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Abstract

Protein metabolism is one of the most costly processes in the cell and is therefore expected to be under the effective control of natural

selection. We stimulated yeast strains to overexpress each single gene product to approximately 1% of the total protein content.

Consistent with previous reports, we found that excessive expression of proteins containing disordered or membrane-protruding

regions resulted inanespeciallyhighfitnesscost.Weestimatedthesecosts tobenearly twiceashighas forotherproteins.Therewasa

ten-fold difference in cost if, instead of entire proteins, only the disordered or membrane-embedded regions were compared with

other segments. Although the cost of processing bulk protein was measurable, it could not be explained by several tested protein

features, including those linked to translational efficiencyor intensityofphysical interactionsaftermaturation. Itmost likely includeda

numberof individually indiscernibleeffectsarisingduringprotein synthesis,maturation,maintenance, (mal)functioning,anddisposal.

Whenscaled to the levelsnormallyachievedbyproteins in thecell, thefitnesscostofdealingwithoneaminoacid ina standardprotein

appears to be generally very low. Many single amino acid additions or deletions are likely to be neutral even if the effective population

size is as large as that of the budding yeast. This should also apply to substitutions. Selection is much more likely to operate if point

mutations affect protein structure by, for example, extending or creating stretches that tend to unfold or interact improperly with

membranes.
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Introduction

Proteins constitute a major component of the dry mass of a

cell. Synthesis of amino acids and subsequent assembly of

polypeptides are costly. The two processes are estimated to

consume about one-half of the ATP molecules in a growing

yeast cell and involve a large fraction of its nucleic acids and

ribosomal proteins (Verduyn 1991; Warner 1999). The huge

cost of protein synthesis has been recognized as such for de-

cades (Maaloe and Kjeldgaard 1966; Waldron and Lacroute

1975). More recently, it has been shown that newly assem-

bled polypeptides are released into a crowded environment of

macromolecules in which their folding is easily derailed (Ellis

2001). They often end up in a form that is not only unproduc-

tive but can also be toxic and sometimes resistant to degra-

dation (Stefani and Dobson 2003; Winklhofer et al. 2008).

However, while it is certain that the costs and risks associated

with the turnover of the total protein load are large, it remains

unknown how much individual protein species differ in this

respect. In theory, it is possible to calculate the cost of protein

synthesis because the substrates and the process are well

known. However, the required parameters are many and

they have not yet been estimated with sufficient accuracy

(von der Haar 2008; Siwiak and Zielenkiewicz 2010).

Because the routes of folding and degradation for different

polypeptides are still underway, the energy or fitness costs

associated with such events are presently impossible to

assess (Hartl et al. 2011). Thus, it remains a great challenge

in current research to provide analytical, experimental, or com-

putational estimates of selective pressures acting on individual

proteins.

Evidence that different proteins experience different selec-

tive forces on traits other than their primary functions can be

extracted from the DNA sequence. In particular, it is well es-

tablished that the rate of molecular evolution differs widely

between genes and that those expressed the most are the

ones that change the least (Sharp 1991; Pal et al. 2001).

One explanation could be that the highly expressed genes

mutate at a lower rate, a possibility that has gained some
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support recently (Martincorena et al. 2012). Most researchers,

however, believe that more highly expressed genes are under

stronger purifying selection. Some of the tentative explana-

tions invoke functional arguments: importance (essentiality) of

function, multiplicity of functions, centrality to metabolic net-

works, number of transcription factors assisting expression, or

enrichment for genetic and/or physical interactions (Fraser

et al. 2002; Jordan et al. 2003; Bloom and Adami 2004;

Wall et al. 2005; Pal et al. 2006; Vitkup et al. 2006; Xia

et al. 2009). For each of these factors, however, correlation

with the rate of evolution is much lower than that for the level

of gene expression (Rocha 2006; Wang and Zhang 2009).

Thus, it appears that it is the amount of protein product

that matters most. This could mean that selection tends to

purge mutations located in highly expressed genes because

they lead to a greater waste of resources (Barton et al. 2010;

Vieira-Silva et al. 2011). Not only efficient use of materials and

energy but also a high rate of translation can be important.

