69 research outputs found

    Integrated CPU and Network-I/O QoS Management in an Endsystem

    Full text link

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002

    Get PDF
    The advent of open and widely adopted standards such as Common Object Request Broker Architecture (CORBA) [47] has simplified and standardized the development of distributed applications. For applications with real-time constraints, including avionics, manufacturing, and defense systems, these standards are evolving to include Quality-of-Service (QoS) specifications. Operating systems such as Real-time Linux [60] have responded with interfaces and algorithms to guarantee real-time response; similarly, languages such as Real-time Java [59] include mechanisms for specifying real-time properties for threads. However, the middleware upon which large distributed applications are based has not yet addressed end-to-end guarantees of QoS specifications. Unless this challenge can be met, developers must resort to ad hoc solutions that may not scale or migrate well among different platforms. This thesis provides two contributions to the study of real-time Distributed Object Computing (DOC) middleware. First, it identifies potential bottlenecks and problems with respect to guaranteeing real-time performance in contemporary middleware. Experimental results illustrate how these problems lead to incorrect real-time behavior in contemporary middleware platforms. Second, this thesis presents designs and techniques for providing real-time QoS guarantees in DOC middleware in the context of TAO [6], an open-source and widely adopted implementation of real-time CORBA. Architectural solutions presented here are coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the problems, forces, solutions, and consequences are presented in terms of patterns and frame-works, so that solutions obtained for TAO can be appropriately applied to other real-time systems

    Multimedia resources: An information model and its application to an MPEG2 video codec

    Get PDF
    Still today, diagnosing a problem with multimedia resources, such as video and sound cards, is insufficiently automated. These resources therefore cannot be accurately managed. One reason for this is the lack of their thorough modeling. In this paper, we fulfill this need, by proposing a generic information model, which we further apply to an MPEG2 video codec. We highlight the main characteristics of this kind of codec, identify parameters that influence these characteristics, and reveal some of the trade-offs that the application developer can consider in order to design efficient software for MPEG2 codecs. In addition to the benefits of this modeling for the user and the application developer, we also show how useful it could be for the providers of distribution services, such as live video transmission. These providers can use our model to achieve resource management on an end-to-end basis

    Task allocation in distributed multimedia systems based on the host-satellite model

    Get PDF
    Multimedia applications require intermediate processing between media sources and sinks. In addition to end-user machines intermediate computers can be used for performing media processing. This possibility leads to the problem of allocating processing components on various computers. In this paper, we study this problem in the context of star-shaped application graphs which have to be allocated between given end-user machines (satellites) and a central computer (host). The problem is formulated in terms of best achievable bottleneck resource usage. Several approaches are considered including anapproximate scheme and two fast-heuristics. Performance measurements show the efficiency of the considered approaches. A discussion of our approach shows important differences to solutions provided for related problems of graph partitioning and mapping

    Composing Systemic Aspects into Component-Oriented DOC Middleware

    Get PDF
    The advent and maturation of component-based middleware frameworks have sim-plified the development of large-scale distributed applications by separating system devel-opment and configuration concerns into different aspects that can be specified and com-posed at various stages of the application development lifecycle. Conventional component middleware technologies, such as J2EE [73] and .NET [34], were designed to meet the quality of service (QoS) requirements of enterprise applications, which focus largely on scalability and reliability. Therefore, conventional component middleware specifications and implementations are not well suited for distributed real-time and embedded (DRE) ap-plications with more stringent QoS requirements, such as low latency/jitter, timeliness, and online fault recovery. In the DRE system development community, a new generation of enhanced commercial off-the-shelf (COTS) middleware, such as Real-time CORBA 1.0 (RT-CORBA)[39], is increasingly gaining acceptance as (1) the cost and time required to develop and verify DRE applications precludes developers from implementing complex DRE applications from scratch and (2) implementations of standard COTS middleware specifications mature and encompass key QoS properties needed by DRE systems. However, although COTS middleware standardizes mechanisms to configure and control underlying OS support for an application’s QoS requirements, it does not yet provide sufficient abstractions to separate QoS policy configurations such as real-time performance requirements, from application functionality. Developers are therefore forced to configure QoS policies in an ad hoc way, and the code to configure these policies is often scattered throughout and tangled with other parts of a DRE system. As a result, it is hard for developers to configure, validate, modify, and evolve complex DRE systems consistently. It is therefore necessary to create a new generation of QoS-enabled component middleware that provides more comprehensive support for addressing QoS-related concerns modularly, so that they can be introduced and configured as separate systemic aspects. By analyzing and identifying the limitations of applying conventional middleware technologies for DRE applications, this dissertation presents a new design and its associated techniques for enhancing conventional component-oriented middleware to provide programmability of DRE relevant real-time QoS concerns. This design is realized in an implementation of the standard CORBA Component Model (CCM) [38], called the Component-Integrated ACE ORB (CIAO). This dissertation also presents both architectural analysis and empirical results that demonstrate the effectiveness of this approach. This dissertation provides three contributions to the state of the art in composing systemic behaviors into component middleware frameworks. First, it illustrates how component middleware can simplify development and evolution of DRE applications while ensuring stringent QoS requirements by composing systemic QoS aspects. Second, it contributes to the design and implementation of QoS-enabled CCM by analyzing and documenting how systemic behaviors can be composed into component middleware. Finally, it presents empirical and analytical results to demonstrate the effectiveness and the advantage of composing systemic behaviors in component middleware. The work in this dissertation has a broader impact beyond the CCM in which it was developed, as it can be applied to other component-base middleware technologies which wish to support DRE applications

