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1. Introduction 
 
 

The middle of the 20th century saw the advent of structural biology, a branch of 

modern biology that over the years undoubtedly had one of the largest effects on our 

view of life. Its importance is also illustrated by the fact that since the 1950’s over a 

dozen Nobel Prizes were awarded to research directly linked to structural biology, 

including the structure determination of nucleic acids, proteins and their complexes and 

the ribosome. One of the key factors behind the long lasting success of the field is the 

successful integration of different scientific areas. The applied experiments, such as X-

ray crystallography, NMR or electron-microscopy rely heavily on various fields of 

physics, including thermodynamics, statistical physics, quantum physics and 

electrodynamics. Parallelly, the theoretical description of molecular structures also has a 

strong physical background. However, the ultimate goal of every experiment is to deduce 

biologically meaningful statements ranging from the function of single molecules to a 

systems biology level. These statements on one hand shed light on how living organisms 

work, on the other hand provide means to translate this knowledge into practical 

applications, such as drug design. Over the past few decades, however, the amount of 

knowledge and data has reached a level unmanageable by manual methods. Accordingly, 

structural biology has been extensively computerized up to a point where much of the 

current research projects rely on bioinformatics methods, computer simulations and 

online databases. 

 

The extensive review of structural biology – if at all possible – would fill volumes 

alone, hence clearly out of the scope of this dissertation. Instead, in the next few chapters 

I aim to give a very brief summary of the theoretical and practical background that is 

directly relevant to my work. 
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1.1. Protein folding 

1.1.1. Levels of protein structure 

 

Proteins are long, linear polymers, generally built up by the 20 standard amino acids. 

Sequencing experiments can provide the primary structure of protein chains by 

determining the order of its composing amino acids that are linked by covalent bonds. As 

the peptide bonds between consecutive residues are planar, the conformation of the main 

chain of a protein can be described by two angles (termed  and  dihedral angles) per 

residue, describing the relative orientation of the two planes of two consecutive peptide 

bonds. Following the appearance of the first solved protein structures, it became clear 

that the distribution of dihedral angles in a protein is highly non-random. There are 

several preferred -  angle combinations that correspond to various local order in the 

structure. Consecutive residues with -  angles around (-60º,-45º) form -helices which 

are stabilized by H-bonds between the main chain atoms of the ith and i+4th residues. The 

other most common emerging local structure are given by -  angles around (-

135º,135º) resulting in an extended -strand conformation. Such extended structures are 

also stabilized by H-bonds between the main chain atoms of two or more strands in either 

parallel or anti-parallel orientation. Other frequently populated -  preferences give rise 

to a variety of other (not necessarily translationally symmetrical) local structural 

elements, such as turns, hairpins and other, less frequent types of helices. The type and 

position of such ordered, local structural elements in a protein chain constitute the second 

level of structure, the so-called secondary structure. The third level of protein structure is 

the full, 3 dimensional conformation of the whole protein chain. This is typically given 

by enumerating the coordinates of all the (heavy) atoms of the protein in an arbitrarily 

chosen orthogonal coordinate system. The main driving forces behind the organization of 

secondary and tertiary structures are diverse and encompass H-bonds, salt bridges, the 

covalent bonding of the S atom of cystein amino acids and entropic effects, such as the 

hydrophobic effect. Tertiary structures can be determined by either X-ray diffraction or 

NMR measurements. The resulting sets of coordinates for individual proteins and protein 



 
Chapter 1 – Introduction 

3 

complexes are deposited to and are publicly available in the Protein Data Bank (PDB1) 

database. The fourth level of protein structure describes the spatial orientation of proteins 

during their interactions. The main features of quaternary protein structures is described 

in later sections of the introduction (sections 1.2 and 1.5). 

 

1.1.2. Physical description of protein folding 

 

The process during which a polypeptide chain adopts its native tertiary structure is 

called folding. The typical timescale of protein folding is in the millisecond-second 

range2 (depending mainly on proline and cysteine content), and as the temperature inside 

the cells of living organisms can be considered constant at this timescale, the correct 

choice of thermodynamic potential for the description of the protein folding problem is 

the Gibbs free energy (G). The Gibbs free energy of a protein chain can be broken down 

into two terms: 

proteinproteinprotein TSHG  (1) 

where proteinH  is the enthalpy and proteinS  is the entropy of the protein and T is the 

temperature. In the simplest, two state model of the protein folding process, the protein 

can exist in either the denatured/unfolded state and the folded state, corresponding to the 

conformation in which proteinG is minimal. The equilibrium between the two states is 

determined by the following equation: 

solventproteinsolventproteinsolventprotein

protein

STSTHHH
GKRT ln

 (2) 

where R is the gas constant, K is the equilibrium constant between the unfolded and the 

folded state (the joint entropic term of the protein and the solvent has been omitted from 

the equation as it is negligible compared to other terms). proteinG  determines the overall 

stability of the protein and the contribution of each term varies heavily between 

individual cases. Even this simple model is applicable to the basic description of the 
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folding of many proteins and can explain some hallmarks of known folded structures. For 

example, due to the last term that describes the entropy of the solvent, polar and charged 

groups of the protein are directed to the surface of the resulting structure, while 

hydrophobic sidechains form the hydrophobic core shielded from the polar solvent3. This 

hydrophobic effect is typically the strongest driving force in protein folding4. However, 

the simple two state model does not give information about the kinetics of the folding as 

it does not describe the intermediary conformations the protein goes through during 

folding. H-bonding (a part of proteinH ) stabilizes emerging secondary structures and the 

hydrophobic effect (described by solventS ) drives the hydrophobic collapse of the protein. 

The temporal order of the two effects during folding has been disputed and there are 

examples for both scenarios: hydrophobic collapse followed by the formation of 

secondary structures and vice versa5. 

 

Although two state folding models are a viable starting point in the description of 

protein folding, the detailed description of folding requires a more elaborate model where 

transient states have to be considered. Furthermore, in reality, the final, folded state 

shows fluctuations as well (captured in the B factors during X-ray crystallography) and 

the introduction of distinct states is necessary to describe alternative low energy states 

between which the folded protein alternates. As shown in later chapters, these states can 

have a profound effect on the function and binding of proteins. 

 

The two state model can be expanded with the addition of folding intermediate states 

and some of these states can be measured experimentally by techniques with high 

temporal resolution. However, the full description of the folding kinetics would require 

the consideration of all possible states of the protein and the possible transitions between 

them. 
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1.1.3. The energy landscape view of proteins 

 

The use of energy landscapes in the description of protein folding is an alternative 

approach that is aimed at describing all possible states of a protein6; 7. However, due to 

the large number of described conformations, this framework is rather qualitative, albeit 

it proved to be extremely useful in explaining some of the basic properties of protein 

folding8; 9. The energy landscape of a protein is the energy of each possible conformation 

as a function of the degrees of freedom, such as the dihedral angles along the polypeptide 

backbone (see Figure 1). The vertical axis represents the internal free energy. The 

internal free energy contains the enthalpic term, therefore it includes the contributions 

from hydrogen bonds, ion-pairs and torsion angle energies. Moreover, it also includes 

hydrophobic and solvation free energies by averaging over the conformational space of 

water molecules. However, it does not contain the conformational entropy term. Each 

conformation of the protein is represented by a point on the multidimensional surface, 

specified by a multidimensional set of coordinates in the conformational space. 

Conformations that are similar geometrically are close to each other on the surface. 

However, the energy of similar conformations can still differ significantly, and as a result 

there are many hills and valleys on this surface. The wider the valleys are, the more 

conformations are similar to the single conformation at a local energy minimum. Since 

the true multidimensionality of the surface and the vast number of conformations cannot 

be easily represented on a figure, usually a highly simplified schematic cartoon is used to 

illustrate the basic properties of proteins7. An example energy landscape of a typical 

folded protein is shown in Figure 1. 
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It was suggested that the energy landscape of a well-folded globular protein is funnel 

shaped5-7. Although a vast number of conformations are sampled, most of the 

conformations have high (unfavorable) energy. There are much fewer conformations that 

have low energy and these are similar to the native state. The bottom of the funnel 

represents the unique native structure that is stabilized by a large number of 

intramolecular interactions and by the burying of hydrophobic side chains. This image 

can also be used to illustrate how globular proteins find their native structure despite the 

huge conformational space. In 1969 Levinthal noted that it would take an astronomical 

time for a protein to search through its full conformational space by means of random 

walk - an apparent contradiction between the large number of possible conformations and 

the fast folding rates10. However, in the folding funnel picture it becomes evident that 

folding is not a random search as the transition from one conformation to the other is 

directed by the free energy gradient. According to this, there are multiple parallel 

pathways that are channeled towards the unique native structure5. This process can be 

visualized as a ball rolling down in a funnel. The funnel shaped energy landscape ensures 

that the native state is the global energy minimum and it is kinetically accessible. 

 
Figure 1: a typical globular protein energy landscape in two dimensions 

The internal free energy is sketched against some coordinate representative of the conformation. The 

coordinate is arbitrary, however each different conformation should have a unique set of coordinates. 
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1.2. Interactions of folded proteins 
 

1.2.1. Phenomenological approach 

 
Proteins are gregarious. Proteins seldom exert their function without interacting with 

one ore more protein partners and the social network of proteins is built from these 

specific interactions. These macromolecular interactions form large protein interaction 

networks in all living organisms11. Apart from individual protein structures, the structure 

of numerous complexes formed between globular, ordered proteins have been solved by 

X-ray crystallography and NMR and have been deposited into the PDB as well. From the 

known coordinates of the complex, fundamental properties of the protein-protein 

interfaces can be calculated. Several systematic studies have analyzed the complexes in 

terms of their hydrophobicity, accessible surface area, shape complementarity and residue 

preferences12; 13. The comparison of these properties between interior, surface and 

interface components in oligomeric proteins can reveal some of the basic molecular 

principles of these interactions12; 14. 

 

The interface is usually defined as a set of accessible surface residues that become 

buried during the complex formation. Similar to the core of globular proteins, multiple 

van der Waals interactions, salt bridges, H-bonds and hydrophobic interactions can be 

formed across the interface. For strong interactions, a large interface is usually needed. 

Although the interface properties of these complexes may vary depending on the size and 

geometry of the partners, the distribution of the interface sizes show a well pronounced 

maximum at around 1000 Å2 with more than 75% of the interface sizes being in the 500-

1500 Å2 range15; 16. Larger interfaces are usually formed between permanent complexes. 

In contrast to the relatively narrow range of the sizes of interfaces, the length distribution 

of these proteins showed a much larger variance, falling into the range of 50-500 residues 

and there is no trivial linear dependence between the size of the interface and the protein 

length. Another consequence of the well defined structure is the segmented nature of the 

interfaces. During folding, residues that are distant in the amino acid sequence are 
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brought together in the three-dimensional structure. As a result, residues forming the 

interface usually belong to several non-contiguous segments and cannot be mapped to a 

single run of residues in the sequence. Typically the globular interfaces are made up of 2 

to 7 segments with some complexes having even higher segmentation values over 1012; 16. 

 

The proper complementarity of the interfaces is an important signature of specific 

protein-protein interactions. As a result of multiple atomic level interactions, the interface 

can be as highly packed as the protein core. On average the residues from the two 

partners interact via 4-8 atomic contacts16. Generally, the interface has an intermediate 

hydrophobicity between those of the hydrophobic interior and the mostly polar exterior12; 

13. However, the association of globular proteins is driven not only through hydrophobic 

patches on the surface, but polar interactions between subunits can also make significant 

contributions. At closer inspection, various types of complexes showed significant 

variations in the relative contributions of the different interactions. It was shown that 

homodimer interfaces were more hydrophobic compared to heterodimers, and that the 

interfaces of homodimers, permanent hetero-complexes and enzyme-inhibitor complexes 

were more complementary than antigen-antibody complexes12. 

 

The functional importance of interface residues is reflected in their evolutionary 

conservation. Conservational analyses showed that the interface residues are significantly 

more conserved among homologous sequences that the rest of the surface residues17. As 

promising as this feature may be from the perspective of protein binding site predictions, 

conservation alone is not sufficient to recognize protein binding sites13. Therefore, the 

conservation values deduced from multiple sequence alignments are usually combined 

with several physico-chemical parameters in order to highlight residues involved in 

protein-protein interactions18. In addition to these criteria, the most prominent feature of 

residues in protein binding regions is that they have to be accessible by the interacting 

partner. However, accessibility can only be predicted from sequence alone with a modest 

success rate19. Furthermore, the segmented nature of globular binding regions means that 

many, sequentially distant regions should be recognized at the same time. As a 
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consequence, successful binding site prediction algorithms generally require the solved 

structure of the interacting proteins. Methods that predict binding sites directly from 

protein sequence alone are much less common20 and usually perform with lower 

accuracy13. 

 

1.2.2. Thermodynamics approach 

 
The association of protein complexes can be approached based on basic physical 

principles similarly to protein folding. From a thermodynamics point of view, the 

interactions between proteins are governed by changes in the Gibbs free energy. The total 

change in the Gibbs free energy between the initial and final states, rG°, determines the 

equilibrium constant K and thus the balance of proteins in the free and the bound form: 

KRTGr ln   (3) 

Similarly to the description of folding, G° can be divided into enthalpic and entropic 

terms to give more insight into the binding process: 

STHG rrr   (4) 

The balance of the enthalpic (H) and entropic (S) terms determines the nature of the 

interaction, governing the affinity of the binding. The enthalpic term is dependent on the 

type and the complementarity of the interacting residues. The entropic terms are 

intimately linked with the flexibility of the partners. The diversity of protein-protein 

interactions can be traced back to the many different ways these factors can be combined 

in order to form highly specific functional protein complexes. 

 

1.2.3. Models of molecular recognition 

 

The details of the molecular interactions are determined by the properties of the 

interacting partners in the initial free state and the final bound state. Accordingly, for the 

description of protein complexes, the basic properties of the interacting molecules in their 
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free state also have to be taken into account. Depending on the nature of the unbound 

state relative to the bound state, various models have been proposed. Although some of 

these models were developed originally to describe enzyme-substrate interactions, they 

can be readily applied in a more general way to model generic protein-protein 

interactions as well. The classical view of molecular recognition was based on the lock-

and-key model21, that emphasized the chemical and geometrical complementarity of the 

interfaces without invoking any changes in the free and the bound protein conformations. 

This scenario applies, for example, to the complex formed between trypsin and basic 

pancreatic trypsin inhibitor (BPTI). The experimental data show that both partners have a 

well-defined structure in the unbound form that is nearly identical to the conformation 

adopted in the bound form. However, many proteins exhibited a slightly different 

preferred conformation in the two states. To account for this, the induced fit mechanism 

was suggested22. Induced fit arises due to the imperfect complementarity of the interface 

of the partners. Upon binding, the structure of one or more of the partners is changed by 

the interaction, and the conformation in the bound form differs from that of the free form. 

Despite these differences, both the lock-and-key and induced fit models basically assume 

a single stable conformation under given experimental conditions23; 24. 

 

An alternative explanation for the conformational differences in the free and bound 

form is offered by the concept of conformational selection9; 25. According to this model, 

one or both of the partners have multiple low energy conformations in the unbound state. 

The Gibbs free energy differences between these states determine the balance of the 

population in these conformations. However, during binding the interaction with the 

partner shifts this equilibrium. The lowest energy conformation adopted in the bound 

complex is different from the dominant structure of the free state, and it corresponds to 

one of the higher energy alternative conformations. The importance of the conformational 

selection model lies in that it can take into account the conformational heterogeneity of 

proteins. As the resolution of experimental techniques improves, more and more weakly 

populated, higher energy conformations can be detected, and the importance of these 
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conformations during the binding process is becoming more apparent24. The new 

examples provide further support to the concept of conformational selection. 

 

1.2.4. The energy landscape view of protein-protein interactions 

 

As the thermodynamic principles of protein folding and binding show a strong 

similarity, the concept of energy landscapes, introduced in section 1.1.3 can be readily 

applied to protein-protein interactions as well24; 26; 27. A major advantage of the energy 

landscape view is that conformational heterogeneity naturally follows from it. The energy 

landscape of the complex is created from the combination of the conformational space of 

the interacting molecules. However, the interaction with the partner molecule can induce 

drastic changes in the shape of the energy landscape corresponding to the individual 

protein. Comparing the shapes of the energy landscape of the free and bound state, the 

conceptual differences of the various binding mechanisms can be illustrated27 (see Figure 

2). In the lock and key model (Figure 2A), both partners have one, well defined minimum 

in their respective energy functions that corresponds to the native conformation. The 

combined energy function of the complex also has only one minimum that defines the 

same conformation for both partners as in their respective unbound native conformations. 

The induced fit model (Figure 2B) starts from the same assumptions for the unbound 

states of the partners. However, the complex formed by the partners in their respective 

native states does not correspond to an energy minimum. From this state, the complex 

reaches the energy minimum by slight alterations in the conformation of one or both 

partners. The basis of the conformational selection model (Figure 2C) is that at least one 

of the partners has two or more well-pronounced minima that are separated from each 

other by an energy gap. Upon interaction, the conformation corresponding to one of these 

minima is selected by the partner. 
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1.3. Intrinsically disordered proteins 
 

1.3.1. Re-assessing the structure-function paradigm 

 

In the first approximately 40 years of structural biology, the central model underlying 

all biochemical studies was that a well-formed structure is a prerequisite for a protein to 

carry out its function. Following the advice of Crick: ‘If you want to understand the 

function, study the structure’, this notion motivated a large number of structure-function 

studies and lead to the structure determination of more than 50 000 proteins. Although 

some proteins and protein segments were known that either did not lend themselves to 

structure determination or had sequence features that were seemingly incompatible with a 

folded structure (eg. highly charged, repetitive sequence regions), these were considered 

as hallmarks of imperfect experimental conditions or some exotic rarities of nature. 

Figure 2: modes of molecular recognition in folded protein complexes 

The three classical models for interactions between globular proteins: A) lock and key model, B) 

induced fit and C) conformational selection. The energy of the system is sketched against a single 

coordinate of the conformational space. The initial and final states of proteins are represented by light

and dark dots, respectively. Arrows mark the pathways of binding and dotted arrows show binding 

pathways with unfavorable energies. 
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With the explosion of available genome sequences, during the 1990’s the known 

number of these ‘rarities’ and ‘experimental errors’ grew steadily up to the point where 

they could no longer be put down on a side note. This forced molecular biologists to 

reassess the structure-function paradigm28. The world of proteins were extended to 

include proteins that do not require a stable, three dimensional structure even under 

physiological conditions in order to fulfill their biological role29-31. These intrinsically 

unstructured/disordered proteins (IUPs/IDPs) lack a well defined tertiary structure and 

exhibit a multitude of conformations that dynamically change over time and population. 

The importance of protein disorder is underlined by the abundance of partially or fully 

disordered proteins encoded in higher eukaryotic genomes32. Using bioinformatics 

predictors it was estimated that 30–50% of eukaryotic proteins contain at least one long 

disordered segment. The fact that protein disorder is not a tolerated necessity but provides 

an evolutionary advantage is reflected by studies showing the steady increase of the 

fraction of disordered proteins in proteomes as organism complexity increases33; 34. 

Furthermore, disordered proteins are involved in many important regulatory biological 

functions30 including transcription, translation and cell signaling, complementing the 

functional repertoire of globular proteins35. 

 

Recent characterization of IDPs based on their functions shows that disorder can help 

these proteins to fulfill their functions in various ways36; 37. In accord with the wide 

variety of functions associated with it, protein disorder too comes in a large number of 

varieties. In some cases disordered regions are short and can be found at the terminal 

regions of globular domains, such as the disordered N-terminal region of eIF4E. 

Similarly, globular domains can also harbor flexible loops that appear as missing regions 

in solved structures. Flexible linkers that connect globular domains, such as Zinc fingers 

represent another type of localized disorder. In another scenario, especially in complex 

organisms, protein disorder often encompasses larger, domain sized regions. These 

regions can exhibit different degrees of flexibility ranging from the near-random 

conformation of the ACTR domain of the p160 protein through the presence of local 

transient secondary structural elements – such as in the N-terminal region of p27 – to 
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compact molten globule regions with considerable amount of secondary structure but 

without stable tertiary structure, such as the nuclear coactivator binding domain of CBP. 

 

1.3.2. Coupled folding and binding of IDPs 

 

The intrinsic flexibility of disordered proteins is intimately linked to their functions. 

In the case of entropic chains, the biological function is directly mediated by disorder 

(e.g. MAP2 projection domain, titin’s PEVK domain, NF-M and NF-H between 

neurofilaments, nucleoporin complex). However, most disordered proteins function by 

binding specifically to other proteins, DNA or RNA. The lack of structure in the unbound 

form has profound effect of both the binding process and the resulting complex. In all 

cases the flexibility of  the disordered partner decreases due to the binding, most cases to 

a level where the resulting complex lends itself to traditional structure determination. In 

these cases folding is said to be coupled to binding and this coupling modulates the 

energetic process of binding compared to globular proteins38; 39. As discussed earlier in 

section 1.2.2, the interaction of proteins can be described thermodynamically with the use 

of the change in the Gibbs free energy (see section 1.2.2, formula (4)). The resulting 

protein complex corresponds to the state with the minimal Gibbs free energy. However – 

as opposed to the interaction of globular proteins – in complexes involving IDPs, the loss 

of entropy during the folding of the disordered partner has to be taken into account and 

the entropic term (S) can play a much larger role. The loss of degrees of freedom during 

the coupled folding and binding in the disordered partner is dependent on the flexibility 

of the IDP in the bound and unbound form. As discussed in the previous section, the 

starting flexibility can vary in a wide range from near-random proteins to molten 

globules. On the other hand, it has been shown that IDPs can retain a varying degree of 

this flexibility in their bound form as well40. As a result, S can also cover a wide range 

and can effectively tune the binding strength over a wide range. This results in a weaker 

binding compared to that of globular proteins. By uncoupling specificity from binding 

strength, IDPs are more prone to form specific, yet transient interactions30; 36, which are 
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indispensable to regulatory and signaling processes37. The increased rate of association 

and dissociation of disordered proteins increase their temporal binding capacity. 

Furthermore, as discussed in section 1.5, disordered proteins are able to incorporate a 

higher fraction of their surface in the binding interface, which increases their interaction 

capacity in a spatial sense as well41. Consequently, disordered proteins in general can 

mediate a large number of interactions thus serving as hubs of protein-protein interaction 

networks42. 

 

1.3.3. Involvement in diseases 

 

Given the functional importance of disordered protein regions, their malfunction is 

expected to have serious biological consequences. IDPs indeed are often associated with 

various diseases, including neurodegenerative diseases, amyloidosis, diabetes, 

cardiovascular diseases and cancer43-46. Despite the fact that proteins involved in these 

diseases are shown to have a higher disorder content, the exact role of protein disorder in 

these cases are not fully understood. As a consequence, disordered proteins involved in 

diseases is an intensely studied research area. 

 

Probably the most results published to date concern the involvement of IDPs in 

cancer47. Many notable proteins were studied individually, exemplified by BRCA1, p27, 

p21 and CBP, that are involved in various forms of cancer. One of best characterized 

disordered proteins, p53, is known to be directly inactivated in more than 50% of cancers. 

At a more general level, the higher proportion of disordered proteins among cancer 

associated proteins was also observed47. According to the analysis of the SwissProt 

database, 79% of human cancer associated proteins have been classified as IDPs, 

compared to 47% of all eukaryotic proteins. The correlation between protein disorder and 

cancer was further underscored in the case of two common forms of generic alterations, 

chromosomal rearrangements and copy number variations48; 49. In addition to cancer, 

disordered proteins were also suggested to be common in diabetes and cardiovascular 
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diseases. Several disordered proteins – such as A , ,  synuclein, and prion proteins – 

are involved in neurodegenerative diseases and are also prone to amyloid formation. 

Altogether, these results lead to the conclusion that protein disorder comes with a 

‘biological cost’ that is reflected in an increased risk of cancer and other diseases30; 43. 

This calls for the understanding of the role of protein disorder in various diseases. 

 

Apart from basic research interests, the connection between protein disorder and 

involvement in diseases has implications in therapeutics as well. The pharmaceutical 

industry is currently struggling to find promising new drug targets, despite substantial 

increases in research funding. Drug discovery rates seem to have reached a plateau or 

perhaps are even declining, suggesting the need for new strategies. Until recently, the 

feasibility of targeting proteins without a well-defined structure was unclear for the 

purpose of drug development50. There is now, however, a newly sparked interest in IDPs 

as potential drug targets51. This is supported by finding specific inhibitors to block the 

interaction between p53 and MDM2, or between c-Myc and Max. Recognizing the 

relevance of these proteins stimulated more systematic efforts aiming at their structural 

characterization and determination of their mechanisms of action. 