This could result in selection for optimal codon usage in the

highly expressed genes (Akashi 2001; Plotkin and Kudla

2010). The more protein molecules, the higher the toxic

effect after misfolding; therefore, misfolding-resistant se-

quences should especially be preserved in highly expressed

genes, which would constrain their evolution (Drummond

et al. 2005; Drummond and Wilke 2008; Yang et al. 2010).

In sum, there is no lack of hypotheses for how the amount

of synthesized protein could dictate the rate of molecular

evolution. However, these hypotheses have been conceived

through comparative analyses of DNA/protein sequences and

have been verified mostly in the same way. In this article, we

report the results of a study aimed at testing these hypotheses

experimentally, which has so far been addressed by only a few

researchers.

The postulate of controlled alteration of selected determi-

nants of the protein production cost has proved difficult to

implement. For example, changing the actual codon usage to

a devised one alters the stability and hence the abundance of

the resulting mRNA variants. The effect of mRNA abundance

can be more important than the sought effect of mRNA com-

position (Kudla et al. 2009; Agashe et al. 2013). Even the

seemingly straightforward task of demonstrating that over-

production of unnecessary proteins is disadvantageous has

proved challenging. There must be costs associated with syn-

thesis of redundant polypeptides, but there are also costs of

their presence in the cell and their interactions with cell struc-

tures (Stoebel, et al. 2008; Plata, et al. 2010; Eames and

Kortemme 2012). Our approach is based on the assumption

that universal costs of protein expression do exist and can be

at least partly disentangled if the number and diversity of an-

alyzed proteins are sufficiently large. We relied on a genomic

collection of yeast strains, each overexpressing a single pro-

tein. Two previous studies measured approximately how

much protein was overproduced and categorized the

growth effects accompanying this overproduction (Gelperin

et al. 2005; Sopko et al. 2006). One experiment measured

fitness using a quantitative assay but the level of production

was not estimated and the average production could not be

calculated as the applied protocol of overexpression differed

from those used earlier (Yoshikawa et al. 2011). We therefore

carried out our own assays in which we stimulated genes to

moderate protein overproduction, measured overexpressed

protein levels quantitatively, and estimated the growth rate

with high accuracy.

We first examined our data by asking whether the fitness

effect of overexpression was heavily dependent on the cellular

role of a tested gene. It was not, as we found by reviewing

gene annotations. This was encouraging because we could

assume that the effect of metabolic deregulation would not

obscure the effect of carrying useless or toxic protein mole-

cules. We thus asked which of the several protein properties

could be the best predictor of fitness variation. We confirmed

previous reports showing that proteins containing transmem-

brane (Kitagawa et al. 2006; Osterberg et al. 2006) and dis-

ordered (Vavouri et al. 2009; Ma et al. 2010) regions are

especially costly to fitness when overexpressed. Crucially, we

compared quantitatively these costs with the cost of express-

ing normal (well-structured cytosolic) proteins. We found that

the cost of expressing well-structured cytosolic proteins is very

low when scaled to one amino acid addition (and thus also

substitution).

Materials and Methods

Strains

We used a previously constructed collection of single yeast

open reading frames (ORFs), each with the same inducible

promoter PGAL1 followed by the same tandem affinity tag

(His6, HA epitope, protease 3C site, ZZ domain, 19 kDa)

cloned into a multicopy plasmid (Gelperin et al. 2005).

Plasmids were hosted by the haploid yeast strain Y258.

Most of the cloned genes had been tested for errors; only

approximately 3% of them were likely to have an undetected

mutation (Gelperin et al. 2005).

