited in dominator-tree order and all references of core instructions to stack cells
and local variables are resolved to SSA-names. Data-flow instructions do neither
produce nor consume any values and are eliminated through copy propagation.

After transformation into SSA and copy-propagation, we can perform the actual
type-checking. Similar to type inference performed by the traditional verifier, the
type ofφ-nodes is the common supertype of each definition theφ-node refers to (φ
operands), while regular core instructions always define a value with a distinct type.
These can be matched to their respective uses in a single sweep over the program
in linear time.

Type-checking is performed lazily in the sense that only the minimal number of
instructions is checked to ensure overall type-safety while for dataflow instructions
only the proper data flow is guaranteed. Considering only the dynamic seman-
tics, the data flow verified is obviously equivalent to the data flow that would have
resulted by interpreting the original JVML program. However, since data-flow in-
structions have been eliminated, some of the restrictions enforced by their static
semantics do no longer apply. The following JVML program, for example, will be

PC Instruction StackDepth Stack Vars

0 1 2 3 4 5 0 1

1 lconst 0 0 L L’

2 lconst 1 2 L L’ L L’

3 iconst 1 4 L L’ L L’ I

4 ifeq L 5 L L’ L L’

5 dup 2 4 L L’ L L’ L L’

6 ladd 6 L L’ L L’

7 L: ladd 4 L L’

8 lstore 0 2 L L’

Fig. 2. An example program, and the abstraction for stack and variable states. Each in-
struction is labeled with the stack depth prior to the execution of that particular instruction.
L stands forLONG, L’ for LONG’, and I for INT .
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rejected by the Java verifier, but is valid in our SSA-based dialect:

1: lconst 0
2: istore 1
3: iload 1
4: lstore 2

In this example, in Line 1 a long integer is pushed onto the stack as a pair of halves
(LONG, LONG′). Partially storing the long integer in an integer register (Line 2) is
rejected by the traditional verifier. In contrast, since our verifier does not consider
the typing rules of data-flow instructions, it accepts this code fragment, because
the (LONG, LONG′) pair pushed in Line 1 is restored on the stack before it is used
in Line 4. It is important to note that this program, while rejected by the JVM, is
perfectly safe when executed.

Due to space limitations, we are unable to elaborate on how to verify excep-
tions, arrays, and object initialization and refer to our technical report [7] instead.

3 Benchmarks

To evaluate the performance of our SSA-based verifier, we have implemented a
prototype verifier based on the algorithm presented in this paper. Our prototype
inlines subroutines before verification. In order to arrive at a fair comparison with
Java’s standard verifier, we use the same modified Java code with inlined subrou-
tines also for the JVML verification benchmarks. Our rationale behind this is that
the subroutine construct in Java is obsolete and will probably be removed in future
versions of the Java virtual machine. Furthermore, our current algorithm depends
on the fact that the control-flow graph can be recovered quickly from JVML code.
In the presence of subroutines, this is not always the case as returning edges from
subroutines are not explicit.

As a comparative benchmark, we compare the total runtime of our SSA-based
verifier to the runtime of Sun’s DFA-based verifier. In both cases, we use the pre-
verify tool shipped as part of Sun’s KVM [24] to inline all subroutine calls before
measuring the actual verification times. Both verifiers are implemented in C and

# of method size stack depth local variables

methods ø max ø max ø max

java/* 6490 41.36 4065 2.74 14 2.47 37

java/io 1213 38.12 1295 2.39 8 2.35 15

java/lang 1336 38.41 4065 2.32 10 2.17 37

java/math 405 72.67 3041 3.16 8 3.73 29

java/nio 2096 26.80 417 3.05 11 2.31 15

java/util 2359 49.21 2916 2.64 14 2.62 25

Fig. 3. Characteristics of the test set we used to compare the runtime of our SSA-based
verifier with the runtime of the traditional verifier.
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use the same underlying framework to read and represent Java class files.
To eliminate any cache effects and to compensate for timing errors, both veri-

fiers are run one hundred times on each method from the test set. There currently is
no established set of benchmarks to test the performance of verifiers. Benchmark
suites such as SPECjvm [19] are designed to evaluate the performance of code exe-
cution,not code verification. Thus, we have decided to use various parts of the Java
Runtime Libraries (JDK 1.4.2) as a test set. Figure3 list some characteristics of
the used classes. All measurements were conducted on a Pentium4 2.53GHz CPU
with 512MB of RAM, running under RedHat Linux 9.

Figure4 compares the total runtime of the traditional DFA-based verifier with
our SSA-based verifier. Verification in SSA-form is approximately 15% faster than
the traditional algorithm when comparing the total runtime. Not considering the
time spent to calculate the dominator relation and the dominance frontier, SSA-
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based verification is approximately 45% faster. The total number of instructions
that has to be type-checked in the case of SSA-based verification is roughly 38%
less than for the traditional verifier. The only noteworthy exception isjava/math,
which actually requires slightly more instructions to be type-checked in SSA form.
This is caused by our treatment of theLONGandDOUBLEtypes, which we split in
two halves while the traditional verifier can treat them in a single step.