 

1.4. Predicting protein disorder 
 

The detailed structural and functional characterization of disordered proteins is quite 

a challenging task. On one hand, as disordered proteins are generally involved in 

regulatory functions, their expression levels are lower on average, making them more 

difficult to isolate. On the other hand, disordered regions are more prone to degradation 

by proteolytic enzymes than well folded proteins. Furthermore, the existing experimental 

procedures are highly biased for ordered proteins, and most techniques provide only 

indirect information about disorder. Consequently, the current list of experimentally 

verified disordered proteins is rather limited. Currently the largest organized catalogue of 

experimentally verified disordered proteins and protein segments is the DisProt52 
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database in which over 1,400 disordered regions inside over 650 proteins are collected. In 

the light of the fact that about half of the human proteins are thought to contain at least 

one longer disordered segment, the amount of data in the DisProt is scarce at best. This 

discrepancy faithfully reflects the difficulties of the experimental identification of 

disordered proteins. Because of these difficulties, bioinformatics tools that target the 

prediction of protein disorder from the sequence play a very important role in the 

identification and characterization of IDPs. 

 

1.4.1. Basic sequence properties of IDPs 

 

The first analyses of sequences of disordered proteins revealed significant differences 

in the amino acid composition of ordered and disordered proteins. Basically, globular 

proteins have a relatively balanced amino acid composition in terms of hydrophobic and 

hydrophylic amino acids. Compared to this, the composition of disordered proteins is 

biased. These proteins are generally depleted in bulky hydrophobic and aromatic amino 

acids, which would normally form the hydrophobic core of folded globular proteins. On 

the other hand, they are enriched in polar and charged amino acids. At closer inspection, 

however, various datasets of disordered protein sequences exhibited further variations in 

their sequential bias. Differences could be observed depending on the experimental 

method used to identify disordered regions53 (e.g. CD, NMR, or X-ray crystallography), 

depending on the length of disordered regions54, and the location in the sequence (N and 

C-terminal, middle regions)55, although these differences are smaller compared to the 

differences observed between ordered and disordered proteins. 

 

The amino acid compositional bias of disordered proteins suggests the relevance of 

hydrophobicity scales for the discrimination of ordered and disordered segments. Among 

various amino acid scales, properties related to flexibility and coordination number had 

the highest discriminatory power56. Several disordered prediction methods are based on a 

simple amino acid propensity scale57, such as the mean packing density of residues 
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calculated from atomic contacts or the difference of the amino acid propensities to be in 

coil and regular secondary structure elements. It was also suggested that the combination 

of low average hydrophobicity and net charge can identify disordered proteins. A specific 

amino acid scale optimized to discriminate ordered and disordered regions was also 

constructed58. 

 

The appeal of single amino acid propensities is that they are easy to calculate and to 

interpret, however, they are limited to a single effect. This can be insufficient to account 

for the complex phenomenon of protein disorder. Such properties, however, are also 

useful to reduce the dimensionality of the input data. By focusing on the relevant 

properties, an increased performance can be achieved during prediction. Several methods 

exploited amino acid scales in their predictions, including PONDR VLXT and VSL2 or 

DisPSSMP. 

 

1.4.2. Machine learning approaches 

 

The prediction of protein disorder can be viewed as a classic binary classification 

problem (ie. the whole protein or each residue of a protein chain has to be categorized 

either as ordered or as disordered) and can be addressed by standard machine learning 

techniques. The underlying assumption is that sequence features calculated from a local 

sequence window can be directly mapped into the property of order or disorder. Most 

methods assign disordered and ordered status at the amino acid residue level. Several 

disorder predictions are based on already existing methods developed for other areas of 

protein structure prediction, implemented using the specific datasets of disordered 

proteins. The novelty of many disordered prediction methods based on machine learning 

approaches lies in the representation of input information, rather than in the algorithms 

themselves. A comprehensive review of published methods appeared in the literature 

recently59. 



 
Chapter 1 – Introduction 

19 

The two main applied approaches to machine learning methods is neural networks 

and support vector machines (SVMs). The first method developed for the prediction of 

disordered proteins is PONDR VL-XT which is based on feed-forward neural networks, 

one the most common methods in the field of bioinformatics. Elaboration of the used 

algorithm and the inclusion of position specific scoring matrices, secondary structure 

predictions and other information gave rise to a newer generation of methods, including 

DisPSSM and RONN. The first disorder prediction algorithm using SVMs was 

DISOPRED2. This method was followed by others such as the POODLE family 

(including the POODLE-I method) and PONDR VSL2 and also algorithms employing a 

recursive architecture such as DISpro and OnD-CRF. With the increase of available 

prediction methods, the meta approach is becoming more common. Servers, like MD or 

metaPrDOS, work by integrating the results of several disorder prediction methods. 

Although these developments can lead to improved prediction accuracies, there exist 

other viable alternative approaches. 

1.4.3. Physical modeling – the IUPred algorithm 

 

As opposed to the application of various ‘black box-like’ machine learning 

algorithms, the prediction of protein disorder can be approached with the direct 

implementation of physical principles governing the process of protein folding. A prime 

example of such approaches is the IUPred algorithm60. This method captures the essential 

cause of protein non-folding: if a residue in a protein is not able to form enough favorable 

intrachain contacts, it will not adopt a stable position in the 3D structure of the chain. If 

such residues are clustered along a segment of a protein or the whole protein, then this 

segment or the entire protein will be disordered. 

 

The implementation of the above principle in IUPred is done taking an energetics 

point of view. For globular proteins, the contribution of interresidue interactions to total 

energy is often approximated by low-resolution force fields, or statistical potentials, 

energy-like quantities derived from globular proteins based on the observed amino acid 
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pairing frequencies61. In deriving the actual potentials, different principles have been 

applied. The resulting empirical energy functions are well suited to assess the quality of 

structural models and have been used for fold recognition or threading but also in 

docking, ab initio folding, or predicting protein stability. Their success in a wide range of 

applications suggests the existence of a common set of interactions, simultaneously 

favored in all native – as opposed to alternate – structures. 

 

The pairwise energy E of a protein in its native state is the sum of the energies of all 

its pairwise residue-residue interactions. E is the function of its conformation as well as 

its amino acid sequence, as these define the list of residue-residue interactions that have a 

contribution to the total energy. This total energy can be calculated by taking all contacts 

in the protein, and weighting them by the corresponding interaction energies. The 

interaction energy between any two types or amino acids can be inferred by calculating 

the frequency of interactions between these two types in a dataset of known protein 

structures. These frequencies are transformed into interaction energies using the 

Boltzmann hypothesis62 and are described by the 20 by 20 interaction energy matrix of 

amino acid pairs, M. Hence, the pairwise energy content calculated based on the structure 

can be written as: 

ji
ijijcalculated CME

,
  (5) 

where Mij is the interaction energy between amino acid types i and j, and Cij is the 

number of interactions between residues of types i and j in the given conformation.  

 

This energy calculation, however, assumes the knowledge of the 3D structure of the 

protein and as such, is not directly applicable to proteins whose structure can not be 

determined. To come around this problem, a novel estimation scheme was established 

and implemented in IUPred to enable the estimation of the E interaction energy without 

the structure, using the protein sequence alone. The rationale behind this approach is that 

the energy contribution of a residue depends not only on its amino acid type, but also on 

its potential partners in the sequence. It is assumed that if the sequence contains more 
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amino acid residues that can form favorable contacts with the given residue, its expected 

energy contribution is more favorable. The simplest approximating formula for the 

specific estimated pairwise energy can be expressed with a quadratic formula as: 

ji
jiijestimated ffPLE

,
 (6) 

where L is the length of the protein, fi is the normalized frequency of residues of type i 

and P is the energy estimator matrix. The elements of P are optimized on a set of globular 

proteins using the least squares method in order to minimize the difference between 

Ecalculated and Eestimated. Equation (6) gives an estimate for the energy of the whole protein, 

however can be naturally modified to calculate the pairwise energy of single residues as 

well. For this, it has to be considered that in multi-domain proteins the residues belonging 

to different domains do not interact. For this end, the amino acid frequencies are only 

calculated in the sequential neighborhood of the residue in question. The width of this 

sequence window is marked by w0 and is set to 100 residues to each side, therefore 

limiting the amino acid composition calculations to 200 residues, that roughly 

corresponds to the average domain size. To estimate the interaction energy of residue k 

(of type j), equation (6)) can be modified: 

20

1
0 )(

i

k
iij

k
j wfPE  (7) 

where )( 0wf k
i  is the fraction of residues of type i in the w0 neighborhood of residue k. 

(Note that lower indices stand for amino acid type, while upper indices stand for position 

in the chain.) Formula (7) enables the estimation of the intrachain interaction energies of 

each residue directly from the amino acid sequence. Generally, residues with less 

favorable predicted energies are more likely to be disordered. Testing on 559 globular 

and 129 disordered proteins60 showed that this energy estimation scheme is accurate 

enough to achieve a high true positive rate (fraction of disordered residues correctly 

predicted) of 76% while maintaining a sufficiently low false positive rate (fraction of 

ordered residues incorrectly predicted) of 5%, a standard choice of type II error in 

prediction methods. The strength of the construction of the method is that its parameters 
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are derived from a globular protein dataset without the use of specific datasets of 

disordered proteins. As globular protein datasets are considerably larger than that of 

disordered proteins, this grants the method substantial stability compared to methods 

where a large number of parameters are trained on a limited and sometimes ambiguous 

disordered protein dataset. 

 

The above energy estimation method is implemented in IUPred. The method is 

accessible via a web server63 hosted at the Institute of Enzymology 

(http://iupred.enzim.hu). For the ease of interpretation, the calculated energies are 

converted into probability values, indicating the probability of each residue being 

disordered. Figure 3 shows an example output of the IUPred server for the human 

Wiskott-Aldrich protein (WASp). WASp is a 502 residue long protein that is entirely 

disordered with the exception of the ordered WH1 domain spanning the 39-148 region. 

The assigned probabilities are in accordance with the known structural information as the 

calculated probabilities on the ordered domain lie below 0.5 marking order (low 

probability of being disordered) and above 0.5 for the rest of the protein (high probability 

of being disordered). 
 

 

 

Figure 3: The IUPred server 

Screenshot of the IUPred server output for the human Wiskott-Aldrich protein. The horizontal axis 

represents the protein chain and the vertical axis represents the probability of each residue to be 

disordered. Residues with values above 0.5 are predicted to be disordered and values below 0.5 indicate 

an ordered structure. 
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1.5. Molecular principles of the interaction of disordered 
proteins 

 

As discussed in section 1.3.2, there is increasing evidence that disordered proteins 

participate in many vital biological processes and their function often involves protein-

protein interactions. While these segments are disordered in isolation, many of them 

become ordered during binding to their specific partner. As a result of the coupled 

folding and binding process, the structure of these complexes can be studied with 

traditional structure determination methods. Although the PDB database contains 

significantly fewer such cases, even these examples demonstrate the definitive 

differences of the complexes involving disordered proteins compared to the complexes of 

ordered globular proteins. Although the structure of the complexes of disordered proteins 

also shows a rigid conformation, many of their distinct properties give away their 

inherent flexibility16. 

 

In most cases, disordered segments adopt a largely extended and open conformation in 

the complex. The absolute interface size of disordered segments is in the same range 

observed in the case of globular proteins, with only a few exceptions presenting very 

large interfaces (over 3000 Å2). However, the length of the regions undergoing disorder-

to-order transition is generally significantly shorter. These regions are usually below 100 

residues; in many cases the disordered binding regions are less than 30 residues long. 

Therefore, the relative contribution of the residues to the interface is much higher. 

Furthermore, the interface area relative to the surface area of bound IDPs is much higher 

than in the case of globular proteins, meaning that these proteins utilize a much larger 

fraction of their accessible surfaces compared to globular proteins. An important property 

of disordered binding regions is that they are usually well localized in the sequence - in 

about 70% of the cases the interacting residues can be mapped to a single continuous 

region of residues. These localized interacting regions allow IDPs to have an increased 

modularity as different binding regions can be incorporated into the same protein without 

excessively increasing protein length. These binding regions can be close to each other or 
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can form mutually exclusive overlapping sites. The compact arrangement of multiple 

binding regions is possibly one of the reasons for the abundance of IDPs among protein-

protein interaction network hubs. 

 

The distinct binding mode of IDPs is also reflected in the physico-chemical nature of 

their interfaces. The interface of disordered proteins is more hydrophobic, and the 

preferred interaction contacts are also significantly different compared to the more 

familiar globular proteins. As opposed to the large number of polar-polar interactions at 

globular interfaces, IDPs tend to favor hydrophobic-hydrophobic contacts with the 

partner protein. The increased importance of hydrophobic interactions during binding is a 

hallmark of the complexes involving IDPs. As a result of the binding, the short 

disordered segments can also adopt both regular (e.g. -helix) and irregular local 

conformations.  Similar to globular proteins, the interface properties are relatively well 

conserved. Although disordered regions tend to have lower conservation scores, the 

scores calculated for the regions becoming ordered during binding and especially for the 

interacting residues are significantly higher than for the rest of the sequence. 

 

1.6. Linear motifs 
 

The study of protein-protein interactions formed by disordered proteins is based on 

structural considerations as shown in sections 1.3.2 and 1.5. However, the study of 

interactions between protein domains and short, linear protein regions – a description 

which fits most interactions between folded and disordered proteins – has a distinctively 

separate approach as well. In this case, the interaction is not described focusing on the 

short partner, but the large one, which is usually a protein domain. It was found for many 

domains such as SH2/SH3, 14-3-3, WW and MAPK that their interacting partners – 

albeit in many cases not being homologues – share a limited number (typically between 

2-10) of common residues in the short interaction region64; 65. These amino acids are 

interspersed with flexible positions that can accommodate a variety of amino acids 
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without disrupting the binding66. Figure 4 shows the example of nuclear receptors that are 

able to bind a large variety of protein partners. Although most partner proteins are not 

homologues, they all share three key leucine residues at their interacting sites. During the 

interaction, the region that binds to the receptor forms an -helix and the three leucines 

form a hydrophobic patch on the surface of the helix. This patch in turn recognizes the 

appropriate complementary hydrophobic region of the interface of the receptor and 

anchors the helix to the binding groove. The consensus sequence of the binding region is 

xLxxLLx, where x can stand for any amino acid, except for proline, as it would disrupt 

the helix formation. This motif is called LIG_NRBOX and ligands of many nuclear 

receptors are able to recognize their receptor partners via these sequence patterns. The 

theory of linear motifs, used to describe such interactions, is based on the assumption that 

these common residues (constituting the motif) mediate the binding largely independent 

of the other regions of the protein they are embedded in, functioning autonomously. 

However, in many cases the role of the context was shown to be larger than originally 

expected67. 
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The majority of protein-protein interaction mediating linear motifs were described in 

eukaryotes. Known motifs are usually represented by either a sequence logo or a regular 

expression and are collected in various databases65; 68. The most comprehensive and 

extensive available database of these motifs is the Eukaryotic Linear Motif (ELM) 

database68. Motifs are categorized into four groups: cleavage sites (CLV) mark the target 

regions of proteases; ligand binding sites (LIG) are generic protein-protein interaction 

sites that mediate the binding to a diverse set of domains, such as WW, 14-3-3 and 

SH2/SH3 domains; targeting signals (TRG) include known localization signals such as 

NLS and NES; modification sites (MOD) describe the regions of proteins undergoing 

various post-translational modification, such as phosphorylation, sumolation and 

Figure 4: Example of the distillation of a linear motif 

The figure shows the known interaction partners of nuclear receptors that all bind using the same 

binding mode. The upper left structure shows a solved complex structure between a small region of the 

human NCOA2 nuclear receptor coactivator (shown in red and yellow) and a glucocorticoid receptor 

(shown in blue). Although the actual sequences around the binding region do not share a high level of 

similarity, all contain three key leucine residues. These three amino acids interspersed and flanked by 

flexible positions constitute the consensus LIG_NRBOX motif (shown in red in the structure and the 

partner sequences). 
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amidation. These motifs are known to be found in eukaryotic proteins, however some of 

these motifs can be expected to be present in other kingdoms of life as well. Furthermore, 

instances of the retinoblastoma protein-, the SH3- and the 14-3-3 interacting motifs, 

among others, were identified in various viruses as well. 

 

Linear motifs can be readily used to search for binding partners of a given domain in 

unknown sequences through basic pattern matches. As an example, the first step in 

searching for nuclear receptor binding proteins would be to select proteins from a full 

proteome that harbor the above shown xLxxLLx motif. The strength of this method 

besides its simplicity is that it automatically gives information about the interacting 

partner: proteins matching the xLxxLLx motif are supposed to interact with nuclear 

receptors. This in turn can shed light on the localization and function of these proteins. 

However, these patterns usually consist of only a few fixed residues, and therefore most 

motifs are weakly defined, meaning that matches can arise purely by chance with a 

relatively high probability69. As a result, naïve motif searches are hindered by the 

massive amount of false positive hits: as leucines are hydrophobic, three leucines in close 

proximity can appear in sequence regions corresponding to the core region of globular 

proteins. This is partially the result of the incomplete description sequence patterns offer. 

Inside a living cell, the functionality of the motifs is modulated by structural, spatial and 

temporal control. Proteins harboring residues matching classical MAPK recognition 

motifs can be extracellular, hence never encountering MAPKs in reality. Furthermore, the 

proper structural context of a motif (such as being accessible, flexible and capable of 

forming the secondary structure necessary to fit into the binding cleft of the target 

domain) is crucial for its biological relevance and motif definitions do not include any 

such information. 

 

Currently there are two major objectives around which studies involving linear motifs 

are centered. The first task is to distill new motifs70-74. This can be approached 

experimentally by identifying candidate interactions between proteins and then 

determining the residues from the short interacting partner that are essential to the 
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binding. After the determination of these essential interacting patterns from a sufficient 

number of partner proteins of a common domain, researchers aim to distill a consensus 

sequence that fits all the observed individual patterns. Virtually all known and accepted 

linear motifs have this kind of experimental background. However, there are many 

proposed bioinformatics methods that aim to reach the same goal based on protein 

sequences only. Generally the sequences of proteins interacting with a common partner 

are collected and various methods are used to identify significantly enriched short 

patterns in these sequences. Various discovery tactics are employed backed up by 

statistical models to give reliable results. Motifs distilled in such manner can be subjected 

to experimental validation and in some cases were shown experimentally to yield 

biologically meaningful motifs. 

 

The second basic task in the field of motifs concerns the application of known motif 

patterns. Basic pattern matching approaches have a very small predictive power due to 

the massive amount of false positive hits. Therefore, additional information is introduced 

into the motif searches that aim to discriminate between true and false motif instances75-

79. Such information can be based on annotations (eg. in searches using a motif that 

mediates interactions with nuclear proteins, extracellular proteins can be removed from 

the candidate list), but also can be based on predictions. Used predictions are usually 

aimed at the accessibility of the protein region containing the candidate motif hit. 

Commonly used predictions include domain and accessibility searches (motif hits found 

in the core regions of domains are not likely to be functional) and disordered predictions, 

as many motifs were shown to reside in disordered regions. 
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2. Scientific Aims 
 

The main purpose of my Ph.D. work was to deepen the understanding of the 

molecular recognition processes of disordered proteins. I approached this aim by 

developing and using bioinformatics tools and protocols focused on the interactions of 

disordered proteins, and by applying them to gain biological insights. 

 

Although many protein disorder prediction methods existed, as of 2007 – the start of 

my Ph.D. studies – there was no publicly available prediction method specifically aimed 

at identifying binding regions in disordered proteins. Accordingly, my first aim was to 

develop ANCHOR, a method capable of predicting disordered binding regions based 

solely on protein sequences, and making it available to the broad scientific community. 

 

Following the completion of ANCHOR, I aimed at applying it in various 

bioinformatics studies that, on one hand, could serve with meaningful biological 

conclusions and on the other hand, had practical implications. I focused my studies on the 

following aspects of structural and systems biology: 

 

 the appearance and presence of disordered binding regions throughout evolution 

 the role of protein disorder and disordered binding regions in diseases caused by 

pathogens, using Mycobacterium tuberculosis as a model organism 

 the association between protein disorder, interactions, function and involvement 

in cancer 

 the connection of the theory of disordered binding regions with linear 

interaction motifs 

 the possibility of using the theoretical description of protein disorder as a basis 

of modeling and predicting the various types of protein disorder on a common 

ground 
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3. Data and Methods 
 

As usual in bioinformatics studies, my work relies heavily on computational methods 

and databases. Apart from using standard bioinformatics tools, such as BLAST, I focused 

on developing custom programs and protocols to specifically target the problem at hand. 

Furthermore, one of my main projects was the development of a novel prediction 

algorithm. These programs were written in either C (for computation intensive 

applications) and Perl (for the development of protocols, assembly of datasets and 

implementation of statistics methods). For each sub-project, I aimed to test and validate 

my results using positive and negative datasets. These datasets were assembled from 

various available data sources, including Pfam, PDB, UniProt, Disprot, the UCSC 

Genome Browser and the COSMIC database. During the evaluation of my methods and 

the validation of my results, I quantified their reliability using standard and customized 

statistical methods. As databases and methods were tailored for each sub-project, it would 

be difficult to discuss them out-of-context. Accordingly, the following chapter follows 

the structure of the results section (chapter 4) and each database and method is presented 

in the order they are referred to. 

 

3.1. Databases 
 

The data acquisition and the assembly of custom databases was done with Perl 

scripts. In each case I only quote the method used for the assembly of databases and omit 

the enumeration of their separate protein/domain/structure entries. However, adhering to 

the concept of reproducibility, the complete lists can be found in the supplementary 

materials of the referred papers. 

 

Development of ANCHOR and the ANCHOR server (section 4.1) 
 

Short disordered binding sites 

Complexes from the PDB1 (http://www.rcsb.org/) were collected by scanning the 

chains in the PDB entries against the Disprot database52 (http://www.disprot.org/). A 

complex was accepted if it consisted of a chain with length between 10 and 30 
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residues that was found in the Disprot database as part of an annotated disordered 

segment and at least one interacting partner that was at least 40 residues long. 

Furthermore, complexes containing transmembrane proteins, RNA or DNA, 

chimeras, disulfide bonds between the disordered and ordered chains or a large 

number of unknown residues (marked with an X) were excluded. A few 

experimentally verified disordered complexes missing from Disprot were added to 

this set. A sequence similarity filter of 50% has also been applied to remove closely 

related proteins or protein segments. This procedure yielded a set of 46 complexes. 

 

Long disordered binding regions 

Complexes containing long disordered chains were collected in the same fashion as 

short ones but with different criteria for the length of the interacting partners. Here 

the length of the disordered chains was required to be at least 30 residues and they 

had to have an interacting partner of 70 residues or more. The resulting set contains 

28 complexes. 

 

Globular proteins 

Globular proteins were collected from PDB entries that had only one chain of at least 

30 residues. Also transmembrane proteins and complexes with RNA/DNA were 

filtered out. This dataset contains 553 proteins. 

 

Disordered proteins 

For the analysis of disordered proteins and protein segments the 3.7 version of 

Disprot database was used, considering only annotated disordered segments of 10 

residues or longer. 

 

Biological application of ANCHOR (section 4.2) 
 

Complete proteome dataset 

The dataset contains the protein sequences from 736 complete proteomes (53 archaea, 

639 bacteria and 44 eukaryota) that were currently available from the SwissProt 

database (ftp://ftp.expasy.org/) marked as ‘complete proteomes’. 
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Studies concerning Mycobacterium tuberculosis (section 4.3) 
 

Pfam domains 

For the domain assignment the protein domains contained in the Pfam database80 

were used (http://pfam.sanger.ac.uk/). Both the manually curated Pfam-A and the 

automatically generated Pfam-B parts were used. 

 

Sequence Dataset of Complete Proteomes (SDCP) 

For the proteome-scale comparative studies, a dataset containing 1,904,578 protein 

sequences from 467 known complete proteomes was assembled (20 eukaryotic and 

447 bacterial proteomes containing 392,401 and 1,512,177 proteins respectively). 

These proteomes were taken from the UniProt ftp server (ftp://ftp.uniprot.org/). 

