13 research outputs found

    Integrated Assessment of Genomic Correlates of Protein Evolutionary Rate

    Get PDF
    Rates of evolution differ widely among proteins, but the causes and consequences of such differences remain under debate. With the advent of high-throughput functional genomics, it is now possible to rigorously assess the genomic correlates of protein evolutionary rate. However, dissecting the correlations among evolutionary rate and these genomic features remains a major challenge. Here, we use an integrated probabilistic modeling approach to study genomic correlates of protein evolutionary rate in Saccharomyces cerevisiae. We measure and rank degrees of association between (i) an approximate measure of protein evolutionary rate with high genome coverage, and (ii) a diverse list of protein properties (sequence, structural, functional, network, and phenotypic). We observe, among many statistically significant correlations, that slowly evolving proteins tend to be regulated by more transcription factors, deficient in predicted structural disorder, involved in characteristic biological functions (such as translation), biased in amino acid composition, and are generally more abundant, more essential, and enriched for interaction partners. Many of these results are in agreement with recent studies. In addition, we assess information contribution of different subsets of these protein properties in the task of predicting slowly evolving proteins. We employ a logistic regression model on binned data that is able to account for intercorrelation, non-linearity, and heterogeneity within features. Our model considers features both individually and in natural ensembles (“meta-features”) in order to assess joint information contribution and degree of contribution independence. Meta-features based on protein abundance and amino acid composition make strong, partially independent contributions to the task of predicting slowly evolving proteins; other meta-features make additional minor contributions. The combination of all meta-features yields predictions comparable to those based on paired species comparisons, and approaching the predictive limit of optimal lineage-insensitive features. Our integrated assessment framework can be readily extended to other correlational analyses at the genome scale

    Impact of Extracellularity on the Evolutionary Rate of Mammalian Proteins

    Get PDF
    It is of fundamental importance to understand the determinants of the rate of protein evolution. Eukaryotic extracellular proteins are known to evolve faster than intracellular proteins. Although this rate difference appears to be due to the lower essentiality of extracellular proteins than intracellular proteins in yeast, we here show that, in mammals, the impact of extracellularity is independent from the impact of gene essentiality. Our partial correlation analysis indicated that the impact of extracellularity on mammalian protein evolutionary rate is also independent from those of tissue-specificity, expression level, gene compactness, and the number of protein–protein interactions and, surprisingly, is the strongest among all the factors we examined. Similar results were also found from principal component regression analysis. Our findings suggest that different rules govern the pace of protein sequence evolution in mammals and yeasts

    The rate of the molecular clock and the cost of gratuitous protein synthesis

    Get PDF
    The nature of the protein molecular clock, the protein-specific rate of amino acid substitutions, is among the central questions of molecular evolution. Protein expression level is the dominant determinant of the clock rate in a number of organisms. It has been suggested that highly expressed proteins evolve slowly in all species mainly to maintain robustness to translation errors that generate toxic misfolded proteins. Here we investigate this hypothesis experimentally by comparing the growth rate of Escherichia coli expressing wild type and misfolding-prone variants of the LacZ protein. We show that the cost of toxic protein misfolding is small compared to other costs associated with protein synthesis. Complementary computational analyses demonstrate that there is also a relatively weaker, but statistically significant, selection for increasing solubility and polarity in highly expressed E. coli proteins. Although we cannot rule out the possibility that selection against misfolding toxicity significantly affects the protein clock in species other than E. coli, our results suggest that it is unlikely to be the dominant and universal factor determining the clock rate in all organisms. We find that in this bacterium other costs associated with protein synthesis are likely to play an important role. Interestingly, our experiments also suggest significant costs associated with volume effects, such as jamming of the cellular environment with unnecessary proteins

    Evaluating the fitness cost of protein expression in Saccharomyces cerevisiae

    Get PDF
    Protein metabolism is one of the most costly processes in the cell and is therefore expected to be under the effective control of natural selection. We stimulated yeast strains to overexpress each single gene product to approximately 1% of the total protein content. Consistent with previous reports, we found that excessive expression of proteins containing disordered or membrane-protruding regions resulted in an especially high fitness cost. We estimated these costs to be nearly twice as high as for other proteins. There was a ten-fold difference in cost if, instead of entire proteins, only the disordered or membrane-embedded regions were compared with other segments. Although the cost of processing bulk protein was measurable, it could not be explained by several tested protein features, including those linked to translational efficiency or intensity of physical interactions after maturation. It most likely included a number of individually indiscernible effects arising during protein synthesis, maturation, maintenance, (mal)functioning, and disposal. When scaled to the levels normally achieved by proteins in the cell, the fitness cost of dealing with one amino acid in a standard protein appears to be generally very low. Many single amino acid additions or deletions are likely to be neutral even if the effective population size is as large as that of the budding yeast. This should also apply to substitutions. Selection is much more likely to operate if point mutations affect protein structure by, for example, extending or creating stretches that tend to unfold or interact improperly with membranes