4 Related Work

In addition to the informal description of the JVM [12], a number of formal specifi-
cations of the JVML and its verifier have been proposed [6,11,21]. In this context,
subroutines are of particular interest and several type systems have been proposed
for them [15,16,22]. All these approaches have in common that they rely on some
form of iterative data-flow analysis [11,17] to decide type-safety.

Proof-carrying code(PCC) [14] addresses this problem by relieving the code
consumer of the burden to verify the code. Instead, the code producer computes
and proves a verification condition. The code consumer recomputes the verification
condition and checks whether the attached proof is valid. PCC can even be used
to prove safety properties of machine code. SSA-based verification, in contrast,
is limited to mobile code formats such as Java, but has the advantage that it only
requires the actual code as input, and no additional information such as proofs.

The split verifier approach [23], based on the idea of Lightweight Bytecode
Verification [18], applies the PCC idea to Java bytecode. Apreverifierannotates
the JVML with the fixed-point of the data-flow analysis otherwise performed by
the JVM during class loading. For annotated class files the verification is reduced
to confirming that the annotation is indeed a valid fixed-point. Just as in the case
of Necula’s PCC, the annotations enlarge the overall size of class files, while our
approach does not rely on any additional annotation.

Similar to the split verifier, the verifier for Java smart cards [10] reduces the
burden on the verifier through offline bytecode transformation. A preprocessor
tool ensures that the Java stack is empty after every branch instruction and that all
registers are mono-typed. In contrast to our approach, the Java smart card verifier
fails for Java class files which have not been processed this way.

Inherently safe mobile code representation formats such as SafeTSA [1] elim-
inate the need for verification as mobile code is stored in a self-consistent format
that cannot represent anything but well-formed and well-typed programs. Just like
PCC, such formats have a systematic advantage over SSA-based verification, but
require abandoning the existing Java class file format, which is not always accept-
able. Our approach and SafeTSA have in common that they both make the code
available to the JIT in SSA-form, which can be used to speed up code generation.

SSA-based representations have been used in several approaches to compilation
of bytecode. Marmot [4] is a research platform for studying the implementation of
high-level programming languages. The main difference to our work is that Mar-
mot only accepts verifiable programs. This property of the input program allows
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to make certain assumptions on properties of the code, e.g. about the types of lo-
cal variables and stack entries. Similar to our work, Marmot inlines subroutines to
avoid complex encoding as normal control flow similar to Freund [5].

As Kelsey and Appel have observed [2,8], there is a close relation between
SSA form and functional programming. Therefore, the work of League et al. [9] is
directly related to our work.λJVM, a functional representation of Java bytecode,
makes data flow explicit, just like our work. They also split verification up in two
phases, one during the construction ofλJVM code, and a simple type checking
later. However, they initially perform a regular data-flow analysis to infer types
for the stack and local variables at each program point. This is in contrast to our
approach, were the reason for splitting the verification in two phases is exactly to
avoid the initial data-flow analysis.

5 Conclusions and Future Work

Existing JVML verifiers perform substantial data-flow analysis but do not preserve
the results of this analysis for subsequent code generation and optimization phases.
We have presented an alternative verifier that not only is faster than the standard
Java verifier, but that additionally computes the Dominator Tree and brings the pro-
gram into Static Single Assignment form. As a result, the respective computations
need not be repeated in subsequent stages of the dynamic compilation pipeline.
Since our algorithm has an overall lower cost than traditional Java bytecode ver-
ification, this essentially makes an SSA representation available “for free” to the
virtual machine, reducing the cost for JIT compilation.

In the larger context of verifiable mobile code, our results indicate that verifi-
cation should not be practiced in isolation “up front”, but integrated with the rest
of the client-side mobile code pipeline. Hence, we expect our approach to be ap-
plicable to other mobile-code systems besides the JVM, such as Microsoft’s .NET
platform [13].

Our work is also relevant for all existing JVM implementations which already
use SSA internally for code optimization. If a VM already has means to translate
code into SSA, having an “up front” data flow based verifier is simply redundant.
We have shown that it is possible to delay type checking and to first transform the
program into SSA. In fact, our algorithm is the first documented approach to safely
translate Java code into SSA without any prior data-flow analysis and verification.

In the future, we plan to examine how subroutines could be supported in our
framework. While subroutines are rapidly disappearing from JVML, they are still
interesting from an academic perspective. They reinforce the question whether and
how an SSA-based representation can be obtained for polymorphic code in which
not all control-flow edges are explicit.

We are also interested in exploringstructuralSSA-annotation of JVML code.
For this, JVML code is rearranged in such a way that a specific structure-aware
SSA-based verifier can infer the final SSA-form of the code without actually cal-
culating the Dominator Tree and Iterative Dominance Frontiers. As the code is still
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expressed in pure JVML, it is fully backward compatible with existing VMs and
does not require any additional annotations. While the rearranged code is likely to
be less compact than its original form, this scheme will further reduce the required
verification effort.
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