
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2004-23

2004-05-03

Composing Systemic Aspects into Component-Oriented DOC Composing Systemic Aspects into Component-Oriented DOC

Middleware Middleware

Nanbor Wang

The advent and maturation of component-based middleware frameworks have sim-plified the

development of large-scale distributed applications by separating system devel-opment and

configuration concerns into different aspects that can be specified and com-posed at various

stages of the application development lifecycle. Conventional component middleware

technologies, such as J2EE [73] and .NET [34], were designed to meet the quality of service

(QoS) requirements of enterprise applications, which focus largely on scalability and reliability.

Therefore, conventional component middleware specifications and implementations are not

well suited for distributed real-time and embedded (DRE) ap-plications with more stringent QoS

requirements, such as low latency/jitter, timeliness,... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Wang, Nanbor, "Composing Systemic Aspects into Component-Oriented DOC Middleware" Report
Number: WUCSE-2004-23 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/996

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233235099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/996?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/996

Composing Systemic Aspects into Component-Oriented DOC Middleware Composing Systemic Aspects into Component-Oriented DOC Middleware

Nanbor Wang

Complete Abstract: Complete Abstract:

The advent and maturation of component-based middleware frameworks have sim-plified the
development of large-scale distributed applications by separating system devel-opment and configuration
concerns into different aspects that can be specified and com-posed at various stages of the application
development lifecycle. Conventional component middleware technologies, such as J2EE [73] and .NET
[34], were designed to meet the quality of service (QoS) requirements of enterprise applications, which
focus largely on scalability and reliability. Therefore, conventional component middleware specifications
and implementations are not well suited for distributed real-time and embedded (DRE) ap-plications with
more stringent QoS requirements, such as low latency/jitter, timeliness, and online fault recovery. In the
DRE system development community, a new generation of enhanced commercial off-the-shelf (COTS)
middleware, such as Real-time CORBA 1.0 (RT-CORBA)[39], is increasingly gaining acceptance as (1) the
cost and time required to develop and verify DRE applications precludes developers from implementing
complex DRE applications from scratch and (2) implementations of standard COTS middleware
specifications mature and encompass key QoS properties needed by DRE systems. However, although
COTS middleware standardizes mechanisms to configure and control underlying OS support for an
application’s QoS requirements, it does not yet provide sufficient abstractions to separate QoS policy
configurations such as real-time performance requirements, from application functionality. Developers
are therefore forced to configure QoS policies in an ad hoc way, and the code to configure these policies
is often scattered throughout and tangled with other parts of a DRE system. As a result, it is hard for
developers to configure, validate, modify, and evolve complex DRE systems consistently. It is therefore
necessary to create a new generation of QoS-enabled component middleware that provides more
comprehensive support for addressing QoS-related concerns modularly, so that they can be introduced
and configured as separate systemic aspects. By analyzing and identifying the limitations of applying
conventional middleware technologies for DRE applications, this dissertation presents a new design and
its associated techniques for enhancing conventional component-oriented middleware to provide
programmability of DRE relevant real-time QoS concerns. This design is realized in an implementation of
the standard CORBA Component Model (CCM) [38], called the Component-Integrated ACE ORB (CIAO).
This dissertation also presents both architectural analysis and empirical results that demonstrate the
effectiveness of this approach. This dissertation provides three contributions to the state of the art in
composing systemic behaviors into component middleware frameworks. First, it illustrates how
component middleware can simplify development and evolution of DRE applications while ensuring
stringent QoS requirements by composing systemic QoS aspects. Second, it contributes to the design
and implementation of QoS-enabled CCM by analyzing and documenting how systemic behaviors can be
composed into component middleware. Finally, it presents empirical and analytical results to
demonstrate the effectiveness and the advantage of composing systemic behaviors in component
middleware. The work in this dissertation has a broader impact beyond the CCM in which it was
developed, as it can be applied to other component-base middleware technologies which wish to support
DRE applications.

https://openscholarship.wustl.edu/cse_research/996?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/996?utm_source=openscholarship.wustl.edu%2Fcse_research%2F996&utm_medium=PDF&utm_campaign=PDFCoverPages

Short Title: Component Middleware Aspects Wang, D.Sc. 2004

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPOSING SYSTEMIC ASPECTS INTO

COMPONENT-ORIENTED DOC MIDDLEWARE

by

Nanbor Wang

Prepared under the direction of Dr. Christopher D. Gill and Dr. Douglas C. Schmidt

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

May, 2004

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

COMPOSING SYSTEMIC ASPECTS INTO

COMPONENT-ORIENTED DOC MIDDLEWARE

by Nanbor Wang

ADVISORS: Dr. Christopher D. Gill and Dr. Douglas C. Schmidt

May, 2004

Saint Louis, Missouri

The advent and maturation of component-based middleware frameworks have sim-

plified the development of large-scale distributed applications by separating system devel-

opment and configuration concerns into different aspects that can be specified and com-

posed at various stages of the application development lifecycle. Conventional component

middleware technologies, such as J2EE [73] and .NET [34], were designed to meet the

quality of service (QoS) requirements of enterprise applications, which focus largely on

scalability and reliability. Therefore, conventional component middleware specifications

and implementations are not well suited for distributed real-time and embedded (DRE) ap-

plications with more stringent QoS requirements, such as low latency/jitter, timeliness, and

online fault recovery.

In the DRE system development community, a new generation of enhanced com-

mercial off-the-shelf (COTS) middleware, such as Real-time CORBA 1.0

(RT-CORBA)[39], is increasingly gaining acceptance as (1) the cost and time required

to develop and verify DRE applications precludes developers from implementing com-

plex DRE applications from scratch and (2) implementations of standard COTS middle-

ware specifications mature and encompass key QoS properties needed by DRE systems.

However, although COTS middleware standardizes mechanisms to configure and control

underlying OS support for an application’s QoS requirements, it does not yet provide suf-

ficient abstractions to separate QoS policy configurations such as real-time performance

requirements, from application functionality. Developers are therefore forced to configure

QoS policies in an ad hoc way, and the code to configure these policies is often scattered

throughout and tangled with other parts of a DRE system. As a result, it is hard for devel-

opers to configure, validate, modify, and evolve complex DRE systems consistently.

It is therefore necessary to create a new generation of QoS-enabled component mid-

dleware that provides more comprehensive support for addressing QoS-related concerns

modularly, so that they can be introduced and configured as separate systemic aspects. By

analyzing and identifying the limitations of applying conventional middleware technologies

for DRE applications, this dissertation presents a new design and its associated techniques

for enhancing conventional component-oriented middleware to provide programmability

of DRE relevant real-time QoS concerns. This design is realized in an implementation

of the standard CORBA Component Model (CCM) [38], called the Component-Integrated

ACE ORB (CIAO). This dissertation also presents both architectural analysis and empirical

results that demonstrate the effectiveness of this approach.

This dissertation provides three contributions to the state of the art in composing

systemic behaviors into component middleware frameworks. First, it illustrates how com-

ponent middleware can simplify development and evolution of DRE applications while

ensuring stringent QoS requirements by composing systemic QoS aspects. Second, it con-

tributes to the design and implementation of QoS-enabled CCM by analyzing and docu-

menting how systemic behaviors can be composed into component middleware. Finally, it

presents empirical and analytical results to demonstrate the effectiveness and the advantage

of composing systemic behaviors in component middleware. The work in this dissertation

has a broader impact beyond the CCM in which it was developed, as it can be applied to

other component-base middleware technologies which wish to support DRE applications.

copyright by

Nanbor Wang

2004

To Pam,

my dear wife and my best friend,

for everything we share together,

in good times and in bad times.

Contents

List of Tables . ix

List of Figures . x

Acknowledgments . xiii

1 Introduction . 1

1.1 Motivation . 1

1.2 Design and Implementation Challenges 4

1.3 Research Contributions . 5

1.4 Dissertation Organization . 8

2 Survey of Related Work . 9

2.1 Aspect-oriented Programming . 10

2.2 QoS-enabled Middleware . 11

2.3 Other QoS-enabled Component Middleware 12

2.4 Standardization Efforts . 13

3 Overview of the CORBA Component Model 15

3.1 Motivation for Component Models . 15

3.1.1 Limitations of Conventional Middleware 17

3.1.2 Addressing the Limitations of Conventional Middleware 20

3.2 Major CCM Building Blocks . 22

3.2.1 Development Roles . 23

3.2.2 Generic Runtime Support in CCM – Component Servers and Con-

tainers . 23

3.2.3 Components and Homes . 25

3.2.4 Component Implementation . 27

vi

3.2.5 Composing Components into Applications 30

3.2.6 Packaging and Deployment . 32

3.2.7 CCM Development Lifecycle . 33

3.2.8 Status of CCM Development . 34

4 Composing Systemic Aspects in CIAO . 36

4.1 Limitations of Conventional Component Middleware 37

4.2 Real-time Aspects . 40

4.3 Addressing CCM Limitations - Extending Support for Real-Time Aspects

in CIAO . 46

4.4 Composing Real-time Behaviors into CIAO Applications 47

4.4.1 Challenge 1 – Granularity in Policy-based Configuration Mechanisms 47

4.4.2 Challenge 2 – Exploiting Composition Phases in CIAO 50

4.4.3 Solution – Identifying Points for Extending Metadata in CIAO . . . 54

4.4.4 Composing Real-time Aspects with CORBA, CCM and CIAO . . . 55

5 CIAO Implementation . 61

5.1 Overview of CIAO . 62

5.2 Core Libraries and Component Implementation in

CIAO . 63

5.3 CIAO Run-time and Deployment Tools 66

5.4 Significant CIAO Design Features . 71

5.4.1 Separation of a Component Implementation Into Multiple Libraries 71

5.4.2 Separation of Logical and Physical Configurations 74

5.4.3 ACEXML and XML-based Service Configuration 77

5.5 CIAO’s Real-time Extensions . 79

6 Empirical Studies . 85

6.1 Experimental Platform . 86

6.2 Overhead Comparisons . 86

6.2.1 Performance Comparison for Functional Aspects 87

6.2.2 Performance Comparison for Real-time Aspects 90

6.2.3 Footprint Comparisons . 93

6.3 Validating Effectiveness in Configuring Real-Time Aspects 99

6.3.1 Validating CIAO’s Real-time Extensions 99

6.3.2 Exploiting Configuration Phases 108

vii

6.4 Summary, Observations and Recommendations 113

7 Conclusions and Future Research . 116

7.1 Lessons Learned . 118

7.2 Future Research . 118

References . 122

Vita . 131

viii

List of Tables

1.1 Challenges and Solution Techniques Presented in This Research 6

4.1 Limitations of Conventional Component Middleware’s Support for QoS

Aspects . 40

4.2 Stages for Specifying Real-time Policies and Resources 54

6.1 Storage Required for Server-side and Client-side Common Libraries 94

6.2 Storage Required for Server and Client Executables 94

6.3 Storage Required for CIAO Common Run-time Support Libraries 95

6.4 Storage Required for Benchmark Client and Server Components in CIAO . 95

6.5 Storage Required for Deploying Benchmark Client and Server Components

in CIAO . 96

6.6 Total Secondary Storage and Memory Required for Benchmark Client and

Server Using Either TAO and CIAO . 96

6.7 Storage Required for Additional Server-side and Client-side Real-time Li-

braries . 96

6.8 Storage Required for Deploying Real-time Benchmark Client and Server

Components in CIAO . 97

6.9 Total Secondary Storage and Memory Required for Benchmark Real-time

Client and Server Using TAO and CIAO 98

6.10 Constants for Workload and Rate Relationship 111

ix

List of Figures

2.1 Taxonomy of QoS Provisioning Enabling Mechanisms 10

3.1 A Conventional DOC Middleware – CORBA 2.x Architecture 18

3.2 Application Development Lifecycle of CORBA – An Example Conven-

tional Object Middleware . 19

3.3 Overview of the CCM Development Lifecycle 22

3.4 Overview of the CCM Run-time Architecture 24

3.5 Client View of CCM Components . 27

3.6 Servant and Context Code Generated by CIDL Compiler 29

3.7 Flow of CIDL and IDL Generated Files 30

3.8 Overview of the CCM Development Lifecycle 33

4.1 A Typical Avionics System . 38

4.2 Characteristics of Military Systems of Systems 39

4.3 Key Features of RT-CORBA . 44

4.4 Granularities for Applying Real-time CORBA Policies and Resources . . . 48

4.5 Policy Override in CORBA’s Policy Management 49

4.6 CCM Development Lifecycle . 51

4.7 A Prototypical CORBA DRE Application Scenario 56

4.8 A Prototypical CCM DRE Application Scenario 57

4.9 Extended CCM DRE Application Scenario 59

4.10 Extended CIAO DRE Application Scenario 60

5.1 Major CIAO Building Blocks . 62

5.2 Dependencies Among CIAO’s Core Libraries 64

5.3 Interactions Between Servant Glue Code, Executors, and Component Spe-

cific Context . 65

5.4 Interactions Between CIAO Deployment Tools 68

x

5.5 Interactions Between Various CIAO Deployment Tools 70

5.6 Implementing CIAO Component Libraries 73

5.7 CIDL Hooks for Integrating systemic Aspects 74

5.8 Steps CIAO Takes to Determine the Location and Configuration of a Com-

ponent Server . 77

6.1 Test-bed Configuration . 86

6.2 Interface Definition for Performance Tests 88

6.3 Throughput Comparison between TAO and CIAO 89

6.4 Latency Comparison between TAO and CIAO 90

6.5 Complete Latency Distributions for TAO and CIAO in µsec 91

6.6 Throughput Comparison between Real-Time Enabled TAO and CIAO . . . 91

6.7 Latency Comparison between Real-Time Enabled TAO and CIAO 92

6.8 Complete Latency Distributions for Real-time TAO and CIAO in µsec . . . 93

6.9 Comparison of Disk Space Required for TAO and CIAO in Bytes 97

6.10 Comparison of Disk Space Required for Real-time Enabled TAO and CIAO

in Bytes . 98

6.11 Basic CIAO RT Experiment Design . 100

6.12 Experiment Design for Workload vs. Rate 101

6.13 Relationship between Workload and Invocation Rate 102

6.14 Experiment Design for Workload vs. Rate 103

6.15 Achievable Rates vs. Workload . 104

6.16 Experiment Design for Multi-rate Test With (a) “Increase Rate, Increase

Priority” Behavior, and (b) “Increase-rate, Decrease Priority” Behavior . . . 105

6.17 Achievable Rates vs. Workload When Using “Increase Rate, Increase Pri-

ority” Real-time Behavior . 106

6.18 Achievable Rates vs. Workload When Using “Increase Rate, Decrease Pri-

ority” Real-time Behavior . 107

6.19 Experiment Design for Multi-rate Test With “Increase Rate, Decrease Pri-

ority” Behavior Using Shared Thread Pool With Lanes 108

6.20 Achievable Rates vs. Workload When Using “Increase Rate, Increase Pri-

ority” Real-time Behavior with Threadpool with Lanes 109

6.21 Achievable Rates vs. Workload When Using “Increase Rate, Decrease Pri-

ority” Real-time Behavior with Threadpool with Lanes 110

xi

6.22 Achievable Rates of the Worker Component vs. Workload for Different

Hardware Configurations . 111

6.23 Application with Possibly Variable Rates 112

xii

Acknowledgments

The journey has turned out to be not only an intellectual adventure but also a period of great
personal growth and an opportunity to rediscover oneself. Every soul that has crossed my
path taught me something in every aspect of life for which I am grateful for. However, this
dissertation could not have been completed without the help, support, encouragement and
friendship of many people.

First, I would like to express my gratitude to my mentors and advisors. Dr. Dou-
glas C. Schmidt has made this all possible for bringing me to the DOC Group and for his
continued support throughout my stay in the DOC Group. He has been heavily participating
in the work and research leading to this dissertation, even when he ventured out to Irvine,
D.C., and finally, Nashville while working on host of other things. Dr. Ron K. Cytron
has been very supportive and offered many challenging questions which I appreciate a lot.
Dr. Christopher D. Gill has been of tremendous assistance by lending a helping hand when
I needed the most, in my final stage of completing the dissertation. His encouragements
and numerous discussions have guided this dissertation greatly. He also chaired my final
defense committee.

I am grateful to my dissertation defense committee, Dr. Christopher D. Gill,
Dr. Douglas C. Schmidt, Dr. Ron K. Cytron, Mr. David C. Sharp, Dr. Roger D. Cham-
berlain, and Dr. Ronald S. Indeck, for their time and efforts spent reviewing, commenting
on, and making suggestions for improvement to this dissertation. I also want to express my
gratitude to Dr. John R. Cary and Dr. Svetlana G. Shasharina of Tech-X Corporation for
their confidence in me and their support for me to finish up this dissertation. I am similarly
indebted to my many mentors who have helped guiding my research and my growth both in
knowledge and character, Dr. Richard Schantz, Dr. Joseph P. Loyall, Dr. Joseph K. Cross,
Mr. David C. Sharp, Dr. David L. Levine, Dr. Ebrahim Moshiri, Craig Rodrigues, Gautam
H. Thaker, Dennis D. Noll, and Wendy Roll.

Support for this research was provided by NASA under cooperative agreement
NCC3-777. Support for this research was also provided by the DARPA PCES program
under contracts F33615-00-C-3048 and F33615-03-C-4111.

xiii

I could not have done the work without the help of many people in various aspects
of the development of CIAO, specifically, Jeff Parsons for lots of help in IDL and CIDL de-
velopment, Boris Kolpakov for his work on the CIDL compiler, Andrey Nechypurenko for
contributing a GUI component which is indispensable for demonstrating CIAO, Craig Ro-
drigues for his many discussions, critiques and suggestions, Dr. Irfan Pyarali for his help
on RT-CORBA, Arvind S. Krishna for developing the benchmarking tests, and also Carol
L. Sanders for her help in testing the pre-alpha release and her many suggestions.

I am indebted to my friends for their support and encouragement. They are Dar-
rell E. Brunsch, Angelo Corsaro, Jeff Parsons, Balachandran Natarajan, Yamuna Krish-
namurthy, and, Dr. Irfan Pyarali. I am grateful for past and present DOC Group mem-
bers, for their the friendship and collaboration which make my work and study in the DOC
Group a joy, including Venkita Subramonian, Huang-Ming Huang, Dr. Aniruddha Gokhale,
Michael Kircher, Kirthika Parameswaran, Dr. Carlos O’Ryan, Pradeep Gore, Sharath Chol-
leti, Ossama Othman, Tao Lu, Marina Spivak, Jaiganesh Balasubramanian, Mayur Desh-
pande, Vishal Kachroo, Chris Cleeland, Shawn Hannan, Luther Baker, Joe Hoffert, and
Krishnakumar Balasubramanian.

I can not express my gratitude enough to my parents, T.H. and H.J. Wang, for their
unconditional love, support and encouragement. Similarly, to my big sister and her hus-
band, Dr. James and Kay Han, and our friends, Heng-Hsin and Hwei-Wen Liao, for their
love and support. Last, but not least, to my beloved wife, Pam, if not for your endless
patience, love, and support, I could not have finished this challenge.

Nanbor Wang

Washington University in Saint Louis
May 2004

xiv

1

Chapter 1

Introduction

1.1 Motivation

Commercial-off-the-shelf (COTS) middleware technologies, such as The Object Manage-

ment Group (OMG)’s Common Object Request Broker Architecture (CORBA) [40], Sun’s

Java RMI [86], and Microsoft’s COM+ [35], have matured considerably in recent years.

They are being used to reduce the time and effort required to develop applications in a

broad range of information technology (IT) domains. Historically, these middleware tech-

nologies have been applied to enterprise applications [20] such as online catalog and reser-

vation systems, bank asset management systems, and management planning systems. Re-

cently, however, more and more applications from different domains are beginning to take

advantage of COTS middleware.

All applications depend at least implicitly on the behavior of underlying platforms,

including software and hardware, on which they run. COTS middleware helps simplify

software development by abstracting and standardizing common runtime behaviors within

middleware frameworks. As is the case for operating systems, in order to apply a middle-

ware framework to as many application domains as possible middleware standards try to

standardize only the behaviors that are common denominators of all applicable domains.

This abstraction of common behaviors simplifies application development and allow devel-

opers to design software modules and their interactions easily via well-defined interfaces.

Regardless of the domain in which middleware is applied, however, its goal is to

help expedite the overall software process by (1) making it easier to integrate parts to-

gether and (2) shielding developers from many complexities, such as platform and lan-

guage heterogeneity, resource management, and access control. Applications from differ-

ent domains, however, often also have domain-specific behavioral requirements, e.g., most

2

web commerce applications require security features such as user certificates and message

encryption. To extend the applicability of COTS middleware, it is necessary to address

domain-specific requirements when they are needed. Although these behavioral require-

ments are vital for the correctness of applications, they are often hard to capture in an ap-

plication’s functional logic or interface definitions, as they often crosscut multiple software

layers and thus require some degree of control over all software modules involved.

This dissertation will use the term “systemic aspects” to denote these requirements.

Because of the difficulty in offering an abstraction for the management of systemic aspects,

conventional COTS middleware has only gone as far as to standardize the interfaces for

manipulating these behaviors, and leaves the logic for managing these aspects to the appli-

cation developers. Distributed Real-time and Embedded (DRE) applications, for example,

have distinctly different requirements on systemic aspects than conventional desktop or

back office applications in that the right answer delivered too late can become the wrong

answer, i.e., failure to meet key Quality of Service (QoS) requirements can lead to catas-

trophic consequences. In order for the benefits of COTS middleware to be realized fully by

DRE applications, domain-specific extensions must be added to middleware standards to

give developers appropriate control over middleware frameworks, to satisfy stringent QoS

requirements such as predictability, latency, efficiency, scalability, dependability, and secu-

rity. Because DRE related interfaces reside in the same abstraction layer as the application

interfaces, they tend to entangle with the application logic everywhere.

Component middleware [75] is a class of middleware that enables reusable services

to be composed, configured, and installed to create applications rapidly and robustly. In

particular, component middleware offers application developers the following reusable ca-

pabilities:

• Connector mechanisms between components, such as remote method invocations and

message passing

• Horizontal infrastructure services, such as request brokers, and

• Vertical models of domain concepts, such as common semantics for higher-level

reusable component services ranging from transaction support to multi-level secu-

rity.

These abstractions allow application developers to separate systemic aspects from the ap-

plication components, into first-class entities defined in the component middleware stan-

dards. Examples of COTS component middleware include the CORBA Component Model

3

(CCM) [38], Java 2 Enterprise Edition (J2EE) [73], and the Component Object Model

(COM) [5], each of which uses different interfaces, protocols, and component models.

DRE applications, such as industrial controllers for surface-mount hardware pick-

and-place machines [76] or total ship computing environments [63], have stringent indi-

vidual QoS requirements, each of which must be satisfied simultaneously. Examples of

such QoS systemic requirements include bounded response latency and jitter which re-

quire allocating various resources, such as processing resource or network bandwidth, to

ensure these QoS requirements can be met. Failure to meet these QoS requirements, e.g., a

missed deadline, often leads to serious consequences even if an application may still log-

ically function properly. Conventional component middleware technologies, however, are

designed largely for applications with business-oriented QoS requirements, such as data

persistence, confidentiality, and transactional support.

The supporting run-time environments in conventional component middleware,

therefore, do not support the kind of QoS required by DRE applications. DRE devel-

opers will need to embed code to allocate and manage DRE-related QoS and resources

into component implementations if they wish to take advantage of conventional compo-

nent middleware technologies. Programming QoS management and allocation explicitly in

conventional component implementations is not sufficient as

1. embedding QoS management code hampers the reusability of component implemen-

tations,

2. QoS requirements often require end-to-end enforcement and collaboration of all in-

teraction component implementations where they have no prior knowledge about

other components’ specific QoS requirements, and

3. QoS resources often are shared by multiple component implementations with com-

patible QoS requirements and therefore are not appropriate to be allocated in a com-

ponent implementation.

Moreover, implementing the QoS provisioning logic into component implementations re-

introduces problems of tightly coupled and hard to reuse implementations that component

middleware tried to solve.

It is not suitable to apply conventional component middleware directly to other ap-

plication domains such as DRE applications. Rather, component middleware needs to be

4

extended to make DRE-related QoS requirements an integral part of the middleware frame-

work. Necessary extensions include supporting both mechanisms for managing the re-

sources for added QoS requirements and the application composition descriptions to spec-

ify the required QoS requirements and the resources for supporting them. The goal of

this dissertation is to extend the applicability of component middleware, using the CORBA

Component Model as the basis framework and DRE application domain as the target do-

main, by composing systemic aspects into DRE applications.

1.2 Design and Implementation Challenges

To ensure that DRE applications can achieve their QoS requirements, various kinds of QoS

provisioning must be performed to allocate and manage computing and communication

resources throughout a distributed system. QoS provisioning can be performed in two

main ways:

• Statically, where adequate resources required to support a particular degree of QoS

are pre-configured into an application. Examples of static QoS provisioning include

task and communication bandwidth reservations.

• Dynamically, where the resources required are determined and adjusted based on

the runtime system status. Examples of dynamic QoS provisioning include dynamic

adjustment of video quality to adapt to available network bandwidth and reallocation

of CPU cycles to ensure completion of critical tasks at run time.

QoS provisioning in DRE systems crosscuts multiple layers and requires end-to-end

enforcement. Conventional component middleware technologies, such as CCM, J2EE, and

COM, were designed largely for applications with business-oriented QoS requirements,

such as data persistence, confidentiality, and transactional support. Thus, they do not effec-

tively address simultaneously enforcing multiple stringent end-to-end QoS requirements

of DRE applications. What is therefore needed is QoS-enabled component middleware

that preserves existing support for heterogeneity in standard component middleware, yet

also provides multiple dimensions of QoS provisioning and enforcement [55] to meet the

stringent end-to-end QoS requirements of DRE applications.

Among the existing component middleware technologies, CCM is the most suit-

able for DRE applications since the current base-level CORBA specification is the only

standard COTS middleware that has made substantial progress in satisfying the QoS re-

quirements of DRE systems. For example, the OMG has adopted several DRE-related

5

specifications, including Minimum CORBA, Real-time CORBA, CORBA Messaging,

and Fault-tolerant CORBA. These QoS specifications and their accompanying enforce-

ment capabilities are essential for supporting DRE systems. This dissertation therefore

selects CCM as the basis for developing QoS-enabled component models that are able to

support DRE systems.

A common strategy to allocate resources for satisfying QoS requirements in DRE

applications is to specify them statically because the allocations are often very effective

for most DRE application and are easy to apply and verify. Furthermore, composing static

QoS provisioning does not require changing a component implementation to interact with

the composed QoS provisioning mechanisms and thus allows greater flexibility to compose

applications having different QoS requirements. In contrast, other research looking to pro-

vide new QoS support in component middleware tends to require modifications to allow

component implementations to interact with QoS support mechanisms, which makes ap-

plications less robust. This dissertation, therefore, focuses specifically on addressing static

QoS provisioning challenges in DRE application development. In order to successfully

support developing, composing and deploying DRE applications with properly provisioned

resources for enforcing QoS requirements, this research addresses key technical challenges

outlined in Table 1.2.

Moreover, the stringent QoS requirements of DRE applications make them sensitive to

the performance of the underlying middleware. A key research challenge is to design

component middleware technologies that can deliver performance comparable to that of

conventional COTS middleware such as Real-Time CORBA.

1.3 Research Contributions

This dissertation makes three major contributions to the state of the art in composing sys-

temic behaviors within component middleware frameworks.

The need for QoS-aware component middleware: First, using DRE applications as its

target application domain, it illustrates how component middleware can simplify the de-

velopment of DRE applications, while still meeting stringent cross-cutting performance

requirements by composing QoS provisioning policies statically with application compo-

nents. It reviews the limitations of conventional component middleware in supporting DRE

applications. It then shows how these limitations can be addressed by composing systemic

6

Table 1.1: Challenges and Solution Techniques Presented in This Research

Challenges Solution Techniques Effects and Results
Multiple scopes for
applying systemic
policies in compo-
nent middleware at
run-time.

Identify proper binding granu-
larity for applying various QoS
policies in various scopes in
component middleware as de-
scribed in Section 4.4.1.

The test programs used to validate real-time
support in CIAO demonstrates the effec-
tiveness of the granularity CIAO supports.

Multiple stages for
inserting systemic
policies in compo-
nent development
lifecycle.

Identify and document proper
binding stages in various stages
of application development life-
cycle for key QoS provision-
ing policies critical to DRE ap-
plications as described in Sec-
tion 4.4.2.

The real-time validation tests show how
CIAO supports various real-time policies
can be composed into application at vari-
ous development stage to control its real-
time behaviors flexibly and effectively. An-
alytical results provide suggestions on how
the added information can help improving
application performance over the develop-
ment lifecycle.

Consistent systemic
policies must be
applied through-
out an application
end-to-end.

The work in this dissertation
presents extensions to applica-
tion deployment configuration to
specify and apply QoS policies
consistently throughout an ap-
plication, regardless of the lo-
cation of a component instance.
The design is described in detail
in Section 5.5.