Fitness Assays

The overexpression strains were inoculated directly from

plates shipped by the distributor (Open Biosystems) into

200ml of SC with glucose but lacking uracil to stabilize the

plasmid. To stimulate overexpression, we used synthetic com-

plete (SC) with raffinose as a source of carbon and galactose

as an inducer, according to a protocol described in the original

study that led to moderate overexpression. We then trans-

ferred 10ml aliquots of each culture into 190ml of fresh glu-

cose medium and incubated for 48 h. From these cultures, 10-

ml aliquots were transferred to 135ml of SC with raffinose for

another 48 h. The raffinose cultures were diluted ten times

and the optical densities (ODs) measured. These cell
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suspensions were diluted again at 1:50 in SC with raffinose

and galactose (2% each). In this growth/induction medium,

the cultures were allowed to grow for 20 h, at which point

their ODs were determined. The ratio of the two OD mea-

surements, which were corrected for the dilution factor,

served to calculate the number of cell doublings for each cul-

ture. All growth assays were carried out at 30 �C.

Protein Assays

Overproduction of proteins was induced by transferring cells

sequentially from glucose to raffinose, and then to raffinose/

galactose medium for 8 h. The cells were then centrifuged,

washed with ice-cold water, and frozen. To extract proteins,

the cells were beaten with glass beads in 100ml of lysis buffer

(50 mM Tris–HCl, pH 7.5, 0.5% sodium dodecyl sulphate,

0.1 mM ethylenediaminetetraacetic acid, protease inhibitors)

for 4 h at 4 �C. Cell remnants were then spun down, and the

supernatants were collected. Total protein content was deter-

mined using a bicinchoninic acid (BCA) protein assay. For a

competitive ELISA assay, plates were coated overnight at 4 �C

with 0.05ml of normal rabbit serum (Pierce) diluted in 100ml

of 0.2 M carbonate–bicarbonate buffer, pH 9.4. After wash-

ing, plates were blocked with 300ml of 2% bovine serum

albumin (BSA) for 24 h. The yeast protein extracts were

mixed with protein A conjugated to peroxidase (Pierce) then

100ml of the resulting mixture was added to the blocked plate

wells, for a total 10mg of total yeast protein and 25 ng

(~26mU) of protein A per well. After 1 h of incubation, the

mixtures were discarded and the wells washed and filled with

100ml of the 3,30,5,50-tetramethylbenzidine (TMB) substrate.

The reaction was terminated after 30 min with 100ml of 2 M

H2SO4, and then, the absorbance at 450 nm was measured.

All washing steps were performed with 200ml of phosphate-

buffered saline containing 0.05% Tween 20. One of the

tagged proteins (Ade2p) was purified, diluted into a gradient

of known concentrations, and used as a standard to calibrate

the reads.

Gene Ontology and Protein Properties

To analyze the GO categories (Saccharomyces Genome

Database [SGD]), we applied an ANOVA model in which

each of the 5,084 overexpressed genes was described by

the Yeast Slim categories taking values of zero or one

(absent or present). We used the “lm” function of the R pack-

age, followed by the “step” function (based on Akaike

Information Criterion [AIC]) to reduce the number of pre-

dictor variables by eliminating the nonsignificant ones (R

Development Core Team 2010). The analyses were performed

separately for the molecular function, cellular component, and

biological process classifications. As these classifications con-

tained tens of terms, we did not analyze interactions between

them because the latter were very numerous and usually con-

tained too few data points to be meaningful.

Protein properties were analyzed by implementing a mul-

tiple regression model using the “lm” function. Continuous

predictor variables were log-transformed (except for gravy

score and mRNA 50 folding energy); a small constant was

added to those with zero values before transformation (Wall

et al. 2005). The continuous predictor variables included:

mRNA abundance (Garcia-Martinez et al. 2004), protein

half-life (Belle et al. 2006), intrinsic disorder/protein length +

0.01 (Linding et al. 2003), protein length (SGD), CAI+0.1

(SGD), gravy score (SGD), and protein abundance, that

is, the number of molecules per protein species

(Ghaemmaghami et al. 2003). To calculate the energy of

structures at the 50-end of mRNAs, we used the Vienna

RNA Package 2.0 (Lorenz et al. 2011) for stretches extending

from the �4 to +37 nucleotide positions (Plotkin and Kudla

2010). All continuous predictor variables were standardized

prior to analysis. There were also two categorical variables:

physical interaction status (not hub, intermediate number of

interactions, party hub, and date hub) (Han et al. 2004; Ekman

et al. 2006) and the presence of transmembrane segments

(not predicted, predicted by only one study, and predicted by

two studies) (Persson and Argos 1994; Krogh et al. 2001).

