1,964 research outputs found

    Critical Infrastructures: Enhancing Preparedness & Resilience for the Security of Citizens and Services Supply Continuity: Proceedings of the 52nd ESReDA Seminar Hosted by the Lithuanian Energy Institute & Vytautas Magnus University

    Get PDF
    Critical Infrastructures Preparedness and Resilience is a major societal security issue in modern society. Critical Infrastructures (CIs) provide vital services to modern societies. Some CIs’ disruptions may endanger the security of the citizen, the safety of the strategic assets and even the governance continuity. The European Safety, Reliability and Data Association (ESReDA) as one of the most active EU networks in the field has initiated a project group on the “Critical Infrastructure/Modelling, Simulation and Analysis – Data”. The main focus of the project group is to report on the state of progress in MS&A of the CIs preparedness & resilience with a specific focus on the corresponding data availability and relevance. In order to report on the most recent developments in the field of the CIs preparedness & resilience MS&A and the availability of the relevant data, ESReDA held its 52nd Seminar on the following thematic: “Critical Infrastructures: Enhancing Preparedness & Resilience for the security of citizens and services supply continuity”. The 52nd ESReDA Seminar was a very successful event, which attracted about 50 participants from industry, authorities, operators, research centres, academia and consultancy companies.JRC.G.10-Knowledge for Nuclear Security and Safet

    Criticality assessment of energy infrastructure

    Get PDF
    After the last major accidents in the energy sector of the last decade (USA and Canada (2003), India (2012), Russian-Ukrainian (2009)), energy infrastructure criticality assessment has become one of the most important issues. It has become the topical subject of the economy and national security in all countries. There is no single measure unit for the assessment of critical infrastructure with respect to “interdependency” among critical infrastructure sectors. This paper proposes to use criticality of infrastructure element as a measure to assess the importance of considered element to the normal activity of all sectors of infrastructure. The pilot numerical simulation of heat and electricity infrastructure was performed to demonstrate the implementation of the application of developed method for the assessment of infrastructure functionality and criticality

    CRITICALLITY OF TRANSPORTATION INFRASTRUCTURE IN THE CZECH REPUBLIC

    Get PDF
    The paper deals with transportation infrastructure criticality because this quantity determines the State capability to overcome the critical conditions and to ensure the inhabitants survival. The criticality rates for individual types of transportation infrastructure and for the entire transportation infrastructure are determined by data from experts from the areas: transportation; transportation management in the territory; supply chains; public administration; and the Integrated Rescue System. The experts assessed 14 factors, which have been often used in the developed world countries, from the view of human security and development. The result values and their interpretations were determined by using the Multiatribute Utility Theory

    Managing Epistemic Uncertainties in the Underlying Models of Safety Assessment for Safety-Critical Systems

    Get PDF
    When conducting safety assessment for safety-critical systems, epistemic uncertainty is an ever-present challenge when reasoning about the safety concerns and causal relationships related to hazards. Uncertainty around this causation thus needs to be managed well. Unfortunately, existing safety assessment tends to ignore unknown uncertainties, and stakeholders rarely track known uncertainties well through the system lifecycle. In this thesis, an approach is described for managing epistemic uncertainties about the system and safety causal models that are applied in a safety assessment. First, the principles that define the requirements for the approach are introduced. Next, these principles are used to construct three distinct steps that constitute an approach to manage such uncertainties. These three steps involve identifying, documenting and tracking the uncertainties throughout the system lifecycle so as to enable intervention to address the uncertainties. The approach is evaluated by integrating it with two existing safety assessment techniques, one using models from a system viewpoint and the other with models from a component viewpoint. This approach is also evaluated through peer reviews, semi-structured interviews with practitioners, and by review against requirements derived from the principles. Based on the evaluation results, it is plausible that our approach can provide a feasible and systematic way to manage epistemic uncertainties in safety assessment for safety-critical systems

    Economic, Environmental, and Social Assessments of Raw Materials for a Green and Resilient Economy

    Get PDF
    This book addresses pre-conditions for developing a sustainable and resilient economy and society, emphasizing resources used in future-oriented technologies. With the in-depth analysis of assessments for primary and secondary raw materials, the different contributions meet the need of researchers in the fields of Industrial Ecology, Life Science, and Materials Engineering. Thought-out resource strategies are crucial, establishing a well-designed Circular Economy with sophisticated cascading use stages and reducing emissions to air, water and soil. So, sustainable mining, smelting, and refining processes for metals and minerals have to be improved and new material processes—coming from waste—in the field of the bioeconomy have to be implemented. This book discusses criticality assessments and other classification schemes to quantify supply risks and environmental and social burdens. With tools such as Life Cycle Assessments, the authors identify critical resources and processes in several case studies