The design of real-time tests demonstrates
how real-time policies can be composed
into applications flexibly, consistently, and
robustly, comparing to traditional DOC
middleware.

Resolving platform
diversity in support-
ing mechanisms.

This research develops and
documents solutions for man-
aging differences in QoS
management mechanisms when
composing general QoS policies
with platform-specific QoS
management mechanisms. Sec-
tion 5.4.2 details the design
CIAO employs.

The performance tests conducted by this
research depend on the design to deploy
the test applications to different deployment
target platform configurations flexibly.

7

QoS policies into applications. An example implementation called CIAO validates the use

of QoS-aware component middleware.

Addressing design and implementation challenges in composing systemic behaviors

in component middleware: This dissertation also makes the following contributions to

the state of the art in the design and implementation of component middleware frameworks

to support composable systemic aspects:

1. It analyses and documents the proper binding points in various stages of the compo-

nent development lifecycle for several key QoS provisioning policies critical to DRE

applications.

2. It reviews and documents different granularities for binding QoS provisioning poli-

cies, and examines the impact of binding with different granularities.

3. It presents extensions to manage application deployment configuration to minimize

inconsistency and to make analyzing deployment information easier.

4. It develops and documents solutions for managing differences in QoS management

mechanisms when composing general QoS policies with platform-specific QoS man-

agement mechanisms.

Validating the effectiveness and demonstrating the benefits of composing systemic be-

haviors: Finally, this dissertation presents empirical and analytical comparisons between

component middleware and conventional DOC middleware, and shows the effectiveness of

composing systemic aspects into DRE applications that is achieved by the approach pre-

sented in this dissertation. It first presents performance comparisons showing the small and

bounded amount of overhead for adopting component middleware and QoS-aware com-

ponent middleware. These performance comparison figures provide information helping

developers in deciding the cost to adopt component middleware. It then validates the ef-

fectiveness of extended features for supporting composition of systemic behaviors. It also

demonstrates how a QoS-aware component middleware framework like CIAO makes the

development and evolution process for DRE applications much easier.

8

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 surveys related work in the area of

composing systemic behavior into middleware. Relevant topics include applications of

meta-programming techniques, QoS control and adaptation techniques, aspect-oriented

programming and other middleware technologies. Chapter 3 presents an overview of com-

ponent middleware, including an introduction to the CORBA Component Model (CCM),

and an explanation of how CCM features can help to ease application development. Chap-

ter 4 points out key limitations of conventional middleware such as CCM, and how a new

component middleware framework called the Component-Integrated ACE ORB (CIAO)

helps address these limitations. Chapter 5 describes key implementation details of the

CIAO component middleware framework, including its extensions to the CCM specifica-

tion. Chapter 6 presents empirical results, comparing the performance of two versions of

an experimental application built using TAO and CIAO respectively, and demonstrates how

CIAO helps in the development and verification of real-time applications. Finally, Chap-

ter 7 presents concluding remarks about these findings, discusses impacts of the research

on composing systemic behaviors in component middleware, and outlines future research

directions.

9

Chapter 2

Survey of Related Work

Abstraction has always been a focal point in the evolution of computer science. New pro-

gramming languages and paradigms come to life to help programmers solve problems and

manage complexity by providing higher levels of abstraction and better separation of con-

cerns.

This chapter first discusses previous efforts focused on raising levels of abstraction

and improving separation of concerns, such as meta-programming and aspect-oriented pro-

gramming techniques. It then surveys efforts that integrate QoS support into programming

environments, in particular for representative DOC middleware. Finally, it discusses other

prior and on-going research efforts in integrating QoS support with component-based mid-

dleware.

This section reviews work on QoS provisioning mechanisms using the taxonomy

shown in Figure 2.1. One dimension depicted in Figure 2.1 is when QoS provisioning

is performed, i.e., static versus dynamic QoS provisioning, as described in Section 1.2.

Some enabling mechanisms allow static QoS provisioning before the startup of a system,

whereas and others provide abstractions to define dynamic QoS provisioning behaviors

during runtime based on resources available at the time. The other dimension depicted in

Figure 2.1 is the level of abstraction. Both middleware-based approaches shown in the

figure, i.e., CIAO and BBN’s QuO Qoskets, offer higher levels of abstraction for QoS

provisioning specification and modeling. Conversely, the programming language-based

approach offers meta-programming mechanisms for injecting QoS provisioning behaviors.

We review previous research in the area of QoS provisioning mechanisms along these two

dimensions.

10

QoS Provisioning
Static Dynamic

A
bs

tr
ac

tio
n M

id
dl

ew
ar

e
P

ro
gr

am
m

in
g

La
ng

ua
ge

s

QoS-Enabled
Component
Middleware

(RTCCM-CIAO,
QoS EJB Containers)

Dynamic QoS
Provisioning
(QuO Qosket,
dynamicTAO)

Aspect-Oriented
Languages

(AspectJ,
AspectC++)

Figure 2.1: Taxonomy of QoS Provisioning Enabling Mechanisms

2.1 Aspect-oriented Programming

Aspects are programming concerns that are not directly related to the main purpose of a

program but are nonetheless important factors for the program’s functioning. For exam-

ple, how a communication framework allocates and manages the buffer memory among

different layers can significantly affect the behaviors of the framework. Aspects, however,

are hard to decompose from a software system and to be encapsulated in software module

using traditional object-oriented or procedure-oriented programming models because they

often cross-cut multiple layers of software modules and require management in unison.

Meta-programming provides techniques to improve software adaptability by abstracting

the management of certain aspects from a software module through an interface imple-

menting the abstraction called a “meta-protocol.” Aspect-oriented programming, which

evolved from meta-programming, provides not only techniques to separate concerns from

software modules but also mechanisms to weave application logic with aspects.

Aspect-Oriented programming (AOP) [27] provides language-level abstractions to

weave different aspects that cross-cut multiple layers of a system. Examples of AOP tools

include AspectJ [26] and AspectC++ [47]. Similar to AOP tools, CIAO supports injection

of aspects into systems at the middleware level throughout an application. Both CIAO

11

and AOP tools weave aspects statically, and neither defines abstractions for dynamic QoS

provisioning. In contrast, more dynamic QoS provisioning technologies covered later in

this Chapter use AOP techniques to organize and connect the various dimensions of the

QoS management abstractions with each other and with the program to which the behavior

is being attached. Compared to CIAO, AOP supports aspect weaving only within a single

program whereas CIAO aims to provide composition of systemic behaviors across multiple

potentially heterogeneous programs in a distributed application.

2.2 QoS-enabled Middleware

The Quality Objects (QuO) framework [59, 87] is an adaptive middleware framework de-

veloped by BBN Technologies that allows DRE system developers to use aspect-oriented

software development [27] techniques to separate the concerns of QoS programming from

application logic in DRE applications. A Qosket is a unit of encapsulation and reuse for

QuO systemic behaviors. In comparison to CIAO, Qoskets and QuO emphasize dynamic

QoS provisioning where CIAO emphasizes static QoS provisioning and integration of var-

ious mechanisms and behaviors during different stages of the development lifecycle. We

are collaborating with BBN to integrate Qoskets and CIAO [80] to provide a total QoS

provisioning solution.

In their dynamicTAO project, Kon and Campbell [29] apply reflective middleware

techniques to extend TAO to reconfigure the ORB at runtime by dynamically linking se-

lected modules, according to the features required by the applications. Their work is sim-

ilar to Qoskets (shown in Figure 2.1), in that both provide the mechanisms for realizing

dynamic QoS provisioning at the middleware level. Qoskets offer a more comprehensive

QoS provisioning abstraction, however, whereas Kon and Campbell’s work concentrates

on configuring middleware capabilities.

Moreover, although Kon and Campbell’s work can also provide QoS adaptation be-

havior by dynamically (re)configuring the middleware framework, their research may not

be as suitable for DRE applications, since dynamic loading and unloading of ORB com-

ponents can incur significant and unpredictable overheads and thus prevent the ORB from

meeting application deadlines. Our work on CIAO relies upon Model Driven Architecture

(MDA) tools [21] to analyze the required ORB components and their configurations. This

approach ensures the ORB in a component server contains only the required components,

without compromising end-to-end predictability.

12

2.3 Other QoS-enabled Component Middleware

Middleware can apply the Quality Connector pattern [9] to meta-programming techniques

for specifying the QoS behaviors and configuring the supporting mechanisms for these

QoS behaviors. The container architecture in component-based middleware frameworks

provides a vehicle for applying meta-programming techniques for QoS assurance control

in component middleware, as was previously identified in [82]. Containers can also help

apply aspect-oriented software development [27] techniques to plug in different systemic

behaviors [8]. These projects are similar to CIAO in that they provide mechanisms to inject

“aspects” into applications statically at the middleware level.

Miguel de Miguel further develops the state of the art in QoS-enabled contain-

ers by extending a QoS EJB container interface to support a QoSContext interface

that allows the exchange of QoS-related information among component instances [12].

To take advantage of the QoS-container, a component must implement QoSBean and

QoSNegotiation interfaces. This requirement, however, adds an unnecessary depen-

dency to component implementations. Section 4.1 examines the limitations of implement-

ing QoS behavior logic in component implementations.

The QoS Enabled Distributed Objects (Qedo) project [15] is another ongoing effort

to make QoS support an integral part of CCM. Qedo targets applications in the telecommu-

nication domain and supports information streaming. It defines a metamodel with multiple

categories of QoS requirements for applications. To support the modeled QoS require-

ments, Qedo defines extensions to CCM’s container interface and the Component Imple-

mentation Framework (CIF) to realize the QoS models [56].

Similar to QuO’s Contract Definition Language (CDL), Qedo’s contract metamodel

provides mechanisms to formalize and abstract QoS requirements. QuO (Qosket) contracts

are more versatile, however, because they not only provide high levels of abstraction for

QoS status, but also define actions that should take place when state transitions occur in

contracts. Qedo’s extensions to container interfaces and CIF also require component im-

plementations to interact with the container QoS interface and negotiate the level of QoS

contract directly. While this approach is suitable for certain applications where QoS is part

of the functional requirements, it inevitably tightly couples the QoS provisioning and adap-

tation behaviors into the component implementation, and thus hampers the reusability of

component.

In comparison, our approach explicitly avoids this coupling and tries to compose

the QoS provision behaviors into the component systems.

13

Compared to all these other QoS-enabled component middleware technologies,

CIAO aims to compose systemic aspects into component-based applications while these

other technologies each depends on a specialized QoS-enabled container interface. While

certain applications do require direct interaction with QoS assurance mechanisms to adapt

to system conditions, this approach forces QoS-aware component implementations to be

tightly coupled to the type of container and therefore reduces their reusability. In contrast,

CIAO will support even the composition of adaptive behaviors for a component so that

component implementations need not be tied to a specific container implementation unless

their implementation demands it.

2.4 Standardization Efforts

The OMG has started several standardization efforts that match the goals we are trying

to achieve in CIAO. The Light Weight CCM [43] specification aligns with CIAO’s goal

of reducing the footprint of CCM implementations to make CCM more suitable for DRE

applications. This is achieved by removing features, such as persistent state management

and transaction support, which are not commonly used in DRE applications, from the ex-

isting CCM specification. CIAO’s research project, which predates the Lightweight CCM

specification effort, also aims to provide a CCM subset for DRE applications. We have

proposed and implemented a similar subset of features to those in the Light Weight CCM

submission. Future versions of CIAO will be amended to conform with the Light Weight

CCM specification once that specification is formally adopted.

The Deployment and Configuration [42] (D&C) submission aims to provide a

framework for deploying and configuring complex component systems. Similar to our

approach, it also raises the question of available resources and uses the deployment and

configuration stages of a component development lifecycle to ensure the needs of the ap-

plications are met. It is currently still in the standardization process and we will be able

to apply the specification once it is formally adopted. Many features of the D&C speci-

fication designed to decouple the configuration of deployment platforms from application

assembly have been in CIAO since before the D&C specification efforts began. The CIAO

team will integrate the work in this dissertation and the implementation of the new D&C

specification in CIAO in the near future.

The UML Profiles for Modeling Quality of Service and Fault Tolerance Characteris-

tics and Mechanisms [46] also relate to CIAO’s QoS-enabled CCM efforts. That specifica-

tion is not, however, specifically aimed at component-based applications. Two other efforts

14

that are also related to CIAO are the Quality of Service for CCM Request for Proposal

(RFP) [44] and the Streams for CCM RFP [45].

15

Chapter 3

Overview of the CORBA Component

Model

This chapter presents an overview of component middleware, using the CORBA Compo-

nent Model (CCM) as its example. It first motivates the need for component models in

Section 3.1 by reviewing the benefits and the limitations of conventional distributed object

computing (DOC) middleware upon which component middleware builds. Section 3.2 then

introduces CCM and reviews the major building blocks in the CCM architecture.

3.1 Motivation for Component Models

In the early days of computing, each piece of software was developed from scratch to

achieve a particular goal on a specific hardware platform. Since computers were them-

selves much more expensive than the cost to program them, scant attention was paid to

systematic software reuse and composition of applications from existing software artifacts.

Over the past four decades, however, the following two trends have spurred the transition

from hardware-centric to software-centric development paradigms:

• Economic factors – Due to advances in VLSI and the commoditization of hard-

ware, most computers are now much less expensive than the cost to program them.

Significant economic gains can now be realized by improving software development

processes.

• Technological advances – With the advent of software development technologies

such as object-oriented programming languages and distributed object computing

16

frameworks, it has become easier to develop complex software systems. Conse-

quently, more capabilities and features are then added to software which makes de-

veloping and maintaining complex software systems a complicated task.

A common theme underlying the evolution of modern software development para-

digms is the desire for reuse, i.e., to compose and customize applications from pre-existing

software building blocks [13]. Major modern software development paradigms all aim to

achieve this common goal but differ in the kind(s) and granularity of building blocks that

form the core of each paradigm. The development and evolution of middleware technolo-

gies also follow a similar goal, to capture and reuse design information learned previously,

within various layers of software.

Middleware is a kind of reusable software that resides between applications and the

underlying operating systems, network protocol stacks, and hardware [60]. Middleware’s

primary role is to bridge the gap between application programs and the lower-level hard-

ware and software infrastructure, and to coordinate how parts of applications are connected

and how they interoperate. Middleware focuses especially on issues that emerge when such

programs are used across physically separated platforms. When developed and deployed

properly, middleware frameworks can reduce the cost and risk of developing distributed

applications and systems by helping to:

• Simplify the development of distributed applications by providing a consistent set of

capabilities that is closer to the set of application design-level abstractions than to the

underlying computing and communication mechanisms.

• Provide higher-level abstraction interfaces for managing system resources, such as

instantiation and management of interface implementations and provisioning of QoS-

related resources.

• Shield application developers from low-level, tedious, and error-prone platform de-

tails, such as socket-level network programming idioms.

• Amortize software lifecycle costs by leveraging previous development expertise and

capturing implementations of key patterns in reusable frameworks, rather than re-

building separate implementations manually for each use.

• Provide a wide array of off-the-shelf developer-oriented services, such as event chan-

nel and security services, that have proven necessary to operate effectively in a dis-

tributed environment.

17

• Ease the integration and interoperability of software artifacts developed by multiple

technology suppliers, over increasingly diverse, heterogeneous, and geographically

separated environments [7].

• Extend the scope of portable software to higher levels of abstraction through common

industry-wide standards.

The emergence and rapid growth of the Internet, beginning in the 1970’s, brought

forth the need for distributed applications. For years, however, these applications were

hard to develop due to a paucity of methods, tools, and platforms. Various technologies

have emerged over the past 20+ years to alleviate complexities associated with developing

software for distributed applications and to provide an advanced software infrastructure to

support it. Early milestones included the advent of Internet protocols [49, 50], interprocess

communication and message passing architectures [11], micro-kernel architectures [1], and

Sun’s Remote Procedure Call (RPC) model [72]. The next generation of advances included

OSF’s Distributed Computing Environment (DCE) [57], CORBA [40], Java RMI [74], and

DCOM [5].

The success of middleware technologies has added the middleware development

paradigm to the familiar operating system, programming language, networking, and data-

base offerings used by previous generations of software developers. By decoupling applica-

tion-specific functionality and logic from the accidental complexities inherent in a dis-

tributed infrastructure, middleware enables application developers to concentrate on pro-

gramming application-specific functionality, rather than wrestling repeatedly with lower-

level infrastructure challenges.

3.1.1 Limitations of Conventional Middleware

One of the watershed events during the evolution of middleware was the emergence of dis-

tributed object computing (DOC) middleware in the late 1980’s and early 1990s [61]. DOC

middleware represented the confluence of two major areas of software technology: dis-

tributed computing systems and object-oriented design and programming. Techniques for

developing distributed systems focus on integrating multiple computers to act as a unified

and scalable computational resource. Likewise, techniques for developing object-oriented

systems focus on reducing complexity by creating reusable frameworks and components

that reify successful patterns and software architectures [6, 16, 64]. DOC middleware

therefore uses object-oriented techniques to distribute reusable services and applications

18

efficiently, flexibly, and robustly over multiple, often heterogeneous, computing and net-

working elements.

The Object Management Architecture (OMA) described in the CORBA 2.x spec-

ification [41] defines an advanced DOC middleware standard for building portable dis-

tributed applications. Figure 3.1 shows the architecture of the conventional DOC middle-

ware – CORBA. The CORBA 2.x specification focuses on interfaces, which are essentially

contracts between clients and servers that define how clients can view and access object

services provided by a server as they would a local object. CORBA also uses the same

interface definition syntax to define the interactions between applications and the object

request broker’s (ORB’s) infrastructure.

Interface

Repository

IDL

Compiler

Implementation

Repository

Client
OBJ
REF

Object

(Servant)
in args

operation()

out args +
return

DII
IDL

STUBS

ORB

INTERFACE

IDL

SKEL
DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

Figure 3.1: A Conventional DOC Middleware – CORBA 2.x Architecture

The evolution of conventional DOC middleware has simplified the work of client-

side application developers the most. Implementing a non-trivial server application, how-

ever, still remains a challenging task with conventional DOC middleware because of a

lack of higher-level abstractions for implementing server applications. For example, de-

spite its advanced capabilities, the CORBA 2.x standard does not define sufficiently how to

implement and deploy server objects but only gives a rather simplistic model of the appli-

cation development lifecycle, as shown in Figure 3.2. The development lifecycle defined

by CORBA 2.x specifications essentially divides application development into two stages:

1. Interface Definition Stage: a system developer designs the client view of a service,

i.e., how external entities should interact with the service, by defining the points of

interaction in the CORBA interface definition language (IDL).

19

Interface
Design

Application
Development &

Deployment

IDL
Definitions

IDL
Compiler

Stubs
&

Skeletons

Object
Implementations

Language
Tools

Libraries

“Other”
Implementations

Applications

Figure 3.2: Application Development Lifecycle of CORBA – An Example Conven-
tional Object Middleware

2. Implementation Stage: application developers then use the interface definitions

specified by the system developer in Stage 1, and implement

• clients that access remote objects via those interfaces,

• object implementations and server processes that provide remote access for the

interfaces, or both.

The only tool defined by the CORBA specification to standardize and automate the

transition from Stage 1 to Stage 2 is a compiler that translates the IDL definitions into

various language mappings for client and server side development in the second stage.

The CORBA 2.x specifications concentrate on providing a platform and vendor neutral

development environment through a set of standardized interfaces, but stop short of stan-

dardizing other higher level elements of the system development process. For example,

they do not codify how multiple object implementations can be combined within a server

process, how to specify the location of object implementations, or how to establish their

inter-connections. As a result, application developers are forced to hard code these aspects

into both object implementations and server processes, which hampers the reusability of the

resulting software. This under-specification of the application development methodology

has led to following limitations [83]:

1. Lack of generic server standards. CORBA 2.x does not specify a generic server

framework to perform common server configuration and management tasks, such as

starting a server process, configuring its QoS policies, providing common services

(such as notification or naming services), or managing the runtime environment of

each object implementation. Although CORBA 2.x standardizes the interactions be-

tween object implementations and object request brokers (ORBs), server developers

20

must still determine how (1) object implementations are installed in an ORB and

(2) ORB and object implementations interact, explicitly by programming them into

the server implementations. The lack of a generic component server standard yields

tightly coupled, ad-hoc server implementations, which increase the complexity of

software upgrades and reduce the reusability and flexibility of CORBA-based appli-

cations.

2. Lack of functional boundaries. The CORBA 2.x object model treats all interfaces

as client/server contracts. This object model does not, however, provide standard

assembly mechanisms to decouple dependencies among collaborating object imple-

mentations. For example, objects whose implementations depend on other objects

need to discover and connect to those objects explicitly. To build complex distributed

applications, therefore, application developers must explicitly program the connec-

tions among interdependent services and object interfaces, which requires extra work

and which can yield brittle and non-reusable implementations.

3. Lack of software configuration and deployment standards. There is no standard

way to distribute and start up object implementations remotely in the CORBA 2.x

specification. Application administrators must therefore resort to in-house scripts

and procedures to deliver software implementations to target machines, configure

the target machine and software implementations for execution, and then instantiate

software implementations to make them ready for clients. Moreover, software imple-

mentations themselves often must be modified to accommodate such ad hoc deploy-

ment mechanisms. The need of most reusable software implementations to interact

with other software implementations and services further aggravates the problem.

The lack of higher-level software management standards thus results in systems that

are harder to maintain and software component implementations that are much harder

to reuse.

3.1.2 Addressing the Limitations of Conventional Middleware

One promising solution that has evolved to address the aforementioned limitations in con-

ventional middleware is component middleware. Component middleware [75] is a class

of middleware that enables reusable services to be composed, configured, and installed to

create applications rapidly and robustly by

21

• defining standard runtime mechanisms needed to execute components in generic

component servers,

• creating a virtual boundary around larger application component implementations

that interact with each other only through well-defined interfaces [4], and

• specifying the infrastructure to assemble, package, and deploy components through-

out a distributed environment via well-defined configuration language specifications.

Standardizing these features provides a higher level of abstraction on top of application

component interface-level interactions, and enables system developers to specify:

• required properties of their runtime environments,

• the interactions between components, and

• deployment configuration details,

explicitly and declaratively instead of implicitly and programmatically.

The CORBA Component Model (CCM) [38] is an example of component middle-

ware that addresses limitations with earlier generations of DOC middleware. The CCM

specification extends the CORBA object model to support the concept of components,

and establishes standards for implementing, packaging, assembling, and deploying com-

ponents. From a client perspective, a CCM component is an extended CORBA object that

encapsulates various interaction models via different interfaces and connection operations.

From a server perspective, components are units of implementation that can be installed and

instantiated independently in standard component server runtime environments stipulated

by the CCM specification.

Components are larger building blocks than objects, with more of their interactions

managed by the middleware itself. This allows the middleware to simplify and automate

key aspects of construction, composition, and configuration of components into applica-

tions. By providing these higher level abstractions, CCM enhances CORBA to simplify

not only client program development but also server program development. The following

section gives a more detailed survey of CCM and summarizes the major mechanisms that

facilitate CCM’s features.

22

3.2 Major CCM Building Blocks

A type uniquely identifies a group of similar object instances and the operations applicable

to these objects. A metatype is a type that can be used to describe attributes, including

the kind of data and applicable operations, of another type. A fundamental example of

a metatype in CORBA is interface. The CCM extends and enhances the CORBA Object

Model by adding new metatypes, tools and mechanisms. These extensions and enhance-

ments collaborate to address the limitations previously described in Section 3.1.1. The

CCM programming paradigm standardizes the application development lifecycle into sev-

eral stages, notably component implementation, packaging, assembly, and deployment as

shown in Figure 3.3, where each stage of the lifecycle adds information pertaining to that

stage.

Running System

C
reates

Component
Designer

Component
Definition

Component
Implementor

C
re

at
es

Component
Implementation

uses

Component
Packager

C
reates

System
Deployer

Application
Assembler

Application Assembly Specification

RateGen
P

Rate

GPS

MyLoc

Ref Rdy

NavDisplay

Ref

Loc

us
es

C
reates

use
s

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

Component
Package

Figure 3.3: Overview of the CCM Development Lifecycle

23

3.2.1 Development Roles

Because of this clear separation, each stage of the component development lifecycle can be

handled separately by the following development roles:

• Component designers define component features by specifying what each compo-

nent does and how components collaborate with each other and with their clients.

Component designers determine how a component should interact with other entities,

including components, clients, or services, by specifying various offered interfaces

and required connection points. Component designers, however, do not decide how

a component should be implemented to support the features of that component.

• Component implementors develop component implementations based on prede-

fined sets of component features. There are also tools to help component imple-

mentors generate metadata called component descriptors that describe the runtime

support needed by each component implementation and the allowable component

interactions defined by component designers.

• Component packagers bundle component implementations with component config-

uration metadata and component descriptors into component packages.

• Application assemblers configure applications by selecting component implemen-

tations, specifying component instantiation constraints, and connecting component

instances via metadata called assembly descriptors.

• System deployers analyze the runtime resource requirements given in the assembly

descriptors, and prepare and deploy required resources where application assemblies

can be realized.

This separation of concerns allows developers with different areas of expertise to concen-

trate on different tasks and thus makes it easier and less error-prone to develop robust server

applications. The remainder of this chapter reviews the major building blocks and mecha-

nisms provided by the CCM extensions to facilitate this separation of development roles.

3.2.2 Generic Runtime Support in CCM – Component Servers and

Containers

Components are software artifacts that can be distributed, deployed, and instantiated in-

dependently. Requiring a component implementation to configure programmatically all

24

the mechanisms that constitute its runtime environment, such as object request brokers

(ORBs) and portable object adapters (POAs), limits the reusability of component imple-

mentations, as components may very well require conflicting POA or ORB configurations.

To separate the concerns of implementing customized server programs, configuring ORBs

and POAs, and managing object implementations in those servers, the CCM defines two

standard mechanisms called Component Server and Container.

Component servers are generic server implementations which a CCM framework

uses to host components. To provide the proper run-time environments for hosted compo-

nents, a component server is responsible to configure its ORB to satisfy the requirements of

the components. Likewise, containers are the CCM mechanisms for configuring and man-

aging POAs. Together, component servers and containers provide runtime support for com-

ponent implementations, and thus separate the concerns of programming and configuring

servers, ORBs, and POAs from the concerns of component and application development.

Figure 3.4 shows the runtime architecture of the CCM container programming model.

Container

ORB

CORBA
Component

Component
Home

POA

Transaction

Security Notification

Persistent

E
xt
er
na
l

In
te
rfa
ce
s Callback

Interfaces

Internal
Interfaces

Container

CORBA
Component

Component
Home

POA

E
xt
er
na
l

In
te
rfa
ce
s Callback

Interfaces

Internal
Interfaces

Figure 3.4: Overview of the CCM Run-time Architecture

In a conventional CORBA server program, a server process contains an ORB, which

in turn creates and manages several POAs under the ORB’s RootPOA. Servants, which are

object implementations, can then be activated under these POAs. Similar to conventional

CORBA servers, a CCM component server contains an ORB and several containers, each

of which contains a POA. Component implementations are installed and activated within

containers. Each container thus provides an explicit encapsulation boundary between each

set of servants that implements a component and the services upon which it depends.

25

With CCM component developers are thus no longer responsible for creating and

configuring either ORBs or POAs. Furthermore, there is no longer an easy and standard

way for a component implementation to interact directly with the internal object interfaces

of the POAs and ORBs, as the container strongly encapsulates those details. However, to

install and execute the components and component homes dynamically in a standard and

generic server process, servers and installed components and homes must know how to

interact with each other. Therefore, the CCM defines container interfaces in the “container

programming model” to standardize the interactions between components implementations

and their containers.

All interactions of a component implementation are handled by its container, includ-

ing interacting with clients and with the hosting run-time environment. These interactions

are handled via 3 kinds of local interfaces that are predefined in the container programming

model. These interfaces can be categorized into:

1. External interfaces: Client invocations on the component are relayed to the external

interfaces provided by the component implementation by its hosting container.

2. Internal interfaces: A component implementation interacts with its hosting con-

tainer through the internal interface. These interfaces provide access to container-

managed services and context, such as lifecycle management and transactional oper-

ations.

3. Callback interfaces: Component implementations must implement callback inter-

faces to allow their hosting containers to inform component instances of important

events, such as when a component instance is being made available for service.

3.2.3 Components and Homes

As was mentioned in Section 3.1.2, components are units of implementation that can be

installed and instantiated independently in a component server. A component thus encap-

sulates the implementation of a set of features. The functionality of a component is made

available to its clients through a set of interfaces. Likewise, a component may use some

external interfaces either to delegate functionality or simply to pass on certain messages.