    The CRIT framework for identifying cross patterns in systems biology and application to chemogenomics

    Get PDF
    Biological data is often tabular but finding statistically valid connections between entities in a sequence of tables can be problematic - for example, connecting particular entities in a drug property table to gene properties in a second table, using a third table associating genes with drugs. Here we present an approach (CRIT) to find connections such as these and show how it can be applied in a variety of genomic contexts including chemogenomics data

    Bringing order to protein disorder through comparative genomics and genetic interactions

    Get PDF
    Abstract Background Intrinsically disordered regions are widespread, especially in proteomes of higher eukaryotes. Recently, protein disorder has been associated with a wide variety of cellular processes and has been implicated in several human diseases. Despite its apparent functional importance, the sheer range of different roles played by protein disorder often makes its exact contribution difficult to interpret. Results We attempt to better understand the different roles of disorder using a novel analysis that leverages both comparative genomics and genetic interactions. Strikingly, we find that disorder can be partitioned into three biologically distinct phenomena: regions where disorder is conserved but with quickly evolving amino acid sequences (flexible disorder); regions of conserved disorder with also highly conserved amino acid sequences (constrained disorder); and, lastly, non-conserved disorder. Flexible disorder bears many of the characteristics commonly attributed to disorder and is associated with signaling pathways and multi-functionality. Conversely, constrained disorder has markedly different functional attributes and is involved in RNA binding and protein chaperones. Finally, non-conserved disorder lacks clear functional hallmarks based on our analysis. Conclusions Our new perspective on protein disorder clarifies a variety of previous results by putting them into a systematic framework. Moreover, the clear and distinct functional association of flexible and constrained disorder will allow for new approaches and more specific algorithms for disorder detection in a functional context. Finally, in flexible disordered regions, we demonstrate clear evolutionary selection of protein disorder with little selection on primary structure, which has important implications for sequence-based studies of protein structure and evolution

    Molecular Evolution of the Brain Transcription Regulatory Network Affecting Worker Behaviour of Honey Bees (Apis Mellifera)

    Get PDF
    The brain transcription regulatory network drives the behavioural states of honey bee workers. It is paradoxical that labile behaviour is guided by a network of evolutionary conserved pleiotropic transcription factors. So how does adaptive change in behaviour arise? I used a population genomics approach to estimate the strength of selection on coding and cis-regulatory mutations of transcription factors and their target genes in the honey bee brain transcription regulatory network. I found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. This study suggests that adaptive evolution of complex behaviour can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network

    Network analyses of proteome evolution and diversity

    Full text link
    The mapping of biomolecular interactions reveals that the function of most biological components depends on a web of interrelations with other cellular components, stressing the need for a systems-level view of biological functions. In this work, I explore ways in which the integration of network and genomic information from different organizational levels can lead to a better understanding of cellular systems and components. First, studying yeast, I show that the evolutionary properties of target genes constitute the dominant determinant of transcription factor (TF) evolutionary rate and that this evolutionary modularity is limited to activating regulatory relationships. I also show that targets of fast-evolving TFs show greater evolutionary expression changes and are enriched for niche-specific functions and other TFs. This work highlights the importance of trans-regulatory network evolution in species-specific gene expression and network adaptation. Next, I show that genes either lost or gained across fungal evolution are enriched in TFs and have very different network and genomic properties than universally conserved genes, including, in sharp contrast to other networks, a greater number of transcriptional regulators. Placing genes in the context of their evolutionary life-cycle reveals principles of network integration of gained genes and evidence for the progressive network and functional marginalization of genes as an evolutionary process preceding gene loss. In the final chapter, I study how alternative splicing (AS)-driven expansion of human proteome diversity leads to system-level complexity through the AS-mediated rewiring of the protein-protein interaction network. By overlaying different network and genomic datasets onto the first large-scale isoform-resolution interactome, I found that differentiating between splice variants is essential to capturing the full extent of the network's functional modularity. I also discovered that AS-mediated rewiring preferentially affects tissue-specific genes and that topologically different patterns of rewiring have distinct functional consequences. Furthermore, I found that most rewiring can be traced to the AS of evolutionarily conserved sequence modules, which promote or block interactions and tend to overlap linear motifs and disrupt known domain-domain interactions. Together, this work demonstrates that a network-level perspective and genomic data integration are essential to understanding the evolution and functional diversity of proteomes
    corecore