 

Large scale analysis of disorder, function and involvement in cancer (section 4.4) 
 

COSMIC 

Data were collected from the COSMIC database81 

(http://www.sanger.ac.uk/genetics/CGP/cosmic/). This is currently the most 

comprehensive catalogue of somatic mutations in cancer. Data are gathered from two 

sources, publications in the scientific literature, (v52 contains 11,437 curated articles) 

and the full output of the genome-wide screens from the Cancer Genome Project 

(CGP) at the Sanger Institute, UK. This dataset also incorporated the outcome of 

cancer genome projects. A small subset of the COSMIC database was also part of the 

cancer census dataset that were casually linked to oncogenesis. These genes 

constituted the COSMIC_census dataset. 

 

Polymorphisms 

Polymorphisms were collected using the UCSC Genome Browser82 

(http://genome.ucsc.edu/). Single genes were mapped to the genomic location 

corresponding to the UCSC Santa Cruz hg19/GRCh37 build. Those sequences, that 

could not be mapped, were changed or retracted, were discarded from further 
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analyses. The polymorphism data were obtained by mapping the SNPs of dbSNP 

(release 132) to the genomic coordinates. This release contained over 13 million 

SNPs. It also incorporated the results of the 1000 Genomes pilot projects that 

collected variations via whole genome shotgun sequencing from two families with 

high coverage and 179 individuals with low coverage. I used the Common SNPs 

corresponding to uniquely mapped variants that appear in at least 1% of the 

population. The commonness of these variations suggests that these are likely to be 

neutral polymorphisms with no clinical relevance. To ensure the quality of the 

polymorphisms data, I only used validated SNPs. 

 

Human proteome 

The proteins of the human proteome were downloaded from the “complete proteome” 

page of the UniProt database. Only reviewed entries were kept, resulting in a dataset 

of 20,232 proteins. 

 

Functional annotations 

Functional classifications were based on GeneOntology83 (GO, 

http://geneontology.org/) terms assigned to human proteins in UniProt. I retrieved all 

GO terms for all proteins in the human proteome and mapped them to high level GO 

terms described in the Generic GOslim subset of GO. This subset contains 127 terms 

covering all three parts of GO annotations: biological processes (50 terms), cellular 

components (36 terms) and molecular functions (41 terms). All proteins from 

COSMIC, where possible, were mapped to UniProt sequences and were assigned the 

relevant GOslim terms. 

 

Interactions 

Protein-protein interactions were taken from the current release of the IntAct84 

database (www.ebi.ac.uk/intact/). 
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Linear motifs (section 4.5) 
 

Linear motif patterns and instances 

Linear motif patterns and true motif instances were downloaded from the Eukaryotic 

Linear Motif database68 (http://elm.eu.org/). Only LIG motif instances were 

considered, and were filtered for ‘true positive’ logical annotation. Furthermore, 

instances were filtered for similarity using BLAST. Instance sequences producing 

significant similarity over regions including the same motif were clustered and only 

one representative from each group was kept. 

 

Sequences from the three domains of life 

Sequences from eukaryotes, bacteria and archaea were downloaded from the 

‘taxonomic divisions’ section of the UniProt ftp server (ftp://ftp.uniprot.org/). The 

eukaryotic, bacterial and archaeal datasets included 171,208, 326,910 and 18,674 

protein sequences, respectively. 

 

Pfam domains 

The number of PCNA, PDZ and cyclin domain occurrences in the sequences from the 

three domains of life were collected from the Pfam database 

(http://pfam.sanger.ac.uk/). 

 

Human proteome 

The proteins of the human proteome were downloaded from the “complete proteome” 

page of the UniProt database. Only reviewed entries were kept; the current release 

included 20,256 protein sequences. 
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3.2. Methods 
 
In the following description of the used methods, I follow the order of the presentation of 

results in chapter 4. Unless otherwise noted, the used methods were implemented in the 

Perl programming language under Linux operating system. Only custom built methods 

and protocols are described in detail, standard statistical methods are only referred. 

 

General methods: 
 

Generation of figures: 

For the representation of numerical data, the Gnuplot package was used. Figures 

showing protein structures were made using Pymol. Figures of the IUPred and 

ANCHOR web servers are screenshots of the actual server outputs. Complex figures 

were assembled in Powerpoint. 

 

Development of ANCHOR and the ANCHOR server (section 4.1) 
 

Parameter optimization: 

The optimal parameters were determined by a three fold cross-validation, by dividing 

both the negative and positive datasets (Globular proteins and Short disordered 

binding sites, respectively) into three parts with approximately the same chain length 

and secondary structure distribution. Only the five parameters specific to ANCHOR, 

w1, w2, p1, p2 and p3 were optimized by a grid search procedure. Specifically, w1 was 

varied in the range of 20 to 100 in steps of 10 (giving 9 possible values), w2 was 

varied in the range of 5 to 35 in steps of 2 (giving 16 possible values), and p1, p2 and 

p3 was selected from 1000 sets of randomly generated values (p1 and p2 were 

randomly selected from the interval [-1;1] and p3 was selected from the interval [0;1] 

in a way that the sum of their squares is always equal to 1). This yielded 1000 

different (p1, p2, p3) combinations. These, combined with all possible values of w1 and 

w2 gave 144,000 different parameter sets in total. These were considered in order to 



 
Chapter 3 – Data and Methods 

36 

select the optimal one, containing the five optimal parameters for each round of the 

cross-validation. 

 

To quantify the performance of the predictor given a set of parameters I calculated the 

True Positive Rate (TPR) at False Positive Rates (FPR) fixed at 5% calculated on 

globular proteins as the negative set. Parallelly, the fraction of amino acids that are 

predicted as binding sites in general disordered regions of Disprot database that are 

correctly recognized as disordered by IUPred (F value) was also calculated (for a 

more detailed discussion of the F value, see section 4.1.2 of the results chapter). 

 

The best parameter set was chosen manually, by reducing the parameter set in a step-

wise manner based on the following steps: 

1, Calculate TPR (at fixed FPR=5%) and F for each of the 144,000 candidate sets of 

parameters 

2, Discard all for which F>50% 

3, Discard all for which TPR<60% 

4, From the remainder choose the 20 for which the difference between TPR and F is 

the largest 

5, Choose the one for which TPR is maximal (the TPR-F difference among these 20 

sets vary only within a range of less then 0.02 so that is not a good measure to choose 

the best one) 

 

The negative and positive sets were divided into three parts, resulting in three 

different optimal parameter sets. The final predictor algorithm is constructed by 

averaging these three outputs. As the training sets only contained binding regions of 

at least 10 amino acids and I aim to identify at least 5 residues of each region, all 

predicted binding sites were removed that did not exceed 5 consecutive residues. A 

schematic figure of the training procedure is given in Figure 5 of section 4.1.2 of the 

results chapter. 
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Secondary structure evaluation: 

Secondary structures were assigned with the DSSP85 algorithm using the structures of 

the complexes downloaded from the PDB. 

 

ANCHOR web server: 

The core program of ANCHOR is written C, and both the online version and the 

downloadable version includes a Perl wrapper. This Perl program is called by the web 

server written in PHP. The graphical output is generated by the JpGraph software 

(http://www.aditus.nu/jpgraph/). The default option for graphical/text output is 

automatically determined by the browser type, but it can be changed by user. 

Additionally, list of sequences can also be submitted to generate simple text output on 

a larger scale. 

 

Studies concerning Mycobacterium tuberculosis (section 4.3) 
 

PSI-BLAST similarity searches and similarity profiles 

For the similarity searches between MTB proteins and the proteins in the SDCP (see 

Data section), PSI-BLAST was used.  First, a PSI-BLAST profile was calculated for 

each of the 3,948 proteins in the MTB proteome using the UniRef90 database, with 

three iterations. Next, these profiles were used to find hits from the proteins in SDCP. 

A hit was considered significant (the MTB and the other protein was considered 

locally similar) and was used further on, if the e-value was below 10-4. Based on the 

alignments, all locally similar sequences from the SDCP were collected for each 

protein in the MTB proteome. Next, for each MTB protein a similarity profile was 

built that contains the number of similar sequences for each of the 467 organism in 

the SDCP. 

 

Cluster analysis 

The input for the clustering algorithm is based on the similarity profiles generated for 

each MTB sequence. In the cluster analysis Euclidean distance was used together 

with Ward’s method. The result of clustering was largely insensitive to various 

parameters of the clustering, including the type of the clustering method, various 
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types of normalizations and parameters of PSI-BLAST. The clustering was 

implemented in the R program package. 

 

Large scale analysis of disorder, function and involvement in cancer (section 4.4) 
 

Comparison of the cancer databases and the human proteome 

The average ratio of disordered residues, ratio of proteins containing >30 residue long 

disordered regions and average length were calculated in the COSMIC and 

COSMIC_census datasets. These averages were compared to the average values 

calculated in the human proteome. Standard errors of the mean were calculated by 

selecting 10,000 random samples from the human proteome of the same size as the 

respective dataset. In each of the 10,000 random selections, the means were 

calculated. From these means the standard error of the mean was established and used 

to test the difference between the random samples and the database average. For the 

assessment of significance the confidence intervals of =0.01 (corresponding to 2.576 

standard errors) were considered. 

 

Over- and under-representation of polymorphisms and cancer-associated mutations 

For each protein in the COSMIC and COSMIC_census datasets, the sequences were 

downloaded from the Uniprot database or the UCSC Genome Browser. Using the 

sequence, IUPred was used to assess which residues were part of disordered regions. 

These results were also calculated with two other disorder prediction methods, 

DISOPRED and VSL2. ANCHOR was used to predict regions involved in disordered 

binding regions. For each protein, the number of polymorphisms and cancer-

associated mutations within these regions were calculated. These numbers were 

compared to the expected number of mutations based on the assumption, that 

mutations occur in a random way. This expected distribution was calculated in the 

following way: to calculate the expected number of mutations for ordered and 

disordered regions, the number of observed mutations was divided according to the 

ratio of ordered and disordered residues in the given sequence. This model takes into 

account that the number of mutations can change from one protein to another. The 

number of expected and observed mutations was summed up separately for ordered 
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and disordered segments. Using these numbers, the statistical significance of the 

differences in the two distributions was assessed by 2 test. 

 

In the case of cancer-associated mutations, an additional model was used to calculate 

the expected number of mutations. This took into account the uneven distribution of 

polymorphisms between ordered and disordered regions. The model was based on a 

normalization factor calculated from the ratio of the observed number of SNPs 

relative to their expected number. The normalization factor was calculated for 

disordered and ordered residues, in each dataset. The expected number of mutations 

was recalculated by weighting them according to the normalization factor for 

disordered and ordered residues within each dataset. Using these references, the 

statistical significance could be calculated similarly to the previous case. 

Unfortunately, current data does not enable to calculate this factor for proteins 

individually. However, when datasets were divided into subgroups, for example based 

on the number of mutations, the results did not change. 

 

Distributions of functional categories 

The distribution of each GO term was analyzed using the COSMIC_census dataset. 

To determine significantly over- or under-represented terms, the distribution of these 

terms in the human proteome was used as a reference. A random subset was selected 

from the human proteome dataset and was parsed for occurrence numbers of each 

term. This was repeated 100 times and then the average occurrence of each term was 

calculated. These occurrence numbers were compared to the occurrence numbers in 

the COSMIC_census dataset using left and right sided Fisher tests to assign 

significance values to the under- and over-representation of terms. 

 

Features 

The calculated length, ratio of disordered residues and disordered binding residues, 

interaction numbers and the number of COSMIC_census mutations for 

COSMIC_census proteins and the randomly selected reference human proteins were 

categorized into 5 bins to provide a coarse-grained description. The sixth feature 



 
Chapter 3 – Data and Methods 

40 

describing the functional involvement of the proteins was represented by ‘functional 

profiles’. These profiles were calculated based on the significantly over- and under-

represented GO terms shown in Table 4 of section 4.4.4. For each protein, a 13 

element binary vector was assigned that showed which of the 13 considered GO terms 

the protein was annotated with.  

 

Mutual information and Jaccard distance 

The association between different features calculated on proteins was measured by 

calculating the mutual information ( ),( YXI ) between all X and Y pairs of features 

using the standard formula: 

x y ypxp
yxpyxpYXI

)()(
),(log),(),( 2  

where )(xp  and )(yp  are the probability distributions of the features X and Y 

respectively and ),( yxp  is their joint probability distribution. As the maximal 

information of different features can vary (and hence their maximal mutual 

information can also vary), to be able to compare the association of different 

parameter pairs directly, the mutual informations were scaled: 

),(
),(1),(

yXH
YXIYXD  

where ),( YXH  is the joint entropy of X and Y: 

x y
yxpyxpYXH ),(log),(),( 2  

The resulting ),( YXD  Jaccard distance is a universal metric with ),( YXD =1 if X 

and Y are completely independent and ),( YXD =0 if X and Y are identical. 

The multidimensional scaling of the obtained distances was calculated using the R 

package.  
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Linear motifs (section 4.5) 
 

ANCHOR 

I used the default version of ANCHOR (http://anchor.enzim.hu), but lowered the 

cutoff value to 0.4 for disordered binding regions. However, I kept both included 

filters, meaning that all predicted binding regions shorter than 6 residues and 

predicted binding regions with extremely low disorder scores were removed. I 

considered an ELM instance found if there was an overlap between the instance and a 

binding region predicted by ANCHOR. 

 

Random overlap of ANCHOR regions 

The expected overlap between ANCHOR regions and randomly selected protein 

segments was determined in a stepwise fashion. First, 10,000 regions of length l were 

selected randomly from the sequences of the UniRef50 non-redundant database. 

These sequences were input to ANCHOR and the fraction of randomly selected 

segments overlapping with ANCHOR predicted regions were calculated. This 

procedure was repeated 10 times and the average overlap % was calculated. This was 

done with varying the l length between 3 and 20. From this the probability p of a 

randomly selected segment of length l overlapping with ANCHOR regions was fitted: 

004494.0*10984.0)( llp . The significance of the overlap between real motif 

regions and ANCHOR was calculated using the binomial distribution using p(l) as the 

background probability, substituting the average length of the known instances of 

each motif. 

 

GeneOntology (GO) annotations 

GO annotations of the inspected LIG_NRBOX motif was taken from the ELM 

website. These include annotations from all three main categories of GO (biological 

process, cellular component and molecular function). From the biological processes 

the “Regulation of transcription” (GO:0006355) was kept, as the other annotated term 

(“Positive regulation of transcription”, GO:0045893) is a direct child term of 

GO:0006355. From the molecular function annotations the “Transcription Co-
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activation” (GO:0003713) was also omitted due to being a child term of 

“Transcription Cofactor” (GO:0003712). The “Transcription Factor Binding” 

(GO:0008134) term was replaced with its ancestor term “Protein binding” 

(GO:0005515). 

GO annotations of human proteins were taken from the Gene Ontology Annotation 

section of the EBI homepage (http://www.ebi.ac.uk/GOA/proteomes.html). These 

annotations were mapped to the higher level annotations given in the Generic GOslim 

subset of GO. However, to remove bias in the analysis, Generic GO terms were 

slightly modified. All root level terms were removed (biological_process, 

cellular_component and molecular_function) in order to remove the excessive but 

uninformative term hits. For similar reasons very broad cellular component terms 

(“cell”, “intracellular” and “organelle”) were also excluded. The biological process 

term “Regulation of biological process” (GO:0050789) was removed as it is not used 

in the EBI human proteome annotations. Instead, its child term “Regulation of 

transcription” was added. Furthermore, the molecular function term “Transcription 

Cofactor” was also added as none of its child or ancestor terms are included in the 

Generic GOslim. 
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4. Results and Discussion 
 

4.1. Developing ANCHOR, a method for predicting disordered 
binding regions 

 
 

In my work I set out to develop ANCHOR, an algorithm that uses only the protein 

sequence as an input and can recognize protein segments that are disordered in isolation 

but can undergo a disorder-to-order transition adopting a well-defined structure upon 

binding to a globular protein partner33. Due to the inherent flexibility, these regions are 

difficult to study experimentally, making specific prediction methods even more 

valuable86. While there are several methods available for prediction of disordered 

regions, recognizing disordered binding sites was regarded as a more challenging 

problem due to the limited number of well-characterized examples. Even today, the 

number of solved structures of complexes between two proteins that were shown 

experimentally to be ordered and disordered is in the tens, as opposed to the thousands of 

solved complexes between ordered proteins. Accordingly, only a handful of dedicated 

disordered binding site predictors have been developed and as of April, 2012 ANCHOR 

remains the only general, publicly accessible such method. 

 

The essential feature of disordered binding regions is that they behave in a 

characteristically different manner in isolation than bound to their partner protein. In their 

free state, they behave as disordered proteins, existing as a highly flexible structural 

ensemble. In their bound state they usually adopt a rigid conformation, similar to regions 

within globular structures. This capability to behave in drastically different ways in 

different environments is targeted by my approach. Biophysical considerations (see 

section 1.5) suggest that in most cases there is a strong signal in the amino acid sequence 

highlighting regions involved in coupled folding and binding and these regions are linear 

in sequence16. As a result, a relatively short sequence segment containing residues with a 

pronounced tendency to make interactions, leads to a characteristic sequence signal 

which enables the prediction of these regions from the sequence alone. 
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4.1.1. The construction of the algorithm 

 
The basis of ANCHOR is a simplified model of the binding of disordered binding 

regions that is based on biophysical considerations. The three main features of such 

regions are that they reside in a larger disordered region, they cannot form enough 

favorable intrachain interactions to fold on their own and they have the capability to 

energetically gain by interacting with a globular partner protein: 

 

1. The first criterion ensures that a given residue belongs to a long disordered region, 

and filters out flexible loops of globular domains. 

2. The second criterion corresponds to the isolated state and it ensures that a residue 

is not able to form enough favorable contacts with its own local sequential 

neighbors to fold, otherwise it would be prone to adopt a well defined structure on 

its own. 

3. The third criterion tests the feasibility that a given residue can form enough 

favorable interactions with globular proteins upon binding. This basically ensures 

that there is an energy gain by interacting with globular regions. 

 

In the development of ANCHOR I quantified these three properties using a coarse 

grained energy-estimation model. The three resulting measures were then combined into 

a single predictor via optimized weights. 

 

In more detail, the prediction of these three properties relies on the energy estimation 

framework implemented in IUPred, a general disorder prediction method (see section 

1.4.3 and reference60 for details). The core element of IUPred is the energy predictor 

matrix P. This 20*20 matrix contains the estimated interaction energies between all 

possible amino acid pairs. P can be used to estimate the total interaction energy of a 

protein formed by the intrachain interactions of its residues without the knowledge of the 

structure of the protein. The elements of P (Pij) were trained on globular proteins with 

known structures only, without relying on any kind of disordered dataset. These 
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parameters were determined to minimize the difference between the estimated energies 

and the energies calculated from the known structures on the dataset of globular proteins. 

Using the energy predictor matrix IUPred predicts the E interaction energy for each 

residue based on the following formula in default: 

20

1
0 )(

j

k
jij

k
i wfPE  (8) 

where i denotes the type of the k-th amino acid, Pij is the element of the energy predictor 

matrix that estimates the pairwise energy of residue of type i in the presence of residue 

type j, )( 0wf k
j  is the fraction of residue type j in the sequential environment within w0 

residues from residue k. The size of neighborhood considered (w0) equals 100 residues in 

both directions. For the final prediction output, the energies calculated for individual 

residues are smoothed over a window size of 10 (also in both directions from the k-th 

residue so in fact 21 residues are considered in total) and the resulting smoothed energies 

are transformed into probability values, denoted as sk. 

 

The disordered binding site prediction is based on three different scores that are 

calculated with a slight modification of the original energy estimation scheme. The 

parameters of Pij were taken directly from IUPred. The following three scores are 

assigned to each residue in a protein according to the above described criteria (1-3): 

 

1. To measure the tendency of the neighborhood of an amino acid for being disordered I 

use the IUPred algorithm and assign an Sk score to the k-th residue of the chain by 

averaging the IUPred scores in the w1 neighborhood of the residue in question: 
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where sj is the IUPred score of the j-th residue of the chain, N is the number of amino 

acids in the averaging and blower and bupper are the lower and upper boundaries of the 

neighborhood of the k-th residue, that is blower = max(k-w1;1) and bupper = min(k+w1;l), 

where l is the chain length. 
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2. I estimate the pairwise interaction energy the given residue may gain by forming 

intrachain contacts. This is done the exact same way as in IUPred using formula (8), only 

here the size of the considered neighborhood (w2) is left as a parameter and is set during 

the training of the predictor: 

20
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As can be seen later from the results of the optimization, w2 is smaller than w0 used in 

IUPred. The smaller window size corresponds to more local behavior. 

 

3. The pairwise energy that the residue may gain by interacting with a globular protein is 

approximated using the average amino acid composition of globular proteins: 
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where jglobf ,  is the fraction of residue type j in the averaged reference amino acid 

composition of globular proteins. By subtracting this energy from 
k

iE int,
 one can estimate 

the energy that the residue may gain by interacting with a hypothetical globular protein 

compared to forming intrachain contacts: 
glob
i

k
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The final prediction score of the residue is given by the linear combination of the 

above three terms: 

kgain
i
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int,
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where the p1, p2 and p3 coefficients are determined during the training of the predictor 

together with the optimal values of w1 and w2 window sizes. Ik is then converted into a p 

value that expresses the probability of that residue being in a disordered binding site. For 

a binary classification residues with scores above 0.5 are predicted to be in a disordered 

binding site. Since the second and third terms of (12) may vary heavily between 

neighboring residues, the final score is smoothed in a window of 4 residues. 
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4.1.2. Parameter optimization 

 

In order to determine the optimal values for the three weights (p1, p2 and p3) and the 

two window sizes (w1 and w2) positive and negative datasets were used. The positive 

dataset is composed of experimentally verified cases of complexes of globular and 

disordered proteins. Complexes were collected from the literature16; 52; 87-91. Only such 

cases were accepted where the partners were proven experimentally to be ordered or 

disordered and the complex has a solved structure with a relatively good resolution (Short 

disordered binding sites dataset, see section of 3.1 Data and Methods). The performance 

of ANCHOR with a given parameter set on this dataset is quantified by calculating the 

fraction of positive examples predicted to be binding regions. This measure is termed 

‘true positive rate’ (TPR). 

 

Apart from the positive dataset, two distinct negative datasets are also needed. First, 

the algorithm should not predict disordered binding regions inside globular proteins. To 

measure this, I assembled a dataset of ordered monomeric proteins (Globular proteins 

dataset, see Data and Methods). The goodness of a parameter set is given by the fraction 

of residues inside these proteins that are predicted to be in binding regions. This measure 

is termed ‘false positive rate’ (FPR). Second, the algorithm should be able to discriminate 

between regions of disordered proteins that either bind to a globular protein or not. 

However, no reliable database can be assembled for this purpose, as there cannot be any 

conclusive evidence for a disordered protein region that it does not bind to any globular 

protein. In order to circumvent this problem, during the evaluation of different parameter 

sets, I calculated the fraction of experimentally verified disordered protein segments from 

the Disprot database52 (Disordered proteins dataset, see Data and Methods) which 

ANCHOR predicts to be binding regions. This fraction is termed F. The role of this value 

is to discriminate between general disorder prediction and binding site prediction. It 

would be possible to achieve a high TPR and a low FPR by predicting every disordered 

residue as part of a binding region. However, this would yield an F value of 1. In order to 

train the algorithm to specifically recognize binding regions, the optimal parameter set is 

which maximizes TPR while minimizing FPR and F. 
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I carried out the parameter optimization on the above three datasets by three-fold 

cross validation (see Data and Methods and  Figure 5 for a schematic representation and 

outline of this procedure). The small dataset of known disordered proteins bound to 

ordered proteins represent a serious bottleneck during optimization. Therefore, it is a 

clear advantage of my approach that it greatly reduces the dependence on the existing 

dataset of disordered complexes, and leaves us with only 5 parameters to be optimized on 

this small dataset. 

 

The behavior of various optimized scores is shown for an example, the N terminal 

domain (residues 1-100) of human p53 tumor suppressor protein that plays an important 

regulatory role92. Its N terminal region is completely disordered and is known to be able 

to bind to (at least) three different globular proteins as shown in Figure 6. The segment 

between residues 17-27 binds to MDM2, the other two binding sites overlap with 

residues 33-56 binding to RPA 70N and residues 45-58 binding to the B subunit of RNA 

polymerase II. The three calculated quantities for this domain are also shown in Figure 6. 