To capture this encapsulation of implementation, CCM adds a new component meta-

type which extends of the conventional CORBA object interface metatype to represent this

encapsulation of implementation. This extension allows components to be manipulated

directly in a CORBA framework. The new extension also enables extensions to the IDL

26

grammar so that component interactions can be standardized and specified in a component’s

IDL declaration. Component interactions are defined by exposing a set of ports. Ports are

named interfaces and connection points that define how a component can interact with other

entities. The following interfaces and connection points, shown in Figure 3.5, constitute

the different kinds of ports:

• Facets: Facets allow a client to invoke operations on the component. Specifically,

facets define named interfaces that service method invocations from other compo-

nents synchronously. Facets also allow a component to present different identities

and capabilities to different clients. A component uses the keyword provides to spec-

ify the name and the type of each facet it exposes.

• Receptacles: A receptacle stores the object references with which the component

can invoke operations. Specifically, receptacles provide named connection points that

can accept one or more object references pointing to plain interface implementations,

or facets of other components. A component uses the keyword uses to specify the

names and types of receptacles it exposes. A receptacle can be specified to have

either a single connection or multiple connections.

• Event sources/sinks: An event sink allows messages to be delivered to the compo-

nent via invoking a push operation. Similarly, an event source stores the object ref-

erence(s) to the consumer the component can send messages to by invoking the push

operation. A component uses event sources and event sinks to indicate its willingness

to exchange event messages with other components or other event publishers or con-

sumers asynchronously. Unlike with the Event [48] and Notification [22] CORBA

Common Object Services, the event sources and event sinks in CCM components

are typed using the native CORBA valuetypes. A component uses the keywords pub-

lishes, emits, and consumes to specify the names and event types of event sources

and sinks.

These port mechanisms enable component developers to employ the Extension Interface

pattern [64] to upgrade and replace component implementations without breaking existing

applications that use them.

Another important extension in CCM is the addition of a home interface. The home

interfaces help to standardize lifecycle management for component instances. Each com-

ponent instance must be created and managed by a home interface. Developers can use

different home interfaces and implementations to support different lifecycle management

strategies for a component.

27

Attributes
E

vent
S

inks
F

a
cets

R
ec

ep
ta

cl
es

E
ve

nt
S

ou
rc

es

Component
Reference

Component
Home

O
ffe

red
P

orts

R
eq

ui
re

d
P

or
ts

Facets

Receptacles

Event sources

Event sinks

Attributes

Component and
home interfaces

Figure 3.5: Client View of CCM Components

Both components and component homes can have attributes, which are named pa-

rameters like those of regular object interfaces and are intended for component configura-

tion. The CCM deployment mechanisms described in Section 3.2.6 use XML-based com-

ponent property file descriptors to configure the initial values for attributes in components

and component homes.

By standardizing features and interfaces for components, ports, attributes, and

homes, component clients and component developers now are able to figure out what com-

ponent features are available and how to access these features. The CCM standard also

defines a set of generic port operations that allows standardized tools to query component

capabilities, configure component attributes, acquire port interfaces, and connect to port

connection points. These standardized component features are vital to allow components

to define crisp implementation boundaries while giving them flexibility to be composed

and deployed into running applications using automatic tools.

3.2.4 Component Implementation

Section 3.2.3 alluded to many key features that CCM components must support, including

generic, port-specific, and introspective operations. These additional features and opera-

tions allow CCM components to be assembled into applications easily with tools. Likewise,

as illustrated in Section 3.2.2, a component implementation must support and use several

local interfaces to interact with its hosting container and for the component implementation

to be installed and instantiated.

Furthermore, some features of components require them to maintain certain con-

text information, such as lists of connected interfaces and event consumers. Implementing

28

these additional interfaces and operations required by component and container program-

ming models can make implementing components a daunting and error-prone task. Fur-

thermore, some of the context management code and the type of container interfaces a

component uses are dependent on how a component should be used, e.g., on whether or

not the component implementation is stateful and whether or not a servant instance can be

shared by multiple object references [51]. These complexities could greatly hinder CCM’s

goal to separate concerns and development roles, as component developers would then have

to implement code to interact with these additional systemic aspects, such as connection

management and interface activations in the container programming model.

To address these issues and thus make implementing components easier, the CCM

specifies a component implementation framework (CIF) to standardize and automate the

generation of most servant implementations. To achieve this goal, the CIF defines the Com-

ponent Implementation Definition Language (CIDL) to define how a component should be

used, i.e., what constitutes a component implementation type.

A CIDL compiler can then be used to generate automatically the component servant

implementation which realizes the majority of the component management functionality

but leaves the implementation of application-specific operations to entities called executors

that are implemented by component developers. The forwarding of operations on facets

and event sinks follows a set of executor mapping rules that define the interfaces and their

operation signatures of executors. The CIF thus further separates the concerns of the com-

ponent implementation itself from those of the component management code.

Figure 3.6 shows how the container, generated servant code, and developer-impl-

emented executor(s) interact via various pre-defined container interfaces. When running

a component, the generated servant is activated in the POA of the container, much like

how a servant can be activated in a POA in a conventional CORBA program. The gen-

erated servant in turn contains references to developer-implemented executors, as well

as a component-specific context object which is also generated by the CIDL compiler.

The component-specific context object implements connection management code for the

component implementation. Based on the CIDL definition, a component-specific context

interface inherits an internal interface defined in the container programming model, and

provides access to container managed services.

The CIDL compiler also generates the component-specific executor interface def-

initions that component developers can use to implement component executors. Like the

component-specific context, based on its CIDL definition, a component executor inherits

29

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Figure 3.6: Servant and Context Code Generated by CIDL Compiler

from a callback interface defined in the container programming model to provide an inter-

face the container framework can use to notify executors of important events. In summary,

the component management code generated by the CIDL compiler assumes responsibility

for the following features of the component implementation:

• managing the lifecycle of object references and executors,

• accepting operation invocations on interfaces and event consumers and forwarding

those invocations to the corresponding executors, and

• managing interface and event publisher connections which executors can use to in-

voke operations.

Such automation simplifies the component implementation process, as component manage-

ment code can now be generated automatically using simple declarative directives instead

of having to iterate through all the interfaces and connection points and implementing the

necessary management code manually.

Figure 3.7 shows how the CIDL compiler works with other tools and source files

to generate component implementations. As shown in the figure, CIDL also generates the

component descriptor files, which are XML-based documents that contain metadata de-

scribing component capabilities, i.e., what ports and attributes are available, and runtime

30

CIDL
FILES

CIDL
Compiler

Interface
Repository

IDL
FILES

Component-
aware

IDL Compiler

Server
Skeletons

Client
Stubs

Component
Implementation

Skeletons

Component
Implementation

Source Code

C++
Compiler

C++
Compiler

Client
Source
Code

Component
Program
(DLL)

Client
Program

Component
Descriptions

Figure 3.7: Flow of CIDL and IDL Generated Files

requirements, e.g., the type of container a component needs. Component descriptors pro-

vide information that is vital later to application assembly, packaging and deployment, as

is described in Sections 3.2.5 and 3.2.6.

3.2.5 Composing Components into Applications

One major feature of component middleware is the ability to compose component imple-

mentations together into applications. The majority of component features illustrated in

Section 3.2.3 are designed to facilitate such composition. The CCM specification standard-

izes the syntax and structure of XML-based metadata, namely in assembly descriptors for

describing component-based application assemblies. Such standardization allows tool ven-

dors to develop a variety of application assembly tools, as long as they generate conforming

assembly specifications.

For example, CIAO facilitates two collaborating projects, both of which involve

software modeling tools aiming to generate CCM standard assembly specifications with

optional CIAO-specific metadata which will be discussed in more detail in Chapter 5. Of

the two projects, the CoSMIC [30] project from the Distributed Object Computing (DOC)

Group in the Institute of Software Integrated Systems (ISIS) at Vanderbilt University offers

31

a GUI-based composition and modeling front end and plans to synthesize CIAO configu-

ration settings. The Cadena [23] project from the Specification, Analysis, and Transfor-

mation of Software (SAnToS) Laboratory at Kansas State University offers tools for both

GUI-based and table-based composition and analysis. Both of these component assembly

tools can obtain component information either from a component-aware Interface Reposi-

tory or from the component descriptors accompanying component implementations, which

were generated by a CIDL compiler.

An assembly descriptor file consists of 3 major XML elements, each describing an

important aspects of the assembled systems. These elements are as follows:

1. Component Implementations describe the specific component implementations the

assembled application requires. An assembled application may even use several dif-

ferent implementations of the same component definition for different instances of

the component.

2. Component Placements specify location constraints on installing component home

instances, and thus on the component instances created by the home instances. Loca-

tion constraints are specified in form of collocations, i.e., they specify sets of homes

that should be installed on the same host or the same process. They can also be in the

form of an exact location. Component instances can also be instantiated from homes

explicitly.

3. Component Connections describe how component and home instances should be

connected. Connections are made by passing an object reference, e.g., to a facet,

an event consumer, a receptacle or an event source for a component. Other than

acquiring object references from component instances created in the same assembly,

assembly descriptors also support other mechanisms for locating an object reference.

For example, an assembly can also specify attributes needed to acquire an object

reference from a Trading service.

CCM’s assembly descriptors provide key information about what component homes

and components need to be instantiated and how to connect them and other software ele-

ments together to form an application. They do not, however, contain information about

where on the network, or on what specific hardware platforms, operating systems, or lan-

guages, the application should be installed. By generalizing assembly descriptors away

from including explicit information related to specific instantiations of the application,

CCM enables system deployers to use assembly descriptors to deploy an application on

alternative environments and networks, as is described in the next section.

32

3.2.6 Packaging and Deployment

Standardizing the packaging and deployment of component-based applications is one of

the major goals of the CCM development paradigm. Packaging and deployment standards

in CCM separate the concerns of distributing, installing and instantiating software applica-

tions from the concerns of designing and implementing those applications. The packaging

specification provides a standard way to collect, aggregate, and associate disjoint infor-

mation into integrated entities that can be distributed intact. The deployment mechanisms

defined in the CCM specification standardize the interfaces and operations for realizing

applications, including distributing, installing, deploying, and connecting applications.

A software package in CCM is a compressed file that contains a collection of soft-

ware implementations, their associated metadata, and an XML-based descriptor that details

the contents of the software package. The CCM specification defines two major types of

software packages. They are:

• Component package: A component package contains the information needed to

deploy a specific implementation of a component. The major descriptor for a com-

ponent package is called its “Software Package Descriptor” which includes pointers

to component metadata, i.e., the component descriptor, dynamic loadable libraries of

the implementation for different platforms and programming languages, and default

property descriptors for components and component homes.

• Application assembly package: An application assembly package contains the in-

formation needed to deploy an application consisting of multiple interconnected

components. The major descriptor for an application assembly package is the “as-

sembly descriptor” mentioned earlier in Section 3.2.5. Other than the embedded

information about component implementations, component placements, and connec-

tions, assembly descriptors reference component implementations using component

packages, and contain pointers to component property descriptors that can be used to

overwrite the default property descriptors in components packages.

The deployment mechanisms defined by the CCM specification offer a path to dis-

tribute software packages and to install them on target platforms. To interact with the

various runtime mechanisms described previously in this section, the CCM specification

defines a series of interfaces for these mechanisms, such as ComponentServer and

Container, in order for the deployment tools to interact with them directly. Likewise,

interfaces of major entities for distributing and deploying applications are defined, instead

33

of the actual tools themselves. This abstraction of deployment and runtime interfaces al-

lows deployment tools and runtime environments from different sources to inter-operate

together.

3.2.7 CCM Development Lifecycle

The conventional CORBA development lifecycle shown in Figure 3.2 simplifies client pro-

gram development, as that 2-stage development model provides adequate abstractions for

building client programs. For server development, however, the conventional CORBA

paradigm is insufficient for non-trivial systems that involve integration of multiple aspects

in the resulting server programs. By standardizing the tools and the process of component

development, the CCM specification greatly enhances the CORBA development lifecycle

by separating these concerns into the different stages of the development lifecycle shown

in Figure 3.8. These development stages include:

Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL

Definitions

Stubs

&

Skeletons

Object

Implementations

Running

Applications

Component

IDL

Definitions

IDL

Compiler
CIDL

Compiler

Component

CIDL

Definitions

Servants,

Executors,

Contexts

Language

Tools

Component

DLLs

XML

Component &

Home Properties

XML

Component

Descriptors

(.ccd)

Packaging

Tools

Component

Packages

(Zipped

archives

*.car)

Assembling

Tools

XML

Component &

Home Properties

Assembly

Packages

(Zipped

archives

*.aar)

XML

Softpkg

Descriptors

(.csd)

XML

Assembly

Descriptors

(.cad)

Deployment

Tools

Target Platform

Properties

Component

Configurations

Figure 3.8: Overview of the CCM Development Lifecycle

• Interface design

• Component design

• Component implementation

34

• Component packaging

• Component assembly

• System Deployment

This separation of concerns into different stages allows developers to deal with one

aspect at a time. In particular, with this paradigm different developers (possibly with differ-

ent areas of expertise) can effectively divide a complex development problem into separate

aspects and thus address each aspect most effectively.

3.2.8 Status of CCM Development

The CCM specification was finalized recently by the OMG and is in the process of being

incorporated into the core CORBA specification.1 There are, however, many remaining

open research issues for the further evolution of the CCM. These research issues falls into

following major categories:

1. Supporting new systemic aspects not currently covered in the CCM specifica-

tion: Current CCM specification is designed for enterprise applications. It is neces-

sary to extend its support for other systemic aspects in order to apply CCM in other

application domains.

2. Providing robust and flexible deployment and configuration model: Existing

CCM specification does not adequately define the process to deploy and configure

component applications which may lead to implementations that are not flexible or

depends proprietary extensions.

3. Modeling and synthesizing component application assemblies: Although appli-

cation assemblies in CCM are defined in the human-readable XML format, they are

verbose and non-intuitive to write, to reason and to analyze. It is necessary to define

different way to represent these assemblies.

Researchers and practitioners are beginning to address these open research issues by

experimenting with several different approaches in their CCM implementations. Some of

the approaches have already begun to undergo standardization. Other than the standardiza-

tion efforts described previously described in Section 2.4, several CCM implementations

are now available based on the recently adopted specification [38]. They include:

1The CORBA 3.0 specification [40] released by the OMG only includes changes in IDL definition and
Interface Repository changes from the Component specification.

35

• OpenCCM [77] developed by the Universite des Sciences et Technologies de Lille,

France, is a Java implementation of CCM. It addresses deployment and configuration

issues in the context of a Java CCM.

• K2 Containers developed by iCMG, is a commercial C++ based CCM implemen-

tation which addresses deployment and configuration issues by providing its own

interpretation of the specification. It also provides tools for visually creating compo-

nent application assemblies.

• MicoCCM developed by FPX, is also a C++ based CCM implementation. It ad-

dresses both deployment and configuration issues by providing deployment tools and

the modeling issue by providing a visual application assembly tool.

• Qedo [54] by Fokus, is a C++ based CCM implementation that focuses on addressing

the issue of providing new systemic aspects to support QoS for applications. Its

approach for new systemic aspects focuses on extending the container programming

model and requires rewriting component implementations to take advantage of the

added QoS control capability. This approach is closer to the forthcoming QoS for

CCM standard. Qedo also provides deployment and configuration tools.

• StarCCM [70] is a C++ based CCM implementation at an early stage. It currently

focuses on the task of integrating transaction behaviors and persistent component

state into the infrastructure.

• CIAO developed by the DOC groups at Washington University in St. Louis and the

Institute for Software Integrated Systems (ISIS) at Vanderbilt University, is the major

vehicle of this research. CIAO concentrates on providing new systemic aspects via

composition, which does not require new component implementations to adopt new

systemic behaviors. Furthermore, CIAO provides a robust deployment framework

which is described later in Section 5.3 of this dissertation.

The architectural patterns used in CCM [78] also appear in other popular component mid-

dleware technologies, such as J2EE [32, 3] and .NET. Research conducted in the context

of CCM can often be applied to other component-based technologies.

36

Chapter 4

Composing Systemic Aspects in CIAO

Chapter 3 motivates the need for component-based middleware and presents an overview

of a component-based middleware framework, i.e., the CCM. The current generation of

component-based middleware frameworks was designed for enterprise applications and

therefore does not consider the needs of other application domains. This chapter describes

the limitations from this lack of support for other application domains, and motivates the

solution presented in this dissertation – the ability to compose arbitrary systemic aspects

within the component model itself. To illustrate these limitations, we use distributed real-

time embedded (DRE) systems as our motivating application domain.

This chapter begins by noting several limitations of conventional component mid-

dleware, in Section 4.1. Section 4.2 gives a brief discussion of real-time middleware as-

pects, and Section 4.3 then describes the problem of integrating support for those aspects

within the CCM programming model. Section 4.4 examines from a programming perspec-

tive how real-time aspects can be composed and integrated within the CIAO framework.

Finally, Section 4.4.3 illustrates how CCM can be used to implement components and to

compose and deploy applications.

Together, the last three sections of this chapter illustrate how in general the approach

presented in this dissertation can be applied to overcome the limitations of conventional

component middleware by supporting integration of other systemic behaviors and other

component middleware frameworks. Chapter 5 then presents the implementation of CIAO

in detail.

37

4.1 Limitations of Conventional Component Middleware

Historically, conventional commercial off-the-shelf (COTS) middleware frameworks, such

as CORBA, are designed to address the needs of enterprise application domains like work-

flow processing, inventory management, and accounting systems. Other application do-

mains, however, usually require additional constraints for applications to be considered to

behave “correctly”. For example, over 99% of all microprocessors are now used for DRE

systems [2] that control processes and devices in physical, chemical, biological, or defense

industries. Examples of DRE applications include distributed sensor networks, flight avion-

ics systems, naval combat management systems, and financial trading systems, all of which

typically have stringent Quality of Service (QoS) requirements. For example, certain tasks

of these applications must operate in a timely manner or else these applications would not

be considered to be “working.”

Failure to meet these QoS requirements can lead to catastrophic consequences, such

as failing to detect an incoming threat in a combat management system. Research in QoS-

enabled middleware over the past few years has shown that the coordinated management of

application and system resources is an essential dimension for ensuring QoS. Conventional

middleware, however, does not provide adequate abstractions to control the mechanisms

for managing these behaviors and thus is not suitable for applications in these domains.

As the cost and time required to develop and verify applications from these do-

mains precludes developers from implementing these applications from scratch, commu-

nities from these application domains have been trying embrace COTS middleware frame-

works by extending the middleware specifications to provide better abstractions for con-

trolling and managing these domain-specific aspects. For example, the Real-time CORBA

1.x specification [39] extends the conventional CORBA specification to provide better ab-

stractions for managing resource access for DRE applications requiring timely response of

critical tasks. As COTS middleware evolves and matures in supporting these extensions, it

is increasingly gaining acceptance within the DRE systems community.

Although these domain-specific middleware extensions standardize the mechanisms

and interfaces for managing and controlling the QoS policies, they still don’t provide a

complete set of configuration abstractions for application developers. As a result, develop-

ers are forced to integrate the code to configure these QoS policies in an ad hoc way, often

by scattering the configuration code throughout the application code. This limitation is

much like the limitation of conventional DOC middleware outlined in Section 3.1.1. Such

38

limitations in turn result in systems that are harder to maintain and software component

implementations that are much harder to reuse.

Furthermore, as the use of COTS middleware becomes more pervasive, DRE appli-

cations are increasingly being combined to form distributed systems that are joined together

by the Internet and intranets. Examples of these types of DRE applications include indus-

trial process control systems, such as hot rolling mill control systems that process molten

steel in real-time, and avionics systems, such as mission management computers [67, 68]

that help pilots with navigation and other key avionics functions as shown in Figure 4.1.

The kind of control systems often consist of multiple interacting software components run-

Figure 4.1: A Typical Avionics System

ning concurrently at multiple rates. Allocating resources to ensure critical tasks always fin-

ish in time is essential to the correct functioning of such “system of systems” for military

command and control systems that gather and assimilate information from various devices

(such as unmanned aerial vehicles and wearable computers), present and analyze the in-

formation, and coordinate the deployment of available forces and weaponry. For complex

39

Engagement System

Reconnaissance System

Command and Control

Weapon Control System

Navigation System

AWACS

Figure 4.2: Characteristics of Military Systems of Systems

systems like this, it is important that the QoS requirements for all the consistituent sys-

tems within larger systems can be met systematically. A QoS-aware CCM would make

reasoning about and allocating resources for such large-scale complex systems possible.

Many DRE-relevant QoS properties, however, are not considered in the CCM speci-

fication. It is certainly possible for component developers to take advantage of middleware

or OS features to implement component support for special systemic aspects, i.e., by em-

bedding management support code within a component implementation. Many QoS capa-

bilities, however, cannot be implemented solely within a component due to the limitations

listed in Table 4.1.

In general, isolating QoS provisioning functionality into each component prema-

turely commits every implementation to a specific QoS provisioning scenario. This tight

coupling defeats one of the key benefits of component middleware: separating compo-

nent functionality from system management. By creating dependencies between applica-

tion components and the underlying component framework, component implementations

become harder to reuse, particularly for large-scale DRE systems whose components and

applications have stringent QoS requirements. Moreover, many resources required for QoS

assurance must be provisioned within larger execution units overall, such as a process or a

host.

40

Table 4.1: Limitations of Conventional Component Middleware’s Support for QoS
Aspects

Limitations
QoS provisioning must be done end-to-end, i.e., it needs to be applied to many interacting compo-
nents. Implementing QoS provisioning logic internally in each component hampers reusability.
Some resources, such as thread pools in Real-time CORBA 1.0 [39], can only be provisioned
within a broader execution unit, i.e., a component server rather than a component. Since compo-
nent developers often have no a priori knowledge about other components, the component itself
is not the right place to provision QoS.
Some QoS assurance mechanisms, such as checking whether rates of interactions between compo-
nents violate specified constraints, affect component interconnections. Since a reusable component
implementation may not know how it will be composed with other components, it is not generally
possible for components to perform such QoS assurance in isolation.
Many QoS provisioning policies and mechanisms require installation of customized ORB mod-
ules to work correctly. However, some requirements such as high throughput and low latency, may
involve inherent trade-offs. It is hard for QoS provisioning mechanisms implemented within com-
ponents to foresee incompatibilities without knowing the end-to-end QoS requirements a priori.

Based on historical experience with building large-scale research and production

DRE systems over the past two decades [63], in the next generation of large-scale DRE

systems the middleware – rather than operating systems or networks alone – will likely be

responsible for separating QoS systemic properties from functional application properties

and coordinating QoS across various DRE system and application resources end-to-end.

There is thus a compelling need for extensible component middleware frameworks that can

be extended to support different QoS policies that are needed to support applications from

different domains.

4.2 Real-time Aspects

As was previously mentioned in Section 4.1, DRE applications often have stringent real-

time requirements, such as bounded response latency, that need to be satisfied in order to

be considered correct. Example tasks for managing real-time requirements include:

• Pooling of concurrency resources and synchronization of concurrent operations,

• Sensor input and actuator output timing constraints,

• Allocation, scheduling, and priority assignment of computing and communication

resources end-to-end,

• Memory management.

41

The work in this dissertation, therefore, focuses on allocating and managing key real-time

resources that are crucial to meet the time constraints in DRE applications. This section

provides a brief overview of the need and capability of real-time mechanisms for managing

real-time resources in DRE applications. The following Section 4.3 and Section 4.4 will

then examine how these capabilities can be integrated into component middleware.

Conventionally, real-time applications for DRE systems have been customized th-

rough tedious and error-prone manual development processes to implement code for man-

aging these real-time requirements. This approach fails to address several key challenges

facing developers, such as the accidental complexity caused by different hardware and OS

configurations and the ever changing system requirements and operating contexts.

Strict control over the scheduling and execution of these resources is essential for

many fixed-priority real-time applications. Real-time middleware, such as RT-CORBA,

enables client and server applications to (1) determine the priority at which invocations

will be processed and (2) allow clients and servers to allocate resources for processing and

servicing invocations of different priorities. When used in the appropriate environment,

real-time middleware features help application developers and integrators configure hetero-

geneous systems to preserve priorities end-to-end. Key features of real-time middleware

include a portable priority system, and mechanisms for controlling processor resources and

inter-process communication as described below [66, 53].

Priority-based Systems

Real-time systems often use priorities to indicate the relative importance of completing

certain tasks before others and to allocate resources to process these tasks to ensure their

priorities are enforced. Priority inversion is a scheduling hazard that occurs when a thread

or request blocks the execution of a higher priority thread or request, and possibly pre-

vents it from completing its task in time. To reduce end-to-end priority inversion, as well

as to bound latency and jitter for applications with stringent real-time QoS requirements,

it is necessary to provide a consistent view of priorities across heterogeneous platforms.

Real-time middleware, such as RT-CORBA, provides platform-independent mechanisms

to specify the priority of operation invocations and resource allocations. These mecha-

nisms include the following key features:

42

• Priority Type System: Most real-time operating systems define their own unique

priority type systems which have different ranges or priority values, different di-

rections of higher priority, and different base priority levels. It is very hard to as-

sign priority levels in applications running on different real-time operating systems,

let alone hoping the priority level will remain valid when propagating over multi-

ple ORB endsystems running on different real-time operating systems. To address

this problem, real-time middleware must define a priority type that (1) is portable

across different OS-level priorities, and (2) can be interpreted end-to-end across lo-

cal endsystems. For example RT-CORBA defines the CORBA priority type to meet

these requirements, as Section 4.2 discusses in detail.

• Priority Assignment Model: A real-time middleware should support different strate-

gies for programmers to assign the priority of an execution thread to accommodate

various usage scenarios flexibly. For example, a server might want to pre-define the

priorities of requests coming in from different clients. Alternatively, a server object

may need to service requests coming from clients whose requests need to be handled

at different priorities. In this case, the client should define the priority level a request

should be handled. The invoked server, in turn, should honor the client’s request and

handle the invocation at the requested priority level. This approach allows the pri-

ority level of the invoking thread to be propagated to many server objects along the

invocation path.

Processor Resource Management

Strict control over the scheduling and execution of processor resources is essential for many

DRE applications. The priority type system described in this section provides a mechanism

for real-time middleware endsystems to schedule tasks consistently. These endsystems,

however, also need the mechanisms to allocate processor resources that can be used for

executing scheduled requests.

Real-time middleware often pre-allocates CPU resources for executing tasks of a

certain priority as thread pools to leverage the benefits of multithreading. Pre-allocating

thread pools avoids the extra overhead of dynamic resource allocation and helps prevent

priority inversions, as creating threads requires access to global thread management data

that is shared among all priority levels. Moreover, real-time middleware can provide mech-

anisms to set certain thread pool attributes to limit consumption of memory resources, such

as thread stack size and request buffering.

43

Communication Resource Management

Historically, DOC middleware, such as CORBA, provides an abstraction for object con-

nections that hides the nitty-gritty details of connecting and communicating between client

and server processes. This abstraction enables location transparency which relieves ap-

plications from differentiating the actual location of an object. Treating the underlying

OS, network, and/or bus as an encapsulated “black box” allows DOC middleware to pro-

vide various optimizations and strategies, such as on-demand connection establishment and

connection multiplexing, for minimizing resource utilization without requiring application

programmer intervention.

Although this encapsulation is useful for applications with best-effort QoS require-

ments, it is inadequate for applications with more stringent QoS requirements. For DRE

applications that demand predictable behaviors, it is often necessary to manage and con-

trol connections, the underlying communication protocols and the endsystem resources to

avoid priority inversions when requests at various priorities queue up in the same connec-

tion. It is therefore necessary for real-time middleware to provide mechanisms that enable

application to manage and control object interconnections when desired. For example, a

DRE application may need to use multiple communication channels to avoid priority inver-

sion. An application may request certain connections to be established in the configuration

phase before the full system goes into the production phase to avoid unpredictable delay

incurred by on-demand connection establishment.

Real-time CORBA Capability

The Real-time CORBA (RT-CORBA) 1.x specification [39] extends the traditional CORBA

specifications by defining standard features shown in Figure 4.3 that support end-to-end

predictability for operations in fixed-priority CORBA applications. RT-CORBA includes

standard interfaces and QoS policies that allow applications to configure and control the

processor, communication, and memory resources allocated to applications. Major real-

time features supported by RT-CORBA include:

• Priority system: RT-CORBA support priority aspects to denote the relative impor-

tance of tasks. The priority type in RT-CORBA has a fixed range from 0 to 32767

inclusive, with 0 representing the lowest priority. This provides a consistent view of

priority levels for all interacting applications in a system. To map a CORBA priority

level to a native priority value supported by the local operating system, an applica-

tion can use one of the mapping strategies predefined by RT-CORBA, or can provide

44

Client OBJ
REF

Object
(Servant)

in args
operation()

out args +
return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding
Portable Priorities

Scheduling
Service

Figure 4.3: Key Features of RT-CORBA

its own custom priority mapping strategy. RT-CORBA also provides the two pri-

ority assignment models for determining operation priorities in an application, i.e.,

SERVER DECLARED and CLIENT PROPAGATED.

• Processor Resource Management: RT-CORBA supports pre-allocation of proces-

sor resources in the form of thread pools, for DRE applications to leverage the ben-

efits of multithreading. This mechanism allows server applications to pre-allocate

pools of threads and to set certain thread attributes, such as default priority lev-

els, stack size, and buffering policy. It is also possible to bound the priority of

ORB threads, which is useful when combining a CORBA server with other real-time

threads that may need to run in a particular range of priorities.