ORFs with missing values in any of the predictor variables

were excluded from this analysis. There were 2,913 ORFs

with a complete set of predictors, and only those were in-

cluded in the final orthogonal model. We included all ten

listed variables in the model and the first order interactions

between them (except for interactions between the two cat-

egorical variables). The entire procedure was repeated 40

times with random permutations of the order of categories

in the model. The P values for predictor variables were aver-

aged over repeats (geometrically).

Results

Fitness Effects of Moderate Overexpression of Genes
Are Small

We found that an overproduced protein species constituted

typically approximately 1% of the total protein amount (more

detailed data reported later), which is much less than doses

known to be severely toxic (Dong et al. 1995; Geiler-

Samerotte et al. 2011). We measured fitness by estimating

how many cell divisions occurred in single-strain liquid cultures

over a period of about 1 day (see Materials and Methods). This

included both lag and growth phases resulting in an average

number of doublings of 7.75 (median 7.83) with a standard

deviation of 0.45. (The cultures reached about one-fourth of

their final density.) Thus, variation in fitness was not high,

especially given that a sizable portion of it came from differ-

ences between plates and was eliminated from all subsequent

analyses by within-plate normalization (see Materials and

Methods). Previous studies evaluated the growth of colonies

on common agar plates (Gelperin et al. 2005; Sopko et al.
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2006) or in individual liquid cultures over a shorter time inter-

val (Yoshikawa et al. 2011; Makanae et al. 2013). Those ear-

lier estimates generally agree with ours (supplementary fig. S1,

Supplementary Material online). We sought to assay fitness in

a way that would increase the role of fast growth, and thus

fast protein processing, in the final measure of fitness.

Importantly, we wanted to compare quantitative fitness esti-

mates with quantitative estimates of protein overproduction

for a large number of individual clones, which had not been

performed in previous studies.

Figure 1 shows the distribution of normalized fitness esti-

mates for 5,182 strains containing a unique cloned ORF

known to express a protein (SGD). The intraclass correlation

coefficient (ICC) calculated over four independent repeats was

0.966, indicating that repeatability of our fitness measure-

ments was high. Good repeatability within a strain and large

differences between strains (the shape of clouds) suggest that

factors other than measurement errors were responsible for

much of the fitness variation. Some factors, such as the aver-

age copy number of individual plasmids, could not be con-

trolled in this experimental system. All individual records, both

normalized and nonnormalized, are listed in supplementary

table S1, Supplementary Material online.

Functional Categorization Explains Little of the Gene
Overexpression Effects

As reported later in detail, the median content of overex-

pressed proteins was approximately 400 times higher than

the median content of normally expressed ones

(Ghaemmaghami et al. 2003). This could potentially disturb

at least some cellular functions. The overexpressed genes fell

into 22 Yeast Slim GO cell component categories, 41 molec-

ular function categories, and 100 biological process categories

(we decided to reduce the biological process categories to 40

by combining some of the most similar ones). Within each of

these three classifications, we first applied a linear model in-

cluding all categories and then progressively simplified it by

eliminating statistically nonsignificant categories (see Materials

and Methods). We obtained a relatively low number of po-

tentially important predictors shown in figure 2. There were a

few categories associated with increased fitness. These sug-

gest that speeding up turnover of nucleotides and adjusting

oxidative metabolism could have a positive effect on fitness.

Negative effects were more numerous and larger. They were

linked to cell wall and membrane structures. Although these

factors were significant on a statistical level, they had very

small average effects, approximately 0.005, which is clearly

less than the standard deviation of the overall distribution of

normalized fitness estimates, 0.032 (fig. 1b). The observed

weak dependence of fitness effects on the functions of the

overexpressed proteins may be specific to our experimental

system. Other arrangements, for example, Escherichia coli and

high overexpression, have shown that unnaturally high levels

of transcription factors and regulatory proteins can be toxic

(Singh and Dash 2013).