It is worth noting that the MDM2 binding site in the N-terminal region of p53 appears to 

be on the border of being disordered. Although the disordered prediction is part of 

ANCHOR, the output of this prediction (Eint) is linearly combined with two other 

quantities meaning that predicted disorder is not strictly a prerequisite of a successful 

disordered binding site prediction. 
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Figure 5: Outline of the training of ANCHOR 

In the first step, our Short Disordered Binding Sites dataset and Globular Proteins dataset (positive and 

negative datasets) are split up and only 2/3 is used in the subsequential steps. Then a parameter set (w1, w2, p1, 

p2, p3) is selected from the 144,000 random ones. This parameter set is used to calculate S, Eint and Egain for 

every position in every sequence in the three input datasets using the fixed energy predictor matrix P. Based 

on these calculations the evaluating measures are calculated: TPR is calculated on Short Disordered Binding 

Sites, FPR is calculated on Globular Proteins and F is calculated on Disordered Proteins. Based on these 

measures, the best parameter set out of 144,000 is chosen (see Data and Methods). This parameter set is then 

evaluated on the remaining one third of the datasets. These results are reported in Table 1. 

This procedure is repeated for all three subsets of Short Disordered Binding Sites and Globular Proteins. The 

output of the three optimized predictors are combined into one final predictor by averaging their output. 
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Figure 6: The construction of the ANCHOR prediction method demonstrated on the N-terminal 

domain of human p53 

Left: IUPred prediction score for the full length human p53 (top) and S, Eint and Egain calculated for the 

disordered N terminal domain of human p53 (middle). Grey boxes show the three binding sites with the 

overlap of the RPA70N and RNAPII binding sites shown in dark grey. The outputs of the three individually 

optimized predictors are shown in black and their average, the final prediction score is shown in purple 

(bottom). 

Right: PDB structures of the binding sites in the N-terminal region of p53 (yellow) complexed with the 

respective partners (blue): MDM2 (top, PDB ID: 1ycq93), RPA 70N (middle, PDB ID: 2b3g94) and RNA 

PII (bottom, PDB ID: 2gs095). 
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4.1.3. Testing of ANCHOR 

 
I tested ANCHOR by dividing both the negative and positive datasets (Globular 

proteins and Short disordered binding sites) into three subsets, training the predictor on 

two of these and evaluating it on the remaining third one. This was done in all three 

possible combinations yielding three optimal parameter sets. The parameters calculated 

on the training sets are shown in Table 1 together with the respective TPR’s, FPR’s and F 

values. The optimal parameters were chosen to maximize the amount of correctly 

predicted disordered binding sites  (TPR) while minimizing predicted binding sites in 

globular proteins (FPR) and also restricting predicted binding sites within disordered 

regions in general (F). I chose the widely used 5% as a maximal acceptable value for 

FPR. The fact that the three parameter sets do not differ significantly implies that the 

buildup of ANCHOR is robust. 

 

 
 

The output of the predictor with all three parameter sets and the combined final 

predictor (the average of these three) are shown for the example of the N terminal region 

of p53 in Figure 6 of the previous section. 

  

The results obtained on the three independent testing subsets as well as their average 

are given in Table 2.  Since the cutoffs are given by the training process such that I 

Table 1: Parameter and prediction accuracy values obtained during the optimization of ANCHOR 

 w1 w2 p1 p2 p3 F (%) TPR (%) FPR (%) 

Training set 1 25 60 0.4630 0.3847 0.7985 46.0 69.8 5.0 

Training set 2 27 60 0.6075 0.4149 0.6773 47.4 67.7 5.0 

Training set 3 29 90 0.6990 0.4585 0.5488 43.4 64.8 5.0 
 

Optimal parameters of the predictor determined during training. w1, w2, p1, p2 and p3 are the optimized 

parameters, F is the fraction of the residues in the disordered regions in the Disprot database that are predicted 

to be in binding sites, TRP and FPR are the True- and False Positive Rates, respectively. 
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achieve exactly 5% False Positive Rate (FPR) on the respective training sets (ie. the part 

of the original Globular proteins dataset that was used in the training of the respective 

subpredictor), the FPR’s are also quoted (they can differ slightly from 5%). Besides the 

overall TPR calculated on a residue basis (marked TPRAA), I also calculated the 

percentage of binding sites identified, termed TPRSEG. A binding site was considered to 

be found if at least five of its amino acids are correctly classified. The results show that 

ANCHOR performs at 62% TPRAA with a slightly higher TPRSEG of 68% on average, 

while maintaining a 5% FPR. ANCHOR is also specific to disordered binding sites as 

opposed to disorder to general. If all disordered proteins had approximately equal 

capability of binding then the fraction of correctly identified disordered binding sites 

(TPR) could not be significantly different from the fraction of disordered regions 

predicted to be binding sites (F value). As this is not the case (TPR=62% vs. F=42%) we 

can conclude that common features of known disordered binding sites that distinguish 

them from general disordered protein regions are successfully recognized. 

 

 
 

Another standard way of describing prediction algorithms is by Receiver Operating 

Characteristic (ROC) curves, that is the TPR versus the FPR of the algorithm. This 

relationship is mapped by scanning the interval between 0 and 1 with the score cutoff. 

The three ROC curves of the predictor with the three different parameter sets evaluated 

on the respective testing sets are shown in Figure 7. A single number measure to 

characterize the performance is the area under the curve (AUC) with random predictors 

Table 2: Prediction efficiency of ANCHOR evaluated on the testing datasets 

 TPRAA (%) TPRSEG (%) FPR (%) 

Testing set 1 61.1 62.5 5.7 

Testing set 2 69.5 80.0 4.4 

Testing set 3 54.7 62.5 5.1 

Average 61.8 68.3 5.1 
 

Results of the testing of ANCHOR on the three testing datasets. TPRAA denotes the ratio of correctly 

identified amino acids belonging to binding sites. TPRSEG denotes the ratio of binding sites found by the 

algorithm. 
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scoring AUC=0.5 and perfect predictors scoring AUC=1. The AUC values of the 

predictors trained and tested on the respective subsets are 0.8675, 0.8781 and 0.8993. 

 

 
 

Since the interacting regions of a disordered and an ordered protein are inherently 

different I expect that the predictor will only recognize binding sites in disordered 

proteins that interact with globular proteins but are not part of globular proteins 

themselves. In order to verify this hypothesis I tested the combined final predictor on a 

dataset of complexes containing only ordered chains16. The prediction was done on the 

short interacting chain of the complexes. This gave a false positive rate of only 3.7% that 

is even lower than the value obtained on the testing set, although this might be only a 

consequence of the relatively small size of the ordered complex set (72 complexes). 

Overall, I could ensure that my predictor makes very few mistakes on both globular 

 
Figure 7: ROC curves obtained during the testing of ANCHOR 

ROC curves of the predictor with parameter sets optimized on each of the three training subsets and 

evaluated on the respective testing subsets are shown with red, green and blue lines. The line with unity 

slope corresponding to random prediction is also shown. The vertical line corresponds to FPR=0.05, 

where the final predictor (the average of these three) is used. 
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proteins and complexes of globular proteins, while it can still recognize the majority of 

disordered binding regions. This implies that my algorithm is specific to disordered 

binding sites as opposed to globular proteins, the interface between globular proteins or 

disordered proteins in general. 

 

4.1.4. Secondary structures and the efficiency of ANCHOR 

 
I assessed the relationship between the efficiency of the prediction and the secondary 

structure adopted by the residues of disordered binding regions upon binding. For this 

purpose, I used three types of secondary structural element classes: helix (H, including - 

and 310 helices), extended (E) and coil (C, including everything else) as defined by the 

DSSP algorithm85. The number of amino acids in different conformations that can be 

found in the PDB structures of the positive training set (short disordered complexes), in 

the interacting residues of these structures and the interacting residues that are correctly 

identified by the predictor are shown in Figure 8. The secondary structure content in 

disordered binding regions is heavily biased towards coil conformation. It can also be 

seen on Figure 8 that the predictor seems to work slightly better for H and E 

conformations. However, assessing the difference of the distributions of secondary 

structures in interacting residues and in the subset identified correctly by ANCHOR 

shows that this difference is not statistically significant at a 5% level ( 2 = 5.32, p = 

0.070).  Furthermore, a similar result holds true if binding sites are categorized based on 

their dominant secondary structure type - that is there is no significant correlation 

between the secondary structure type the binding regions adopt upon binding and the 

efficiency of the predictor. Overall, this means that there is no significant difference in 

the efficiency of the prediction on different secondary structural elements. 
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4.1.5. Testing on long, segmented binding regions 

 
Since ANCHOR was trained on the short disordered dataset it is informative to see 

how it performs on long disordered binding sites (Long disordered binding regions 

dataset, see section 3.1 of Data and Methods). There is experimental evidence that at least 

some long disordered chains are not uniform concerning binding strength but contain 

short stretches of strongly interacting residues separated by segments that interact with 

the partner only weakly if at all96. In these cases, it is expected that the predictor will be 

unable to identify the weakly interacting parts since – though these parts may also form 

interchain contacts – they would not be able to bind to the partner in the absence of their 

sequential neighbors. The distribution of predicted binding regions for the short and long 

disordered chains in Figure 9A shows a strong preference for predicting multiple 

interacting regions for longer chains. This inevitably yields lower residue based TPR but 

 
Figure 8: Secondary structure distributions in the short disordered binding site dataset 

Fraction of amino acids in different secondary structures in the disordered chains of the complexes. The 

three groups denote the fractions calculated on all the residues in the PDB structures, only the 

interacting ones and the ones correctly identified by the predictor. 
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the segment based TPR is not expected to drop. Testing ANCHOR on the long disordered 

data confirms this assumption with a decreased residue based TPR of 47.7% (as opposed 

to 65.8% obtained on running the final predictor on the whole set of short disordered 

complexes) but with a basically unchanged segment based TPR of 78.6% (compared to 

the 76.1% calculated on short disordered complexes). These data suggest that ANCHOR 

either finds short disordered binding sites as a whole or completely misses it. However, 

this may not be true for long binding regions. Figure 9B shows the distribution of the 

fraction of amino acids successfully identified during prediction in the two types of 

binding sites. The effect can clearly be seen as about 59% of short binding regions are 

either fully recovered or are completely missed (the sum of the rightmost and leftmost 

columns) whereas this ratio is only about 29% for long binding sites. 

 

 

 
Figure 9: Prediction accuracies and segmentation for the short and long disordered binding sites 

A) The distribution of the number of binding segments predicted in short (white bars) and long (black 

bars) binding sites. It shows the segmented nature of longer binding sites. B) The distribution of the 

fraction of correctly recovered interacting residues in both the short (white bars) and long (black bars) 

disordered binding sites. 
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I illustrate this type of behavior on the disordered human p27. This protein is 

involved in controlling eukaryotic cell division through interactions with cyclin-

dependent kinases. Its kinase inhibitory domain binds both subunits of the CDK2-cyclin 

A complex in an extended conformation (PDB ID: 1jsu88). It is known from kinetic 

measurements that the binding of p27 is hierarchical through its three domains: first, the 

D1 domain (residues 25-36) binds to cyclinA which anchors the neighboring LH domain 

(residues 38-60) that exhibits transient helical structure in monomer state as well. After 

the binding of D1 this transient structure is stabilized and positions the rest of the chain 

(D2 domain, residues 62-90) in the correct position to bind to CDK2. 

 

Figure 10 shows the prediction output for p27. Four interacting regions are identified 

with the first one (27-37) clearly corresponding to D1. The gap between the first two 

regions (38-58) coincides with the weakly interacting LH domain. The last three regions 

(59-67, 74-77 and 79-90) cover the strongly interacting D2. Figure 10 also shows the 

number of atomic contacts/residue for p27 (averaged in a window of size 3). This contact 

number profile exhibits well pronounced peaks that line up with the regions that are 

predicted by my algorithm. The figure also shows the four predicted regions mapped to 

the crystal structure of the complex. 
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Figure 10: ANCHOR prediction for human p27 

Top: Number of atomic contacts (green) and prediction output (blue) and for the N-terminal binding region 

of human p27. “D1”and “D2” denote the two strongly interacting domains (red boxes) and “LH” denotes 

the weakly interacting linker domain between them (yellow box). 

Bottom: Crystal structure of human p27 (red and yellow) complexed with CDK2 (magenta) and Cyclin A 

(blue) (PDB ID: 1jsu88). Red parts denote regions that are predicted to bind by the predictor. These regions 

correspond to the experimentally verified strongly binding regions of p27. The figure was generated by 

PyMOL. 
 

4.1.6. Discussion 

 

With the development of ANCHOR I aimed to recognize disordered binding regions 

from the amino acid sequence. So far, the limited number of well characterized examples 

hindered the development of general prediction methods97. 

 



 
Chapter 4 – Results and Discussion 

59 

My approach relies on a basic physical model of disordered binding sites and it is 

based on modeling the interaction capacity in the free disordered state and in the bound 

ordered state. Previously, it was shown that ordered proteins can be discriminated from 

disordered proteins based on estimated pairwise energy content60 and this approach was 

implemented in IUPred, a general disorder prediction method. This method takes into 

account that disorder/order tendency can be modulated by the sequential neighborhood 

simply at the level of amino acid composition, without attempting to model the specific 

interactions. Taking it one step further, I used the same energy estimation calculations to 

identify disordered binding regions in proteins. My model assumes that the specific 

properties of disordered binding sites are dictated by the combination of preferences to 

bind to an ordered protein on the one hand, and the ability to remain in a disordered state 

in isolation, on the other. Based on this simple model, ANCHOR achieved approximately 

67% accuracy at predicting 5% false positive rate. 

 

During binding, the formation of intermolecular contacts is accompanied by the 

formation or the stabilization of secondary structure elements. It was found that the 

adopted secondary structure can be predicted from the amino acid sequence with similar 

accuracy as in the case of globular proteins98, suggesting that the adopted secondary 

structure can be imprinted into the sequence of the binding motif. However, the 

secondary structure observed in the complex can also be dictated by the template 

structure. An extreme example of this is the C-terminal region of p53, observed in all 

three secondary structure classes99. Hence, it is clear that not all of these conformations 

can be the result of inherent preferences. Interestingly, ANCHOR does not seem to be 

sensitive to the adopted secondary structure conformation and it works with the same 

accuracy for all secondary structure conformations. This independence of secondary 

structure elements underlines the generality of ANCHOR. These results also suggest that 

disordered binding sites can be recognized without taking into account of the adopted 

secondary structure in the majority of cases. Nevertheless, the details of conformational 

preferences can be still crucial in selecting the specific binding partner, or determining 

the kinetic and thermodynamic properties of the associations. 
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Beside ANCHOR, a previously published method called -MoRF predictor also 

exploited a general disorder prediction method to recognize short binding elements97; 100. 

Although the direct comparison between the two methods was not possible, because the 

-MoRF predictor is not publicly available, some basic differences between the two 

methods should be noted. First, the -MoRF predictor directly relies on the prediction 

output of PONDR VXLT, which essentially predicts binding regions as ordered structural 

elements, and a subsequent neural network is applied to filter out valid disordered 

binding sites. Although very high accuracies were reported for the performance of the 

neural network based filtering, the complete method is limited by the efficiency of 

finding the local drops in predicted disorder tendencies (dips) based on PONDR VLXT. 

Therefore it should be taken into account that this program is a first generation prediction 

method that was trained on only 15 proteins. In the case of IUPred, dips corresponding to 

certain binding sites were also observed, although to a smaller extent97. This observation, 

however, is not directly exploited in ANCHOR. Instead, the core parameters of the 

energy prediction of IUPred are used to create three separate scores characterizing three 

important attributes of disordered binding regions. The second main difference is that 

ANCHOR is not restricted to a single secondary structure class like the -MoRF 

predictor that was trained to recognize only helical segments. The example of the C-

terminal region of p53, where four short overlapping regions were shown to bind in 

different conformations representing all three secondary structure classes, indicates that 

such restriction can be a serious disadvantage for recognizing some extremely adaptable 

disordered binding motifs. 

 

In my work I assumed, that short binding regions undergoing disorder-to-order 

transition can be viewed as elementary binding units that are necessary for the molecular 

recognition. Therefore, such examples were used for the optimization of ANCHOR. In 

accordance with their elementary unit picture, ANCHOR recognized them generally as a 

single continuous binding site. Regions undergoing disorder-to-order transition, however, 

are not limited to such short segments as there are several examples of longer disordered 

segment becoming ordered upon complex formation. Such segments can be as long as 

100 residues. However, these longer regions can contain segments which bind only 
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weakly or might not become ordered at all101; 102. This segmentation of longer binding 

regions can occur for structural reasons. The segmentation can prevent the accumulation 

of the critical amount of residues that would lead to the formation a collapsed structure or 

non-specific aggregates. The possible functional advantages of the segmented nature of a 

binding site were demonstrated for the well characterized example of p27. The 

segmented nature of binding is reflected in the prediction output, with predicted binding 

sites corresponding to the strongly interacting regions. In the dataset of longer disordered 

binding segments, I found this segmentation to be quite general. In these cases, the 

predicted sites generally give only partial coverage of the PDB structure, and multiple 

binding sites are predicted in the majority of cases. This suggests that ANCHOR is likely 

to find those sites that interact more strongly, anchoring the disordered segments to their 

partner protein. 

 

The success of ANCHOR has both technical and theoretical implications. Apart from 

the applications that will be discussed in later chapters, from a theoretical point of view, 

the relatively high accuracy of the method indicates that the underlying simplified 

biophysical model is capable of describing the majority of disordered binding regions. 

The basis of the description is that these regions can be characterized by highly 

disordered sequential neighborhood, unfavorable intrachain energies and more favorable 

interaction energies with a globular partner. The resulting model is accurate and general 

enough to recognize the majority of disordered binding sites independent of their 

secondary structure or amino acid composition. As such binding sites are essential 

functional elements of disordered proteins, their prediction directly provides information 

about functionally important residues in these proteins. In this way, ANCHOR broadens 

the repertoire of prediction methods for functional sites in proteins aiming to decrease the 

large number of unannotated sequences. Generally, the complete understanding of 

protein-protein interactions involving disordered binding sites requires the knowledge of 

their partners as well as possible post-translational modifications that can influence their 

binding.  While predictions can be made even without taking the partner molecule into 

account, certain cases might require incorporating the specific feature of the partner. 
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Nevertheless, ANCHOR can provide the starting point for such scientific explorations, by 

finding potential regions involved in such binding. 

 

4.1.7. Availability and the ANCHOR server 

 

Following the publication of ANCHOR, to better target the wider scientific 

community, ANCHOR was put online in the form of a web-server103. The server is freely 

accessible and offers the option to download the ANCHOR program for local use as well. 

This does not require registration and is also free of charge for academic users. The 

server is complete with the short description of the method itself, help pages and 

examples to aid the users in the efficient use of ANCHOR. 

 

ANCHOR is hosted on the servers of the Institute of Enzymology and is accessible at 

http://anchor.enzim.hu. The minimum input of the web server is a single amino acid 

sequence. Sequences can also be specified by their corresponding UniProt IDs or ACs. A 

list of motifs can also be submitted, specified as regular expressions with or without their 

names. A few examples, including known eukaryotic linear motifs are given in the help 

to guide the user with the format. The motif search, however, is not restricted to known 

linear motifs, any kind of regular expression can be specified. 

 

The basic output of the server is the probability score, indicating the likelihood of the 

residue to be part of a disordered binding region along each position in the sequence. The 

returned plot shows the prediction profile calculated by ANCHOR and also incorporates 

the disorder profile calculated using IUPred. Predicted disordered binding regions and 

matched motifs are also indicated underneath the profile as horizontal bars. The graphical 

output is followed by a simple text output, summarizing the predicted and filtered binding 

regions, the location of the found motifs and the returned prediction profile. An example 

for the graphical output is presented on Figure 11. 

 

I wrote the core program of ANCHOR in C, while motif searches are carried out by a 

Perl wrapper. This program is called by the web server written in PHP. The graphical 
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output is generated by the JpGraph software. The default option for graphical/text output 

is automatically determined by the browser type, but it can be changed by user. 

Additionally, list of sequences can also be submitted to generate simple text output on a 

larger scale. 

 

 

Figure 11: An example of the ANCHOR server graphical output 

The human Wiskott-Aldrich Syndrome protein (WASp) was used as an input with various motif 

searches. The N-terminal of the protein contains an ordered domain, otherwise it is largely disordered. 

Red line shows the disorder tendency and blue line shows the ANCHOR prediction. Predicted binding 

regions are characterized by scores above 0.5 and a condensed output shows predicted binding regions 

under the prediction profiles with blue boxes. In WASp multiple disordered binding regions were 

predicted, and several of these can be confirmed experimentally. The results of the motif searches 

shown with red bars, show regions containing various SH3 binding sites as specified in the ELM 

database. Additionally, proline rich regions and the CRIB motif implicated in binding to Cdc42 can also 

be located. 
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4.2. Biological application of ANCHOR on whole proteomes 
 
 

Apart from the study of individual proteins, ANCHOR opened up new ways to 

analyze biological data on a larger scale as well, making it possible to gain insights about 

disordered binding regions at an evolutionary level. Following the completion of 

ANCHOR, I studied the appearance of protein disorder and disordered binding regions 

throughout evolution33 by employing a large scale scan using ANCHOR on a set of 736 

complete proteomes (53 archaea, 639 bacteria and 44 eukaryota, see Data and Methods) 

that were currently available from the SwissProt database (ftp://ftp.expasy.org/) as of 

2009. In agreement with previous analyses32; 87 there is a clear trend of increasing amount 

of protein disorder as the complexity of the organism increases (see Figure 12). However, 

Figure 12 also shows that the fraction of disordered amino acids predicted to be in 

disordered binding sites increases even compared to fraction of disordered residues, as 

the complexity of organisms grows. Generally, archaea have the least amount of both 

disorder and binding sites. On the other hand, eukaryota have generally the largest ratio 

of disordered and binding amino acids with bacteria being between these two groups on 

average. However there are a few exceptions to these general trends, marked separately 

on Figure 12. 

 

Considering archaea, mesophiles generally contain a larger amount of disorder and a 

larger fraction of disordered binding sites than most extremophiles (thermophiles, 

cryophiles and acidiphiles). However the group of halophile archaea (archaea that favor 

high saline concentration) is a distinct exception with fraction of disordered amino acids 

ranging from 0.2 to 0.25 as opposed to other extremophiles' values not exceeding 0.07. 

This group includes all the halophile archaea in my study, namely Natronomonas 

pharaonis, Haloarcula marismortui, Haloquadratum walsbyi and two types of 

Halobacterium salinarum. Cenarchaeum symbiosum, the only example of obligate 

endosymbiont among archaea also has an unusually large amount of disordered protein 

segments in its proteome (0.12). While Cenarchaeum symbiosum is closely related to 
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thermophile archaeas, it is adopted to the much lower living temperature of its host. This 

adaptation could explain the relatively large amount protein disorder and disordered 

binding sites. In general, these clear differences in the predicted disorder between various 

archaea organisms points to different strategies to adapt to various extreme 

environmental conditions resulting in biased amino acid compositions. However, it 

cannot be ruled out that under such extreme conditions, as high salt concentration or high 

temperature, the amount of disorder can be over- or under-predicted depending how these 

conditions affect the presence of protein disorder. 

 

 
Among bacterial proteomes, there are a few examples of organisms that seem to 

utilize a surprisingly large fraction of their disordered amino acids in binding. The three 

most extreme cases (Carsonella ruddii, Sulcia muelleri and Buchnera aphidicola subsp. 

Cinara cedri) are marked separately on Figure 12. These are the three smallest complete 

 
Figure 12: Fraction of disordered and disordered binding site residues in complete proteomes 

The number of amino acids in disordered binding sites divided by the number of amino acids in 

disordered regions plotted as a function of the number of amino acids in disordered regions divided by 

the total number of residues in the proteome of the organism for the 736 complete proteomes deposited 

in the SwissProt database, colored according to the three kingdoms of life. The outlying points are 

marked with the name of the corresponding organism. 
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bacterial proteomes, none of them reaching the size of the smallest archaea proteome. 

These organisms present extreme cases of streamlined genomes as a result of 

endosymbiosis. As these proteomes are very small, the predicted amount of disorder and 

disordered binding sites are within the false positive range, and should be treated more 

cautiously. Additionally, some other bacteria are hallmarked by an unusually high ratio of 

protein disorder. One such case is Mycobacterium tuberculosis, the main causative agent 

of TB that – in terms of ratio of disordered residues – ranks among the top 10% of 

bacteria. A separate analysis of the proteome of Mycobacterium tuberculosis is presented 

in chapter 4.3. 