• Communication Resource Management: The Real-time CORBA specification de-

fines standard interfaces to control the communication resources as described in Sec-

tion 4.2. These standardized interfaces allow an ORB endsystem to:

– Establish priority-banded connections to demultiplex traffic at different ranges

of priorities into different connections. This prevents messages of different pri-

orities from queuing up in the same connection buffer. When using this policy,

a server ORB will create multiple endpoints to accept incoming requests using

different connections. A client ORB also will select or establish a connection

45

for an out going request based on the priority of the request. Combined with the

priority type system and the processor resource management features of Real-

time CORBA, this ensures that end-to-end priorities are maintained and that

key sources of priority inversion are eliminated.

– Select and configure protocol properties of an ORB endsystem. Real-time

CORBA defines an interface that applications can use to specify ORB- and

transport-specific protocol properties that control various communication pro-

tocol features, for example, to reserve connection bandwidth or to set up packet

delivery priorities for connections of different priorities.

Other than the aforementioned features that affect both client and server side ORB

endsystems, the following features allow a client ORB to:

– Pre-establish connections binding to server objects. Real-time CORBA defines

an explicit binding mechanism that uses the validate connection oper-

ation defined in CORBA::Object. Pre-connecting to server objects provides

more predictable behavior as connection establishment requests will not be

queued and are usually performed before the system is fully configured.

– Establish non-multiplexed private connections to an object. This feature allows

the client ORB to establish private connections to server objects. These con-

nections will not be shared for other object invocations.

Using these two features allows the client ORB to manage network connections be-

tween client and server ORB endsystems efficiently.

Although real-time middleware provides mechanisms to configure and control un-

derlying OS support for allocating an application’s real-time resources and to meet its real-

time requirements, it still lacks sufficient higher level abstractions to separate real-time

QoS policy configurations from application functionality. Developers using real-time mid-

dleware are therefore forced to mix the QoS policy configuration code in the application

code. It is thus hard for developers to configure, validate, modify, and evolve complex DRE

systems consistently using traditional real-time middleware, such as Real-time CORBA.

46

4.3 Addressing CCM Limitations - Extending Support for

Real-Time Aspects in CIAO

As Section 4.1 alludes, QoS provisioning requires a component model that is aware of

applications’ QoS requirements. Supporting the interfaces and mechanisms for QoS provi-

sioning in the underlying operating systems and ORB in a component middleware frame-

work does not provide adequate support for developing and deploying applications with

these QoS requirements as was summarized in Table 4.1

To address the limitations of conventional component middleware in supporting

DRE application domains, it is necessary to make QoS provisioning policies an integral

part of component middleware to decouple QoS provisioning policies from component

functionality. This dissertation extends conventional component middleware to support

composing these systemic aspects and mechanisms into applications. This extension sep-

arates the concerns of managing QoS resources from those of component development as

it is no longer necessary to tangle QoS management code within multiple components and

system modules that can span across multiple programs over the network. This extension

also makes component implementations more robust and reusable, as QoS provisioning via

systemic aspects can now be composed with applications in ways invisible to the compo-

nent implementations.

The middleware technologies discussed in this dissertation apply a range of gen-

erative development techniques [10] to support the separation and composition of QoS

systemic behaviors and configuration concerns. Aspect-oriented design techniques in par-

ticular are important since code for provisioning and enforcing QoS properties in traditional

DRE systems is often spread throughout the software and usually becomes tangled with the

application logic. This tangling makes DRE applications brittle, hard to maintain, and hard

to extend with new QoS mechanisms and behaviors for changing operational contexts. As

Section 4.1 discusses, as DRE systems grow in scope and criticality, a key challenge is to

decouple reusable, multi-purpose, off-the-shelf, resource management aspects from aspects

that need customization and tailoring to the specific preferences of each application. The

solution presented in this dissertation decouples QoS-aspects from application objects and

allows them be composed later in the system lifecycle.

The CIAO framework presented in this dissertation is a “QoS-enabled” CCM im-

plementation which separates the programming and provisioning of QoS concerns. In con-

ventional component middleware, such as CCM described in Section 3.2, there are multi-

ple software development roles, such as component designers, assemblers, and packagers.

47

QoS-enabled component middleware supports yet another development role, i.e., the Qos-

keteer [87] who is responsible for performing QoS provisioning, such as preallocating CPU

resources, reserving network bandwidth/connections, and monitoring/enforcing the proper

use of system resources at runtime to meet or exceed application and system QoS require-

ments. The following section provides a more detailed examination of how to support

composition of real-time policies and mechanisms, starting with the CCM framework as a

blueprint.

4.4 Composing Real-time Behaviors into CIAO Applica-

tions

To provision end-to-end QoS robustly throughout a component middleware system and to

improve component reusability, QoS provisioning specifications should be decoupled from

component implementations and specified instead in component composition meta-data.

This section provides solutions to two major design and implementation challenges, i.e.,

real-time policies can be applied at different levels of granularity and at different stages

of the system lifecycle, in composing real-time behaviors into component middleware. It

reviews how policies can be applied with different granularities in CIAO during differ-

ent stages of application development lifecycle. It provides an analysis to show how CIAO

composes and applies real-time policies throughout the CCM application development life-

cycle. Finally, it illustrates the impact of these features through a simple yet illustrative

example application with both functional and real-time composition requirements.

4.4.1 Challenge 1 – Granularity in Policy-based Configuration Mech-

anisms

Within a real-time middleware endsystem, resources for enforcing real-time behaviors are

allocated using various policy objects standardized by real-time middleware specifications

such as RT-CORBA. These policies can be applied with different granularities, i.e., affect-

ing different scope of objects. Depending on the purpose for which a policy is designed, it

can be applied (1) to the client-side, i.e., to affect how the ORB invokes remote operations,

or (2) to the server-side, i.e., to affect how the ORB handles incoming operation invoca-

tions, or (3) to both the client and server sides, i.e., to control common mechanisms and

strategies.

48

Figure 4.4 shows the different scopes and granularities at which a policy can be

applied, according to the Policy management framework introduced by the CORBA

Messaging specification [36, 65]. On the client-side, a policy can be applied with the

Object Adapter

Object
(Servant)

in args
operation()

out args +
return

ORB CORE GIOP

Object
(Servant)

Client
OBJ
REF

OBJ
REF

1

3

1

2

3

3

3

Protocol Properties

OBJ
REF

Object
(Servant) POA B

POA A

Thread Pool w/ Lanes

Lane
Prio = 100

Lane
Prio = 200

2

233

Priorities Mappings
Custom Protocols

Figure 4.4: Granularities for Applying Real-time CORBA Policies and Resources

following granularities to affect how the client ORB invokes remote operations:

1. ORB: Policies applied to an ORB apply to all object references resolved by the ORB

thereafter. These policies affect all operation invocations using these object refer-

ences.

2. Thread: ORB-level policies can be overridden, within a thread of execution, by ap-

plying the policy to the PolicyCurrent pseudo-object associated with the thread.

All subsequent operations invoked from that thread of execution will be affected by

the applied policies.

3. Object Reference: An object can apply different policies from the ORB or the con-

text of the thread of execution by overriding the policies in the scope of an object

reference. Subsequent operations invoked on that object reference will be affected

by the overriding policies.

49

Likewise, a policy can be applied with various granularities on the server-side ORB to

affect how the ORB handle incoming operations:

1. ORB: Policies applied to an ORB affect all servants hosted by the ORB, i.e., all

incoming requests handled by the ORB will be affected by the applied policies.

2. POA: ORB-level policies on the server side can be overridden by applying the policy

to the POA. All incoming requests to the servants managed by the POA which the

overriding policy applied will be affected by the policy.

3. Object reference: Certain POA-level policies, such as priority level, can be over-

ridden in an object reference by specifying the overriding policies when activating

or creating a new object reference or servant. This overriding mechanism allows a

servant to handle incoming requests using different sets of policies.

It is important to notice how policy overrides work in the CORBA policy management

framework. When policies can be applied with different granularities, policies applied at

finer levels of granularity override those applied with coarser granularity, as shown in Fig-

ure 4.5. This allows developers to configure an application with a set of default policies

while being able to specialize parts of the application by overriding those default poli-

cies. It is therefore important for QoS-aware middleware to support such a policy override

mechanism when integrating QoS provisioning support within the CCM.

Default Policies
ORB Policy Overrides
Thread Policy Overrides
Object Policy Overrides

object->request (arguments);

Figure 4.5: Policy Override in CORBA’s Policy Management

To address this challenge, CCM metadata must be extended to specify real-time

policies for different scopes that affect different entities in an application. Because this is

related to the timing of inserting real-time policies, the table in Section 4.4.3 presents all

the points for inserting real-time policies that CIAO supports.

50

4.4.2 Challenge 2 – Exploiting Composition Phases in CIAO

The CCM programming paradigm provides the foundation for composing systemic behav-

iors via specification of policies and mechanisms for a composed application. CIAO takes

advantage of the multiple policy specification stages in the CCM development lifecycle to

add hooks where systemic policies and mechanisms can also be specified, thus offering a

significant advantage over the conventional RT-CORBA development process. To achieve

this, several supporting constructs in CCM have been extended in to support composition

of systemic policies and mechanisms. To support real-time applications in CIAO, it is first

important to identify when and how real-time policies and supporting mechanisms can be

composed into an application.

The following list provides an analysis of how different kinds of QoS provisioning

policies can be composed at various stages of the CCM development lifecycle shown in

Figure 4.6 and the consequences of using these composition strategies. The CCM devel-

opment paradigm organizes the various concerns into the confines of different stages in

the development lifecycle. Figure 4.6 gives a relatively complete portrayal of the interac-

tions within and between each stage of the application deployment lifecycle. Historically,

policies for managing systemic behaviors are done implicitly by developers in application

programs. Identifying the kind of systemic policies that should be composed into each

stage of the development lifecycle provides better organization to configure and manage

these policies.

1. Component implementation stage: In the component implementation stage, com-

ponent developers can specify the policies and mechanisms on which a component

implementation depends to execute correctly, i.e., to meet the QoS requirements of

the component implementation. For example, a developer may decide to manage the

priority level a component uses to invoke operations on a particular receptacle in the

component implementation explicitly. In this scenario, there needs to be a way for

the component implementation to specify its dependency on component servers and

containers that support real-time behavior.

2. Component packaging stage: A component implementation package may also doc-

ument its key systemic behaviors as constraints in this stage. For example, a compo-

nent may document its implementation constraints on allowable rates it can achieve

to process or to propagate an incoming operation invocation from a facet to opera-

tions to receptacles.

51

Interface
Design

Component
Design

Component
Implementation

Component
Packaging

Application
Assembly

System
Deployment

Interface IDL

Definitions

Stubs

&

Skeletons

Object

Implementations

Running

Applications

Component

IDL

Definitions

IDL

Compiler
CIDL

Compiler

Component

CIDL

Definitions

Servants,

Executors,

Contexts

Language

Tools

Component

DLLs

XML

Component &

Home Properties

XML

Component

Descriptors

(.ccd)

Packaging

Tools

Component

Packages

(Zipped

archives

*.car)

Assembling

Tools

XML

Component &

Home Properties

Assembly

Packages

(Zipped

archives

*.aar)

XML

Softpkg

Descriptors

(.csd)

XML

Assembly

Descriptors

(.cad)

Deployment

Tools

Target Platform

Properties

Component

Configurations

(1)

(3)(4)

(2)

Figure 4.6: CCM Development Lifecycle

Binding systemic behaviors, such as RT-CORBA’s priority model policy, into com-

ponent implementations makes these behaviors part of component implementations.

This approach allows application assemblers to use different component implemen-

tations for selecting different systemic behaviors. However, as we described earlier,

this approach may hamper the reusability of component implementations as they as-

sume certain kinds of support from the runtime environment and other components

that coexist with them. Moreover, extra care must be taken when composing com-

ponents with embedded systemic behaviors to ensure all the components used to

assemble an application have compatible systemic behaviors [71, 79].

It is therefore important to extend component descriptors to allow developers to em-

bed these implementation-specific dependencies and systemic behaviors. This exten-

sion will also provide hints to other tools to ensure that necessary supporting mech-

anisms are available in the composed application and that all the components have

compatible behaviors.

3. Application assembly stage: During this stage, developers utilize various CASE de-

sign tools to create assembly specifications called assembly descriptors that describe

how to build distributed applications using available component implementations. In-

formation contained in assembly specifications includes the number of servers, what

52

component implementations to use, how and where to instantiate components, and

how to connect component instances together in an application. Policies and mech-

anisms for allocating resources and controlling systemic behaviors can be applied at

this stage to control and to allocate resources used by assembled applications. These

policies and mechanisms can be applied and associated with different entities via as-

sembly descriptors, to provide fine-grained control over systemic behaviors. These

policies and resources can be specified in the following manner:

(a) Resources shared by multiple component instances should be specified in each

server and process. Assembly descriptors can then specify the component in-

stances or connections that use these resources by associating them with a

resource. For example, thread-pools and priority-banded connections can be

shared by multiple components and should be defined for the server.

(b) Policies and resources should be associated when specifying a component im-

plementation. This approach allows specification of systemic behaviors of all

component instances using the implementation. For example, a real-time prior-

ity model and priority level can be associated with the component implementa-

tion specifications.

(c) Likewise, policies and resources can be associated with specific components

or home instances to weave in systemic behaviors. This approach is preferred

over that of associating policies and resources with component implementa-

tions, since it provides more flexibility. Other than the priority model and pri-

ority level, component instances can be associated with shared resources, such

as thread pools, allocated in the server.

(d) Policies can be applied with even finer granularity such as per provided inter-

face, per receptacle, or per operation. For example, a component using the

CLIENT PROPAGATED priority model may want to invoke a certain operation

of a receptacle with higher priority for prompt response from the object, while

invoking other operations with lower priority for best-effort service.

(e) Resources and policies that affect the communication between two compo-

nents should be associated with the connection specification in assembly de-

scriptors. For example, a connection between two components may need to be

pre-established using a private connection.

(f) Finally, certain QoS support mechanisms can be linked in dynamically at run

time. The specification of this dependency should be associated with the server.

53

For example, protocol properties and custom priority mappings should be con-

figured for each component server.

In addition, when component behaviors constraints are documented in component

implementation packages, the application assembly stage allows application assem-

bly tools to assimilate and reason about these constraints, make sure there are no

conflicting constraints among component implementations, and deduce and synthe-

size a new set of constraints for the overall application. For example, if a series of

component implementations is connected as a caller-callee chain via their facets and

receptacles, with embedded allowable rate constraints, the assembly tools will be

able to deduce a new set of allowable rates for the new assembled application and

embed the constraints in the assembly descriptors.

4. Application deployment stage: At the final stage of transforming a component as-

sembly into a fully specified and running application, component deployment tools

are responsible to ensure the runtime environment, e.g., the set of component servers,

provides adequate support for the systemic behaviors the application demands. Sup-

port for systemic behaviors can either be provided by the deployment tools via a

special component server implementation that offers the required mechanisms, or

via dynamically linking the required mechanisms into component servers. By con-

trolling the systemic aspect support mechanisms, the deployment stage provides the

last chance in the CCM development lifecycle to control how resources are allocated

prior to running the application.

Similar to the component implementation, packaging and application assembly

stages, tools can be used to model and assist the generation of deployment configu-

rations to ensure the systemic requirements of applications can be met.

In summary, systemic aspects tend to cross-cut functional boundaries. Composing

systemic behaviors often requires resources and mechanisms to be allocated and configured

globally throughout an application. Therefore, component and assembly metadata must be

expanded to parse, allocate and configure these resources and associate them with com-

ponent instances or component connections. Moreover, to ensure a component server is

equipped with the mechanisms needed to support the provisioned QoS requirements, com-

ponent assembly metadata should include middleware modules that enable the control and

configuration of these resources.

54

Table 4.2: Stages for Specifying Real-time Policies and Resources

Policy Stage Remarks
Requiring RT-ORB 1, 2 Requiring an RT-ORB is not a real CORBA

policy but rather should be a requirement in-
ferred from other real-time policies.

Priority Model 1 Embed the priority model a component im-
plementation should always run in the imple-
mentation.

2(b), 2(c) Or more flexibly, specify the priority model
when assembling an application.

2(d) Control partial priority model of a component
for provided interfaces, receptacles, or opera-
tions.

Custom Priority Mapping 2(f) Specify the custom mapping to use.
3 Specify the custom priority mapping in this

stage, allow reinterpretations of “priority”.
Thread pools 2(a) Allocate thread pools for later use.

2(c) Associate thread pools with instances of com-
ponents.

Private connection 2(e) Mark a connection as private.
Banded connection 2(a) Define a banded connection policy that can

be shared.
2(c), 2(e) Specify a component or a connection to use a

banded connection.
Pre-connection 2(e) Mark a connection for preconnection.

4.4.3 Solution – Identifying Points for Extending Metadata in CIAO

Based on our previous observations about stages and scopes for applying systemic policies,

we summarize strategies that can be applied to compose real-time behaviors by assigning

RT-CORBA policies into CCM-based DRE applications. Table 4.2 outlines the appropri-

ate stages in the CCM development lifecycle where various real-time policies should be

specified for building statically configured real-time applications.

Integrating these real-time policies into CCM requires extending various XML doc-

ument formats flexibly to incorporate QoS information into component and assembly meta-

data. Chapter 5 gives a detailed explanation of how CIAO can utilize that knowledge to im-

plement real-time composition support. These strategies are implemented both in CIAO’s

real-time metadata extensions and its deployment tools as is described in Section 5.5.

55

4.4.4 Composing Real-time Aspects with CORBA, CCM and CIAO

This section describes the key steps required to develop a simple client-server using

CORBA, CCM, and CIAO mechanisms. Compared to using a traditional CORBA im-

plementation to develop a simple client-server application, more steps are seemingly re-

quired to develop the same application using CCM, and CIAO adds even more steps for

configuration of real-time aspects. However, this example will demonstrate that much of

the complexity seen in CIAO is inherent to the other examples, and that in fact accidental

complexities can arise in the other two examples that are implicitly addressed in CIAO.

Example Application

We now examine a simple but representative example application drawn from the moti-

vating avionics mission computing domain [69]. Figure 4.7 illustrates a prototypical DRE

application scenario involving three software entities:

1. A Rate Generator, which wraps a hardware timer that triggers pushing of events at

specific periodic rates to event consumers that register for those events.

2. A GPS, which wraps one or more hardware devices for navigation. Because there is

a delay in getting the location reading from the hardware directly, a cached location

value is served via the exposed interface to provide immediate response. The cached

location value is refreshed when the GPS software receives a triggering event and

causes the controlling software to activate the GPS hardware for updated coordinates.

A subsequent triggering event is then pushed to registered consumers to notify the

availability of a refreshed location value.

3. a Head-up Display, which wraps the hardware for a display device in the cockpit to

provide visual information to the pilot. This device displays a cached location value

which gets updated by querying an interface when the controlling software receives

a triggering event.

A DRE application like this can involve multiple controllers connected together via spe-

cialized networking devices, such as VME-bus backplanes.

This simple example represents a broader class of information flow systems to

which our work on avionics mission computing systems belongs, as does the cockpit in-

formation system within each aircraft in the larger system-of-systems example shown in

Figure 4.2 in Section 4.1. Furthermore, although details of the functional properties may

56

Instrument
Cluster

Positioning Cluster

RateGen

Rate

GPS

MyLocation

GUIDisplay
Refresh

Trigger Trigger

Update
Location

Figure 4.7: A Prototypical CORBA DRE Application Scenario

differ, many other DRE systems share the kinds of rate-activated computation and dis-

play/output QoS constraints illustrated here.

Development Using Conventional CORBA vs. CCM:

The first step in developing a CORBA-based system, using either conventional CORBA or

CCM, always requires defining the interaction between software entities via interface defi-

nitions. For example, to implement the system shown in Figure 4.7, a developer must first

define the interface for interactions such as sending the triggering message and querying

the GPS for the current location reading. After the interaction interfaces are defined, im-

plementing the example system using conventional CORBA middleware generally requires

the following steps:

1. Develop servant implementations for previously defined interfaces. Often, these im-

plementations are specific to system hardware.

2. Determine the location of each servant implementation in the network of controllers.

Hardware layout often dictates the selection.

3. Based on the decision made in the previous steps, implement each server process. A

server implementation needs to codify the following tasks:

(a) Initialize and configure the ORB and hardware devices.

(b) Initialize and configure POAs to suit the needs of different servant implemen-

tations.

(c) Instantiate servants, register them with POAs, and activate them.

(d) Initialize and configure an event delivery mechanism, if needed.

57

(e) Acquire necessary object references for the system. In effect, connect the ref-

erenced objects to this process.

(f) Facilitate synchronization with other services and server processes so they are

initialized in the right order.

4. Deploy the assembled implementations to the target platforms.

As the list of steps indicates, in a conventional CORBA-based development para-

digm, much of the overall system functionality is implemented in the server process, other

than how to provide required control functions for the underlying hardware. This system

functionality involves careful coordination among configuration and initialization code for

specific hardware, ORB, POA, object connections, and initialization. This complexity is

inherit to the CORBA development paradigm and requires careful programming of all pro-

cesses involved.

The CCM development paradigm, however, uses a somewhat more elaborate de-

velopment lifecycle which provides a better organization for managing all the different

aspects in developing a system like this. Figure 4.8 presents a CCM-based design for the

Instrument
Cluster

Positioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

Figure 4.8: A Prototypical CCM DRE Application Scenario

same system shown previously. In this approach, each hardware device is wrapped under

a component implementation. After the interfaces defining the interactions between hard-

ware devices are defined, the CCM development lifecycle involves the following steps:

1. Identify a unit of installation as a component interface and design how the component

interacts with the outside world by defining the ports and attributes of the component.

It is straightforward to identify the component interfaces in this example as they map

naturally to the hardware components.

58

2. For each type of component, developers will create one or more component imple-

mentations, e.g., for different hardware or internal algorithms, and package them as

component packages.

3. An implementation of the example system can then be composed by defining an

application assembly file where developers

(a) select the component implementations to use from a pool of available com-

ponent implementations, which does not involve configuring any platform or

runtime requirements, such as in the ORB or POA,

(b) describe how to instantiate component instances using these component imple-

mentations, and

(c) specify connections between component instances.

4. The application can then be deployed to the run-time platforms using a set of deploy-

ment tools.

Compared to the conventional CORBA development paradigm, the CCM development

paradigm takes care of a lot of inherent complexity for the developers. The capability

of the framework allows developers to concentrate on the problems at hand during each

development stage without considering many details of the configuration platform, ORB,

POA, and servant activation that are not directly related to the application. Moreover, CCM

provides many flexible ways to configure an application. For example, the actual rate for

the rate generator component can be specified as a default attribute value in the component

package, or be overwritten in the application assembly, whereas conventional CORBA ap-

plications always require direct modifications to the application code.

Extending Applications Using Conventional CORBA vs. CCM:

When it comes time to modify or extend an existing application due to changes in require-

ments or hardware, it is even easier to notice the benefits of adopting CCM. Assume the

previous example needs to be extended to include a collision warning system to notify the

pilot of imminent danger. Figure 4.9 shows how a CCM-based implementation can be con-

figured to support the new application. The added components are of the same component

types as in the original example application but have different implementations to interact

with different hardware devices, including a collision radar and the warning signal in the

cockpit instrument cluster.

59

Instrument
Cluster

Positioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

RateGen

Pulse

Rate

Collision
Radar

MyLocation

Refresh Ready

LEDDisplay

Refresh

GPSLocation

Figure 4.9: Extended CCM DRE Application Scenario

With the CCM development paradigm, extending the previous example application

is as easy as providing the new component implementations for required component types,

packaging them with component metadata, and using the new component implementation

packages to compose the additional functionality into the new application via an assem-

bly file. Extending a CORBA implementation on the other hand requires a lot more effort

in modifying code throughout both subsystems in the extended application. The tasks re-

quired include creating the new servant implementations, configuring ORBs and POAs to

accommodate these new interface implementations, activating these new interfaces, and

modifying how the two subsystems interact and synchronize to prepare for new intercon-

nections between the two programs.

Development Using Conventional RT-CORBA vs. CIAO:

DRE applications often require prioritization of various tasks to ensure critical tasks are

handled within their time constraints. For example, as shown in Figure 4.10 in the extended

example application, the collision warning system may run at a slow rate but it should

always run at a higher priority than that of the GPS display since a pilot would perform

an evasive maneuver to avoid a collision, instead of worrying about the exact location

of the aircraft. ORBs conforming to the RT-CORBA specification allow developers to

specify such real-time aspects by allocating computational resources and specifying real-

time policies for different interfaces which instruct the endsystem to order the execution

60

of these requests according to different priorities. However, using conventional CORBA,

adding the code for resource allocation and real-time policy specifications requires intrusive

additions and modifications to the application code, including configuration of how to use

the RT-ORB and RT-POA, and configuring the RT-POA policies for each POA, servant, or

even servant activation.

Instrument
Cluster

Positioning Unit

RateGen
Pulse

Rate

GPS

MyLocation

Refresh Ready

GUIDisplay
Refresh

GPSLocation

RateGen

Pulse

Rate

Collision
Radar

MyLocation

Refresh Ready

LEDDisplay

Refresh

GPSLocation

Low
Priority

High
Priority

Figure 4.10: Extended CIAO DRE Application Scenario

In comparison, CIAO’s real-time extensions provide a new real-time extension file

format which we describe in more detailed in Section 5.5, to define all the real-time related

resources and policies. These files can then be composed into an existing application as-

sembly. The resources and policies defined in the file can then be specified to individual

component instances. The resulting application assembly can then be deployed onto plat-

forms that support the specified real-time requirements. The CIAO approach requires no

changes whatsoever to the component implementations, nor any customized server modi-

fications. Instead, this approach allows changing the real-time behavior of an application

simply by composing real-time behaviors differently into another application assembly.

Creating a system with different real-time behaviors is then as easy as deploying differ-

ent application assemblies. Chapter ch:results presents empirical results that quantify the

benefits and costs of prioritization of tasks using RT CORBA features directly, or through

CIAO.

61

Chapter 5

CIAO Implementation

Previously, Chapter 4 highlighted the limitations of the existing CCM specification for sup-

porting systemic aspects of DRE applications and the challenges in composing real-time

policies into CCM applications. Moreover, it illustrated that current CCM specification

offers insufficient support for configuring resource management mechanisms that are crit-

ical to ensure the correctness of DRE applications and presented solution strategies for

how real-time policies can be specified and composed into CCM. This chapter presents the

Component Integrated ACE ORB (CIAO), which is the prototype CCM implementation

used in this research to apply the solution strategy for composing real-time policies into

CCM that was outlined in Section 4.4. In addition to presenting the design and imple-

mentation of CIAO, this chapter also outlines challenges and solutions encountered while

implementing CIAO.

This chapter is organized as follows. First, Section 5.1 provides an overview of the

design of CIAO by reviewing its major building blocks. Sections 5.2 and Section 5.3 then

describe the implementation of the core CIAO libraries and the tools that CIAO provides

to help users implement and deploy component applications. Section 5.4 identifies the key

design idioms that CIAO employs to address various implementation challenges. Finally,

Section 5.5 provides a brief overview of Real-time CORBA specification and describes how

CIAO extends CCM to support composition of real-time aspects into DRE applications and

the challenges and solutions that arise in doing so.

62

5.1 Overview of CIAO

CIAO is a CCM implementation prototype with additional extensions to support QoS pro-

visioning for DRE applications. As the major goal of this dissertation is to study the com-

ponent middleware design and present an implementation to address the challenges and

to demonstrate the effectiveness of the solutions for configuring real-time resources for

DRE applications, CIAO’s implementation has been carefully focused on a subset of CCM

features that directly contribute to that goal. Features that are more relevant to enterprise

applications than to DRE applications are not implemented in CIAO. CIAO consists of the

following four major building blocks, as shown in Figure 5.1.

ACE

TAO

Core Libraries

Runtime
Environment

Deployment
Tools

Implementation
Tools

Figure 5.1: Major CIAO Building Blocks

1. Core libraries: The CIAO core libraries provide implementations for many CCM

defined interfaces on which component users and implementations depend to build

applications.

2. Implementation framework: CIAO provides prototypes and specifications of CIDL

generated code for the component categories that are most relevant to DRE applica-

tions. It also identifies the canonical steps to implement a component.

3. Runtime environment: CIAO provides the runtime environment, i.e., component

servers and containers where component homes and components can be installed and

executed. These tools form the basis of a real-time enabled run-time environment that

supports CIAO’s real-time extensions.

63

4. Component deployment tools: A set of tools in CIAO provides the capability to

parse the component assembly files and software descriptors of component packages,

and to deploy and configure applications which this research uses to conduct various

experiments and provide example implementations.