To further test whether growth was indeed relatively insen-

sitive to metabolic deregulation, we focused our analyses on

enzymes alone. We revisited a study in which the molecular

evolution of enzymes was considered dependent on their

metabolic centrality and connectivity (Vitkup et al. 2006).

Connectivity of an enzyme had been calculated as the

number of other metabolic enzymes that produce or consume

the enzyme’s products or reactants. In our data set, 329 of the

350 enzymes examined in the original study were included.

We used the same categorization of metabolic connectivity

but did not find it helpful in explaining the observed variation
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FIG. 1.—The effects of single gene overexpression on growth. The

number of cell divisions in single-strain cultures was estimated four times

independently. The estimates were divided by the median values of rele-

vant replications to obtain normalized values. (a) The repeatability of the

individual normalized fitness estimates and (b) the frequency distribution

of strains’ means. The vertical dashed line marks the slowest growing 91

strains. These were removed from all of the following statistical analyses to

make the distribution symmetric and closer to normal. (This exclusion was

unlikely to affect our analyses. For example, we correlated fitness with ten

properties of proteins for all data and those lacking the 77 data points. For

data analyzed in this way, pairs of Pearson’s coefficients were themselves

very much correlated: Pearson’s r¼ 0.988, Spearman’s rs¼ 1).
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in the fitness response to gene overexpression (r¼�0.029,

P¼0.6). Apparently, the cell’s metabolic network is well buff-

ered against perturbations in the expression level of participat-

ing enzymes, at least when single enzymes are overabundant.

As reported earlier, most cellular structures and processes

were also remarkably resistant to such alterations. We there-

fore decided that it would be acceptable to execute the anal-

ysis of protein properties for all genes together, ignoring their

cellular roles and making the statistics both simpler and more

powerful.

Only a Few Protein Properties Correlate with the Cost of
Overexpression

A review of theoretical and empirical studies disclosed ten

properties of proteins/mRNAs that were frequently examined

as factors potentially affecting the rate of evolution. The de-

pendence of fitness on the most significant factors is shown in

figure 3a. The remaining factors are presented in supplemen-

tary figure S2, Supplementary Material online. These graphs

illustrate how the fitness of the overexpression strains corre-

lates with each characteristic separately. They show that al-

though the effects of some factors (e.g., protein length) are

small, they can be remarkably regular. In a formal statistical

analysis, we used a linear model, which examined jointly all

single factors and selected interactions (see Materials and

Methods). The results are reported more thoroughly in sup-

plementary table S2, Supplementary Material online. Here, in

figure 3b, we present only summaries of statistics for individ-

ual factors. Some factors, such as protein half-life, codon ad-

aptation index, frequency of physical interactions, abundance

under normal expression, energy of 50 mRNA fold, and gravy

score proved nonsignificant. Two of the statistically significant

factors, the presence of transmembrane regions and the pro-

portion of protein length occupied by sequences predicted to

be loosely shaped (intrinsically disordered), refer to properties

that become meaningful only after a protein chain is synthe-

sized and folded. Other properties may be important at the

time of synthesis. There was a negative correlation between

the level of mRNA under normal expression and fitness. This

could mean that overexpression of the normally common

transcripts tends to deplete optimal tRNAs for production of

redundant proteins and thus slow down elongation of those

needed. However, the effect of high CAI on fitness, although

negative, was not statistically significant. The energy of the

folding of 50 mRNAs was also neutral, suggesting that tran-

scripts with rigid spatial structures did not trap too many ribo-

somes (Plotkin and Kudla 2010). It thus appears that there is

no shortage of ribosomes, and possibly optimal tRNAs, when

1% of translation is useless, at least under the growth condi-

tions applied here. Finally, there was a negative correlation

between protein length and fitness indicating that the

amount of an overproduced protein mattered (because all

overexpressed proteins had the same promoter). This relation

attracted our attention especially because it appeared to be

very regular over the entire range of protein lengths (fig. 3a).

We therefore decided to test experimentally whether the

length of a protein is a good proxy for its amount under

overexpression.