 

Eukaryotes tend to appear more consistent in using both larger amount of disordered 

residues and larger fraction of disordered residues for binding compared to the other two 

kingdoms (Figure 12). The only notable outlier both in terms of extremely low amount 

disordered proteins and disordered binding sites is Encephalitozoon cuniculi. This 

organism is the only microsporidian parasite in the dataset and has an extremely small 

proteome. This lack of complexity and dependence on a eukaryotic host to function might 

explain the lack of disordered proteins. 

 

I also analyzed the length distributions of the predicted disordered regions and 

binding sites in the three kingdoms of life. These results are shown in Figure 13A and 

Figure 13B, respectively. As complexity increases, longer disordered segments are 

preferred, and the difference between eukaryota and lower complexity organisms 

becomes even more apparent for longer regions (over 30 residues). A similar trend can be 

observed in the length distribution of disordered binding sites. While in archaea and 

bacteria predicted binding regions are generally below 30 residues, longer binding sites in 

eukaryota organisms are much more common. There are at least three different effects 

that can contribute to this phenomenon. First, as the number of binding sites rise there is 

also an increasing possibility of these binding sites becoming very close to each other or 

even overlapping with each other. This scenario was demonstrated in the case of the N-

terminal domain of p53 (see Section 4.1.1, Figure 6). Second, extremely large disordered 

binding regions may be needed for special functions. Some members of the mucin protein 
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family provide an example for this. Human MUC1 contains a large repeat region (20-120 

repeats, one repeat being 20 amino acids long) that enables it to aggregate and to perform 

its function. As each repeat is correctly identified as a disordered binding site, the whole 

repeat region is predicted as one large binding region. This mechanism can create binding 

sites up to the length of several hundreds of residues in extreme cases. Third, it cannot be 

excluded that longer binding sites are not always segmented by weakly interacting 

regions thus forming long, continuous binding regions. Nevertheless, the majority of 

predicted binding sites is shorter than 30 residues, although such restriction on the length 

of disordered binding sites was not enforced. 
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Figure 13: Length distribution of disordered and disordered binding sites in complete proteomes 

The length distribution of A) the disordered protein segments determined by IUPred and B) predicted 

disordered binding sites determined by ANCHOR for the 736 complete proteomes available, grouped 

according to the three kingdoms of life. 
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4.3. The effect of protein modularity in pathogen virulence: a 
case study of Mycobacterium tuberculosis 

 
 

Out of the several identified organisms harboring an unusually high ratio of residues 

in disordered and disordered binding regions (discussed in section 4.2), I analyzed the 

proteome of Mycobacterium tuberculosis (MTB) in detail104. MTB is the main causative 

agent of TB, a disease that demands 2 million human lives worldwide annually105. As a 

result of the lengthy co-evolution of Homo sapiens and MTB, the bacterium became a 

dramatically successful pathogen species that presents considerable challenge for modern 

medicine106. The continuous and ever increasing appearance of multi-drug resistant 

mycobacteria necessitates the identification of novel drug targets and drugs with new 

mechanisms of action107. However, further insights are needed to establish automated 

protocols for target selection based on the available complete genome sequences. 

 

To uncover the factors resulting in the success of MTB, I employed a proteome-wide 

analysis. As a first step, as already presented in chapter 4.2,  I calculated the amount of 

protein disorder using IUPred and the amount of disordered binding regions using 

ANCHOR. At the residue level, 11.8 % and 5.7 % of residues were predicted to belong to 

a disordered segment or a disordered binding region, respectively. Although these values 

were relatively small, they represented significantly higher values compared to many 

other bacteria (for reference data see Section 4.2, Figure 12). The fraction of disordered 

proteins and disordered binding regions were even comparable to that of simpler 

eukaryotes. 

 

4.3.1. Similarity based clustering of MTB proteins 

 

The uncovering of proteins involved in species-specific processes is usually focused 

on identifying proteins that are unique to the organism and have no homologs in other 

organisms108; 109. Despite its rationale, this approach has strong limitations as proteins are 
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highly modular and species-specific processes can be brought about not only by unique 

proteins but by unique combination of otherwise ubiquitous domains and protein regions 

as well. This can be shown specifically for MTB by analyzing the domains present in 

MTB proteins, using the Pfam database (see Data and Methods). Figure 14 shows the 

organism specificity of domains present in the MTB proteome. Altogether only 5 of the 

total 2099 different domains of MTB are species-specific, being present in only MTB or 

the highly similar Mycobacterium bovis and cannot be found in any other organism. The 

majority of domains however, are ubiquitous among bacteria and eukaryotes with 812 of 

them present in the human proteome as well. This evident lack of MTB specific protein 

building blocks calls for a different approach at pinpointing proteins responsible for the 

unique properties of MTB. 

 

 
 

As an alternative approach, I carried out a large-scale sequence similarity search for 

all proteins in MTB by comparing them to the proteomes of a wide range of other 

organisms (see Data and Methods). By virtue of this analysis, the number of similar 

 
Figure 14: Occurrences of domains of M. tuberculosis in other organisms 

The distribution of the 2099 Pfam domains present in the proteome of MTB in Eukaryotes and Bacteria. 

Slices of the pie chart correspond to different levels of specificity with purple showing domains that can 

be found exclusively in MTB, blue and green showing domains found in mycobacteria or in bacteria in 

general, respectively and orange showing ubiquitous domains that can be found in organisms from 

MTB to eukaryotes. Numbers of domains are given for each slice, with number in parenthesis for 

ubiquitous domains showing the number of domains present in human proteins. 
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proteins in other bacterial or eukaryotic proteomes was determined for each protein 

present in MTB. To capture the modularity of MTB proteins, I applied local similarity 

searches (see Data and Methods). Generally, the number of sequences similar to an MTB 

protein sequence across various species can show quite large variations. The various 

scenarios include organism-specific proteins, nearly ubiquitous proteins for which the 

number of homologs is relatively constant from bacteria to eukaryotes, and many other 

cases for which significant enrichment/depletion of certain protein families can be seen at 

certain points in evolution. 

 

In order to identify some of the basic trends, I carried out a cluster analysis of the 

similarity profiles of MTB proteins (see Data and Methods). Similarity profiles were 

constructed using the number of similar sequences in the proteome of other organisms of 

each MTB protein. This is in contrast with the binary profiles commonly used in 

phylogenetic profiling110; 111. Using the results of the clustering, I constructed a 

hierarchical tree. This tree could be dissected into major branches, grouping the MTB 

proteins into distinct clusters. 

 

This analysis identified two groups of proteins that showed highly unusual 

evolutionary profiles. One of these represents a group of proteins that are present in MTB 

in a large number, but completely missing from bacteria other than mycobacteria and are 

generally not present in eukaryotes either. All of these proteins belong to a mycobacteria 

specific class of PE/PPE proteins112. The hallmark of the proteins of the other group is 

that they have an exceptionally high number of similar sequences in eukaryotes. This 

cluster is comprised by the pkn protein family that is defined by the presence of a 

eukaryotic-like kinase domain that enables these proteins to be involved in regulatory 

processes113. 

  

The two protein groups of pkn and PE/PPE families stand out in several respects. The 

homologs of the pkn family are more common in eukaryotes, while members of the 

PE/PPE family are basically mycobacterium specific. However, both of these groups 

show a drastic domain enrichment in MTB. Beside their very unusual evolutionary 
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profiles, they also exhibit high disorder content. Both of these properties could indicate 

their functional importance. Further insights can be gained by looking at the functional 

and structural properties of these two families in more detail. 

 

4.3.2. pkn protein family 

 

Members of the pkn family belong to the group of eukaryotic-like Ser/Thr protein 

kinases (STPKs)113. Originally these proteins were thought to be unique to eukaryotes, 

however, the accumulation of genomic sequences revealed that some prokaryotes also 

contain members of this group. The bacterial signaling pathways usually rely on two-

component systems, basically consisting of a sensor histidine kinase and a response 

regulator. The eukaryotic-like protein kinase genes, however, represent an independent, 

additional mode of bacterial regulation. In mycobacteria, genome sequence data indicate 

that the number of STPK genes is in fact either commeasurable or even considerably 

higher than those representing the usual bacterial two-component system genes114. In the 

MTB genome, 11 STPK genes can be identified (from pknA to pknL) and with the 

exception of pknG and pknK, all of these proteins are highly probable to be localized to 

the membrane. Furthermore, members of the pkn family exhibit a significant amount of 

disorder and contain a large number of disordered binding regions. Although functional 

annotation of pkn proteins remain scarce, they are reported to be involved in a wide range 

of functions, including cell elongation, growth and division, regulation of lipid 

biosynthesis, membrane transport, nitric acid stress response, regulation of glucose 

transport and the barrier septum formation, transcriptional regulation, regulation of DNA 

binding and response to stress and host immune response. 

  

Reflecting the functional diversity of this family, members of the pkn family are 

different structurally as well. Atomic level information is available for the pknB, pknD 

and pknG proteins. Apart from the kinase domain, several pkn proteins contain additional 

domains, such as PASTA or NHL domains. Of special interest is the soluble pknG 

protein which consists of a rubredoxin and a tetratricopeptide (TPR) domain flanking the 
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kinase domain. The rubredoxin domain was found to be essential for the function and 

might be responsible for regulating the activity of pknG depending on the redox state of 

the environment. Although the exact function of the TPR domain in this case is unknown, 

pknG was experimentally shown to be essential for avoiding the degradation of MTB cell 

in macrophages by disrupting the fusion of MTB with lysosomes115. 

 

4.3.3. PE/PPE protein family 

 

PE and PPE proteins represent the most variable group of proteins in pathogenic 

mycobacteria112. The PE/PPE protein family contains 167 members and can be further 

divided into the PE, PE-PGRS and the PPE protein sub-groups (with 35, 64 and 68 

members, respectively). Almost all proteins contain a domain at the N-terminal region 

that defines the sub-group (PE domains in the PE and PE-PGRS groups and PPE domains 

in the PPE group) and many PE/PPE proteins incorporate other domains as well. 

Accordingly, some PE/PPE proteins are highly modular and can be up to 3300 residues in 

length, and their structural and functional characterization is definitely of importance. 

 

In vivo essentiality screens showed that several of the PE/PPE proteins are essential 

for growth116. Due to their variability these proteins are regarded as a possible source of 

variable surface antigens which provide a means to exploit and possibly escape the host 

immune system during pathogenesis117. Although the exact function of none of the 

PE/PPE proteins or of their complexes has been revealed, available findings delineate a 

consistent picture which suggests that the PE/PPE proteins are involved in a highly 

plastic host-pathogen interaction network112. Although, despite their importance, these 

proteins comprise a yet greatly unexplored area as both structural and functional data 

concerning them are scarce.  

 

My analysis showed that protein disorder is not homogeneously present in all three 

sub-groups (PE, PPE and PE-PGRS). The majority of the disordered regions can be 

found in the PE-PGRS proteins. Although most disordered parts do not include any 
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predicted Pfam domains, some domains significantly overlap with these regions. On the 

other hand, some domains, such as the /  hydrolase domain together with various Pfam-

B domains of unknown function seem to be entirely ordered and hence might lend 

themselves to traditional structure determination possibly yielding potential drug targets. 

 

4.3.4. Implications for target selection in drug design 

 

The presented comparative genomic study based on the result of large-scale sequence 

similarity searches is completely general and could be applied to any kind of organism 

with an annotated genome. In my work I focused on MTB, the causative agent of 

tuberculosis. My analyses revealed two protein families in the proteome of MTB that 

stand out in several aspects. These proteins were also shown to have a functional 

importance essential for the survival of this pathogen and can be potential targets for drug 

design118. 

 

The common properties of both the pkn and PE/PPE families include unusual domain 

accretions specific to this organism. This is combined with an increase in their disorder 

content. Both families carry out important functions in the MTB and are involved in the 

interactions with the host cell. Various members were shown to be essential for the 

organism116 and according to a recent analysis using guinea pig model, representatives of 

these families are significantly enriched in the early and chronic stages of infections118. 

Furthermore, many of them are either located in the surface of the bacteria or are 

exported into the host cell. The properties of these protein families underscore their 

biological importance and suggest that they would be ideal candidates for drug design. 

However, conventional drug design procedures generally overlooked such proteins as 

targets by largely focusing on metabolic processes. The need for novel drugs for the 

treatment of MTB forces researchers to explore new directions for target selection. The 

pkn and PE/PPE families, through their complex architectures offer several options in 

this regard. 
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Both pkn and PE/PPE proteins contain long disordered segments. Until recently, the 

feasibility of targeting proteins without a well-defined structure was unclear for the 

purpose of drug development. There is now, however, a newly sparked interest in 

intrinsically disordered proteins as potential drug targets50; 51. The low binding free 

energy of these interactions indicates that they would be relatively easy to block by small 

molecules50. Generally, the analysis of known examples of the druggable regions of 

disordered proteins indicated that these segments overlapped with the binding regions 

predicted by ANCHOR119. Therefore, ANCHOR and other disordered binding region 

prediction algorithms that will be hopefully developed in the years to come can be 

extremely useful to highlight potential druggable sites directly from the amino acid 

sequence, especially in combination with other methods. 

 

Although some of my findings are specific to MTB, there are several more general 

implications of this study. The exclusivity of certain proteins to a given pathogen is often 

one of prime criteria used in various target selection protocols. However, my results 

indicate that species-specific functions are not necessarily brought about by species-

specific proteins. In contrast, many novel functions developed from already existing 

proteins. In the case of eukaryotes, there are several notable examples, such as the 

development of olfaction, reproduction, and immunity120, where the combination of gene 

duplication, divergence and recombination led to the expansion of protein families and 

provided jumping points in evolution. The example of MTB shows that such complex 

evolutionary scenarios play important roles in prokaryotes as well and can be detected by 

species-specific enrichment of certain protein domains or families. Protein families 

emerging as a result of such processes often have complex domain architectures. 

Consequently, these proteins can be approached from multiple directions for the purpose 

of drug development and taking the various factors into account can help to improve the 

success rate of target selection protocols and drug development process. 
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4.4. Large scale analysis of protein disorder, protein function 
and involvement in cancer 

 
 

As demonstrated in the previous chapter, protein disorder can play a significant role 

in the pathogenicity of certain bacteria. Consequently, the presence of protein disorder 

has been linked to various infections. However, disorder has been linked to other classes 

of diseases as well that can develop without pathogens, including diabetes, 

neurodegenerative diseases and cancer43 (see section 1.3.3). In these cases, the correlation 

between protein disorder and the development of the disease has been shown48; 49. 

However, correlation does not imply causality and hence the popular claims of protein 

disorder imposing a ‘biological risk’ or ‘biological cost’ are unfounded at best. To 

address this question, I analyzed the link between protein disorder, disordered binding 

regions and the involvement in cancer concentrating on human proteins and their cancer-

associated mutations121. 

 

4.4.1. Data collection 

 

In this study, genetic variations were restricted to single amino acid substitutions, 

therefore proteins that were associated with cancer via chromosomal translocations or 

copy number variations were not considered. The dataset of missense mutations  was 

compiled from the COSMIC database81 (COSMIC, see Data and Methods). It included 

cancer mutation data collected both from the literature and the outcomes of large-scale 

cancer genome projects. An additional dataset corresponded to a more restrictive subset 

of proteins in COSMIC that were part of cancer census genes. These proteins could be 

casually linked to oncogenesis122 (COSMIC_census). I also assembled a database of 

neutral mutations (polymorphisms), taken from the UCSC Genome Browser82 (see Data 

and Methods). The number of proteins, amino acids and mutations in each dataset are 

given in Table 3. 
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4.4.2. Protein disorder in cancer-associated proteins 

 

I evaluated the disorder content in the datasets to confirm that protein disorder is 

common in human cancer-associated proteins using the complete human proteome as 

reference. The disorder content was calculated using IUPred. Figure 15 shows the 

disorder content and the percentage of proteins with disordered regions over 30 residues, 

as well as the average length of proteins in the various datasets as compared to the 

average values of the human proteome (see Data and Methods) obtained with IUPred. 

Contrary to previous results47, the overall disorder content of the full COSMIC database 

was not elevated compared to the reference. However, when restricting the analysis to the 

census part of COSMIC, the obtained results are in agreement with earlier results, with 

the percentage of disordered residues being significantly higher (Figure 15). These results 

did not depend on the choice of the disorder prediction software, as DISOPRED and 

VSL2, two other fundamentally different methods produced remarkably similar outputs 

(data not shown). 

Table 3: Datasets used in the analysis of cancer associated mutations 

Number of Datasets 
proteins residues mutations polymorphisms 

COSMIC 8 957 6 898 559 22 708 26 435 
COSMIC_census 261 238 130 5 375 673 

 

The number of proteins, residues, mutations and polymorphisms are shown for the cancer-associated 

mutation databases. 
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There was, however, a significant increase in the proportion of proteins containing 

long disordered segments among both COSMIC and COSMIC_census proteins compared 

to the human proteome. The results calculated with IUPred (Figure 15B) were again 

confirmed by the two other prediction methods (data not shown). In agreement with 

earlier results, cancer-associated proteins were also significantly longer. The increase in 

length and in fraction of proteins with long disordered segments points to the increased 

modularity and complexity of cancer-associated proteins. 

 

4.4.3. Polymorphisms and cancer-associated mutations in ordered, 
disordered, and disordered binding regions 

 

The rates of evolution are largely governed by the stringency of functional and 

structural constraints. As ordered and disordered segments in proteins have distinct 

properties in these regards, these characteristic differences are expected to be reflected in 

the distribution of genetic variations in these regions. To test this assumption, I analyzed 

the differences in the distribution of polymorphisms (SNPs) and cancer-associated 

 
 

Figure 15: Length distribution and disorder content of cancer associated proteins 

Average ratio of disordered residues (A), ratio of proteins containing >30 residue long disordered 

regions (B) and length (C) in the datasets analyzed. Black horizontal lines represent the average values 

obtained for the proteins of the human proteome taken from SwissProt. Flags show the confidence 

interval of =0.01 calculated from the standard error of the mean of random selected samples from the 

human proteome (see Data and methods). Significant differences are marked with an asterisk. 
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mutations within ordered, disordered and disordered binding regions of cancer-associated 

proteins using IUPred and ANCHOR. Residues were categorized into three groups: 

residues predicted by ANCHOR were considered to be a part of ‘binding regions’, the 

rest of the residues were either grouped to ‘disordered regions’ or ‘ordered regions’ based 

on IUPred predictions. 

 

For each protein in the datasets, I tallied the number of observed polymorphisms and 

cancer-associated mutations in ordered, disordered and disordered binding segments. 

These numbers were compared to the expected number of polymorphisms based on the 

assumption that the mutations are distributed evenly in the sequence (see Data and 

Methods). The results presented on Figure 16A show the relative difference between the 

observed and expected number of polymorphisms. 

 

There are significant differences among the three sets in the distributions of observed 

SNPs (Figure 16A). While SNPs were clearly overrepresented in disordered segments 

and underrepresented in ordered regions, disordered binding regions fell between these 

two categories, but their behavior was still closer to disordered segments. These data are 

in agreement with the basic assumption that neutral polymorphisms are less likely to 

occur in positions with stronger structural and functional constraints. In globular proteins, 

functionally relevant sites are often restricted to a few residues that form the active site, 

but nearly all residues contribute to the formation of the 3D structure at some level. This 

represents a large evolutionary constraint for globular proteins. Functionally important 

residues of IDPs, such as residues directly involved in binding or undergoing post-

translational modifications, can experience constraints similar to the active sites of 

globular proteins. In terms of structural constraints, however, mutations generally are 

expected to have smaller impact on the structural properties of disordered segments, due 

to the lack of well-defined structure. Accordingly, disordered proteins exhibit a lower 

evolutionary conservation, observed at various levels123; 124. 
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Compared to polymorphisms, cancer-associated mutations followed a reversed trend 

and were more likely to appear within ordered regions (Figure 16B). Using the 

distribution of SNPs as an expected distribution for cancer-associated mutations (instead 

of the random distribution, see Data and Methods), these differences became even more 

pronounced (Figure 16C). 

 

Together with the results obtained on the distribution of polymorphisms, these results 

suggest that disordered residues are more tolerant to mutations at two levels. First, 

disordered regions can allow a larger number of genetic variations without affecting the 

function. Second, if a mutation occurs, it is more likely to cause cancer if the affected 

residue is located within an ordered region. The lower sensitivity of disordered regions to 

genetic variations is likely to originate from the specific structural properties of these 

regions. The analysis of disordered binding regions showed that functionally relevant 

sites within disordered regions can slightly deviate from this behavior. Disordered 

Figure 16: Distribution of polymorphisms and cancer-associated mutations 

Over- and under-representation of mutations in disordered binding regions (orange), disordered (red) 

and ordered regions (blue) calculated with ANCHOR, as compared to background distributions (see 

Data and Methods). (A) the distribution of polymorphisms as compared to the uniform random 

distribution; (B) the distribution of cancer-associated mutations as compared to the uniform random 

distribution and (C) the distribution of cancer-associated mutations as compared to the expected values 

weighted by the distribution of polymorphisms shown in (A). All differences were significant. 
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binding regions could be placed between disordered regions in general and ordered 

regions, both in terms of the appearance of polymorphisms and cancer associated 

mutations. These suggest stronger evolutionary constraints within disordered binding 

regions, in accordance with their functional importance. Nevertheless, within the broader 

context of binding regions, only a few residues might be directly responsible for the 

specificity of the binding and these residues could present even higher evolutionary 

constraints. Altogether, these results clearly contradicted the original hypothesis about the 

increased risk of cancer associated with protein disorder, at least in terms of single 

nucleotide mutations. 

 

4.4.4. Functional correlations 

 

I also analyzed cancer-associated proteins in terms of their functional categories and 

their number of protein-protein interactions. First, I assessed which functional groups 

were overrepresented within cancer-associated proteins. For this analysis, the 

GeneOntology83 functional categories were used (see Data and methods). The occurrence 

of each of the considered 50 biological processes and 41 molecular functions in the 

COSMIC_census dataset was compared to the expected occurrence of these functions in 

the human proteome. The list of biological processes and molecular functions that 

exhibited statistically significant differences is shown in Table 4. The significantly 

enriched processes among cancer-associated proteins included signal transduction, 

involvement in cell-cycle and proliferation, DNA- and protein binding, phosphorylation 

and regulation of transcription. These proteins on the other hand were significantly 

depleted in transport processes in general and particularly in ion transport. In other cases, 

the differences were not significant at the =0.01 level. In general, my results are in 

complete agreement with an earlier study, and correlate well with the functional 

enrichments of disordered proteins. 
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Cancer-associated proteins represent a specific group of proteins that are enriched in 

certain functions, contain more disordered regions, generally are longer and are involved 

in a larger number of interactions (25.5/protein as compared to 5.5/protein in the human 

proteome). However, all these features also correlate with each other. To untangle these 

complicated relationships, I studied the association between these distinct features. 

Specifically, I considered the length of the protein, the ratio of its residues residing in 

disordered segments or disordered binding regions, the number of cancer-associated 

mutations taken from the COSMIC_census database and the number of protein-protein 

interactions as well as the above identified significant functional classes (see Data and 

methods). The mutual information and the Jaccard distance were calculated between all 

pairs of features. The obtained distances between the different features are shown in 

Table 5. These distances were also subject to multidimensional scaling to reduce the 

dimensionality to two. The resulting scaled location of each feature is presented in Figure 

17. 