    New Model for Bridge Management System (BMS): Bridge Repair Priority Ranking System (BRPRS), Case Based Reasoning for Bridge Deterioration, Cost Optimization, and Preservation Strategy

    Get PDF
    Most public transportation agencies (Such as, state department of transportations (DOTs) and department of public works for cities and towns.) in the United States are constantly pursuing ways to improve bridge asset management to optimize their use of limited available funds for rehabilitation, replacement, and preventive maintenance. Given the realities of available funding, there is a significant difference between available funds and funds required for maintaining bridges in good condition. The proper preventative maintenance and treatments should be performed at the right time to be cost effective and extend the life of bridges. Neglecting maintenance can cause higher future costs and further deteriorate the conditions that will increase the risk of bridge closure. This would require complete or partial replacement as well as additional funds needed for detours and traffic control which interrupts services to the motorist and creates more congestion. Development and implementation of a Bridge Management System (BMS) provide states and municipalities with a tool to help identify maintenance repair, prioritize bridge rehabilitation and replacement, develop preservation strategies, and allocate available funds accordingly. The primary objective of this research is to develop a Bridge Management System (BMS) to manage municipal and state bridge assets. Complete, accurate data in well-designed form is vital to a Bridge Management System (BMS). This system will make available work reports, engineering drawings, photographs, and a forecasting model for management staff use. Inventory and condition data are extracted from the U.S. Federal Highway Administration (FHWA) and National Bridge Inventory System (NBIS) coding guidelines. The proposed model provides: (1) A priority ranking system for Rehabilitation and Replacement projects, which enables the decision-makers to understand and compare the overall state of all the bridges in the network. It embraces seven factors condition, criticality, risk, functionally, bridge type, age, and size. (2) A deterioration model that uses optimized case-based reasoning (CBR) method. A similarity measure of classification is developed to identify how close the characteristics of bridge components are to each other based on a scoring system. (3) A cost model that considers different repair strategies and provide bridge repair recommendations with estimated cost repairs. (4)The model feeds data to a forecasting program that prepares 120-year preservation, maintenance, repair and rehabilitation budgets and schedules to sustain a bridge network at the highest performance level under approved budgets. The forecasting option contains default management costs that are upgraded as work report data yields costs based on locality and individual bridge projects. BMS will give accessibility through linkages to all available municipal, and DOT, bridge data in the state. The data will be available through ArcGIS on tablets, laptops, and smartphones with access to cloud storage

    An Integrated Cybersecurity Risk Management (I-CSRM) Framework for Critical Infrastructure Protection

    Get PDF
    Risk management plays a vital role in tackling cyber threats within the Cyber-Physical System (CPS) for overall system resilience. It enables identifying critical assets, vulnerabilities, and threats and determining suitable proactive control measures to tackle the risks. However, due to the increased complexity of the CPS, cyber-attacks nowadays are more sophisticated and less predictable, which makes risk management task more challenging. This research aims for an effective Cyber Security Risk Management (CSRM) practice using assets criticality, predication of risk types and evaluating the effectiveness of existing controls. We follow a number of techniques for the proposed unified approach including fuzzy set theory for the asset criticality, machine learning classifiers for the risk predication and Comprehensive Assessment Model (CAM) for evaluating the effectiveness of the existing controls. The proposed approach considers relevant CSRM concepts such as threat actor attack pattern, Tactic, Technique and Procedure (TTP), controls and assets and maps these concepts with the VERIS community dataset (VCDB) features for the purpose of risk predication. Also, the tool serves as an additional component of the proposed framework that enables asset criticality, risk and control effectiveness calculation for a continuous risk assessment. Lastly, the thesis employs a case study to validate the proposed i-CSRM framework and i-CSRMT in terms of applicability. Stakeholder feedback is collected and evaluated using critical criteria such as ease of use, relevance, and usability. The analysis results illustrate the validity and acceptability of both the framework and tool for an effective risk management practice within a real-world environment. The experimental results reveal that using the fuzzy set theory in assessing assets' criticality, supports stakeholder for an effective risk management practice. Furthermore, the results have demonstrated the machine learning classifiers’ have shown exemplary performance in predicting different risk types including denial of service, cyber espionage, and Crimeware. An accurate prediction can help organisations model uncertainty with machine learning classifiers, detect frequent cyber-attacks, affected assets, risk types, and employ the necessary corrective actions for its mitigations. Lastly, to evaluate the effectiveness of the existing controls, the CAM approach is used, and the result shows that some controls such as network intrusion, authentication, and anti-virus show high efficacy in controlling or reducing risks. Evaluating control effectiveness helps organisations to know how effective the controls are in reducing or preventing any form of risk before an attack occurs. Also, organisations can implement new controls earlier. The main advantage of using the CAM approach is that the parameters used are objective, consistent and applicable to CPS
    corecore