Relating Fitness Cost to the Amount of Protein

We estimated the cellular level of overproduced protein for a

large sample of strains. Repeatability of estimates obtained

by competitive ELISA was high (ICC¼ 0.944, n¼719,

P�0.001) and centered on a median of 0.63% (fig. 4a).

The relationship between the amount of overproduced pro-

tein and its length is shown in figure 4b; Pearson’s correlation

coefficient was significant (r¼ 0.136, df¼ 717, P¼ 0.0002).

To find a quantitative relation between the length of a protein

and its amount under overexpression, we used a data set

without the outliers seen in figure 4b (see supplementary
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FIG. 2.—Gene Ontology categories as predictors of the overexpression

cost. The graph shows the highest and most statistically significant devia-

tions of the Yeast Slim category means from the grand mean (not fitness

gains or losses when compared with a strain with no overexpression).
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methods, Supplementary Material online for details). We

found that when the length of a protein doubles, its

amount under overexpression increases by about one-half

(the slope of a linear regression with both axes log-trans-

formed was 0.47). We could then assign to every protein its

expected amount under overexpression as a function of its

length. From the common model of multiple regression, we

found the relationships between the length of a protein (and

its amount), the presence of transmembrane regions, and the

presence of disordered regions, the three factors jointly effect-

ing fitness (supplementary table S3, Supplementary Material

online). This information is summarized in table 1, which lists

the cost of expressing different proteins per 1% of total pro-

tein mass and per amino acid. To get the latter estimates, we

assumed that the total mass of proteins in the yeast cell is

6.0� 10�12 g (Sherman 2002). Knowing the number of mol-

ecules (Ghaemmaghami et al. 2003) and their molecular

weights, we could calculate the total weight of every protein.

The contribution of special regions was calculated from the

proportions of the transmembrane or disordered regions cal-

culated for every individual protein species (Persson and Argos

1994; Krogh et al. 2001; Linding et al. 2003). One implicit

assumption that could introduce only a minimal bias to our

estimates is the assumption that the per amino acid weight of

the transmembrane, disordered, and other regions was equal

(see supplementary methods [Supplementary Material online]

for more details regarding calculations).

Table 1 shows that the average effect of having a disor-

dered region or a transmembrane domain is remarkable but

not excessively large. On average, disordered regions nearly

doubled the fitness cost of the entire protein. Similarly, the

membrane proteins were substantially more costly than were

the cytosolic ones. The costs expressed per amino acid show

the relative fitness changes of expanding some regions at the

expense of other regions. They may also serve to compare

fitness costs of proteins expressed at different levels. The

yeast proteins are represented by very different numbers of

molecules per cell under natural expression, from 10 to 1

million (Ghaemmaghami et al. 2003).

In the analyses described earlier, either some of the char-

acteristics borrowed from other studies or our own measure-

ments were lacking for a number of genes. We asked which

of our results would hold if a single analysis were performed

for those genes only for which both the fitness estimate, as

well as the protein overexpression level, and all other variables

were known. There were only 423 such genes. Detailed
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results are presented in supplementary table S4, Supplemen-

tary Material online. Briefly, the presence of transmembrane

domains remained the most significant factor. Three factors

pertaining to protein abundance—the measured level, the re-

ported half-life, and the predicted length—were also signifi-

cant or nearly significant. This latest finding is yet another

indication that it is not only the structural properties of a

redundant protein but also its amount that contributes to

toxicity.

Discussion

We found that overexpression of single genes in

Saccharomyces cerevisiae generally leads to moderate but

variable effects on growth. This variation is partly explained

by the properties of the overexpressed protein molecules

and the roles they play in cellular metabolism. Cell growth

also correlated to the amount of overexpressed protein, in-

dicating that synthesis and processing of useless polypep-

tides lowers the efficiency of cell growth. This particular cost

was relatively small, which explains why it has not been

convincingly demonstrated in former studies. Proteins with

disordered or intramembrane regions were especially dam-

aging to fitness when overexpressed. Based on these

findings, we propose that an addition, or exchange, of a

single amino acid is of little consequence for fitness unless

it extends or creates protein regions forming critical

structures.