    Klausurtagung des Instituts für Telematik. Mainz 29.-31. März 1998

    Get PDF
    Der Bericht gibt einen Überblick über aktuelle Forschungsarbeiten des Instituts für Telematik der Universität Karlsruhe in den Bereichen Hochleistungskommunikation, verteilte Systeme, Cooperation&Management und Telekooperation. Er ist in zwei Teile gegliedert. Der erste beschreibt die persönlichen Interessensgebiete der wissenschaftlichen Mitarbeiter. Danach folgt eine Darstellung der Kooperationsprojekte des Instituts. Im Anhang finden sich aktuelle Eigenveröffentlichungen der Mitarbeiter des Instituts. Der Tagungsband entstand im Rahmen der siebten Klausurtagung des Instituts für Telematik, die vom 29. bis zum 31. März 1998 in Mainz abgehalten wurde

    User Plane Hardware Acceleration in Access Networks: Experiences in Offloading Network Functions in Real 5G Deployments

    Get PDF
    Fulfilling the ambitious Quality of Service demands of today’s wireless networks, especially low latency, high bandwidths and availability, is a big challenge for researchers, network architects, and operators. Each networking component on the data path between the user equipment and the destination data network, e.g., the Internet, must provide the highest performance to meet these requirements. This work demonstrates how different network elements of the user plane, describing the whole path of user traffic, can be sped up with different hardware acceleration technologies. For that, we demonstrate how to build up a 5G standalone campus network for evaluation, working end-to-end with real user equipment and open-source software components. Further, we analyze the user-plane network functions of 5G networks from the radio access network to the core. Based on our real 5G setup, the practical evaluation of the analysis results shows up how the 5G user-plane hardware can be accelerated best

    Netzwerkmanagement und Hochgeschwindigkeits- Kommunikation. Teil XVIII. Seminar SS 98

    Get PDF
    Der vorliegende Interne Bericht enthält die Beiträge zum Seminar "Netzwerk-Management und Hochgeschwindigkeits-Kommunikation", das im Sommersemester 1998 zum achtzehnten Mal stattgefunden hat. Die Themenauswahl kann grob in folgende 3 Blöcke gegliedert werden: 1. Der erste Block ist Fragen der effizienten Kommunikation mittels ATM (Asynchronous Transfer Mode) gewidmet. Dabei stehen Vorschläge für eine Verbesserung der Handhabung von Gruppenkommunikation sowie Verfahren für sogenannte parallele Pfade im Vordergrund. Ein weiterer Beitrag in diesem Block erläutert ein integriertes Modell zur benutzergerechten Unterstützung der Dienstgüte in ATM-Netzen. Weiterhin wird eine Technik vorgestellt, um IP-basierte Kommunikation mittels ATM-Switching effizienter zu gestalten. 2. Ein zweiter Block behandelt Verfahren zur Unterstützung der Dienstgüte im IP basierten Internet. Ein Ansatz beschäftigt sich mit der Problematik, dienstgü- teunterstützende Mechanismen auch im LAN-Bereich zur Verfügung zu stellen. Ein weiterer Ansatz definiert Konzepte, um eine möglichst einfach und schnell zu realisierende Unterstützung von Diensten mit unterschiedlicher Charakteristiken zu erreichen. 3. Der dritte Block umfasst den Themenbereich Sicherheit im Internet. Es werden mehrere Protokolle vorgestellt und verglichen, die zur Schlüsselverwaltung in der IP-Sicherheitsarchitektur dienen

    A HyperNet Architecture

    Get PDF
    Network virtualization is becoming a fundamental building block of future Internet architectures. By adding networking resources into the “cloud”, it is possible for users to rent virtual routers from the underlying network infrastructure, connect them with virtual channels to form a virtual network, and tailor the virtual network (e.g., load application-specific networking protocols, libraries and software stacks on to the virtual routers) to carry out a specific task. In addition, network virtualization technology allows such special-purpose virtual networks to co-exist on the same set of network infrastructure without interfering with each other. Although the underlying network resources needed to support virtualized networks are rapidly becoming available, constructing a virtual network from the ground up and using the network is a challenging and labor-intensive task, one best left to experts. To tackle this problem, we introduce the concept of a HyperNet, a pre-built, pre-configured network package that a user can easily deploy or access a virtual network to carry out a specific task (e.g., multicast video conferencing). HyperNets package together the network topology configuration, software, and network services needed to create and deploy a custom virtual network. Users download HyperNets from HyperNet repositories and then “run” them on virtualized network infrastructure much like users download and run virtual appliances on a virtual machine. To support the HyperNet abstraction, we created a Network Hypervisor service that provides a set of APIs that can be called to create a virtual network with certain characteristics. To evaluate the HyperNet architecture, we implemented several example Hyper-Nets and ran them on our prototype implementation of the Network Hypervisor. Our experiments show that the Hypervisor API can be used to compose almost any special-purpose network – networks capable of carrying out functions that the current Internet does not provide. Moreover, the design of our HyperNet architecture is highly extensible, enabling developers to write high-level libraries (using the Network Hypervisor APIs) to achieve complicated tasks
    corecore