Table 4: Significant annotations of COSMIC and COSMIC_census proteins 

 

GO ID Description 

Number of 
COSMIC 

census proteins 
with the given 

term 

Expected 
number of 
proteins 
 with the 

given 
term 

p-value 
Over- or 
under- 

representation

GO:0007165 signal transduction 51 26 1.418*10-3 0.96 

GO:0008283 cell proliferation 17 4 3.055*10-3 3.25 

GO:0006811 ion transport 0 8 3.696*10-3 -1.00 

GO:0006810 transport 9 24 5.370*10-3 -0.63 B
io

lo
gi

ca
l 

pr
oc

es
se

s 

GO:0007049 cell cycle 20 7 8.084*10-3 1.86 

GO:0005515 protein binding 184 65 1.305*10-26 1.83 

GO:0003677 DNA binding 84 27 4.907*10-10 2.11 

GO:0000166 nucleotide binding 72 25 6.844*10-8 1.88 

GO:0004672 protein kinase activity 36 6 5.573*10-7 5.00 

GO:0003700 transcription factor activity 44 12 3.463*10-6 2.67 

GO:0016301 kinase activity 37 8 3.192*10-6 3.63 

GO:0016740 transferase activity 48 18 5.276*10-5 1.67 

M
ol

ec
ul

ar
 

fu
nc

tio
ns

 

GO:0030528 transcription regulator 
activity 17 5 7.340*10-3 2.40 

 

List of GO biological processes and molecular functions that are significantly over- or under-represented in the COSMIC 

census database as compared to the human proteome (see Data and methods). p-values were obtained using the exact 

Fisher test. 
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It can be seen that the association between the ratio of residues in disordered regions 

and disordered binding sites is the highest indicating the relatively constant ratio of 

disordered residues that are involved in binding. Apart from this strong association, the 

functional features shared the most information with all the other features. This indicated 

the central role of function that largely determines the disorder content together with the 

 
 

Figure 17: Two dimensional mapping of various features based on the distances calculated on the 

COSMIC census database relative to the human proteome 

Coordinates were obtained using multidimensional scaling (see Data and methods) by projecting the 

original Jaccard distances into two dimensions. The widths of the connecting lines are inversely 

proportional to the original Jaccard distances (see Table 5). 

Table 5: Jaccard distances of features 

  Length Disorder 
% 

Binding
regions 

% 

COSMIC 
census 

mutations 
Interactions Functions 

Length 0.0000 0.9871 0.9860 0.9597 0.9776 0.9157 
Disorder %   0.0000 0.5170 0.9753 0.9896 0.9208 

Binding regions %     0.0000 0.9732 0.9860 0.9162 
COSMIC census 

mutations       0.0000 0.9444 0.8808 

Interactions         0.0000 0.8670 
Functions           0.0000 

 

Jaccard distances of the 6 features calculated on the COSMIC census database as compared to the 

human proteome (see Data and methods). 
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amount of disordered binding regions, the number of protein-protein interactions, the 

required length for a given protein and its involvement in cancer. 

 

In conclusion, my results clearly show that protein disorder in itself is not responsible 

for the increased biological risk in terms of cancer-associated mutations. It seems 

plausible that the functional involvement of a protein determines both its disorder content 

and its involvement in cancer, thus presenting a correlation between these two features, 

without an existing casual link between them. My study was restricted to single amino 

acid changes, however, other type of genetic alterations can also lead to cancer. 

4.4.5. Connection with other types of genetic variations 

 

My general finding is in contrast with the results obtained in the analyses of another 

major form of genetic aberrations leading to cancer, chromosomal translocations48. In this 

case, a direct link between disorder and cancer was found. This was rationalized based on 

that ordered proteins are more likely to be misfolded and degraded as a result of 

translocation, while disordered proteins could survive with an aberrant function. A third 

form of commonly occurring genetic variations is copy number variation (CNV), which 

corresponds to the enrichment or depletion of certain genomic regions. CNVs are 

frequently observed in cancer and other diseases. In a recent study, a strong correlation 

between dosage sensitive gene products and protein disorder was found, and it was 

related to the interaction promiscuity of IDPs49. In order to resolve these seemingly 

contradictory results, cancer-associated mutations have to be placed into a network 

context. The network view was also suggested to be crucial in order to reduce the 

complexity of the landscape of cancer genomes. The exploration of the role of protein 

disorder in these cases necessitates many further studies and taking into account the 

specific functions of these proteins and the way they are regulated.  The present work, 

nevertheless, demonstrated that genetic mutations affect ordered and disordered regions 

in different ways, in accordance with the distinct structural and functional properties of 

these segments. In order to understand the background of various diseases, these 

differences have to be taken into account. 
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4.5. Disordered binding regions and linear motifs – bridging 
the gap between two models of molecular recognition 

 
 

The disordered binding region and the linear motif concepts (introduced in sections 

1.5 and 1.6, respectively) describe molecular interactions on different bases: the former 

focusing on the structure (or the lack and formation of it) and the latter approaching the 

problem through the sequence. However, the interactions described by the two concepts 

share a high degree of similarity. In both cases the interaction is confined to a relatively 

short, linear sequence region in one of the partners. Additionally, many known linear 

motif instances were shown to reside in disordered protein regions125. Accordingly, in 

many cases the same interaction was categorized as an example of both linear motif 

mediated binding and of disordered binding regions. Examples include the binding of p53 

to MDM2 and the N terminal region of p27 binding to the cyclinB-CDK2 complex. 

However, despite the growing number of common examples, the complementarity of 

linear motifs and disordered binding regions has not yet been directly addressed. 

 

In this section I study this connection through two prediction methods, each tailored 

specially for identifying the respective type of interaction sites. Linear motif searches are 

carried out by using regular expressions taken from the ELM database68 and disordered 

binding regions are identified by ANCHOR33. Through the overlap of these two 

approaches I set out to take the next step in the integration of the two concepts. 

 

4.5.1. Predictive power of linear motifs 

 
One of the main limitations of using linear motifs in the prediction of protein-protein 

binding regions is the weak definition of the motifs. Basic pattern-matching scans 

through databases are hindered by the overwhelming number of false positive hits. The 

exact quantification of the false positive rate of motif pattern matches would require a 

protocol that is able to determine if a match is false or true. This biological knowledge, 
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however, is not available for the majority of protein sequences. Several studies used 

statistical measures of how well a motif is defined based on the sequence pattern itself68; 

69; 71; 73. Such measures are also incorporated into the ELM server, where these measures 

can serve as a warning for the user of what order of magnitude of false positives can be 

expected when using only the pattern to search for true motif instances. I chose a way of 

demonstrating the weakly defined nature of most motif patterns based on biological 

considerations. 

 

For this purpose, I used the motifs collected in the ELM database. As these motifs 

were described mostly in eukaryotes, there should be a strong bias of real occurrences to 

appear in eukaryotic proteins as opposed to bacterial and archaeal proteins. In contrast to 

this, scanning bacterial and archaeal protein datasets (see Data and Methods) for ELM 

motif patterns yields hit numbers comparable to that of searches in eukaryotic proteins 

(see Figure 18A). These hit numbers include both real instances and false positive 

(random) hits. Although the ratio of true and random hits is unknown, real hits are 

expected to show a pronounced enrichment in eukaryotes. On the other hand, random 

occurrences are expected to appear with approximately the same frequency in all three 

kingdoms of life. The lack of difference between eukaryotes and prokaryotes in this 

regard is the most alarming in the case of TRG motifs, as the lack of cell compartments in 

prokaryotes makes such a widespread usage of target signals controlling subcellular 

localization very improbable. 

 

Figure 18B shows that the normalized number of matches from the three domains of 

life are mostly indistinguishable even when assessed for each ligand binding (LIG) motif 

separately. The horizontal axis is a list of all LIG motifs and the height of the graph for a 

given motif shows the average number of matches per proteins in the three domains. 

Some well defined motifs – such as the GYF domain binding motif – have pattern 

descriptions that only match a handful of protein sequences (18 out of all 171,208 

eukaryotic sequences from SwissProt and none of the archaeal or bacterial sequences). 

These motifs are grouped at the left hand side of the figure. However, there are only a 

handful well defined motifs, with nearly 76% of the LIG motif patterns matching at least 
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1 out of 100 proteins in all three domains of life. These motifs cover a wide range of 

functions such as the interaction with 14-3-3, WW, PDZ, PCNA domains, nuclear 

receptors and even the interaction with MDM2 via a motif that is experimentally 

described exclusively in the p53 protein family. Considering the biological meaning of 

these motifs, it is clear that with a few exceptions, naïve motif searches are dominated by 

false positives. 

 

Ligand binding motifs mediate interaction with a well defined protein partner domain. 

The occurrence of three example LIG motifs are shown in Figure 18C. The top part of 

Figure 18C shows the occurrence of PCNA, PDZ and Cyclin binding motif hits 

(random+real occurrences). The position of these three motifs are shown in Figure 18B 

with vertical lines (note that there are three sub-types of PDZ motifs and in Figure 18C 

the occurrence of all three types are added). The bottom parts of Figure 18C show the 

occurrence of the corresponding interacting domains in the three domains of life. The 

occurrence of PCNA, PDZ and cyclin domains is highly unbalanced with PCNA domains 

being absent in bacteria, PDZ domains being absent in archaea and cyclin domains being 

exclusive to eukaryotes. The presence of real motifs is linked to the presence of the 

interacting partner domain, however, the corresponding motif hits do not reflect these 

specific distributions and all three motif patterns can be found ubiquitously in all three 

domains of life. 

 

The same over-prediction trend can be shown for targeting signals as well. Scanning 

the human proteome (see Data and Methods) for TRG motifs, about 92% percent of the 

proteins match motifs that – in biologically active form – are exclusively found in 

membrane proteins (TRG_ENDOCYTIC_2, TRG_ER_diArg_1, TRG_ER_diLys_1 and 

TRG_LysEnd motifs). Furthermore, 41% of human proteins match classical nuclear 

localization signals and 33% are predicted to be localized to the peroxisome. The 

irrationally high numbers for these localizations and the large overlap between 

incompatible localizations (95% of proteins matching NLS’s also match membrane 

localization motifs) show that targeting motifs suffer from the same under-definition as 

ligand binding motifs. 
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Figure 18: Results of motif scans in the three domains of life 

A: the number of found motif hits in the eukaryotic (blue), bacterial (green) and archaeal (red) proteins 

included in the UniProt database. As the size of the three databases are different, the number of actual 

hits in the prokaryotic sets were scaled with the ratio of the number of residues in each dataset. B: The 

average number of motif hits per protein for the three databases covering the three domains of life. 

Again, hit numbers in prokaryotic sets are corrected for different number of residues compared to the 

eukaryotic dataset. Coloring is identical to that of part A (red – archaea, green – bacteria, blue –

eukaryotes). C: The upper bars show the number of found hits in the three domains of life for PCNA, 

PDZ and Cyclin binding motifs. Lower bars show the actual number of corresponding partner domains 

that can serve as interaction partners for these motifs in the same datasets. Prokaryotic hit numbers are 

corrected for different number of proteins and the coloring scheme follows that of parts A and B. 
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4.5.2. Combining linear motif and disordered binding region 
predictions 

 

Overall efficiency and the reduction of false positives 

 

The overlap between predicted disordered binding regions and linear motifs was 

tested using ANCHOR predictions and annotated ligand binding linear motif (LIG) 

instances from the ELM database. For this purpose a more permissive version of 

ANCHOR was chosen, where the prediction threshold was reduced to 0.4 instead of the 

original 0.5. Motif instances were checked and filtered for similarity to minimize 

redundancy (see Data and Methods). The majority of annotated LIG motif instances were 

recognized by ANCHOR as binding regions yielding a recovery rate of 66%. In contrast, 

the overlap between ANCHOR predictions and unfiltered motif pattern matches in the 

eukaryotic sequences in UniProt (containing both random and true motif instances) is 

significantly lower with 17.6% (see Figure 19). In total 7,164,890 LIG motif hits were 

found in the total of 171,208 sequences. Upon filtering the hits with ANCHOR, only 

1,262,532 LIG motif hits remained, yielding a reduction of over 82%. 

 

The strong connection between true linear motif instances and ANCHOR predictions 

is supported by the fact that the disordered binding regions predicted by ANCHOR 

overlap with known linear motifs with a significantly higher ratio than expected from 

random (see Data and Methods). The fraction of linear motifs recognized by ANCHOR is 

very similar to the true positive rate of ANCHOR as measured on true disordered binding 

regions (66% versus 68%, respectively). Furthermore, ANCHOR is much more sensitive 

to true motif instances than for protein segments simply matching a motif pattern. This 

can be used to enrich the number of true positive motif hits when scanning through 

unknown sequences by discarding the motif hits that do not overlap with ANCHOR 

predictions. The results obtained with ANCHOR filtering are more reliable as correct 
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motifs are enriched while the total number of hits are reduced by nearly an order of 

magnitude. 

 
 

ANCHOR’s recovery rate and the reduction of hits, however, is highly uneven 

between different motifs. At one extreme, all 22 instances of the nuclear receptor box 

motif (LIG_NRBOX) were recognized and at the other, none of the 5 TPR binding motifs 

were found. To give a more detailed picture on the efficiency of ANCHOR in motif 

recognition, recovery rates and the reduction of hits (calculated on the eukaryotic 

sequences in UniProt) were calculated for each motif separately. Figure 20 shows the 

total number of instances and the number of these overlapping with ANCHOR 

predictions for all LIG motifs that had at least three independent annotated instances. For 

each motif the rate of recovery was compared to the random overlap between ANCHOR 

predictions and randomly chosen protein segments (see Data and Methods). For motifs 

marked with asterisk the number of overlap is significantly higher than expected from 

random. 

 
Figure 19: The predictive power of ANCHOR as a filter in motif searches 

Left: fraction of known instances recognized by ANCHOR. Right: the reduction in the number of 

ligand binding motif matches in the eukaryotic sequences of UniProt. 
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Considering the reduction of the total number of hits, my analyses show that for well 

defined motifs giving a moderate number of hits in the eukaryotic UniProt sequences 

(<104) the reduction rate is lower with an average of approximately 60%. However, for 

more ill-defined motifs (>104 hits), the reduction rate increases and reaches 

approximately 85%. This shows that ANCHOR can be especially useful for filtering hits 

of poorly defined motifs, whereas for well-defined motifs the definition already 

guarantees a more moderate false positive rate.  

 

The combination of ANCHOR and linear motif prediction can yield a combined 

prediction tactic that is able to make use of the distinct advantages of the two methods. 

On one hand the use of linear motifs inherently gives information about the interacting 

partner. Furthermore, it is able to capture the essentiality of certain positions inside a 

binding region. On the other hand, the incorporation of ANCHOR makes it possible to 

take into account the influence of the residues surrounding the core residues of the motif. 

In many cases the effect of this context in motif mediated binding was shown to be 

Figure 20: Efficiency of ANCHOR for individual LIG motifs 

The figure shows the total number of annotated instances for each of the ligand binding motifs that have 

at least three independent instances in the ELM database. Dark red bars show the number of instances 

overlapping ANCHOR predicted binding regions. Stars mark the motifs for which the recovery rate is 

significantly higher than that expected by chance alone (see Data and Methods). 
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considerable67. In addition, ANCHOR can effectively discriminate between the presence 

of different structural tendencies on and around the binding region. Furthermore, as 

ANCHOR uses a cutoff value to give predictions, this makes the resulting, combined 

approach tunable and its specificity and sensitivity can be tailored to suit the need of 

various applications. 

 

Efficiency by structural context 

 

The use of ANCHOR assumes that true motif instances reside in disordered protein 

regions. Although this holds for most motif instances125, some true motif instances are 

known to reside in accessible surface loops of globular domains. Furthermore, some 

motifs are generally found at terminal regions of proteins. For example, the PDZ motifs 

occur exclusively at the C terminus of proteins and are usually preceded by a folded 

domain. As ANCHOR relies heavily on the disordered state of the protein region to 

recognize disordered binding motifs, in these cases its efficiency is expected to be lower.  

 

To test this, LIG motif instances were grouped according to the disorder or order of 

the sequence regions flanking the instance. Based on this, three groups were established. 

A motif instance is categorized as disordered, if both the N- and C terminal flanking 

regions are predicted to be disordered by IUPred. Mixed instances are flanked by a 

disordered region on one side and by an ordered one on the other side. Ordered instances 

reside in a sequential environment fully predicted to be ordered. 

 

Figure 21 shows the efficiency of ANCHOR on all three groups. This efficiency 

varies heavily between the groups. Only 19.7% of ordered instances are found, but the 

recovery rate increases to 60.5% and 86.0% for mixed and disordered instances, 

respectively. These results are largely independent of the prediction method used for the 

assignation of disorder status, and remained consistent upon using DISOPRED2 or VSL2 

(data not shown). 
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4.5.3. Examples 
 

The majority of known linear motifs reside in a disordered protein region to make the 

interacting segment accessible for the partner molecules (see reference125 and Figure 21). 

One such example is show in Figure 22A for the nuclear receptor binding motif NRBOX 

in the human nuclear receptor coactivator 2 protein (NCOA2). NCOA2 is a 1,464 residue 

long transcriptional coactivator for steroid receptors and nuclear receptors. Its 

dysfunction has been linked to acute myeloid leukemias. The protein contains four 

verified instances of the NRBOX motif through which it can bind to the human NR3C1 

glucocorticoid receptor. The motifs reside in the unstructured regions of the NCOA2 

protein between residues 641-882. The NRBOX motif consists of three leucine residues 

in an xLxxLLx configuration (see section 1.6). This hydrophobic sequence signal is 

readily picked up by ANCHOR and the motif regions are correctly predicted as 

disordered binding regions. Figure 22A also shows the known structure of one of these 

motif instances bound to its receptor partner. 

 

Although in fewer numbers, there are many examples of biologically functional motif 

instances that are found inside structured domains. An example is shown in Figure 22B: 

 
Figure 21: The ratio of motif instances annotated in the ELM database identified by ANCHOR 

Instances are classified according to the predicted disorder status of their flanking sequential 

environment. 
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the MAP kinase binding motif of the human DUS6 protein. DUS6 is a 381 residue long 

protein implicated in various signaling pathways, including apoptosis, growth and cell 

speciation. It consists of two structured domains, a rhodanese and a tyrosine-protein 

phosphatase domain, connected by a linker region. The motif region is in a surface 

accessible part of the rhodenase domain and therefore can be bound by the target kinase. 

However, as the monomeric structure shows in Figure 22B, the motif region is structured 

even without the presence of the binding partner. As the identification of linear motif 

instances with ANCHOR relies heavily on the presence of protein disorder, these motifs 

cannot be identified with ANCHOR. This motif has an ordered structural context, where 

the performance of ANCHOR is very low (see  Figure 21). The identification of motif 

instances similar to these calls for the application of domain and accessibility predictions. 

Figure 22: Examples of true motif instances with ANCHOR predictions 

A: Three instances of the nuclear receptor binding motif (LIG_NRBOX) in the human nuclear receptor 

coactivator 2 protein (NCOA2). Left: IUPred (red) and ANCHOR (blue) predictions for the 601-800 region 

of NCOA2. Red bars mark the motif instances with the black box showing the instance for which the 

corresponding bound structure is shown. Right: the structure of NCOA2 (salmon) bound to the 

glucocorticoid receptor (grey) with the motif shown in red (structure 1m2z126). B: MAP kinase binding 

motif (LIG_MAPK_1) in the rhodenase domain of the human DUS6 protein. Left: IUPred (red) and 

ANCHOR (blue) predictions with the red bar and black box indicating the position of the motif. Right: the 

structure of DUS6 in monomeric form (structure 1hzm127) with the motif shown in red. 

 



 
Chapter 4 – Results and Discussion 

95 

 

4.5.4. Application to whole proteome scans 

 
To test the usability of ANCHOR in a large scale scenario, I scanned the human 

proteome for the nuclear receptor binding motif LIG_NRBOX and applied the ANCHOR 

filtering to the resulting motif hits. For NRBOX motifs the efficiency of ANCHOR is 

100% on known instances with all 22 known true motifs overlapping predicted binding 

regions. In total 7,897 of the scanned proteins match the NRBOX motif at least once, 

accounting for roughly 39% of all human proteins. The number of proteins containing 

motif matches is reduced to 1,623 (8%) after applying ANCHOR filtering (see Figure 

23A). 

 

NRBOX motifs are annotated with Gene Ontology (GO) terms from all three existing 

categories (biological process, cellular component and molecular function). Proteins with 

both unfiltered and filtered NRBOX motif matches were grouped according to their GO 

annotations (see Data and Methods). In the case of all three annotation types (biological 

processes, cellular components and molecular functions), ANCHOR filtering increased 

the ratio of proteins matching the annotations of NRBOX motifs 1.4-2.3 fold (see Figure 

23B-D). In all three cases, the number of proteins bearing no annotations at all was high 

and did not change significantly due to the filtering. This shows that the relatively low 

ratio of proteins with correct annotations even after filtering is a consequence of the 

generally poor GO annotation of human proteins. Furthermore, proteins can participate in 

several processes, can perform multiple functions and can have multiple localizations. As 

a result, the proteins with annotations not matching those of NRBOX proteins are not 

necessarily false positives. Due to these limitations the ratios of proteins with correct GO 

terms in themselves are not indicative. However, the significant enrichment of these 

proteins as a result of ANCHOR filtering shows that the filtering procedure greatly 

increases the ratio of correct motif hits while reducing the total number of hits by 80%. 
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Figure 23: Application to whole proteome scans 

Results of applying ANCHOR as a filter for scanning the human proteome for instances of the nuclear 

receptor interacting motif (LIG_NRBOX). A: number of proteins matching the motif; B-D: fraction of 

proteins containing NRBOX matches with biological process, cellular component and molecular 

function GO annotations (B, C and D, respectively) matching the annotations of true NRBOX instances 

(black boxes), with other annotations (grey boxes), and no annotations (white boxes). The height of bars 

in B-D represent 100% of all found motifs and thus in each sub-figure the complete left bar stands for 

7,897 proteins and the complete bar on the right stands for 1,623. The two different number of hits are 

scaled to accurately represent enrichments of correctly annotated proteins. 
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4.5.5. Implications 

 

Altogether, the presented results support the complementarity of the linear motif and 

disordered binding region concepts. This can serve as a stepping stone for creating new 

models of molecular recognition that take into account the relevant features of both 

current approaches, thus the integration of the two concepts can provide a deeper and a 

more complete picture of the molecular details of protein-protein interactions. However, 

apart from the theoretical message of these results, the presented results have strong 

practical implications as well. In general, the combination of the two predictions 

reflecting the two binding models enables us to get the best of both worlds: predict 

interactions with relatively low false positive rate, with structural context and with 

information about the partner. This can aid the prioritization of candidate motifs for 

experimental works and improve the quality of proteome-wide systems biology analyses. 

Furthermore, unlike many filters commonly applied in motif hit filtering77, the efficiency 

of ANCHOR can be quantified separately for different bound secondary structures, 

structural context of the binding site and even for individual motif types. Based on this, 

researchers can decide before commencing a study whether ANCHOR results should be 

incorporated in their protocol. As interactions mediated by both disordered proteins and 

linear motifs were mostly described in regulatory proteins, the more precise prediction of 

binding regions has high importance in assembling protein-protein interaction networks 

of various organisms. This can aid the understanding of the intricate interplay of proteins 

communicating through transient interactions. The pinpointing of proteins and the exact 

protein regions that are involved in these regulatory pathways in turn can be used as a 

starting point in pharmaceutical studies aimed at drug target identification. 
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4.6. Towards a unified view of protein structure and 
interactions – limitations and possibilities 

 

Although many parameters of biological systems are continuous or quasi-continuous, 

there is a universal trend of categorizing in sciences in general and especially in biology. 

A prime example is the interaction of molecules. Albeit affinities of interactions are 

continuous and can range several orders of magnitude, in many cases the results of 

affinity measurements are condensed into simple binary statements of whether the two 

molecules interact or not. These simplified statements are at the heart of the studies of 

signaling pathways, interaction networks of organisms and pharmacological studies. The 

rationale behind this simplification tendency is that condensing a huge amount of 

information to a level perceptible to the human brain, researchers can deduce further 

results much more easily. “Not getting lost in the details” has its clear advantage, but 

after a certain sophistication of the field, this approach can present new burdens. 

 

Similarly to almost all fields of molecular biology, the introduction of distinct 

categories has been heavily applied in the field of protein disorder as well. After the 

realization of the fact that a well defined 3D structure is not a prerequisite of protein 

function, a new category of “disordered proteins” was established to describe such 

proteins. This framework is currently widely used when studying a protein structure. 

Protein disorder is routinely inferred for example from X-ray structure determination: a 

position is either visible in the structure (ordered) or not (disordered). Results from other 

experimental measurements (such as CD, NMR, SAXS, etc.) are also represented in a 

binary form, although all of these measurements provide continuous output values. 

Consequently, this binary representation is present in databases as well (eg. in the DisProt 

database) and has also percolated to the bioinformatics tools targeting protein disorder. 

Accordingly, almost all disorder prediction methods mark each residue in the input 

protein as either ordered or disordered. Although most prediction methods assign a 

continuous score to residues as well, this score is not optimized to reflect any biologically 

relevant feature, but only reflects some internal score. During the testing of the 
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algorithms, an optimal cutoff is set regarding this score that best separates disordered and 

ordered residues. Then the assigned score of a residue can be converted to a probability 

value showing the reliability of the prediction (for a comprehensive review see 59). 