There are two possible explanations why the disordered

and transmembrane regions are especially damaging to fitness

when overexpressed. One of them concentrates on overload,

the other on toxicity. Considering overload, we note that the

summed mass of all membrane proteins is 15% of the total

protein content in a yeast cell. Similarly, the disordered

stretches of polypeptides make up approximately 12% of

total protein. Therefore, the same weight of an extra 1%

of protein constitutes a considerably higher overload in

terms of proportion added to the proteins that are in mem-

branes or are disordered. The costs associated with transmem-

brane proteins can include membrane piercing, interfering

with other membrane proteins, or engaging membrane-

specific folding pathways. Similarly, if maintaining the total

pool of loosely structured proteins poses some special cost

to the cell, then every overexpressed member of this group

adds a higher proportion to this cost. Generally, the costs of

overload could result from expressing those proteins that are

more expensive/risky to keep in the cell even if they function as

expected. A type of overload hypothesis has been proposed in

which malfunctioning of membranes occurs in response to

the overexpression of a membrane protein (Eames and

Kortemme 2012). On the contrary, the cost of toxicity

means that overexpressed protein chains acquire new and

unwanted functions. It is possible that both the disordered

and membrane proteins are especially likely to undergo such

transformation. The disordered or unstructured regions have

important functions in signaling, control, and regulation

(Dunker et al. 2008). Proteins with such regions interact

with one another and with unrelated proteins, which

leads to misfolding and aggregation (Uversky et al. 2008;

Vavouri et al. 2009; Olzscha et al. 2011). Aggregates

tend to expose hydrophobic surfaces and therefore tend to
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(Ghaemmaghami et al. 2003) and overexpression estimates were obtained

in this study using a competitive ELISA assay. (b) The relationship between

protein length and protein overexpression level (see supplementary meth-

ods, Supplementary Material online).

Table 1

Fitness Cost of Protein Expression

Protein Typea 1% of Total

Proteinb

(Mean�SE)

Special Region

Fraction

(Mean�SD)

Cost Per

Single aac

(Mean�SE)

Standard 0.023�0.005 — (7.32�1.63)� 10�11

Disordered (added) 0.017�0.004 0.11�0.08 (6.76�1.47)� 10�10

Trans-membrane

(added)

0.012�0.002 0.13�0.10 (4.78�0.82)� 10�10

aProteins were standard (that is, cytosolic and well structured), contained
disordered regions, and were located in membranes. The proportion of protein
length taken by the disordered or transmembrane regions is shown in the middle
column.

bThe fitness cost of producing 1% of superfluous polypeptide (standard), plus
the costs added by the presence of disordered or transmembrane regions.

cThe fitness cost of expressing one amino acid in one protein molecule if the
amino acid is located in standard or special regions.
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illegitimately penetrate and damage cellular membranes

(Kourie and Henry 2002; Stefani 2008). Even the programmed

formation of transmembrane domains can be sensitive to

crowding and nonprescribed interactions with other regions

of polypeptides (Levine et al. 2005; Mackenzie 2006; Skach

2009; Chakrabarti et al. 2011). In sum, there are good hypo-

thetical explanations why transmembrane and disordered pro-

teins are especially likely to be overloaded or driven into

toxicity when overexpressed. However, substantial efforts

would be needed to find which of the two possible mecha-

nisms is actually occurring when a particular protein is

overexpressed.

There are two other properties of proteins that correlated

with the cost of overexpression: the length of the polypeptide

and the abundance of the cognate mRNA under normal ex-

pression. As explained in the Results, we believe the two traits

are simply correlated with the amount of useless protein and

that this unnecessary burden is the real cause of fitness de-

crease. We base our assumption on the remarkable regularity

of the relationship between polypeptide length and fitness

loss, as well as on a statistically significant relation between

polypeptide length and an actual abundance of overexpressed

protein in the cell. We considered two alternative hypotheses.

One assumes that long proteins are disproportionally more

likely to misfold and thus overexploit molecular chaperones.