These key building blocks together form the CIAO infrastructure that enables users

to define component interfaces, generate helper implementation code for components, pro-

vide the runtime environment for component implementations and offer mechanisms to

deploy and realize application assemblies. Based on these basic features, CIAO is then

further extended to support real-time resource provisioning in component applications to

address the challenges and to apply the solutions outlined in Section 4.4.

5.2 Core Libraries and Component Implementation in

CIAO

The CCM specification defines a new set of interfaces to support the addition of new

metatypes, such as home and components, component implementations, and deploy-

ment tools. Excluding the CCM defined IDL definitions, the core libraries consist of

∼4,000 lines of C++ and IDL code. Depending on their intended purposes, all the ad-

ditional IDL interfaces defined by the CCM specification fall into one of three major cate-

gories:

• Component interfaces: These are stubs that component clients require to inter-

act with the extended component interfaces. CORBA components and component

homes inherit from a set of standard interfaces, such as CCMObject and CCMHome,

which define the generic operations all components and component homes should

support. There are also other utility interfaces and valuetypes, such as the

HomeFinder interface and ConfigValues valuetypes, that help component

clients locate, utilize, and configure components. The library containing stubs for

component interfaces is called the Client Library in CIAO.

• Component implementation interfaces: These are the interfaces that component

implementations and containers use to interact with each other. These interfaces in-

clude CCMContext and its derived interfaces that component executors use to inter-

act with their containers, and EnterpriseComponent and its derived interfaces

that all executors inherit from and are used by containers to call back to executors.

64

Moreover, the servant implementations of the aforementioned component interfaces

also fall into this category as they are part of component implementations. Because

these component implementation interfaces are used to interact with the container

interfaces, this library is called the Container Library.

• Deployment interfaces: These are interfaces supported by various software enti-

ties, such as ComponentServer and Container, for deploying, configuring,

and connecting components and applications. The deployment tools take advantage

of these interfaces to deploy components across heterogeneous platforms. These in-

terfaces are required to implement tools for deploying component implementations

into component servers. The library containing these interfaces is therefore called

the Server Library.

Separating these interface stubs and implementations into multiple libraries avoids

the problem of CCM applications linking in unnecessary interface implementations, which

not only prolongs the link time but also increases the footprint of component implementa-

tions and CCM applications. For example, for a pure client program that interacts with a

CCM component, there’s no need for the application to link with interfaces for component

implementation and deployment. Likewise, when developing a component implementation

library, there is no need to link in deployment interface implementations. Figure 5.2 shows

the dependency relationships among the three core libraries upon which CIAO builds.

Client
Library

Container
Library

Server
Library

depends depends

Figure 5.2: Dependencies Among CIAO’s Core Libraries

Other than a set of core CIAO libraries that component clients, implementations,

and other CIAO deployment and runtime services depend on, CIAO also offers a set of

prototyping tools to assist in component development. A key tool CIAO provides for au-

tomating component implementations is the CIDL compiler. The CIAO CIDL compiler

is being developed by the Distributed Object Computing (DOC) Group at the Vanderbilt

University according to the prototypical code templates defined by the work presented in

this dissertation. The code templates, which consist of approximately 2700 lines of C++

code, were designed in this research based on the Component Implementation Framework

65

(CIF) described in Section 3.2.4 which helps to automate the development of component

implementations and includes two major parts:

• home and component servant glue code which provides the container hosting envi-

ronment to home and component executors, and

• a component specific context which implements external connections and consumer

subscriptions and manages interactions with the container framework.

As is shown in Figure 3.6 on page 29, the generated component servants contain and

manage both component executors, which perform application functionality implemented

by component developers, and component specific contexts, which manage component

connections using code generated by the CIDL compiler. Figure 5.3 illustrates how a gener-

ated servant handles the server aspect of a component by forwarding operation invocations

on component interfaces to component executors and connection management operations

to the component-specific context. Figure 5.3 also illustrates how a component executor

Servant component executor context

connect (obj)
connect (obj)

Object1

invoke
invoke

get_connection

Object1

some_operation

Figure 5.3: Interactions Between Servant Glue Code, Executors, and Component Spe-
cific Context

queries the component-specific context to acquire the object reference connected to a re-

ceptacle when the component needs to invoke operations and behave as a client. Together,

the generated servants and component-specific contexts can provide hooks to intercept the

operation flows in and out of components.

66

5.3 CIAO Run-time and Deployment Tools

Section 5.2 outlined CIAO’s core libraries and its support for implementing CCM com-

ponents. As Chapter 3 points out, the eventual goal of creating software components is

to be able to assemble and deploy applications declaratively. CIAO focuses on providing

prototypical mechanisms and runtime support to realize component application assembly

descriptors. Tools for editing and generating the assembly descriptors, however, do not fall

into the scope of this dissertation. This section illustrates key CIAO tools for deploying

application assemblies as was outlined in Section 3.2.6. Moreover, they serve as the pro-

totype implementations of the real-time run-time and deployment tools described later in

Section 5.5.

CIAO provides the following tools for deploying and realizing application assem-

blies:

• CIAO Daemon: As its name implies, the CIAO Daemon is designed to be a con-

stantly running process. Each machine that allows components to be installed must

have a CIAO Daemon process running to interact with other deployment tools. A

CIAO Daemon has two major responsibilities. First, it creates properly configured

component server processes upon receiving requests from deployment management

tools. Secondly, a CIAO Daemon manages the component implementation libraries

by providing look up service for the component servers it creates.

Ideally, a CIAO Daemon will manage the component implementation libraries on

the host where it is running by interacting with a software distribution framework

and downloading the necessary component libraries at appropriate times. CIAO,

however, currently does not support automatic distribution of component implemen-

tations, so component implementation libraries must be distributed manually. A list

of the available component implementations therefore must also be maintained man-

ually. The CIAO Daemon’s component implementation library management role

thus is currently limited to reading the list of installed component implementations

and providing a look-up service for components specified by the assembly manager.

• ComponentServer: CIAO’s component server process implements the

ComponentServer interface that the CIAO Daemon uses to spawn generic com-

ponent server processes. A component server creates and configures containers and

allocates and manages resources within the server process according to the needs of

the components. Containers created by the component server support the

67

Container interface with which the deployment framework interacts to install

component implementations within or remove them from the containers.

• Assembly Manager: The Assembly Manager tool in CIAO provides a deployment

service that creates and manages instances of application assemblies. In CIAO,

the Assembly Manager is the central point of control over a deployment environ-

ment, and manages all the relevant information for building an application from an

assembly descriptor. During the process of deploying an application, the Assem-

bly Manager parses the assembly descriptors that define the application. It then uses

the collected information to interact with the CIAO Daemon process to create an

application as a hierarchy of servers, containers, component home installations, and

component instances.

• Assembly Deployer: The Assembly Deployer is the command line front end tool

used to interact with the Assembly Manager. Application deployers use the Assem-

bly Deployer to instruct the Assembly Manager to create an instance of an assembly

descriptor, or to tear down an existing application instance.

Including the real-time extension support tools described later in Section 5.5 along with

other development helper tools, the deployment and run-time prototype tools provided by

CIAO consist of a total of 11,146 lines of C++ and CORBA IDL code.

Deploying an application requires all the deployment tools to operate in concert.

The following list enumerates the interactions that occur when a system deployer uses the

Assembly Deployer to deploy an example two-component application. Figure 5.4 illus-

trates similar interactions among deployment tools.

0. Before a system deployer can use CIAO’s Assembly Deployer to realize an appli-

cation assembly, the deployment environment must be set up and ready to accept

application deployment. In CIAO, this means that

(a) Because CIAO currently lacks the ability to distribute component implementa-

tions automatically over the network, proper component implementations must

be compiled and copied to target deployment nodes, which usually consist of

computers connected to a network.

(b) For each deployment node, CIAO Daemon must be running. Moreover, the lo-

cation of all the component implementations must be passed to the

68

Deployment Target Host

CIAO_Daemon

Server Activator

Component
Implementation

Manager

Assembly Manager

Assembly Deployer

1. Deploy
assembly

x.cad

7. return the
assembly id

2. create component server

Component
Server

2a. create

2b. Return component server reference

Container

3a
.

cr
ea

te

4. Install component
Impl: compUUID

4a
. Q

ue
ry

im
plU

UID

4b
. R

et
ur

n
im

pl

pa
th

na
m

e

CCMHome
Enterprise

Component
4c

.
cr

ea
te

4d. Return home reference

5. create component
instance

5a. create
5b. Return component

reference

3b. Return
container
reference

3. create
container

Figure 5.4: Interactions Between CIAO Deployment Tools

CIAO Daemon which currently acquires the information from a component in-

stallation file. Each component implementation has a Universal Unique IDen-

tifier (UUID) which is an universally unique 128 bit number. This file contains

a table that maps a component’s UUID to a local file name which contains the

component implementation built for the deployment node’s particular OS and

languages.

(c) The Assembly Manager server process should also be started with the informa-

tion about where all the CIAO Daemon processes belonging to the deployment

environment can be contacted. Similar to the case of automated distribution

of component implementations, CIAO does not currently provide mechanisms

to automatically distribute assembly and component package descriptor files.

These descriptor files should be made available for Assembly Manager server

by copying them manually to a known location.

1. A system deployer uses the Assembly Deployer program to tell the running As-

sembly Manager process which application assembly should be deployed. The As-

sembly Manager then goes on to read the application assembly descriptor and, in

turn, build the application according to the assembly descriptor by iterating through

69

the following steps. The status of the application assembly deployment is main-

tained as an object which is accessible through a CCM deployment interface called

Assembly.

2. Whenever the Assembly Manager decides that a new component server needs to

be instantiated, it contacts the CIAO Daemon process running on the target host.

The Assembly Deployer then requests the daemon process to create a new com-

ponent server with a list of required features the new server should support, and

the configuration options the new server should use. After the server has been suc-

cessfully created, the daemon process eventually returns the object reference of the

component server interface of the newly created component server back to the As-

sembly Manager for later use.

3. After a component server is up and running, the Assembly Manager then contacts

the server and requests that the server create and instantiate the type of container the

Assembly Manager deems necessary to satisfy the needs of component implementa-

tions it will install within that container. Similar to the case of creating a component

server, the Assembly Manager can optionally pass the server a list of required prop-

erties and configuration options for the new container. The server returns an object

reference to the newly created container back to the Assembly Manager for later

use. Notice that an Assembly Manager may create several containers of different

types and properties within a component server to satisfy component implementa-

tions with different needs.

4. Once an appropriate container is created, the Assembly Manager can use the con-

tainer reference and request it to install and activate a home for a component im-

plementation. The Assembly Manager specifies the component implementation and

other runtime properties for the component installation. The component implemen-

tation is specified by a UUID that uniquely identifies that implementation. The con-

tainer then queries the CIAO Daemon for the location of the DLL/shared object that

contains the component implementation. Once the component has been installed in

the container and the object reference for the home interface is activated in the con-

tainer, the home reference is returned to the Assembly Deployer for later use. The

Assembly Manager can install more than one component home in a container.

70

5. If component instances need to be created for a home, as specified in the applica-

tion assembly descriptor, the Assembly Manager will then use the home interface to

create the component instances and store the component references for later use.

6. The process of creating a component server and its containers, component homes and

component instances may each iterate several times within the same level before pro-

ceeding to the next step. The Assembly Manager may iterate through Step 1 through

5 before all statically configured home and component instances are created. Af-

ter all statically created instances are created, the Assembly Manager will establish

the connections among these instances based on the specification in the application

assembly descriptor.

7. Eventually, after all homes and components are installed and the application is run-

ning, the Assembly Manager returns an assembly identifier back to the

Assembly Deployer. This identifier is used to identify the internal data structure

that keeps track of this application deployment. A system deployer also needs to

identify when the application assembly needs to be destroyed.

To clarify these nested instantiation and containment relationships when deploying

an application, the previously mentioned procedures in the application deployment process

can be modeled by the following regular expression. If Step 1 through Step 7 each generates

a digit corresponding to the step number each time it creates an object or connection, a

successfully deployment of an application assembly should produce a sentence that belongs

to the following regular expression:

1 · (2 · (3 · (4 · 5∗)+)+) + 6 ∗ ·7

Figure 5.5 demonstrates the containment relationships within an instantiated CCM appli-

cation.

:Assembly :ComponentServer :Container

:CCMHome:EnterpriseComponent

1..* 1..*

0..*
1..*

Figure 5.5: Interactions Between Various CIAO Deployment Tools

71

5.4 Significant CIAO Design Features

During the course of designing and implementing CIAO as the basic prototype framework

for integrating the solutions for challenges in composing real-time policies in CCM, several

new challenges were identified. New design features, which turned out to be essential to the

component middleware framework, were devised to address these challenges. This section

identifies these challenges and lists the design features CIAO employs and the benefits

these features bring.

5.4.1 Separation of a Component Implementation Into Multiple Li-

braries

Context: As was described in Section 5.2, other than component executors implemented

by component developers, a component implementation also depends on other software en-

tities including interface stubs and skeletons generated by the IDL compiler, and the servant

glue code and component-specific context generated by the CIDL compiler. Other than

stating that component executors should be loaded dynamically into component servers,

the CCM specification does not dictate how component libraries should be implemented.

The CCM specification does not dictate how generated code and developer implemented

component code should be linked into dynamic libraries. The packaging and deployment

section of the specification assumes that each dynamic library contains the full implementa-

tion of a component, including all the stubs and skeletons of its interfaces, CIDL generated

code and executors.

Problem: However, aggregating a component implementation in a single dynamic load-

able library can raise the following concerns:

• CCM components often interact with other components. Because there’s no way to

foresee whether a component implementation will be collocated in the same process

with another collaborating component, it is important to ensure the effectiveness of

collocation optimization for CCM components regardless how they are assembled.

When the code for both the stub and the skeleton is linked together dynamically, the

ORB knows a reference to the interface could be collocated from the existence of the

skeleton code. However, if both the stub and skeleton are linked into the component

library serving the interface, the library of another component using the interface

will contain a separate copy of the stub code for the interface. There will be no

72

way for this client component to figure out whether if it is collocated with the server

component, and thus will defeat the collocation optimization of the underlying ORB.

• As was previously identified in Section 5.2, the servant glue code implements many

systemic strategies, such as event delivery, for executors and provides interception

points where calls in and out of components can be intercepted. Moreover, the CIDL

compiler can be extended to generate servant glue code that supports different sys-

temic support strategies for both servants and component-specific contexts. For ex-

ample, a generated servant can intercept incoming operation invocations and execute

necessary systemic aspect code, such as updating the urgency of the call, before re-

laying invocations to corresponding actual executor functions.

Similarly, the CIDL compiler can be extended to generate component-specific con-

texts that, when queried by executors, will return references to receptacle and event

consumer smart proxies which perform extra operations before relaying invocations

to target receptacles or event consumer methods. Different combinations of gen-

erated servants and executors can create components with different implementation

strategies or different systemic behaviors. Forcing generated servant and executor

code into a single library not only diminishes the reusability of both the servant and

executor but also causes increasing demands on memory, from code duplication when

components have different implementations or different systemic behaviors.

Solution: To address the aforementioned problems, instead of linking all the entities into

a single implementation library, the prototype component implementation tools provided

by CIAO include scripts to generate Makefiles for creating 3 separate dynamic libraries

for each component implementation. As shown in Figure 5.6, these libraries include:

• Stub library which contains collections of stub implementations a component client

needs to invoke operations on the component.

• Glue code library that contains implementations for the servant glue code, the

component-specific context, and the executor base interface.

• Executor library contains the executor implementations that perform the application

functionality.

Specifically, separating a component implementation into multiple dynamically

loadable libraries address the problems from a single component library as follows:

73

Component
Impl DLL

Servant DLL
(Container glue

code)

Client DLL

TAO_IDL
Component

Interface
Definitions

Component
Implementation

Definitions

Stub
Code
(*C.*)

Skeleton
Code
(*S.*)

CIDL
Compiler

Executor
Template

Code
(*EC.*)

Generic
Servant
Code

(*_svnt.*)

Component
Impl.

(*_exec.*)

Equivalent
Executor

IDL
Definition

*E.idl

User
Implemented

TAO/CIAO
TOOLS

Generated
Code

Component
Descriptor

(*.ccd)

TAO_IDL

Impl.
DLL

Figure 5.6: Implementing CIAO Component Libraries

• Separating the interface stub code into its own library is necessary for CIAO com-

ponents to take advantage of the collocation optimization [85] offered by TAO. By

separating the stub code into a separate library, the ORB endsystem can then deter-

mine whether an object reference is collocated or not during run-time. It is therefore

important to separate stub code of various interfaces a component supports into indi-

vidual libraries to make sure components can still take advantage of the collocation

optimization.

• Separating the CIDL generated servant glue code into its own library provides mech-

anisms to flexibly compose executors with servants implementing different systemic

strategies into component implementations. Replacing servant libraries indepen-

dently allows CIAO to combine component implementations with servants of dif-

ferent strategies and thus compose the systemic behaviors into a component sys-

tem. The CIDL compiler can also generate servants and component-specific contexts

that provide hooks for composing systemic behaviors dynamically as shown in Fig-

ure 5.7. Separating servant libraries thus enhances flexibility to reuse the component

implementation. Components can be composed with different systemic behaviors by

74

linking to different servant libraries. Likewise, multiple component implementations

can share a common servant library if they all have similar requirements for systemic

behaviors.

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

QOSContext

Objref

Objref

Objref

Objref

Objref

Objref

`

Figure 5.7: CIDL Hooks for Integrating systemic Aspects

The advantages of separating component libraries, however, come at a cost of ad-

ditional complexity in extending and creating a component package and its descriptors

and managing component libraries. However, all the procedures to generate component

implementations and descriptors, and handle component dependencies and distribution are

expected ultimately to be part of an automated process handled by higher-level tools. Com-

ponent developers are therefore likely to be shielded from this added complexity.

5.4.2 Separation of Logical and Physical Configurations

Context: When defining an application assembly, there often is a need to assume a cer-

tain deployment configuration and specify how the application assembly can be deployed.

For example, application assemblers can use the “destination” element in CCM’s assem-

bly descriptors to specify the location where a component should be installed. Usually, a

destination should refer to a service running on the destination machine and can activate

component servers when being requested.

75

The CCM packaging and deployment specification, however, does not define many

details on how to interpret these descriptor elements, including “destinations”. A straight-

forward approach is to embedded the actual information pointing to the “destination” di-

rectly in the assembly. For example, a destination element can simply contain either the

host name and port number pair or the stringified IOR of the server activation service, to

identify the target endpoint on which a component can be installed.

A similar situation happens when specifying the run-time configurations for each

deployment node. TAO provides a rich set of configuration options, via command line

flags or a configuration file, for controlling various strategies and mechanisms of an ORB.

Many mechanisms that can be configured into the ORB through these options are plat-

form dependent, e.g., the Unix-domain socket Inter-ORB Protocol (UIOP) is not available

on Win32 platforms. Moreover, many ORB configuration options interact and must be

configured compatibly end-to-end, throughout the application.

Problem: However, interpreting the destination elements as a reference directly to the

destination machine or object combines the knowledge of a specific deployment environ-

ment directly into the application assembly. By committing to specific deployment targets

prematurely during the application assembly stage, the application assembly descriptors

are therefore bound to the specific deployment configuration and can not be reused in an-

other deployment environment. Likewise, as each deployment node may require certain

platform-dependent mechanisms to support certain configurations, it is not appropriate to

embed the actual configuration information in the application assemblies. Embedding the

platform-specific configuration options into assembly descriptors also prevents these de-

scriptors from being deployed onto different target deployment platforms.

Solution: What is really needed is a way to defer the determination of the actual deploy-

ment location and its configuration until deployment time, when more complete informa-

tion is available. To achieve this goal, CIAO employs a key design feature to separate

logical and physical configurations. This separation of configuration decisions allows de-

velopers making design decisions at earlier stages to express only the design intentions as

“logical names” and leave the decision on how to achieve these logical decisions to devel-

opers at a later stage.

Specifically, CIAO’s deployment framework adopts this design feature to decouple

the specification of the actual deployment location from the description of the deployment

topology in an application assembly. Application assemblers can now specify deployment

76

destinations using logical names that represent some abstraction of these destinations that

are meaningful to the assembly contexts, e.g., names like “navigation computer” and “in-

strument panel display processor”. The system deployers then map the application destina-

tions into nodes within a deployment topology by translating the destination logical names

into actual host names in the Assembly Manager service. This separation of logical and

physical deployment destinations alleviates the need to couple knowledge about the actual

deployment configuration into application assemblies, and allows system deployers to re-

deploy application assemblies easily by reconfiguring the deployment destination maps in

the Assembly Manager.

To address the limitations of specifying ORB configuration options in application

assemblies directly, CIAO applies the same design principle to separate the logical and

physical specifications of ORB configurations. Instead of allowing application assemblers

to specify a list of ORB configuration options directly for each installation destination,

CIAO extends the semantics of the “destination” element so that a logical configuration

name can be appended optionally to the logical destination name. Therefore, a logical des-

tination can now be interpreted as a logical location plus a logical name for the required

ORB configuration, e.g., “RSVP-enabled” or “multi-endpoints”. Unlike the installation

destinations whose physical locations are interpreted by an Assembly Manager that co-

ordinates actual deployments, the logical configuration names are passed by the Assem-

bly Manager as-is directly to the CIAO daemon process where these logical configuration

names can be translated into platform-specific ORB configuration options. Allowing CIAO

daemon processes to interpret the meaning of logical configuration names frees the Assem-

bly Manager from the need to acquire detailed and platform-specific knowledge of all the

possible deployment targets.

Figure 5.8 illustrates how and where CIAO’s deployment framework determines the

physical locations and configuration options it uses to start up a component server. As

the figure demonstrates, a system deployer can easily redeploy an application assembly

onto a set of different machines by reconfiguring the deployment framework without the

need to modify the application assembly descriptor file. By deferring the selection of the

deployment target location and the ORB configuration options, CIAO provides a flexible

deployment framework for software modeling tools to model and synthesize not only ap-

plication compositions but also other systemic aspects [19], such as deployment topologies

and component server configurations. CIAO currently supports configuration of compo-

nent servers via the ACE service configurator framework [25], but that same mechanism

77

Assembly_Deployer
...
<destination>DBServer|MultiEndPoints</destination>
...

Global.cad

uses

Assembly_Manager

D
eploy

“G
lobal.cad” ...

(DBServer, DBDaemon-IOR)
...Lookup

“DBServer”

Create server with

“M
ultiEndPoints” configuration

CIAO_Daemon

DBDaemon

...
(MultiEndPoints, MEPsvc.conf)
...

Lookup

“M
ultiE

ndPoints”

.

...

.

MEPsvc.conf

ComponentServerCreate with
“MEPsvc.conf”

uses

Figure 5.8: Steps CIAO Takes to Determine the Location and Configuration of a Com-
ponent Server

can be extended to specify command line flags and other configuration property files for

the component servers.

5.4.3 ACEXML and XML-based Service Configuration

Context: The eXtensible Markup Language (XML) provides an extensible standard syn-

tax for describing information as a layered structure of mark-ups. XML documents are

easy to parse because of their relatively concise grammar. At the same time, it is relatively

easy for people to interpret XML documents because the information presented is well-

structured and text-based. XML has gained great popularity in a wide variety of application

domains where new document types are defined for describing the domain-specific knowl-

edge. Many tools and extension features are also available for extracting, cross-referencing,

and synthesizing information from XML documents.

The CCM specification also adopts XML as its language to describe many forms

of component and application information. A CCM framework can generate and consume

XML documents to pass component and application-related information between tools. For

example, CCM tools can utilize XML documents in following fashion.

78

• The CIDL compiler generates XML component descriptors to document component

capabilities, such as available interfaces and port mechanisms, and external depen-

dencies of component implementations, such as the types of container services they

require.

• The assembly tools import XML component feature descriptors to use these compo-

nents in application assemblies. The knowledge from component descriptors allows

assembly tools to ensure compatibility of components within assemblies. The as-

sembly tools also generate XML assembly descriptors to document compositions of

applications.

• The packaging tools generate XML packaging descriptors to describe the content of

a software package that aggregates various software entities including binary files

of component implementations, meta-data about these implementations, and other

necessary libraries.

• The deployment tools parse the XML packaging descriptors, and other nested XML

descriptors to deploy individual components or application assemblies.

Some of the information described in these XML descriptors is already available in

the form of other languages. For example, descriptions about component capabilities are

available in IDL files and descriptions about component implementations are available in

CIDL files. Using XML descriptors is still a preferable choice as XML descriptors can

be designed more concisely to contain only relevant information extracted from IDL and

CIDL. XML also allows these descriptors to be extended to insert information not included

in the original IDL or CIDL files.

Moreover, because XML’s design allows the separation of parsing of XML docu-

ments and extraction of information from the reasoning and processing of the information,

it is much easier for various tools to support multiple document formats. Therefore, instead

of having to include multiple parser implementations for parsing and processing documents

formatted in various grammars, a tool can use a common XML parser to process and extract

information from all types of documents but implement only how to handle the extracted

information. This approach not only reduces footprint but more importantly, makes it easy

for these tools to add support for new document types.

Problem: Nevertheless, most of the XML generation and parsing in CCM is done off-

line, i.e., processing XML documents is generally not required by the CCM specification

79

in runtime environments such as a daemon process or a component server, that are needed

to run a CCM application. Existing XML parser implementations are designed to be fully

compliant with the XML specification and often come with features for performing char-

acter code transformation along with additional capabilities such as for document trans-

formation. These features and capabilities are essential for enterprise applications, such

e-commerce and dynamic web page rendering, but increase the memory footprint signif-

icantly for features not used for our purpose of simply extracting information from XML

files in CIAO’s runtime environment.

Solution: An XML parser called ACEXML is therefore implemented to serve this pur-

pose in a more appropriate manner for DRE applications. ACEXML is a small footprint,

highly portable, non-validating basic XML parser implementation. It adopts the event-

driven styled of the Simple API for XML (SAX) version 2 developed by David Meggin-

son [58]. The Service Configurator framework [62] in ACE has been re-implemented to use

XML-based configuration files to allow easy extension for providing more versatile config-

uration features in the future. The following section also illustrates how CIAO’s real-time

extensions utilize the ACEXML parser to support composition of real-time features into

DRE applications.

5.5 CIAO’s Real-time Extensions

Context: Although RT-CORBA standardizes the interfaces for controlling resources crit-

ical to support real-time QoS behaviors of DRE applications as was described in Sec-

tion 4.2, RT-CORBA lacks sufficient higher level abstractions to separate real-time QoS

policy configurations from application functionality. QoS policy configuration code is of-

ten intertwined with the application code which makes complex DRE applications hard to

configure, validate, modify, and evolve consistently. The tight coupling of policy aspects

with application logic is inherent to the CORBA 2.x object model, and has been carried

forward into derivative specifications that focus on QoS properties, such as the Real-Time

CORBA 1.0 and 2.0 specifications.

As was outlined in Chapter 4, it is necessary to make real-time properties an integral

part of the CCM framework in order to apply the CCM programming paradigm in the DRE

application domain. Section 4.4 further detailed the challenges and solutions to compose

real-time policies into different scopes in a DRE application at various stages of the CCM

development lifecycle.

80

Problem: However, unlike for more enterprise-oriented QoS support such as transac-

tional behaviors, the existing CCM specification does not provide a notion of abstracting

real-time behaviors as real-time policies in various XML descriptor formats. Moreover,

scattering all the real-time policies across various XML descriptors makes it hard to an-

alyze and reason about the composed real-time behaviors or to ensure their consistency.

Because the work of this dissertation concentrates on composing the real-time behaviors

into applications, the real-time extensions added by the work described in this dissertation

focus on the final two stages of the development lifecycle, namely the application assembly

stage and the application deployment stage.

Solution: To resolve the problem of applying the solution outlined in Section 4.4.3 to

compose real-time behaviors during the application assembly stage, CIAO defines a new

XML document type for describing the real-time behaviors and the resources to support

those behaviors that a component server must support. CIAO calls this new XML docu-

ment type Real-Time Component Assembly Descriptor (RTCAD). As Section 4.4 points

out, during the application assembly stage policy specifications can be used to (1) allocate

resources shared by multiple components, (2) associate shared resources, and (3) apply

real-time policies within different scopes. A CIAO RTCAD file organizes definitions un-

der two XML elements:

• rtresources which contains a list of named resource declarations that are to be

allocated by a component server. Users can specify real-time CORBA related re-

sources, including thread pools, thread pools with lanes, and connection bands. Re-

sources defined in this section can be associated with a policy by referring to their

names as is described in the next section.

• rtpolicyset which defines a named collection of real-time CORBA policies that

should be applied together. The real-time CORBA policies that are supported in

CIAO include priority model, thread pool, and banded connection policies. Both

thread pool and banded connection policies need to refer to the corresponding shared

resources defined previously in the same RTCAD file. A global resource defined in a

previous rtresources element can be associated with more than one

rtpolicyset to allow a resource to be shared by multiple components.

RTCAD files have the file extension name rtd. The following is a snippet from an example

RTCAD extension file named firstclass.rtd.