 

In reality, from a structural point of view, disordered segments are heterogeneous and 

affect various levels of protein structure29; 59. Some of them exist in the form of (near) 

random-coils that corresponds to a largely random distribution of conformations 

dominated by extended structures. In reality, however, no protein is ever random coil, and 

the macroscopic properties compatible with random coils do not exclude the possibility 

of transient short-range or long-range interactions resulting in transient structural 

elements. Indeed, transient secondary structure elements were observed in a number of 

cases. Disordered proteins can also exist as molten-globules and exhibit a compact but 

disordered state with some secondary structure content. Generally, various types of 

disorder and the transition between these states can be linked to specific function of the 

proteins. 

 

As protein flexibility is inherently not discreet, the strict binary categorization of 

residues of a protein into “ordered” and “disordered” groups is a great oversimplification. 

Disorder is a complex phenomenon, and there are many examples that go beyond the 

classical ordered/disordered classes.  In these cases, there is no single good answer from 

the perspective of predictions. The inability of prediction methods to handle various types 

of protein disorder causes a serious limitation in their efficiency. I illustrate this problem 

through the example of human calpastatin that contains multiple disordered binding 

regions. Although calpastatin does not have a stable three dimensional structure on its 

own, the binding regions exhibit strong structural preferences. This places them at the 

borderline of order and disorder in various aspects. The comparison of the behavior of 

several disordered prediction methods can provide insights into their general features and 

usability. 

 

Calpastatin is a 708 residue long protein that is a specific inhibitor of calpain, a Ca2+ 

activated cystein protease. The calpain-calpastatin interaction is part of multiple larger 
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networks of interactions involved in the regulation of cell division, cell motility and 

muscle protein degradation. Calpastatin contains four repeats of the calpain inhibitory 

domain and thus is able to inhibit four different calpain molecules at the same time. Each 

inhibitory domain binds to calpain via three separate binding sites (A, B and C). The 

center binding site B binds to the active site of calpain in an extended conformation, 

while the other two sites A and C bind as -helices and increase the specificity of the 

interaction between the two molecules. Although calpastatin is fully disordered along its 

entire length, the binding sites exhibit considerable transient structure in isolated form as 

well102. These transient, preformed structural elements correspond to the secondary 

structure that these segments adopt upon binding to calpain, namely -helical structure 

for sites A and C but site B also has highly nonrandom conformational preferences. 

 

Figure 24 shows prediction profiles from 8 different disorder prediction algorithms 

covering the most commonly used prediction algorithm architectures (see Section 1.4) for 

the first inhibitory domain of calpastatin (residues 137-277). The output of each method 

is a continuous score in the [0;1] interval assigned to each residue in the sequence. This 

score shows the probability of each residue to be disordered (for a more detailed example 

of a disorder prediction profile given by IUPred, see section 1.4.3 and Figure 3). All 

methods are trained according to the aforementioned binary approach, where  residues 

are categorized as either ordered or disordered. As a result, all of these methods are 

optimized for this binary classification and traditionally, prediction outputs are condensed 

to a binary output as well: if a residue is assigned a score below 0.5, it is considered 

ordered, and scores above 0.5 indicate disorder. 

 

The presence of the preformed structure of the binding regions is reflected in almost 

all of the prediction outputs as they generally assign a lower score to the binding sites 

than to the rest of the protein. Although the dips apparent near the three binding sites are 

relatively consistent among different methods, they react to these segments in a variety of 

ways. Some predictors only react to the general structural content of the inhibitory 

domain as a whole and give a slight dip in the middle of the domain coinciding with 

binding site B (VSL2B and POODLE-I), while some others give three distinct dips 
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approximately corresponding to the three separate binding regions (DISOPRED2, 

IUPred, OnD-CRF, RONN and DISpro). VL-XT also reacts to the presence of residual 

structure, albeit in a relatively erratic fashion. The average score on linker regions 

between binding sites is generally larger than on the binding regions themselves, 

reflecting the fact that these regions retain their disordered nature even in the bound form. 

On the other hand, the large variation in the prediction scores on the binding regions 

shows that at these regions, conclusions drawn from a single predictor or a naïve 

consensus prediction is either meaningless or can be very misleading. 
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Figure 24: Disorder predictions for the first inhibitory domain of human calpastatin (UniProt 

AC: P20810). 

In the case of OnD-CRF and DISOPRED2 the original prediction scores were rescaled linearly to be 

directly comparable with other methods. Disordered predictions were sorted top to bottom by 

decreasing average predicted disorder tendency calculated on the shown sequence part. Grey boxes 

labeled A, B and C on the prediction outputs mark the three binding regions. Underneath the prediction 

outputs, the sequence parts that were shown experimentally to adopt -helical structure when bound to 

calpain (based on the PDB entry 3df0) are shown (“Structure”). The bottom line shows the disordered 

binding site prediction by ANCHOR. Shading of the boxes corresponds to the overall confidence of the 

predicted binding region, with darker shades corresponding to higher confidence. 
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Similarly to disordered binding regions, other “flavors” of disorder exist as well128, 

such as coiled-coil or molten globule regions. These structural elements challenge the 

classical definition of protein disorder, as for example coiled coils always occur as 

oligomers (formed by 2-7 monomer proteins). Each protein adopts an -helical 

conformation that is unstable on its own, however, the helices are stabilized by the 

interaction with other helices. The resulting structure is stable and lends itself to structure 

determination. This structural element is on the verge of order/disorder, as the constituent 

monomers do not have a stable structure, but their obligate complex does. Such structural 

elements pose a challenge similar to that of disordered binding regions to prediction 

algorithms. The common feature in these problematic structural regions is their 

intermediate flexibility. This suggests that approaches that go beyond the binary 

classification of proteins as ordered or disordered are necessary. Although it can be 

tempting to identify the continuous score provided by prediction methods as a measure of 

flexibility, no such information is used in the construction of these algorithms and the 

final score is not optimized for this. The lack of consensus, or even similarity between 

different methods, as illustrated by calpastatin underlines the inability of most current 

methods to directly capture flexibility. Furthermore, the proper identification of proteins 

and protein regions with transient/intermediary structural content is not simply a 

structural problem, but also a biological one, as the specific functional modes of 

disordered protein regions are directly linked to their intrinsic flexibility. This 

identification problem can be tackled with the use of specific prediction methods, such as 

ANCHOR for the identification of disordered binding regions or COILS for the 

recognition of coiled coil regions. 

 

Although structural heterogeneity restricts the brute-force application of prediction 

methods for regions containing certain structural elements, the basis of physics based 

disorder prediction methods can be a starting ground to get more information about the 

presence and type of transient structure. During the development of IUPred60 and 

ANCHOR33, it became clear that the phenomenon of the lack of structure can be 

understood and modeled on the basis of the energy of interresidue interactions. Using this 

concept, not only disordered segments, but regions undergoing disorder-to-order 
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transition could be recognized as well. This suggests that models incorporating basic 

biophysical properties of disordered segments hold the key to more detailed predictions 

of protein disorder. Although these methods currently do not outperform advanced 

machine learning methods, they are rooted in a strong biophysical model that – as 

opposed to machine learning approaches – can be improved and fine-tuned. 

 

The development of ANCHOR on the basis of IUPred demonstrates that in order to 

describe protein disorder beyond a binary classification, the existing models have to be 

elaborated. The common physical description of protein structure and various ‘flavors’ of 

protein disorder based on the energy landscape model can guide the elaboration of our 

models. Both the folding and the binding of both ordered and disordered proteins can be 

described on a common ground, as shown in the Introduction (sections 1.1.2-1.1.3 and 

1.2.2-1.2.4). Conformational heterogeneity naturally follows from the energy landscape 

view. The funnel-like energy landscapes of strictly ordered proteins and the plateau-like 

energy function of highly disordered proteins represent two extreme scenarios, as shown 

in Figure 25. In reality, every protein can adopt a vast number of different conformations 

and each of them can occur with non-zero probability. However, conformations with 

lower energy are more probable, while higher energy conformations are present less 

frequently. Therefore, every protein is inherently dynamic, although the details of 

dynamic behavior differ from one protein to another. In the case of globular proteins, the 

ensemble is dominated by a single narrow range of conformations that have significantly 

lower energy compared to other conformations. This leads to the presence of a well-

defined structure. There could be other low-energy conformations even in the case of 

ordered proteins, represented by valleys on the figure. These alternative conformations, 

that can have important functional roles, are becoming more commonly detected as the 

resolution of experimental techniques improves. In contrast to globular proteins, the 

energy surface of IDPs has multiple local minima that are energetically near-identical. 

These proteins virtually exhibit a continuum of allowed conformations. The significant 

differences in the free state of various proteins can also have a large impact on the way 

these proteins interact. 
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The various scenarios of the binding of proteins can be treated analogously to their 

folding using the energy landscape view. Apart from describing the various “classical” 

binding modes of globular proteins (introduced in sections 1.2.3 and 1.2.4), energy 

landscapes offer a way to integrate the binding of disordered proteins as well129. The 

energy landscape of the complex is created from the combination of the conformational 

space of the interacting molecules. However, the interaction with the partner molecule 

can induce drastic changes in the shape of the energy landscape corresponding to the 

individual protein. Disordered segments that adopt a single well-defined structure as a 

result of the complex formation are expected to have a funnel-like energy landscape with 

a single well-defined minimum. However, disordered proteins sample a large number of 

different conformations in their initial state prior to the interaction. Thus, the final 

conformation is chosen from a conformational ensemble instead of a limited number of 

conformations. This process can be viewed as a continuous version of the classical 

conformational selection model. Figure 26 shows a schematic representation of the 

binding mode of IDPs. This type of binding is not compatible with either the lock-and-

key or with the induced fit model. However, it was suggested that as the conformational 

space narrows down during the formation of the complex, these mechanisms might come 

into play. Interestingly, during binding the disordered segments do not always become 

fully ordered but can retain their dynamic nature even as part of the complex, resulting in 

a ‘fuzzy complex’40. Such a dynamic complex is formed, for example, between the 

 
Figure 25: Extreme examples of energy landscapes 

Schematic representation of the energy landscape of a globular protein (A) and a disordered protein (B). 

The energy of the system is sketched against a single coordinate of the conformational space. 
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intrinsically disordered Sic1 with its partner Cdc4 during regulation of yeast cell cycle 

progression. These complexes can be described only by a set of alternating 

conformations. The resulting energy profile is also shown on Figure 26. 

 
 

These examples show that although the various levels of flexibility present in proteins 

and their complexes allow them to carry out their functions in different ways, the 

kaleidoscope of protein interactions, however, is built upon the same physical principles. 

The current energy estimation scheme behind IUPred and ANCHOR (introduced in 

section 1.4.3) is able to give an estimation of the depth of the minimum of the energy 

function of a given protein or a protein segment. In order to incorporate the estimation of 

local flexibility/order of a protein, the width of these valleys and the presence of other, 

energetically near-identical conformations have to be described as well. This effectively 

means the estimation of entropic terms of a protein chain that would open the way for 

describing the presence of local structure of disordered proteins via short range 

interactions.  Understanding these principles and modeling the formation of protein 

 
Figure 26: The energy landscape of the interaction between a globular and a disordered protein 

 The energy of the system is sketched against a single coordinate of the conformational space. The 

initial and final states of proteins are represented by light and dark dots, respectively. The globular 

protein has a funnel-like-, while the disordered proteins have a flat and highly rugged landscape. The 

resulting complex can become completely ordered, represented by a funnel, or can retain some 

flexibility, resulting in a fuzzy complex. 
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structure based on them will help to develop better prediction methods, more well-

designed experiments, and novel approaches to aid drug development. 
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5. Conclusions and future directions 
 

The past two decades saw the rapid accumulation of molecular biology data made 

possible by the development of high-throughput experiments and rapid sequencing 

techniques. At the same time, our theoretical knowledge and interpretation of 

experimental results are lagging behind the amount of data at hand. The fact that we have 

immensely more data than we can make sense of, necessitates the development of 

bioinformatics methods through which the analysis and processing of available data can 

be achieved in a reliable and cost efficient way. This need for theoretical advances and 

their practical applications is even more pronounced in the field of disordered proteins. In 

the past twenty years after their recognition, it became clear that these proteins and their 

interactions play a fundamental role in the regulation and signaling of living cells. 

However, both their theory and the available practical methods aimed at analyzing them 

are not in proportion with their importance. 

 

Disordered proteins and their binding are governed by the same physical principles as 

the folding and interactions of ordered/globular proteins. Through this, the 

thermodynamics description of globular proteins can serve as a starting point in the 

modeling of disordered proteins. The implementation of physical modeling enabled the 

development of the successful and novel prediction of protein disorder from the protein 

sequence alone. As opposed to various machine learning methods that do not have a 

physical background, IUPred uses statistical potentials to estimate the potential 

interaction energy a protein chain can form on its own via intra-molecular interactions. 

Although the applied model is coarse grained without considering atomic details, it 

correctly describes the main driving force behind protein structure formation and thus is 

applicable to modeling both ordered and disordered proteins. 

 

Based on the validity and success of the residue-residue interaction energy prediction 

scheme implemented in IUPred, it was possible to extend this model to the interaction of 

disordered proteins (see section 4.1). Specifically, in my work I aimed at developing a 

prediction method that is able to recognize protein regions from the sequence that are 
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disordered in isolation but can adopt a well defined structure when binding to an ordered 

protein partner. Such disordered binding regions, compatible with coupled folding and 

binding, have to fulfill distinct energetic requirements that can be quantified with the 

energy  prediction scheme. The possible interaction energy a residue can gain by 

interacting with a globular protein partner (inter-molecular interactions) can be modeled 

in the same fashion as intra-molecular interactions. Using this approach I developed 

ANCHOR, a method that is able to recognize around 70% of known disordered binding 

sites correctly from the sequence alone. Although ANCHOR was optimized on short 

disordered binding sites, it can correctly identify long segmented binding regions as well. 

Furthermore, the efficiency is largely independent of the amino acid composition or the 

type of bound structures of the binding sites. This generality on one hand has theoretical 

implications. The applicability of ANCHOR to different types of binding regions 

supports the generality of the underlying model. On the other hand, from a practical point 

of view, ANCHOR can be applied to unknown sequences without restrictions. This 

method was the first (and up to date remains the only) general, publicly available such 

method. It is accessible via its own dedicated web server and can be downloaded for local 

use as well. 

 

Apart form the analysis of single proteins, ANCHOR can be applied – in conjunction 

with other prediction algorithms – to gain system- or evolutionary level conclusions. 

Using IUPred for the prediction of protein disorder and ANCHOR for the prediction of 

disordered binding regions I was able to demonstrate that the presence of both disorder 

and disordered binding sites increase with the complexity of the studied organism (see 

section 4.2). In general, eukaryotic proteomes contain a larger fraction of these structural 

elements than bacteria and archaea, furthermore, in complex organisms the typical length 

of disordered and disordered binding regions are significantly longer. My results imply 

that throughout the course of evolution, protein disorder serves as an advantage and new 

disordered regions are introduced to harbor binding regions. This mechanism can support 

the emergence of complex signaling pathways and regulatory networks. 
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The proteome-wide analysis of disorder and disordered binding regions provided 

interesting example organisms that seem to deviate from the general trends. One such 

organism is Mycobacterium tuberculosis (MTB), the main causative agent of TB. This 

remarkably successful obligate intracellular organism is predicted to contain an unusually 

high fraction of disordered proteins. Via thorough sequence analysis employed on the 

MTB proteome using domain analysis and sequence profiling, I was able to pinpoint two 

protein families that can play a major role in the successful adaptation of MTB (see 

section 4.3). The representative proteins of these families are generally long, modular and 

contain large disordered regions. Although developed on the MTB proteome, the 

proposed protocol is independent of the organism and can be used generally on any 

organism of interest, thus aiding drug target searches in identifying promising drug target 

proteins. 

 

I carried out another large scale sequence analysis focusing on point mutations 

connected to human cancer (see section 4.4). It was shown by previous studies that 

proteins involved in cancer exhibit a high disorder content. This induced popular claims 

that ‘disorder entails a biological cost’, arguing that disorder makes proteins more 

vulnerable to mutations. Through analysis of the distribution of cancer-associated 

mutations across various structural regions of proteins I was able to show that taking the 

appropriate background distributions into consideration, disordered regions in fact are 

depleted in cancer-associated mutations. Through functional analysis using various 

statistical measures, I also demonstrated that the association between protein disorder and 

the involvement in cancer is indirect and can be explained through the function of 

proteins. 

 

Parallel to the disordered binding region concept, interaction between short regions of 

proteins and globular domains has been extensively studied using the concept of linear 

motifs. In this framework, the description of the molecular recognition is based on 

sequential properties instead of structural ones. The interaction between certain globular 

domains and their binding regions has been shown to be mediated by a limited number of 

residues in the short interacting partner. These residues form the motif which is supposed 
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to mediate the binding largely independent of the rest of the protein chain. Although 

these motifs are known to generally reside in disordered protein regions, the connection 

between the ‘disordered binding region’ and ‘linear motif’ models present a largely 

uncharted territory. I studied this connection by representing each concept with its 

dedicated prediction method (see section 4.5). I used ANCHOR for the prediction of 

disordered binding regions and the regular expression representation of ligand binding 

motifs from the ELM database. Using the annotated examples of known motifs it was 

possible to show that there is a significant correlation between binding sites predicted by 

ANCHOR and the occurrence of true motif instances. The resulting combined method 

presents the best of both worlds: the motifs can take into account the essentiality of 

certain key residues indispensable for the interaction and provide information about the 

interacting partner. Furthermore, the incorporation of ANCHOR dramatically reduces the 

number of false positives – the main limiting factor in the naïve use of linear motifs for 

prediction. In addition, ANCHOR also introduces a way to take into account the effect of 

the ‘context’ residues that flank the core motif residues – an effect that is largely 

overlooked, albeit recent studies have estimated it to be more significant than previously 

anticipated. I demonstrated the efficiency of using ANCHOR as a filtering procedure for 

linear motif searches through the large scale scanning of the human proteome for nuclear 

receptor binding motifs. 

 

In the commonly used description of disordered proteins, disorder is considered as a 

binary feature and based on experimental results, proteins or protein regions are 

categorized as either ordered or disordered (see section 4.6). Accordingly, current 

disordered prediction methods are used as binary predictors to reproduce the same binary 

classification using a bioinformatics approach. In reality, however, protein flexibility is a 

continuous property and as a result protein disorder is heterogeneous ranging from the 

rigid structure of trypsin to the near random-coil behavior of ACTR. This heterogeneity 

can be explained in the common thermodynamical description of proteins. Although there 

exist dedicated prediction methods for the identification of ‘structurally ambiguous’ 

regions (such as COILS for the prediction of coiled coil regions), these methods are 

generally not based on biophysical considerations. In this light, one of the most important 



 
Chapter 5 – Conclusions and Future Directions 

112 

theoretical message of the success of IUPred and ANCHOR is that the common physical 

description of both disordered and ordered proteins can be modeled in a unified 

framework. By further refining the underlying model, this approach can be developed to 

accurately describe the alternative conformations of proteins based on their sequence. By 

modeling short range interactions and effectively estimating the entropic terms, this 

approach can serve as a basis of developing more sophisticated prediction algorithms and 

the deeper understanding of the continuous spectrum of protein disorder. As the function 

and the mode of interaction of proteins are intimately linked to their flexibility, these 

results will deepen our understanding of the molecular recognition of disordered proteins. 
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Summary 
 
In the last decade of the 20th century the results of high-throughput genomic studies 
drastically changed our view of structures and biological roles of proteins. Until the early 
1990’s the basic assumption of structural biology was that the structure of a protein is 
indispensable to its proper function. However, the accumulation of known proteins 
contradicting this ‘structure-function paradigm’ forced molecular biologists to reassess 
this prevailing view. These intrinsically disordered/unstructured proteins (IDPs/IUPs) do 
not have a stable, three dimensional structure in isolation, even under physiological 
conditions, yet they are able to perform highly specific and crucial functions in signaling, 
transcription and various regulatory processes, such as the control of cell division and 
apoptosis. Given the functional importance of IUPs, many proteins containing disordered 
regions have been associated with various diseases, such as cancer, diabetes, amyloidosis 
and neurodegenerative diseases. 
 
Although lacking a stable structure in isolation, IUPs can adopt a well-defined 
conformation upon interaction with partner molecules.  This coupled-folding-and-binding 
process distinguishes the binding of disordered proteins from that of globular proteins. 
The energetics of this special binding mode can be modeled via estimating the residue-
residue interactions using statistical potentials. These potentials, derived from globular 
protein structures using the Boltzmann hypothesis are at the heart of IUPred, a protein 
disorder prediction algorithm. By extending the core model of IUPred, I was able to 
develop ANCHOR, a method designed to identify ‘disordered binding regions’ – protein 
regions that are disordered in isolation but are able to bind to globular partner proteins via 
coupled-folding-and-binding. The method only needs the sequence of a protein as an 
input and hence is applicable to all proteins with known sequences. ANCHOR is publicly 
available to academic users at the http://anchor.enzim.hu web-server. 
 
The development of ANCHOR opened up a novel, fast and cost-efficient way to analyze 
individual proteins, as well as to conduct large scale bioinformatics studies. I applied 
ANCHOR to the analysis of whole proteomes to gain insights about disordered binding 
regions at an evolutionary level. In combination with other bioinformatics tools, I 
developed a novel protocol for the identification of potential drug target proteins and 
tested the protocol using Mycobacterium tuberculosis as a model organism. I also applied 
ANCHOR to address the connection between protein disorder and disordered binding 
sites and cancer-associated mutations. It could be demonstrated that although many 
disordered proteins can be linked to cancer – contrary to widespread claims – protein 
disorder in itself does not entail a biological cost, at least in terms of single amino acid 
mutations. I also demonstrated that protein disorder and involvement in cancer do not 
share a causative relationship, but are linked by protein function. ANCHOR also enabled 
the partial integration of two distinct models of molecular recognition: the ‘disordered 
binding region’ and the ‘linear motif’ concepts. The benefit of these results is twofold: 
from a theoretical point of view they deepen our understanding of the molecular 
recognition of disordered proteins and from a practical point of view they can serve as 
readily applicable tools for planning experiments and interpreting results ranging from 
basic science to pharmaceutical drug design. 



References 

114 

References 
 

 
 

1. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., 
Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., 
Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, 
J. D. & Zardecki, C. (2002). The Protein Data Bank. Acta Crystallogr D Biol 
Crystallogr 58, 899-907. 

2. Baldwin, R. L. (1994). Protein folding. Matching speed and stability. Nature 369, 
183-4. 

3. Dill, K. A. (1985). Theory for the folding and stability of globular proteins. 
Biochemistry 24, 1501-9. 

4. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry 29, 7133-55. 
5. Dill, K. A. (1999). Polymer principles and protein folding. Protein Sci 8, 1166-80. 
6. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. (1995). Funnels, 

pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 
167-95. 

7. Dill, K. A. & Chan, H. S. (1997). From Levinthal to pathways to funnels. Nat 
Struct Biol 4, 10-9. 

8. Leopold, P. E., Montal, M. & Onuchic, J. N. (1992). Protein folding funnels: a 
kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A 
89, 8721-5. 

9. Tsai, C. J., Kumar, S., Ma, B. & Nussinov, R. (1999). Folding funnels, binding 
funnels, and protein function. Protein Sci 8, 1181-90. 

10. Karplus, M. (1997). The Levinthal paradox: yesterday and today. Fold Des 2, 
S69-75. 

11. Blow, N. (2009). Systems biology: Untangling the protein web. Nature 460, 415-
8. 

12. Jones, S. & Thornton, J. M. (1996). Principles of protein-protein interactions. 
Proc Natl Acad Sci U S A 93, 13-20. 

13. Tuncbag, N., Kar, G., Keskin, O., Gursoy, A. & Nussinov, R. (2009). A survey of 
available tools and web servers for analysis of protein-protein interactions and 
interfaces. Brief Bioinform 10, 217-32. 

14. Lo Conte, L., Chothia, C. & Janin, J. (1999). The atomic structure of protein-
protein recognition sites. J Mol Biol 285, 2177-98. 

15. Bahadur, R. P., Chakrabarti, P., Rodier, F. & Janin, J. (2004). A dissection of 
specific and non-specific protein-protein interfaces. J Mol Biol 336, 943-55. 