To test this, we asked whether the overexpression of proteins

known to interact with molecular chaperones had more sub-

stantial effects on fitness. We do not report these tests be-

cause we did not find any relationship between the fitness

cost and the frequency of interactions with single chaperones

(Bogumil et al. 2012), sets of chaperones revealed in large-

scale studies (Gong et al. 2009), or smaller but carefully

confirmed chaperone assemblages (Hartl et al. 2011).

These results are in accord with a report suggesting that chap-

erones are efficient enough to handle a load of misfolded

proteins that is substantially higher than 1% (Vabulas and

Hartl 2005). Another alternative explanation, that long pro-

teins have more domains and thus are more damaging to

the cellular regulatory mechanisms, has been tested and re-

jected (see Results). We therefore propose that our observed

negative effect of protein length on fitness reflects the general

cost of protein processing, which includes all expenses in-

volved in protein synthesis, maturation, maintenance, and

disposal.

Our results can be used to address the question of

whether natural selection is strong enough to prevent a

single amino acid being added or exchanged for another

one. The efficiency with which genomes and proteomes are

purged of mutations depends not only on the strength of

their effects but also on population size (Lynch and Conery

2003; Fernandez and Lynch 2011). Natural selection oper-

ates when 2Nes> 1, where Ne stands for effective popula-

tion size and s for the selection coefficient. It is effective

when the quotient is ten times higher. The effective

population size of a species closely related to S. cerevisiae,

S. paradoxus, was estimated at 8.6�106 (Tsai et al. 2008).

We found that the average cost of processing one amino

acid is approximately 7�10�11 (table 1), so this would be

the cost of adding one unnecessary amino acid to one poly-

peptide and need to be multiplied by the number of af-

fected molecules. It follows that to be nonneutral (2Nes> 1),

a mutation of this type must hit a protein represented by

more than 830 molecules per cell. In S. cerevisiae, some

three-fourths of proteins meet this weaker criterion but

only a small minority the stronger one (Ghaemmaghami

et al. 2003). Thus, selection can possibly act on a single

amino acid only if the effective population size is as large

as in yeast and only if proteins are sufficiently abundant.

The entire cost of this size would be at stake if an amino

acid were to be deleted or inserted. Substitution would

most likely still be less costly and thus more often neutral.

In many organisms, the effective population size is much

smaller, even by three orders of magnitude (Charlesworth

2009; Gossmann et al. 2012), making selection still less ef-

fective. Our empirical findings generally agree with the re-

sults of a former computational study. Expediting single

atoms of the main components of yeast biomass (such as

carbon or nitrogen) has been found selectively nonneutral

for just approximately 1% of proteins (those most abun-

dantly expressed). Only under starvation for those rarer,

such as sulfur, a wasteful use of one atom (or an amino

acid in which it resides) can be significant for a substantial

proportion of proteins (Bragg and Wagner 2009).

Considering the factors that could control the evolution of

protein sequence, it is remarkable that the fitness costs asso-

ciated with amino acids residing within the disordered or

transmembrane regions were so much higher. It appears jus-

tifiable to speculate that natural selection would operate most

intensely on mutations creating new or extending existing re-

gions of danger. Not only mutations making misfolding or

misinteraction unavoidable would be selected against (Yang

et al. 2012) but also any changes in the DNA sequence that

could increase the rate of transcriptional and translational

errors resulting in alterations of the spatial structure of pro-

teins (Drummond et al. 2005; Drummond and Wilke 2008).

Such changes could result in selection coefficients that were

higher by several orders of magnitude than those arising from

amino acid substitutions in standard protein regions. This is

because any unwinding of a polypeptide can involve dozens of

amino acids, each being ten times more costly than it was in a

safe structure. There is some evidence to suggest that selec-

tion preventing structural aberration can be strong (Chiti and

Dobson 2006; Geiler-Samerotte et al. 2011), but further work

is clearly needed to show that much or perhaps most of the

variation in the rate of protein evolution can be attributed to

selection, minimizing the danger of protein misfolding and

toxicity.
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Supplementary Material

Supplementary methods, tables S1–S4, and figures S1 and S2

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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