81

<rtcad_ext>

<rtresources>

<threadpoolwithlanes

id="shared_pool"

stacksize="0"

borrowing="no"

buffering="no"

max_buffer="0"

buffer_size="0">

<lane priority="1"

static_threads="100"

dynamic_threads="300"/>

<lane priority="2"

static_threads="2"

dynamic_threads="2"/>

<lane priority="3"

static_threads="1"

dynamic_threads="2"/>

</threadpoolwithlanes>

</rtresources>

<rtpolicyset id="HIGH_PRIO_POLICY">

<priority_model_policy

type="server_declared"

priority="3"/>

<threadpool_policy

idref="shared_pool"/>

</rtpolicyset>

<rtpolicyset id="LOW_PRIO_POLICY">

<priority_model_policy

type="client_propagated"

priority="1"/>

<threadpool_policy

idref="shared_pool"/>

</rtpolicyset>

In this example RTCAD file, a thread-pool-with-lanes is defined in the rtsources sec-

tion. Two sets of policies are defined with different priority levels. However, both policy

sets share the same common thread pool resource.

82

To compose the real-time behaviors defined in RTCAD extension descriptors, CIAO

uses the extension element that the CCM specification alloted for assigning vendor-

specific extensions in assembly descriptors. An application assembler can specify the RT-

CAD extension file a component server should use by defining the extension subele-

ment as:

<extension

class="RT-CAD-EXT"

origin="CIAO">

firstclass.rtd

</extension>

Here, the class and the origin attribute values identify the content of the extension to

be a CIAO RTCAD extension file name named firstclass.rtd.

Once a component server uses the extension element to define the kind of RTCAD

extension file it supports, a component hosted by the component server can then specify

the real-time policy set defined in the RTCAD extension file this component or component

home instance must support. The association is, again, defined via the extension flag

under the component or home instance as:

<extension

class="RT-POLICY-SET"

origin="CIAO">

A_POLICY_SET

</extension>

As in the case of specifying the RTCAD extension file a component server needs, the

class and origin attribute values identify the name of the policy set that has been

previously defined in the RTCAD extension file. The name of the specified policy set also

refers to the real-time behaviors a component installation must support.

Besides extending the component assembly descriptors and the deployment tools to

handle XML descriptors, both the component server and the container need to be extended

to process and configure the real-time policies that are composed into an application as-

sembly. CIAO provides implementations for a real-time component server and a real-time

container. When deploying an application assembly file with real-time behaviors composed

within it, the deployment tool tells the component server the RTCAD extension file to use

when creating the component server. The real-time component server will open and parse

83

the specified RTCAD extension file and allocate the resources and maintain the lists of

available resources and policy sets available in the component server.

CIAO’s deployment tool also tells the the component server the name of the real-

time policy set to use to create a new container instance. The component server then

searches for the list of policy sets by their names and applies the policies defined in the

set. The mechanism to apply the RTCAD extension follows the same design principle of

separating logical and physical configurations. As during the application assembly stage,

only the logical policy set names which represent logical concepts of real-time behaviors

that should be applied to component installation, and logical RTCAD extension file names

which identify collections of real-time policies and resources, are used to realize the poli-

cies. The actual policies applied to a component instance will not be determined in the

application assembly but will be deferred until the component server parses the actual as-

sociating RTCAD extension file.

The following snippet of an example application assembly descriptor shows how

the two policy sets can be composed into an application.

<processcollocation>

<homeplacement id="a25_WorkerHome">

<componentfileref idref="com-Worker"/>

<componentinstantiation id="a_W25"/>

<extension class="RT-POLICY-SET"

origin="CIAO">LOW_PRIO_POLICY</extension>

</homeplacement>

<homeplacement id="a75_WorkerHome">

<componentfileref idref="com-Worker"/>

<componentinstantiation id="a_W75"/>

<extension class="RT-POLICY-SET"

origin="CIAO">HIGH_PRIO_POLICY</extension>

</homeplacement>

<extension

class="RT-CAD-EXT"

origin="CIAO">firstclass.rtd</extension>

</processcollocation>

As the example shows, two components are installed and instantiated in the same compo-

nent server which needs to allocate the real-time resources, in this case the thread pool with

lanes, defined in the RTCAD file “firstclass.rtd”. The component server will then create two

84

real-time-enabled containers, each configured to support the HIGH PRIO POLICY policy

set and the LOW PRIO POLICY policy set, respectively.

The service configuration framework provides the mechanism to determine the pri-

ority mappings. System deployers can, therefore, configure the actual real-time behaviors

by providing customized RTCAD and service configurator files for a specific deployment

environment.

85

Chapter 6

Empirical Studies

This chapter presents an empirical analysis of the performance cost and benefits of ap-

plications built using CIAO vs. TAO. The two main goals of these experiments are (1)

to compare and document the overhead imposed by CIAO, i.e., in terms of throughput,

latency, jitter, and footprint of the same test application based on TAO vs. CIAO, and

(2) to validate the efficacy of composing systemic aspects in CIAO, i.e., prioritization and

rate tuning, for real-time application performance. The results and analysis shown in this

chapter will illustrate how CIAO effectively address the limitations of conventional CCM

outlined in Table 4.1 on page 40.

To our knowledge, CIAO is the first component model implementation to integrate

configurability of RT-CORBA features. Since TAO is a state-of-the-art real-time object

request broker (ORB), the comparisons between CIAO and TAO’s functional and real-time

features in particular offer a representative profile of the potential overheads and benefits

available to other ORB implementations through application of the techniques described in

this dissertation.

Section 6.1 first describes the experimental platforms on which the results presented

in this section were obtained. Section 6.2 then compares the time and space overhead

of CIAO and TAO for both functional and real-time aspects. Using a simple rate-based

client-server design commonly found in avionics systems such as the example shown in

Figure 4.1, Section 6.3 presents a performance evaluation of configuring real-time aspects

using CIAO’s extension and an analysis of the benefits offered through configuration of

those aspects, either through CIAO directly or via a higher-level modeling tool. Finally,

Section 6.4 summarizes the results presented in this chapter and offers observations and

recommendations based on those results, as guidance for system developers wishing to use

CIAO’s ability to configure both functional and systemic system aspects.

86

6.1 Experimental Platform

Two single-CPU 2.8 GHz Pentium-4 computers served as deployment targets, thus pro-

viding the execution environment for the experiments performed in this chapter. Both ma-

chines ran KURT-Linux [14] 2.4.18, which is distributed as a Linux kernel patch. KURT-

Linux, developed at the University of Kansas, provides a highly predictable platform for

the experiments described in this chapter. Both machines had 512 MB of memory, with 512

KB of on-chip cache memory. Another two single-CPU 2.53 GHz Pentium-4 computers

with the same memory configuration as the 2.8 GHz machines were used to deploy the test

programs. All four machines were connected via switched Fast (100 Mbps) Ethernet as is

shown in Figure 6.1.

1 2 3 4 5 6

7 8 9101112

A
B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

E
th

e
rn

et

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C 100Base-T Switched Fast-Ethernet

Deployment Target 1 Deployment Target 2 Deployment Management Server Deployment Console

Figure 6.1: Test-bed Configuration

All the test programs, libraries, and tools were compiled using GCC version 3.2

with no embedded debug information, and with the highest level of optimization (-O3). All

the tests were based on TAO version 1.3.5 and CIAO version 0.3.5. Because CIAO depends

on dynamically loading component implementations at run-time, all the test programs are

compiled to use dynamic libraries (as shared objects) in order to provide a realistic assess-

ment of CIAO’s performance and footprint. To remove spurious sources of variability from

the tests, all the deployed applications were run as root in the real-time scheduling class,

using the SCHED FIFO policy.

6.2 Overhead Comparisons

Chapter 3 elucidates how a component-based application development framework makes

developing complex large-scale applications easier and more flexible by separating con-

cerns for designing, implementing, and deploying an application among developers with

different areas of expertise. These benefits, however, do not come without cost, but instead

87

are achieved by adding extra layers and operations on top of conventional CORBA appli-

cations. The purpose of the experiments in Section 6.2.1 is to quantify the overhead of

these added layers and operations by comparing performance of an application based on

conventional and component middleware, i.e., TAO and CIAO. These comparisons pro-

vide information developers need to assess the baseline feasibility of adopting component

middleware approaches in general, and CIAO in particular.

As was described in Chapter 4.3 for DRE systems in particular, QoS provision-

ing must be made an integral part of the component framework to provide a flexible and

effective solution to configuring systemic aspects of the system. The experiments in Sec-

tion 6.2.2 compare the performance of an application using the real-time policies and mech-

anisms provided by TAO and CIAO.

Finally, Section 6.2.3 offers a detailed examination of the memory and disk sizes of

the various libraries and executable software elements needed to support the test applica-

tions in this section, in both TAO and CIAO. Together with the performance comparisons in

Sections 6.2.1 and 6.2.2, these experiments also help identify areas for future improvement.

In particular the footprint results offer guidance on the areas where library refactoring in

TAO could offer the greatest reductions in disk and memory requirements in CIAO, or

where techniques like the SOreduce [33] effort by OCI could be applied as future work.

6.2.1 Performance Comparison for Functional Aspects

As Section 3.2 described, CCM components are hosted during execution by containers.

CCM containers act as a bridge between the underlying ORB mechanisms and the com-

ponent implementations by relaying operation invocations to and from components. This

experiment aims to provide a quantitative performance comparison for the functional as-

pects of an application developed using TAO and CIAO, and identifies sources of overhead

that may offset the development flexibility that CIAO achieves through the extra levels of

indirection described in Section 3.2.

Experiment design: Figure 6.2 shows the interface definition used by both test programs.

TAO’s implementation of the test consists straightforwardly of a pair of client-server pro-

grams running on the two test machines. CIAO’s test depends on two component imple-

mentations where one provides the target interface while another component performs the

benchmarking operation by using the same interface. The CIAO test then can be built by

using the deployment tools to deploy the two component to two separate machines.

88

module Benchmark {
interface LatencyTest {

long makeCall (in long send_time);
};

};

Figure 6.2: Interface Definition for Performance Tests

This experiment measures and compares performance by invoking the simple oper-

ation repeatedly in each test using either TAO or CIAO. The performance metrics in this

experiment were:

• throughput, the average number of operation invocations completed per second;

• latency, the time to complete each invocation of the operation; and

• jitter, which measures the standard deviation in latency of all invocations sampled,

as well as the maximum measured latency and the latency within which 99% of the

samples fell.

As is shown in Figure 5.3 on page 65, an operation invocation on a component will

incur an additional virtual function call for a generated servant to forward the invocation to

the executor. Likewise, when a component invokes an operation on a receptacle interface,

it needs to retrieve the reference before invoking the operation on it. The cost for both

the virtual function call and the retrieval of the object reference should be constant and

relatively small.

This experiment therefore selects an operation signature (its argument and return

type) resulting in a small message payload, to make the overhead of CIAO more significant

in comparison and offer an approximation of the worst case CIAO performance for non-

trivial method invocations. Not including the length of other protocol headers, the message

payload going over the wire is kept to only 8 bytes. The small payload size reduces the time

the operation spends in marshaling the data and sending message over the wire, which both

TAO and CIAO tests require, and thus makes CIAO’s overhead stand out in comparison to

TAO.

Experimental results: Figure 6.3 shows the throughput results of TAO and CIAO to be

9219 and 9144 calls/sec respectively over a sequence of approximately 10,000 repeated

89

calls. The results show that using CIAO only reduces throughput by a modest 0.81% com-

pared to TAO’s throughput performance. The relative performance difference would be

even less significant for operations that carried larger payloads. The latency and jitter

TAO
9219

CIAO
9144

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
h

ro
u

g
h

p
u

t
(c

al
ls

/s
ec

)

Figure 6.3: Throughput Comparison between TAO and CIAO

results gathered from the same experiment are shown in Figure 6.4. The mean latency

numbers of TAO and CIAO are 107.3 µsec and 109.1 µsec respectively, which indicate a

1.8 µsec, i.e., about 1.68% increase in mean latency. This is consistent with the throughput

results and shows that the difference in relative overhead imposed by CIAO compared to

TAO is small.

The other graphs in Figure 6.4 show the jitter in the latency measurements in this

experiment in terms of standard deviation, the time within which 99% of all samples fell,

and the maximum measured latency. The standard deviation for both TAO and CIAO were

both vary small – around 1% of the measured mean latency. 99% of TAO and CIAO latency

samples are under 109 µsec and 111 µsec respectively, which are relative close to the

respective mean latency numbers. Finally, the maximum measured latencies for TAO and

CIAO were comparable, at 141 µsec and 156 µsec, respectively. Complete distributions of

all 10,000 latency samples for both TAO and CIAO tests, shown in Figure 6.5, also reveal

that both tests had similar jitter.

Analysis of results: The experiment results show that the extra level of indirection in

CIAO adds only a small overhead to the conventional TAO ORB as documented above.

Moreover, CIAO does not adversely affect the the jitter and worst case performance, which

90

Maximum

156
141

0
20
40
60
80

100
120
140
160
180

(µ
s)

Mean

107.3 109.1

0

20

40

60

80

100

120

140
(µ

s)

Standard Deviation

1.19

0.97

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(µ
s)

99%

109 111

0

20

40

60

80

100

120

140

(µ
s)

Figure 6.4: Latency Comparison between TAO and CIAO

are of greater importance to many DRE systems. As the results from this experiment show,

both CIAO and TAO performed similarly.

6.2.2 Performance Comparison for Real-time Aspects

CCM containers can also apply meta-programming techniques in order to configure dif-

ferent systemic aspects of CCM components, such as priorities or rates of invocation. A

fundamental extension to CIAO’s capability to configure functional aspects is the addition

of a real-time ComponentServer run-time environment.

Experiment design: This part of the experiment evaluates the performance overhead

to componentize real-time applications, by repeating the experiment in Section 6.2.1 but

with RT-CORBA features enabled in the TAO ORB and using CIAO’s real-time Compo-

nentServer environment. Other than that difference, this experiment was conducted in an

91
TAO

0

20

40

60

80

100

120

140

160

CIAO

0

20

40

60

80

100

120

140

160

Figure 6.5: Complete Latency Distributions for TAO and CIAO in µsec

identical manner to the experiment described in Section 6.2.1, and the same metrics, i.e.,

throughput, latency, and jitter were evaluated.

Experimental results: Figure 6.6 shows the throughput results of these real-time bench-

marking tests using TAO and CIAO to be 8420 and 8107 calls/sec respectively. The results

show that when real-time ORB features are enabled, CIAO suffers a 3.7% reduction in

mean throughput compared to TAO.

TAO + RT-ORB
8420 CIAO + RT

Component
Server
8107

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
h

ro
u

g
h

p
u

t
(c

al
ls

/s
ec

)

Figure 6.6: Throughput Comparison between Real-Time Enabled TAO and CIAO

The latency results from this experiment are shown in Figure 6.7. The mean laten-

cies of TAO and CIAO calls were 118.9µsec and 122.9 µsec respectively, indicating an

increase of 4 µsec or ∼3.4% in mean latency. This is consistent with the TAO real-time

92

ORB and CIAO real-time ComponentServer throughput results, and shows that the over-

head imposed by CIAO’s implementation when using real-time CORBA is still very small,

albeit exacerbated by the addition of real-time features. As in the case of the functional as-

pect performance test, CIAO’s relative performance cost in terms of throughput and latency

is reasonably expected to diminish with any increase in payload size.

Maximum

219
182

0

50

100

150

200

250

(µ
s)

Mean

118.9 122.9

0

20

40

60

80

100

120

140

(µ
s)

Standard Deviation

1.58
1.38

0.0

0.5

1.0

1.5

2.0

(µ
s)

99%

123 127

0

20

40

60

80

100

120

140

(µ
s)

Figure 6.7: Latency Comparison between Real-Time Enabled TAO and CIAO

The other graphs in Figure 6.7 show the standard deviations, 99% latency bounds,

and maximum measured latencies for TAO and CIAO with real-time ORB features enabled.

The standard deviations were again both small: less than 2 µsec for both TAO and CIAO

real-time tests. TAO’s measured real-time latency had 99% of all samples under 123 µsec,

and 99% of the measurements for CIAO fell within 127 µsec. In both cases 99% of all

samples fell within ∼4 µsec above their mean latencies. The maximum latency results for

TAO and CIAO tests were also comparable, at 182 µsec for TAO and 219 µsec for CIAO.

Figure 6.8 also shows that both TAO and CIAO real-time tests have the similar jitter based

on the plots of all latency samples.

93
RT-TAO

0

50

100

150

200

250

RT-CIAO

0

50

100

150

200

250

Figure 6.8: Complete Latency Distributions for Real-time TAO and CIAO in µsec

Analysis of results: Together these results show that here a similar conclusion can be

drawn to that in Section 6.2.1, that with real-time features enabled the mean and worst case

performance for CIAO was slightly worse than for TAO, but was reasonably close overall.

6.2.3 Footprint Comparisons

Experiment design: Application footprint is seldom an issue for most enterprise appli-

cations, as both memory and secondary storage have become more and more affordable and

available. Many computer systems on which DRE applications run do however have much

stricter memory constraints due to physical or budgetary limitations. As a consequence,

increases in software footprint can have direct and significant effects on the overall weight,

power consumption, and heat dissipation in end products, which are key issues for certain

types of DRE applications. This section compares the memory and disk storage require-

ments for running the benchmarking test applications described in Sections 6.2.1 and 6.2.2,

using TAO and CIAO respectively.

The footprint metrics considered here include both the file size and the memory

size, counting both code and data sections reported by the GNU size utility, of the required

middleware libraries and executables. This comparison does not include system libraries,

such as glibc or standard C++ libraries. This experiment aims to compare and document

the footprint increase for running a comparable application in CIAO and to provide hints

on how to cut down the memory requirement in CIAO.

Experiment results: Table 6.1 lists the sizes for server-side and client-side common li-

braries for TAO programs. Table 6.2 lists the total sizes of server-side and client-side

94

Table 6.1: Storage Required for Server-side and Client-side Common Libraries

Library Server Libraries Client Libraries
File size File size

ACE 1,905,727 1,504,346 1,905,727 1,504,346
TAO 2,739,052 2,168,541 2,739,052 2,168,541

Valuetype 61,213 42,518 61,213 42,518
Strategies 669,326 499,404 669,326 499,404

PortableServer 2,344,311 1,770,156
ObjRefTemplate 61,501 41,187
IORInterceptor 48,415 29,493

Total 7,829,545 6,055,645 5,375,318 4,214,809

Table 6.2: Storage Required for Server and Client Executables

Library Server Client
File size File size

Common Libraries 7,829,545 6,055,645 5,375,318 4,214,809
Executables 162,713 107,213 78,116 46,578

Total 7,992,258 6,162,858 5,453,434 4,261,387

executables plus the total common library sizes listed in Table 6.1 that are required by the

client and server to run the basic TAO benchmark tests.

These numbers represents the amount of secondary and primary storage needed

respectively to store and run the basic functional TAO benchmark programs on the server

and client side machines.

Table 6.3 lists the sizes for the common run-time support, including all the CIAO-

specific shared libraries and executables necessary for a machine to become a deployment

target. This includes the object libraries and executables needed to run the deployment

daemon and all of the CIAO run-time supporting libraries. Note that the CIAO run-time

environment always requires the set of common libraries in TAO, as CIAO’s run-time sup-

port programs can always act as servers. As seen in this table, it requires almost 18 MB

of secondary storage space to hold the libraries and executables for deploying a CIAO

server. Each target machine also needs to have a deployment daemon running to start up

component server processes as was described in Section 5.3. Many libraries on which the

CIAO Daemon executable depends overlap with those required by the component server.

The total secondary storage space for the deployment and run-time support programs is

95

Table 6.3: Storage Required for CIAO Common Run-time Support Libraries

CIAO tools Common Libraries
Libraries & Executables File size

Common Server Libraries 7,829,545 6,055,645
Security 1,104,741 832,149

IFR Client 4,264,757 3,431,512
IORTable 76,966 54,473

CIAO Client 1,473,327 1,114,966
CIAO Container 1,720,269 1,320,232

CIAO Server 1,350,701 1,016,489
XML Common 198,638 144,575

XML Parser 92,046 74,713
CIAO XML Helpers 266,486 206,284

CIAO Daemon 211,443 147,047

Total 18,588,919 14,343,611

Table 6.4: Storage Required for Benchmark Client and Server Components in CIAO

Library Server Component Client Component
File size File size

Stub 234,429 164,307 265,155 184,383
Servant Glue Code 486,926 355,428 563,041 409,720

Executor 98,847 67,498 103,651 70,400

Total 820,202 587,233 931,847 664,503

then the sum of the storage needed for CIAO Daemon, and all the libraries they depend on,

which comes to 18,588,919 bytes.

In addition to the common runtime support and deployment infrastructure required

to deploy and run the application, the storage required by the component libraries them-

selves must also be taken into account. Table 6.4 lists the libraries for the client and server

components of the benchmark tests. Less than 1 MB of storage space on the deployment

target machine is required for the component implementations. We can then calculate the

total disk space required by a target linux machine to become a deployment target for de-

ploying either server or client components to be ∼ 19 GB as shown in Table 6.5.

The memory space (i.e., the primary storage) required to execute each application

is equally important. Table 6.6 then compares both the secondary storage required to hold

the benchmark client and server and the run-time memory footprints when the bench client

96

Table 6.5: Storage Required for Deploying Benchmark Client and Server Components
in CIAO

Library Server Client
File size File size

Component 820,202 587,233 931,847 664,503
Common Run-time 18,588,919 14,343,611 18,588,919 14,343,611
ComponentServer 32,674 15,687 32,674 15,687

Grand Total 19,441,795 14,946,531 19,553,440 15,023,801

Table 6.6: Total Secondary Storage and Memory Required for Benchmark Client and
Server Using Either TAO and CIAO

Server Client
Disk Space Memory Size Disk Space Memory Size

TAO 7,805 K 5,568 K 5,326 K 4,220 K
CIAO 18,968 K 11,036 K 19,095 K 11,240 K

and server first start up with TAO or CIAO. Figure 6.9 shows head-to-head comparison

of disk space requirements for storing TAO and CIAO client and server programs on target

machines.

We now review and compare the secondary storage and the memory footprints re-

quired to support real-time behaviors in both TAO and CIAO. Table 6.7 lists the additional

secondary storage space required for the TAO server or client to support real-time behavior.

The additional storage required by both server and client are only moderate, 820 KB and

640 KB each. To deploy a real-time CIAO application, a target platform must also support

the additional server-side common RT libraries. CIAO also provides a special real-time

component server that is capable of configuring additional real-time policies for applica-

tions. Table 6.8 lists the secondary storage requirements for a deployment target to install

Table 6.7: Storage Required for Additional Server-side and Client-side Real-time Li-
braries

Library Server Libraries Client Libraries
File size File size

RTCORBA 664,830 512,486 664,830 512,486
RT-PortableServer 170,450 120,753

Total 835,280 633,239 664,830 512,486

97

Disk Space Comparison

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

TAO
CLIENT

TAO
SERVER

CIAO
CLIENT

CIAO
SERVER

CIAO Component Server
Implementation files
CIAO Runtime files
CIAO Dependent files
TAO Server files
TAO Client files

Figure 6.9: Comparison of Disk Space Required for TAO and CIAO in Bytes

Table 6.8: Storage Required for Deploying Real-time Benchmark Client and Server
Components in CIAO

Library Server Client
File size File size

Component 820,202 587,233 931,847 664,503
Common Run-time 18,588,919 14,343,611 18,588,919 14,343,611

Common RT Server Libs 835,280 633,239 835,280 633,239
RTComponentServer 124,125 81,749 124,125 81,749

Grand Total 20,368,526 15,645,832 20,480,171 15,703,102

a server or client component in the real-time benchmark test. Finally, Table 6.9 compares

both the secondary storage requirements and the memory footprint for running a real-time

server or client using TAO and CIAO. As can be seen comparing Table 6.6 and Table 6.9,

adding real-time capabilities only adds a modest additional storage requirement. Fig-

ure 6.10 illustrates the comparison of disk space requirements for storing real-time enabled

TAO and CIAO client and server programs on target machines.

Analysis of results: The tables showed in this section demonstrate that the current im-

plementation of CIAO entails a notable increase in overall system storage and memory

requirements. However, many services and interfaces in the list of CIAO common libraries

98

Table 6.9: Total Secondary Storage and Memory Required for Benchmark Real-time
Client and Server Using TAO and CIAO

Server Client
Disk Space Memory Size Disk Space Memory Size

TAO 8,625 K 5,856 K 5,974 K 4,568 K
CIAO 19,891 K 11,984 K 20,000 K 12,192 K

RT Disk Space Comparison

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

TAO
CLIENT

TAO
SERVER

CIAO
CLIENT

CIAO
SERVER

CIAO Component Server
CIAO RT Component Server
TAO RT Server files
TAO RT Client files
CIAO Component Server
Implementation files
CIAO Runtime files
CIAO Dependent files
TAO Server files
TAO Client files

Figure 6.10: Comparison of Disk Space Required for Real-time Enabled TAO and
CIAO in Bytes

are not actually used by CIAO or its components. Furthermore, some services may not in

fact be useful for all application domains. For example, CIAO currently does not support

the Security Service or utilize the Interface Repository. Many DRE applications will not

need either of these services as they often avoid the more dynamic features of CORBA that

require the Interface Repository, and exist within isolated deployment environments where

security is already provided.

However, these libraries are still currently required by many CIAO libraries because

their interfaces are used by standard CCM interfaces. Additional future work is motivated

by these results, to decouple those dependencies. This will allow CIAO infrastructure

to be more dynamically configured and requires only libraries based on the application

requirement.

99

In addition, CIAO applications are hosted inside a component server that in principle

could be linked either statically or dynamically to other libraries. While CIAO uses dynam-

ically linked shared object libraries to achieve its run-time configuration and deployment

capabilities, the author has also contributed to the design of statically linked compile-time

assembly and run-time configuration capabilities in CIAO for use on VxWorks and other

conventional real-time operating systems, to reduce code size, avoid dependence on dy-

namic libraries which are not supported on those platforms, and improve predictability of

system initialization times. These capabilities have been prototyped as part of an ongoing

collaboration between the DOC groups at Washington University and Vanderbilt Univer-

sity, and are currently undergoing experimentation within the DARPA PCES program.

6.3 Validating Effectiveness in Configuring Real-Time As-

pects

The experiments in this section evaluate the effectiveness of CIAO’s support for composing

systemic aspects to achieve real-time behavior. They also illustrate how different real-time

behaviors can be composed and configured into existing applications through the use of

CIAO’s real-time extensions.

6.3.1 Validating CIAO’s Real-time Extensions

The performance experiments outlined in Section 6.2 show that CIAO introduces only a

small amount of overhead to the run-time environment for real-time applications. Experi-

ments in this section, on the other hand, aim to assess the effectiveness of CIAO’s ability

to compose real-time behaviors into existing application components. To achieve this goal,

all experiments used simple components whose functional implementation was amenable

to configuration of but decoupled from any real-time aspects. Different real-time aspects

were then composed with them in these experiments, to model several of the original real-

time tests described in earlier work on RT-CORBA features in TAO [53]. Those original

experiments will be referred to as TAO RT tests hereafter.

Experiment Implementation:

Unlike the TAO RT tests, where procedures for different tests were hard-coded into many

client and server execution paths, which in turn depend on complicated logic and scripts to

100

determine the exact tests to perform, the CIAO tests conducted in this dissertation consisted

of only a handful of simple component implementations. With CIAO, different tests were

composed, instead of programmed, by selecting and connecting different combinations of

components and systemic policies. Therefore, only a few component implementations are

needed to perform the tests using CIAO.

The basic interactions in the TAO RT tests occurred between a test object provided

by the server and a client invoking an operation on the object, thus requesting the server to

perform a given amount of CPU-intensive work. Different tests were derived from different

configurations of the server and client. For example, the number of objects served by the

server and their real-time constraints were varied. Also, clients were given different num-

bers of threads, each invoking server objects with different workloads in different ways,

e.g., at a fixed rate vs. continuously.

WorkerController do_work

Figure 6.11: Basic CIAO RT Experiment Design

As Figure 6.11 shows, the CIAO RT tests needed only two basic component types,

called Controller and Worker, to emulate the TAO RT tests. A Worker component provides

a common interface which contains the following operation that a client can invoke with

an in parameter named work to specify the number of repetitions of a fixed increment of

work to perform within that invocation:

long do_work (in long work);

The CIAO RT tests only required one component implementation for the Worker compo-

nent that performs the specified amount of CPU computation when requested.

A Controller component uses a common interface to request that a connected Worker

component perform a given amount of work. Several Controller implementations are pro-

vided for the experiments. Each Controller implementation realizes a particular invocation

strategy, such as continuous or rate-based at 25, 50, or 75 Hz. A Controller component also

supports an interface for starting and stopping the test operation and performing output of

the statistic results observed in the controller. Multiple controllers then act as sources of

101

execution threads invoking operations on the server component at different rates. These

experiments follow the design commonly found in avionics systems of the kind shown in

Figure 4.1 and described in Section 4.4.4.