16. Meszaros, B., Tompa, P., Simon, I. & Dosztanyi, Z. (2007). Molecular principles 
of the interactions of disordered proteins. J Mol Biol 372, 549-61. 

17. Valdar, W. S. & Thornton, J. M. (2001). Protein-protein interfaces: analysis of 
amino acid conservation in homodimers. Proteins 42, 108-24. 

18. Armon, A., Graur, D. & Ben-Tal, N. (2001). ConSurf: an algorithmic tool for the 
identification of functional regions in proteins by surface mapping of 
phylogenetic information. J Mol Biol 307, 447-63. 



References 

115 

19. Bonvin, A. M. (2006). Flexible protein-protein docking. Curr Opin Struct Biol 16, 
194-200. 

20. Ofran, Y. & Rost, B. (2007). ISIS: interaction sites identified from sequence. 
Bioinformatics 23, e13-6. 

21. Fischer, E. (1894). Einfluss der Konfiguration auf die Wirkung der Enzyme. Ber. 
Dtsch. Chem. Ges. 27, 2985-93. 

22. Koshland, D. E. (1958). Application of a theory of enzyme specificity to protein 
synthesis. Proc. Natl. Acad. Sci. USA 44, 98-104. 

23. Teilum, K., Olsen, J. G. & Kragelund, B. B. (2009). Functional aspects of protein 
flexibility. Cell Mol Life Sci 66, 2231-47. 

24. Boehr, D. D., Nussinov, R. & Wright, P. E. (2009). The role of dynamic 
conformational ensembles in biomolecular recognition. Nat Chem Biol 5, 789-96. 

25. Ma, B., Kumar, S., Tsai, C. J. & Nussinov, R. (1999). Folding funnels and 
binding mechanisms. Protein Eng 12, 713-20. 

26. Papoian, G. A. & Wolynes, P. G. (2003). The physics and bioinformatics of 
binding and folding-an energy landscape perspective. Biopolymers 68, 333-49. 

27. Csermely, P., Palotai, R. & Nussinov, R. (2010). Induced fit, conformational 
selection and independent dynamic segments: an extended view of binding 
events. Trends Biochem Sci 35, 539-46. 

28. Wright, P. E. & Dyson, H. J. (1999). Intrinsically unstructured proteins: re-
assessing the protein structure-function paradigm. J Mol Biol 293, 321-31. 

29. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. 
S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, 
M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., 
Chiu, W., Garner, E. C. & Obradovic, Z. (2001). Intrinsically disordered protein. 
J Mol Graph Model 19, 26-59. 

30. Dyson, H. J. & Wright, P. E. (2005). Intrinsically unstructured proteins and their 
functions. Nat Rev Mol Cell Biol 6, 197-208. 

31. Tompa, P. (2002). Intrinsically unstructured proteins. Trends Biochem Sci 27, 
527-33. 

32. Dunker, A. K., Obradovic, Z., Romero, P., Garner, E. C. & Brown, C. J. (2000). 
Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop 
Genome Inform 11, 161-71. 

33. Meszaros, B., Simon, I. & Dosztanyi, Z. (2009). Prediction of protein binding 
regions in disordered proteins. PLoS Comput Biol 5, e1000376. 

34. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F. & Jones, D. T. (2004). 
Prediction and functional analysis of native disorder in proteins from the three 
kingdoms of life. J Mol Biol 337, 635-45. 

35. Xie, H., Vucetic, S., Iakoucheva, L. M., Oldfield, C. J., Dunker, A. K., Uversky, 
V. N. & Obradovic, Z. (2007). Functional anthology of intrinsic disorder. 1. 
Biological processes and functions of proteins with long disordered regions. J 
Proteome Res 6, 1882-98. 

36. Tompa, P. (2005). The interplay between structure and function in intrinsically 
unstructured proteins. FEBS Lett 579, 3346-54. 



References 

116 

37. Galea, C. A., Wang, Y., Sivakolundu, S. G. & Kriwacki, R. W. (2008). 
Regulation of cell division by intrinsically unstructured proteins: intrinsic 
flexibility, modularity, and signaling conduits. Biochemistry 47, 7598-609. 

38. Uversky, V. N. (2002). Natively unfolded proteins: a point where biology waits 
for physics. Protein Sci 11, 739-56. 

39. Dyson, H. J. & Wright, P. E. (2002). Coupling of folding and binding for 
unstructured proteins. Curr Opin Struct Biol 12, 54-60. 

40. Tompa, P. & Fuxreiter, M. (2008). Fuzzy complexes: polymorphism and 
structural disorder in protein-protein interactions. Trends Biochem Sci 33, 2-8. 

41. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. (2005). Showing your ID: 
intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol 
Recognit 18, 343-84. 

42. Dosztanyi, Z., Chen, J., Dunker, A. K., Simon, I. & Tompa, P. (2006). Disorder 
and sequence repeats in hub proteins and their implications for network evolution. 
J Proteome Res 5, 2985-95. 

43. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. (2008). Intrinsically disordered 
proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37, 
215-46. 

44. Cheng, Y., LeGall, T., Oldfield, C. J., Dunker, A. K. & Uversky, V. N. (2006). 
Abundance of intrinsic disorder in protein associated with cardiovascular disease. 
Biochemistry 45, 10448-60. 

45. Uversky, V. N. (2009). Intrinsic disorder in proteins associated with 
neurodegenerative diseases. Front Biosci 14, 5188-238. 

46. Uversky, V. N., Oldfield, C. J., Midic, U., Xie, H., Xue, B., Vucetic, S., 
Iakoucheva, L. M., Obradovic, Z. & Dunker, A. K. (2009). Unfoldomics of 
human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 
10 Suppl 1, S7. 

47. Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradovic, Z. & Dunker, A. K. 
(2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol 
Biol 323, 573-84. 

48. Hegyi, H., Buday, L. & Tompa, P. (2009). Intrinsic structural disorder confers 
cellular viability on oncogenic fusion proteins. PLoS Comput Biol 5, e1000552. 

49. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. (2009). Intrinsic 
protein disorder and interaction promiscuity are widely associated with dosage 
sensitivity. Cell 138, 198-208. 

50. Cheng, Y., LeGall, T., Oldfield, C. J., Mueller, J. P., Van, Y. Y., Romero, P., 
Cortese, M. S., Uversky, V. N. & Dunker, A. K. (2006). Rational drug design via 
intrinsically disordered protein. Trends Biotechnol 24, 435-42. 

51. Metallo, S. J. (2010). Intrinsically disordered proteins are potential drug targets. 
Curr Opin Chem Biol 14, 481-8. 

52. Vucetic, S., Obradovic, Z., Vacic, V., Radivojac, P., Peng, K., Iakoucheva, L. M., 
Cortese, M. S., Lawson, J. D., Brown, C. J., Sikes, J. G., Newton, C. D. & 
Dunker, A. K. (2005). DisProt: a database of protein disorder. Bioinformatics 21, 
137-40. 

53. Garner, E., Cannon, P., Romero, P., Obradovic, Z. & Dunker, A. K. (1998). 
Predicting Disordered Regions from Amino Acid Sequence: Common Themes 



References 

117 

Despite Differing Structural Characterization. Genome Inform Ser Workshop 
Genome Inform 9, 201-213. 

54. Radivojac, P., Obradovic, Z., Smith, D. K., Zhu, G., Vucetic, S., Brown, C. J., 
Lawson, J. D. & Dunker, A. K. (2004). Protein flexibility and intrinsic disorder. 
Protein Sci 13, 71-80. 

55. Li, X., Romero, P., Rani, M., Dunker, A. K. & Obradovic, Z. (1999). Predicting 
Protein Disorder for N-, C-, and Internal Regions. Genome Inform Ser Workshop 
Genome Inform 10, 30-40. 

56. Xie, Q., Arnold, G. E., Romero, P., Obradovic, Z., Garner, E. & Dunker, A. K. 
(1998). The Sequence Attribute Method for Determining Relationships Between 
Sequence and Protein Disorder. Genome Inform Ser Workshop Genome Inform 9, 
193-200. 

57. Uversky, V. N., Gillespie, J. R. & Fink, A. L. (2000). Why are "natively 
unfolded" proteins unstructured under physiologic conditions? Proteins 41, 415-
27. 

58. Campen, A., Williams, R. M., Brown, C. J., Meng, J., Uversky, V. N. & Dunker, 
A. K. (2008). TOP-IDP-scale: a new amino acid scale measuring propensity for 
intrinsic disorder. Protein Pept Lett 15, 956-63. 

59. Dosztanyi, Z., Meszaros, B. & Simon, I. (2010). Bioinformatical approaches to 
characterize intrinsically disordered/unstructured proteins. Brief Bioinform 11, 
225-43. 

60. Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. (2005). The pairwise energy 
content estimated from amino acid composition discriminates between folded and 
intrinsically unstructured proteins. J Mol Biol 347, 827-39. 

61. Thomas, P. D. & Dill, K. A. (1996). An iterative method for extracting energy-
like quantities from protein structures. Proc Natl Acad Sci U S A 93, 11628-33. 

62. Shortle, D. (2003). Propensities, probabilities, and the Boltzmann hypothesis. 
Protein Sci 12, 1298-302. 

63. Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. (2005). IUPred: web server 
for the prediction of intrinsically unstructured regions of proteins based on 
estimated energy content. Bioinformatics 21, 3433-4. 

64. Diella, F., Haslam, N., Chica, C., Budd, A., Michael, S., Brown, N. P., Trave, G. 
& Gibson, T. J. (2008). Understanding eukaryotic linear motifs and their role in 
cell signaling and regulation. Front Biosci 13, 6580-603. 

65. Sigrist, C. J., Cerutti, L., Hulo, N., Gattiker, A., Falquet, L., Pagni, M., Bairoch, 
A. & Bucher, P. (2002). PROSITE: a documented database using patterns and 
profiles as motif descriptors. Brief Bioinform 3, 265-74. 

66. Neduva, V. & Russell, R. B. (2005). Linear motifs: evolutionary interaction 
switches. FEBS Lett 579, 3342-5. 

67. Stein, A. & Aloy, P. (2008). Contextual specificity in peptide-mediated protein 
interactions. PLoS One 3, e2524. 

68. Dinkel, H., Michael, S., Weatheritt, R. J., Davey, N. E., Van Roey, K., Altenberg, 
B., Toedt, G., Uyar, B., Seiler, M., Budd, A., Jodicke, L., Dammert, M. A., 
Schroeter, C., Hammer, M., Schmidt, T., Jehl, P., McGuigan, C., Dymecka, M., 
Chica, C., Luck, K., Via, A., Chatr-Aryamontri, A., Haslam, N., Grebnev, G., 
Edwards, R. J., Steinmetz, M. O., Meiselbach, H., Diella, F. & Gibson, T. J. 



References 

118 

(2012). ELM--the database of eukaryotic linear motifs. Nucleic Acids Res 40, 
D242-51. 

69. Davey, N. E., Edwards, R. J. & Shields, D. C. (2010). Estimation and efficient 
computation of the true probability of recurrence of short linear protein sequence 
motifs in unrelated proteins. BMC Bioinformatics 11, 14. 

70. Rigoutsos, I. & Floratos, A. (1998). Combinatorial pattern discovery in biological 
sequences: The TEIRESIAS algorithm. Bioinformatics 14, 55-67. 

71. Edwards, R. J., Davey, N. E. & Shields, D. C. (2007). SLiMFinder: a probabilistic 
method for identifying over-represented, convergently evolved, short linear motifs 
in proteins. PLoS One 2, e967. 

72. Marschall, T. & Rahmann, S. (2009). Efficient exact motif discovery. 
Bioinformatics 25, i356-64. 

73. Frith, M. C., Saunders, N. F., Kobe, B. & Bailey, T. L. (2008). Discovering 
sequence motifs with arbitrary insertions and deletions. PLoS Comput Biol 4, 
e1000071. 

74. Neduva, V. & Russell, R. B. (2006). DILIMOT: discovery of linear motifs in 
proteins. Nucleic Acids Res 34, W350-5. 

75. Davey, N. E., Haslam, N. J., Shields, D. C. & Edwards, R. J. (2011). SLiMSearch 
2.0: biological context for short linear motifs in proteins. Nucleic Acids Res 39, 
W56-60. 

76. Chica, C., Labarga, A., Gould, C. M., Lopez, R. & Gibson, T. J. (2008). A tree-
based conservation scoring method for short linear motifs in multiple alignments 
of protein sequences. BMC Bioinformatics 9, 229. 

77. Via, A., Gould, C. M., Gemund, C., Gibson, T. J. & Helmer-Citterich, M. (2009). 
A structure filter for the Eukaryotic Linear Motif Resource. BMC Bioinformatics 
10, 351. 

78. Rajasekaran, S., Balla, S., Gradie, P., Gryk, M. R., Kadaveru, K., Kundeti, V., 
Maciejewski, M. W., Mi, T., Rubino, N., Vyas, J. & Schiller, M. R. (2009). 
Minimotif miner 2nd release: a database and web system for motif search. Nucleic 
Acids Res 37, D185-90. 

79. Dinkel, H. & Sticht, H. (2007). A computational strategy for the prediction of 
functional linear peptide motifs in proteins. Bioinformatics 23, 3297-303. 

80. Finn, R. D., Tate, J., Mistry, J., Coggill, P. C., Sammut, S. J., Hotz, H. R., Ceric, 
G., Forslund, K., Eddy, S. R., Sonnhammer, E. L. & Bateman, A. (2008). The 
Pfam protein families database. Nucleic Acids Res 36, D281-8. 

81. Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., Jia, M., 
Shepherd, R., Leung, K., Menzies, A., Teague, J. W., Campbell, P. J., Stratton, M. 
R. & Futreal, P. A. (2011). COSMIC: mining complete cancer genomes in the 
Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39, D945-50. 

82. Sanborn, J. Z., Benz, S. C., Craft, B., Szeto, C., Kober, K. M., Meyer, L., Vaske, 
C. J., Goldman, M., Smith, K. E., Kuhn, R. M., Karolchik, D., Kent, W. J., Stuart, 
J. M., Haussler, D. & Zhu, J. (2011). The UCSC Cancer Genomics Browser: 
update 2011. Nucleic Acids Res 39, D951-9. 

83. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., 
Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., 
Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., 



References 

119 

Ringwald, M., Rubin, G. M. & Sherlock, G. (2000). Gene ontology: tool for the 
unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-9. 

84. Aranda, B., Achuthan, P., Alam-Faruque, Y., Armean, I., Bridge, A., Derow, C., 
Feuermann, M., Ghanbarian, A. T., Kerrien, S., Khadake, J., Kerssemakers, J., 
Leroy, C., Menden, M., Michaut, M., Montecchi-Palazzi, L., Neuhauser, S. N., 
Orchard, S., Perreau, V., Roechert, B., van Eijk, K. & Hermjakob, H. (2010). The 
IntAct molecular interaction database in 2010. Nucleic Acids Res 38, D525-31. 

85. Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: 
pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 
22, 2577-637. 

86. Receveur-Brechot, V., Bourhis, J. M., Uversky, V. N., Canard, B. & Longhi, S. 
(2006). Assessing protein disorder and induced folding. Proteins 62, 24-45. 

87. Gunasekaran, K., Tsai, C. J. & Nussinov, R. (2004). Analysis of ordered and 
disordered protein complexes reveals structural features discriminating between 
stable and unstable monomers. J Mol Biol 341, 1327-41. 

88. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. (1996). 
Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the 
cyclin A-Cdk2 complex. Nature 382, 325-31. 

89. Sorenson, M. K., Ray, S. S. & Darst, S. A. (2004). Crystal structure of the 
flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor 
in an inactive conformation. Mol Cell 14, 127-38. 

90. Hertzog, M., van Heijenoort, C., Didry, D., Gaudier, M., Coutant, J., Gigant, B., 
Didelot, G., Preat, T., Knossow, M., Guittet, E. & Carlier, M. F. (2004). The beta-
thymosin/WH2 domain; structural basis for the switch from inhibition to 
promotion of actin assembly. Cell 117, 611-23. 

91. Huber, A. H. & Weis, W. I. (2001). The structure of the beta-catenin/E-cadherin 
complex and the molecular basis of diverse ligand recognition by beta-catenin. 
Cell 105, 391-402. 

92. Chumakov, P. M. (2007). Versatile functions of p53 protein in multicellular 
organisms. Biochemistry (Mosc) 72, 1399-421. 

93. Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J. & 
Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 
tumor suppressor transactivation domain. Science 274, 948-53. 

94. Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., 
Liao, J. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H. & Bochkarev, A. 
(2005). Single-stranded DNA mimicry in the p53 transactivation domain 
interaction with replication protein A. Proc Natl Acad Sci U S A 102, 15412-7. 

95. Di Lello, P., Jenkins, L. M., Jones, T. N., Nguyen, B. D., Hara, T., Yamaguchi, 
H., Dikeakos, J. D., Appella, E., Legault, P. & Omichinski, J. G. (2006). Structure 
of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 
subunit of TFIIH and the activation domain of p53. Mol Cell 22, 731-40. 

96. Lacy, E. R., Filippov, I., Lewis, W. S., Otieno, S., Xiao, L., Weiss, S., Hengst, L. 
& Kriwacki, R. W. (2004). p27 binds cyclin-CDK complexes through a sequential 
mechanism involving binding-induced protein folding. Nat Struct Mol Biol 11, 
358-64. 



References 

120 

97. Cheng, Y., Oldfield, C. J., Meng, J., Romero, P., Uversky, V. N. & Dunker, A. K. 
(2007). Mining alpha-helix-forming molecular recognition features with cross 
species sequence alignments. Biochemistry 46, 13468-77. 

98. Fuxreiter, M., Simon, I., Friedrich, P. & Tompa, P. (2004). Preformed structural 
elements feature in partner recognition by intrinsically unstructured proteins. J 
Mol Biol 338, 1015-26. 

99. Oldfield, C. J., Meng, J., Yang, J. Y., Yang, M. Q., Uversky, V. N. & Dunker, A. 
K. (2008). Flexible nets: disorder and induced fit in the associations of p53 and 
14-3-3 with their partners. BMC Genomics 9 Suppl 1, S1. 

100. Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P., Uversky, V. N. & Dunker, 
A. K. (2005). Coupled folding and binding with alpha-helix-forming molecular 
recognition elements. Biochemistry 44, 12454-70. 

101. Galea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T. & 
Kriwacki, R. W. (2008). Role of intrinsic flexibility in signal transduction 
mediated by the cell cycle regulator, p27 Kip1. J Mol Biol 376, 827-38. 

102. Kiss, R., Kovacs, D., Tompa, P. & Perczel, A. (2008). Local structural 
preferences of calpastatin, the intrinsically unstructured protein inhibitor of 
calpain. Biochemistry 47, 6936-45. 

103. Dosztanyi, Z., Meszaros, B. & Simon, I. (2009). ANCHOR: web server for 
predicting protein binding regions in disordered proteins. Bioinformatics 25, 
2745-6. 

104. Meszaros, B., Toth, J., Vertessy, B. G., Dosztanyi, Z. & Simon, I. (2011). Proteins 
with complex architecture as potential targets for drug design: a case study of 
Mycobacterium tuberculosis. PLoS Comput Biol 7, e1002118. 

105. Onozaki, I. & Raviglione, M. (2010). Stopping tuberculosis in the 21st century: 
goals and strategies. Respirology 15, 32-43. 

106. Pieters, J. (2008). Mycobacterium tuberculosis and the macrophage: maintaining a 
balance. Cell Host Microbe 3, 399-407. 

107. Borrell, S. & Gagneux, S. (2009). Infectiousness, reproductive fitness and 
evolution of drug-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 
13, 1456-66. 

108. Hasan, S., Daugelat, S., Rao, P. S. & Schreiber, M. (2006). Prioritizing genomic 
drug targets in pathogens: application to Mycobacterium tuberculosis. PLoS 
Comput Biol 2, e61. 

109. Raman, K., Yeturu, K. & Chandra, N. (2008). targetTB: a target identification 
pipeline for Mycobacterium tuberculosis through an interactome, reactome and 
genome-scale structural analysis. BMC Syst Biol 2, 109. 

110. Kim, Y., Koyuturk, M., Topkara, U., Grama, A. & Subramaniam, S. (2006). 
Inferring functional information from domain co-evolution. Bioinformatics 22, 
40-9. 

111. Glazko, G. V. & Mushegian, A. R. (2004). Detection of evolutionarily stable 
fragments of cellular pathways by hierarchical clustering of phyletic patterns. 
Genome Biol 5, R32. 

112. Brennan, M. J. & Delogu, G. (2002). The PE multigene family: a 'molecular 
mantra' for mycobacteria. Trends Microbiol 10, 246-9. 



References 

121 

113. Alber, T. (2009). Signaling mechanisms of the Mycobacterium tuberculosis 
receptor Ser/Thr protein kinases. Curr Opin Struct Biol 19, 650-7. 

114. Wehenkel, A., Bellinzoni, M., Grana, M., Duran, R., Villarino, A., Fernandez, P., 
Andre-Leroux, G., England, P., Takiff, H., Cervenansky, C., Cole, S. T. & Alzari, 
P. M. (2008). Mycobacterial Ser/Thr protein kinases and phosphatases: 
physiological roles and therapeutic potential. Biochim Biophys Acta 1784, 193-
202. 

115. Scherr, N., Muller, P., Perisa, D., Combaluzier, B., Jeno, P. & Pieters, J. (2009). 
Survival of pathogenic mycobacteria in macrophages is mediated through 
autophosphorylation of protein kinase G. J Bacteriol 191, 4546-54. 

116. Sassetti, C. M. & Rubin, E. J. (2003). Genetic requirements for mycobacterial 
survival during infection. Proc Natl Acad Sci U S A 100, 12989-94. 

117. Gey van Pittius, N. C., Sampson, S. L., Lee, H., Kim, Y., van Helden, P. D. & 
Warren, R. M. (2006). Evolution and expansion of the Mycobacterium 
tuberculosis PE and PPE multigene families and their association with the 
duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6, 95. 

118. Kruh, N. A., Troudt, J., Izzo, A., Prenni, J. & Dobos, K. M. (2010). Portrait of a 
pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5, 
e13938. 

119. Dunker, A. K. & Uversky, V. N. (2010). Drugs for 'protein clouds': targeting 
intrinsically disordered transcription factors. Curr Opin Pharmacol 10, 782-8. 

120. Babushok, D. V., Ostertag, E. M. & Kazazian, H. H., Jr. (2007). Current topics in 
genome evolution: molecular mechanisms of new gene formation. Cell Mol Life 
Sci 64, 542-54. 

121. Pajkos, M., Meszaros, B., Simon, I. & Dosztanyi, Z. (2012). Is there a biological 
cost of protein disorder? Analysis of cancer-associated mutations. Mol Biosyst 8, 
296-307. 

122. Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., 
Rahman, N. & Stratton, M. R. (2004). A census of human cancer genes. Nat Rev 
Cancer 4, 177-83. 

123. Xia, Y., Franzosa, E. A. & Gerstein, M. B. (2009). Integrated assessment of 
genomic correlates of protein evolutionary rate. PLoS Comput Biol 5, e1000413. 

124. Liu, J., Zhang, Y., Lei, X. & Zhang, Z. (2008). Natural selection of protein 
structural and functional properties: a single nucleotide polymorphism 
perspective. Genome Biol 9, R69. 

125. Fuxreiter, M., Tompa, P. & Simon, I. (2007). Local structural disorder imparts 
plasticity on linear motifs. Bioinformatics 23, 950-6. 

126. Bledsoe, R. K., Montana, V. G., Stanley, T. B., Delves, C. J., Apolito, C. J., 
McKee, D. D., Consler, T. G., Parks, D. J., Stewart, E. L., Willson, T. M., 
Lambert, M. H., Moore, J. T., Pearce, K. H. & Xu, H. E. (2002). Crystal structure 
of the glucocorticoid receptor ligand binding domain reveals a novel mode of 
receptor dimerization and coactivator recognition. Cell 110, 93-105. 

127. Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., 
Ashton, R. & Zhou, M. M. (2001). Solution structure of ERK2 binding domain of 
MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. 
Mol Cell 7, 387-99. 



References 

122 

128. Vucetic, S., Brown, C. J., Dunker, A. K. & Obradovic, Z. (2003). Flavors of 
protein disorder. Proteins 52, 573-84. 

129. Meszaros, B., Simon, I. & Dosztanyi, Z. (2011). The expanding view of protein-
protein interactions: complexes involving intrinsically disordered proteins. Phys 
Biol 8, 035003. 

 
 