Validating Experiments:

We now describe the experiments performed, present the results of those experiments, and

explain how these results validate CIAO’s support for composing real-time aspects. All

experiments performed in this section use the real-time component server to ensure that

all experiments are executed in the same environment and that the composed real-time

behaviors are realized using state-of-the-art ORB middleware features, from TAO.

Workload vs. invocation rate: This experiment measures the maximum frequency a

server can sustain to complete tasks at different workloads.

Experiment design: Figure 6.12 illustrates the design of the experiment. In the

test application, a continuous controller component starts requesting the connected worker

to do a certain fixed amount of work continuously. Upon completion of pre-defined itera-

tions of requests, the controller calculates the frequency at which the worker can perform

under the given workload. The workload is defined by the number of repetitions of a sim-

ple computation that the worker performs for each request from the controller. That simple

computation consists of the CPU intensive operation of checking whether a big prime num-

ber is or is not prime.

Workerdo_workContinuous
Controller

Figure 6.12: Experiment Design for Workload vs. Rate

Experiment results: Figure 6.13 shows the maximum number of requests the

server can handle under different workloads.

Analysis of results: As the computational capacity of a server is limited, the rate

(R) at which a server can handle requests decreases as the workload (W) increases as

102

0

20

40

60

80

100

120

140

160

100 150 200 250 300 350 400

Work Load

T
h

ro
u

g
h

p
u

t
(c

al
ls

/s
ec

)

Figure 6.13: Relationship between Workload and Invocation Rate

shown in the following equation:
k

W + c
= R

where k and c are both constants specific to the computational power of the platform.

Multiple fixed-rate controller-worker pairs: This experiment demonstrates the behav-

ior of a server handling multiple worker threads over a range of workloads without any

scheduling.

Experiment design: This experiment consisted of 3 Controller-Worker pairs run-

ning concurrently, as shown in Figure 6.14. Each of the three controllers made requests to

the worker at its respective fixed rate of 25, 50, or 75 hertz. The worker handles requests

from each individual controller by doing the specified amount of work in a separate thread.

When invoking an operation on the worker, a controller will block until the invocation re-

turns from the Worker. Therefore, if the Worker can not handle the request at the given

rate, a Controller will not be able to invoke operations at its designed rate.

This experiment measures the rate at which each of the three controllers can make

requests to the worker component under different workloads. The total work performed

by all 3 worker threads eventually exceeds the amount of work the server can handle. As

103

TARGET HOST 2TARGET HOST 1

Worker

25Hz
Controller

50Hz
Controller

75Hz
Controller

Figure 6.14: Experiment Design for Workload vs. Rate

shown in Figure 6.13, the server has only limited capability to perform work. Because all

three worker threads perform the same amount of work, we expect one or more worker

threads will not be able to maintain the designated rate when the workload increases to the

point where the server is not able to perform at a rate higher than 150 Hz.

Experiment results: Figure 6.15 shows the measured results from the experi-

ment: when the workload increases initially from 20, all 3 controllers can achieve their

designed rates. However, once the workload increases to above 110 repetitions per invoca-

tion, the 75 Hz controller starts to fall short of its target rate. Similarly, above a workload

of 130 repetitions the 50 Hz controller also falls short of its target rate, and above 210

repetitions all three controllers fail to perform at their designed rates of invocation.

Analysis of results: The result observed is in consistent with the results observed

in the previous “Rate vs. Workload” experiment, i.e., as workload increases the rate at

which Workers can handle requests eventually decreases. However, failing to meet the

invocation rate of controllers indiscriminately is often not acceptable for most DRE appli-

cations. Instead, certain tasks must be able to meet their execution rates even if there are

not sufficient computational resources to enable all the tasks to run at their specified rates.

The following experiment presents two different ways to compose real-time aspects into an

application flexibly to meet this application requirement.

104

0

10

20

30

40

50

60

70

80

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

Work Load

T
h

ro
u

g
h

p
u

ts
 (

ca
lls

/s
ec

)

25 Hz 50 Hz 75 Hz

Figure 6.15: Achievable Rates vs. Workload

Prioritized workers using separate threadpools: This experiment intents to show how

real-time behaviors can be composed into an application during the CIAO assembly phase,

to satisfy systemic requirements that are specific to the application.

Experiment design: This experiment uses an RTCAD extension file described in

Section 5.5 to specify resources and policy sets a component server must provide and de-

fines policy sets that can be associated with various entities in an application assembly.

Real-time systemic behaviors can then be composed into the experimental application as-

sembly by adding the RT aspect configuration parameters each component instance needs,

to the assembly files. This experiment extends the previous experiment by composing

either “increase rate, increase priority” or “increase rate, decrease priority” prioritization

aspects into the assembly descriptor.

The real-time aspects defined in this experiment include several server-declared pri-

ority policies with different priority levels. Each priority-level policy is then associated

with a single-priority thread pool. Because each Worker component instance uses a policy

set that is different from the other Worker instances, the deployment tools install each of

the three Worker instances in different containers.

105

Figure 6.16 (a) shows the application configuration after applying this approach

to support “increase rate, increase priority” real-time behavior, i.e., the rate monotonic

scheduling (RMS) strategy. RMS is a canonical priority-based scheduling strategy [17].

For certain systems, however, RMS may not provide the kind of QoS required. Using non-

Container

(Mid Priority)

Container
(High Priority)

Container

(Low Priority)

TARGET HOST 2TARGET HOST 1

Worker25Hz
Controller

50Hz
Controller

75Hz
Controller

Worker

Worker

Container

(Mid Priority)

Container
(Low Priority)

Container

(High Priority)

TARGET HOST 2TARGET HOST 1

Worker25Hz
Controller

50Hz
Controller

75Hz
Controller

Worker

Worker

(a) (b)

Figure 6.16: Experiment Design for Multi-rate Test With (a) “Increase Rate, Increase
Priority” Behavior, and (b) “Increase-rate, Decrease Priority” Behavior

RMS strategies such as maximum urgency first (MUF) for these systems may out-perform

the case when RMS is used. The next experiment therefore composes an anti-RMS real-

time scheduling strategy into the test application as shown in Figure 6.16 (b).

Experiment results: Figure 6.17 shows the resulting achievable rates of Con-

trollers at the 3 specified rates after composing the “increase rate, increase priority” real-

time behavior into the experiment assembly. As the figure reveals, the 75 Hz Controller is

now able to maintain its rate at the expense of Controllers at lower rates, as dictated by the

composed real-time behavior. The 75 Hz Controller eventually fails to maintain the rate as

workload increases, but that is because the computer hosting the Workers simply can not

sustained the rate under that controller’s own heavy workload, as shown in Figure 6.13.

Figure 6.18 shows the resulting performance after composing the anti-RMS real-

time behavior into the test, i.e., “increase rate, decrease priority”. As can be observed from

the figure, the Worker connected to the 25 Hz Controller is now deemed more important

106

0

10

20

30

40

50

60

70

80

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

Work Load

T
h

ro
u

g
h

p
u

ts
 (

ca
lls

/s
ec

)

25 Hz (Low Prio) 50 Hz (Mid Prio) 75 Hz (High Prio)

Figure 6.17: Achievable Rates vs. Workload When Using “Increase Rate, Increase
Priority” Real-time Behavior

in the composed behavior. Therefore, as workload increases, other less important Workers,

starting from the lowest priority 75 Hz one, have to yield computational resources to the

25 Hz Worker.

Analysis of results: The experiment results show that the composed real-time be-

haviors did successfully add the desired systemic aspects, i.e., prioritizing task handling.

In the experiments, real-time aspects were composed at different stages, i.e., real-time

CORBA policies and resources at the component assembly stage and certain real-time ORB

configurations at the deployment stage. Furthermore, the applied RTCAD file also utilizes

CIAO’s support to compose real-time behaviors to different granularities in an application,

i.e., threadpool configurations at the per-ORB level and sets of real-time policies at the

container level. The way the experiments composed the real-time policies demonstrates

how CIAO is using the solution outlined in Section 4.4.3.

The two tests performed in the experiment also show how the RTCAD extension

files help in managing the consistency of real-time systemic behaviors flexibly. An appli-

cation can adopt a different real-time strategy by either using different RTCAD files which

provide different definitions of real-time policy sets, or by changing the application assem-

bly file to use real-time policy sets differently according to their logical names.

107

0

10

20

30

40

50

60

70

80

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

Work Load

T
h

ro
u

g
h

p
u

ts
 (

ca
lls

/s
ec

)

25 Hz (High Prio) 50 Hz (Mid Prio) 75 Hz (Low Prio)

Figure 6.18: Achievable Rates vs. Workload When Using “Increase Rate, Decrease
Priority” Real-time Behavior

Prioritized workers using threadpools with lanes: This experiment also shows the ef-

fectiveness of composing real-time behaviors into an application, but using a different strat-

egy, i.e., threadpools with lanes, for managing the reservation of processing resources.

Experiment design: Figure 6.19 shows an alternative approach to compose the

RMS, i.e., “increase rate, increase priority” real-time aspect, into the test assembly. In

this approach, instead of creating multiple thread pools for every priority level, the same

effect is achieved in this experiment by allocating a thread pool with different lanes for

different priorities. Although the deployment tools still create multiple containers for host

components at different priorities, they all share the same thread pool using this approach.

The same experiment is also performed with the “increase rate, decrease priority” real-time

behaviors.

Experiment results: The result of the alternative approach of using a threadpool

with lanes is shown in Figure 6.20 which yields the same result as that of using RMS with

individual threadpools. Similarly, the result graph of composing the anti-RMS real-time

behaviors with threadpool with lanes in Figure 6.21 shows the same effect is achieved

using the alternative approach.

108

TARGET HOST 2

Container
(Mid Priority)

Container
(High Priority)

Container
(Low Priority)

TARGET HOST 1

Worker25Hz
Controller

50Hz
Controller

75Hz
Controller

Worker

Worker

Thread Pool
with Lanes

Low Prio
Lane

Mid Prio
Lane

High Prio
Lane

Figure 6.19: Experiment Design for Multi-rate Test With “Increase Rate, Decrease
Priority” Behavior Using Shared Thread Pool With Lanes

Analysis of results: As expected, the alternate real-time strategies applied in this

experiment demonstrate the same effectiveness. More importantly, the series of real-time

experiments have illustrated how integrating real-time behaviors declaratively can help ad-

dress the limitations of conventional CCM and make it suitable for DRE applications. The

validating experiments are modeled after the experiments conducted in TAO’s Real-time

CORBA work [53]. The benefit of bringing the CCM development paradigm to bear is

evident when comparing the equivalent test programs used for TAO and those used for

CIAO. TAO’s RT experiments require complex logic in both the client and server test pro-

grams and the collaboration of complicated scripts to cover configurations for all real-time

behaviors performed. In comparison, CIAO based tests are composed by using simple com-

ponent implementations and XML definitions to specify the test applications and real-time

systemic behaviors, which are much easier to reason about, maintain, and manage.

6.3.2 Exploiting Configuration Phases

As was pointed out in Section 4.4.2, systemic behaviors can be both documented and con-

figured at the component implementation, application assembly, or deployment stages of

the CIAO development lifecycle. The extra information captured at each stage can enable

109

0

10

20

30

40

50

60

70

80

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

Work Amounts

T
h

ro
u

g
h

p
u

ts
 (

ca
lls

/s
ec

)

25 Hz (Low Prio) 50 Hz (Mid Prio) 75 Hz (High Prio)

Figure 6.20: Achievable Rates vs. Workload When Using “Increase Rate, Increase
Priority” Real-time Behavior with Threadpool with Lanes

a developer using CIAO either directly, or in an automated manner via third-party model-

ing tools, to reason about and configure the resource allocations, priorities, rates and other

real-time aspects of an application in the later stages of development lifecycle, i.e., in the

application assembly and deployment stages. Such a capability in turn allows key proper-

ties of the resulting real-time performance, e.g., feasible allocation of resources for deadline

assurance, to be checked. It also allows, within the checked constraints, other properties

like rates of invocation to be optimized with respect to various objective functions.

The experiment in this section will demonstrate how the additional information can

be used by both developers and modeling tools, to ensure correctness and enable opti-

mization of CIAO application assemblies and execution environments, which can not be

achieved either easily or systematically with TAO-based applications.

Experiment design: Suppose we were developing a simple application similar to

the Basic RT test shown in Figure 6.11. However, instead of a continuous controller which

requests that the worker do work continuously, the target application needs to be able to

invoke the worker component to do work at some fixed rate without failing to meet that

specified rate. Suppose further that higher rates yield higher utility for the application, so

110

0

10

20

30

40

50

60

70

80

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

Work Amounts

T
h

ro
u

g
h

p
u

ts
 (

ca
lls

/s
ec

)

25 Hz (High Prio) 50 Hz (Mid Prio) 75 Hz (Low Prio)

Figure 6.21: Achievable Rates vs. Workload When Using “Increase Rate, Decrease
Priority” Real-time Behavior with Threadpool with Lanes

that the ideal configuration is the highest sustainable rate for each worker running on a

server.

Experiment results: Figure 6.22 shows the maximum achievable rates the worker

implementation can achieve for different workloads on machines with different capabilities

to which workers can potentially be deployed. As may be reasonably expected, Figure 6.22

shows that the worker component implementation can do work at higher rates when run-

ning on a 2.8 GHz Pentium-4 machine than it does on a 2.53 GHz Pentium-4 machine, and

higher there than it does on a 930 MHz Pentium-III machine. For example, when perform-

ing a workload of 150 repetitions, the worker component implementation can perform work

at ∼ 103 Hz on a 2.8 GHz machine but only ∼ 95 Hz on a 2.53 GHz machine and ∼ 34 Hz

on a 930 MHz machine. In fact, as described in Section 6.3, on each platform the relation-

ship between the amount of work (W) and the achievable rates (R) can be described in the

following formula:
k

W + c
= R

111

Table 6.10: Constants for Workload and Rate Relationship

CPU Types k c
2.8 GHz Pentium-4 15626 1.73
2.53 GHz Pentium-4 14332 1.66
930 MHz Pentium-3 5105 0.593

where k and c are machine-specific constants that define the capability of the machine.

Table 6.3.2 shows the constant values of the machines on which this experiment was per-

formed, determined from the empirical results obtained on each machine.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

100 150 200 250 300 350 400

Work Load

T
h

ro
u

g
h

p
u

t
(c

al
ls

/s
ec

)

2.8 GHz P-4 2.53 GHz P-4 930 MHz P-III

Figure 6.22: Achievable Rates of the Worker Component vs. Workload for Different
Hardware Configurations

Analysis of results: We now consider developing and deploying an application

as shown in Figure 6.23 with an illustrative workload of 150 repetitions. The controller

should trigger the worker to perform as much work as possible by requesting as high a rate

as possible without failing to sustain the configured rate. Assume the controller can be

configured to run at any of the following discrete rates: 25 Hz, 75 Hz, 100 Hz, and 125 Hz.

The following list discusses how and what information can be added and utilized in this

example through CIAO’s configuration capabilities at different lifecycle stages.

112

Workerdo_workConfigurable
Controller

Figure 6.23: Application with Possibly Variable Rates

• Component implementation packaging stage: During this stage, the packaging

tool should document the component behaviors targeted for later analysis. For ex-

ample, the descriptors for the controller component should document the allowable

rates at which it can run. The descriptors for the worker component should docu-

ment the maximum achievable rates under both known hardware configurations, i.e.,

103 Hz using a 2.8 GHz machine and 95 Hz using a 2.53 GHz machine. Alterna-

tively, the descriptor can record the formulas describing the maximum achievable

rate as behavioral constraints of the component implementation.

• Application assembly stage: After composing the two components together into an

application assembly, the assembly tool should review the behavioral constraints and

create a new set of constraints for the assembly. In this example, it is obvious that in

neither configuration can the controller run at 125 Hz. Since the goal of the applica-

tion is to perform work at highest allowable rate, a developer (or modeling tool) can

then set the rate information in the assembly descriptor to configure the controller at

100 Hz when using the 2.8 GHz machine, 75 Hz when using the 2.53 GHz machine,

or 25 Hz when using the 930 MHz machine.

• Application deployment stage: At this stage, the developer (or modeling tool) can

compare the actual characteristics of the deployment target (obtained, e.g., through a

priori analysis or run-time benchmarking) to the rate configurations established at the

assembly stage, to select the highest feasible rate that can be sustained on each given

platform subject to all other constraints, e.g., invocation rate dependencies between

components deployed across possibly heterogeneous processors.

As can be seen in this analysis, the addition of systemic information enables devel-

opers and modeling tools to verify, optimize, and flexibly reconfigure application assembly

and deployment platform information at various stages of the development lifecycle. Al-

though CIAO does not itself perform the analysis to do such verification, optimization,

or reconfiguration, its rich capabilities to configure both functional and systemic aspects at

113

different phases of the system lifecycle are key enablers for these additional features. Com-

pared to TAO-based applications, this added robustness and adaptability can not only ease

the process of attaining correctness in a complex system, but also to improve the perfor-

mance of the overall application when the narrower development cycle needed to configure

(rather than to program) systemic aspects allows on-the-spot optimizations using CIAO.

6.4 Summary, Observations and Recommendations

The experiments performed in the dissertation show that CIAO adds only a small amount

of overhead by comparing the performance of an equivalent CIAO application to one based

on TAO. The proportion of overhead will diminish even more with the increase of the size

of the payload of an operation. CIAO also does not degrade the predictability of applica-

tions by adversely affecting the jitter. The current implementation of CIAO, however, does

demand more secondary storage and primary memory for running CIAO applications. The

impact on extra footprint and storage space is expected to lessen as the implementation of

CIAO evolves, e.g., when the dependencies on unused libraries are removed.

This chapter also shows that CIAO’s run-time support for real-time applications im-

pose only a small amount of overhead to the overall performance and does not adversely

affect the predictability. Moreover, CIAO’s real-time extensions have been shown to enable

the composition of real-time behaviors into an application flexibly and effectively. Because

developers can now integrate real-time behaviors over the whole application end-to-end,

these extensions can make developing, maintaining and validating large scale DRE appli-

cations easier.

Based on the results obtained in this section, we now offer the following observa-

tions and recommendations for developers of complex real-time systems:

Observation: The experiments performed in this chapter are modeled after existing TAO

performance tests and the real-time validation tests for TAO’s RT-CORBA implementa-

tion [52]. Comparing CIAO’s test program implementations to their TAO-based counter-

parts, one striking difference is how easy it is to develop and modify CIAO-based tests. De-

veloping TAO test programs requires writing new tests. That is, several specific programs

are required to provide different tests of different configurations, as in the case of basic

performance tests for TAO with and without RT-ORB. Conversely, CIAO requires only one

application assembly but different configurations were achieved by using different standard

114

tools provided in CIAO, i.e., by changing the deployment environment configuration to use

a regular component server or a real-time component server.

The real-time validation tests provide an even more obvious contrast. TAO-based

test programs requires elaborate design of test procedures, options, and configuration into

the programs themselves and can only be run easily using a set of corresponding Perl

scripts. In contrast, CIAO tests use only a limited number of simple component imple-

mentations running on a common run-time environment. Different test configurations can

be selected by simply deploying an assembly with different combinations of application

compositions and real-time behaviors. However, CIAO does require significantly more

disk and memory storage space.

Recommendation: This observation shows that although CIAO does impose modest per-

formance overhead, applications developed using CIAO actually can achieve superior per-

formance much more easily than using TAO, as CIAO-based applications are much easier

to reason about, maintain, modify and enhance. CIAO applications can therefore be op-

timized to achieve better performance with lower cost. Further work on CIAO is needed,

however, to reduce CIAO’s footprint so that CIAO can be applied to application domains

where there are stringent memory limitations. It is also important to be able to make the

CIAO implementation more robust and be able to compose CIAO internal modules based

on application requirements. Reflective middleware techniques, such as dynamicTAO [28],

are worth investigating.

Observation: The development paradigm provided by CCM allows developers to attach

relevant metadata in each lifecycle phase. It is important to “bind” the information at the

proper lifecycle phase to maintain as much flexibility as possible. Based on the example

scenario in our experiment, we draw the following recommendations:

Recommendation:

• Bind decisions early if possible. Some information can be ignored after it is checked

at a particular lifecycle phase. For example, after the component packaging phase

ensures that each event sink has a corresponding executor, the application assembly

and system deployment phases need not be concerned with that issue. This has the

overall benefit of simplifying decisions made later in the system lifecycle.

• (Re)bind decisions flexibly. Other information, and the results of previous deci-

sions that have relied on it, cross-cut several phases of the system lifecycle. For

115

example, after the sets of available event source and sink rates are ensured to match

along component dependencies in the assembly phase, the resulting sets of rates and

the component dependencies are still needed in the system deployment phase. This

allows configuration of concerns that cross-cut the architectural boundaries of com-

ponent, application, and system, as well as the configuration phase for each of these

architectural levels.

• QoS aspects tend to cross-cut functional boundaries. Notice especially that QoS

information is often refined in subsequent lifecycle phases after it is introduced.

Functional information, on the other hand, tends to be more fixed once it is spec-

ified in a given phase. This reflects a natural point of difference between CIAO

and conventional CCM in which functional information tends to compose in a more

object-oriented manner, while the “locality of reference” of QoS decisions tends to

be organized around aspect modularity that cross-cuts object and even component

boundaries. CIAO is designed with the necessary refinement of QoS aspects in mind,

and the understanding that decisions can improve with additional information as long

as prior decisions can be kept flexible and revisited as needed. Conventional CCM on

the other hand is designed more for functional properties that once specified remain

stable for all subsequent composition stages.

116

Chapter 7

Conclusions and Future Research

This dissertation concentrated on examining and presenting techniques for composing sys-

temic behaviors into component-based middleware, using CCM as an example component

middleware and real-time behaviors as example systemic behaviors. Conventional compo-

nent middleware has been shown to improve the software development process and reduce

the time and cost to develop and maintain software system considerably in a wide range of

application domains. Historically, component middleware is designed for enterprise appli-

cations and does not sufficiently support the kind of systemic behaviors pertinent to DRE

applications to satisfy their stringent QoS requirements. To bring the benefit of component-

based middleware frameworks into DRE application development, it is necessary to extend

the component middleware flexibly to support the composition of systemic behaviors and

supporting mechanisms into applications based on component middleware.

The focal theme of the work in this dissertation is enabling the composition of sys-

temic behaviors and supporting mechanisms into component middleware so it is suitable

for new domain of applications, such as DRE applications. An implementation of the

CORBA Component Model (CCM) called the Component Integrated ACE ORB (CIAO)

was developed by the work presented in this dissertation to provide the context of this

research. RT-CORBA was used as the concrete example of systemic behaviors and sup-

porting mechanisms that are of crucial importance to DRE applications. Although it can

be made to work with other ORBs that support the RT-CORBA 1.0 specification [37],

CIAO is currently built on top of TAO [24] which is a high-quality, freely available, open-

source CORBA-compliant middleware platform with a complete implementation of the

RT-CORBA 1.x specification. As of this writing, CIAO is being used in several research

projects, as is described later in Section 7.2.

117

Composing real-time behaviors into component-based middleware applications re-

quires the flexible extension of both the metadata used in the middleware to describe the

kind of behaviors to be composed, and the middleware runtime mechanisms to support the

composed behaviors. In extending the component metadata, this work investigated various

aspects of composing systemic behaviors, specifically in granularity, scope, and timing,

and analyzed their consequences for the overall development processes and application

quality. In extending the middleware runtime platform, this dissertation focused on both

the middleware configuration and composition of supporting mechanisms. Moreover, this

dissertation investigated not only how to compose systemic behaviors into a system but

also how to utilize mechanisms to extend metadata and to embed behavioral information

for modeling tools to enhance the robustness of the application.

Finally, the implementations of the extensions presented in this dissertation along

with the experimental results show that real-time behaviors can be effectively and flexibly

composed into applications. This approach can greatly enhance the degree of reuse of

component implementations and applications. It also enables modeling tools to ensure

optimized configuration of applications can be achieved.

In summary, this dissertation has made the following contribution to research on

composing systemic behaviors into component middleware:

1. It analyses and documents the proper binding points in various stages of the compo-

nent development lifecycle for key real-time policies critical to DRE applications.

2. It reviews and documents granularities for binding QoS provisioning policies, and

examines the impact of binding with different granularities.

3. It presents extensions to manage application assembly and deployment configura-

tions to minimize inconsistency and to make analyzing deployment information eas-

ier.

4. It develops and documents solutions for managing differences in QoS management

mechanisms when composing QoS policies with platform-specific QoS management

mechanisms.

5. It conducts experiments to evaluate the cost and to demonstrate the effectiveness and

benefits of adopting component-based middleware and making systemic behaviors

into composable aspects.

118

7.1 Lessons Learned

Based on the experiences and observations from conducting the research presented in this

dissertation, the following lessons are important to remember. First, the ability not only to

separate systemic aspects but also to manage and maintain these aspects is very important

for developing any non-trivial application. In CIAO, the CCM defined framework takes

care of various aspects in developing, composing, and deploying applications. The real-

time extensions defined in CIAO in turn augment that process by providing a framework

for defining, composing and managing real-time aspects of DRE applications. Even with

just a few examples and test components during the development of CIAO framework,

we were able to come up with many different applications with an interesting degree of

complexity, and deploy them easily among multiple machines.

This work has also shown that because the lifecycle of a CCM application has

clearly defined development stages, it is important to identify the right stages where cer-

tain information should be added and then used toward improving the final deployed ap-

plication. As shown in CIAO’s support for deployment, a logical location defined in an

application assembly file provides the right amount of information needed to document

the intention of the application designer. This logical information later provides “hints” in

the deployment phase for system deployer to realize the intention as an actual application

deployment.

Similarly, it is important for component middleware to compose not only the ap-

plication from components but also the runtime environment from modules supporting ca-

pabilities to control and manage different systemic aspects. Moreover, CIAO is a good

research vehicle within which to explore meta-programming and aspect-oriented program-

ming techniques, providing a robust mechanism for injecting active software functional-

ity into a system to provide dynamic systemic behaviors transparently. The XML format

adopted by the CCM specification makes it easy to extend the metadata to support compo-

sition of new systemic behaviors. The same can also be said for extending the metadata to

document key component features as constraints. Other higher level tools can then reason

about and synthesize new constraints when components are composed into applications.

7.2 Future Research

As CORBA has matured over the years, more and more standard mechanisms have been

added to address QoS concerns for a variety of application domains. CORBA has gained

119

acceptance in a wide range of domains and is being applied to many projects worldwide, in-

cluding telecommunications, aerospace, financial services, process control, scientific com-

puting, and distributed interactive simulations. CIAO, the resulting CCM implementa-

tion from the work described in this dissertation looks to bring the many advantages of

component-based middleware into application domains that were not targeted in the origi-

nal CCM specification and have different QoS requirements than the original target domain,

i.e., enterprise applications.

CIAO provides the first real-time-enabled CCM framework targeting DRE applica-

tions. At this writing, CIAO has been released as open-source software and is also freely

available on the web. CIAO is currently being used in several research projects:

• Static CCM Applications: This project conducted by Washington University seeks

to enable the composition of CCM components into statically linked applications.

Statically linked programs are often required in many embedded applications due to

inherent constraints such as the need to bound system start up time, or the lack of

secondary storage system. However, this requirement prevents the adoption of CCM

implementations which require dynamic loading of component implementations into

primary memory.

Enabling the generation of statically linked program images from the CCM assem-

bly descriptors and component implementations brings the benefits of CIAO to many

more embedded system developers. Applications can easily be composed, proto-

typed, and verified in traditional deployment environments but can still be converted

to statically linked program images for embedded environment.

• Integration of Event Channels: CIAO’s existing implementation of event source/

sink connections only supports a trivial implementation using synchronous method

invocations. Researchers at Vanderbilt University are looking into integrating an

Event Channel implementation to support different event delivery strategies.

• Dynamic QoS Adaptation: Currently, CIAO only supports statically composing

QoS behaviors that can be predetermined before an application starts running [81].

Researchers at BBN Technologies are exploring composing CCM components called

Qoskets, which implement dynamic QoS provisioning behaviors, into an application.

A modeling tool can assist to create new application assemblies that have Qoskets

woven in.

120

Dynamic Scheduling Service: CIAO’s real-time extensions to the CCM framework con-

centrate on fixed-priority scheduling as defined in the RT-CORBA 1.0 specification. How-

ever, certain applications require dynamic end-to-end management of priorities to ensure

better resource utilization while satisfying the system QoS requirements. It is therefore

important to integrate dynamic scheduling frameworks, such as Kokyu [18], into CCM

middleware to allow applications to compose dynamic scheduling strategies into applica-

tions.

Robust Support for Adding New Systemic Behaviors: The real-time behaviors cov-

ered by CIAO’s extensions are sufficient for many DRE applications. However, other DRE

applications require more sophisticated systemic behaviors. Supporting a new systemic

behavior usually involves 1) describing the required behavior in various CCM descriptors,

and 2) integrating mechanisms supporting the behavior into the run-time environment. It

is important to be able to compose both the XML handlers and the supporting mechanisms

into the CCM framework to maintain flexibility. This requires an XML handler composi-

tion mechanism that can plug in XML handlers for different XML extensions.

Providing Fine-grained Control for Systemic Behaviors: Existing CIAO implementa-

tion supports the composition of systemic behaviors for containers. This affects the be-

haviors of a component instance. However, some applications require the configuration

of systemic behaviors only within an interface or even a single operation of a component.

To use CIAO to develop such applications, it is important to specify and control systemic

behaviors for these finer-grained entities.

Integration of Dynamic QoS Management: As was described earlier in this section,

BBN technologies is currently looking into composing dynamic QoS management behav-

iors, e.g., qoskets, by implementing these behaviors as interceptor CCM components and

weaving these components into application assemblies. This approach not only requires

the modification of application assemblies, which may make them hard to maintain, but it

also may impose too much performance and footprint overhead.

Another alternative would be to apply the meta-programming techniques [84] di-

rectly in the component middleware. Dynamic QoS modules could be generated by a

smart CIDL compiler into the servant glue code. The CIDL compiler could alternatively

generate servants with integrated meta-programming hooks as smart proxies and skeletons.

Systemic modules could then be composed into the application assemblies as “add-ons”

121

without modifying the application assemblies directly, and therefore would allow them to

be maintained easily by the original designers.

Alleviating the Complexity of Managing Large-scale DRE Software: A component

development paradigm can reduce lifecycle costs and time-to-market by enabling applica-

tion developers to assemble and deploy DRE applications by selecting a set of compatible

common-off-the-shelf (COTS) and custom-developed components. To compose an appli-

cation successfully requires that these components have compatible interfaces, semantics,

and protocols, which makes selecting and developing a compatible set of application com-

ponents a daunting task [31]. This problem is further exacerbated by the existence of myr-

iad strategies for configuring and deploying the underlying middleware to leverage special

hardware and software features.

Moreover, composing systemic behaviors end-to-end often pervades an entire ap-

plication which only exacerbates the overall complexity. Consequently, application devel-

opers have to spend non-trivial amounts of time debugging problems associated with the

selection of incompatible strategies and components. What is therefore needed is an in-

tegrated set of software development processes, platforms, and tools that can (1) select a

suitable set of middleware and application components, (2) analyze, synthesize, and vali-

date the component configurations, (3) assemble and deploy groups of related components

to their appropriate execution platforms, and (4) dynamically adjust and reconfigure the

system as operational conditions change, to maintain the required QoS properties of DRE

applications. It is fair to say that extended component middleware provides the mechanisms

to make systemic behaviors into modular aspects that can be realized and synthesized.

122

References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A

New Kernel Foundation for UNIX Development. In Proceedings of the Summer 1986

USENIX Technical Conference and Exhibition, June 1986.

[2] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages,

3rd Edition. Addison Wesley Longmain, March 2001.

[3] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and

Design Strategies. Prentice Hall, 2001.

[4] Bertrand Meyer. The Significance of Components. http://www.sdmagazine.

com/documents/s=752/sdm9911k/9911k.htm, November 1999. in Be-

yond Objects.

[5] Don Box. Essential COM. Addison-Wesley, Reading, MA, 1998.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture—A System of Patterns. Wiley & Sons,

New York, 1996.

[7] Cemal Yilmaz and Adam Porter and Douglas C. Schmidt. Distributed Continuous

Quality Assurance: The Skoll Project. In Workshop on Remote Analysis and Mea-

surement of Software Systems (RAMSS), Portland, Oregon, May 2003. IEEE/ACM.

[8] Denis Conan, Erik Putrycz, Nicolas Farcet, and Miguel DeMiguel. Integration of

Non-Functional Properties in Containers. Proceedings of the Sixth International

Workshop on Component-Oriented Programming (WCOP), 2001.

[9] Joseph K. Cross and Douglas C. Schmidt. Applying the Quality Connector Pattern

to Optimize Distributed Real-time and Embedded Middleware. In Fethi Rabhi and

123

Sergei Gorlatch, editors, Patterns and Skeletons for Distributed and Parallel Comput-

ing. Springer Verlag, 2002.

[10] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, Boston, 2000.

[11] D.W. Davies, E. Holler, E.D. Jensen, S.R. Kimbleton, B.W. Lampson, G. LeLann,

K.J. Thurber, and R.W. Watson. Distributed Systems- Architecture and Implementa-

tion – An Advanced Course. Springer-Verlag, 1981.

[12] Miguel A. de Miguel. QoS-Aware Component Frameworks. In The 10th International

Workshop on Quality of Service (IWQoS 2002), Miami Beach, Florida, May 2002.

[13] Douglas C. Schmidt and Frank Buschmann. Patterns, Frameworks, and Middleware:

Their Synergistic Relationships. In Proceedings of the 25th International Conference

on Software Engineering (ICSE), Portland, Oregon, May 2003. IEEE/ACM.

[14] Douglas Niehaus, et al.. Kansas University Real-Time (KURT) Linux. www.ittc.

ukans.edu/kurt/, 2004.

[15] FOKUS. Qedo Project Homepage. http://qedo.berlios.de/.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,

1995.

[17] Chris Gill, Douglas C. Schmidt, and Ron Cytron. Multi-Paradigm Scheduling for

Distributed Real-Time Embedded Computing. IEEE Proceedings, Special Issue on

Modeling and Design of Embedded Software, 91(1), January 2003.

[18] Christopher D. Gill, Ron Cytron, and Douglas C. Schmidt. Middleware Scheduling

Optimization Techniques for Distributed Real-Time and Embedded Systems. In Pro-

ceedings of the 7th Workshop on Object-oriented Real-time Dependable Systems, San

Diego, CA, January 2002. IEEE.

[19] Aniruddha Gokhale, Balachandran Natarajan, Douglas C. Schmidt, Andrey Nechy-

purenko, Jeff Gray, Nanbor Wang, Sandeep Neema, Ted Bapty, and Jeff Parsons.

CoSMIC: An MDA Generative Tool for Distributed Real-time and Embdedded Com-

ponent Middleware and Applications. In Proceedings of the OOPSLA 2002 Workshop

124

on Generative Techniques in the Context of Model Driven Architecture, Seattle, WA,

November 2002. ACM.

[20] Aniruddha Gokhale, Douglas C. Schmidt, Balachandra Natarajan, and Nanbor Wang.

Applying Model-Integrated Computing to Component Middleware and Enterprise

Applications. The Communications of the ACM Special Issue on Enterprise Com-

ponents, Service and Business Rules, 45(10), October 2002.

[21] Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natarajan, Jeff Gray, and

Nanbor Wang. Model Driven Middleware. In Qusay Mahmoud, editor, Middleware

for Communications. Wiley and Sons, New York, 2003.

[22] Pradeep Gore, Ron K. Cytron, Douglas C. Schmidt, and Carlos O’Ryan. Design-

ing and Optimizing a Scalable CORBA Notification Service. In Proceedings of the

Workshop on Optimization of Middleware and Distributed Systems, pages 196–204,

Snowbird, Utah, June 2001. ACM SIGPLAN.

[23] John Hatcliff, William Deng, Matthew Dwyer, Georg Jung, and Venkatesh Prasad.

Cadena: An Integrated Development, Analysis, and Verification Environment for

Component-based Systems. In Proceedings of the 25th International Conference on

Software Engineering, Portland, OR, May 2003.

[24] Institute for Software Integrated Systems. The ACE ORB (TAO).

www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

[25] Prashant Jain and Douglas C. Schmidt. Dynamically Configuring Communication

Services with the Service Configurator Pattern. C++ Report, 9(5), June 1997.

[26] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of AspectJ. Lecture Notes in Computer Science,

2072:327–355, 2001.

[27] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Pro-

ceedings of the 11th European Conference on Object-Oriented Programming, June

1997.

[28] Fabio Kon and Roy H. Campbell. Supporting Automatic Configuration of

Component-Based Distributed Systems. In Proceedings of the 5th Conference on

125

Object-Oriented Technologies and Systems, pages 175–178, San Diego, CA, May

1999. USENIX.

[29] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The Case for Reflective

Middleware. Communications of the ACM, 45(6):33–38, June 2002.

[30] Tao Lu, Emre Turkay, Aniruddha Gokhale, and Douglas C. Schmidt. CoSMIC: An

MDA Tool suite for Application Deployment and Configuration. In Proceedings

of the OOPSLA 2003 Workshop on Generative Techniques in the Context of Model

Driven Architecture, Anaheim, CA, October 2003. ACM.

[31] Luis Iribarne and José M. Troya and Antonio Vallecillo. Selecting Software Com-

ponents with Multiple Interfaces. In Proceedings of the 28th Euromicro Conference

(EUROMICRO’02), pages 26–32, Dortmund, Germany, September 2002. IEEE.

[32] Floyd Marinescu and Ed Roman. EJB Design Patterns: Advanced Patterns, Pro-

cesses, and Idioms. John Wiley & Sons, New York, 2002.

[33] Phil Mesnier. A Shared Library Footprint Reduction Tool. In Proceedings of the

Second Annual TAO Workshop, Arlington, VA, July 2002.

[34] Microsoft. .NET Web Services Platform. www.microsoft.com/net.

[35] J. P. Morgenthal. Microsoft COM+ Will Challenge Application Server Market.

www.microsoft.com/com/wpaper/complus-appserv.asp, 1999.

[36] Object Management Group. CORBA Messaging Specification. Object Management

Group, OMG Document orbos/98-05-05 edition, May 1998.

[37] Object Management Group. Real-time CORBA Joint Revised Submission, OMG Doc-

ument orbos/99-02-12 edition, February 1999.

[38] Object Management Group. CORBA Components, OMG Document formal/2002-06-

65 edition, June 2002.

[39] Object Management Group. Real-time CORBA Specification, OMG Document

formal/02-08-02 edition, August 2002.

[40] Object Management Group. The Common Object Request Broker: Architecture and

Specification, 3.0.2 edition, December 2002.

126

[41] Object Management Group. The Common Object Request Broker: Architecture and

Specification, 2.6.1 edition, May 2002.

[42] Object Management Group. Deployment and Configuration Adopted Submission,

OMG Document ptc/03-07-08 edition, July 2003.

[43] Object Management Group. Light Weight CORBA Component Model Revised Sub-

mission, OMG Document realtime/03-05-05 edition, May 2003.

[44] Object Management Group. Qualify of Service for CORBA Component RFP, OMG

Document mars/03-06-12 edition, June 2003.

[45] Object Management Group. Streams for CORBA Component RFP, OMG Document

mars/03-06-11 edition, June 2003.

[46] Object Management Group. UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms Joint Revised Submission, OMG Docu-

ment realtime/03-05-02 edition, May 2003.

[47] Olaf Spinczyk and Andreas Gal and Wolfgang Schröder-Preikschat. AspectC++: An

Aspect-Oriented Extension to C++. In Proceedings of the 40th International Con-

ference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific

2002), February 2002.

[48] Carlos O’Ryan, Douglas C. Schmidt, and J. Russell Noseworthy. Patterns and Per-

formance of a CORBA Event Service for Large-scale Distributed Interactive Simu-

lations. International Journal of Computer Systems Science and Engineering, 17(2),

March 2002.

[49] J. Postel. User Datagram Protocol. Network Information Center RFC 768, pages 1–3,

August 1980.

[50] J. Postel. Transmission Control Protocol. Network Information Center RFC 793,

pages 1–85, September 1981.

[51] Irfan Pyarali and Douglas C. Schmidt. An Overview of the CORBA Portable Object

Adapter. ACM StandardView, 6(1), March 1998.

[52] Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron. Achieving End-to-End Pre-

dictability of the TAO Real-time CORBA ORB. In 8th IEEE Real-Time Technology

and Applications Symposium, San Jose, September 2002. IEEE.

127

[53] Irfan Pyarali, Douglas C. Schmidt, and Ron Cytron. Techniques for Enhancing Real-

time CORBA Quality of Service. IEEE Proceedings Special Issue on Real-time Sys-

tems, 91(7), July 2003.

[54] Qedo. QoS Enabled Distributed Objects. qedo.berlios.de, 2002.

[55] Ragunathan Rajkumar, Chen Lee, John P. Lehoczky, and Daniel P. Siewiorek. Prac-

tical Solutions for QoS-based Resource Allocation Problems. In IEEE Real-Time

Systems Symposium, Madrid, Spain, December 1998. IEEE.

[56] Tom Ritter, Marc Born, Thomas Unterschütz, and Torben Weis. A QoS Metamodel

and its Realization in a CORBA Component Infrastructure. In Proceedings of the 36th

Hawaii International Conference on System Sciences, Software Technology Track,

Distributed Object and Component-based Software Systems Minitrack, HICSS 2003,

Honolulu, HW, January 2003. HICSS.

[57] Ward Rosenberry, David Kenney, and Gerry Fischer. Understanding DCE. O’Reilly

and Associates, Inc., 1992.

[58] SAX Project. Simple API for XML. www.saxproject.org, 2002.

[59] Richard Schantz, Joseph Loyall, Michael Atighetchi, and Partha Pal. Packaging Qual-

ity of Service Control Behaviors for Reuse. In Proceedings of the 5th IEEE Inter-

national Symposium on Object-Oriented Real-time Distributed Computing (ISORC),

Crystal City, VA, April/May 2002. IEEE/IFIP.

[60] Richard E. Schantz and Douglas C. Schmidt. Middleware for Distributed Systems:

Evolving the Common Structure for Network-centric Applications. In John Marciniak

and George Telecki, editors, Encyclopedia of Software Engineering. Wiley & Sons,

New York, 2002.

[61] Richard E. Schantz, Robert H. Thomas, and Girome Bono. The Architecture of the

Cronus Distributed Operating System. In Proceedings of the 6th International Con-

ference on Distributed Computing Systems, pages 250–259, Cambridge, MA, May

1986. IEEE.

[62] Douglas C. Schmidt and Stephen D. Huston. C++ Network Programming, Volume

2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, Reading, Mas-

sachusetts, 2002.

128

[63] Douglas C. Schmidt, Rick Schantz, Mike Masters, Joseph Cross, David Sharp, and

Lou DiPalma. Towards Adaptive and Reflective Middleware for Network-Centric

Combat Systems. CrossTalk, November 2001.

[64] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-

Oriented Software Architecture: Patterns for Concurrent and Networked Objects, Vol-

ume 2. Wiley & Sons, New York, 2000.

[65] Douglas C. Schmidt and Steve Vinoski. An Overview of the CORBA Messaging

Quality of Service Framework. C++ Report, 12(3), March 2000.

[66] Douglas C. Schmidt and Steve Vinoski. Real-time CORBA, Part 1: Motivation and

Overview. C/C++ Users Journal, October 2001.

[67] David C. Sharp. Reducing Avionics Software Cost Through Component Based Prod-

uct Line Development. In Proceedings of the 10th Annual Software Technology Con-

ference, April 1998.

[68] David C. Sharp. Avionics Product Line Software Architecture Flow Policies. In

Proceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference (DASC),

October 1999.

[69] David C. Sharp and Wendy C. Roll. Model-Based Integration of Reusable

Component-Based Avionics System. In Proceedings of the Workshop on Model-

Driven Embedded Systems in RTAS 2003, May 2003.

[70] StarCCM. StarCCM. starccm.sourceforge.net, 2003.

[71] Venkita Subramonian and Christopher Gill. A Generative Programming Framework

for Adaptive Middleware. In Hawaii International Conference on System Sciences,

Software Technology Track, Adaptive and Evolvable Software Systems Minitrack,

HICSS 2003, Honolulu, HW, January 2003. HICSS.

[72] Sun Microsystems. RPC: Remote Procedure Call Protocol Specification. Technical

Report RFC-1057, Sun Microsystems, Inc., June 1988.

[73] Sun Microsystems. JavaTM 2 Platform Enterprise Edition.

java.sun.com/j2ee/index.html, 2001.

[74] Sun Microsystems, Inc. Java Remote Method Invocation Specification (RMI), October

1998.

129

[75] Clemens Szyperski. Component Software—Beyond Object-Oriented Programming.

Addison-Wesley, Santa Fe, NM, 1998.

[76] Bruce Trask. A Case Study on the Application of CORBA Products and Concepts

to an Actual Real-Time Embedded System. In OMG’s First Workshop On Real-Time

& Embedded Distributed Object Computing, Washington, D.C., July 2000. Object

Management Group.

[77] France Universite des Sciences et Technologies de Lille. The OpenCCM Platform.

corbaweb.lifl.fr/OpenCCM/, 2003.

[78] Markus Volter, Alexander Schmid, and Eberhard Wolff. Server Component Patterns:

Component Infrastructures Illustrated with EJB. Wiley Series in Software Design

Patterns, West Sussex, England, 2002.

[79] Nanbor Wang and Christopher Gill. Improving Real-Time System Configuration via a

QoS-aware CORBA Component Model. In Hawaii International Conference on Sys-

tem Sciences, Software Technology Track, Distributed Object and Component-based

Software Systems Minitrack, HICSS 2003, Honolulu, HW, January 2003. HICSS.

[80] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Christopher D. Gill, Bal-

achandran Natarajan, Craig Rodrigues, Joseph P. Loyall, and Richard E. Schantz.

Total Quality of Service Provisioning in Middleware and Applications. The Journal

of Microprocessors and Microsystems, 27(2):45–54, mar 2003.

[81] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig Rodrigues, Balachan-

dran Natarajan, Joseph P. Loyall, Richard E. Schantz, and Christopher D. Gill. QoS-

enabled Middleware. In Qusay Mahmoud, editor, Middleware for Communications.

Wiley and Sons, New York, 2003.

[82] Nanbor Wang, Douglas C. Schmidt, Michael Kircher, and Kirthika Parameswaran.

Towards a Reflective Middleware Framework for QoS-enabled CORBA Component

Model Applications. IEEE Distributed Systems Online, 2(5), July 2001.

[83] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. An Overview of the CORBA

Component Model. In George Heineman and Bill Councill, editors, Component-

Based Software Engineering. Addison-Wesley, Reading, Massachusetts, 2000.

130

[84] Nanbor Wang, Douglas C. Schmidt, Ossama Othman, and Kirthika Parameswaran.

Evaluating Meta-Programming Mechanisms for ORB Middleware. IEEE Communi-

cation Magazine, special issue on Evolving Communications Software: Techniques

and Technologies, 39(10):102–113, October 2001.

[85] Nanbor Wang, Douglas C. Schmidt, and Steve Vinoski. Collocation Optimizations

for CORBA. C++ Report, 11(10):47–52, November/December 1999.

[86] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Object Model for the Java

System. USENIX Computing Systems, 9(4), November/December 1996.

[87] John A. Zinky, David E. Bakken, and Richard Schantz. Architectural Support for

Quality of Service for CORBA Objects. Theory and Practice of Object Systems,

3(1):1–20, 1997.

131

Vita

Nanbor Wang

Date of Birth June 13, 1964

Place of Birth Taipei, Taiwan

Degrees B.S. Mineral and Petroleum Engineering, May 1986,
M.S. Mineral and Petroleum Engineering, May 1988,

from National Cheng-Kung University, Tainan, Taiwan
M.S. Computer Science, May 1997,

from Washington University in Saint Louis.

Book
Chapters

Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Craig
Rodrigues, Balachandran Natarajan, Joseph P. Loyall, Richard
E. Schantz, and Christopher D. Gill, “QoS-enabled Middle-
ware”, in Middleware for Communications (Qusay Mahmoud,
ed.), New York, Wiley and Sons, 2003.

Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natara-
jan, Jeff Gray, and Nanbor Wang, “Model Driven Middleware”,
in Middleware for Communications (Qusay Mahmoud, ed.),
New York, Wiley and Sons, 2003.

Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan, “An
Overview of the CORBA Component Model”, in Component-
Based Software Engineering (G. Heineman and B. Councill,
eds.), Reading, Massachusetts: Addison-Wesley, 2000.

Journal
Publications

Nanbor Wang, Douglas C. Schmidt, Aniruddha Gokhale, Christo-
pher D. Gill, Balachandran Natarajan, Craig Rodrigues, Joseph
P. Loyall and Richard E. Schantz, “Total Quality of Service Pro-
visioning in Middleware and Applications”, Microprocessors
and Microsystems, special issue on Middleware Solutions for

132

QoS-enabled Multimedia Provisioning over the Internet (Paolo
Bellavista ed.), vol. 27, no. 2, pp. 45-54, March 2003.

Aniruddha Gokhale, Douglas C. Schmidt, Balachandra Natara-
jan and Nanbor Wang, “Applying Model-Integrated Comput-
ing to Component Middleware and Enterprise Applications”,
The Communications of the ACM Special Issue on Enterprise
Components, Service and Business Rules (Ali Arsanjani ed.),
vol. 45, no. 10, October 2002.

Nanbor Wang, Douglas C. Schmidt, Michael Kircher, and
Kirthika Parameswaran, “Adaptive and Reflective Middleware
for QoS-Enabled CCM Applications”, IEEE Distributed Sys-
tems Online, vol. 2, July 2001.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo and Aniruddha Gokale, “Using Principle Pat-
terns to Optimize Real-Time ORBs”, IEEE Concurrency Mag-
azine, vol. 8, no. 1, 2000.

Nanbor Wang, Douglas C. Schmidt, Ossama Othman, and Kirthika
Parameswaran, “Evaluating Meta-Programming Mechanisms
for ORB Middleware”, IEEE Communication Magazine, spe-
cial issue on Evolving Communications Software: Techniques
and Technologies (Bill Opdyke and Algirdas Pakstas, eds.), Oc-
tober 2000.

Conference
Publications

Arvind S. Krishna, Nanbor Wang, Balachandran Natarajan, An-
niruddha Gokhale, Douglas C. Schmidt and Gautam Thaker,
“CCMPerf: A Benchmarking Tool for CORBA Component
Model Implementations”, Proceedings of the 10th Real-time
Technology and Application Symposium (RTAS ’04), Toronto,
Canada, May 2004.

Nanbor Wang and Christopher D. Gill, “Improving Real-Time
System Configuration via a QoS-aware CORBA Component
Model”, Hawaii International Conference on System Sciences
(HICSS ’04), Software Technology Track, Distributed Object

133

and Component-based Software Systems Minitrack,
HICSS 2004, Honolulu, Hawaii, January, 2004.

Anirudda Gokhale, Balachandran Natarjan, Douglas C. Schmidt,
Nanbor Wang, Sandeep Neema, Ted Bapty, Jeff Parsons, Jeff
Gray and Andrey Nechypurenko, “CoSMIC: An MDA Gener-
ative Tool for Distributed Real-time and Embdedded Compo-
nent Middleware and Applications”, Proceedings of the OOP-
SLA 2002 Workshop on Generative Techniques in the Context
of Model Driven Architecture, Seattle, WA, November, 2002,
ACM.

Nanbor Wang, Kirthika Parameswaran, and Douglas C. Schmidt,
“The Design and Performance of Meta-Programming Mecha-
nisms for Object Request Broker Middleware”, in Proceedings
of the 6th Conference on Object-Oriented Technologies and
Systems, (San Antonio, TX), pp. 103-118, USENIX, Jan/Feb
2000.

Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and
Michael Kircher, “Applying Reflective Middleware Techniques
to Optimize a QoS-enabled CORBA Component Model Imple-
mentation”, in the 24th Computer Software and Applications
Conference, (Taipei, Taiwan), IEEE, October 2000.

Irfan Pyarali, Carlos O’Ryan, Douglas C. Schmidt, Nanbor Wang,
Vishal Kachroo and Aniruddha Gokale, “Applying Optimiza-
tion Patterns to the Design of Real-Time ORBs”, in Proceed-
ings of the 5th Conference on Object-Oriented Technologies
and Systems, (San Diego, CA), USENIX, May 1999.

Workshop
Publications

Svetlana G. Shasharina, Nanbor Wang and John R. Cary, “Grid
Service for Visualization and Analysis of Remote Fusion Data”
, in Proceedings of Challenges of Large Applications in Dis-
tributed Environments (CLADE), Honolulu, Hawaii, June,
2004.

134

Nanbor Wang, Craig Rodrigues, and Chris Gill, “A Qos-aware
CORBA Component Model for Distributed, Real-time, and Em-
bedded System Development” in OMG Workshop On Embed-
ded and Real-Time Distributed Object Systems, (Washington
D.C.), OMG, July, 2003.

Krishnakumar Balasubramanian, Nanbor Wang, Christopher D.
Gill, and Douglas C. Schmidt, “Towards Composable
Distributed Real-time and Embedded Software”, Proceedings
of the 8th Workshop on Object-oriented Real-time Dependable
Systems, Guadalajara, Mexico, January, 2003, IEEE.

Nanbor Wang, Krishnakumar Balasubramanian, and Chris Gill,
“Towards a Real-time CORBA Component Model” in OMG
Workshop On Embedded and Real-Time Distributed Object Sys-
tems, (Washington D.C.), OMG, July,
2002.

Aniruddha Gokhale, Douglas C. Schmidt, Balachandran Natara-
jan, and Nanbor Wang, “Applying the Model Driven Architec-
ture to Distributed Real-time and Embedded Applications” in
OMG Workshop On Embedded and Real-Time Distributed Ob-
ject Systems, (Washington D.C.), OMG, July, 2002.

Nanbor Wang, Douglas C. Schmidt, Kirthika Parameswaran, and
Michael Kircher, “Towards a Reflective Middleware Techniques
to Optimize a QoS-enabled CORBA Component Model Appli-
cations”, in Reflective Middleware Workshop, ACM/IFIP, April
2000.

Nanbor Wang, Douglas C. Schmidt, and David Levine, “Optimiz-
ing the CORBA Component Model for High-Performance and
Real-Time Applications”, in ‘Work-in-Progress’ session at the
Middleware 2000 Conference, ACM/IFIP, April 2000.

Trade-Journal
Publications

Nanbor Wang, Douglas C. Schmidt, and Steve Vinoski, “Collo-
cation Optimizations for CORBA”, C++ Report, vol. 11, pp.
47-52, November/December 1999.

May 2004

	Composing Systemic Aspects into Component-Oriented DOC Middleware
	Recommended Citation
	Composing Systemic Aspects into Component-Oriented DOC Middleware

	tmp.1470340445.pdf.IY2XG

	Abstract: Abstract: The advent and maturation of component-based middleware frameworks have simplified the development of large-scale distributed applications by separating system development and configuration concerns into different aspects that can be specified and composed at various stages of the application development lifecycle. Conventional component middleware technologies, such as J2EE and .NET, were designed to meet the
quality of service (QoS) requirements of enterprise applications, which focus largely on scalability and reliability. Therefore, conventional component middleware specifications and implementations are not well suited for distributed real-time and embedded (DRE) applications
with more stringent QoS requirements, such as low latency/jitter, timeliness, and online fault recovery.

In the DRE system development community, a new generation of enhanced commercial off-the-shelf (COTS) middleware, such as Real-time CORBA 1.0
(RT-CORBA), is increasingly gaining acceptance as (1) the cost and time required to develop and verify DRE applications precludes developers from implementing complex DRE applications from scratch and (2) implementations of standard COTS middleware specifications mature and encompass key QoS properties needed by DRE systems. However, although COTS middleware standardizes mechanisms to configure and control
underlying OS support for an application™s QoS requirements, it does not yet provide sufficient abstractions to separate QoS policy configurations such as real-time performance requirements, from application functionality. Developers are therefore forced to configure QoS policies in an ad hoc way, and the code to configure these policies is often scattered throughout and tangled with other parts of a DRE system. As a result, it is hard for developers to configure, validate, modify, and evolve complex DRE systems consistently.

It is therefore necessary to create a new generation of QoS-enabled component middleware that provides more comprehensive support for addressing QoS-related concerns modularly, so that they can be introduced and configured as separate systemic aspects. By analyzing and identifying the limitations of applying conventional middleware technologies
for DRE applications, this dissertation presents a new design and its associated techniques for enhancing conventional component-oriented middleware to provide programmability of DRE relevant real-time QoS concerns. This design is realized in an implementation of the standard CORBA Component Model (CCM), called the Component-Integrated
ACE ORB (CIAO). This dissertation also presents both architectural analysis and empirical results that demonstrate the effectiveness of this approach.

This dissertation provides three contributions to the state of the art in composing systemic behaviors into component middleware frameworks. First, it illustrates how component middleware can simplify development and evolution of DRE applications while ensuring stringent QoS requirements by composing systemic QoS aspects. Second, it contributes to the design and implementation of QoS-enabled CCM by analyzing and documenting
how systemic behaviors can be composed into component middleware. Finally, it presents empirical and analytical results to demonstrate the effectiveness and the advantage of composing systemic behaviors in component middleware. The work in this dissertation has a broader impact beyond the CCM in which it was developed, as it can be applied to
other component-base middleware technologies which wish to support DRE applications.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 3, 2004
	Author: Authors: Nanbor Wang
	Title: Composing Systemic Aspects into Component-Oriented DOC Middleware, Doctoral Dissertation, May 2004
	ReportNumber: 2004-23
	DepartmentName: Department of Computer Science & Engineering

